
Contents

1 Introduction 1
1.1 Mathematical background . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Basic de�nitions . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Lie groups and Lie algebras . . . . . . . . . . . . . . . . . 8
1.1.3 Levi�s theorem . . . . . . . . . . . . . . . . . . . . . . . . 21
1.1.4 Dynkin diagrams [5] . . . . . . . . . . . . . . . . . . . . . 21
1.1.5 An important theorem . . . . . . . . . . . . . . . . . . . . 25
1.1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 Solvable extension of a nilpotent Lie algebra 28
2.1 A particular nilpotent algebra N . . . . . . . . . . . . . . . . . . 31
2.2 All possible solvable extensions of N . . . . . . . . . . . . . . . . 42
2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Generalized Casimir invariants 45
3.1 De�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Importance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3 Methods of computation of invariants . . . . . . . . . . . . . . . . 47

3.3.1 The �rst method uses the di¤erential operators . . . . . . 47
3.3.2 The second method uses Moving Frames . . . . . . . . . . 48

3.4 Casimir invariants of the Lie algebra N . . . . . . . . . . . . . . . 52
3.5 The generalized Casimir invariants of the Lie algebra S . . . . . . 57

3.5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Extension 61
4.1 A more general case. . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1.1 Solvable extension. . . . . . . . . . . . . . . . . . . . . . . 62
4.1.2 Casimir invariants. . . . . . . . . . . . . . . . . . . . . . . 73

4.2 Signi�cance of our work . . . . . . . . . . . . . . . . . . . . . . . 77

i



CONTENTS ii

A Two proofs used in the text 79
A.1 Connection between automorphism and derivation D when Dn =

0 for some n 2 N: . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.2 The derived algebra of any �nite dimensional solvable Lie alge-

bra of characteristic zero is nilpotent and hence contained in the
nilradical. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



Chapter 1

Introduction

No matter what the branch of science, classi�cation of objects has always helped

study and understand them better and in a more convenient manner. This work

is about one of the advances in the research program of classi�cation of Lie

algebras over the �eld of complex or real numbers. For a detailed review on

classi�cation of Lie algebras we refer to [12] :

Lie algebras can be obtained from Lie groups and vice versa. Lie groups were

de�ned by Sophus Lie as a step in a program to provide a systematic procedure

of solving di¤erential equations. Lie groups are continuous groups and can be

looked at as smooth manifolds. Lie groups will be discussed in a little more detail

later. They have a profound impact on many areas of mathematics, physics and

other mathematical sciences [10] : Some of these are brie�y given below.

1- Particle Physics. Lie groups were used to classify elementary particles as

well as their interactions. The classi�cation required the knowledge of irreducible

representation of Lie groups. For example, neutrons and protons have masses

very close to one another, but with the di¤erence that the proton is charged

whereas the neutron is neutral. Thus from the point of view of strong interac-

tions (neglecting the electromagnetic interaction), they were assumed to form a

2-dimensional representation of the SU(2) group. In the 60�s, SU(3) was discov-

ered as a symmetry of strong interactions and the 8-dimensional representation

was used to group together the baryons n; p;
P+;

P0;
P�;��;�0;�. Similarly

8 mesons �+; �0; ��; k+; k0; �k+; �k0; � were put together in an 8-dimensional irre-

ducible representation.

1



1. Introduction 2

2- Relativistic theories. A special relativistic theory is required to be invari-

ant under the group of Lorentz transformations. However, the Lorentz group is

only a subgroup of the whole symmetry group. Additional symmetries which are

not part of the Lorentz group, are shifts (or translations) in space and time. Ad-

joining these transformations to the Lorentz group yields a Lie group called the

Poincare group [14] : The relativistic theories are invariant under the Poincare

group also.

3- Di¤erential equations. Speci�c Lie groups may appear as consequences

of speci�c dynamics. For any physical system with dynamics described by a

system of ordinary or partial di¤erential equations, the system of equations can

be invariant under some local Lie group of local point transformations, taking

solutions into solutions. This symmetry group G and its Lie algebra L can be

determined in an algorithmic manner [10] : The Lie algebra L is obtained as

an algebra of vector �elds in some basis, depending on the way in which the

algorithm is applied [7] :

The reason we study Lie algebras is that the Lie theory of continuous
groups reduces the "local" problems using Lie groups to corresponding problems

on Lie algebras and thus it becomes easier to solve them using linear algebra.

Lie algebras can be obtained from Lie groups by expanding near the identity

and Lie groups can be obtained back from the Lie algebras by exponentiation.

There is a unique Lie algebra for a Lie group but the converse may not be true.

This work mainly concerns itself with the classi�cation of solvable Lie alge-

bras which helps understand the structure of the Lie algebras in general. The

reason being that any Lie algebra is isomorphic to a semidirect sum of a semi-
simple Lie algebra and a solvable one (a theorem due to Levi [8] ; which will
be mentioned brie�y later). Since semisimple Lie algebras have already been

classi�ed [7], it is only needed to classify the solvable Lie algebras. It is also

known that every solvable Lie algebra has a uniquely de�ned nilradical, which is

a maximal nilpotent ideal, therefore we can consider the classi�cation of nilpo-
tent Lie algebras and then �nd their solvable extensions. Classi�cation of
solvable Lie algebras of dim� 6 and classi�cation of nilpotent Lie algebras of

dim 6; 7; 8 and some results for dim 9 are known [16] ; but this classi�cation is

far from complete:1

1The mathematical terms used here will be de�ned later in section 1.1
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Classi�cation of nilpotent Lie algebras is a step forward in the classi�cation of

solvable Lie algebras and consequently the classi�cation of all �nite dimensional

Lie algebras. But the problem is that in�nitely many di¤erent series of nilpotent

Lie algebras exist and these have not been classi�ed. For n> 7 the number of

non-equivalent or non-isomorphic nilpotent Lie algebras becomes in�nite [16] :

Therefore we consider �speci�c�nilradicals and construct all solvable Lie algebras

with this nilradical. These solvable Lie algebras are extensions of this nilradical.

The nilpotent Lie algebra N; which will be considered, is particular in the

sense that it is of dimension n and has degree of nilpotency n � 1 and its Lie
brackets are all known and are given (in an appropriate basis (e1; :::en)) by

[ei; ej] = 0 ; 1 � i; j � n� 2
[e1; en�1] = [e2; en�1] = 0;

[ek; en�1] = ek�2 ; 3 � k � n� 2;
[e1; en] = 0;

[ek; en] = ek�1; 2 � k � n� 1:

All solvable extensions are then constructed by using derivations obtained by

considering automorphisms close to the identity.

Casimir operators, a particular kind of invariants of Lie algebras, have also

been discussed since they play an important role in the representation theory of

Lie algebras and Lie groups. Also, in physics Casimir operators represent im-

portant quantities such as magnitude of angular momentum, elementary particle

mass and spin, Lagrangians of various physical systems etc.

At the end we �nd the extension of a nilpotent Lie algebra of degree of

nilpotency n� 1 where n is the dimension of the Lie algebra and for which not
all the Lie brackets are known. This gives results which are more generalized.

The Casimir invariants of this more general case have also been discussed.

After this brief introduction and mathematical background we present the

calculation of all possible solvable extensions of a particular nilpotent Lie algebra

in Chapter 2. In Chapter 3, the Casimir invariants of the nilpotent Lie algebra

and its solvable extension are obtained. Chapter 4 is an extension of the work

presented in Chapters 2 and 3. Section A.1 of the appendix is an explanation

of how an automorphism and derivation are related. In section A.2 it is shown

that the derived algebra of a solvable Lie algebra is contained in its nilradical.2

2As mentioned earlier, the terms used here will be de�ned in section 1.1
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1.1 Mathematical background

In this section some basic de�nitions along with examples and mathematical

background has been presented which provides a base for the later work done in

this dissertation.

1.1.1 Basic de�nitions

Lie Algebra

Let F be a �eld. A Lie algebra over F is an F -vector space L, together with a

bilinear map, the Lie bracket

L� L! L (x; y) �! [x; y] :

satisfying

(i) [x; x] = 0; for all x 2 L:
which is equivalent to saying [x; y] = � [y; x] ; for all x; y 2 L:
(ii) [x; [y; z]] + [y; [z; x]] + [z; [x; y]] = 0 , for all x; y; z 2 L:

(Jacobi identity).

Example let V be a �nite dimensional vector space over F . The set gl (V ) of

all linear maps from V to V is a vector space over F . It becomes a Lie algebra

if we de�ne the Lie brackets [; ] by

[x; y] = x � y � y � x ; x; y 2 gl (V ) :

where � denotes composition of maps [4] :

Lie subalgebra

If L is a Lie algebra and K a subset of L, such that

[x; y] 2 K for all x; y 2 K:Then K is a Lie subalgebra of L. Lie subalgebras

are Lie algebras on their own right.

Example Let gl(n; F ) be the vector space of all n�n matrices over F (a �eld)
with the Lie brackets de�ned by

[x; y] = xy � yx;
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where xy is the usual product of the matrices x and y.

Let sl(n; F ) be the subspace of gl(n; F ) consisting of all matrices of trace

0. For arbitrary square matrices x and y, the matrix xy � yx has trace 0, so

[x; y] = xy � yx de�nes a Lie algebra structure on sl(n; F ), properties (i) and

(ii) are inherited from gl(n; F ): This algebra sl(n; F ) is a subalgebra of gl(n; F )

[4] :

Ideal

An Ideal of a Lie algebra L is a subspace M of L such that

[x; y] 2M; for all x 2 L; y 2M:

Example Let b(n; F ) be the upper triangular matrices in gl(n; F ): This is a Lie

algebra with the same Lie brackets as gl(n; F ): Let n(n; F ) be the strictly upper

triangular matrices in b(n; F ).This is an ideal in b(n; F ): It has the same Lie

brackets as gl(n; F ):We see that for arbitrary x 2 b(n; F ) and y 2 n(n; F );xy 2
n(n; F ): Thus [x; y] 2 n(n; F ) for all x 2 b(n; F ) and y 2 n(n; F ) [4] :

Homomorphism and Isomorphism

Let L be a Lie algebras over a �eld F . A mapping � : L �! L1; L1 another Lie

algebra, is a homomorphism if � is a linear map and

� ([x; y]) = [� (x) ;� (y)] for all x; y 2 L:
� is an isomorphism if � is also bijective [4] :

Adjoint homomorphism

Let L is a Lie algebra . We de�ne the adjoint homomorphism by

ad : L �! gl (L) where gl(V ) is the set of all linear maps from V to V and

(ad (x)) (y) = [x; y] for x; y 2 L:
It follows from the bilinearity of the Lie brackets that the map ad (x) is linear

for each x 2 L [4] :

Derivations

Let A be an algebra over a �eld F . A derivation of A is an F -linear map

D : A �! A; such that

D (ab) = aD (b) +D (a) b for all a; b 2 A:
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Example Let A = C1 (R) , the usual derivative, Df = f 0;is a derivation D of

A since by the product rule

D(fg) = (fg)0 = f 0g + fg0 = (Df)g + f(Dg) [4] :

Structure constants

Let L is a Lie algebra over a �eld F with basis (e1; :::; en) ; then the bracket [; ]

is completely determined by the products [ei; ej] 1 � i; j � n:

We de�ne scalars ckij 2 F such that

[ei; ej] =

nX
k=1

ckijek:

The ckij are called the structure constants of L with respect to this basis [4] :

Derived series of a Lie algebra

Let L be a Lie algebra. De�ne

L(0) = L;

L(1) = L0 , where L0 is the derived algebra [L;L] :

and L(k) =
�
L(k�1); L(k�1)

�
; for k = 2:

Then

L = L(0) � L(1) � L(2) � :::

is the derived series of L [4] :

Solvable Lie algebra

A Lie algebra L is said to be solvable if for somem � 1(m 2 N) we have L(m) = 0:
[4] :

Radical of a Lie algebra

The largest solvable ideal of a Lie algebra is called the radical �rad(L)�of L [4] :

Semisimple Lie algebra

A non-zero Lie algebra L is called semisimple if it has no non-zero solvable ideals

[4] :
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Simple Lie algebra

A Lie algebra L is called simple if it is not abelian and has no ideals other than

0 and L [4] :

Lower central series

Consider the Lie algebra L. De�ne

L1 = L0:

Lk =
�
Lk�1; L

�
; k � 2:

Then

L � L1 � L2 � :::

is called the lower central series. The reason for the name central comes from

the fact that Lk

Lk+1
is contained in the centre of L

Lk+1
[4] :

Nilpotent Lie algebra

A Lie algebra L is said to be nilpotent if for some m > 1 (m 2 N) we have

Lm = 0: Then (m� 1) is the degree of nilpotency if m is the least such positive

integer which gives Lm = 0 [4] :

Centralizer

The centralizer LK of a given subalgebra K � L in L is the set of all elements

in L commuting with all elements in K: i.e.

LK = fx 2 L j [x; y] = 0; for all y 2 Kg [16] :

Automorphism

An automorphism of a given Lie algebra L is a bijective linear map

� : L �! L;

such that any pair x; y of elements of L

� ([x; y]) = [� (x) ;� (y)] :

All automorphisms of L form a Lie group Aut (L) : Its Lie algebra is then the

algebra of derivations of L [16] :
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Inner and outer derivations

Let D be a derivation. If an element z exists, such that D = ad (z) i.e. D (x) =

(ad (z)) (x) = [z; x] for all x 2 G then the derivation is called an inner derivation.
Any other derivation is called an outer derivation [16] :

The relation of automorphism with nilpotent derivations is given in appendix

A.1.

Nilradical of a Lie algebra

The maximal nilpotent ideal of a Lie algebra is called its nilradical [16] :

1.1.2 Lie groups and Lie algebras

An r parameter Lie group G is a group which also carries the structure of an

r-dimensional smooth manifold in such a way that both the group operations

m : G�G! G m (g; h) = g:h; g; h 2 G

and the inversion

i : G! G i (g) = g�1; g 2 G

are smooth maps between manifolds [10] :

An r-parameter Lie group of transformation is given by

�x0 = f(�x; �a);

or

x0i = fi(x1; :::xn; a1; :::; ar); 1 � i � n;

where �a = (a1; :::; ar) ;and �x = (x1; :::xn) and the parameters a1; :::; ar are con-

sidered as independent:

If

x00i = fi(x
0
1; :::x

0
n; b1; :::; br);

then because of the group structure, we can �nd parameter set c such that

x00i = fi(x1; :::; xn; c1; :::; cr);
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where c = (c1; :::cr); ck = 'k(a1; :::ar; b1; :::; br); 1 � k � r; and the functions fi
and 'k are analytic. Also because of the group structure, we can �nd a parameter

set �a0 [6] such that

f(�x0; �a0) = f(f(�x; �a); �a0) = �x:

Then

�x = f(�x; �d);

where, �d = (d1; :::; dk) and

�dk =  k (a1; :::; ar; a
0
1; :::; a

0
r) ; 1 � k � r;

This gives the identity mapping.

In�nitesimal generators of the algebra of the group

Consider the r-parameter Lie group of transformations

xi = fi(x1; :::; xn; a1; :::; ar); 1 � i � n: (1.1)

or

�x0 = f(�x; �a);

in an abbreviated notation, where fi are analytic functions of the parameter set

�a for each i; (1 � i � n):

Consider the transformation

x0i + dx0i = fi(x
0
1; :::; x

0
n; �a1; :::; �ar); (1.2)

where we are taking the identity map to be �x0 = f(�x0; 0):

Expanding the right hand side of (1.2) using Taylor series expansion and

using x0i = fi(x1; :::xn; a1; :::; ar); we get

dx0i =
rP
k=1

�
@fi(x

0
i; :::; x

0
n; a1; :::; ar)

@ak

�
a=0

�ak (1.3)

=
rP
k=1

fik(x
0)�ak:
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where

fik(x
0) =

�
@fi(x

0
i; :::; x

0
n; a1; :::; ar)

@ak

�
a=0

:

Again writing

al + dal = 'l(a1; :::ar; �a1; :::; �ar); (1.4)

and using Taylor series expansion, we obtain

dal =
rP

m=1

�
@'l(a1; :::; ar; b1; :::; br)

@bm

�
b=0

�am (1.5)

=
rP

m=1

�lm�am;

where �lm = �lm (a1; :::; an) ; and at a = 0, �lm (0) = �lm:

Inverting the system of linear equations in equation (1.5), we obtain

�ak =
P
	kl (a) dal; 1 � k � r. (1.6)

Obviously the r� r matrices 	 and � satisfy 	� = 1: Also using �lm (0) = �lm;

we get 	kl (0) = �kl.

Substituting the expression for �ak from equation (1.6) in equation (1.3), we

get

dx0i =
rP

k;l=1

fik (x
0)	kl (a) dal; 1 � i � n: (1.7)

In other words

@x0i
@al

=
rP
k=1

fik (x
0)	kl (a) ; (1.8)

and the free indices i and l have the ranges 1 � i � n and 1 � l � r respectively.

Here �x0 are functions of the parameter sets �a and �x are initial values of �x0 for

�a = 0:

If we examine the change of a function F (x) under the in�nitesimal transfor-

mation given in equation (1.2) we �nd that
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dF =
nX
i=1

@F

@xi
dxi (1.9)

=
nX
i=1

@F

@xi

rX
l=1

fil (x) �al

=
rX
l=1

�al

 
nX
i=1

fil (x)
@

@xi

!
F

=

rX
l=1

�alXlF:

The operators

Xl =
nX
i=1

fil (x)
@

@xi
; 1 � l � r; (1.10)

are called the in�nitesimal generators of the group and are exactly in number as

the number of parameters [6] :

One parameter subgroup

Let G be a Lie Group. A one parameter subgroup of G is a group homomorphism

� : R ! G that is also a di¤erentiable map at the same time. We view R
additively and G multiplicatively, so that �(r + s)=�(r)�(s).

Structure constants

The commutators of the in�nitesimal generators are linearly expressible in terms

of the in�nitesimal generators. The transformations f form a group with r

essential parameters. This implies that fik are linearly independent. Using x

instead of x0 in equation (1.8 )

@xi
@a�

=
rP
k=1

fik (x)	k� (a) ; 1 � i � n ; 1 � � � r: (1.11)

Now a one parameter continuous group (one parameter group having con-

tinuous group operations) is equivalent to an abelian group of transformations.

For a one parameter Lie group one can always introduce a canonical parameter

�t�such that
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g (t1) g (t2) = g (t1 + t2) ;

[g (t)]�1 = g (�t) :

(Here g(x) are elements of the group).

If the above transformation equations are to be obtained from equation (1.11),

with arbitrary initial conditions, we must have

@2xi
@a�@a�

=
@2xi

@a�@a�
; (1.12)

or

rP
k=1

@

@a�
[fik	k�]�

@

@a�
[fik	k�] = 0:

rP
k=1

�
fik

�
@	k�
@a�

� @	k�
@a�

�
+	k�

@fik
@a�

�	k�
@fik
@a�

�
= 0: (1.13)

Using equation (1.11), we obtain

@fik
@a�

=
nP
j=1

@fik
@xj

@xj
@a�

=
nP
j=1

rP
�=1

@fik
@xj

fj�	��: (1.14)

Substituting in equation (1.13), we get

rP
k=1

fik

�
@	k�
@a�

� @	k�
@a�

�
+

nP
j=1

�
fj�

@fik
@xj

� fjk
@fi�
@xj

�
	k�	�� = 0: (1.15)

But 	k���� = �k�; thus we have

nP
j=1

�
fj�

@fi�
@xj

� fj�
@fi�
@xj

�
=

rP
�=1

rP
�=1

rP
k=1

�
@	k�
@a�

� @	k�
@a�

�
������fik(1.16)

=
rP
k=1

ck�� (a) fik (x) ;

where

ck�� (a) =
rP
�=1

rP
�=1

�
@	k�
@a�

� @	k�
@a�

�
������: (1.17)

Di¤erentiating equation (1.16) with respect to a� and using the operator
@xk
@a�

@
@xk

we get



1. Introduction 13

rP
k=1

@ck��
@a�

fik = 0: (1.18)

Since fik (x) are linearly independent, we conclude that the ck�� are indepen-

dent of a, i.e. are constants. These are called the structure constants of the Lie

Group (or algebra). From (1.16) and (1.17), we obtain

nP
j=1

�
fj�

@fi�
@xj

� fj�
@fi�
@xj

�
=

rP
k=1

ck��fik; (1.19)

@	k�
@a�

� @	k�
@a�

=
rP
�=1

rP
�=1

ck��	��	��: (1.20)

The in�nitessimal generators

X� =
nX
i=1

fi�
@

@xi
;

in view of (1.16) yield

[X�; X�] = X�X� �X�X�

=
nX
i=1

nX
j=1

�
fi�

@

@xi
fj�

@

@xj
� fj�

@

@xj
fi�

@

@xi

�

=
nX
i=1

nX
j=1

��
fi�
@fj�
@xi

� fi�
@fj�
@xi

�
@

@xj

�
=

rP
k=1

nP
j=1

ck��fjk
@

@xj

=
rP
k=1

ck��Xk: (1.21)

This shows that all commutators are linearly expressible in terms of the in�ni-

tesimal generators, where ck�� are structure constants of the Lie group. We see

that

ck�� = �ck��: (1.22)

Also substituting equation (1.21) into the Jacobi identity

[[X�; X�] ; X� ] + [[X�; X� ] ; X�] + [[X� ; X�] ; X�] = 0;
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we obtain

c���c
�
�� + c���c

�
�� + c���c

�
�� = 0: (1.23)

The above procedure shows how, starting from a group of transformations we

arrive at equations (1.22) and (1.23 ) involving the structure constants.

A remarkable work by Lie is the proof that starting from the structure con-

stants of the algebra the above procedure can be reversed. If we have structure

constants satisfying equations (1.22) and (1.23) we can �nd f�s and	�s satisfying

equations (1.19) and (1.20) and thus we can �nd functions which are integrals of

equation (1.11) and form a group [6] : This can be done by exponentiation, the

details can be found in �Theory of Lie groups�by Claude Chevalley [3] :

Lie algebras [6]

Using

X� =
nX
i=1

fi�
@

@xi
;

we can write equation (1.11) in the form

@xi
@a�

= 	k� (a)Xk (xi) ; 	k� (0) = �k�: (1.24)

Any transformation of the group can be reached by letting the parameters a�

vary along a line

a� = s�� ; 1 � � � r; (1.25)

where s� is a real vector. Clearly for � = 0 we get the identity transformation.

Di¤erent values of � give di¤erent transformation operators S (�)

xi (�) = S (�)xi (0) ; S (0) = 1; 1 � i � n: (1.26)

Using equation (1.26) in equation (1.24) and da�
d�
= s� from equation (1.25),

we get

dxi
d�

=
dxi
da�

da�
d�

= s�	k� (s��)Xk (xi) : (1.27)
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But

xi (�) = S (�)xi (0) :

Thus we get

dS (�)

d�
xi (0) = s�	k� (s��)XkS (�)xi (0) ; (1.28)

i.e.

dS (�)

d�
= s�	k� (s��)XkS (�) : (1.29)

At � = 0;

dS

d�
= skXk; (1.30)

where 	k� (0) = �k� and S (0) = 0:

The Taylor expansion for S (�) is then given by

S (�) = 1 + �skXk + ::: (1.31 a)

Substituting value of S (�) in equation (1.26), we get

xi (�) = S (�)xi (0) (1.32)

= (1 + �skXk + :::)xi (0) :

Now

(i) Equations (1.29) and (1.31) show that S (�) depends on the in�nitesimal
operator and skXk is determined by S (�) :

(ii) Consider another vector t� giving t�X�. Let T (�) be the corresponding

transformation operator satisfying equations (1.28) to (1.32) and

T (�) = 1 + �tkXk + ::: (1.31 b)

The product S (�)T (�) gives

(1 + �skXk + :::) (1 + �tkXk + :::) = 1 + � (sk + tk)Xk + ::: (1.33)

The product S (�)T (�) corresponds to the sum (sk + tk)Xk:

(iii) The commutator of S (�) and T (�) is the transformation operator
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S�1 (�)T�1 (�)S (�)T (�) ;

which, using equations (1.31a) and (1.31b), becomes

(1� �skXk + :::) (1� t�X� + :::) (1 + �skXk + :::) (1 + �t�X� + ::)

= 1 + � 2 (skXkt�X� � t�X�skXk) + :::

= 1 + � 2 [skXk; t�X�] + ::: (1.34)

i.e. the commutator of S (�) and T (�) corresponds to the commutator of the

in�nitesimal operators corresponding to S (�) and T (�). Also we see that if

S (�) and T (�) commute we get the identity operator for the commutators and

the corresponding in�nitesimal operators satisfy

[Xk; X�] = 0:

(iv) If the given group is abelian all of its elements commute and we get

[Xk; X�] = 0; 1 � k; � � r:

(v) Let H be a p-parameter proper subgroup of G (p < r). Then we can

select p in�nitesimal operators corresponding to elements of H. The remaining

(r � p) in�nitesimal operators correspond to elements in G n H. Since H is a

subgroup, the commutators of the in�nitesimal operators X1; :::; Xp of H must

be expressible in terms of X1; :::Xp alone so that

c�k� = 0 1 � k; � � p ; p+ 1 � � � r: (1.35)

(vi) Let H be an invariant subgroup of G. For S 2 H and T 2 G ,

T�1ST 2 H: But then S�1T�1ST is also in H. Thus we see from equation (1.34)
that the commutators [skXk; t�X�] must be expressible as a linear combination

of the in�nitesimal operators of H alone. In other words

c�k� = 0 1 � k � p ; p+ 1 � � � r: (1.36)

(vii) If G is a direct product of H and G=H , then

c�k� = 0 ; (1.37)
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for 1 � k � p; p+ 1 � � � r and for p+ 1 � k � r; 1 � � � p:

(viii) If G is simple i.e. it has no proper invariant subgroups, then equation
(1.36) cannot be satis�ed for any choice of basis X�. If G is semisimple then
equation

c�k� = 0 1 � k; �; � � p;

and equation (1.36) cannot be satis�ed for any choice of basis X�:

(ix) Thus for an r-parameter transformation group, there are associated with
it r linearly independent in�nitesimal operators X�. Their linear combinations

can be formed to give an r-dimensional vector space. That is, an r-parameter

Lie group has associated with it an r-dimensional real vector space of quantitiesP
� a�X� which is closed under multiplication de�ned by

[X�; X�] = ck��Xk;

in terms of the structure constants which satisfy

ck�� = �ck��:

Also the Jacobi Identity

[[X�; X�] ; X� ] + [[X�; X� ] ; X�] + [[X� ; X�] ; X�] = 0;

is satis�ed which gives

c���c
�
�� + c���c

�
�� + c���c

�
�� = 0:

This is the Lie algebra of the Lie group.

An example

Consider the orthogonal group in two dimensions given by the parameter 0 �
� < 2� and

x0 = x cos � � y sin �;

y0 = y cos � + x sin �;
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or "
x0

y0

#
=

"
cos � � sin �
sin � cos �

#"
x

y

#
:

The matrix A =

"
cos � � sin �
sin � cos �

#
satis�es

AAT =

"
cos � � sin �
sin � cos �

#"
cos � sin �

� sin � cos �

#
=

"
1 0

0 1

#
= I:

Any 2x2 orthogonal transformation is given parametrically by"
cos � � sin �
sin � cos �

#
; 0 � � � 2�:

Now we �nd the corresponding in�nitesimal generator. Identity corresponds to

� = 0: Near the identity

cos (0 + ��) = cos �� = 1� (��)
2

2!
+
(��)4

4!
� :::;

sin (0 + ��) = sin (��) = �� � (��)
3

3!
+
(��)5

5!
� :::;

we have

x0 = x

 
1� (��)

2

2!
+ :::

!
� y

 
�� � (��)

3

3!
+ :::

!
= x� y��;

neglecting 2nd and higher powers of �� since �� is small. Similarly

y0 = y

 
1� (��)

2

2!
+ :::

!
+ x

 
�� � (��)

3

3!
+ :::

!
= y + x��;

again neglecting 2nd and higher powers of ��; i.e.

x+ dx = x� y��;

y + dy = y + x��;
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or

dx = �y��;

and

dy = x��:

We have only one parameter � so we get only one in�nitesimal generator

X1 =
2X
i=1

ui1 (x; y)
@

@xi
:

Here

u11 = �y ; u21 = x;

or

X1 = �y
@

@x
+ x

@

@y
:

We write X1 as X� . Thus

X� = �y
@

@x
+ x

@

@y
:

This is the in�nitesimal generator corresponding to rotation about the z-axis.

Now we exponentiate to see if we get back our orthogonal transformation.

Consider eX� where X = x @
@y
� y @

@x
:We �rst calculate

x0 = eX�x (1.38)

=

�
I +X� +

X2

2!
�2 + :::

�
x:

But

X (x) =

�
�y @

@x
+ x

@

@y

�
(x) = �y;

and

X2 (x) = X (X (x)) =

�
x
@

@y
� y

@

@x

�
(�y) = �x:

Similarly

X3 (x) = y;

and so on. Putting these values in equation (1.38), we get
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x0 = eX� (x) = x+X (x) � +
X2 (x)

2!
�2 +

X3 (x)

3!
�3 + ::: (1.39)

= x� y� � x
�2

2!
+ y

�3

3!
+ :::

= x

�
1� �2

2!
+ :::

�
� y

�
� � �3

3!
+ :::

�
= x cos � � y sin �:

Next we calculate

y0 = eX� (y) = (I +X� +
X2

2!
�2 +

X3

3!
�3 + :::) (y) : (1.40)

Now

X (y) =

�
x
@

@y
� y

@

@x

�
(y) = x;

X2 (y) = �y;

X3 (y) = �x;

and so on. Putting in equation (1.40), we get

y0 = eX� (y) (1.41)

= y +X (y) � +
X2 (y)

2!
�2 +

X3 (y)

3!
�3 + :::

= y + x� � y
�2

2!
� x

�3

3!
+ :::

= y

�
1� �2

2!
+ :::

�
+ x

�
� � �3

3!
+ :::

�
= y cos � + x sin �:

Equations (1.39) and (1.41) show that we get back to our group by exponenti-

ating the in�nitesimal generator where � is the parameter.
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Comparison of group and algebra

Group Algebra
x0 = x cos � � y sin �;

n
X� = x @

@y
� y @

@x

o
:

y0 = y cos � + x sin �:

Group is abelian [X�; X�] = 0:

�x01 = f (�x; �1) ;

�x02 = f (�x01; �2) ;

�x01 + �x
0
2 = �x

0
2 + �x

0
1 = �x

0
3;

�x03 = f (�x; �1 + �2) :

Now the work that was done before the classi�cation of solvable Lie algebra

was started can be summarized as follows:

1.1.3 Levi�s theorem

Any �nite dimensional Lie algebra L is isomorphic to a semidirect sum of a semi-

simple Lie algebra and a solvable one i.e. if L is a �nite dimensional Lie algebra

of characteristic 0 with radical S then there exist a semisimple Lie subalgebra

B of L such that

L = B � S:

(The proof of the theorem, being very lengthy, has not been given here. It is

available in Jacobson�s Lie Algebras [8]).

1.1.4 Dynkin diagrams [5]

Dynkin diagrams have a central role in the classi�cation of semisimple Lie alge-

bras. In this context we give a few basic de�nitions before presenting the role of

Dynkin diagrams in the classi�cation.

Cartan subalgebra:

A subalgebra K of a Lie algebra L is called a Cartan subalgebra if: (1) K is

nilpotent and (2) K is its own normalizer in L:
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Root:

A root of an algebra L relative to the Cartan subalgebra B is a nonzero linear

functional � on B such that there exists a nonzero element X of L with

[H;X] = � (H)X;

for all H in B. The symbol R denotes the set of all real roots.

Root system:

Any collection of roots in a �nite dimensional real inner-product space having

the following properties is called a root system.

1. The roots span E (E is the real inner-product space such that the roots

form a �nite set of non-zero elements of E)

2. If � is a root, then -� is also a root and the only multiples of � that are
roots are � and -�:

3. If � is a root, let w� denote the linear transformation of E given by

w�:� = � � 2h�; �ih�; �i�:

Then, for all roots � and �; w�:� is also a root.

4. If � and � are roots, then the quantity

2
h�; �i
h�; �i ;

is an integer.

Dynkin diagrams:

Let� = f�1; �2; :::; �rg be a basis for a root system R. Then the Dynkin diagram
for R is a graph having vertices v1; v2; :::; vr:The construction of the graph is such

that we place either no edge, one edge, two edges or three edges between the

vertices as follows:

Let i and j be two distinct indices. If the corresponding roots �i and �j
are orthogonal then we put no edge between vi and vj: If �i and �j are not

orthogonal, we put one two or three edges between vi and vj: The ratio of the

lengths of the roots �i and �j is 1:
p
2;
p
3: If �i and �j are of same length then
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one edge, two edges if longer root is
p
2 times longer than the shorter and three

edges if longer is
p
3 longer.

Also if �i and �j are not orthogonal and not of the same length then we

decorate the edges between vi and vj with an arrow pointing from the vertex

associated with the longer towards the vertex associated with the shorter root.

The only possible length ratios are 1 ;
p
2 ,
p
3 and these three cases corre-

spond to angles of 120� ,135� , 150� respectively.

Dynkin diagrams are said to be equivalent if there exists a 1-1, onto map of

the vertices of one to the vertices of the other which preserves the number of

edges and the direction of the arrows. Since any two bases for the same root

system can be mapped into one another by the action of the Weyl group, the

equivalent class of Dynkin diagrams is independent of the choice of the base.

Classifying all the connected diagrams that can arise as Dynkin diagrams of

root systems amounts to the classi�cation of irreducible root system since a root

system is irreducible if and only if its Dynkin diagram is connected. Further,

two root systems with equivalent Dynkin diagrams are equivalent.

The analysis of the root systems of classical Lie algebras allows us to read

o¤ the Dynkin diagrams for the classical Lie algebras sl (n;C) ; so (n;C) and
sp (n;C)

An : The root system An is the root system of sl (n+ 1;C), which has rank
n.

Bn : The root system Bn is the root system of so (2n+ 1;C), which has rank
n.

Cn : The root system Cn is the root system of sp (n;C), which has rank n.
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Dn : The root system Dn is the root system of so (2n;C), which has rank n.

In addition to root systems associated to the classical Lie algebras, there are

�ve exceptional irreducible root systems, denoted G2; F4; E6; E7 and E8:

so that every irreducible root system is isomorphic to precisely one root

system from the following list:

1.The classical root systems An; n � 1:
2.The classical root systems Bn; n � 2:
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3.The classical root systems Cn; n � 3:
4.The classical root systems Dn; n � 4:
5.The exceptional root systems G2; F4; E6; E7 and E8:
The classi�cation of semisimple Lie algebras is equivalent to the classi�cation

of root systems, since

1.If R1 and R2 are the root systems for two di¤erent Cartan subalgebras of
the same complex semisimple Lie algebra, then R1 and R2 are isomorphic.

2.A semisimple Lie algebra is simple if and only if its root system is irre-

ducible.

3.If two complex semisimple Lie algebras have isomorphic root systems, then
the semisimple Lie algebras are isomorphic.

4.Every root system arises as the root system of some complex semisimple

Lie algebra.

Hence we have that every complex simple Lie algebra is isomorphic to pre-

cisely one algebra from the following list:

1. sl (n+ 1;C) ; n � 1:
2. so (2n+ 1;C) ; n � 2:
3. sp (n;C) ; n � 3:
4. so (2n;C) ; n � 4:
5. The exceptional Lie algebras G2; F4; E6; E7 and E8:
A semisimple Lie algebra is determined up to isomorphism by specifying

which simple summands occur and how many times each one occurs.

This completes the classi�cation of all semisimple Lie algebras.

1.1.5 An important theorem

STATEMENT: Every solvable Lie algebra has a uniquely de�ned Nilradical
[8] :

PROOF:
Proof involves the following four steps:

(I). In this context, we �rst prove
[::: [[U1; U2] ; U3] ; :::; Uk] � Bh ;h � k;h; k 2 N

where B is an ideal in L, B0 = L and h of the Ui are equal to B and the

remaining (k � h) Ui are equal to L:

For k = 1
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[U1] � B is true since either (i) h = 0 , then U1 = L implies [U1] � B0 = L:

or (ii) h = 1 ,then U1 = B implies [U1] � B:

Assume that the statement is true for k = n i.e.

[::: [[U1; U2] ; U3] ; :::; Un] � Bh:

Consider

[::: [[[U1; U2] ; U3] ; :::Un] ; Un+1] :

There are two cases; either (i) Un+1 = L; or (ii) Un+1 = B:

Case (i) If Un+1 = L

Let [::: [[U1; U2] ; U3] ; :::; Un] =M � Bh:

Then [M;Un+1] � Bh:

Since if B is an ideal, [B;L] � B and Lie product of ideals is an ideal.

Case (ii) If Un+1 = B

[M;B] � Bh;

which shows that if the statement if true for k = n then it is

also true for k = n+ 1

Hence the result is established by induction.

(II). Sum of nilpotent ideals is nilpotent

Consider two ideals B1and B2 and the ideal B1 + B2: Then (B1 +B2)
m is

contained in a sum of terms [::: [[U1; U2] ; U3] ; :::; Um] where Ui = B1orB2

We prove below by induction that any such term contains
�
m
2

�
B1�s or

�
m
2

�
B2�s,

where
�
m
2

�
is the integral value of m

2
:

Obviously (B1 +B2)
1 = [B1] + [B2] , here

�
1
2

�
= 0

Assume that the above statement is true for k = n

(B1 +B2)
n � sum of terms [::: [[U1; U2] ; U3] ; :::; Un] where each term

contains either
�
n
2

�
B0
1s or

�
n
2

�
B0
2s:

Then for k = n+1; (B1 +B2)
n+1 = [(B1 +B2)

n ; B1 +B2] = [(B1 +B2)
n ; B1]+

[(B1 +B2)
n ; B2] :

i.e. (B1 +B2)
n+1 � sum of terms with

�
n
2

�
+ 1 B1�s or

�
n
2

�
+ 1 B2�s

� sum of terms with
�
n+1
2

�
B1�s or

�
n+1
2

�
B2�s

Hence the result is established by induction.

From this and the previous result (I) we see that the terms [::: [[U1; U2] ; U3] ; :::; Un]

(where Ui = B1orB2) ; containing
�
m
2

�
B1�s or

�
m
2

�
B2�s, is contained in B

[m2 ]
1 or

B
[m2 ]
2 consequently

(B1 +B2)
m � B

[m2 ]
1 +B

[m2 ]
2

Let Bn
1 = 0 , B

l
2 = 0
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Set m such that
�
m
2

�
= l:c:m (l; n)

Then (B1 +B2)
m � 0 + 0

0� (B1 +B2)
m � 0

implies (B1 +B2)
m = 0 which further implies that B1 +B2 is nilpotent.

As a corollary, sum of �nite number of nilpotent ideals is nilpotent.

(III). Main result: Every solvable Lie algebra has a uniquely de�ned nilrad-
ical.

Let L be a �nite dimensional solvable Lie algebra and let R be a nilpotent

ideal of maximal dimensionality. If B is another nilpotent ideal then R + B is

also nilpotent but since R is of maximal dimensionality

R +B = R thus B � R:

We call R the Nilradical of L.

(IV). The nilradical obtained in (III) above is unique.
Let M be another nilpotent ideal of maximal dimensionality. Then

M +R =M:

But

M +R = R; because R is maximal ideal which implies that M = R:

Thus the nilradical is unique. This is the main result which will be used in

the sequel.

1.1.6 Conclusion

Levis theorem tells us that every �nite dimensional Lie algebra is isomorphic

to a semidirect sum of a semisimple Lie algebra and a solvable one. Since the

semisimple Lie algebras have already been classi�ed, so the classi�cation of all

�nite dimensional Lie algebras can be completed if we are able to classify solvable

Lie algebras and this is what is being attempted these days.



Chapter 2

Solvable extension of a nilpotent
Lie algebra

In this chapter, we �nd all solvable extensions of a nilpotent Lie algebra using

the sets of nonequivalent nil-independent outer derivations as in [16].

Since we are to construct all possible solvable extensions of a nilpotent Lie

algebra, we must see what information we can get about the extension from the

given nilpotent Lie algebra.

Let N be a nilpotent Lie algebra, with (in some basis (e1; :::; en) of N ) the

Lie brackets.

[ej; ek] = H l
jkel: (2.1)

In the above and within the sequel, summation over repeated indices is as-

sumed. To extend N we have to add further elements f1; :::; fr to the basis which

can together form basis for its solvable extension S.

Now the derived algebra of any �nite dimensional solvable Lie algebra of

characteristic zero is nilpotent. Thus it is contained in the nilradical. (Here we

will consider N as the unique maximal nilpotent ideal of S i.e. nilradical of S)

i.e.

[S; S] � N ,

(see appendix A.2)

The above statement shows that the Lie brackets on S will be of the form

[fa; ej] = (Aa)
k
j ek; 1 � a � r; 1 � j � n; (2.2)

[fa; fb] = 
jabej; 1 � a; b � r;

[ej; ek] = H l
jkel; 1 � j; k � n:

28
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To know the solvable algebra completely we must �nd out the matricesAa and

the structure constants 
jab: Since S is to be a Lie algebra, the matrix elements

of the matrices Aa must satisfy certain linear relations following from the Jacobi

identities between the basis elements (fa; ej; ek). Using equations (2.1) and (2.2)

[fa; [ej; ek]] + [ej; [ek; fa]] + [ek; [fa; ej]] = 0;

we have

[fa; [ej; ek]] +
h
ej;� (Aa)lk el

i
+
h
ek;� (Aa)lj el

i
= 0;

or �
fa; H

l
jkel
�
� (Aa)lk [ej; el]� (Aa)

l
j [ek; el] = 0;

or

H l
jk (Aa)

m
l em � (Aa)

l
kH

m
jl em + (Aa)

l
j H

m
kl em = 0:

Similarly the Jacobi identities between (fa; fb; ej) will provide linear expres-

sion for the structure constants 
jab in terms of the matrix elements of the com-

mutators of the matrices Aa and Ab: Using equations(2.1) and (2.2) and

[fa; [fb; ej]] + [fb; [ej; fa]] + [ej; [fa; fb]] = 0;

we have h
fa; (Ab)

k
j ek

i
�
h
fb; (Aa)

k
j ek

i
+
�
ej; 


k
abek

�
= 0;

or

(Ab)
k
j [fa; ek]� (Aa)

k
j [fb; ek] + 
kab [ej; ek] = 0;

or

(Ab)
k
j (Aa)

l
k el � (Aa)

k
j (Ab)

l
k el + 
kabH

l
jkel = 0;

or


kabH
l
jkel = (Aa)

k
j (Ab)

l
k el � (Ab)

k
j (Aa)

l
k el:

The set of matrices Ai (1 � i � n) are linearly nil-independent i.e. no
nontrivial linear combination of the matrices Ai is a nilpotent matrix. Otherwise

it will contradict the maximality of N . Here we see how this statement is true:

Since the restriction ad jN (fa) of the adjoint representation ad j (fa) on N
satis�es ad jN (fa) = Aa, any non-trivial linear combination of the matrices Ai
is of the form

� (ad jN (fa)) + � (ad jN (fb)) + :::+ 
 (ad jN (fc)) ,
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where �; �; :::; 
 are constants and not all are zero.

Now the above could not be a nilpotent matrix as is shown below. Consider

M = fe1; e2; :::; en; fa; fbg such that M � N with Lie brackets given by

[ej; ek] = H l
jkel; 1 � j; k � n;

[fa; ej] = (Aa)
k
j ek; 1 � j � n;

[fa; fb] = 
jabej:

The ideal M can be nilpotent if at some stage Mk = 0 for some positive integer

k. Consider

[fa; [fa; ej]] = (Aa)
2 (ej) ;

where (Aa)
2 is an n� n matrix and (ej) is an n� 1 matrix. Also

[�fa + �fb; ej] = (�Aa + �Ab) (ej) ,

is a linear combination of matrices Aa and Ab:

From here we see that if the matrices of the form �Aa+�Ab (where not both

�; � are 0) are nilpotent then M will be nilpotent and since M is an ideal and

M � N it contradicts the maximality of N . Therefore the set of matrices Ai;

1 � i � n are linearly nil-independent.

Sets of outer nil-independent derivations of N: The representation
ad (fa) is an adjoint representation of S: We restrict it to N i.e. ad jN (fa) : It
follows from the Jacobi identities that ad jN (fa) is a derivation of N

ad jN (fa) ([x; y]) = [fa; [x; y]] ;

and

[fa; [x; y]] + [x; [y; fa]] + [y; [fa; x]] = 0;

by Jacobi identity. Thus

[fa; [x; y]] = � [x; [y; fa]]� [y; [fa; x]]
= [x; [fa; y]] + [[fa; x] ; y] ;

or

ad jN (fa) ([x; y]) = [x; ad jN (fa) (y)] + [ad jN (fa) (x) ; y] :

This proves that ad jN (fa) is a derivation of N. It is an outer derivation since
fa =2 N.



2. Solvable extension of a nilpotent Lie algebra 31

We know that �nding all sets of matrices Aa (to know the algebra of the

extension of N) satisfying Jacobi identities is equivalent to �nding all sets of

outer nil-independent derivations of N. Here

D1 = ad jN (f1) ; :::; Dr = ad jN (fr) ;

Again
�
Da; Db

�
must be inner derivation of N .�

Da; Db
�
= DaDb �DbDa;

and for ad (x) 2 N;�
Da; Db

�
(x) =

�
DaDb �DbDa

�
(x) ; for all x 2 n

= DaDb (x)�DbDa (x)

= Da [fb; x]�Db [fa; x]

= [fa; [fb; x]]� [fb; [fa; x]]
= [fa; [fb; x]] + [fb; [x; fa]]

= � [x; [fa; fb]] ;by Jacobi identity
= [[fa; fb] ; x] ;�

Da; Db
�
([x; y]) = [[fa; fb] ; [x; y]]

= � [x; [y; [fa; fb]]]� [y; [[fa; fb] ; x]] ;by Jacobi identity
= [x; [[fa; fb] ; y]] + [[[fa; fb] ; x] ; y] :

Hence
�
Da; Db

�
is a derivation in N which is an inner derivation since

�
Da; Db

�
2

N:

2.1 A particular nilpotent algebra N

Let us de�ne a Lie algebra by the Lie brackets

[ei; ej] = 0; 1 � i; j � n� 2;
[e1; en�1] = [e2; en�1] = 0;

[ek; en�1] = ek�2; 3 � k � n� 2; (2.3)

[e1; en] = 0;

[ek; en] = ek�1; 2 � k � n� 1:
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We get the following information from the above Lie brackets:

(i) This Lie algebra is nilpotent and has degree of nilpotency n � 1 i.e.
Nn�1 6= 0 and Nn = 0: To prove it we observe that the only non zero com-

mutations are [ek; en�1] = ek�2 and [ek; en] = ek�1, with [ek; en�1] = ek�2,

[ek�2; en�1] = ek�4 ... This series will continue if we keep on taking commu-

tation relations of the resultant with en�1 i.e. [ek�4; en�1] = ek�6 and so on. But

this will terminate earlier than Nn�1 because it reduces the indices of ei by 2;

1 � i � n � 1. With [ek; en] = ek�1; the series will continue if we take commu-

tators repeatedly with en and the farthest we can go is with en�1: Consider

[en�1; en] = en�2 2 N2;

[en�2; en] = en�3 2 N3;

:

:

:�
en�(n�2); en

�
= e1 2 Nn�1 6= 0;�

en�(n�1); en
�
= [e1; en] 2 Nn = 0:

This shows that N has degree of nilpotency n� 1:
(ii) The nilpotent Lie algebra N has a uniquely de�ned maximal abelian

ideal ¼a of dimension (n� 2) equal to its derived algebra; Consider N2, N has

basis (e1; :::; en) and from the Lie brackets (2.3) we see that N2 has elements

as linear combinations of (e1; :::; en�2) : Thus N2 has basis (e1; :::; en�2). Since

(e1; :::; en�2) are given N2 is uniquely de�ned and has dimension n� 2: Also N2

is abelian since [ei; ej] = 0 for 1 � i; j � n� 2: This N2 = [N;N ] is the derived

algebra of N .

(iii) Derived series
For an arbitrary Lie algebra L

L = L(0) � L(1) � :::: � L(k) � :::

where

L(0) = L; L(k) =
�
L(k�1); L(k�1)

�
for k � 1:

We investigate

N = N (0) � N (1) � ::: � N (k) � :::;
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where

N = span fe1; :::; eng :

Now

N (1) = [N;N ] = span fe1; :::; en�2g by equation(2.3);

and

N (2) =
�
N (1); N (1)

�
= 0 by equation (2.3),

since

[ei; ej] = 0; 1 � i; j � n� 2;

i.e. the derived series for N terminates since

N=N (0) � N (1) � N (2) = 0:

This shows that N is a solvable Lie algebra.

(iv) Lower central series
For an arbitrary Lie algebra L we de�ne the series

L = L1 � L2 � :::: � Lk � :::;

where

L1 = L Lk =
�
Lk�1; L

�
for k � 2:

We investigate

N=N1 � N2 � ::: � Nk � :::

Here

N1 = N ,

and

N2 = [N;N ] = span fe1; :::; en�2g ;

and

N3 =
�
N2; N

�
:

Now

[ek; ej] = 0; 1 � i; j � n� 2;
[ek; en�1] = 0 for k = 1; 2;

[ek; en�1] = ek�2 for 3 � k � n� 2;
[e1; en] = 0;

[ek; en] = ek�1 for 2 � k � n� 1:
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Thus

N3 = span fe1; :::; en�3g :

Similarly

N4 = span fe1; :::; en�4g ;
:

:

:

Nn�2 = span fe1; e2g ;
Nn�1 = span fe1g :

The lower central series for N is

N = N1 � N2 � ::: � Nn�1 � Nn = 0:

This shows that N is nilpotent of degree of nilpotency (n� 1) :
(v) We see that for the derived series and the lower central series of this

algebra the dimension is DS and CS respectively where these are notations for

ordered list of integers denoting the dimensions of subalgebras in the derived

and lower central series respectively i.e.

DS = [n; n� 2; 0] ;

since

dimN(0) = n;

dimN(1) = n� 2;
dimN(2) = 0:

Also for the central series

CS = [n; n� 2; n� 3; :::; 1; 0] ;
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since

dimN1 = n;

dimN2 = n� 2;
dimN3 = n� 3;

:

:

:

dimNn�1 = 1;

dimNn = 0:

(vi)Themaximal abelian ideal ¼a coincides with the derived algebra N(1) =
N2 i.e. ¼a = span fe1; :::; en�2g because of equation (2.3).
(vii)There exists a�ag of idealswhich is invariant under any automorphism

N � CNn�2 � N2 � N3::: � Nn�1:

We calculated the ideals N2;N3::: . Let us investigate CNn�2 which is the

centralizer of Nn�2. Now we know that Nn�2 = span fe1; e2g : From equation

(2.3) the elements which commute with e1 and e2 are e3; :::; en�2; en�1 . Also e1
commutes with e2, thus the centralizer of N

n�2 is span fe1; :::; en�1g and we see
that N � CNn�2 � N2 where each element in the �ag has codimension one in the
previous one, as is evident from the structure of the �ag.

(viii) For the Lie brackets given in equation (2.3), any automorphism will

be represented by a triangular matrix. From Lie brackets given in equation

(2.3) the only non zero commutators are

[ek; en�1] = ek�2; 3 � k � n� 2; (2.4)

and

[ek; en] = ek�1; 2 � k � n� 1: (2.5)

Equation (2.4) shows that the 3rd row has non-zero element only in the 1st

column (or 3rd column,1st row) 4th column in 2nd row (or 2nd column in 4th

row) ... Thus it gives a triangular matrix.

(ix) An automorphism in N.
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The whole algebra N is generated via multiple commutators of the elements

en�1; en

en�2 = [en�1; en] ;

en�3 = [[en�1; en] ; en] ;

en�4 = [en�3; en] ;

:

:

:

e1 = [e2; en] :

Thus from the de�nition of automorphism

� [ei; ej] = [� (ei) ;� (ej)] ;

the knowledge of

� (en�1) =
n�1X
k=1

�kek; � (en) =
nX
k=1

 kek;

amounts to the full knowledge of �: The automorphism is chosen to be triangular

because the basis of N follow the �ag of ideals

N � CNn�2 � N2 � N3::: � Nn�1:

(x) Choices of �k; 1 � k � n�1 and  k; 1 � k � n which are consistent
with the de�nition of automorphism.
Due to the de�nition of automorphism

[� (ej) ;� (ek)] = 0; 1 � j; k � n� 2;
[� (e1) ;� (en�1)] = [� (e2) ;� (en�1)] = 0;

[� (e1) ;� (en)] = 0;

and

[� (ek) ;� (en)] = � (ek�1) ; 2 � k � n� 1: (2.6)

The above relation is due to the de�nition of ek�1 and

[� (ek) ;� (en�1)] = � (ek�2) ; 3 � k � n� 2:
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Now

[� (en�1) ;� (ek)] = � [� (ek) ;� (en�1)]
= �� (ek�2)
= �� [ek�1; en]
= � [� (ek�1) ;� (en)]
= [� (en) ;� (ek�1)]

= [� (en) ;� [ek; en]]

= � [� (en) ; [� (en) ;� (ek)]] :

Since � (ek) is common on the two of the sides, we conclude

ad (� (en�1)) = �ad (� (en))2 : (2.7)

We can write � (ek) in terms of ek since � is an automorphism. Since auto-

morphism is bijective, for every ek we can �nd an a 2 N such that ek = �(a)

so that equation (2.7) is also true for ek i.e. ad (� (en�1)) = �ad (� (en))2 also
for ek:

Now to �nd ad jN2 � (en�1) ; the restriction of ad j � (en�1) on N2: Since

� (en�1) =
Pn�1

j=1 �jej; we have

[ek;� (en�1)] =

"
ek;

n�1X
j=1

�jej

#
; 3 � k � n� 2

= [ek; �1e1] + [ek; �2e2] + :::+
�
ek; �n�1en�1

�
= �1 [ek; e1] + �2 [ek; e2] + :::+ �n�1 [ek; en�1]

= �n�1ek�2;

[� (en�1) ; ek] = ��n�1ek�2;
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which gives

ad jN2 (� (en�1)) =

266666666666666664

0 0 ��n�1 0 0 : : : 0

0 0 0 ��n�1 0 0

0 0 0 0 ��n�1 0

: : :

: : :

: : :

0 0 0 0 0 : : : ��n�1
0 0 0 0 0 0

0 0 0 0 0 : : : 0

377777777777777775
:

Similarly for ad jN2 (� (en)) ; we have

[� (en) ; ek] = �
"
ek;

nX
j=1

 jej

#
; 3 � k � n� 1

= �
�
[ek;  1e1] + [ek;  2e2] + :::+

�
ek;  n�1en�1

�
+ [ek;  nen]

	
= �

�
0 + 0 + :::+  n�1ek�2 +  nek�1

	
= � n�1ek�2 �  nek�1:

Thus

ad jN2 � (en) =

266666666666666664

0 � n � n�1 0 0 : : : 0

0 0 � n � n�1 0 : : : 0

0 0 0 � n � n�1 : : : 0

: : : :

: : : :

: : : :

0 0 0 0 0 � n � n�1
0 0 0 0 0 0 � n
0 0 0 0 0 0 0

377777777777777775
:

Reduction of parameters in the automorphism.
Initially we had �k; 1 � k � n � 1; k1 � k � n i.e. 2n � 1 parameters in

all. But since ad (� (en�1)) = �ad (� (en))2 we have �n�1 = ( n)
2 ;  n�1 = 0 so

that we are left with �1; :::; �n�2;  n;  1; :::;  n�2 i.e. n� 2 + 1 + n� 2 = 2n� 3
parameters.

.
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(xi) Computation of � (ek) :
From en�2 = [en�1; en] ; we get

� (en�2) = � [en�1; en] .

Using �n�1 = ( n)
2 ;  n�1 = 0; we have

� (en�2) =

"
n�2X
j=1

�jej + ( n)
2 en�1;

n�2X
k=1

 kek +  nen

#
, (Since �n�1 = ( n)

2 ;  n�1 = 0)

=

"
n�2X
j=1

�jej;
n�2X
k=1

 kek

#
+

"
n�2X
j=1

�jej;  nen

#

+

"
( n)

2 en�1;

n�2X
k=1

 kek

#
+
�
( n)

2 en�1;  nen
�

= 0 +
�
�2 ne1 + �3 ne2 + :::+ �n�2 nen�3

	
�
�
 3 ( n)

2 e1 +  4 ( n)
2 e2 + :::+  n�2 ( n)

2 en�4
	
+ ( n)

2  nen�2

� (en�2) =
�
�2 n �  3 ( n)

2� e1 + ��3 n �  4 ( n)
2� e2 + ��4 n �  5 ( n)

2� e3:::
+
�
�n�3 n �  n�2 ( n)

2� en�4 + ��n�2 n� en�3 + ( n)3 en�2: (2.8)

Similarly

� (en�3) = � [[en�1; en] ; en]

= [� [en�1; en] ;� (en)]

=

264
( �

�2 n �  3 ( n)
2� e1 + ��3 n �  4 ( n)

2� e2 + ��4 n �  5 ( n)
2� e3

+:::+
�
�n�3 n �  n�2 ( n)

2� en�4 + ��n�2 n� en�3 + ( n)3 en�2:
)
;Pn�2

k=1  kek +  nen

375
=

�
�3 n �  4 ( n)

2� ne1 + ��4 n �  5 ( n)
2� ne2 + :::

+
�
�n�3 n �  n�2 ( n)

2� nen�5 + ��n�2 n� nen�4 + ( n)4 en�3:
Generalizing we get

� (ek) =

k�1X
j=1

�
�n�k+j�1 n �  n�k+j ( n)

2� ( n)n�k�2 ej+( n)n�k+1 ek; k = 1; :::; n�2:
(2.9)
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Also

� (en�1) =
n�2X
j=1

�jej + ( n)
2 en�1;

� (en) =
n�2X
j=1

 jej +  nen:

(xii) The derivations of N by considering automorphisms in�nites-
imally close to the identity.
The equation (2.9) is

� (ek) =

k�1X
j=1

n�
�n�k+j�1 n �  n�k+j ( n)

2� ( n)n�k�2o ej+( n)n�k+1 ek; k = 1; :::; n�2:
Near the identity the coe¢ cients �n�k+j�1 = 0;  n�k+j = 0 and  n = 1: Thus

� (ek) = ek +D (ek) ;

=
k�1X
j=1

n�
��n�k+j�1 (1 + � n)� � n�k+j (1 + � n)

2� (1 + � n)n�k�2o ej
+(1 + � n)

n�k+1 ek

=
k�1X
j=1

("
��n�k+j�1 +

�
��n�k+j�1

�
� n�

� n�k+j �
�
� n�k+j

�
� 2n � 2

�
� n�k+j

�
� n

#
(1 + (n� k � 2) � n + :::)

)
ej

+(1 + (n� k + 1) � n + :::) ek

where (� n)
2 and higher powers of � n are neglected. The products of ��n�k+j�1; � n�k+j

and � n are also neglected. Then we have

ek +D (ek) =

k�1X
j=1

��
��n�k+j�1 � � n�k+j

�
(1 + (n� k � 2) � n)

	
ej

+ek + (n� k + 1) � nek;

or

D (ek) =
k�1X
j=1

��
��n�k+j�1 � � n�k+j

�	
ej + (n� k + 1) � nek;

or, renaming � n = qn and ��n�k+j�1 � � n�k+j = oj; we found

D (ek) =
k�1X
j=1

(oj) ej + (n� k + 1) qnek:
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Similarly for � (en�1) and � (en) ; near the identity we have �j = 0;  j = 0 and

 n = 1: Thus

� (en�1) = en�1 +D (en�1)

=

n�2X
j=1

��jej + (1 + � n)
2 en�1

=

n�2X
j=1

��jej +
�
(1 + 2� n + (� n)

2	 en�1;
or neglecting (� n)

2

D (en�1) =
n�1X
j=1

��jej + 2� nen�1:

Renaming ��j = pj and � n = qn, we have

D (en�1) =
n�1X
j=1

pjej + 2qnen�1:

For � (en)

� (en) = en +D (en)

=
n�2X
j=1

� jej + (1 + � n) en:

Renaming � j = qj and � n = qn; we arrive at

D (en) =
n�2X
j=1

qjej + qnen:

Thus we have

D (ek) =

k�1X
j=1

(oj) ej + (n� k + 1) qnek; for 1 � k � n� 2: (2.10 a)

Also

D (en�1) =
n�1X
j=1

pjej + 2qnen�1; (2.10 b)
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and

D (en) =
n�2X
j=1

qjej + qnen: (2.10 c)

Here oj = pn�k+j�1� qn�k+j for 1 � j � k�1. The only independent parameters
are pk; qk; qn with 1 � k � n�2 and n 2 N �xed (n is the dimension of N): Hence
the algebra of derivations is (2n� 3) dimensional since an arbitrary derivation
depends on (2n� 3) parameters pk; qk; qn; 1 � k � n� 2:

2.2 All possible solvable extensions of N

For �nding all solvable Lie algebras with nilradical N we need to �nd all non-

equivalent nil-independent sets
�
D1; :::; Df

	
of derivations of N. Since for exam-

ple

D1 = ad (f1) ;

D1 (ek) = [f1; ek] ;

D1 (fa) = [f1; fa] :

If we know D1 we have the required information about the additional base el-

ement. We need to �nd nil-independent outer derivations of N (since N is

maximal nilpotent ideal).

Examining equations (2.10) we immediately see that there can be atmost

one nil-independent derivation such that qn 6= 0. If there would be more of

them say D and ~D, then by taking a linear combination ~qnD � qn ~D we ob-

tain a nilpotent operator (namely one represented by a strictly upper trian-

gular matrix). Since the set of derivations is independent of such linear com-

binations, we will contradict the maximality of N since then we obtain a set

M = (e1; ::; en; em); em 6= ek; 1 � k � n which is nilpotent and M � N.
Therefore any solvable but not nilpotent Lie algebra with the nilradical N

must be n+ 1 dimensional.

(i) By proper choice of multiple of D and adding suitable inner derivations

we can transform D into the form
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D (ek) =
k�1X
j=1

ojej + (n� k + 1)ek for 1 � k � n� 2; (2.11)

D (en�1) =

n�3X
j=1

pjej + 2en�1;

D (en) = en:

There are n � 1 nontrivial inner derivations ad (ek) ; 2 � k � n (since

ad (e1) = 0) and one choice of scaling so we are able to remove n � 1 + 1 = n

parameters in a non nilpotent outer derivation in equations (2.10). Using scaling

we put qn = 1; then

D (en�1) j new = D (en�1)� pn�2ad (en) (en�1) ; qn = 1

=
n�3X
j=1

pjej + 2en�1:

Further

D (ek) jnew= D (ek)�
n�1X
i=2

qn�k+j�1ad (ei) (en) ; qn = 1;

which gives

D (en) j new = D (en)�
n�1X
i=2

qi�1ad (ei) (en) ; qn = 1

= en:

There are still n� 3 parameters pj 1 � j � n� 3 remaining.
(ii) Next we perform a change of basis in N such that the Lie brackets

in equation (2.3) are preserved. This can be done by using conjugate of the

derivation D by a suitable automorphism � i.e.

D ! ~D = ��1 �D � �:

which will help diagonalize the action of D if possible and hence simplify it.

For our convenience, we perform this process in n�3 steps to eliminate n�3
parameters pk; setting one parameter pk equal to zero in each step. Thus our �

here will be
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� = �n�3 � �n�4 � ::: � �1:

We construct the automorphism �k: Let us assume that for given k � n� 3
we have pj = 0 for all k < j � n� 2:
From the form in equation (2.11) we construct an automorphism �k :

�k (en�1) = !kek + en�1;�k (en) = en;

where !k is to be determined. We have

D (�k (en�1)) = D (en�1) + !kD (ek)

= 2en�1 + pkek + (n� k + 1)!kek +
k�1X
j=1

!k(oj)ej

= 2

�
en�1 +

1

2
(pk + (n� k + 1)!k) ek

�
+

k�1X
j=1

!k(oj)ej:

Thus we �nd that

D (�k (en�1)) = 2�k (en�1) +
k�1X
j=1

(:::)ej;

precisely when !k =
pk

n�k+1 : By this choice of !k we can set pk = 0 and proceed

to the elimination of pk�1: We are ultimately able to eliminate all pk�s using

suitably chosen automorphisms �k: Thus we calculated that:

up to addition of inner derivations, conjugation by automotphisms and rescal-

ing, there exist just one nil-independent set of outer derivations, consisting of a

unique element D

D (ek) = (n� k + 1)ek; 1 � k � n:

2.3 Conclusion

The one nil-independent outer derivation corresponds to an additional base ele-

ment other than the base elements of N . This additional element added to the

basis of N gives the basis of the solvable extension S of N .



Chapter 3

Generalized Casimir invariants

The invariants of Lie algebras are one of their de�ning features. In particular,

the polynomial invariants of a Lie algebra exhaust its set of Casimir operators,

i.e. the center of its universal enveloping algebra. Since the structure of invari-

ants strongly depends on the structure of the algebra and the classi�cation of

all (�nite-dimensional) Lie algebras is an inherently di¢ cult problem (actually

unsolvable), it seems to be impossible to elaborate a complete theory for gen-

eralized Casimir operators in the general case [2]. In this chapter we calculate

the Casimir invariant of N and its solvable extension S using a more convenient

method as in [16] :

3.1 De�nitions

Coadjoint representation

Let L be the Lie algebra of the Lie groupG and LF the dual space of L. Then the

map adF : G! gl
�
LF
�
de�ned for any g 2 G by the relation


�
adF (g)

�
f; a
�
=

hf; ad (g�1) ai for all f 2 LF and a 2 L is called the coadjoint representation of
the Lie group G.

Here ad : G ! gl (L) is the usual adjoint representation of G in L and the

image ad (G) of G under ad is the inner automorphism group Int (L) of the Lie

algebra L: The image of G under adF is a subgroup of gl
�
LF
�
and is denoted

by adF (G) [1] :

45
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Invariant

A function I 2 C1
�
LF
�
is called an invariant of adF (G) if

I
��
adF (g)

�
f
�
= I (f) for all g 2 G; f 2 LF [1] :

Casimir invariants

Casimir invariants are the elements in the centre of the enveloping algebra of a

Lie algebras L [16] :

Generalized Casimir invariants

Casimir operators are in one-to-one correspondence with the polynomial invari-

ants of the coadjoint representation of L: �Non-polynomial invariants are called

generalized Casimir invariants�.

For algebraic Lie algebras (Lie algebras that are isomorphic to the Lie algebra

of an a¢ ne algebraic group), it is possible to choose a basis for all invariants

of the coadjoint representation consisting entirely of polynomials (examples of

algebraic Lie algebras are semisimple, perfect, nilpotent Lie algebras etc.) [16] :

Flow

The non-zero Lie algebra elements 0 6= v̂ 2 L are in one-to-one correspondence

with the connected one parameter (or one-dimensional subgroup) of G, a Lie

group, identi�ed as its Flow exp (tv̂) e through the identity e [11] :

Moving Frames

A moving frame is a smooth G-equivariant map � : M ! G:i.e. � (g:z) = g

� (z) ; g 2 G; z 2M: Here G is a group and M is the manifold on which it acts.

G is acting onM so g:z is an element of M . Now � is a map fromM to G so

�(g:z) is an element of G. Also g�(z) is an element of G since it is the product

of two elements of G. Thus the equation � (g:z) = g � (z) is consistent as shown
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in the diagram.

g.z

(z)

g (z)

z

3.2 Importance

Casimir invariants are of great use in Physics .They represent such important

quantities as angular momentum elementary particle masses and spin and Hamil-

tonian of various physical systems etc [16] :

3.3 Methods of computation of invariants

There are two di¤erent methods which exist for the construction of invariants of

group action and in particular of the coadjoint representation of a Lie group G:

3.3.1 The �rst method uses the di¤erential operators

Consider a �rst order di¤erential operator

X̂k = xac
a
kb

@

@xb
: (3.1)

This serves as a basis for the coadjoint representation of the Lie algebra

L [16] : Here ckij are the structure constants of the Lie algebra L in the basis
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(x1; x2; :::; xl) where l is the dimension of L: In equation (3.1), xa are commuting

independent variables which are the coordinates in the basis of the space LF

dual to the basis (x1; x2; :::; xl) :

The generalized Casimir invariants are solutions of the set of partial di¤er-

ential equations

X̂kI (x1; :::; xl) = 0 ; 1 � k � l: (3.2)

The method of characteristics may be used to solve the system of partial

di¤erential equations given in equation (3.2).

The number nI of functionally independent invariants comes out to be equal

to the number of functionally independent solutions of the system (3.2), [1].

i.e.

nI = l � r; (3.3)

where r is the generic rank of the antisymmetric matrix

C =

2666666666664

0
Pl

b=1 c
b
12xb : : : :

Pl
b=1 c

b
1lxb

�
Pl

b=1 c
b
12xb 0

Pl
b=1 c

b
2lxb

: : :

: : :

: : :

�
Pl

b=1 c
b
1;l�1xb : : : : 0

Pl
b=1 c

b
l�1;lxb

�
Pl

b=1 c
b
1lxb : : : : �

Pl
b=1 c

b
l�1;lxb 0

3777777777775
:

The matrix C being antisymmetric has an even rank and thus nI has the same

parity as l:

3.3.2 The second method uses Moving Frames

We will use the recent formulation of this method as given in [10] by P Olver ,

to calculate the Casimir invariants of the coadjoint action of the nilpotent Lie

algebra N and the solvable Lie algebra S: The method can be divided into the

following steps:

(i) This step involves the integration of the coadjoint action of the Lie algebra
L on its dual LF as given by the vector �elds in equation (3.1) to the local action

of the group G:
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We choose a convenient parameterization of G in terms of its one parameter

subgroups;

g (��) = exp (�NxN) ::: exp (�2x2) exp (�1x1) 2 G; (3.4)

�� = (�1; :::; �l) :

We then compose the �ows 	�kXk of the vector �elds X̂k given in equation (3.1),

d	�kXk (p)

d�k
= X̂k

�
	�k
X̂k
(p)
�
; p 2 LF; (3.5)

then

	(g (��)) = 	�N
X̂N
� ::: �	�2

X̂2
�	�1

X̂1
: (3.6)

Let p 2 LF with coordinates xk = xk (p) ; �x = (x1; :::; xl) then the coordinates of

the transformed point 	(g (��)) p are denoted by ~xk i.e.

~xk = 	k (��) (�x) = xk (	 (g (��)) p) ; (3.7)

In the above ~xk is a function of both the group parameters �� and the coordinates

�x of the original point p:

(ii) In this step we choose a section
P
through the orbits of the action 	

A single point on each of the orbits of the action of the group G is chosen in

a smooth way. For this we �nd a subset of r coordinates say on which the group

G acts transitively (group action is transitive if X is non-empty and for any x; y

in X there exists g 2 G such that g:x = y): G acts transitively at least locally in

an open neighborhood of chosen values
�
x0�(i)

�r
i=1

here � : f1; :::; rg ! f1; :::; lg
is an injection, and r is the rank of C:

Points whose coordinates satisfy

x�(i) = x0�(i); (3.8)

form our desired section
P
intersecting each generic orbit once.

(iii) Now we construct the invariants .
For p 2 LF given we �nd group elements transforming p into ~p 2

P
by the

action of 	: Here

	�k
X̂k
(p) = exp (�kxk) :
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Then we express as many of their parameters as possible in terms of the original

coordinates �x and substitute their value in equation (3.7) so that we get ~xk as

function of �x only. Out of these
�
~x�(i)

�r
i=1

have the prescribed �xed values. The

remaining l � r functions ~xk are by construction invariant under the coadjoint

action of G: These de�ne the required invariants of the coadjoint representation.

We shall see that in our case, a lesser number of parameters appear. It is

then not necessary to evaluate all the functions ~xk and a suitable choice of the

basis in L can substantially simplify the whole procedure. In this case the other

parameters can be ignored and are then speci�ed by the remaining equations

~xi = x0i ; l � r + r0 � i � l:

But these do not enter into the expression for ~xk; 1 � k � l� r+ r0 which de�ne
the invariants.

We shall see that our method may naturally lead to non-polynomial invariants

but it is usually quite easy to construct polynomials out of them.

An Example

Here we use the method of moving frames as applied by Boyko, Patera and

Popovych in [1] :

Consider the non-zero commutation relations:

[e1; e4] = ae1; [e2; e4] = be2 � e3; [e3; e4] = e2 + be3; a � 0; b 2 R:
For this algebra

C =

266664
0 0 0 ae1

0 0 0 be2 � e3

0 0 0 e2 + be3

�ae1 � (be2 � e3) � (e2 + be3) 0

377775 ;

C �=

266664
0 0 0 ae1

0 0 0 0

0 0 0 0

�ae1 � (be2 � e3) � (e2 + be3) 0

377775 ;R2�(be2 � e3)R1
ae1

, R3�
(e2 + be3)R1

ae1

According to equation (3.3) nI = 2 i.e. the algebra has two functionally inde-

pendent invariants.
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The matrices of the adjoint representation âdei of the basis elements e1; e2; e3
and e4 correspondingly have the form

266664
0 0 0 a

0 0 0 0

0 0 0 0

0 0 0 0

377775 ;
266664
0 0 0 0

0 0 0 b

0 0 0 �1
0 0 0 0

377775 ;
266664
0 0 0 0

0 0 0 1

0 0 0 b

0 0 0 0

377775 ;
266664
�a 0 0 0

0 �b �1 0

0 1 b 0

0 0 0 0

377775 :
The product of their exponentiation is the matrix of the inner automorphisms

�4i=1 exp (��iâdei) = A (�) =

266664
ea�4 0 0 �a�1
0 eb�4 cos �4 eb�4 sin �4 �b�2 � �3

0 �eb�4 sin �4 eb�4 cos �4 �2 � b�3

0 0 0 1

377775 :
Now from equation (3.7)

~xk =
4X
l=1

(A (�))kl xl:

Thus

~x1 = x1e
a�4 ;

~x2 = eb�4 (x2 cos �4 � x3 sin �4) ;

~x3 = eb�4 (x2 sin �4 + x3 cos �4) ;

~x4 = �ax1�1 � x2 (b�2 + �3) + x3 (�2 � b�3) :

Combining the �rst three equations we get

~x1
x1

= ea�4 ;

(~x2)
2 + (~x3)

2 = e2b�4
�
(x2)

2 + (x3)
2� ;

~x3
~x2

= tan

�
arctan

x3
x2
+ �4

�
:

Thus two �-free relations that we get are

(~x1)
b�

(~x2)
2 + (~x3)

2�a =
(x1)

b�
(x2)

2 + (x3)
2�a ;

(~x2)
2 + (~x3)

2 exp

�
�2 arctan ~x3

~x2

�
= (x2)

2 + (x3)
2 exp

�
�2 arctan x3

x2

�
:
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Consequently we arrive at our �nal results i.e. the two invariants are [1]

(e1)
b�

(e2)
2 + (e3)

2�aand (e2)2 + (e3)2 exp��2 arctan e3e2
�
:

Invariants of Lie algebras with various additional structural restrictions have

also been found. Some of these are the solvable Lie algebras with the nilradicals

isomorphic to the Heisenberg algebras [13], with Abelian nilradical [9], with

nilradicals containing Abelian ideals of codimension 1 [15], solvable triangular

algebras [17], etc.

3.4 Casimir invariants of the Lie algebra N

We use the method of moving frames to calculate the Casimir invariants. Its

main advantage is that it is purely algebraic. Unlike the conventional method,

it eliminates the need of solving system of di¤erential equations, replacing them

by algebraic ones.

Using equation (3.1), the di¤erential operators corresponding to the basis

elements of N are given by

Ê1 = 0; Ê2 = e1
@

@en
; Êk = ek�2

@

@en�1
+ ek�1

@

@en
; (3.9)

Ên�1 = �
n�2X
k=3

ek�2
@

@ek
+ en�2

@

@en
; Ên = �

n�1X
k=2

ek�1
@

@ek
:

The form of Êk; 1 � k � n implies that the invariants do not depend on en�1; en:

Using equation (3.3) we �nd that the nilpotent Lie algebra N has (n� 4) func-
tionally independent invariants. For N, we �nd the rank of the matrix C:
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C =

26666666666666666666664

0 0 0 0 0 : : : 0 0 0

0 0 0 0 0 0 0 e1

0 0 0 0 0 0 e1 e2

0 0 0 0 0 0 e2 e3

: : : : : :

: : : : : :

: :: : : : :

0 0 0 0 0 : : : 0 en�5 en�4

0 0 0 0 0 : : : 0 en�4 en�3

0 0 �e1 �e2 : : : : �en�4 0 en�2

0 �e1 �e2 �e3 : : : : �en�3 �en�2 0

37777777777777777777775

:

To �nd the rank we do the following steps: First Ri� ei�1
e1
R2 and then Ri� ei�2

e1
R3

for the i rows. We get

C �=

26666666666666666666664

0 0 0 0 0 : : : 0 0 0

0 0 0 0 0 0 0 e1

0 0 0 0 0 0 e1 0

0 0 0 0 0 : :

: : : :

: : : :

: : 0 0

0 0 0 0 : 0 0

0 0 0 0 : 0 0

0 0 �e1 �e2 : : : : �en�4 0 en�2

0 �e1 �e2 �e3 : : : : �en�3 �en�2 0

37777777777777777777775

:

i.e. rank of the above matrix is 4.

We have thus found that the nilpotent Lie algebra N has n� 4 functionally
independent invariants. It is rather complicated to directly solve the remaining

two di¤erential equations de�ning the invariants which are

Ên�1I (e1; e2; ::; en�2) = 0; ÊnI (e1; e2; ::; en�2) = 0:

Therefore we will use the method of moving frames. We construct the �ows of

the vector �elds Ên�1; Ên acting on the space spanned by e1; e2; ::; en�2 only.
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From [16] �ows satisfy

d	�k
X̂k
(p)

d�k
= X̂k

�
	�k
X̂k
(p)
�
: (3.10)

For Ên�1

X̂k = Ên�1; �k = ��n�1;
	
�n�1
Ên�1

= exp (��n�1en�1) ;

ek

�
	
�n�1
Ên�1

(p)
�
=

"
ek;

 
1� �n�1

1!
en�1 +

(�n�1)
2

2!
(en�1)

2

� (�n�1)
3

3!
(en�1)

3 + :::

!#

= ek �
�n�1
1!

ek�2 +
(�n�1)

2

2!
ek�4 �

(�n�1)
3

3!
ek�6 + :::

Now to check if it satis�es equation (3.10), we calculate

L:H:S =
d

d�n�1

(
ek �

�n�1
1!

ek�2 +
(�n�1)

2

2!
ek�4 �

(�n�1)
3

3!
ek�6 + :::

)

= 0� ek�2
1!

+
�n�1
1!

ek�4 �
(�n�1)

2

2!
ek�6 + ::: (3.11)

R:H:S =

24 n�Pn�2
k=3 ek�2

@
@ek
+ en�2

@
@en

o
; (ek � �n�1

1!
ek�2

+ (�n�1)
2

2!
ek�4 � (�n�1)

3

3!
ek�6 + :::)

35
= �e1
= �e2
= �

�
e3 �

�n�1
1!

e1

�
= �

�
e4 �

�n�1
1!

e2

�
= �

 
e5 �

�n�1
1!

e3 +
(�n�1)

2

2!
e1

!
:

:

:

= �ek�2
1!

+
�n�1
1!

ek�4 �
(�n�1)

2

2!
ek�6 + ::: (3.12)
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From equation (3.11) and (3.12) we see that equation (3.10) is satis�ed. Similarly

for Ên �
	�n
Ên
(p)
�
=

 
1� �n

1!
en +

(�n)
2

2!
(en)

2 � (�n)
3

3!
(en)

3 + :::

!

ek (exp (��nen)) = ek �
�n
1!
[ek; en] +

(�n)
2

2!
[[ek; en] ; en]� :::

= ek �
�n
1!
ek�1 +

(�n)
2

2!
ek�2 �

(�n)
3

3!
ek�3 + ::: (3.14)

Now to see if it satis�es equation (3.12), we calculate

L:H:S =
d

d�n

(
ek �

�n
1!
ek�1 +

(�n)
2

2!
ek�2 �

(�n)
3

3!
ek�3 + :::

)
(3.15)

= 0� ek�1 + �nek�2 �
(�n)

2

2!
ek�3 + :::

R:H:S =

" 
�
n�1X
k=2

ek�1
@

@ek

!
;

(
ek � �n

1!
ek�1 +

(�n)
2

2!
ek�2

� (�n)
3

3!
ek�3 + :::

)#
(3.16)

= �e1
= (e2 � �ne1)

= �
 
e3 � �ne2 +

(�n)
2

2!
e1

!
:

:

:

= �ek�1 + �nek�2 �
(�n)

2

2!
ek�3 + :::

From equations (3.15) and (3.16) we see that (3.10) is satis�ed. Next we have

ek

�
	
�n�1
Ên�1

(p)
�
=

[ k�12 ]X
j=0

(�1)j

j!
(�n�1)

j ek�2j (p) ; 1 � k � n� 2

ek

�
	�n
Ên
(p)
�
=

k�1X
j=0

(�1)j

j!
(�n)

j ek�j (p) ; 1 � k � n� 2

Combining these two expressions

~ek =

k�1X
l=0

[ k�l�12 ]X
m=0

(�1)l+m

l!m!
(�n)

l (�n�1)
m ek�l�2m; 1 � k � n� 2; (3.17)
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where

~ek =
�
ek

�
	�n
Ên
(p)
���

	
�n�1
Ên�1

�
=

 
k�1X
l=0

(�1)l

l!
(�n)

l ek�l

!�
	
�n�1
Ên�1

�

=
k�1X
l=0

[ (k�l)�12 ]X
m=0

(�1)l+m

l!m!
(�n)

l (�n�1)
m e(k�l)�2m; 1 � k � n� 2:

These (n� 2) functions involve only the group parameters �n�1; �n: These can
be easily determined as follows. We choose them to satisfy

0 = ~e2 = e2 � �ne1; 0 = ~e3 = e3 � �ne2 +
(�n)

2

2!
e1 � �n�1e1 (3.18)

�n =
e2
e1
; �n�1 =

�
e1e3 � 1

2
(e2)

2�
(e1)

2 using value of �n:

Putting these values in equation (3.17),

~ek =
k�1X
l=0

[ k�l�12 ]X
m=0

(�1)l+m

l!m!

�
e2
e1

�l "�e1e3 � 1
2
(e2)

2�
(e1)

2

#m
ek�l�2m; 1 � k � n� 2:

In order to get polynomial expression we multiply by ek�21 since in the above we

have
�
1
e1

�l+2m
e1 with the maximum negative e�(l+k�l�1�1)1 = e

�(k�2)
1 : Therefore

we multiply by e(k�2)1 to �nd

e
(k�2)
1 ~ek =

k�1X
l=0

[ k�l�12 ]X
m=0

e
(k�2)
1

(�1)l+m

l!m!

�
e2
e1

�l "�e1e3 � 1
2
(e2)

2�
(e1)

2

#m
ek�l�2m; 1 � k � n�2:

Now we �nd the invariants. Here we take

�0 = ~e1 =
0X
l=0

0X
m=0

(�1)l+m

l!m!
(�n)

l (�n�1)
m e(k�l)�2m; k = 1;

i.e.

�0 = e1:

We had chosen

~e2 = 0 = ~e3:
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Now relabeling k = j + 3

�j = e
(j+1)
1 ~ej+3 = e

(j+1)
1

j+2X
l=0

[ j�12 +1]X
m=0

(�1)l+m

l!m!
(�n)

l (�n�1)
m e(j+3�l)�2m; 1 � j � n� 5 ,

where �n =
e2
e1
; �n�1 =

�
e1e3 � 1

2
(e2)

2�
(e1)

2 :

or

�j =

j+2X
l=0

[ j�12 +1]X
m=0

(�1)l+m

l!m!
e
(j+1)
1

�
e2
e1

�l "�e1e3 � 1
2
(e2)

2�
(e1)

2

#m
e(j+3�l)�2m

=

j+2X
l=0

[ j�12 +1]X
m=0

(�1)l+m

l!m!
ej+1�l�2m1 el2

�
e1e3 �

1

2
(e2)

2

�m
e(j+3�l)�2m: (3.19)

where 1 � j � n� 5: In equation (3.19) we have the (n� 5) Casimir Invariants
of N:

3.5 The generalized Casimir invariants of the

Lie algebra S

For this (n+ 1)dimensional solvable Lie algebra S; the operators Êi representing

elements on the nilradical N will each contain an additional term involving a

derivative with respect to f1 i.e.

Ê1 = (n� k + 1)e1
@

@f1
; Ê2 = e1

@

@en
+ (n� k + 1)e2

@

@f1
;

Êk = ek�2
@

@en�1
+ ek�1

@

@en
+ (n� k + 1)ek

@

@f1
;

Ên�1 = �
n�2X
k=3

ek�2
@

@ek
+ en�2

@

@en
+ (n� k + 1)en�1

@

@f1
;

Ên = �
n�1X
k=2

ek�1
@

@ek
+ (n� k + 1)en

@

@f1
;

and there is one additional operator which is

F̂1 = �
nX
k=1

(n� k + 1)ek
@

@ek
:
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Since Ê1 = (n� k + 1)e1
@
@f1

and any invariant must satisfy
�
Ê1 (I) = 0

�
we see

that the invariants cannot depend on f1: De�ne

F̂1T = �
n�1X
k=1

(n�k+1)ek
@

@ek
; the truncated di¤erential operator acting only on (e1; :::; en�2) :

We now employ the method of moving frames. Finding the �ow of the vector

�elds F̂1T

ek

�
	
�n+1

F̂1T
(p)
�
= exp (��n+1f1)

= ek

 
1� �n+1

1!
f1 +

(�n+1)
2

2!
(f1)

2 � (�n+1)
3

3!
(f1)

3 + :::

!

= ek �
�n+1
1!
(n� k + 1)ek +

(�n+1)
2

2!
(n� k + 1)2ek � :::

= exp (�(n� k + 1)�n+1) ek (p) :

The full action of the group S on the space with coordinates (e1; :::; en�2) gives

~ek = exp (�(n� k + 1)�n+1)
k�1X
l=0

[ k�l�12 ]X
m=0

(�1)l+m

l!m!
(�n)

l (�n�1)
m ek�l�2m; 1 � k � n�2;

(3.20)

where

~ek =
h�
ek

�
	�n
Ên
(p)
���

	
�n�1
Ên�1

�i�
	
�n+1

F̂1T
(p)
�
:

We choose in the truncated space f(1; 0; 0; e4; :::; en�2)g : Thus in addition to
~e2 = 0 = ~e3 we have ~e1 = 1: Then

1 = ~e1 = exp (�n�n+1) e1 putting k = 1 in equation (3.20),

and

exp (�n�n+1) =
1

e1
;

exp (��n+1) =

�
1

e1

� 1
n

:

Substituting the above and using equation (3.19) in equation (3.20) we �nd

invariants which can be expressed in the form
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~ek =
�k�3

e
jn+2n�j�2

n
1

; 4 � k � n� 2;

exp (�(n� k + 1)�n+1) = exp (��n+1)(n�k+1) =
�
1

e1

�n�k+1
n

:

Putting k = j + 3;n� k + 1 = n� j � 2

exp (�(n� k + 1)�n+1) =

�
1

e1

�n�j�2
n

:

Now from equation (3.19)

�j = �k�3 = e
(j+1)
1

j+2X
l=0

[ j�l2 +1]X
m=0

(�1)l+m

l!m!
(�n)

l (�n�1)
m e(j+3�l)�2m;

�j = e
(j+1)
1 ~ej+3 = e

(j+1)
1 ~ek:

Therefore we multiply and divide equation (3.20) by e(j+1)1 to use the value of

the �j given above i.e.

~ek =
e
(j+1)
1

e
(j+1)
1

�
1

e1

�n�j�2
n

~ek jpreviuos;

~ek =

�
1

e1

�n�j�2
n

+j+1

e
(j+1)
1 ~ek jprevious

=
�k�3

(e1)
jn+2n�j�2

n

=
�j

(e1)
jn+2n�j�2

n

; j = k � 3;

or

(~ek)
n =

�
�j
�n

(e1)
jn+2n�j�2 ; j = k � 3:

Since �0 = e1 we have

�j =

�
�j
�n

�
(n�1)(j+2)
0

; 1 � j � n� 5:
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3.5.1 Conclusion

We have arrived at the result:

The (n+ 1) dimensional solvable Lie algebra S (with Lie brackets given in

equation (2.3) ) has (n� 5) functionally independent invariants. They can be
chosen in the form

�j =

�
�j
�n

�
(n�1)(j+2)
0

; 1 � j � n� 5:

These are rational in �j and consequently in ej:



Chapter 4

Extension

We discuss the case of the nilradical N of dimension n and degree of nilpotency

(n� 1) with Lie brackets in an appropriate basis (e1; :::; en) given by

[ei; ej] = 0 for all 1 � i; j � n� 2; (4.1)

[e1; en�1] = 0 = [e2; en�1] ;

[ek; en�1] = ek�2; 3 � k � n� 2;
[e1; en] = 0;

[ek; en] = ek�1; 2 � k � n� 1:

We observe that:

(i) Since ek�1 = [ek; en] ; all elements of N can be de�ned in terms of

repeated commutations of en�1; en: Hence the knowledge of � (en�1) and � (en)

su¢ ces to know all � (ek) for 1 � k � n, for the automorphism � .

(ii) The di¤erence of 1 i.e. [ek; en] = ek�1 and the di¤erence of 2 i.e.

[ek; en�1] = ek�2 enables us to de�ne a relation in adjoint representation which

reduces the unknown parameters in the automorphism.

Hence the loss of information about any of the above commutation relations

will not lead anywhere.

The case of a particular nilradical with Lie brackets

[ei; ej] = 0; 1 � i; j � n� 1
[e1; en] = 0

[ek; en] = ek�1; 2 � k � n� 1

is discussed in [15] :

61
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4.1 A more general case.

Consider the nilpotent Lie algebra with Lie brackets in an appropriate basis

given by:

[ei; ej] = 0 for all 1 � i; j � n� 2;
[e1; en�1] = 0 = [e2; en�1] ;

[ek; en�1] = ek�2; 3 � k � n� 2; (4.2)

[e1; en] = 0;

[em; en] = unknown,

[ek; en] = ek�1; 2 � k � n� 1; k 6= m;

for some m: 2 � m � n� 2:

4.1.1 Solvable extension.

(i) Here we consider [em; en] is unknown. But since we have a nilpotent Lie
algebra N of degree of nilpotency (n� 1) we can take

[em; en] =
n�1X
a=1

�amnea; a = 1; :::; n� 1; a 6= m:

We will use �a for �
a
mn: Here a 6= m because if we include the term with a =

m; then there will not exist any k 2 N such that [[em; en] ; :::; en] = 0 where

commutations with en are taken k times.

(ii) Let � (en�1) =
Pn�1

k=1 �kek and � (en) =
Pn

k=1  kek:

Now we �nd ad jN2 � (en�1) : Indeed

[ek;� (en�1)] =

"
ek;

n�1X
j=1

�jej

#
; 3 � k � n� 2; k 6= m

= [ek; �1e1] + [ek; �2e2] + :::+
�
ek; �n�1en�1

�
= �1 [ek; e1] + �2 [ek; e2] + :::+ �n�1 [ek; en�1]

= �n�1ek�2;

or

[� (en�1) ; ek] = ��n�1ek�2;
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which gives

ad jN2 (� (en�1)) =

266666666666666664

0 0 ��n�1 0 0 : : : 0

0 0 0 ��n�1 0 0

0 0 0 0 ��n�1 0

: : :

: : :

: : :

0 0 0 0 0 : : : ��n�1
0 0 0 0 0 0

0 0 0 0 0 : : : 0

377777777777777775
: (4.3)

Similarly to determine ad jN2 (� (en)) ; we have

[� (en) ; ek] = �
"
ek;

nX
k=1

 kek

#
; 3 � k � n� 1; k 6= m

= �
�
[ek;  1e1] + [ek;  2e2] + :::+

�
ek;  n�1en�1

�
+ [ek;  nen]

	
= �f0 + 0 + :::+	n�1ek�2 +	nek�1g
= �	n�1ek�2 �	nek�1:

Thus

ad jN2 � (en) =

266666666666666664

0 � n � n�1 0 0 : : : 0

0 0 � n � n�1 0 : : : 0

0 0 0 � n � n�1 : : : 0

: : : :

: : : :

: : : :

0 0 0 0 0 � n � n�1
0 0 0 0 0 0 � n
0 0 0 0 0 0 0

377777777777777775
:

(4.4)

In the above we have 1 � k � n � 2; k 6= m: Using equation (2.7) in this case

with k 6= m we get the same results i.e. �n�1 = ( n)
2 ;  n�1 = 0:

(iii) We calculate � (ek) using the relation

en�2 = [en�1; en] ;
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which implies

� (en�2) = � [en�1; en] = [� (en�1) ;� (en)] :

After calculation we get the generalized form for � (ek) where m � k � n � 2;
given by

� (ek) =

k�1X
j=1

�
�n�k+j�1 n �  n�k+j ( n)

2� ( n)n�k�2 ej + ( n)n�k+1 ek:
(iv) Now we do not know � (em�1)
Here

[em; en] =
n�1X
a=1

�aea ; a 6= m;

[� (em) ;� (en)] =
n�1X
a=1

�a� (ea) ;

which gives 
�1� (e1) + �2� (e2) + :::+ �m�1� (em�1)

+�m+1� (em+1) + :::+ �n�1� (en�1)

!
= [� (em) ;� (en)]: (4.5)

Here the underlined are the parts which are known. If we are able to �nd � (em�1)

we can �nd all � (em�2) ; :::;� (e1) since

� (em�2) = [� (em�1) ;� (en)] ;

:

:

:

� (e1) = [� (e2) ;� (en)] :

Now

� (em�1) = [� (em+1) ;� (en�1)]

=

" Pm
j=1

�
�n�m+j�2 n �  n�m+j�1 ( n)

2� ( n)n�m�3 ej + ( n)n�m em+1;Pn�2
j=1 �jej

+( n)
2 en�1

#

=

"
mX
j=1

�
�n�m+j�2 n �  n�m+j�1 ( n)

2� ( n)n�m�3 ej + ( n)n�m em+1; ( n)2 en�1
#

=
mX
j=3

�
�n�m+j�2 n �  n�m+j�1 ( n)

2� ( n)n�m�1 ej + ( n)n�m+2 em�1:
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We take�
�n�m+i n �  n�m+i+1 ( n)

2� ( n)n�m�1 = �i; 1 � i � m� 2;
( n)

n�m+2 = �m�1:

De�ning

� (em�1) =
X
i

�iei; 1 � i � m� 1 (automorphism),

we have

� (em�2) =

"
m�1X
i=1

�iei;

n�2X
j=1

 jej +  nen

#
;

=

"
m�1X
i=1

�iei;
n�2X
j=1

 jej

#
+

"
m�1X
i=1

�iei;  nen

#
= 0 + [�1e1;  nen] + [�2e2;  nen] + :::+ [�m�1em�1;  nen]

= 0 + �2 ne1 + �3 ne2 + �4 ne3 + :::+ �m�1 nem�2;

� (em�3) = �3 ( n)
2 e1 + �4 ( n)

2 e2 + �5 ( n)
2 e3 + :::+ �m�1 ( n)

2 em�3;

� (em�4) = �4 ( n)
3 e1 + :::+ �m�1 ( n)

3 em�4;

� (em�5) = �5 ( n)
4 e1 + :::+ �m�1 ( n)

4 em�5;

:

:

:

� (e2) = �m�2 ( n)
m�3 e1 + �m�1 ( n)

m�3 e2;

� (e1) = �m�1 ( n)
m�2 e1:
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Putting these values in equation (4.5)

�1�m�1 ( n)
m�2 e1 + �2

�
�m�2 ( n)

m�3 e1 + �m�1 ( n)
m�3 e2

	
+�3

�
�m�3 ( n)

m�4 e1 + �m�2 ( n)
m�4 e2 + �m�1 ( n)

m�4 e3
	
+ :::

+�m�4
�
�4 ( n)

3 e1 + :::+ �m�1 ( n)
3 em�4

	
+�m�3

�
�3 ( n)

2 e1 + �4 ( n)
2 e2 + �5 ( n)

2 e3 + :::+ �m�1 ( n)
2 em�3

	
+�m�2 f�2 ne1 + �3 ne2 + �4 ne3 + :::+ �m�1 nem�2g+ �m�1

(
m�1X
i=1

�iei

)

+�m+1

(
mX
j=1

(:::)ej + ( n)
n�m em+1

)
+ �m+2

(
m+1X
j=1

(:::)ej + ( n)
n�m�1 em+2

)

+:::+ �n�1

(
n�2X
j=1

(�j)ej + ( n)
2 en�1

)

=

"
m�1X
j=1

(:::)ej + ( n)
n�m+1 em;

n�2X
j=1

 jej +  nen

#

=

"
m�1X
j=1

(:::)ej;  nen

#
+
�
( n)

n�m+1 em;  nen
�

=  n

m�1X
j=1

(:::)ej�1 + ( n)
n�m+2 �aea; a = 1; :::n� 1; a 6= m:

Here (...) is used for
�
�n�k+j�1 n �  n�k+j ( n)

2� ( n)n�k�2 : Here k is the value
in the summation from j = 1 to k � 1:
Now we equate the coe¢ cients of the basis elements in ei on both sides which

gives the following n� 2 equations;
For e1

(�1�m�1 ( n)
m�2 + �2�m�2 ( n)

m�3 + �3�m�3 ( n)
m�4 + :::

+�m�4�4 ( n)
3 + �m�3�3 ( n)

2 + �m�2�2 n + �m�1�1)

+

(
�m+1

�
�n�m�1 n �  n�m 

2
n

�
( n)

n�m�3 + �m+2
�
�n�m�2 n �  n�m�1 

2
n

�
( n)

n�m�4

+�m+3
�
�n�m�3 n �  n�m�2 ( n)

2� ( n)n�m�5 + :::+ �n�1�1

)
=  n

�
�n�m+1 n �  n�m+2 ( n)

2� ( n)n�m�2 + ( n)n�m+2 �1:
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For e2

(�2�m�1 ( n)
m�3 + �3�m�2 ( n)

m�4 + �4�m�3 ( n)
m�5 + :::

+�m�4�5 ( n)
3 + �m�3�4 ( n)

2 + �m�2�3 n + �m�1�2)

+

(
�m+1

�
�n�m n �  n�m+1 ( n)

2� ( n)n�m�3 + �m+2
�
�n�m�1 n �  n�m 

2
n

�
( n)

n�m�4

+�m+3
�
�n�m�2 n �  n�m�1 ( n)

2� ( n)n�m�5 + :::+ �n�1�2

)
=  n

�
�n�m+2 n �  n�m+3 ( n)

2� ( n)n�m�2 + ( n)n�m+2 �2:
For e3

(�3�m�1 ( n)
m�4 + �4�m�2 ( n)

m�5 + �5�m�3 ( n)
m�6 + :::

+�m�4�6 ( n)
3 + �m�3�5 ( n)

2 + �m�2�4 n + �m�1�3)

+

(
�m+1

�
�n�m+1 n �  n�m+2 

2
n

�
( n)

n�m�3 + �m+2
�
�n�m n �  n�m+1 

2
n

�
( n)

n�m�4

+�m+3
�
�n�m�1 n �  n�m ( n)

2� ( n)n�m�5 + :::+ �n�1�3

)
=  n

�
�n�m+3 n �  n�m+4 ( n)

2� ( n)n�m�2 + ( n)n�m+2 �3:
For e4

(�4�m�1 ( n)
m�5 + �5�m�2 ( n)

m�6 + �6�m�3 ( n)
m�7 + :::

+�m�4�7 ( n)
3 + �m�3�6 ( n)

2 + �m�2�5 n + �m�1�4)

+

(
�m+1

�
�n�m+2 n �  n�m+3 

2
n

�
( n)

n�m�3 + �m+2
�
�n�m+1 n �  n�m+2 

2
n

�
( n)

n�m�4

+�m+3
�
�n�m n �  n�m+1 ( n)

2� ( n)n�m�5 + :::+ �n�1�4

)
=  n

�
�n�m+4 n �  n�m+5 ( n)

2� ( n)n�m�2 + ( n)n�m+2 �4;
and so on, we get for em�2�

�m�2�m�1 n + �m�1�m�2
�
+(

�m+1
�
�n�4 n �  n�3 ( n)

2� ( n)n�m�3 + �m+2
�
�n�5 n �  n�4 ( n)

2� ( n)n�m�4
+:::+ �n�1�m�2

)
=  n

�
�n�2 n �  n�1 ( n)

2� ( n)n�m�2 + ( n)n�m+2 �m�2:
For em�1

�m�1�m�1 +

(
�m+1

�
�n�3 n �  n�2 

2
n

�
( n)

n�m�3 + �m+2
�
�n�4 n �  n�3 

2
n

�
( n)

n�m�4

+:::+ �n�1�m�1

)
= �m�1 ( n)

n�m+2 :
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For em+1(
�m+1 ( n)

n�m�3 + �m+2
�
�n�2 n �  n�1 ( n)

2� ( n)n�m�4
+�m+3

�
�n�3 n �  n�2 ( n)

2� ( n)n�m�5 + :::+ �n�1�m+1

)
= �m+1 ( n)

n�m+2 :

For em+2(
�m+2 ( n)

n�m�1 + �m+3
�
�n�2 n �  n�1 ( n)

2� ( n)n�m�5
+�m+4

�
�n�3 n �  n�2 ( n)

2� ( n)n�m�6 + :::+ �n�1�m+2

)
= �m+2 ( n)

n�m+2 ;

and so on, we get for en�2

�n�2 ( n)
4 + �n�1�n�2 = �n�2 ( n)

n�m+2 :

For en�1

�n�1 ( n)
2 = �n�1 ( n)

n�m+2 ;

�n�1
�
( n)

2 � ( n)
n�m+2� = 0;

�n�1 ( n)
2 �1� ( n)n�m� = 0:

Now here

either �n�1 = 0 or ( n)
2 = 0 or

�
1� ( n)

n�m� = 0; (4.6)

We cannot take  n = 0. For if we take  n = 0 then in the particular case

discussed in Chapter 2 with �m�1 = 1; � i = 0; for all other i; we get

D (ek) = 0;

D (en�1) =
n�2X
1

cjej;

D (en) =

n�2X
1

djej;

which is not an outer nil-independent derivation.This shows that we must have

 n 6= 0 to obtain the extension.
We check

�
1� ( n)

n�m� = 0, this gives m = n as  n 6= 0 i.e. [en; en] is the
unknown quantity. But we know from the properties of the Lie algebra that it
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is equal to zero so this is not actually unknown. Now we are left with only one

choice i.e. �n�1 = 0. If we substitute this value in the equation for en�2 we �nd

�n�2 = 0 for the same reason. If we go on in a similar fashion we arrive at

�n�1 = �n�2 = ::: = �m+1 = 0;

This also shows that this automorphism is also represented by a triangular ma-

trix.

Now we have, from the equation for em�1;

�m�1�m�1 � �m�1 ( n)
n�m+2 = 0;

�m�1
�
�m�1 � ( n)

n�m+2� = 0:

If we take �m�1 6= 0 then
�
�m�1 � ( n)

n�m+3� = 0 which gives
�m�1 = ( n)

n�m+2 :

From equation for em�2 we have

�m�2 =
 n
�
�n�2 n �  n�1 ( n)

2 + �m�2
�
( n)

n�m�2 � �m�2�m�1 n
�m�1

:

The equation for em�3 gives

�m�3 =
 n
�
�n�3 n �  n�2 ( n)

2 + �m�3
�
( n)

n�m�2 �
�
�m�2�m�2 n + �m�3�m�1 ( n)

2�
�m�1

:

Generalizing we �nd

�i =

�
�n�m+i n �  n�m+i+1 

2
n + � i

�
( n)

n�m�1 �
 
� i�m�1 ( n)

m�i�1 + � i+1�m�2 ( n)
m�2�i

+:::+ �m�2�i+1 n

!
�m�1

:

If we take m = k + 1 or m� 1 = k we �nd for 1 � i � m� 2:

�i =

�
�n�k+i�1 n �  n�k+i ( n)

2 + � i
�
( n)

n�k�2 �
 
� i�k ( n)

k�i + � i+1�k�1 ( n)
k�1�i

+:::+ �k�1�i+1 n

!
�k

:

Next we calculate the value for � (ek)
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� (em�1) =

m�2X
i=1

�iei + ( n)
n�m+2 em�1;

� (em�2) = [� (em�1) ;� (en)]

=

"
�iei + ( n)

n�m+2 em�1;

n�2X
j=1

 jej +  nen

#
= [�iei;  nen] +

�
( n)

n�m+2 em�1;  nen
�

=  n
�
�iei�1 + ( n)

n�m+2 em�2
�
;

� (em�2) =
m�2X
i=1

 n�iei�1 + ( n)
n�m+3 em�2

=
m�2X
i=2

 n�iei�1 + ( n)
n�m+3 em�2

=
m�3X
i=1

 n�i+1ei + ( n)
n�m+3 em�2:

Now

 n�i+1 =

�
�n�m+i+1 n �  n�m+i+2 ( n)

2 + � i+1
�
( n)

n�m

�
�
� i+1�m�1 ( n)

m�i�1 + � i+2�m�2 ( n)
m�2�i + :::+ �m�3�i+2 n

�
�m�1

;

and

� (ek) =

k�1X
j=1

 �
�n�k+j�1 n �  n�k+j ( n)

2 + �j
�
( n)

n�k�2

�m�1

!
ej + ( n)

n�k+1 ek

+
kX
j=1

 
�j�k ( n)

k�j + �k�1�j+1 ( n)
k�1�j + :::+ �k�1�j+1 n

�m�1

!
ej;

which is a generalized case since we get back the case in equation (2.9) if we put

�m�1 = 1 and �j = 0 for all 1 � j � k � 1:
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So we �nd

� (ek) =

k�1X
j=1

�
�n�k+j�1 n �  n�k+j ( n)

2� ( n)n�k�2 ej + ( n)n�k+1 ek; 1 � k � m� 1

� (ek) =
k�1X
j=1

 �
�n�k+j�1 n �  n�k+j ( n)

2 + �j
�
( n)

n�k�2

�m�1

!
ej + ( n)

n�k+1 ek

+

kX
j=1

 
�j�k ( n)

k�j + �k�1�j+1 ( n)
k�1�j + :::+ �k�1�j+1 n

�m�1

!
ej; m � k � n

� (en�1) =

n�2X
j=1

�jej + ( n)
2 en�1

� (en) =
n�2X
j=1

 jej +  nen:

(v) Now we consider the automorphism in�nitesimally close to the identity.

Near the identity, we take

 n = 1 + � n

�n�k+j�1 = 0 + ��n�k+j�1

 n�k+j = 0 + � n�k+j

�i = 0 + ��i , j + 1 � i � k:

Then we have

� (ek) = ek +D (ek)

=
k�1X
j=1

0BBBB@
 

��n�k+j�1 (1 + � n)

�� n�k+j (1 + � n)
2 + �j

!
(1 + � n)

n�k�2

�k

1CCCCA ej + (1 + � n)
n�k+1 ek

+
kX
j=1

0BBBB@
�j��k (1 + � n)

k�j + ��k�1�j+1 (1 + � n)
k�1�j + :::

+�k�1��j+1 (1 + � n)

�k

1CCCCA ej:

Neglecting (� n)
2 and higher powers and all products of � n; ��n�k+j�1; � n�k+j

and ��i; (j + 1 � i � k) ;
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we �nd

D (ek) =

k�1X
j=1

oj
�k
+(n� k + 1) qnek+

kX
j=1

�
�j��k + ��k�1�j+1 + :::+ �k�1��j+1

�k

�
ej

Here the values of oj and qn are the same as in equation (2.10).

Now

��i =
�
��n�m+i (1 + � n)� � n�m+i+1 (1 + � n)

2� (1 + �	n)n�m+3
neglecting �2 and higher powers, we get

��i =
�
��n�m+i � � n�m+i+1

�
[1 + (n�m� 1) �	n]

��i =
�
��n�m+i � � n�m+i+1

�
;

��m�2 = 1 + (n�m+ 2) qn:

After renaming ��i = hi; j + 1 � i � k and hm�2=��m�2, we get

D (ek) =

k�1X
j=1

oj
�k
+ (n� k + 1) qnek +

kX
j=1

�
hk�j + hk�1�j+1 + :::+ �k�1hj+1

�k

�
ej:

So that we have

D (ek) =
k�1X
j=1

oj
�k
+

kX
j=1

�
hk�j + hk�1�j+1 + :::+ �k�1hj+1

�k

�
ej (4.7)

+(n� k + 1) qnek;

D (en�1) =

n�1X
j=1

pjej + 2qnen�1;

D (en) =
n�2X
j=1

qjej + qnen:

Here oj; pj; qj and qn are the same as in equation (2.10). Also hi = (pn�m+i � qn�m+i+1) ;

j+1 � i � k and hm�2 = 1+(n�m+ 2) qn: The only independent parameters

are pk; qk and qn where 1 � k � n � 2 and n 2 N �xed. Hence the algebra of
derivations is 2n� 3dimensional in this case also.
From equation (4.7) we observe that we have obtained an outer derivation

which is equivalent to that in equation (2.10) since there is only a di¤erence

of an addition of a linear multiple of inner derivation. Because of this fact the

extension in this case is the same as that obtained in section 2.2
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4.1.2 Casimir invariants.

Since [em; en] =
P

a �aea; a = 1; :::; n� 1; a 6= m and [em; en�1] = em�2 therefore

Êm = em�2
@

@en�1
+ ea�a

@
@en

and Ên = �
Pn�1

k=2
k 6=m

ek�1
@
@ek

+ �aea
@
@em

is the only

information that we get di¤erent from the case discussed in equation (3.10):

But this does not a¤ect the results since we still get the same two di¤erential

equations de�ning the invariants i.e.

Ên�1I (e1; e2; ::; en�2) = 0; ÊnI (e1; e2; ::; en�2) = 0:

We also calculate the rank of the matrix C to �nd the number of functionally

independent invariants.

To calculate the rank consider266666666666666666666664

0 0 0 0 0 : : : 0 0 0

0 0 0 0 0 0 0 e1

0 0 0 0 0 0 e1 e2

0 0 0 0 0 0 e2 e3

: : : : : :

: : : : :
Pn�1

a=1
a 6=m

�aea

: :: : : : :

0 0 0 0 0 : : : 0 en�5 en�4

0 0 0 0 0 : : : 0 en�4 en�3

0 0 �e1 �e2 : : : : �en�4 0 en�2

0 �e1 �e2 �e3 : �
Pn�1

a=1
a 6=m

�aea : : �en�3 �en�2 0

377777777777777777777775

:

To �nd the rank we do the following steps: First Ri � ei�1
e1
R2 and then Ri �

ei�2
e1
R3 for the i rows but for i = m we apply Rm �

0@Pn�1
a=1
a 6=m

�aea

1A
e1

R2 and then

Rm � em�2
e1

R3.We get
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26666666666666666666664

0 0 0 0 0 : : : 0 0 0

0 0 0 0 0 0 0 e1

0 0 0 0 0 0 e1 0

0 0 0 0 0 : :

: : : :

: : : :

: : 0 0

0 0 0 0 : 0 0

0 0 0 0 : 0 0

0 0 �e1 �e2 : : : : �en�4 0 en�2

0 �e1 �e2 �e3 : : : : �en�3 �en�2 0

37777777777777777777775

:

So the rank is still 4:

Since the commutation of en�1 with all the basis vectors is the same as in

equation (2.3) the �ow is the same as in equation(3:11)

Now we �nd the �ow for Ên:There are three cases;

(i) For k < m we get the result of equation (3:14) :

(ii) For k = m we have

em (exp (��nen)) = em �
�n
1!
[em; en] +

(�n)
2

2!
[[em; en] ; en]� :::

= em �
�n
1!
�aea +

(�n)
2

2!
�a [ea; en]� :::

= em �
�n
1!
�aea +

(�n)
2

2!

�
�2e1 + �3e2 + �4e3 + :::+ �n�1en�2

	
�(�n)

3

3!

�
�3e1 + �4e2 + �5e3 + :::+ �n�1en�3

	
+ :::+

(�n)
n�1

n� 1! �n�1e1

= em +
n�1X
i=1

(�1)i (�n)i

i!

n�1X
j=i
j 6=m

�jej�i+1:

Here we see that if we put j = m � 1 and �j = 1 for j = m � 1 and �j = 0 for
all j 6= m� 1 we get back equation (4:14) for k = m:

(iii) For k > m:

Let l 2 N; 1 � l � n �m and k = m + l: We give di¤erent values to l and

then �nd a general answer.
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For l = 1 i.e. k = m+ 1

em+1 (exp (��nen)) = em+1 �
�n
1!
[em+1; en] +

(�n)
2

2!
[[em+1; en] ; en]� :::

= em+1 �
�n
1!
em +

(�n)
2

2!
[em; en] +

(�n)
3

3!
[[em; en] ; en]� :::

= em+1 �
�n
1!
em +

n�1X
i=1

(�1)i+1 (�n)i+1

(i+ 1)!

n�1X
j=i
j 6=m

�jej�i+1:

For k = m+ 2

em+2 (exp (��nen)) = em+2 �
�n
1!
[em+2; en] +

(�n)
2

2!
[[em+2; en] ; en]� :::

= em+2 �
�n
1!
em+1 +

(�n)
2

2!
[em+1; en] +

(�n)
3

3!
[[em+1; en] ; en]� :::

= em+2 �
�n
1!
em+1 +

(�n)
2

2!
em +

(�n)
3

3!
[em; en]� :::

= em+2 �
�n
1!
em+1 +

(�n)
2

2!
em +

n�1X
i=1

(�1)i+2 (�n)i+2

(i+ 2)!

n�1X
j=i

�jej�i+1:

Generalizing, for k = m+ l we get

em+l (exp (��nen)) = em+l �
�n
1!
em+l�1 +

(�n)
2

2!
em+l�2 +

(�1)l (�n)l

l!
em:::

+
n�1X
i=1

(�1)i+l (�n)i+l

(i+ l)!

n�1X
j=i

�jej�i+1

=
lX

r=0

(�1)r (�n)r

r!
em+l�r +

n�1X
i=1

(�1)i+l (�n)i+l

(i+ l)!

n�1X
j=i
j 6=m

�jej�i+1:

Now we combine the expression for the �ow of Ên�1 and Ên to get the value

for ~ek: Here there are also three cases depending on the value of k. (Values of

�n�1 and �n remain the same as in equation(3:18)).

(i) For k < m we get the same value as in equation (3.19).

(ii) For k = m;

~em =

 
em +

n�1X
i=1

(�1)i (�n)i

i!

n�1X
j=i

�jej�i+1

!�
	
�n�1
Ên�1

�

=

[m�12 ]X
j=0

(�1)j (�n�1)j

j!
em�2j +

n�1X
i=1

(�1)i (�n)i

i!

n�1X
j=i
j 6=m

�j

[ (j�i+1)�12 ]X
r=0

(�1)r (�n�1)r

r!
e(j�i+1)�2r:
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To get polynomial invariant,

�m = (e1)
n�2 ~em: (4.8)

(iii) For k > m

~em+l =

0BB@ lX
r=0

(�1)r (�n)r

r!
em+l�r +

n�1X
i=1

(�1)i+l (�n)i+l

(i+ l)!

n�1X
j=i
j 6=m

�jej�i+1

1CCA�	�n�1Ên�1

�

=

lX
r=0

[ (m+l�r)�12 ]X
j=0

(�1)r+j (�n)r (�n�1)j

r!j!
e(m+l�r)�2j

+
n�1X
i=1

(�1)i+l (�n)i+l

(i+ l)!

n�1X
j=i
j 6=m

�j

[ (j�i+1)�12 ]X
r=0

(�1)r (�n�1)r

r!
e(j�i+1)�2r:

To get polynomial invariants,

�m+l = (e1)
n+l�2 ~em+l: (4.9)

These are the Casimir invariants.

For the solvable extensionwe have the same extra operator F̂1T = �
Pn�1

k=1(n�
k+ 1)ek

@
@ek

as in section 3.5. Following the same pattern we obtain the general-

ized Casimir invariants of the solvable extension.

We employ the method of moving frames, �nding the �ow of the vector �elds

F̂1T

ek

�
	
�n+1

F̂1T
(p)
�
= exp (��n+1f1)

= ek

 
1� �n+1

1!
f1 +

(�n+1)
2

2!
(f1)

2 � (�n+1)
3

3!
(f1)

3 + :::

!

= ek �
�n+1
1!
(n� k + 1)ek +

(�n+1)
2

2!
(n� k + 1)2ek � :::

= exp (�(n� k + 1)�n+1) ek (p) :

The full action of the group on the space with coordinates (e1; :::; en�2) gives

~ek = (exp (�(n� k + 1)�n+1))
h�
ek

�
	�n
Ên
(p)
���

	
�n�1
Ên�1

�i
: (4.10)
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We choose in the truncated space f(1; 0; 0; e4; :::; en�2)g so that in addition
to ~e2 = 0 = ~e3 we have ~e1 = 1:

Thus

1 = ~e1 = exp (�n�n+1) e1 putting k = 1 in equation (3.20),

and

exp (�n�n+1) =
1

e1
;

exp (��n+1) =

�
1

e1

� 1
n

:

Substituting the above and using equation (3.19),(4.8),(4.9) in equation (4.10)

we �nd invariants which can be expressed in the form

~ek =
�k�3

(e1)
jn+2n�j�2

n

; 4 � k � m� 1;

~em =
�m

(e1)
n�m+1

n
(n�2)

;

~em+l =
�m+l

(e1)
n�m�l+1

n
(n+l�2)

; 1 � l � (n� 2)�m;

and rationalizing,

�k = (~ek)
n ; 4 � k � m� 1;

�k = (~ek)
n ; k = m;

�m+l = (~em+l)
n ; l 2 N; 1 � l � (n� 2)�m;

are the (n� 5) generalized Casimir invariants of the solvable extension.

4.2 Signi�cance of our work

(i) We started with the limited knowledge in the sense that one of the brackets
was unknown and tried to see if this lack of knowledge has any consequences i.e.

can we still move forward and if yes then what are the results?

(ii) Here we had [em; en] =unknown for some m : 2 � m � n� 2:
(iii) Since we wanted N to be nilpotent we took [em; en] = �aea; a = 1; :::; n�

1; a 6= m:
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(iv)After calculations, we found out the formula for the automorphism� (ek)
to be

� (ek) =
k�1X
j=1

 �
�n�k+j�1 n �  n�k+j ( n)

2 + �j
�
( n)

n�k�2

�m�1

!
ej + ( n)

n�k+1 ek

+

kX
j=1

 
�j�k ( n)

k�j + �k�1�j+1 ( n)
k�1�j + :::+ �k�1�j+1 n

�m�1

!
ej; m � k � n

(v)We see that the change is only in the coe¢ cients of ej; 1 � j � k� 1 and
not in the coe¢ cients of ek and also if we take �m�1 = 1 and all other �

0s equal

to zero, we get back the result of equation (2.9) as a particular case.

(vi) Now if we �nd derivations using this automorphism close to identity, we
see that, since in this more general case we have a change in the automorphism

only in the coe¢ cients of ej; 1 � j � k � 1 and not in the coe¢ cients of ek
we obtain derivation similar to the one in the paper with a change only in the

coe¢ cients of ej; 1 � j � k � 1 for D (ek)
(vii) Also adding an inner derivation gives a set of derivations which gives

an isomorphic Lie algebra. This more general case shows that [em; en] being

unknown only changes the desired derivation set to give isomorphic Lie algebra.

That is, following the procedure of expanding N to solvable Lie algebra we arrive

at a solvable Lie algebra of order n + 1 and D (f) (ek) = (n� k + 1) ek i.e.

[f; ek] = (n� k + 1) ek; diagonal action.

(viii) So we see that the lack of knowledge about one of the Lie brackets
[em; en] ; 1 � m � n�2; gives the same results up to isomorphism in the expansion
of a nilpotent Lie algebra of order n and degree of nilpotency n � 1. But the
results are more generalized.

(ix)We also calculated the Casimir invariants in this case and again obtained
more generalized results.



Appendix A

Two proofs used in the text

A.1 Connection between automorphism and deriva-
tion D when Dn = 0 for some n 2 N:

Let D be a nilpotent derivation of an arbitrary non-associative algebra L, such
that Dn = 0: Consider the mapping

E = expD = 1 +D +
D2

2!
+ :::+

Dn�1

(n� 1)! :

This can also be written as

E = 1 + Z;

Z = D +
D2

2!
+ :::+

Dn�1

(n� 1)! :

From Dn = 0 , Zn = 0 follows. Hence E = 1 + Z has the inverse

1� Z + Z2 + :::+ (�1)n�1 Zn�1:

Thus E is one to one and onto L. Then

(xE) (yE) =

 
n�1X
i=0

xDi

i!

! 
n�1X
j=0

yDj

j!

!

=
2n�2X
m=0

 
mX
i=0

�
xDi

i!

��
yDm�i

(m� i)!

�!

=

2n�2X
m=0

(xy)
Dm

m!

= (xy)E:

79
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Hence E is an automorphism of L [8] :
Also it can be proved that an automorphism is related to a derivation by

expanding the automorphism near the identity.
Let � be an automorphism of a Lie group G. Then

� (xy) = � (x) � (y) ; x; y 2 G:

Expanding � near identity
� = I + �D:

We get
(I + �D) (xy) = (I + �D) (x) (I + �D) (y) ;

by the de�nition of automorphism. Hence

I (xy) + �D (xy) = fI (x) + �D (x)g fI (y) + �D (y)g ;

or
(xy) + �D (xy) = fx+ �D (x)g fy + �D (y)g ;

or
(xy) + �D (xy) = (x) (y) + x�D (y) + �D (x) y + �2D (x)D (y) :

Neglecting �2 as being very small compared to �, we get

(xy) + �D (xy) = (x) (y) + x�D (y) + �D (x) y:

D (xy) = xD (y) +D (x) y:

Thus D is a derivation.
Also we can prove the relation in a Lie algebra L as follows;
Let � be an automorphism of a Lie algebra i.e.

� ([x; y]) = [� (x) ;� (y)] ; x; y 2 L:

Expanding � near identity
� = I + �D:

We get
(I + �D) ([x; y]) = [(I + �D) (x) ; (I + �D) (y)] ;

by the de�nition of automorphism. Hence

I ([x; y]) + �D ([x; y]) = [I (x) + �D (x) ; I (y) + �D (y)] ;

or
[x; y] + �D ([x; y]) = [x+ �D (x) ; (y) + �D (y)] ;

or

[x; y] + �D ([x; y]) = [x; y] + � [x;D (y)] + � [D (x) ; y] + �2 [D (x) ; D (y)] :
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Neglecting �2 as being very small, we get

[x; y] + �D ([x; y]) = [x; y] + � [x;D (y)] + � [D (x) ; y] ;

D ([x; y]) = [x;D (y)] + [D (x) ; y] ;

which is a derivation by de�nition.

A.2 The derived algebra of any �nite dimen-
sional solvable Lie algebra of characteristic
zero is nilpotent and hence contained in
the nilradical.

For a Lie algebra L of linear transformations in a �nite dimensional vector space
over a �eld of characteristic 0 with semisimple enveloping associative algebra
LF; L = L1 � C; where C is the centre of L and L1 is an ideal of L which is
semisimple (as a Lie algebra) [8] : If R1 is the radical of L and R2 the radical of
LF, then L \ R2; is the totality of nilpotent elements of R1 and [R1; L] � R2
.Hence [adL; adR1] is contained in the radical of

�
adLF

�
. Also if we take L = R1

we �nd that, [adL; adL] is contained in the radical of
�
adLF

�
. This implies

that there exists an integer n such that for any transformation of the form
[adai; adbi] ; ai; bi 2 L we have

[ada1; adb1] [ada2; adb2] ::: [adan; adbn] = 0:

Hence
ad [a1; b1] ad [a2; b2] :::ad [an; bn] = 0:

Thus for any x 2 L;

[::: [x; [a1; b1]] ; [a2; b2] ; :::; [an; bn]] = 0

This implies that ([L;L])n+1 = 0; so [L;L] is nilpotent. Since this is an ideal,
[L;L] � R; the nilradical of L [8] :


