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Abstract

The aim of this thesis is to gain an in-depth understanding of spectral meth-

ods and to investigate and demonstrate the level of accuracy of spectral

methods in comparison to other numerical methods. Different aspects of a

solution obtained using finite difference method and spectral methods are

compared to develop an understanding how latter competes and excels. This

thesis explores solutions of different kinds of differential equations, including

ordinary and partial differential equations on random domains using MATLAB.

The collocation method is used extensively here as it produces most accu-

rate results possible. The stability and convergence rate of our numerical

method are also investigated here, presenting plots and tables with problems

under-consideration for wider understanding. The results in this study show

how well this present method works and reduction in error is far more better

than other numerical methods.
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Preface

Spectral methods especially pseudospectral method have emerged as intrigu-

ing option for finding solutions of differential equations in many areas of

Science and Mathematics. Spectral methods are one of the superior numer-

ical technique for solution of differential equations on a simple domain and

when the data defining the equation is smooth. This thesis describes spec-

tral methods approach for both ordinary differential equations and partial

differential equations.

Chapter 1 is the introduction of spectral methods. It presents the basic

concept of collocation method and explain its computational aspects. Differ-

entiation matrices and collocation points are discussed in detail for various

polynomials.

After a brief introduction of collocation method, in Chapter 2 the main focus

is on ordinary differential equations and comparison of different numerical

methods. ODEs of second and third order both linear and non-linear on

random domains are solved here using spectral methods (using Chebyshev

and Laguerre polynomials) and compared with finite difference method and

also with their exact solutions. For each problem under consideration the

results are displayed in graphical form.

Chapter 3 presents spectral methods for partial differential equations. Ho-

mogeneous and non-homogeneous PDEs both linear and nonlinear are solved

in this chapter.

In the end, Chapter 4 concludes this thesis.
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Chapter 1

Introduction

Differential equations are of basic importance in different fields of Science,

Engineering and Mathematics. Differential equations are studied from several

prospectives mostly concerning their solutions. There are various numerical

techniques available to solve differential equations (ODEs and PDEs). Gen-

erally, following numerical techniques are useful in finding the solution of

differential equations:

1. Finite Difference Method (FDM).

2. Finite Element Method (FEM).

3. Finite Volume Method (FVM).

4. Spectral Methods.

The numerical method is measured by its accuracy, efficiency and by its

convergence rate.
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Spectral methods have become popular in the last few decades among all the

numerical methods for solving differential equations. It is considered as one

of the fastest converging method when compared either with finite difference

method or finite element method. Spectral methods can be used to solve

ordinary differential equations, partial differential equations and eigenvalue

problems efficiently. The main reason for spectral methods being superior is

that the unknown solution is expanded as a global interpolant while other

methods, like finite difference method uses local interpolant.

The convergence of spectral methods is based on the smoothness of the solu-

tion. For smooth functions the convergence rate is O(N−m) for every m. The

analytic functions converge even faster at the rate of O(cN) where 0 < c < 1,

see reference [1]. This rate distinguishes spectral methods from finite differ-

ence method, where the convergence rate is O(1/Np) where p is the order of

method. Spectral methods often performs extremely well even with the non-

smooth functions under certain restrictions, where both solution and variable

coefficients are not smooth, see reference [2]. Also computational problem

solving spectral methods uses less memory.

However irregular domains, strong shocks and certain boundary conditions

can cause inefficiencies while working with spectral methods. So the few

restrictions to be kept in mind while using spectral methods includes strict

stability restrictions for boundary value problems, use of sparse matrices in-

stead of full matrices and the complicated computer implementations.

Spectral methods is mainly of three different types the Tau method, the

Galerkin method and the collocation method. The choice of using any of
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these methods depend upon the application. The Tau and Galerkin method

belong to the weighted residual methods class, while collocation method uses

a single global interpolant. The Tau method is best suited for problems with

complicated boundary conditions. The boundary conditions can even be non-

linear. The Galerikan method has the advantage of more convenient analysis

and optimal error estimates while the collocation method works best with

nonlinear problems or with complicated coefficients. For the detailed com-

parison of above three mention methods, refer to [2].

The main idea of spectral methods is to approximate the unknown solution

of differential equation by using orthogonal functions. The spatial derivative

of the solution is approximated by the derivative of polynomial and if there

exist any time derivative in the equation, it is solved through classical finite

difference schemes. For periodic problems Fourier series is used. On a peri-

odic domain spectral derivatives are calculated by the Fast Fourier Transform

(FFT). For non periodic problems Chebyshev polynomial and Legendre poly-

nomials are used as orthogonal functions. For the approximation on the real

line Hermite polynomials and for half line approximations Laguerre polyno-

mials are best suited. In using polynomials for spectral methods, clustering

of grid points is of great importance. The grid points should cluster near end

points for asymptotic convergence.

In the past few years, the activity on theory as well as application of spec-

tral methods have been concentrated on collocation method. The collocation

method, also known as pseudospectral method uses a set of grid points which

are called the collocation points or the nodes. The unknown solution is then

approximated using the interpolating polynomial at the collocation points.
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The complete description of the collocation method is given in [2], [3], [4]

and [5].

For scientific computing and matrix based implementations, differentiation

matrices are ideal for derivatives involved in any differential equation. Dif-

ferentiation matrices are basically derived from pseudospectral method for

boundary value problems that are based on weighted interpolants of the

function f(x) which has the following form

f(x) ≈ pN−1(x) =
N∑
j=1

α(x)

α(xj)
φj(x)fj, (1.1.1)

where {xj}Nj=1 is the set of distinct interpolation points, α(x) is a weight

function, {φj(x)}Nj=1 is the set of interpolating functions and fj = f(xj).

Taking l derivatives of Eq.(1.1.1) and evaluating the result at the nodes {xk}

gives our required differentiation matrix represented by a matrix D(l), whose

entries are

D
(l)
k,j =

dl

dxl

[
α(x)

α(xj)
φj(x)

]
x=xk

, (1.1.2)

and thus we have

f(l) = D(l)f, (1.1.3)

where f is the vector of function values at the nodes {xk}. The weight

function depends on the choice of interpolating polynomial. For Hermite

polynomial weight function is e−x
2/2, for Laguerre polynomial it is e−x/2 and

weight function is constant for Chebyshev polynomials. The computation

of spectral collocation differentiation matrices have been considered by [6]
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for constant weights. It is the case of Chebyshev polynomial otherwise for

Laguerre polynomial, Legendre polynomial or Hermite polynomial arbitrary

positive weight functions are taken. For arbitrary weight functions work of

[7] can be studied.

The roots of Chebyshev polynomials known as the Chebyshev points are

used as the nodes in Eq.(1.1.2) and Eq.(1.1.3). Chebyshev points lie in the

interval [−1, 1].

Chebyshev points are defined as

xj = cos(jπ/(N − 1)). j = 0, 1, ..., N − 1

For the differential equation on a random domain [a, b], first the interval

should be converted to [−1, 1] by using the following transformation

x←→ (1/2)((b− a)x+ (b+ a)).

Another way to construct the differentiation matrix was introduced by [8]

using Chebyshev points. The Chebyshev differentiation matrix DN have

N + 1 rows and columns (for N ≥ 1) indexing from 0 to N. The entries of

this matrix are

(DN)00 =
2N2 + 1

6
, (DN)NN = −2N2 + 1

6

(DN)jj =
−xj

2(1− x2j)
, j = 1, ..., N − 1

(DN)ij =
ci
cj

(−1)i+j

(xi − xj)
, i 6= j, i, j = 1, ..., N − 1
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where

ci =

 2 i = 0 or N

0 otherwise.

However, results obtained using differentiation matrices defined by [8] be-

come less accurate as the derivatives increase in order. The entries of Cheby-

shev differentiation matrices as defined above are formulated using Lagrange

interpolation. For the derivatives, the interpolating polynomial is then dif-

ferentiated accordingly. The formulas for entries of differentiation matrices

were first published by [9]. MATLAB codes with the implementations are given

in [8] for more understanding.

Hermite polynomials, Laguerre polynomials and Legendre polynomials uses

their roots as nodes, in calculating differentiation matrices. The roots of or-

thogonal polynomials are given by the eigenvalues of the N ×N tridiagonal

Jacobian matrix

J =


αo β1

β1 α1 β2
. . . βN−1

βN−1 αN−1


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where αn and βn are given by the following table

Legendre Laguerre Hermite

αn 0 2n+ 1 0

βn n/
√

4n2 − 1 −n
√
n

For the efficient execution of spectral differentiation matrices in MATLAB, the

barycentric1 form of interpolants is considered rather than using the form

given by Eq.(1.1.1). The barycentric form of interpolant is

pN−1 =

α(x)
N∑
j=1

ωj

x−xj
fj

α(xj)

N∑
j=1

ωj

x−xj

, (1.1.4)

where

ω−1j =
N∏
m=1

(xj − xm). (1.1.5)

In case of Chebyshev polynomials, where weight function is constant, the

above form becomes

1Barycentric interpolation is a variant of Lagrange polynomial interpolation which is

fast and stable.
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pN−1 =

N∑
j=1

(−1)jfj
cj(x−xj)

N∑
j=1

(−1)j
cj(x−xj)

. (1.1.6)

MATLAB codes for the computation of spectral differentiation matrices using

above mentioned forms of interpolants are given in [10]. The two main al-

gorithms on which the computation of differentiation matrices based on are

poldif.m and chebdif.m. For the computation of differentiation matrices for

non-constant weight functions on arbitrary set of points poldif.m is used while

chebdif.m computes differentiation matrices for constant weight function and

Chebyshev nodes.

The next step is the implementation of given boundary conditions, after com-

puting the derivatives involved in any differential equation. Implementation

of boundary conditions effect the differentiation matrices which will be ex-

plained latter. There are two approaches for the implementation of boundary

conditions. Either restrict the attention to interpolant that should satisfy the

boundary conditions or add an extra equation that would satisfy the bound-

ary conditions completely. For different types of differential equations and

boundary conditions, different techniques are to be used to obtain accurate

results. This will be more clear in the next chapters where different types of

ODEs and PDEs are solved.

This thesis is outlined as follows. In Chapter 2, we present spectral methods

for ODEs. The spectral method solution of PDEs is given in Chapter 3.

Conclusions and outlook are drawn in Chapter 4.
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Chapter 2

Spectral Methods for ODEs

Ordinary differential equations occur in many disciplines like Biology, Chem-

istry, Physics and Mathematics. Many ODEs occurring in practice are of

second order. Higher order ODEs can either be solved directly or by reduc-

ing it into a system of first-order ODEs. ODEs are much easier to solve and

understand as compared to partial differential equations. The solution of

ODEs with constant coefficient and periodic boundary conditions is simple

and easy to solve using Fourier spectral method. For non-periodic boundary

conditions polynomial spectral method is used. Although spectral methods

are much more efficient as compared to other numerical methods but the

right selection of N is required for high accuracy.

The solutions of ODEs using different discrete methods like matrices, is an

old and most successful way in computational mathematics. Spectral meth-

ods for solving ODEs using MATLAB is the subject of this section. It includes

linear and nonlinear ODEs with random domains and coupled ODEs with

mixed boundary conditions.
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Laguerre spectral collocation method and Chebyshev spectral collocation

method are discussed in detail here for better understanding and comparison.

In Laguerre spectral method, the error decays slower than that of Chebyshev

spectral method for similar problems, see [11]. Due to poor convergence

properties of Laguerre spectral method, Chebyshev spectral method is pre-

ferred, even for semi-infinite domains. Both methods are applied to same

problems for clarity in accuracy demonstrated by these methods.

This chapter is organized as follows. In section 2.1 linear ODEs are solved

by spectral methods. The Darcy-Brinkman-Forchheimer Equation is solved

in section 2.2. In section 2.3, Falkner-Skan Equation is solved. In this sec-

tion we used open-source Software Chebfun to find solution. In section 2.4

coupled ODEs are solved using Chebfun.

2.1 Spectral Solution of Linear ODEs

We begin with some linear ODEs for understanding of spectral collocation

method and its implementations. The exact solutions of ODEs are given so

that we can compare our results with other numerical methods. We consider

k
d2T

dx2
+ sox = 0, (2.1.1)

with boundary conditions

T (0) = T (L) = 0.

Here we will use two different techniques to see the difference in results. The

procedure to solve any differential equation using Chebyshev polynomials
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is same as Laguerre polynomials. Since the domain is [0, L], the natural

idea will be to use Laguerre polynomials with rescaling parameter to be

chosen according to the selection of differentiation matrix size. Laguerre

differentiation matrix is calculated using lagdif.m while lagroots.m taken from

[10] will give us the nodes. MATLAB codes for both lagdif.m and lagroots.m can

be found in [10]. Since the boundary conditions are of homogeneous Dirichlet

type so we take the interior points as our grid for computation and boundary

conditions are enforced latter. Only the deletion of appropriate (first and

last) rows and columns in differentiation matrix is required along with the

deletion of nodes from both ends. This can be understood by considering Eq.

(1.1.3) where f is a column vector, deletion of its end points required deletion

of rows and columns of differentiation matrix, see [8]. MATLAB command of

fsolve then gives the solution of our problem at interior nodes. For end points

we have to enforce the boundary condition by adding the values of function

at end points. The values of so, k and L are all taken to be 1 for convenience.

The exact solution of above problem in Eq.(2.1.1) is

T (x) =
so
6k

(L2 − x2)x.

Figure 2.1 shows the solution obtained using Laguerre differentiation ma-

trix compared with exact solution and Table 2.1 display the values of T for

different values of x.
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Figure 2.1: Comparison of Laguerre spectral collocation method and exact

solution.

x T (Collocation solution) T (Exact solution) absolute error

0 0 0 0.00000

0.2062 0.03242159 0.03289889 0.0004773

0.4074 0.05568983 0.05663393 0.0009441

0.5041 0.06149894 0.06266729 0.001168

0.6062 0.06250275 0.06390515 0.001402

0.7133 0.0567439 0.05839188 0.001648

0.8012 0.04596546 0.04780998 0.001845

1 0 0 0.00000

Table 2.1: Comparison of exact solution and Laguerre spectral collocation

method with absolute error.
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Another way to solve Eq.(2.1.1) is by Chebyshev spectral collocation method.

The canonical interval of Chebyshev polynomials is [−1, 1], it can be rescaled

using the transformation defined in the above section. Eq.(2.1.1) is then

transformed to

4
d2T

dx2
+
x+ 1

2
= 0,

and the boundary conditions become

T (−1) = T (1) = 0.

This equation can now be easily solved by using chebdif.m given in [10]. After

obtaining the results through Chebyshev spectral method, we transform the

solution into the domain [0, 1]. Figure 2.2 shows the comparison of Chebyshev

spectral collocation method and the exact solution, Figure 2.3 shows the

relative percentage error while Table 2.2 also shows relative percentage error

for different values of x.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

x

T
(x

)

 

 
Chebyshev
Exact

Figure 2.2: Comparison of Chebyshev spectral collocation method and exact

solution.
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Figure 2.3: Percentage relative error of exact solution and spectral methods

using Chebyshev polynomials.

x T (Collocation solution) T (Exact solution) Percentage relative error

0.03015 0.005021 0.005021 4.992× 10−12

0.08688 0.01437 0.01437 5.396× 10−12

0.1509 0.02457 0.02457 5.125× 10−12

0.2944 0.04481 0.04481 4.909× 10−12

0.4626 0.0606 0.0606 4.981× 10−12

0.6354 0.06314 0.06314 3.033× 10−12

0.8117 0.046143 0.046143 1.684× 10−12

0.9607 0.01233 0.01233 1.365× 10−12

Table 2.2: Comparison of Chebyshev spectral collocation method and exact

solution with relative percentage error.
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The huge difference between results of Laguerre spectral method and Cheby-

shev spectral method can clearly be observed. The reason for high conver-

gence rate of Chebyshev spectral collocation method is clustering at the end

points. Evenly spaced points can be used for polynomial interpolation but it

does not provide high accuracy. The best option for maximum convergence

is the use of unevenly spaced points. As explained in [8], different sets of un-

evenly points can be taken but all sharing a common property. As N −→∞,

the density for distribution of points is

density ∼ N

2
√

1− x2
.

The average spacing between interior points in O(N−1) while for end points

x = ±1 the spacing is O(N−2). The effect of using these clustered points on

accuracy is dramatic. For detailed examination, Chapter 5 of [8] can be stud-

ied. Laguerre points lack the clustering property, reducing the convergence

rate of Laguerre spectral method. The clustered points at the right end are

not considered for Laguerre polynomials which results in poor convergence

in our case.

Now we consider another ODE on a domain [0, 1]

d2φ

dx2
+ φ+ x2 = 0, (2.1.2)

with boundary conditions

φ(0) = 0 , φ(1) = 0.

This is a second-order ODE with homogeneous Dirichlet boundary condi-

tions. Again Laguerre polynomial can be used with appropriate rescaling
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since the domain is [0, 1].

The exact solution of Eq.(2.1.2) is

φ = 2− 2 cosx− 1− 2 cos 1

sin 1
sinx− x2.

The result for solution of Eq.(2.1.2), computed using Laguerre differentiation

matrices in spectral collocation method, is given below in Figure 2.4. While

Table 2.3 displays different values of φ(x) along with the absolute error.
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Figure 2.4: Comparison between Laguerre spectral collocation method and

exact solution.
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x φ (Laguerre) φ (Exact solution) absolute error

0 0 0 0.0000

0.07435 0.006948366 0.007112449 0.0001641

0.2062 0.01900579 0.01945772 0.0004519

0.4074 0.03479872 0.03567416 0.0008754

0.5041 0.03986597 0.04093331 0.001067

0.6062 0.04220312 0.04346008 0.001257

0.7133 0.04002447 0.04146627 0.001442

0.8012 0.03360268 0.03517996 0.001577

1 0 0 0.00000

Table 2.3: Comparison of exact solution and spectral methods with absolute

error.

Chebyshev polynomials can be used to solve this problem as well, with great

accuracy and high convergence rate. Transforming Eq.(2.1.2) on the domain

[−1, 1] gives

4
d2φ

dx2
+ φ+

(x+ 1)2

2
= 0,

with boundary condition

φ(−1) = φ(1) = 0.

We follow the same steps for the solution of this problem as used in above

problem. Figure 2.5 presents the comparison between Chebyshev spectral

collocation method and exact solution, Figure 2.6 shows relative percentage

error and Table 2.4 below show the results for different values of x.
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Figure 2.5: Comparison of exact solution and Chebyshev spectral collocation

method.
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Figure 2.6: Percentage relative error of exact solution and spectral methods

using Chebyshev polynomials.
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x φ (Collocation solution) φ (Exact solution) Percentage relative error

0.01405 0.001345526 0.001345526 1.779× 10−11

0.09705 0.009274349 0.009274349 2.462× 10−11

0.1681 0.01595629 0.01595629 2.455× 10−11

0.289 0.02672185 0.02672185 2.26× 10−11

0.4016 0.03529056 0.03529056 2.013× 10−11

0.6241 0.04349706 0.04349706 7.785× 10−12

0.8117 0.03409777 0.03409777 1.872× 10−12

0.9662 0.008398714 0.008398714 5.68× 10−12

Table 2.4: Comparison of spectral solution and exact solution with relative

percentage error.

2.2 Darcy-Brinkman-Forchheimer Equation

The Darcy-Brinkman-Forchheimer Equation is

d2u/dy2 − s2u− Fsu2 + 1/M = 0, (2.2)

subject to the boundary conditions

u(−1) = 0, u(1) = 0.

was considered in [12]. In Eq.(2.2), s is the porous medium shape parameter,

F is the Forchheimer number and M is the viscosity ratio. This is a steady

state problem of flow through a horizontal channel which is filled with porous

medium. This flow inside the channel is governed by the Darcy-Brinkman-

Forchheimer momentum equation. Such flows are very important in many
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physical as well as industrial setting, for example, in the movement of ground

water and crude oil through the porous rocky surface. This problem was pre-

viously solved analytically in [13] and numerically by asymptotic expansion

methods in [14] and also by spectral homotopy analysis method (SHAM).

Since the domain of this problem is [-1,1], Chebyshev spectral collocation

method should be the natural choice. First the MATLAB function chebdif.m in

[10] computes the second-derivative matrix along with the chebyshev points

and then boundary conditions are implemented. All that remains is to com-

pute the solution of Eq.(2.2). MATLAB built-in function fsolve is used for this

purpose. The values of s, F and M are taken to be same as in [12] for

comparison. Passing all the information to the function fsolve, yields ap-

proximated solution u(yk), where yk are the chebyshev nodes corresponding

to the differentiation matrix D. The output of fsolve gives the result as a

column vector, only at the interior nodes. The endpoints and the values at

those points are to be enforced for solution on the required domain.

In [12] standard HAM approach is used to solve this model equation along

with shooting method which is based on Runge-Kutta method of fourth or-

der. For different values of s and F = M = 1, we will see the variation

in velocity profiles and comparison between present method and results ob-

tained using bvp4c. Figures 2.7-2.9 present the solution for s = 0.5, 2 and 5

and it can be observed that as the value of s increases the velocity profile de-

creases vertically. The efficiency of spectral collocation method for nonlinear

boundary value problem can be seen in the graphs below.
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Figure 2.7: Velocity profile for s=0.5 while F=M=1.
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Figure 2.8: Velocity profile for s=2 and F=M=1.
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Figure 2.9: Velocity profile for s=5 and F=M=1.

For fixed values of s and M with variation in F , the results below in Figures

2.10-2.12 show that velocity profile again decreases with increase in Forch-

heimer number. However convergence with our numerical method can be

observed when compared with bvp4c.
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Figure 2.10: Velocity profile for F=0.5 and s=M=1.
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Figure 2.11: Velocity profile for F=2 and s=M=1.
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Figure 2.12: Velocity Profile for F=5 and s=M=1.
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2.3 Falkner-Skan Equation

Considering a boundary layer flow of a steady and incompressible fluid due

to a moving plate in viscous fluid. Boundary layer equations are given in

Chapter 2 of [15], the simplified form of that gives following equation:

ff ′′ + 2f ′′′ = 0, (2.3)

and the corresponding boundary conditions are

f = 0 on η = 0,

f ′ = 1 on η = 0,

f ′ → 0 as η →∞.

This is a third order non-linear ODE with mixed type boundary conditions.

Numerical solution of Eq.(2.3) was obtained using Keller-box method in [14].

Here the open-source software Chebfun1 is used for the computation of third

order derivative and boundary conditions. Chebfun is actually a collection

of algorithms and a software system in MATLAB. It is an open-source soft-

ware system which is easily available on internet. It works with Chebyshev

polynomials but the choice of domain can be modified. The implementa-

tion of Chebfun is based on the fact that by using polynomial interpolation

in Chebyshev points, smooth functions can be represented quite efficiently.

chebop is a tool in Chebfun for solving differential equations with spectral

collocation method. It contains domain, operator and boundary conditions,

1Chebfun is the name of an open-software system while chebfun is a command of that

software.
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defined according to the problem under consideration. For the solution of

Eq.(2.3), chebfun and chebop are used.
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Figure 2.13: Comparison of Chebfun and Zuki [15].
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Figure 2.14: Comparison of velocity profile f ′(η) of Chebfun and Zuki [15].
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The results obtained using spectral methods (by chebfun) is compared with

results by [15] to validate the accuracy of spectral collocation method. Graph

of f(η) is plotted in Figure 2.13 whereas Figure 2.14 shows the velocity profile

variation f ′(η).

Table 2.5 shows the values of f(η), f ′(η) and f ′′(η) for different values of η.

The velocity gradient f ′′(η) is plotted in Figure 2.15 and can be compared

with the values of f ′′(η) calculated using Keller-box method and Runge-

Kutta method in [15].

η f (Chebfun) f (Zuki) f ′ (Chebfun) f ′ (Zuki) f ′′ (Chebfun) f ′′ (Zuki)

0 0 0 1.0000 1.0000 -0.4446 -0.4439

1.00 0.78581 0.78615 0.5864 0.5870 -0.3590 -0.3584

2.00 1.21711 1.21832 0.3005 0.3015 -0.2150 -0.2146

3.00 1.42973 1.43220 0.1423 0.1436 -0.1102 -0.1099

4.00 1.52814 1.53215 0.0642 0.0658 -0.0524 -0.0522

5.00 1.57169 1.57746 0.0276 0.0294 -0.0241 -0.0239

6.00 1.58988 1.59758 0.0109 0.0129 -0.0109 -0.0108

7.00 1.59655 1.60629 0.0034 0.0054 -0.0049 -0.0048

8.00 1.59802 1.60987 0.0000 0.0021 -0.0022 -0.0021

Table 2.5: Comparison between Zuki and present method (Chebfun).
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Figure 2.15: Comparison of velocity gradient f ′′(η) of Chebfun and Zuki [15].

It can be observed that the results obtained using spectral method are quite

good when compared with results of Zuki in [15].

2.4 Coupled ODEs

Now moving towards coupled nonlinear equation, concentrating on finding

solution with spectral methods. The problem under consideration is a bound-

ary layer flow due to a moving plate in a micropolar fluid. Simplified form

of that problem is given in [15] is

f ′′′ + 1
2

′
ff ′′ = 0,

g′′ + 1
2
(gf ′ + fg′) = 0,

 (2.4)
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and the corresponding boundary conditions are

f(0) = 0, f ′(0) = 1, f ′(∞) = 0,

g(0) = −nf ′′(0), g(∞) = 0.

Keller-box method was used in [15] for solving the above given system of

equations numerically. Here chebfun will be used for solution of Eq.(2.4).

The domain of this problem is [0, 6] so chebop is required for domains other

than [−1, 1]. chebfun along with providing the information about differential

equations and boundary conditions, solves the problem. It can be seen in

figures below that with increase in values of n, f(η) remains same. Figure

2.16 and Figure 2.17 displays results of f for n = 0.2 and n = 0.8.
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Figure 2.16: Chebfun solution of f(η) for n=0.2
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Figure 2.17: Chebfun solution of f(η) for n=0.8

For n = 0.8 and n = 0.2 results of g(η) are displayed below in Figure 2.18

and Figure 2.19.
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Figure 2.18: Chebfun solution of g(η) for n=0.8
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Figure 2.19: Chebfun solution of g(η) for n=0.2

For any value of n, g′(η) lies on the horizontal line. Figure 2.20 shows as n

increases graph of g(η) reduces getting close to horizontal axis.
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Figure 2.20: Chebfun solution of g′(η) for x=0.2,0.3,0.4,0.5,0.6,,0.7 and 0.8
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Chapter 3

Spectral Methods for PDEs

Partial differential equations describe many different phenomena like sound

propagation, heat transfer and fluid flows. As compared to ordinary dif-

ferential equations, partial differential equations are difficult to solve and

require more attention in implementation. Although computationally, spec-

tral methods for partial differential equations are less expensive than finite

difference method but less accurate for problems with complex geometries

due to Gibbs phenomena and Runge phenomena.

The procedure for solving PDEs is same as discussed for ODEs in previous

chapter. Time derivative is also involved in these problems so extra work is

needed to find accurate solution. For time stepping Runge-Kutta methods

will be considered.

For partial differential equations with periodic boundary conditions spectral

methods are very effective but far less potent for problems with non-periodic

boundary conditions. Fourier and Chebyshev differencing methods are the
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most extensively used methods since the base functions used for interpolant

expansion gives the most accurate solution.

The main feature here is to solve time-dependent partial differential equa-

tions on irregular domains using spectral collocation method and the main

focus is on parabolic equations. Chebyshev spectral collocation method is

most extensively used here for maximum accuracy due to its clustering prop-

erty.

This chapter is organized as follows. In section 3.1 the solution of one di-

mensional heat equation is presented. Non-homogeneous heat equation in

one dimensional is solved in section 3.2. Burger’s equation is solved in sec-

tion 3.3.

3.1 Heat Equation in 1D

Consider a uniform rod lying on x-axis from x = 0 to x = π with insulated

sides. The partial differential equation describing flow of heat energy in that

rod and the temperature distribution on the domain [0, π] is written as

∂u

∂t
= D

∂2u

∂x2
, (3.1)

with initial temperature distribution is

u(x, 0) = sin(x),

and boundary condition given by

u(0, t) = u(π, t) = 0.
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Here D is the thermal conductivity also called diffusion coefficient. Since

domain is [0, π] the natural idea must be Fourier method but here Chebyshev

and Laguerre spectral collocation method is our choice, in order to see the

accuracy both methods have shown here. To observe the spectral accuracy

we take the exact solution for above mentioned heat equation, with D = 1,

we have

u(x, t) = e−t sin(x).

The difference between solutions of this problem using both Laguerre and

Chebyshev spectral collocation method can be seen. Laguerre spectral collo-

cation method although enjoys spectral convergence rate but when compared

to Chebyshev spectral method for a same problem, the actual error decay is

considerably slow. The reason for slow error decay is mentioned in the above

chapter but for detailed explanation refer [11] and [17]. Below are the results

presenting the solutions of both methods and their comparison with exact

solution.
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Figure 3.1: Comparison of exact solution and spectral methods with Laguerre

polynomials for t=0,0.25 and 0.5 (where ’-’ represents spectral solution and

’.’ represents exact solution).

Figure 3.1 shows solution using Laguerre spectral method. Due to rescaling

in Laguerre nodes from [0,∞] to [0, π], nodes lack the clustering property at

right end. This causes loss of accuracy when Laguerre polynomials are used.

Table 3.1 displays comparison of exact solution and spectral solution giving

different values of T along with absolute error.
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η Spectral solution Exact solution t Absolute error

0.04842 0.04840143 0.04840143 0 0

0.2069 0.2053797 0.2053797 0 0

0.4861 0.4672037 0.4672037 0 0

0.9093 0.7890914 0.7890914 0 0

1.527 0.9990589 0.9990598 0 0

0.04842 0.03768597 0.03769507 0.25 9.109× 10−6

0.2069 0.1599629 0.1599499 0.25 1.302× 10−5

0.4861 0.3638213 0.3638586 0.25 3.729× 10−5

0.9093 0.6144969 0.614545 0.25 4.808× 10−5

1.527 0.7765793 0.7780686 0.25 1.489× 10−3

0.04842 0.0293189 0.02935695 0.5 3.805× 10−5

0.2069 0.1244387 0.1245691 0.5 1.303× 10−4

0.4861 0.2829318 0.2833734 0.5 4.416× 10−4

0.9093 0.477289 0.4786081 0.5 1.319× 10−3

1.527 0.600588 0.6059604 0.5 5.372× 10−3

Table 3.1: Comparison between solution obtained using Laguerre spectral col-

location method and exact solution.

While with Chebyshev spectral method transformation of Eq.(3.1) gives the

following PDE
∂u

∂t
=

4

π2

∂2u

∂x2
,
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and the initial and boundary conditions on domain [−1, 1] will become

u(x, 0) = sin π(
x+ 1

2
),

u(±1, t) = 0.

After the whole process of calculation the domain is transformed back to

[0, π]. The solution of Eq.(3.1) is plotted below along with its exact solution

in Figure 3.2. Table 3.2 displays comparison of exact solution and spectral

solution giving different values of T along with percentage relative error.

It is clear that Chebyshev spectral method converges better than Laguerre

spectral method even for partial differential equations.
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Figure 3.2: Comparison of exact solution and spectral methods with Cheby-

shev polynomials for t=0,0.25 and 0.5 (where ’-’ represents spectral solution

and ’.’ represents exact solution).

36



η Spectral solution Exact solution t percentage relative error

0.1196 0.119285 0.119285 0 0

0.4601 0.4440158 0.4440158 0 0

0.9697 0.824704 0.824704 0 0

1.571 1 1 0 0

2.172 0.824704 0.824704 0 0

2.682 0.4440158 0.4440158 0 0

3.022 0.119285 0.119285 0 0

0.1196 0.09289906 0.09289928 0.25 2.437× 10−4

0.4601 0.345799 0.3457999 0.25 2.437× 10−4

0.9697 0.6422785 0.6422801 0.25 2.437× 10−4

1.571 0.77887989 0.7788008 0.25 2.437× 10−4

2.172 0.6422785 0.6422801 0.25 2.437× 10−4

2.682 0.345799 0.3457999 0.25 2.437× 10−4

3.022 0.09289906 0.9289928 0.25 2.437× 10−4

0.1196 0.07234986 0.07235003 0.5 2.388× 10−4

0.4601 0.2693086 0.2693092 0.5 2.388× 10−4

0.9697 0.5002071 0.5002083 0.5 2.388× 10−4

1.571 0.6065292 0.6065307 0.5 2.388× 10−4

2.172 0.5002071 0.5002083 0.5 2.388× 10−4

2.682 0.2693086 0.2693092 0.5 2.388× 10−4

3.022 0.07234986 0.07235003 0.5 2.388× 10−4

Table 3.2: Comparison between exact solution and solution obtained using

Chebyshev spectral collocation method.
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For the comparison between spectral methods and finite difference method

we will consider the same Eq.(3.1) with different values of conductivity pa-

rameter D and the domain will be [0, 1] and time 0 ≤ t ≤ 1. For D = 0.25

and D = 1 the results are shown below. Both results are in good coordina-

tion as can be seen in mesh-plots given here using MATLAB’s mesh function.

The mesh-plot proves the efficiency of present method.

Figure 3.3: Solution u(x, t) using Laguerre spectral collocation method for

D = 0.25.
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Figure 3.4: Solution u(x, t) using Finite difference method for D = 0.25.

Figure 3.5: Solution u(x, t) using Laguerre spectral collocation method for

D = 1.

39



Figure 3.6: Solution u(x, t) using finite difference method for D = 1.

3.2 Non-Homogeneous Heat Equation in 1D

For the examination of stability of our present numerical method, we will

consider a non-homogeneous heat equation from [16], the equation is

∂T

∂t
= 4α

∂2T

∂x2
+ (π2 − 1)e−t sin π(

x+ 1

2
), (3.2)

with initial and boundary conditions

T (−1, t) = T (1, t) = 0,

T (x, 0) = sinπ(
x+ 1

2
).

Finite difference was used in [16] to solve the above problem but the domain

for this equation was [0, 1]. MATLAB code was given in the end of [16] for clear

understanding. We can make slight changes to convert the interval in the
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code to make it work for comparison on our required domain. Results show

that the solution obtained using present method is in good agreement with

solution computed using finite difference method.

We will use Chebyshev spectral collocation method since the domain is [−1, 1]

so no transformation is required. For the incorporation of boundary condi-

tions, rows and columns of D are deleted (first and last). Since we have

second order derivative involved in the equation cheb.m from [8] can also

be used instead of chebdif.m with equal efficiency for the computation of

chebyshev nodes and differentiation matrix D. It will give first order D, for

derivative of our required order we have to take the power of D accordingly.

The accuracy of our method depends highly on the choice of N , the size of

differentiation matrix and the number of nodes. If N for current problem

given by Eq.(3.2) is taken to be less than 20 the rate of accuracy decreases

and difference occurs between results calculated using both spectral methods

and finite difference method. On the other hand N could be taken as large

as possible to increase the convergence rate. But it is not the case for every

problem, sometimes increase in N decrease convergence, that is why selection

of proper N is very crucial.

There are various ODE solvers as mentioned above but the right choice mat-

ters in time elapsed. Here to see the difference we considered ode45 and

ode15s. It was observed that for our problem former takes about 14 seconds

while latter took only one second. Here α = 1 and for different values of t

results are displayed. Figure 3.7 displays the results obtained using spectral

methods compared with finite difference method. It proves that our present
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method is in good agreement with results in [16].
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Figure 3.7: Comparison of spectral method using Chebyshev polynomials and

finite difference method for t=0,0.5,1,1.5,2. (where ’-’ represents the spectral

solution and ’.’ represents the finite difference method.)

3.3 Burger’s Equation

The viscous Burger’s equation is a non-linear partial differential equation

with interesting application in astrophysics and fluid mechanics. It is an

interesting task to solve this equation since common numerical method used

for its solution is finite difference method and due to round-off error there is

a huge loss of accuracy. Analytical methods for the solution of this problem

are also very restricted.
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Considering the one-dimensional Burger’s equation

∂u

∂t
+ u

∂u

∂x
= ε

∂2u

∂x2
, (3.3)

with boundary conditions

u(±1, t) = 0,

and initial condition

u(x, 0) = −sinπx.

It is a simplified mathematical model for the motion of a viscous compress-

ible gas. Here u is the speed of gas and ε is the kinematic viscosity and also

time derivative is involved in our problem. For high viscosity pseudospectral

method can solve the Burger’s equation much more efficiently than other

numerical methods.

The main idea is to use chebyshev differentiation matrix along with cheby-

shev collocation points excluding end points, as taken in above examples.

Time stepping can be achieved using Runge-Kutta schemes. There are vari-

ous ODE solvers in MATLAB with adaptive time-stepping selection mechanism,

ode45 works effectively for time stepping here. After all the computation,

end nodes and deleted rows and columns of solution are included. The so-

lution is displayed in figure below. Many numerical solutions fail for very

small value of ε but pseudospectral method works quite efficiently.

The convergence of some problems are limited by Gibbs phenomenon, which

are not quite suited for simulation. The most simplified way to understand

Gibbs phenomenon is to think of oscillations near discontinuities. There are

many factors for such a phenomenon, here in Eq.(3.3) it is because of the
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presence of shock waves appearing in our solution. The nonlinear factor in

our problem creates shock waves. It can be observed below in Figure 3.8 that

shock waves appear at t = 2/π for N = 200. As N is increased the difference

in solution curves can be observed in Figure 3.9. For N = 800 the results are

better than before but still there are shock waves appearing in our solution.

The kinematic velocity ε is taken to be 1/(300π).
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Figure 3.8: Solution for Burger’s equation for N = 200 with t = 0, 1/π and

2/π.
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Figure 3.9: Solution for Burger’s equation for N = 800 with t = 0, 1/π, 2/π

and 3/π.
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Chapter 4

Conclusions and Outlook

This thesis has presented accuracy of solutions for several ODEs and PDEs by

applying spectral methods. The problems were solved mostly using Cheby-

shev polynomials which gave us remarkable results with great efficiency.

In Chapter 2, it can clearly be observed that the results obtained using

present method are very accurate. The tables are plotted for ODEs which

show error of the order 10−12. Also solutions computed through spectral

method are compared with exact solutions to displays how well spectral

methods works. In Chapter 3 the PDEs are solved and compared with finite

difference method which again is in great agreement with each other.

This thesis has displayed a solid difference in results based on selection of

polynomials (Chebyshev and Laguerre). The selection and implementation of

different polynomials shows a great difference in accuracy. Throughout this

thesis it is clear how Chebyshev spectral method proves to be better than

Laguerre spectral method. Solutions using Chebyshev spectral collocation
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method are far better and close to exact solutions as compared to Laguerre

spectral collocation method. Overall spectral collocation method proves to

be superior than other numerical methods.

In future we can solve third order differential equations. In this thesis we

present solution only in one dimension but this work can be extended for two

dimension and comparison can be drawn.
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