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Abstract 

 

The analysis of fluid flow in a rotating frame has been an active area of research for years. It is 

of great importance in many engineering, scientific and geophysical applications such as rotating 

machinery, water turbines, gas turbine designs, pumps, jet engines etc. Maxwell fluid is a 

common viscoelastic model that can predict stress relaxation phenomenon. Some examples of 

Maxwell fluid include polymer solutions, toothpaste, ketchup, blood, shampoos and paints. Here, 

we study heat/mass transfer effects on the viscoelastic fluid flow in rotating frame. The cases of 

linear and exponential deformation of the boundary are separately discussed. Heat transfer due to 

non-linear radiation is modeled and deliberated. Mass transfer analysis is carried out in the 

existence of homogeneous-heterogeneous reactions. Numerical solutions of the developed non-

linear problem are obtained by means of shooting method. For a check, the computations are also 

performed by contemporary tool for solving boundary value problems namely bvp4c of 

MATLAB. We found that angular velocity of the rotating fluid substantially influence the 

solution profiles. Velocity fields are oscillatory decaying functions of the non-dimensional 

vertical distance when fluid is subjected to larger rotation rate. Solute concentration at the 

surface is highly influenced by varying the strengths of chemical reactions.  
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Chapter 1 

 

Introduction 

This chapter covers some basic definitions and fundamental concepts. A detailed literature 

review concerning the problems reported in subsequent chapters is presented. Equations 

governing the motion of Maxwell fluid with heat and mass transfer are also derived. 

 

1.1Background 

There is a certain class of materials called non-Newtonian fluids in which the viscosity is a 

function of shear rate. Representative examples are polymer solutions, molten plastics, food 

products, emulsions of water in oil, fibers in a liquid paper pulp etc. Viscoelastic fluids are 

special non-Newtonian fluids which exhibit both viscous and elastic responses to the deforming 

force that is, they have ability to store and recover shear energy. Maxwell fluid is a common 

viscoelastic model that can predict stress relaxation phenomenon for many polymer liquids. As a 

consequence, special attention is devoted to explore boundary layer problems concerning 

Maxwell fluid. Forced convection heat transfer in Maxwell fluid flow past a non-isothermal 

deforming sheet was addressed by Vajravelu et al. [1] through a numerical approach. Buoyancy 

assisting or opposing flow of Maxwell fluid near a stagnation point on vertical stretchable 

surface was numerically explored by Hsiao [2]. Characteristics of heat transfer in Maxwell fluid 

flow caused by unsteady deforming boundary were elucidated by Mukhopadhyay [3] via 

numerical approach. Hayat et al. [4] discussed heat transfer originating from melting process of a 

stretchable surface immersed in a hot Maxwell fluid. Shehzad et al. [5] investigated two different 

heating processes for three-dimensional flow of MHD Maxwell fluid. Kumari and Nath [6] 

modeled the Maxwell fluid flow which results due to exponentially deforming vertical surface 

with prescribed surface temperature. Ohmic heating effect in stagnation-point flow of Maxwell 

fluid with buoyancy force effects was analyzed by Hsiao [7]. Khan et al. [8] described 
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exponentially deforming surface induced flow of viscoelastic Maxwell fluid in the framework of 

Cattaneo-Christov heat flux theory. Natural convection flow of Maxwell nanofluid with 

Brownian diffusion and thermophoresis was explored by Mustafa and Mushtaq [9]. In recent 

years, considerable research in this area has been published (see, for instance, [10-19] and refs. 

there in). 

Rotating flow problems have essence in broad ranging engineering, scientific and geophysical 

applications such as rotating machinery, jet engines, pumps, gas turbine designs, vacuum cleaner 

etc. Nowadays, rotating flows around continuously deforming surfaces has attracted considerable 

attention. The first ever article in this domain was published by Wang [20] who considered the 

fluid flow over a stretching sheet in a rotating fluid. He presented a similarity solution of 

developed problem by means of perturbation in small rotation rate. Later, Nazar et al. [21] 

extended Wang’s analysis for unsteady case and provided numerical approximations of velocity 

profiles through Keller-box method. Asymptotic solutions for large time t have also been derived 

in this paper. Kumari et al. [22] investigated the rotating flow of non-newtonian Power-Law fluid 

over a stretching surface. Javed et al. [23] provided locally similar numerical solutions for 

viscous fluid flow over an exponentially deforming surface in rotating frame.  Zaimi et al. [24] 

made use of Keller-box approach to analyze viscoelastic fluid flow in rotating frame bounded by 

a stretchable surface. Turkyilmazoglu [25] examined consequences of radial stretching in the 

Von Karman swirling flow problem of infinite disk. He justified usefulness of radial stretching in 

terms of heat transfer enhancement via through analysis. In another article [26], he extended 

Bӧdewadt flow problem for the case where disk was assumed circumferentially in radial 

direction with uniform rate. Mustafa et al. [27] extended this problem for nanofluid comprising 

five different kinds of nanoparticles. Recent contributions in this direction include this [28-33]. 

Homogeneous heterogeneous reactions are the class of chemical reactions in which reactants 

occur in single or multi-phase. Chaudhary and Merkin [34] discussed the fluid flow over a flat 

plate with streamwise pressure gradient within which an isothermal cubic autocatalytic reaction 

was assumed while single, first order isothermal reaction was considered at the surface. Merkin 

[35] considered the same model of homogeneous-heterogeneous reaction in a boundary layer 

flow over a flat plate as in [34]. His findings demonstrate that heterogeneous reaction is 

dominant near the leading edge of the plate. Bachok et al. [36] observed the behaviors of 
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homogeneous-heterogeneous reaction in stagnation point flow near a deforming sheet. Shaw et 

al. [37] studied the effects of homogeneous-heterogeneous reactions in micropolar fluid flow 

over a permeable surface immersed in a porous space. Later kameswaran et al. [38] discussed 

nanofluid flow near a porous surface inspired byhomogeneous-heterogeneous reactions. Hayat et 

al. [39] provided analytical treatment for three-dimensional Maxwell fluid flow 

withhomogeneous-heterogeneous reactions. Few recent papers in this domain are published by 

Hayat et al. [40, 41], Ramzan et al. [42] and Radiah et al. [43]. 

The thesis aims to explore Maxwell fluid flow in a rotating frame with heat and mass transfer 

aspects. Chapter 2 presents a detailed review of an article by Mustafa et al. [33] which deals with 

the rotating flow of viscoelastic fluid bounded by an exponentially deforming sheet. Chapter 

3presents the modeling of homogeneous-heterogeneous reaction effects for flow past a linearly 

stretching sheet in rotating Maxwell fluid. Numerical results have been derived by a convenient 

shooting approach and the behaviors of parameters on the solutions are elucidated by plotting 

graphs. The computations are also developed by MATLAB built in routine bvp4c. In addition, 

the solutions are compared with the previously published articles in a limiting case and such 

comparison appears convincing. 

 

1.2 Basic definitions 

 

1.2.1Newtonian fluids 

Newtonian fluids are those fluids which fulfill the Newton’s law of viscosity.Newton’s law of 

viscosity is given by 

𝜏𝑥𝑦 = 𝜇
𝑑𝑢

𝑑𝑦
, 

(1.1) 

where𝜏is shear stress, 𝜇 is the viscosity of the fluid known as dynamic viscosity and 𝑑𝑢/𝑑𝑦is the 

shear rate or rate of strain.In these fluids, the graph between stress and shear rate is a straight 

line. Commonexamples are water, air and milk etc. 
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1.2.2 Non-Newtonian fluids 

Non-Newtonian fluids are those fluids in which shear stress is non-linearly proportional to the 

shear rate. For many non-Newtonian fluids, the shear stress 𝜏𝑥𝑦is related to the deformation rate 

by the power law model. Mathematically, 

𝜏𝑥𝑦 = 𝑘 (
𝑑𝑢

𝑑𝑦
)
𝑛

, 
(1.2) 

where 𝑘  stands for consistency index and 𝑛  denotes the flow behavior index. 

 Eq. (1.2) can be written in the following form: 

𝜏𝑥𝑦 = 𝜂 (
𝑑𝑢

𝑑𝑦
), 

(1.3) 

in which 𝜂 = 𝑘 (
𝑑𝑢

𝑑𝑦
)
𝑛−1

 represents the apparent viscosity. When 𝑛 < 1, Eq. (1.3) represents 

shear-thinning (pseudoplastic) fluids while Eq. (1.3) indicates shear-thickening (dialtant) fluids 

for 𝑛 > 1.  

 

Fig. 1.1: Non-Newtonian fluid 

1.2.3 Compressible and incompressible flows 

Fluid flow is said to be compressible if fluid density changes with its pressure and Mach number 

is greater than 0.3. Gasses are generally treated as compressible fluids.   
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Whereas, a fluid flow is said to be incompressible if fluid density remains constant everywhere 

or Mach number is less than 0.3. Liquids are often considered as incompressible fluids. 

 

1.2.4 Steady and unsteady flows 

A flow in which pressure, velocity, temperature and other properties of the fluid are independent 

of time at any point in the flow field is called a steady flow. Mathematically speaking, 

𝜕𝑃

𝜕𝑡
= 0, (1.4) 

where 𝑃(𝑥, 𝑦, 𝑧) is any property like pressure, velocity, density etc. 

An unsteady flow is the one in which fluid properties change with the variation in time at any 

given point in the flow field. 

 

1.2.5 Laminar and turbulent flows 

A fluid flow is called laminar if the fluid particles move in parallel layers and this type of flow 

occurs typically with low Reynolds number.  

Turbulent flow is a type of fluid flow in which particles of fluid fluctuate randomly or mixing 

and this type of flow occurs typically with higher Reynolds number.  

 

1.2.6 Boundary layer 

Boundary layer refers to a thin layer of viscous fluid close to the boundary. As the fluid particles 

adhere to the wall of surface at rest, the velocity of fluid increases from zero at the surface to the 

free stream velocity 𝑈𝑒outside the boundary layer. Boundary layer is classified as either laminar 

or turbulent depending on the value of Reynolds number. 
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Fig. 1.2: Boundary layer thickness for fluid flow past a stationary plate. 

 

1.2.7 Chemical reaction 

Chemical reaction is a process of rearrangement of same or different elements to form a new 

element or substance. While they do so, they either absorb heat or release heat energy. Reactions 

occur when more than two molecules interact with each other and the molecules change.New 

molecules are formed by the change of bonds between atoms. 

 

1.2.8 Homogeneous-heterogeneous reactions 

When reactants and products are in the same phase the chemical reaction is defined as 

homogeneous reaction while, the chemical reaction in which reactants are in two or more phases 

are known as heterogeneous reaction. Reactions that take place on the surface of a catalyst are 

also heterogeneous.  

 

1.2.9 Deborah number 

The ratio offluid relaxation time 𝑡𝑐to the fluid characteristic time𝑡𝑝 is referred as Deborah 

number (De). Mathematically, 
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𝐷𝑒 =
𝑡𝑐
𝑡𝑝
. 

(1.5) 

At low Deborah number𝐷𝑒 << 1, the material displays fluid-like behavior while at higher 

Deborah number 𝐷𝑒 >> 1, the material demonstrates solid-like behavior. 

 

1.2.10 Schmidt number 

The ratio of momentum diffusivity (𝜈) and the mass diffusivity (𝐷) is referred as Schmidt 

number (𝑆𝑐). Mathematically, it is expressed as 

𝑆𝑐 =
𝜈

𝐷
. (1.6) 

Thus Schmidt number relates the thickness of hydrodynamic boundary layer with the 

concentration boundary layer thickness. 

 

1.3 Boundary layer Equation for rotating flow of Maxwell fluid 

The equations describing the incompressible flow of Maxwell fluid in rotating frame are as 

under: 

𝛁. 𝐕 = 0, (1.7) 

𝜌 [
𝑑𝐕

𝑑𝑡
+ 2𝛀 × 𝐕 + 𝛀× (𝛀 × 𝐫)] = −𝛁𝑝 + 𝛁. 𝐒, 

(1.8) 

where 𝐕 = (𝑢(𝑥, 𝑦, 𝑧), 𝑣(𝑥, 𝑦, 𝑧),𝑤(𝑥, 𝑦, 𝑧)) is the velocity vector, ρ the fluid density, 
𝑑

𝑑𝑡
 is the 

material derivative, 𝛀 = [0, 0, Ω]the angular velocity, 𝒓 is the radius vector, 𝐒 is the extra stress 

tensor respectively. 

In component form, Eq. (1.7) can be expressed as 
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𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
= 0. 

(1.9) 

For Maxwell fluid, the extra stress tensor obeys the following relationship: 

𝐒 + 𝜆1
𝐷𝐒

𝐷𝑡
= 𝜇𝐀𝟏, 

(1.10) 

where𝜆1 is the fluid relaxation time, 𝐷/𝐷𝑡 is the convected time derivative and 𝐀𝟏 is the first 

Rivlin-Erickson tensor defined as: 

𝐀𝟏 = (𝛁𝐕) + (𝛁𝐕)𝑡 = [

2 𝑢𝑥 𝑢𝑦 + 𝑣𝑥 𝑢𝑧 + 𝑤𝑥
𝑢𝑦 + 𝑣𝑥 2𝑣𝑦 𝑣𝑧 + 𝑤𝑦
𝑤𝑥 + 𝑢𝑧 𝑤𝑦 + 𝑣𝑧 2𝑤𝑧

]. (1.11) 

 

For any vector 𝐀, the upper-convected derivative 𝐷/𝐷𝑡  is defined as 

𝐷𝐀𝑖
𝐷𝑡

=
𝜕A𝑖
𝜕𝑡

+ V𝑗A𝑖,𝑗 − V𝑖,𝑗A𝑗 , 
(1.12) 

By taking𝐫 = (𝑥, 𝑦, 𝑧) and𝛀 = (0,0, Ω), centrifugal force term can be expressed as  

𝛀 × (𝛀 × 𝐫) = −𝛁(
Ω2𝑟2

2
). 

  (1.13) 

Using Eq. (1.13) in Eq. (1.8), one obtains 

𝜌 [
𝑑𝐕

𝑑𝑡
+ 2𝛀 × 𝐕] = −𝛁𝑝∗ +  𝛁. 𝐒, 

  (1.14) 

where𝑝∗ = 𝑝 − 𝜌
Ω2𝑟2

2
is the modified pressure. 

Now assigning the operator (1 + 𝜆1
𝐷

𝐷𝑡
) on both sides of Eq. (1.14), we have 

𝜌 (1 + 𝜆1
𝐷

𝐷𝑡
) [
𝑑𝐕

𝑑𝑡
+ 2𝛀 × 𝐕] = −(1 + 𝜆1

𝐷

𝐷𝑡
)𝛁𝑝∗ + (1 + 𝜆1

𝐷

𝐷𝑡
) (𝛁. 𝐒). 

  (1.15) 

Assuming that there is no modified pressure gradient we have 
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𝜌 (1 + 𝜆1
𝐷

𝐷𝑡
) [
𝑑𝐕

𝑑𝑡
+ 2𝛀 × 𝐕] = 𝛁. (1 + 𝜆1

𝐷

𝐷𝑡
) 𝐒. 

  (1.16) 

Making use of Eq. (1.10), Eq. (1.16) can be expressed as 

𝜌 [(1 + 𝜆1
𝐷

𝐷𝑡
) (
𝑑𝐕

𝑑𝑡
) + (1 + 𝜆1

𝐷

𝐷𝑡
) (2𝛀 × 𝐕)] = 𝜇(𝛁. 𝐀𝟏). 

  (1.17) 

Using definitions (1.11) and (1.12), the 𝑥 − and 𝑦 −  components of (1.17) can be obtained in the 

following forms: 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
− 2Ω𝑣 + 𝜆1

{
  
 

  
 𝑢2

𝜕2𝑢

𝜕𝑥2
+ 𝑣2

𝜕2𝑢

𝜕𝑦2
+𝑤2

𝜕2𝑢

𝜕𝑧2

+2𝑢𝑣
𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 2𝑣𝑤

𝜕2𝑢

𝜕𝑦𝜕𝑧
+ 2𝑢𝑤

𝜕2𝑢

𝜕𝑥𝜕𝑧

−2Ω(𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
) + 2Ω(𝑣

𝜕𝑢

𝜕𝑥
− 𝑢

𝜕𝑢

𝜕𝑦
)
}
  
 

  
 

= 𝜈
𝜕2𝑢

𝜕𝑧2
, (1.18) 

𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
+ 2Ω𝑢 + 𝜆1

{
  
 

  
 𝑢2

𝜕2𝑣

𝜕𝑥2
+ 𝑣2

𝜕2𝑣

𝜕𝑦2
+𝑤2

𝜕2𝑣

𝜕𝑧2

+2𝑢𝑣
𝜕2𝑣

𝜕𝑥𝜕𝑦
+ 2𝑣𝑤

𝜕2𝑣

𝜕𝑦𝜕𝑧
+ 2𝑢𝑤

𝜕2𝑣

𝜕𝑥𝜕𝑧

+2Ω(𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
) + 2Ω(𝑣

𝜕𝑣

𝜕𝑥
− 𝑢

𝜕𝑣

𝜕𝑦
)
}
  
 

  
 

= 𝜈
𝜕2𝑣

𝜕𝑧2
. (1.19) 

 

1.4 Equation of heat transfer 

The heat transfer phenomenon describes the transfer of thermal energy from hotter body to 

cooler body. The relevant equation describing the heat transfer effect in the presence of radiation 

is: 

𝜌𝑐𝑝
𝑑𝑇

𝑑𝑡
= 𝐾∇2𝑇 −

𝜕𝑞𝑟
𝜕𝑧
,  (1.20) 

where 𝜌 is the density, 𝑐𝑝 denotes the specific heat capacity, 𝑇 represents the local temperature 

and 𝑞𝑟 denotes the radiation heat flux given by Rosseland [44] as 
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𝑞𝑟 = −
4

3

𝑎𝑅
𝑘∗
𝜕𝑇4

𝜕𝑧
,  

 

in which𝑎𝑅 represents the Stefan Boltzmann constant and 𝑘∗ stands for mean absorption 

coefficient. 

Applying boundary layer assumptions, Eq. (1.20) yields: 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
+ 𝑤

𝜕𝑇

𝜕𝑧
= 𝛼

𝜕2𝑇

𝜕𝑧2
−

1

(𝜌𝑐𝑝)

𝜕𝑞𝑟
𝜕𝑧
, (1.21) 

 

1.5 Equation of mass transfer 

The relevant equations describing the diffusion process under homogeneous-heterogeneous 

reaction are [34] 

𝐕. 𝛁𝑎 = 𝛁. DA𝛁𝑎 − 𝑘𝑐𝑎𝑏
2,  (1.22) 

𝐕. 𝛁𝑏 = 𝛁.DB𝛁𝑏 + 𝑘𝑐𝑎𝑏
2,  (1.23) 

where 𝐷𝐴and 𝐷𝐵stand for diffusion coefficientsfor reactants 𝐴 and 𝐵respectively and the last 

terms of (1.22) and (1.23) indicate the consumption rate of chemical specie 𝐴 and product rate of 

chemical species 𝐵 respectively. 

Employing boundary layer assumptions, (1.22) and (1.23) can be simplified to yield the 

following: 

𝑢
𝜕𝑎

𝜕𝑥
+ 𝑣

𝜕𝑎

𝜕𝑦
+ 𝑤

𝜕𝑎

𝜕𝑧
= 𝐷𝐴

𝜕2𝑎

𝜕𝑧2
− 𝑘𝑐𝑎𝑏

2, 
(1.24) 

𝑢
𝜕𝑏

𝜕𝑥
+ 𝑣

𝜕𝑏

𝜕𝑦
+ 𝑤

𝜕𝑏

𝜕𝑧
= 𝐷𝐵

𝜕2𝑏

𝜕𝑧2
+ 𝑘𝑐𝑎𝑏

2. 
(1.25) 
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Chapter 2 

 

Rotating flow of Maxwell fluid over an 

exponentially stretching surface with non-linear 

radiative heat transfer 

 

This chapter includes a detailed review of a recent article by Mustafa et al. [33] which deals with 

the rotating flow of viscoelastic fluid over an exponentially stretching surface. Effect of non-

linear radiative heat flux on thermal boundary layer is considered. A set of transformations are 

applied to non-dimensionalize the resulting boundary layer equations. Shooting approach, based 

on fifth-order Runge-kutta integration, is implemented to present numerical computations. We 

observe that rotation and viscoelasticity decrease the hydrodynamic boundary layer thickness. 

For sufficiently large value of𝜃𝑤, temperature function has an interesting S shaped profile. Heat 

transfer rate decreases for increasing values of rotation parameterΩ. 

 

2.1 Problem formulation  

Consider a steady flow of an incompressible Maxwell fluid over a surface which is stretched 

exponentially in the x-directionwith the velocity𝑢𝑤 = 𝑢0 exp  (𝑥/𝐿), where 𝑢0represents 

reference velocity and 𝐿 denotes characteristics length. The fluid occupies semi-infinite 

domain 𝑧 ≥ 0. Fluid rotatesaround z-axiswith constant angular velocityΩ̅. The function 𝑇𝑤(𝑥) =

𝑇∞ + 𝑇0exp (Ax/2L)prescribes the wall temperature in which 𝑇0 and 𝑇∞ are reference and 

ambient temperatures respectively. The conservation relations of mass, momentum and energy 

can be cast into the following form (see Mustafa et al. [33] for details): 
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𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
= 0, (2.1) 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
− 2Ω̅𝑣 + 𝜆1

{
  
 

  
 𝑢2

𝜕2𝑢

𝜕𝑥2
+ 𝑣2

𝜕2𝑢

𝜕𝑦2
+𝑤2

𝜕2𝑢

𝜕𝑧2

+2𝑢𝑣
𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 2𝑣𝑤

𝜕2𝑢

𝜕𝑦𝜕𝑧
+ 2𝑢𝑤

𝜕2𝑢

𝜕𝑥𝜕𝑧

−2Ω̅ (𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
) + 2Ω̅ (𝑣

𝜕𝑢

𝜕𝑥
− 𝑢

𝜕𝑢

𝜕𝑦
)
}
  
 

  
 

= 𝜈
𝜕2𝑢

𝜕𝑧2
, (2.2) 

𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
+ 2Ω̅𝑢 + 𝜆1

{
  
 

  
 𝑢2

𝜕2𝑣

𝜕𝑥2
+ 𝑣2

𝜕2𝑣

𝜕𝑦2
+𝑤2

𝜕2𝑣

𝜕𝑧2

+2𝑢𝑣
𝜕2𝑣

𝜕𝑥𝜕𝑦
+ 2𝑣𝑤

𝜕2𝑣

𝜕𝑦𝜕𝑧
+ 2𝑢𝑤

𝜕2𝑣

𝜕𝑥𝜕𝑧

+2Ω̅ (𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
) + 2Ω̅ (𝑣

𝜕𝑣

𝜕𝑥
− 𝑢

𝜕𝑣

𝜕𝑦
)
}
  
 

  
 

= 𝜈
𝜕2𝑣

𝜕𝑧2
, (2.3) 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
+ 𝑤

𝜕𝑇

𝜕𝑧
= 𝛼

𝜕2𝑇

𝜕𝑧2
−

1

(𝜌𝑐𝑝)

𝜕𝑞𝑟
𝜕𝑧
, (2.4) 

where 𝑢, 𝑣 and 𝑤denote the velocity components along the 𝑥, 𝑦 and 𝑧 − directions 

respectively,𝜆1 is the fluid relaxation time, 𝜈the kinematic viscosity, 𝜌is the fluid density,𝑐𝑝 the 

specific heat capacity, 𝑇 the local temperature, 𝛼 the thermal diffusivity and 𝑞𝑟denotes the 

radiation heat flux given by Rosseland [44] as 

𝑞𝑟 = −
4

3

𝑎𝑅
𝑘∗
𝜕𝑇4

𝜕𝑧
,  

 

in which𝑎𝑅 represents the Stefan Boltzmann constant and 𝑘∗ stands for mean absorption 

coefficient. The prescribed conditions are: 

𝑢 = 𝑢𝑤(𝑥) = 𝑢0 𝑒𝑥𝑝 (
𝑥

𝐿
) ,   𝑣 = 0,   𝑤 = 0, 𝑇 = 𝑇𝑤(𝑥) = 𝑇0 𝑒𝑥𝑝 (

𝐴𝑥

2𝐿
)+𝑇∞    𝑎𝑡  𝑧 = 0,     

 

𝑢 → 0, 𝑣 → 0, 𝑇 → 𝑇∞       𝑎𝑠     𝑧 → ∞. (2.5) 

Consider the following set of transformations [9]  

𝜂 = 𝑧√
𝑢0
2𝜈𝐿

𝑒𝑥𝑝 (
𝑥

2𝐿
) ,      𝑢 = 𝑢0𝑒𝑥𝑝 (

𝑥

𝐿
)𝑓′(𝜂),     𝑣 = 𝑢0𝑒𝑥𝑝 (

𝑥

𝐿
)𝑔(𝜂), 
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𝑤 = −√
𝑣𝑢0
2𝐿

𝑒𝑥𝑝 (
𝑥

2𝐿
) [𝑓 + 𝜂𝑓′],         𝜃(𝜂) =

𝑇 − 𝑇∞
𝑇𝑤 − 𝑇∞

. (2.6) 

Eq. (2.1) is satisfied identically whereas Eqs. (2.2) - (2.5) change into the following form 

𝑓‴ − 2𝑓′
2
+ 𝑓𝑓″ −

𝛾

2
(4𝑓′

3
− 𝜂𝑓′2𝑓″ + 𝑓2𝑓‴ − 6𝑓𝑓′𝑓″) + 

Ω[4𝑔 − 2𝛾(𝑔′𝑓 + 𝜂𝑓″𝑔)] = 0, 

(2.7) 

𝑔″ − 2𝑓′𝑔 + 𝑓𝑔′ −
𝛾

2
(4𝑓′2𝑔 − 𝜂𝑓′2𝑔′ + 𝑓2𝑔″ − 6𝑓𝑓′𝑔′ + 4Ω[−𝑓′

+ 𝛾 (−𝑓′2 − 𝑔2 − 
𝜂

2
𝑔𝑔′ +

1

2
𝑓𝑓″) = 0, 

(2.8) 

1

𝑃𝑟
[(1 + 𝑅𝑑(1 + (𝜃𝑤 − 1)𝜃)

3)𝜃′]′ + 𝑓𝜃′ − 𝐴𝑓′𝜃 = 0, 
(2.9) 

 

𝑓(0) = 0,      𝑔(0) = 0,  𝑓′(0) = 1, 𝜃(0) = 1,   

𝑓′(+∞) → 0,      𝑔(+∞) → 0,       𝜃(+∞) → 0  (2.10) 

whereΩ = 𝐿Ω̅/𝑢𝑤 is the local rotation parameter,  𝛾 = 𝜆1𝑢𝑤/𝐿 denotes thelocal Deborah 

number, 𝑃𝑟 = 𝜈/𝛼  is the Prandtl number, 𝜃𝑤 = 𝑇𝑤/𝑇∞ is the temperature ratio parameter 

and 𝑅𝑑 = 16𝑎𝑅𝑇∞
3/3𝑘∗𝑘 is the radiation parameter. 

𝑁𝑢𝑥 =
𝑥𝑞𝑤

𝑘(𝑇𝑤 − 𝑇∞)
 , (2.11) 

where𝑞𝑤 = −𝑘 (
𝜕𝑇

𝜕𝑧
)
𝑧=0

 is a wall heat flux. Through transformations (2.6), Eq. (2.11) can be 

expressed as below: 

𝐿

𝑥
√
2

𝑅𝑒𝑥
𝑁𝑢𝑥 = −(1 + 𝑅𝑑𝜃𝑤

3)𝜃′(0),  (2.12) 

where𝑅𝑒𝑥 = 𝑢𝑤𝐿/𝜈  represents the local Reynold’s number. 
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2.2 Numerical technique 

The numerical solution of differential Eqs. (2.7) - (2.9) along with the boundary condition (2.10) 

is obtainedvia shooting approach. Converting Eqs. (2.7) – (2.9) into a system of first-order 

equations by the following substitutions:   

𝑦1 = 𝑓, 𝑦2 = 𝑓′, 𝑦3 = 𝑓
′′, 𝑦4 = 𝑔, 𝑦5 = 𝑔′, 𝑦6 = 𝜃, 𝑦7 = 𝜃′, 

we get the following 

 𝑦1′                                                                   𝑦2  

   𝑦2
′𝑦3  

   𝑦3
′
2𝑦2

2 − 𝑦1𝑦3 − Ω[4𝑦4 − 2𝛾(𝑦1𝑦5 + 𝜂𝑦3𝑦4)] + 0.5𝛾(4𝑦2
3 − 𝜂𝑦2

2𝑦3 − 6𝑦1𝑦2𝑦3)

1 − (0.5)𝛾𝑦1
2  

 

   𝑦4
′      =                                                            𝑦5  

   𝑦5
′

2𝑦2𝑦4 − 𝑦1𝑦5 − 4Ω[−𝑦2 + 𝛾(−𝑦2
2 − 𝑦4

2 − (0.5)𝜂𝑦4𝑦5 + (0.5)𝑦1𝑦3] +

(0.5)𝛾(4𝑦2
2𝑦4 − 𝜂𝑦2

2𝑦5 − 6𝑦1𝑦2𝑦5)

1 − (0.5)𝛾𝑦1
2                    , 

(2.13) 

   𝑦6
′𝑦7  

    𝑦7
′
−3𝑅𝑑(1 + (𝜃𝑤 − 1)𝑦6)

2(𝜃𝑤 − 1)𝑦7
2 + Pr (𝐴𝑦2𝑦6 − 𝑦1𝑦7)

1 + 𝑅𝑑(1 + (𝜃𝑤 − 1)𝑦6)
3

 
 

 

and the initial conditions are: 

𝑦1(0)                0  

𝑦2(0)                1   

 𝑦3(0)                 𝑡    

      𝑦4(0)     =       0      , (2.14) 

 𝑦5(0)                 𝑠   

𝑦6(0)                1  

𝑦7(0)                𝑣   
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First-order equations have been integrated viafifth-order Runge-Kutta approach. Newton’s 

method is used to estimate the values of unknown slopes with the appropriate guesses by taking 

𝑓′′(0) = 𝑡,    𝑔′(0) = 𝑠,    𝜃′(0) = 𝑣until the boundary conditions at infinity are satisfied. All 

computations have been done in MATLAB. 

 

2.3 Results and discussion 

 
 

Fig. 2.1: Profile of𝑓′ for different values of 𝛾. 
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Fig. 2.2:Profile of 𝑔 for different values of 𝛾. 

 

 
 

Fig. 2.3: Profile of𝑓′ for different values of Ω. 
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Fig. 2.4: Profile of𝑔 for different values of Ω. 

 

 
 

Fig. 2.5: Profile of 𝜃for different values of 𝑅𝑑. 
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Fig. 2.6: Profile of 𝜃for different values of𝜃𝑤. 

 

 
 

Fig. 2.7: Profile of𝜃 for different values of 𝐴. 
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Fig. 2.8: Profile of 𝜃for different values of Ω. 
 

 
 

Fig. 2.9:Profile of 𝜃for different values of Pr. 
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Fig. 2.10: Profile of −(1 + 𝑅𝑑𝜃𝑤
3 )𝜃′(0) for different values of Ω. 

 

 
 

Fig. 2.11: Profile of −(1 + 𝑅𝑑𝜃𝑤
3 )𝜃′(0) fordifferent values of 𝐴. 
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Table 2.1: Comparison of computational results of−𝑓′′(0) and −𝑔′(0) with those of Javed et al. 

[23] at 𝛾 = 0. 

Ω −𝑓′′(0) −𝑔′(0) 
 Javed et al.[23]            Present results                     Javed et al. [23]        Present results 

0.2 1.3474169                   1.3474204 0.37015223                0.3701525 

0.5 1.5194131                   1.5194195 0.76251409                0.7625143 

2 2.2827966                   2.2828127 1.8485044                  1.8485032 

5 3.3444338                   3.3444606 3.0609192                  3.0609164 

10 4.6017220                   4.6017610 4.3990640                  4.3990580 

50 10.058172                   10.058260 9.9668099                  9.9667990 

100 14.183223                   14.183358 14.118628                  14.118612 

 

 

Table 2.2: Numerical values of local Nusselt number −(1 + 𝑅𝑑𝜃∞
3 )𝜃′(0) for various values 

of 𝑃𝑟, 𝑅𝑑, Ω,  𝜃𝑤 , 𝐴 and 𝛾. 

𝑃𝑟 𝑅𝑑 Ω 𝜃𝑤 𝐴 𝛾 −(1 + 𝑅𝑑𝜃𝑤
3)𝜃′(0) 

0.5 1 0.5 1.5 0.5 1.5  0.1824399 

1       0.3683380 

1.5       0.5597549 

3       1.1557117 

 0      0.5585281 

 1      0.5597549 

 2      0.5599698 

 3      0.5610885 

  0     1.4881180 

  1.5     0.2510547 

  3     0.1914879 

  4.5     0.1678869 

   1.5    0.5599698 

   2.5    1.1227470 

   3.5    3.3188390 
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0.6 

1.2 
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 -0.3619706 

 0.0122859 

 0.3792183 

 0.7389305 

 1.0915300 

 1.7411790 

 1.3768130 

 1.0589910 

 0.7372889 
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The validity of present numerical scheme is established by comparing the numerical results 

of−𝑓′′(0) and −𝑔′(0) with those of [23]. The results are found in complete agreement for full 

range of rotation-strength parameter 𝜆 (see table 2.1).Table 2.2 gives the computational results of 

heat transfer coefficient −(1 + 𝑅𝑑𝜃∞
3 )𝜃′(0) for various parameter values. It is apparent that heat 

transfer improves as the value of 𝑃𝑟, 𝑅𝑑, 𝜃𝑤and 𝐴 is increased. On the other hand, magnitude of 

local Nusselt number is inversely proportional to both fluid relaxation time and rotation rateΩ. 

Fig 2.1 demonstrates the influence of local Deborah number on the velocity profile 𝑓′. Deborah 

number is the ratio of relaxation time to the characteristic time.For larger value of 𝛾, the 

relaxation time is large as compared to the observation time scale and materials response is solid 

like. That’s why fluid flow in 𝑥 − direction is resisted by increasing Deborah number. 

Consequently, velocity profile 𝑓′ decreases and boundary layer becomes thinner when𝛾 is 

increased. 

Fig. 2.2 demonstrates the change in velocity profile 𝑔(𝜂) as local Deborah number 𝛾 is 

incresaed. The value of 𝑔(𝜂) is negative illustrating that fluid flow towards negative 

𝑦 −direction due to counterclockwise rotation. 

Figures 2.3 and 2.4 portray the behavior of rotation parameter Ω on the velocity profile 𝑓′  and 𝑔 

respectively.Fig. 2.3 illustrates that𝑓′ is negative in the vicinity of the surface whenΩ = 10. For 

smaller values ofΩ the decrease in 𝑓′ with 𝜂 is monotonic. When Ω is large, there is some 

oscillation in the velocity profiles which is attributed to the rotating frame. In fact, the decay in 

𝑓′ with 𝜂 is oscillatory when larger Ω is chosen. Boundary layer thickness is also inversely 

proportional toΩ. 

Fig. 2.5 shows the profile of temperature 𝜃 for different values of radiation parameter𝑅𝑑. It can 

be seen that temperature profile enhances by the increase of radiation parameter𝑅𝑑. 

Fig. 2.6 is prepared to examine the influence of 𝜃𝑤on temperature profile 𝜃. It should be noted 

that 𝜃′(0) approaches zero as 𝜃𝑤 is increased and this is signaled by the S-shaped curves of 

temperature 𝜃(η) when lager values of 𝜃𝑤 are considered.  

In Fig. 2.7, we present the change in temperature 𝜃(𝜂) with the variation in temperature 

exponent parameter 𝐴. Temperature 𝜃 decreases when parameter 𝐴 is increased. It can be seen 
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that temperature 𝜃 rises for the first value of parameter 𝐴 and then velocity profile moves 

towards the stretching sheet when 𝐴 = −1. In literature, this effect is known as “Sparrow-Gregg 

type Hill (SGH)”, phenomenon. 

Fig. 2.8 analyzes the behavior of rotation-strength parameterΩ on temperature profile. As 

rotational parameter is incremented then the temperature rises and its profile become thicker.   

Fig. 2.9 shows the change in 𝜃(𝜂) whenPrandtl number 𝑃𝑟 is varied.Prandtl number compares 

the thickness of thermal and hydrodynamic boundary layers. Since 𝑃𝑟 has inverse relationship 

with thermal diffusivity. Thus a larger Prandtl number implies lower thermal diffusivity and 

shorter penetration depth. However, the slope of 𝜃(𝜂) near the stretching sheet is larger for 

higher Prandtl number.  

Fig. 2.10 exhibits the influence of temperature ratio parameter𝜃𝑤 and rotation parameter𝛺 on the 

heat transfer coefficient −(1 + 𝑅𝑑𝜃𝑤
3)𝜃′(0). Local Nusselt number increases nonlinearly when 

𝜃𝑤 is incremented. When 𝜃𝑤 gradually enlarges, it results in growth in wall temperature and 

consequently, growth in heat transfer rate. Heat transfer rate also improves when fluid rotates at 

a higher rate. 

Fig. 2.11 presents the impact of 𝐴 and 𝜃𝑤 on the heat transfer coefficient −(1 + 𝑅𝑑𝜃𝑤
3)𝜃′(0). 

Magnitude of −(1 + 𝑅𝑑𝜃𝑤
3)𝜃′(0)rises when values of 𝐴 are incremented. This shows that 

parameter 𝐴 enhance the heat transfer rate from the surface. However, some negative values of 𝐴 

corresponds the negative Nusselt number. 

 

 

 

 

Chapter 3 
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Effects of homogeneous-heterogeneous reactions 

on rotating flow of Maxwell fluid due to linearly 

stretching sheet 

  

This study provides numerical treatment for rotating flow of Maxwell fluid which occurs due to 

deformation of plane surface. Mass transfer analysis is carried out in the existence of 

homogeneous-heterogeneous reactions. By means of usual transformation, the governing 

equations are changed into global similarity equations. Velocity and concentration profiles are 

computed for broad range of viscoelastic fluid parameter. The solutions contain a rotation 

strength parameter 𝜆 that has considerable effect on the flow field. For sufficiently large value 

of 𝜆, the velocity fields are oscillatory decaying function of the non-dimensional vertical 

distance. Solute concentration at the surface is found to decrease upon increasing strengths of 

chemical reactions. A comparative study of present computations with those of already published 

ones appears convincing. 

 

3.1 Introduction 

In this chapter, consider a laminar flow of binary viscoelastic fluid obeying Maxwell model due 

to stretching of a plane elastic surface. We select a Cartesian coordinate frame in which𝑧 − axis 

is aligned vertically upward and surface occupies the 𝑥𝑦 − plane. Maxwell fluid filling half 

space 𝑧 > 0 rotates uniformly about 𝑧 − axis with rateΩ. Further we consider the presence of 

chemically reacting species in the flow field. The existence of coriolis force makes the problem 

three-dimensional. We take into account the homogeneous-heterogeneous reactions model 

proposed byChaudhary and Merkin [34]: 



25 
 

𝐴 + 2𝐵 → 3𝐵   𝑟𝑎𝑡𝑒 = 𝑘𝑐𝑎𝑏
2, (3.1) 

while we have a catalyst surface with simple, isothermal and first-order reaction given by 

𝐴 → 𝐵   𝑟𝑎𝑡𝑒 =  𝑘𝑠𝑎, (3.2) 

where𝑎 and 𝑏 denote the concentration of species 𝐴 and 𝐵 while 𝑘𝑐 and 𝑘𝑠 are constants. The 

scheme (3.1) ensures that reaction rate at the outer edge of boundary layer is zero. 

In usual notations, equations describing the flow of Maxwell fluid with chemically reactive 

species are: 

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
= 0, (3.3) 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
− 2Ω𝑣 + 𝜆1

{
  
 

  
 𝑢2

𝜕2𝑢

𝜕𝑥2
+ 𝑣2

𝜕2𝑢

𝜕𝑦2
+𝑤2

𝜕2𝑢

𝜕𝑧2

+2𝑢𝑣
𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 2𝑣𝑤

𝜕2𝑢

𝜕𝑦𝜕𝑧
+ 2𝑢𝑤

𝜕2𝑢

𝜕𝑥𝜕𝑧

−2Ω(𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
) + 2Ω(𝑣

𝜕𝑢

𝜕𝑥
− 𝑢

𝜕𝑢

𝜕𝑦
)
}
  
 

  
 

= 𝜈
𝜕2𝑢

𝜕𝑧2
, (3.4) 

𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
+ 2Ω𝑢 + 𝜆1

{
  
 

  
 𝑢2

𝜕2𝑣

𝜕𝑥2
+ 𝑣2

𝜕2𝑣

𝜕𝑦2
+𝑤2

𝜕2𝑣

𝜕𝑧2

+2𝑢𝑣
𝜕2𝑣

𝜕𝑥𝜕𝑦
+ 2𝑣𝑤

𝜕2𝑣

𝜕𝑦𝜕𝑧
+ 2𝑢𝑤

𝜕2𝑣

𝜕𝑥𝜕𝑧

+2Ω(𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
) + 2Ω(𝑣

𝜕𝑣

𝜕𝑥
− 𝑢

𝜕𝑣

𝜕𝑦
)
}
  
 

  
 

= 𝜈
𝜕2𝑣

𝜕𝑧2
, (3.5) 

𝑢
𝜕𝑎

𝜕𝑥
+ 𝑣

𝜕𝑎

𝜕𝑦
+ 𝑤

𝜕𝑎

𝜕𝑧
= 𝐷𝐴

𝜕2𝑎

𝜕𝑧2
− 𝑘𝑐𝑎𝑏

2, (3.6) 

𝑢
𝜕𝑏

𝜕𝑥
+ 𝑣

𝜕𝑏

𝜕𝑦
+ 𝑤

𝜕𝑏

𝜕𝑧
= 𝐷𝐵

𝜕2𝑏

𝜕𝑧2
+ 𝑘𝑐𝑎𝑏

2. (3.7) 

The said problem is subjected to following conditions:  

𝑢 = 𝑐𝑥, 𝑣 = 0, 𝑤 = 0, 𝐷𝐴
𝜕𝑎

𝜕𝑧
= 𝑘𝑠𝑎, 𝐷𝐵

𝜕𝑏

𝜕𝑧
= −𝑘𝑠𝑎, 𝑎𝑡 𝑧 = 0, (3.8) 

𝑢 → 0, 𝑣 → 0, 𝑎 → 𝑎0, 𝑏 → 0, 𝑎𝑠 𝑧 → ∞. (3.9) 
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Here (𝑢, 𝑣, 𝑤) denote thevelocitycomponents in the directions of increasing(𝑥, 𝑦, 𝑧) respectively, 

𝜆1 is the fluid relaxation time, 𝐷𝐴and 𝐷𝐵stand for diffusion coefficientsfor reactants 𝐴 and 

𝐵respectively, 𝜈stands for kinematic viscosity and 𝑐 > 0 denotes the stretch rate. The last term 

in eq. (3.6) and (3.7) indicate the consumption rate of chemical specie 𝐴 and product rate of 

chemical specie 𝐵 respectively. 

Introducing a similarity variable𝜂 =  √
𝑐

𝜈
𝑧, we propose the following quantities: 

𝑢 = 𝑐𝑥𝑓′(𝜂),    𝑣 = 𝑐𝑥𝑔(𝜂),    𝑤 = −√𝑐𝑣𝑓(𝜂),     𝑎 = 𝑎0𝜙(𝜂),    𝑏 = 𝑎0ℎ(𝜂). 

  

(3.10) 

The variables (3.10) satisfy the continuity equation (3.1) whereas Eqs. (3.4) – (3.9) transform 

into the following differential equations: 

𝑓′′′ + 𝑓𝑓′′ − 𝑓′2 + 2𝜆(𝑔 − 𝛽𝑓𝑔′) + 𝛽[2𝑓𝑓′𝑓′′ − 𝑓2𝑓′′′] = 0, (3.11) 

𝑔′′ + 𝑓𝑔′ − 𝑓′𝑔 − 2𝜆[𝑓′ + 𝛽(𝑓′2 − 𝑓𝑓′′ + 𝑔2)] + 𝛽[2𝑓𝑓′𝑔′ − 𝑓2𝑔′′] = 0, (3.12) 

1

𝑆𝑐
𝜙′′ + 𝑓𝜙′ − 𝐾𝜙ℎ2 = 0, (3.13) 

𝛿

𝑆𝑐
ℎ′′ + 𝑓ℎ′ + 𝐾𝜙ℎ2 = 0, (3.14) 

at 𝜂 = 0:  𝑓 = 𝑔 = 0, 𝑓′ = 1, 𝜙′ = 𝐾𝑠 𝜙, 𝛿ℎ′ = −𝐾𝑠𝜙, (3.15) 

as 𝜂 → ∞: 𝑓′ → 0, 𝑔 → 0,    𝜙 → 1, ℎ → 0. (3.16) 

Here 𝜆 = Ω/𝑐 denotes the rotation-strength parameter, 𝛽 is the Deborah number, 𝑆𝑐 the Schmidt 

number,𝛿 is the diffusion coefficient,𝐾 denotes the homogeneous reactionstrength parameter, 

and 𝐾𝑠 is the (surface) heterogeneous reactionstrength parameter. 

𝛽 = 𝜆1𝑐,      𝑆𝑐 =
𝜈

𝐷𝐴
,      𝐾 =

𝑘𝑐𝑎0
2

𝑐
,        𝛿 =

𝐷𝐵
𝐷𝐴
,         𝐾𝑠 =

𝑘𝑠
𝐷𝐴
√
𝜈

𝑐
. (3.17) 

In many practical situations, the diffusion coefficients of species 𝑎 and 𝑏 are assumed to be of 

comparable size. This allows us to assume further that the coefficients 𝐷𝐴 and 𝐷𝐵 are equal, 

meaning that 𝛿 ≈ 1. In view of conditions (3.15) and (3.16), we can write 

𝜙(𝜂) + ℎ(𝜂) = 1, (3.18) 
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whichreduces Eq. (3.13) and (3.14) into following equation: 

1

𝑆𝑐
𝜙′′ + 𝑓𝜙′ − 𝐾𝜙(1 − 𝜙)2 = 0, (3.19) 

subject to the conditions: 

𝜙′(0) = 𝐾𝑠𝜙(0) and 𝜙(∞) → 1. (3.20) 

 

3.2 Numerical technique 

The numerical solution of differential Eq. (3.11), (3.12) and (3.19) along with the boundary 

condition have been obtained via shooting approach. Converting Eqs. (3.11) – (3.14) into a 

system of first-order equations by the following substitutions:   

𝑦1 = 𝑓,  𝑦2 = 𝑓′,  𝑦3 = 𝑓′′,  𝑦4 = 𝑔,  𝑦5 = 𝑔
′,  𝑦6 = 𝜙,  𝑦7 = 𝜙

′. 

We get the following 

   𝑦1
′                                                             𝑦2 

   𝑦2
′                                                       𝑦3 

   𝑦3
′               (𝑦2

2 − 𝑦1𝑦3 − 2𝜆(𝑦4 − 𝛽𝑦1𝑦5 − 2𝛽𝑦1𝑦2𝑦3))/(1 − 𝛽𝑦1
2) 

   𝑦4
′     =                                             𝑦5                                                                                                ,      

   𝑦5
′              (𝑦2𝑦4 − 𝑦1𝑦5 + 2𝜆(𝑦2 + 𝛽(𝑦2

2 − 𝑦1𝑦3 + 𝑦4
2)) − 2𝛽𝑦1𝑦2𝑦5)/(1 − 𝛽𝑦1

2) 

   𝑦6
′                                                        𝑦7 

   𝑦7
′                            𝑆𝑐(𝐾𝜙(1 − 𝜙)2 − 𝑦1𝑦7) 

 

(3.21) 

 

and the initial conditions are: 
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𝑦1(0)                        0 

𝑦2(0)                        1 

 𝑦3(0)                        𝑡 

                                           𝑦4(0)       =             0, 

𝑦5(0)                        𝑠 

𝑦6(0)                                𝑢3 

𝑦7(0)                      𝐾𝑠𝑣 

 

(3.22) 

First-order equations have been integrated via fifth-order Runge-Kutta approach. Newton’s 

method is used to estimate the values of unknown slopes with the appropriate guesses by taking 

𝑓′(0) = 𝑡,    𝑔(0) = 𝑠,    𝜃(0) = 𝑣until the boundary conditions at infinity are satisfied. All 

computations have been done in the MATLAB. 

 

3.3 Results and disscussion 

 

Fig. 3.1: Profile of velocity field 𝑓′ for various values of 𝜆. 
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Fig. 3.2: Profile of velocity field 𝑔 for variousvalues of 𝜆. 

 

 

Fig. 3.3: Profile of velocity field 𝑓′ for variousvalues of 𝛽. 
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Fig. 3.4: Profile of velocity field 𝑔 for various values of 𝛽. 

 

 

Fig. 3.5: Curves of concentration𝜙 for various values of 𝜆. 
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Fig. 3.6: Curves of concentration𝜙 for various values of 𝛽. 

 

 

Fig. 3.7: Curves of concentration𝜙 for various values of 𝑆𝑐. 
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Fig. 3.8: Curves of concentration𝜙 for various values of 𝐾. 

 

 

Fig. 3.9: Curves of concentration𝜙 for various values of 𝐾𝑆. 

 

 



33 
 

 

Fig. 3.10: Profiles of surface concentration𝜙 fordifferent values of 𝐾𝑠. 
 

 

Fig. 3.11: Profiles of surface concentration𝜙 against the Schmidt number 𝑆𝑐. 

 

Table 3.1: Comparison of computational results of 𝑓′′(0) with those of Nazar et al. [21] and 

Zaimi et al. [24] for different values of 𝜆. 
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𝜆  𝑓′′(0)   𝑔′(0)  

 Nazar et al. 

[21]  

Zaimi et al. 

[24] 

Present  Nazar et al. 

[21]  

Zaimi et al. 

[24] 

Present 

0 

0.2 

0.4 

0.5 

0.6 

0.8 

1 

1.2 

1.4 

1.6 

1.8 

2 

3 

4 

5 

 -1.0000 

    - 

    - 

-1.1384 

    - 

    -  

-1.3250 

    - 

    - 

    - 

    - 

-1.6523 

    - 

    - 

    - 

-1.0000 

-1.0331 

-1.1009 

-1.1384 

-1.1764 

-1.2518 

-1.3250 

-1.3956 

-1.4634 

-1.5287 

-1.5916 

-1.6523 

-1.9280 

-2.1716 

-2.3901 

-1.000000 

-1.033105 

-1.100905 

-1.138381 

-1.176365 

-1.251776 

-1.325029 

-1.395596 

-1.463452 

-1.528736 

-1.591637 

-1.652352 

-1.928932 

-2.171594 

-2.390142 

0.0000 

   - 

   - 

-0.5128 

   - 

   - 

-0.8371 

   - 

   - 

   - 

   - 

-1.2873 

   - 

   - 

   - 

 0.0000 

-0.2385 

-0.4310 

-0.5128 

-0.5874 

-0.7204 

-0.8371 

-0.9420 

-1.0379 

-1.1265 

-1.2093 

-1.2873 

-1.6248 

-1.9054 

-2.1506 

 0.000000 

-0.238456 

-0.430962 

-0.512760 

-0.587418 

-0.720361 

-0.837098 

-0.941998 

-1.037841 

-1.126507 

-1.209321 

-1.287258 

-1.624735 

-1.905391 

-2.150523 

 

Table 3.2: Numerical values of 𝜙′(0) for different values of  𝜆, 𝛽, 𝑆𝑐, 𝐾, 𝐾𝑠. 

𝜆 𝛽 𝑆𝑐 𝐾 𝐾𝑠 −𝜙′(0)  

     Bvp4c Shooting 

0.1 

0.2 

0.3 

0.4 

0.2 

 

 

 

0.2 

 

 

 

 

0.2 

 

 

 

0.2 

0.5 

 

 

 

0 

0.5 

1 

1.5 

0.5 

 

 

 

 

0.5 

 

 

 

0.5 

 

1 

 

 

 

1 

 

 

 

1 

2 

5 

7 

9 

1 

 

 

 

1 

 

 

 

0.5 

 

 

 

0.5 

 

 

 

0.5 

 

 

 

 

0.5 

1 

1.5 

2 

0.5 

0.5 

 

 

 

0.5 

 

 

 

0.5 

 

 

 

 

0.5 

 

 

 

1 

2 

5 

10 

0.227768 
0.218724 

0.203727 

0.179785 

0.240242 

0.218724 

0.187797 

0.122353 

0.218724 

0.297792 

0.368815 

0.388185 

0.400811 

0.218724 

0.075285 

0.012587 

0.019981 

0.275885 

0.323082 

0.365427 

0.383701 

0.227769 

0.218725 

0.203727 

0.179785 

0.240243 

0.218725 

0.187798 

0.122353 

0.218725 

0.297792 

0.368815 

0.388185 

0.400811 

0.218725 

0.075284 

0.012587 

0.019981 

0.275886 

0.323083 

0.365427 

0.383702 
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A model is constituted for homogeneous-heterogeneous reactions in the rotating flow of 

Maxwell fluid bounded by a linearly deforming surface. The arising similarity equations are 

tackled via shooting approach combined with RK-integration technique. The step size and 

tolerance of 10−3 and 10−6 are imposed in order to achieve accurate approximations. Table 3.1 

presents a comparative study of our simulations for 𝑓′′(0) and 𝑔′(0) with those of the existing 

articles in Newtonian limit (𝛽 = 0). The results match very well with those found byNazar et al. 

[21], Zaimi et al. [24] for full range of rotation-strength parameter 𝜆. It is apparent that wall 

velocity gradients 𝑓′′(0) and𝑔′(0), which are proportional to the drag coefficient, enhance for 

large rotation-strength parameter. Table 3.2 provides computations for wall concentration 

gradient for various parameter values. For a check, the results are also evaluated through a 

contemporary subroutine bvp4c of MATLAB 2010. Table 3.2 demonstrates that both approaches 

yield almost identical solutions for certain range of parameters. The magnitude of 𝜙′(0) 

decreases as parameter 𝜆 is incremented. It implies that fluid angular velocity contributes to a 

growth in wall slope of concentration. Moreover, we found a decreasing trend in 𝜙′(0) for 

increasing values of Deborah number 𝛽. Also, a considerable enhancement in  │𝜙′(0)│ is found 

where large Schmidth number is employed. 

Figs. 3.1 and 3.2 display the evolution of similarity profiles 𝑓′ and 𝑔 respecting 𝑥 −and 𝑦 − 

components of velocity respectively for various choices of rotation-strength parameter𝜆. An 

increase in 𝜆 can be realized by either increasing rotation rate while maintaining constant stretch 

rate or by decreasing the stretch rate by keeping rotation rate constant. For smaller values of𝜆, 

the change in 𝑓′  with increasing 𝜂 exponentially monotonic while it becomes non-monotonic 

when large 𝜆 is accounted. Indeed, both 𝑓′ and 𝑔 are oscillatory decaying functions of 𝜂 when 

large rotation rate is consider. Similar conclusion was drawn in previous works [24]. It is 

investing to observe that function  𝑔(𝜂) is negative which illustrates that counter-clockwise fluid 

rotation includes fluid flow only in the negative 𝑦 −direction. The reduction in 𝑓′ or 𝑔 with  𝜆 

also indicates that boundary layer thickness has inverse relationship with𝜆. 

For a specific rotation-strength parameter𝜆, the velocity curves 𝑓′ and 𝑔 are plotted for a variety 

of Deborah numbers in Figs. 3.3 and 3.4 respectively. With an increase in 𝛽, thecurves of 𝑓′ and 

𝑔 exponentially decay at shorter distance from the wall. This illustrates that momentum 

penetration depth reduces with increasing elastic effect. Physically largerDeborah number 
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indicates that recovery process is slower and fluid behavior resembles to that of elastic solid 

substance. Consequently, fluid flow in both 𝑥 −and 𝑦 −directions decelerates and boundary 

layer thins as 𝛽 increases. Similar behavior has also been observed by [31]. Furthermore, the 

parameter 𝛽 has mixed behavior on the function 𝑔(𝜂).  

Fig. 3.5 demonstrates the change in concentration 𝜙 as therotation-strength parameter𝜆 is varied. 

A general trend of 𝜙(𝜂) is such that it has a finite value at the wall and asymptotically reaches to 

1 as 𝜂 → ∞. We observe that 𝜙 decreases and concentration layer expands when fluid is 

subjected to larger rotation rate. 

Fig. 3.6 captures the variation in concentration profile 𝜙(𝜂) when theDeborah number 𝛽 is 

changed. For increasing values of 𝛽, solute concentration decreases while its profile becomes 

broader indicating a growth in concentration boundary layer thickness.   

Fig. 3.7 shows the change inconcentration profile 𝜙(𝜂) as theSchmidt number 𝑆𝑐 varies. An 

increasing trend in 𝜙 is depicted for increasing values of 𝑆𝑐. Howeverconcentration boundary 

layer shrinks upon increasing 𝑆𝑐. Physically, higher value of 𝑆𝑐(=
𝜈

𝐷
) implies smaller mass 

diffusion coefficient which give rise to shorterconcentration boundary layer.  

Fig. 3.8 exhibits the behavior of parameter 𝐾, representing homogeneous reaction strength, on 

concentration profile 𝜙(𝜂). Concentration 𝜙 decreases whileconcentration boundary layer 

becomes thickerhomogeneous reaction strengthens. 

Fig. 3.9 shows the development of concentration profiles for various values of heterogeneous 

(surface) reaction strength parameter 𝐾𝑠. With increasing strength of heterogeneous reaction, the 

concentration profile decreases in magnitude. It follows from the fact that an increase in either 𝐾 

or 𝐾𝑠 leads to the consumption of reactants in the flow field due to which 𝜙(𝜂) decreases.  

Fig. 3.10 shows the profiles of surface concentration 𝜙(0) against parameter 𝐾 for varying 

values of 𝐾𝑠. It is apparent that concentration at the surface decreases for increasing values of 𝐾𝑠. 

Interestingly, 𝜙(0) varies linearly with 𝐾 for all employed values of 𝐾𝑠. The variation in surface 

concentration 𝜙(0) with Schmidt number 𝑆𝑐 for different values of 𝐾𝑠 is shown in Fig. 3.11. 

With an increment in Schmidt number 𝑆𝑐, the surface concentration 𝜙(0) grows non-linearly 

and this growth increases in magnitude when bigger values of 𝐾𝑠 are accounted. 
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Chapter 4 

 

Concluding remarks 

In this thesis, heat and mass transfer analysis is performed for rotating flow of Maxwell fluid. 

Heat transfer process is investigated in the existence of non-linear radiation. Also a model of 

homogeneous-heterogeneous reactions is explored. A numerical approach is adopted to tackle 

the governing similarity equations. The major implications of this research are explained below:  

1. Velocity profiles decreases in the 𝑥 − and 𝑦 − direction by increasing the Deborah 

number 𝛾. 

2. Velocity components and local Nusselt number reduce when angular velocityΩ is 

increased. 

3. Boundary layer thickness of temperature 𝜃(η)leads to an enhancementwhen temperature 

ratio parameter 𝜃𝑤 is incremented. 

4. S-shaped curves of temperature 𝜃(η) is examined when lager values of 𝜃𝑤 are 

considered.  

5. When 𝐴 = −1,temperature 𝜃(𝜂) has Sparrow-Gregg type Hills (SGHs) which shows that 

velocity profile moves towards the stretching sheet. 

6. Slope of 𝜃(𝜂)and wall heat transfer rate near the stretching sheet is larger for higher 

Prandtl number 

7. Magnitude of heat transfer rate −(1 + 𝑅𝑑𝜃𝑤
3)𝜃′(0) rises when values of 𝐴 and 𝜃𝑤 are 

incremented. 

8. Rotation-strength parameter 𝜆 has a retarding influence on velocity profiles. 

Concentration boundary layer expands when larger angular velocity is considered. 

9. With increase Schmidt number, boundary layer becomes thinner and concentration 

distribution enhances in the boundary layer. 

10. Concentration profile decreases with increasing strengths of homogeneous-heterogeneous 

reactions. 
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11. Counter-clockwise rotation sets up fluid flow in the negative 𝑦 −direction which is 

apparent from the plots of 𝑔(𝜂)  against 𝜂. 

12. Surface concentration increases non-linearly with increasing Schmidt number 𝑆𝑐. 

13. Current computations match very well with those of the existing literature in limiting 

cases. 
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