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Abstract

In this research work, we study the wave propagation in elastic materials which are

initially-stressed. This work is based on the theory of non-linear elasticity and the

theory of invariants.

Using the theory of invariants, we derived the general constitutive equations

for a hyper-elastic material in the presence of initial stress. The constitutive laws

of the material is based on the strain-energy function which also depends on the

combined invariants of the right cauchy-Green deformation tensor and the initial

stress tensor. In three dimensional case for the compressible materials, there are ten

such invariants.

The problem of homogenous plane waves in an initially-stressed compressible

half-space is considered. The basic theory of the problem is to study the reflection

of plane waves from the boundary of half-space. Using the specific strain-energy

function, we deduce the reflection coefficients and then graphically examined the

behavior of one or two reflected waves for an incident P wave.
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Chapter 1

Introduction

The research carried out in this dissertation mainly includes study of wave propa-

gation in initially stressed elastic materials. In particular, the problem of reflection

of waves is considered in an initially stressed half-space. Linearized theory is used

for constitutive equations. We use the theory of infinitesimal deformations super-

imposed on the finite deformations to obtain the incremental equations for initially

stressed deformed hyper-elastic materials. The research is based on the realistic as-

sumption that a material can be internally stressed in its unloaded undeformed (or

reference) configuration. In railway tracks, for example, an initial stress is caused

by bending of metal because of thermal expansion and/or mechanical processing

like reshaping of the metals parts. Internal stresses are imposed on compounds such

as rocks due to processes likewise heating, cooling, burial and many past structural

deformed earth crust events, etc. In Earth crust, internal and all these types of

stresses remain stored inside the material after the compounds are independent of

boundary loads. In all above discussed cases, the material is considered to be ini-

tially stressed. We can use the term initial stress in its broadest sense irrespective

of the processes that cause this stress to develop. The term pre-stress replaces the

term initial stress when there is an associated pre-strain from an unstressed con-
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figuration due to an applied load. When an initial stress is present in the absence

of body forces and surface traction (applied loads) it is called residual stress, as in

the definition adopted by Hoger [1]. In the absence of loads we consider a residual

stress which maintains equilibrium in the body. Pre-stresses and residual stresses

are examples of initial stresses but they are different in nature.

In this research work, we consider an initially-stressed hyper-elastic material. For

such materials, we study the effect of initial stress on wave speed and also the prob-

lem of reflection of a homogenous plane wave from an initially-stressed half-space.

In [2] the authors (Ogden and Sotiropolus) examined the effect of a homogenous

pre-stress and finite deformation on the propagation of plane waves in compress-

ible elastic materials and also the reflection of plane wave from the boundary of

a half-space. In this research we follow the notations adopted in [2] however the

nature of various constants appearing in this dissertation is considerably different

from those in [2]. Biot [3, 4] examined the various effects of wave propagation in

an initially stressed material. Also, Tang [5] considered wave motion in an infinite

and initially stressed material medium for various special cases and compared his

results with the already found results. The existence of residual stress in an elastic

body having material symmetry was studied by Hoger [1]. For the development of

basic constitutive equations for residually-stressed materials, we refer to [6, 7, 8, 9].

The work done by Hoger [1] was followed by Man and Lu [10] and they presented a

generalized results which is much more relevant to Biot’s work.

To formulate the problem, we use the theory of invariants as developed in [11].

The effect of the initial stress present in the material is included in the formulation

through the components of the elasticity tensor which reduces to the usual elastic

constants when the initial stresses reduces to zero.

The basic concepts for this research problem are given in Chapter 2 together

with the concept of the elasticity tensor. We present the governing equilibrium
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equations for finite elasticity when it depends on the initial stress. We present the

expressions for the invariants for compressible hyper-elastic material with initial

stress (τ). In Chapter 2, we consider the general form of elasticity tensor which

depends on the right Cauchy-Green deformation tensor (C) as well as the initial

stress tensor (τ). In the case of compressible materials, the detailed expressions for

this tensor are given which are particularized for the deformed and the undeformed

initially stressed reference configuration.

In Chapter 3, we discuss the propagation of plane waves in an initially stressed

compressible half-space. The study of the plane wave propagation in both the cases

of a homogenous compressible material in its un-deformed as well as in deformed

state is not been carried out yet. We confine this dissertation to the study in the

latter case. In this regard, We discuss the reflection of plane wave and derive the

reflection coefficients which ensure the presence of one or two reflected waves. For

instance, we consider the P (primary) waves and find that only one reflected or two

reflected waves may exist, depending on the initial stress components. This theory

is applicable to seismic waves which are used to locate the earthquakes.

3



Chapter 2

Basics of the Theory of Finite

Deformations in an Elastic

Material

A body B is a set and its elements can be put into one-to-one correspondence with

the points of a region B in the three-dimensional Euclidean point space. B is called

a configuration and the elements of B are called the material points. A particular

but arbitrarily chosen configuration is distinguished as a reference configuration and

is denoted by BR. Consider that in this reference configuration the body will be at

rest and there are no outer forces present in it. Let the body B is deformed quasi-

statically from BR and occupies a new configuration, denoted by BC called as the

deformed configuration of B. We refer the readers [11, 12, 13, 14] for the basic

material covered in this chapter.
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2.1 Deformation in an Elastic Material

A deformation is represented by the mapping χ : BR → BC that carries point

X ∈ BR into the point x = χ(X, t) in BC . Let x and X have rectangular Cartesian

coordinates xi and XA respectively, where i, A ∈ {1, 2, 3}, with components

xi = χi(XA, t), i, A = {1, 2, 3}. (2.1.1)

We emphasize that Greek and Roman letters are used for the indices associated with

the deformed and un-deformed (reference) configuration, respectively.

Let Grad, Div (grad, div) denote the gradient, divergence and curl operator in

the reference (current) configuration, i.e. with respect to X(x). The deformation

gradient tensor F is defined as

F(X, t) = Gradx = Gradχ(X, t), (2.1.2)

in component form FiA = ∂xi/∂XA.

We define J as

J = det F. (2.1.3)

Let F be a tensor such that J > 0. Then the polar decompositions F are given

by

F = RU = VR, (2.1.4)

where U and V are positive definite, symmetric tensors, called the right stretch and

the left stretch tensors, respectively, while R is proper orthogonal tensor.

U and V can be decomposed in the spectral form as

U =
3∑

k=1

λku
(k) ⊗ u(k),

V =
3∑

k=1

λkv
(k) ⊗ v(k), (2.1.5)
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where λk > 0, k ∈ {1, 2, 3}, are the eigenvalues called the principal stretches, and

the eigenvectors of U and V are u(k) and v(k), respectively. u(k) and v(k) are the

Lagrangian and Eulerian principal axes and ⊗ denotes the tensor product.

In terms of the principal stretches λk the alternative expressions for J = det F

are provided by

J = det U = det V = λ1λ2λ3. (2.1.6)

We also note the vectors u(k) and v(k) have the connection

v(k) = Ru(k), k = {1, 2, 3}. (2.1.7)

The right and left Cauchy-Green deformation tensors, C and B are defined by

C = FTF = U2,

B = FFT = V2, (2.1.8)

respectively. In the formation of constitutive laws, the tensors C and B play im-

portant role , in particular through their principal invariants defined (for either C

or B) as

I1 = tr(C), I2 =
1

2
[I1

2 − tr(C2)], I3 = det(C). (2.1.9)

Above expression can be expressed in terms of principal stretches as

I1 = λ21 + λ22 + λ23, I2 = λ22λ
2
3 + λ23λ

2
1 + λ21λ

2
2, I3 = λ21λ

2
2λ

2
3. (2.1.10)

The useful principal invariants of U are provided alternatively by

i1 = tr(U), i2 =
1

2
[i1

2 − tr(U2)], i3 = det(U), (2.1.11)

or, equivalently, in terms of the principal stretches

i1 = λ1 + λ2 + λ3, i2 = λ2λ3 + λ3λ1 + λ1λ2, i3 = λ1λ2λ3. (2.1.12)

The connections between In and in, n = {1, 2, 3} follow from the above expressions

and are given by

I1 = i21 − 2i2, I2 = i22 − 2i1i3, I3 = i23. (2.1.13)
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2.2 Motion in an Elastic Material

The rate of change of position of material particle X is the velocity v of a material

particle X is defined by

v ≡ ẋ =
∂

∂t
χ(X, t), (2.2.1)

The acceleration a of a material particle X is

a ≡ v̇ ≡ ẍ =
∂2

∂t2
χ(X, t). (2.2.2)

In each case a superposed dot denotes the material time derivative.

The velocity v is a function of x and t, we define the velocity gradient tensor,

denoted by L as

L = gradv, (2.2.3)

which has components form with respect to the basis {ei}

Lij =
∂vi
∂xj

. (2.2.4)

Using the identity we obtain

Gradv = (gradv)F, (2.2.5)

we can write Eq. (2.2.5) by using Eq. (2.2.3),

Gradv = LF. (2.2.6)

Since v ≡ ẋ then we have

Gradẋ =
∂

∂t
Gradx = Ḟ. (2.2.7)

Hence from Eq. (2.2.6) and (2.2.7), we conclude the important connection

Ḟ = LF. (2.2.8)
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The derivative of the determinant of a tensor we use the result, i.e.

∂

∂t
(det F) = (det F)tr(F−1Ḟ) = Jtr(F−1Ḟ), (2.2.9)

using the Eq. (2.2.8), we have

∂

∂t
(det F) = Jtr(L), (2.2.10)

or, we have

J̇ = Jtr(L) = Jdivv, (2.2.11)

where the terms used in above equation such as tr(L) = Lii = ∂vi/∂xi = divv.

Here, div is the divergence operator in the deformed configuration. i.e. with respect

to x and divv measures the rate at which the volume changes during the motion.

Also the fact that, FF−1 = I, and therefore

˙F−1 = −F−1ḞF−1 = −F−1L. (2.2.12)

2.3 Cauchy Theorem-Field Equation for the Mo-

tion of the Continuum

The term stress is used to measure the intensity of force, either on the or within the

bounding surface of a body subjected to loads. Using the concept of force we have

one of the most important theorems which is Cauchy’s Theorem and stated as:

Let (t,b) be a system of surface and body forces for a body B during a motion.

Then a necessary and sufficient condition that the momentum balance laws be satis-

fied is that there exists a second-order tensor field T, called the Cauchy stress tensor,

such that

• for each n unit vector and T is independent of n

t(n) = Tn; (2.3.1)
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• Spatial tensor field T is symmetric;

• T satisfies the equation of motion

divT + ρb = ρv̇, (2.3.2)

where b is the body force.

2.4 Stress Tensors and Equilibrium Equations for

a Elastic Materials

We define a stress tensor S that gives the measure of force per unit area in the

un-deformed configuration.

The elements of surface area are related by

nda = JF−TNdA. (2.4.1)

This result is known as Nanson’s formula which describes how elements of the surface

area deform and it also applies to area elements of an arbitrary shape. Where n and

N be unit normals, and the surface area elements are da and dA in the deformed

and reference configuration, respectively.

Using the Nanson’s formula Eq. (2.4.1) the traction t(n) on the area element da

in the current configuration as

tda = Tnda = JTF−TNdA = STNdA, (2.4.2)

where the first Piola-Kirchhoff stress tensor ST is defined by the expression as

ST = JTF−T . (2.4.3)

Therefore, the nominal stress tensor (second order tensor field) S also referred as

the engineering stress is defined as

S = JF−1T. (2.4.4)
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The nominal stress tensor satisfies the equation of motion

DivS + ρrb = ρrχ̈, (2.4.5)

and in general the nominal stress S is not symmetric but holds the connection

FS = STFT , (2.4.6)

where Div is the divergence operator in the reference configuration. We are con-

sidering the case when no body forces are acting which reduces Eq. (2.4.5) to the

form

DivS = ρrχ̈. (2.4.7)

In the deformed configuration Eq. (2.4.7) is of the form

divT = ρv̇, (2.4.8)

Eqs. (2.4.7) and (2.4.8) can be expressed in the components form as

∂Sαi
∂Xα

= ρrχ̇i, (2.4.9)

and

∂Tij
∂xj

= ρv̇i, (2.4.10)

respectively.

2.5 Initial Stress in a Material

Generally, it is assumed that the reference configuration BR is stress free but in

many cases there may be an initial stress present in it. This may be induced in

the case of biological tissues, by some manufacturing process, be generated by the

process of growth, adaptation or remodeling.
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In this dissertation the term initial stress is used in the broadest sense regardless

of the process that causes this stress. When there is an associated pre-strain from

an unstressed configuration due to an applied load then the term prestress replaces

the term initial stress. However, when an initial stress is present in the absence of

applied loads called residual stress according to the definition given by Hoger [1].

2.6 Hyperelastic Materials

An elastic body is a Green elastic material or a hyperelastic if the nominal stress

Ŝ(F,X) is the derivative of a scalar function W (F,X).W (F,X) represents the work

done (per unit volume at X) by the stress in deforming the material from Br to Bt
(i.e from I to F) and is independent of the path taken in deformation space: see

[15], i.e.

S = Ŝ(F,X) = DW (F,X) =
∂W (F,X)

∂F
, (2.6.1)

where D is the derivative with respect to F. The scalar function W is the strain-

energy density function.

In terms of the strain energy function W , Eq. (2.6.1) gives the nominal stress.

Using Eq. (2.4.4), the Cauchy stress T is given by

T = J−1F
∂W

∂F
. (2.6.2)

In component form, the nominal and Cauchy stresses are represented as

Sαi =
∂W

∂Fiα
, Tij = J−1Fiβ

∂W

∂Fjβ
. (2.6.3)

It is convenient to assume that W is measured from the reference configuration, so

that

W (I) = 0. (2.6.4)

If the reference configuration is stress free then

∂W

∂F
(I) = 0, (2.6.5)
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for an unconstrained material.

2.7 Incremental Equations

Let χ, with x = χ(X), be a time-independent deformation and χ
′
, with x

′
=

χ
′
(X, t) be a finite time-dependent deformation which is “close” to χ. The dis-

placement, which can be thought of as a perturbation of χ, can be written as

ẋ = x′ − x = χ
′
(X, t)− χ(X, t) ≡ χ̇(X), (2.7.1)

and the gradient which is exact

Gradχ̇ = Grad χ
′ −Gradχ ≡ Ḟ. (2.7.2)

Consider the linear approximation of the stress tensor S. In its exact form the

incremental stress tensor Ṡ for an unconstrained material is

Ṡ = S′ − S =
∂W

∂F
(F′)− ∂W

∂F
(F), (2.7.3)

having linear approximation

Ṡ = AḞ, (2.7.4)

where A is the fourth order elasticity tensor, defined by

A(F,X)[A] = DŜ(F,X)[A] =
∂2W (F,X)

∂F2
·A, (2.7.5)

for each fixed material point X (see, for example, [14]).

The component form of Eq. (2.7.4) is

Ṡαi = AαiβjḞjβ, (2.7.6)

where Ḟjβ = ẋj,β. Following the equation of motion Eq. (2.4.5) for χ
′

and subtract-

ing its counterpart equation for χ, we obtain

DivṠ + ρrḃ = ρr ˙χ,tt, (2.7.7)
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where ḃ and χ̇ are the incremental forms of the body force b and χ, respectively.

The updated elasticity tensor A0, in terms of A, is

A0ijkl = J−1FiαFkβAαjβl. (2.7.8)

For the derivation of Eq. (2.7.8) see [15]. The updated nominal stress for an uncon-

strained material given by

Ṡ0 = A0Ḟ0 = A0Γ, (2.7.9)

where Ḟ0 = Γ is the updated incremental form in the reference configuration. In

component form, Eq. (2.7.9) can be written as

Ṡ0pi = A0piqjuj,q, (2.7.10)

. The updated counterparts of Eqs. (2.7.7) are

DivṠ0 + ρḃ = ρu,tt, (2.7.11)

where ρ is the current density.

2.8 Invariants for an Initially-Stressed Compress-

ible Material

We consider an initially stressed homogeneous hyper-elastic material for which the

strain energy function W per unit reference volume depends on the deformation

gradient F and the initial stress τ . By objectivity we can regard W as a function

of F through the right Cauchy-Green deformation tensor. Thus W = W (C, τ ).

When subjected to a rotation Q in the reference configuration, C and τ change

to QCQT and QτQT , respectively. The strain energy is invariant under this change
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if it depends on the ten invariants I1, ..., I10 of the two tensors C and τ defined by

I1 = tr(C), I2 =
1

2
[I21 − tr(C2)], I3 = det(C),

I4 = tr(τ ), I5 =
1

2
[I24 − tr(τ 2)], I6 = det(τ ),

I7 = tr(Cτ ), I8 = tr(C2τ ), I9 = tr(Cτ 2),

I10 = tr(C2τ 2). (2.8.1)

Using Eqs. (2.8.1), consider that the initial stress to be independent of the defor-

mation, the first derivatives of these invariants are given by

∂I1
∂Fiα

= 2Fiα,
∂I2
∂Fiα

= 2(CγγFiα − CαγFiγ),
∂I3
∂Fiα

= 2I3(F
−1)αi,

∂I4
∂Fiα

= 0,
∂I5
∂Fiα

= 0,
∂I6
∂Fiα

= 0,

∂I7
∂Fiα

= 2ταγFiγ,
∂I8
∂Fiα

= 2ταδCδγFiγ + 2CαδτδγFiγ,

∂I9
∂Fiα

= 2τ 2αγFiγ,
∂I10
∂Fiα

= 2τ 2αδCδγFiγ + 2Cαδτ
2
δγFiγ. (2.8.2)

from which we obtain the expressions

Fpα
∂I1
∂Fiα

= 2Bpi, Fpα
∂I2
∂Fiα

= 2(I1Bpi −BpqBqi),

Fpα
∂I3
∂Fiα

= 2I3I, Fpα
∂I4
∂Fiα

= 0, Fpα
∂I5
∂Fiα

= 0,

Fpα
∂I6
∂Fiα

= 0, Fpα
∂I7
∂Fiα

= 2Σpi,

Fpα
∂I8
∂Fiα

= 2(ΣpqBqi +BpqΣqi), Fpα
∂I9
∂Fiα

= 2Σpα(B−1)αqΣqi,

Fpα
∂I10
∂Fiα

= 2[Σpα(B−1)αqΣqγBγi +BpαΣαq(B
−1)qγΣγi]. (2.8.3)

Evaluating the Eq. (2.8.2) in the reference configuration, we have the non-zero

derivatives as

∂I1
∂Fiα

= 2δiα,
∂I2
∂Fiα

= 4δiα,
∂I3
∂Fiα

= 2δiα,
∂I7
∂Fiα

= 2ταi,

∂I8
∂Fiα

= 4ταi,
∂I9
∂Fiα

= 2τ 2αi,
∂I10
∂Fiα

= 4τ 2αi. (2.8.4)
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Now consider that the strain energy function W is a function of I1, I2, ..., I10. Then

∂W

∂F
=

10∑
r=1

Wr
∂Ir
∂F

, (2.8.5)

where Wr = ∂W/∂Ir.

By definition, the nominal stress tensor S for an initially stressed unconstrained

i.e a compressible material is given by

S = 2W1F
T + 2W2(I1F

T − FTB) + 2W3I3F
−1 + 2W7τFT

+ 2W8(τCFT + CτFT ) + 2W9τ
2FT + 2W10(τ

2CFT + Cτ 2FT ). (2.8.6)

The Cauchy stress tensor T for an initially stressed unconstrained material is given

by

JT = FS = 2W1B + 2W2B
∗ + 2W3I3I + 2W7Σ + 2W8(ΣB + BΣ)

+ 2W9ΣB−1Σ + 2W10(ΣB−1ΣB + BΣB−1Σ), (2.8.7)

where Σ = FτFT and B∗ = I1B−B2.

If the above expression is evaluated in the reference configuration, we get the

expression for τ as

τ = 2(W1 + 2W2 +W3)I + 2(W7 + 2W8)τ + 2(W9 + 2W10)τ
2, (2.8.8)

which suggests to set

W1 + 2W2 +W3 = 0, 2(W7 + 2W8) = 1, W9 + 2W10 = 0. (2.8.9)
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2.9 The Elasticity Tensor for an Initially-Stressed

Hyperelastic Material

Using Eqs. (2.8.2), the non-zero second derivatives of the invariants are

∂2I1
∂FiαFjβ

= 2δαβδij,

∂2I2
∂FiαFjβ

= 2I1δαβδij + 4FiαFjβ − 2FiβFjα − 2Cαβδij − 2δαβBij, (2.9.1)

∂2I3
∂FiαFjβ

= 4I3(F
−1)αi(F

−1)βj − 2I3(F
−1)αj(F

−1)βi,

∂2I7
∂FiαFjβ

= 2ταβδij,

∂2I8
∂FiαFjβ

= 2ταβBij + 2(τC)αβδij + 2(Cτ )αβδij + 2δαβΣij

+ 2(τFT )αjFiβ + 2(τFT )βiFjα,
∂2I9

∂FiαFjβ
= 2(τ 2)αβδij,

∂2I10
∂FiαFjβ

= 2(τ 2)αβBij + 2(τ 2C)αβδij + 2(Cτ 2)αβδij

+ 2δαβ(Fτ 2T)ij + 2(τ 2FT )αjFiβ + 2(τ 2FT )βiFjα. (2.9.2)

from the above expressions we obtain

FpαFqβ
∂2I1

∂FiαFjβ
= 2Bpqδij,

FpαFqβ
∂2I2

∂FiαFjβ
= 2I1Bpqδij + 4BpiBqj − 2BiqFjp − 2BpγBγqδij

− 2BpqBij, (2.9.3)

FpαFqβ
∂2I3

∂FiαFjβ
= 4I3δipδjq − 2I3δiqδjp,

FpαFqβ
∂2I7

∂FiαFjβ
= 2Σpqδij,

FpαFqβ
∂2I8

∂FiαFjβ
= 2ΣpqBij + 2ΣpγBγqδij + 2BpγΣγqδij + 2ΣijBpq

+ 2ΣpjBiq + 2ΣqiBjp, (2.9.4)
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for convince in calculation, we drop the non-linear terms. In the reference configu-

ration Eq. (2.9.1) reduces to

∂2I1
∂FiαFjβ

= 2δαβδij,

∂2I2
∂FiαFjβ

= 2δαβδij + 4δiαδjβ − 2δiβδjα,

∂2I3
∂FiαFjβ

= 4δαiδβj − 2δαjδβi,

∂2I7
∂FiαFjβ

= 2ταβδij,

∂2I8
∂FiαFjβ

= 6ταβδij + 2τijδαβ + 2ταjδiβ + 2τβiδjα,

∂2I9
∂FiαFjβ

= 2(τ 2)αβδij,

∂2I10
∂FiαFjβ

= 6(τ 2)αβδij + 2(τ 2)ijδαβ + 2(τ 2)αjδiβ + 2(τ 2)βiδjα. (2.9.5)

where Σ = τ = S in the reference configuration. From Eqs. (2.8.5)

A =
∂2W

∂F∂F
=

N∑
r=1

Wr
∂2Ir
∂F∂F

+
N∑

r,s=1

Wrs
∂Ir
∂F
⊗ ∂Is
∂F

, (2.9.6)

where Wrs = ∂2W/∂Ir∂Is.

The updated elasticity tensor in its component form is given by

A0piqj = J−1

(
N∑
r=1

WrFpαFqβ
∂2Ir

∂Fiα∂Fjβ
+

N∑
r,s=1

WrsFpαFqβ
∂Ir
∂Fiα

∂Is
∂Fjβ

)
. (2.9.7)
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Therefore, taking N = 8 in Eq. (2.9.7), we have for a compressible material

JA0piqj = 2(W1 + I1W2)Bpqδij + 2W2[2BpiBqj −BiqBjp − δijBpγBγq

− BpqBij] + 2W3I3(2δipδjq − δiqδjp) + 2W7Σpqδij + 2W8[ΣpqBij

+ ΣpγBγqδij +BpγΣγqδij + ΣijBpq + ΣpjBiq + ΣqiBjp] + 4W11BipBjq

+ 4W22(I1Bip −BiγBγp)(I1Bjq −BjδBδq) + 4W33I
2
3δipδjq

+ 4W12[2I1BipBjq −BipBjδBδq −BjqBiγBγp] + 4W13I3(Bipδjq +Bjqδip)

+ 4W17(BipΣjq +BjqΣip) + 4W18[Bip(ΣjδBδq +BjδΣδq) + (ΣiγBγp

+ BiγΣγp)Bjq] + 4W23I3[I1(Bipδjq +Bjqδip)− δipBjδBδq −BiγBγpδjq]

+ 4W27[(I1Bip −BiγBγp)Σjq + Σip(I1Bjq −BjδBδq)] + 4W28[(I1Bip

− BiγBγp)(ΣjδBδq +BjδΣδq) + (ΣiγBγp +BiγΣγp)(I1Bjq −BjδBδq)]

+ 4W37I3[δipΣjq + δjqΣip] + 4W38I3[δip(ΣjδBδq +BjδΣδq) + (ΣiγBγp

+ BiγΣγp)δjq] + 4W77ΣipΣjq + 4W78[Σip(ΣjδBδq +BjδΣδq) + (ΣiγBγp

+ BiγΣγp)Σjq] + 4W88(ΣiγBγp +BiγΣγp)(ΣjδBδq +BjδΣδq), (2.9.8)

which is a expression already noted in [11].

We consider a compressible material the elastic response of which is described

by a general strain energy function W (C, τ ). Let this material be subject to a

general pure homogeneous pre-strain such that λ1, λ2, λ3 are the principal stretches

corresponding the principal axes x1, x2 and x3 respectively. In the refence configu-

ration F = I and use of Eq. (2.8.9) in Eq. (2.9.8), the components of the elasticity

tensor C, in the reference configuration for an unconstrained compressible material

are given by Cpiqj

Cpiqj = A0piqj = α1(δijδpq + δiqδjp − δipδjq) + α2δipδjq + δijτpq + α3(δijτpq

+ δpqτij + δiqτjp + δjpτiq) + α4(δipτjq + δjqτip) + α5τipτjq. (2.9.9)
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Here, we have defined

α1 = 2(W1 +W2), α2 = 2(W2 +W3) + 4(W11 + 4W12 + 2W13 + 4W22 + 4W23 +W33),

α3 = 2W8, α4 = 4(W17 + 2W18 + 2W27 + 4W28 +W37 + 2W38),

α5 = 4(W77 + 4W78 + 4W88), (2.9.10)

evaluated in the reference configuration. When τ = 0, Eq. (2.9.9) gives

Cpiqj = α1(δpqδij + δiqδjp − δipδjq) + α2δipδjq, (2.9.11)

which is the classical expression of fourth order elasticity tensor in the linear theory

of elasticity. Following from Eq. (2.9.8), various expressions for elastic modulli in

this case are given by, for i 6= j,

JA0iiii = 2W1λ
2
i + 2W2λ

2
i (I1 − λ2i ) + 2W3I3 + 2W7Σii + 12W8λ

2
iΣii

+ 4W11λ
4
i + 4W22λ

4
i (I1 − λ2i )2 + 8W12λ

4
i (I1 − λ2i ) + 8W13I3λ

2
i

+ 8W17λ
2
iΣii + 16W18λ

4
iΣii + 8W23I3λ

2
i (I1 − λ2i ) + 8W27λ

2
i (I1

− λ2i )Σii + 16W28λ
4
i (I1 − λ2i )Σii + 4W33I

2
3 + 8W37I3Σii

+ 16W38I3λ
2
iΣii + 4W77Σ

2
ii + 16W78λ

2
iΣ

2
ii + 16W88λ

4
iΣ

2
ii, (2.9.12)

JA0iijj = 4W2λ
2
iλ

2
j + 4W3I3 + 4W11λ

2
iλ

2
j + 4W22λ

2
iλ

2
j(I1 − λ2i )(I1 − λ2j)

+ 4W12λ
2
iλ

2
j(2I1 − λ2i − λ2j) + 4W13I3(λ

2
i + λ2j) + 4W17(λ

2
iΣii

+ λ2jΣjj) + 8W18λ
2
iλ

2
j(Σii + Σjj) + 4W23I3[I1(λ

2
i + λ2j)− λ4i

− λ4j ] + 4W27[λ
2
i (I1 − λ2i )Σjj + λ2j(I1 − λ2j)Σii] + 8W28λ

2
iλ

2
j [(I1

− λ2i )Σjj + (I1 − λ2j)Σii] + 4W33I
2
3 + 4W37I3(Σii + Σjj)

+ 8W38(λ
2
iΣii + λ2jΣjj) + 4W77ΣiiΣjj + 8W78(λ

2
i + λ2j)ΣiiΣjj

+ 16W88λ
2
iλ

2
jΣiiΣjj, (2.9.13)

JA0ijij = 2W1λ
2
i + 2W2(I1λ

2
i − λ2iλ2j − λ4i ) + 2W7Σii + 2W8(λ

2
jΣii

+ 2λ2iΣii + λ2iΣjj) + 4W77Σ
2
ij + 8W78(λ

2
i + λ2j)Σ

2
ij

+ 4W88(λ
2
i + λ2j)

2Σ2
ij, (2.9.14)
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JA0ijji = −2W2λ
2
iλ

2
j − 2W3I3 + 2W8(λ

2
jΣii + λ2iΣjj) + 4W77Σ

2
ij

+ 8W78(λ
2
i + λ2j)Σ

2
ij + 4W88(λ

2
i + λ2j)

2Σ2
ij, (2.9.15)

JA0ijjj = 2[W7 +W8(3λ
2
j + λ2i ) + 2W17λ

2
j + 2W18λ

2
j(λ

2
i + λ2j)

+ 2W27λ
2
j(I1 − λ2j) + 2W28λ

2
j(I1 − λ2j)(λ2i + λ2j) + 2W37I3

+ 2W38I3(λ
2
i + λ2j)]Σij + 4[W77 +W78(3λ

2
j + λ2i )

+ 2W88λ
2
j(λ

2
i + λ2j)]ΣijΣjj, (2.9.16)

JA0iiij = 2[2W8λ
2
i + 2W17λ

2
i + 2W18λ

2
i (λ

2
i + λ2j) + 2W27λ

2
i (I1 − λ2i )

+ 2W28λ
2
i (I1 − λ2i )(λ2i + λ2j) + 2W37I3 + 2W38I3(λ

2
i + λ2j)]Σij

+ 4[W77 +W78(3λ
2
i + λ2j) + 2W88λ

2
i (λ

2
i + λ2j)]ΣijΣii, (2.9.17)

JA0iikj = JA0iijk = JA0jkii = JA0kjii = 4[W17λ
2
i +W18λ

2
i (λ

2
j + λ2k)

+ W27λ
2
i (I1 − λ2i ) +W28λ

2
i (I1 − λ2i )(λ2j + λ2k) +W37I3

+ W38I3(λ
2
j + λ2k)]Σjk + 4[W77 +W78(2λ

2
i + λ2j + λ2k)

+ 2W88λ
2
i (λ

2
j + λ2k)]ΣjkΣii, (2.9.18)

JA0ijki = JA0ijik = JA0ikji = JA0kiij = 2W8λ
2
iΣjk + 4[W77 +W78(2λ

2
i

+ λ2j + λ2k) +W88(λ
2
i + λ2j)(λ

2
i + λ2k)]ΣijΣik, (2.9.19)

JA0ikjk = JA0jkik = 2[W7 +W8(λ
2
i + λ2j + λ2k)]Σij + 4[W77 +W78(λ

2
i

+ λ2j + 2λ2k) +W88(λ
2
i + λ2k)(λ

2
j + λ2k)]ΣikΣjk. (2.9.20)

Let τii, (i = 1, 2, 3) denote the normal initial stress components and τij, i 6= j 6= k,

(i, j ∈ {1, 2, 3}) denote the shear components of the initial stress. When λi = 1, i =

1, 2, 3 and Σij = τij then Eqs. (2.9.12-2.9.20) reduces in the reference configuration

A0iiii = 2W1 + 4W2 + 2W3 + 2W7τii + 12W8τii + 4W11 + 16W22

+ 16W12 + 8W13 + 8W17τii + 16W18τii + 16W23 + 16W27τii

+ 32W28τii + 4W33 + 8W37τii + 16W38τii + 4W77τ
2
ii + 16W78τ

2
ii

+ 16W88τ
2
ii, (2.9.21)
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A0iijj = 4W2 + 4W3 + 4W11 + 16W12 + 8W13 + 8W17(τii + τjj)

+ 8W18(τii + τjj) + 16W23 + 8W27(τii + τjj) + 16W28(τii + τjj)

+ 4W33 + 4W37(τii + τjj) + 8W38(τii + τjj) + 4W77τiiτjj

+ 16W78τiiτjj + 16W88τiiτjj, (2.9.22)

A0ijij = 2W1 + 2W2 + 2W7τii + 2W8(3τii + τjj) + 4W77τ
2
ij + 16W78τ

2
ij

+ 16W88τ
2
ij, (2.9.23)

A0ijji = −2W2 − 2W3 + 2W8(τii + τjj) + 4W77τ
2
ij + 16W78τ

2
ij

+ 16W88τ
2
ij, (2.9.24)

A0ijjj = 2[W7 + 4W8 + 2W17 + 4W18 + 4W27 + 8W28 + 2W37

+ 4W38]τij + 4[W77 + 4W78 + 4W88]τijτjj, (2.9.25)

A0iiij = 2[2W8 + 2W17 + 4W18 + 4W27 + 8W28 + 2W37 + 4W38]τij

+ 4[W77 + 4W78 + 4W88]τijτii, (2.9.26)

A0iikj = A0iijk = A0jkii = A0kjii = 4[W17 + 2W18 + 2W27 + 4W28

+ W37 + 2W38]τjk + 4[W77 + 4W78 + 4W88]τjkτii, (2.9.27)

A0ijki = A0ijik = A0ikji = A0kiij = 2W8τjk + 4[W77 + 4W78

+ 4W88]τijτik, (2.9.28)

A0ikjk = A0jkik = 2[W7 + 3W8]τij + 4[W77 + 4W78 + 4W88]τikτjk, (2.9.29)

When τ = 0 then Eqs. (2.9.21-2.9.29) become

Ciiii = 2W1 + 4W2 + 2W3 + 4W11 + 16W22 + 16W12 + 8W13 + 16W23

+ 4W33, (2.9.30)

Ciijj = 4W2 + 4W3 + 4W11 + 16W12 + 8W13 + 16W23 + 4W33, (2.9.31)

Cijij = 2W1 + 2W2, (2.9.32)

Cijji = −2W2 − 2W3, (2.9.33)

Cijjj = Ciiij = Ciikj = Cijki = Cikjk = 0, (2.9.34)

which when used in appropriate strain energy function from the linear theory of

elasticity, can reduce to the expression in the classical theory.
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Chapter 3

Propagation of Plane Waves in

Initially-Stressed Elastic Materials

In this chapter, we study the phenomenon of wave propagation in an initially stressed

compressible material. Using the theory of non-linear elasticity presented in chapter

2 and the theory of invariants, we derive the general constitutive equations for a

hyper-elastic material in the presence of initial stress. Here we follow the approach

as in [2]. The constitutive law of the material is based on a strain-energy function

(defined per unit reference volume) which in turn depends on the combined invari-

ants of the right cauchy-Green deformation tensor and the initial stress tensor. For

a compressible material, there are ten such independent invariants in the general

three-dimensional case. The effect of initial stress is studied on the wave speed of

homogenous plane waves in a compressible half-space.
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3.1 The Effect of Initial Stress on the Propaga-

tion of Homogenous Plane Wave in a Homo-

geneously Deformed Infinite Medium

Consider an initially stressed medium with initial stress τ whose elastic response is

characterized by the strain energy function W (C, τ ). We consider incremental mo-

tions in an infinite medium subject to homogeneous deformation and homogeneous

initial stress. The equation of motion for a compressible material is given by

A0piqjuj,pq = ρui,tt, (3.1.1)

where ρ is the density of the material in the deformed configuration.

For i = 1

A01111u1,11 + 2A02111u1,12 +A02121u1,22 +A01112u2,11

+(A01122 +A02112)u2,12 +A02221u2,22 = ρu1,tt, (3.1.2)

for i = 2

A01112u1,11 + (A01122 +A02112)u1,12 +A02221u1,22

+A01212u2,11 + 2A01222u2,12 +A02222u2,22 = ρu2,tt. (3.1.3)

Here we use a connection

A0ijji = A0iijj = A0ijij − Tii, (3.1.4)

which can be easily verified by using Eq. (2.8.7) and Eqs. (2.9.12-2.9.20). After

using the above connection, Eqs. (3.1.2) and (3.1.3) reduces to

α11u1,11 + 2β1u2,11 + β2u1,12 + δu2,12 + γ2u1,22 + β3u2,22 = ρu1,tt, (3.1.5)

β1u1,11 + γ1u2,11 + δu1,12 + 2β4u2,12 + β3u1,22 + α22u2,22 = ρu2,tt, (3.1.6)
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where α11, α22, γ1, γ2, δ are material constants and , t indicating differentiation with

respect to t and

αii = JA0iiii, β1 = JA01112, β2 = JA02111,

β3 = JA02221, β4 = JA01222, γ1 = JA01212,

γ2 = JA02121, δ = α12 + γ2 − T22 = α12 + γ1 − T11. (3.1.7)

Let we assume that τij = 0, i 6= j which implies Σij = 0, i 6= j so that β1 = β2 =

β3 = β4 = 0 then Eqs. (3.1.5,3.1.6) reduce to

α11u1,11 + δu2,12 + γ2u1,22 = ρu1,tt, (3.1.8)

γ1u2,11 + δu1,12 + α22u2,22 = ρu2,tt. (3.1.9)

On elimination of either u1 or u2 from Eqs. (3.1.8) and (3.1.9) it is seen that u1 and

u2 each satisfy the same equation, namely

α11γ1ui,1111 + (α11α22 + γ1γ2 − δ2)ui,1122 + α22γ2ui,2222

= ρ(α11 + γ1)ui,11tt + ρ(α22 + γ2)ui,22tt − ρ2ui,tttt, (3.1.10)

for i ∈ (1, 2).

Equation (3.1.10) seems to be exactly of the form of Eq. (2.7) of [2]. However the

two equations are entirely different in nature as the various material constants in

this case depend on the initial stress. Taking the special case of τ = 0 we get the

same values of the various constants for an isotropic material as in [2].

3.2 Homogeneous Plane Waves

Consider an incremental plane wave of the form

(u1, u2) = A(m1,m2) exp[ik(n1x1 + n2x2 − ct)], (3.2.1)
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where k is the wave number and c is the wave speed, (n1, n2) are the components of

the wave normal vector, (m1,m2) the components of the polarization vector and A

is an arbitrary constant giving the measure of the amplitude of the wave.

Using Eq. (3.2.1) in Eqs. (3.1.8) and (3.1.9) gives the propagation condition

(propagation equation), for a compressible material

Q(n)m = ρc2m, (3.2.2)

where n = (n1, n2), m = (m1,m2) and Q(n) is the so-called acoustic tensor (see,

for example, [14]). It depends on n and is defined in its component form as

Qij(n) = A0piqjnpnq. (3.2.3)

Q(n) =

α11n
2
1 + 2β2n1n2 + γ2n

2
2 β1n

2
1 + δn1n2 + β3n

2
2

β1n
2
1 + δn1n2 + β3n

2
2 γ1n

2
1 + 2β4n1n2 + α22n

2
2

 (3.2.4)

For a particular choice of n it determines possible wave speeds and polarizations

corresponding to plane waves propagating in that direction. The wave speeds are

determined by the characteristic equation

det(Q(n)− ρc2I) = 0, (3.2.5)

where I is the (two-dimensional) identity matrix, then the above equation can be

written in matrix form as follows.

det(

Q11 Q12

Q21 Q22

− ρc2
 1 0

0 1

) = 0, (3.2.6)

From Eq. (3.2.6) we obtain an explicit quadratic for ρc2, namely

(ρc2)2 − [(Q11 +Q22)]ρc
2 +Q11Q22 −Q12Q21 = 0, (3.2.7)

where

Q11 = α11n
2
1 + 2β2n1n2 + γ2n

2
2, Q12 = β1n

2
1 + δn1n2 + β3n

2
2,

Q21 = β1n
2
1 + δn1n2 + β3n

2
2, Q22 = γ1n

2
1 + 2β4n1n2 + α22n

2
2. (3.2.8)
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Since we assumed that τij = 0, i 6= j which implies Σij = 0, i 6= j so that β1 = β2 =

β3 = β4 = 0 then Eq. (3.2.8) reduce to

Q11 = α11n
2
1 + γ2n

2
2, Q12 = Q21 = δn1n2, Q22 = γ1n

2
1 + α22n

2
2. (3.2.9)

Equivalently, by substituting Eq. (3.2.1) into Eq. (3.1.10) we obtain an explicit

quadratic for ρc2, namely

(ρc2)2 − [(α11 + γ1)n
2
1 + (α22 + γ2)n

2
2]ρc

2 + α11γ1n
4
1 + 2βn2

1n
2
2

+ α22γ2n
4
2 = 0, (3.2.10)

where

2β = α11α22 + γ1γ2 − δ2. (3.2.11)

Equation (3.2.10) yields two positive solutions for ρc2 if and only if the strong

ellipticity inequalities hold. These inequalities is followed from [2] which are

α11 > 0, α22 > 0, γ1 > 0, γ2 > 0 (3.2.12)

and

β > −(α11α22γ1γ2)
1/2. (3.2.13)

From Eq. (3.2.2) we also have

m2 = ξm1, (3.2.14)

where

ξ =
ρc2 − α11n

2
1 − γ2n2

2

δn1n2

=
δn1n2

ρc2 − γ1n2
1 − α22n2

2

, (3.2.15)

Equation (3.2.15) is an alternative statement of Eq. (3.2.10).

We may rewrite Eq. (3.2.10 as a quadratic for n2
1 by using n2

1 + n2
2 = 1. Thus,

(α11γ1 + α22γ2 − 2β)n4
1 + [2β − 2α22γ2 − ρc2(α11γ1) + ρc2(α22γ2)]n

2
1

+(α22 − ρc2)(γ2 − ρc2) = 0. (3.2.16)
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From above equation we see that if material properties are such that

2β = α11γ1 + α22γ2, (3.2.17)

then Eq. (3.2.15) may be simplified to give

[(α22 − ρc2)(γ2 − ρc2)− (α11 − ρc2)(γ1 − ρc2)]n2
1

= (α22 − ρc2)(γ2 − ρc2). (3.2.18)

In general, Eq. (3.2.2) does not admit pure longitudinal or pure transverse waves.

Exceptions are as follows.

(a) Longitudinal waves. A longitudinal wave may propagate in a principal direction

with speed given by ρc2 = α11 for n1 = 1 or ρc2 = α22 for n1 = 0. Using Eq. (3.2.2)

where m = n, a longitudinal wave may also propagate in a direction defined by

n2
1 =

α22 − γ2 − δ
α11 + α22 − γ1 − γ2 − 2δ

(3.2.19)

with wave speed given by

ρc2 =
α11α22 − (γ1 + δ)(γ2 + δ)

α11 + α22 − γ1 − γ2 − 2δ
. (3.2.20)

The existence of such a wave requires, in particular, that the inequality holds

(α11 − γ1 − δ)(α22 − γ2 − δ) > 0. (3.2.21)

(b) Shear waves. As in (a) a shear wave may propagate in a principal direction. In

this case the wave speeds are given by ρc2 = γ1 for n1 = 1 or ρc2 = γ2 for n1 = 0.

For m = −n, using Eq. (3.2.2) a shear wave may also propagate in the direction

defined by Eq. (3.2.19), but with speed given by

ρc2 =
(α11 − δ)(α22 − δ)− γ1γ2
α11 + α22 − γ1 − γ2 − 2δ

. (3.2.22)

The results obtained in Eq. (3.2.19-3.2.22) were obtained in [15] and, more recently,

in [16]; see also [17]. Cases (a)and (b) apply in respect of a general form of strain-

energy function.
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The strong ellipticity condition, for an arbitrary choice of non-zero m and n for

compressible materials in deformed configuration is given by

Qijmimj = A0piqjnpnqmimj > 0, for all non-zero m,n. (3.2.23)

Taking the scalar product of Eq. (3.2.2), we find

ρc2 = [Q(n)m] ·m = A0piqjnpnqmimj. (3.2.24)

The above equation holds for the compressible materials. The strong ellipticity

condition Eq. (3.2.23) thus guarantees positive values for ρc2. However, c can be

either negative or positive.

Using Eq. (2.9.8) in Eq. (3.2.3), we get for the compressible material

Q(n) = [2(W1 +W2I1)B
(n) − 2W2B

2(n) + 2W7Σ
(n) + 4W8(ΣB)(n)]I

− 2(W2B
(n) −W8Σ

(n))B + 2W8B
(n)Σ + 2(W3I3 + 2W33I

2
3 )n⊗ n

+ 2(W2 + 2W11 + 4W12I1)Bn⊗Bn + 2(W8 + 2W17)(Bn⊗Σn

+ Σn⊗Bn) + 4W22B
∗n⊗B∗n− 4W12(Bn⊗B2n + B2n⊗Bn)

+ 4I3(W13 +W23I1)(Bn⊗ n + n⊗Bn) + 4W18[Bn⊗ (ΣB

+ BΣ)n + (ΣB + BΣ)n⊗Bn]− 4W23I3(n⊗B2n + B2n⊗ n)

+ 4W27(B
∗n⊗Σn + Σn⊗B∗n) + 4W28[B

∗n⊗ (ΣB + BΣ)n

+ (ΣB + BΣ)n⊗B∗n] + 4W37I3(n⊗Σn + Σn⊗ n)

+ 4W38I3[n⊗ (ΣB + BΣ)n + (ΣB + BΣ)n⊗ n]

+ 4W77Σn⊗Σn + 4W78[Σn⊗ (ΣB + BΣ)n

+ (ΣB + BΣ)n⊗Σn] + 4W88(ΣB + BΣ)n⊗ (ΣB + BΣ)n, (3.2.25)

where we have defined B(n) = n ·Bn, Σ(n) = n ·Σn, B2(n) = n ·B2n and (ΣB)(n) =

n ·ΣBn. Here we use the same notation as given in [11].
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In components form Q(n) is defined as

Qij(n) = [2(W1 +W2I1)B
(n) − 2W2B

2(n) + 2W7Σ
(n) + 4W8(ΣB)(n)]δij

− 2(W2B
(n) −W8Σ

(n))Bij + 2W8B
(n)Σij + 2(W3I3 + 2W33I

2
3 )ninj

+ 2(W2 + 2W11 + 4W12I1)BiαBαjninj + 2(W8 + 2W17)[BiαΣαj

+ ΣiαBαj]ninj + 4W22(I1Bij −BiαBαj)(I1Bij −BiγBγj)ninj

− 8W12BiαBαγBγjninj + 8I3(W13 +W23I1)Bijninj + 16W18[Bij(ΣiαBαj

+ BiαΣαj) + (ΣiαBαj +BiαΣαj)Bij]ninj − 8W23I3BiαBαjninj

+ 4W27(((I1Biα −BiγBγα)Σαj − (Σiα(I1Bαj −BαγBγj)))ninj

+ 4W28(I1Bij −BiγBγj)(ΣiαBαj +BiαΣαj + ΣiαBαj +BiαΣαj)(I1Bij

− BiγBγj))n1nj + 8W37I3Σijninj + 4W38I3((ΣiαBαj +BiαΣαj

+ ΣiαBαj +BiαΣαj)ninj + 4W77ΣiαΣαjninj4W78[Σij(ΣiαBαj

+ BiαΣαj + ΣiαBαj +BiαΣαj)Σij]ninj + 4W88(ΣiαBαj

+ BiαΣαj)(ΣiγBγj +BiγΣγj), (3.2.26)

In the absence of shear initial stress the above expression reduces to

Qij(n) = [2(W1 +W2I1)B
(n) − 2W2B

2(n)]δij − 2W2B
(n)Bij + 2(W3I3

+ 2W33I
2
3 )ninj + 2(W2 + 2W11 + 4W12I1)BiαBαjninj + 4W22(I1Bij

− BiαBαj)(I1Bij −BiγBγj)ninj − 8W12BiαBαγBγjninj + 8I3(W13

+ W23I1)Bijninj − 8W23I3BiαBαjninj, (3.2.27)

In the reference configuration, B2(n) = B(n) = 1, B∗(n) = 2 and (ΣB)(n) = τ (n), we

have

Q(n) = (α1 + (1 + α3)τ
(n))I + α2n⊗ n + α3τ

+ (α3 + α4)(n⊗ nτ + τn⊗ n) + α5τn⊗ τn, (3.2.28)
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where

α1 = 2(W1 +W2),

α2 = 2(W2 +W3) + 4(W11 + 4W12 + 2W13 + 4W22 + 4W23 +W33),

α3 = 2W8,

α4 = 4(W17 + 2W18 + 2W27 + 4W28 +W37 + 2W38),

α5 = 4(W77 + 4W78 + 4W88). (3.2.29)

In components form Eq. (3.2.28) is defined as

Qij(n) = (α1 + (1 + α3)τ
(n))δij + α2ninj + α3τij

+ 2(α3 + α4)τijninj + α5(τ )2ijninj, (3.2.30)

Since we assumed τij = 0, i 6= j, implies Σij = 0, i 6= j then above expression reduce

to

Qij(n) = α1δij + α2ninj, (3.2.31)

3.2.1 Specific Strain Energy Function W for an Initially-

Stressed Compressible Materials

We consider a compressible material whose elastic response is characterized by the

strain energy function W (C, τ ) given by

W =
µ

2
(I
−2/3
3 I1 + I3 − 3) + (λ+

2

3
µ)(I3 − 1)2

+
µ̄

2
(I7 − I4)2 +

1

2
(I7 − I4), (3.2.32)

where µ, λ are Lame’s parameters, as appeared in the classical linear theory of

elasticity and µ̄ is a material constant with dimensions of (stress)−1. The above

model is motivated through the definition of a Neo-Hookean linear elasticity model.

When τ = 0, Eq. (3.2.32) behaves nearly like Neo-Hookean classical solid. Using Eq.
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(3.2.32), in the deformed configuration, the required derivatives of W with respect

to various invariants are

W1 =
µ

2
I
−2/3
3 , W13 =

−µ
3
I
−5/3
3 ,

W3 =
µ

2
(
−2

3
I
−5/3
3 I1 + 1) + 2(λ+

2

3
µ)(I3 − 1),

W33 =
5µ

9
I
−8/3
3 I1 + 2(λ+

2

3
µ), W4 = −µ̄(I7 − I4)−

1

2
,

W7 = µ̄(I7 − I4) +
1

2
, W77 = µ̄, (3.2.33)

which in the reference configuration reduce to

W1 =
µ

2
, W13 =

−µ
3
, W3 =

−µ
2
, W33 =

9µ

3
+ 2λ,

W4 = −1

2
, W7 =

1

2
, W77 = µ̄. (3.2.34)

Using Eq. (3.2.33) in Eq. (3.2.25), we have

Q(n) = [µI
−2/3
3 B(n) + [2µ̄(I7 − I4) + 1]Σ(n)]I + [

14

9
µI
−2/3
3 I1

+ 8(λ+
2

3
µ)I23 + [µ− 4(λ+

2

3
µ)]I3]n⊗ n− 4

3
µI
−2/3
3 (Bn⊗ n

+ n⊗Bn) + 4µ̄Σn⊗Σn, (3.2.35)

for a compressible material in the deformed configuration. Also, using Eq. (3.2.34)

in Eq. (3.2.28) gives

Q(n) = (µ+ τ (n))I + (
35

9
µ+ 4λ)n⊗ n + 4µ̄τn⊗ τn, (3.2.36)

for a compressible material in the reference configuration.

From Eq. (3.2.24), it follows for a compressible material in the deformed config-

uration that

ρc2 = µI
−2/3
3 B(n) + [2µ̄(I7 − I4) + 1]Σ(n) + [

14

9
µI
−2/3
3 I1 + 8(λ+

2

3
µ)I23

+ [µ− 4(λ+
2

3
µ)]I3](n ·m)2 − 4

3
µI
−2/3
3 (m ·Bn)(n ·m)

+ 4µ̄(m ·Σn)2, (3.2.37)
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which in the reference configuration reduces to

ρc2 = µ+ τ (n) + (
35

9
µ+ 4λ)(n ·m)2 + 4µ̄(m ·Σn)2. (3.2.38)

For the particular choice τ = τn ⊗ n, we have Σ = τFn ⊗ Fn. Equation (3.2.37)

thus reduces to

ρc2 = µI
−2/3
3 B(n) + τ [2µ̄(I7 − I4) + 1](n · Fn)2

+ [
14

9
µI
−2/3
3 I1 + 8(λ+

2

3
µ)I23 + (µ− 4(λ+

2

3
µ))I3](n ·m)2

− 4

3
µI
−2/3
3 (m ·Bn)(n ·m) + 4µ̄τ(m · Fn)2(n · Fn)2, (3.2.39)

For arbitrary m and n, a real speed exists if

µI
−2/3
3 B(n) + τ [2µ̄(I7 − I4) + 1](n · Fn)2 + [

14

9
µI
−2/3
3 I1

+ 8(λ+
2

3
µ)I23 + (µ− 4(λ+

2

3
µ))I3](n ·m)2 − 4

3
µI
−2/3
3 (m ·Bn)(n ·m)

+ 4µ̄τ(m · Fn)2(n · Fn)2 > 0. (3.2.40)

In deformed configuration after using Eq. (3.1.7) and Eq. (3.2.33) in Eqs. (2.9.12-

2.9.20), we get

α11 = µI
−2/3
3 λ21 + µ(

−2

3
I
−5/3
3 I1 + 1) + 2(λ+

2

3
µ)(I3 − 1))I3

+ 2(µ̄(I7 − I4) +
1

2
)Σ11 + 8(

−µ
3
I
−5/3
3 )I3λ

2
1 + 4(

5µ

9
I
−8/3
3 I1

+ 2(λ+
2

3
µ))I23 + 4µ̄Σ2

11, (3.2.41)

α12 = [2µ(
−2

3
I
−5/3
3 I1 + 1) + 8(λ+

2

3
µ)(I3 − 1)]I3 + 4(

−µ
3
I
−5/3
3 )I3(λ

2
1

+ λ22) + 4(
5µ

9
I
−8/3
3 I1 + 2(λ+

2

3
µ))I23 + 4(µ̄)Σ11Σ22, (3.2.42)

α22 = µI
−2/3
3 λ22 + µ(

−2

3
I
−5/3
3 I1 + 1) + 2(λ+

2

3
µ)(I3 − 1))I3

+ 2(µ̄(I7 − I4) +
1

2
)Σ22 + 8(

−µ
3
I
−5/3
3 )I3λ

2
2 + 4(

5µ

9
I
−8/3
3 I1

+ 2(λ+
2

3
µ))I23 + 4µ̄Σ2

22, (3.2.43)

β1 = 4µ̄Σ11Σ12, (3.2.44)
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β2 = [2µ̄(I7 − I4) + 1]Σ21 + 4µ̄Σ21Σ11, (3.2.45)

β3 = 4µ̄Σ21Σ22, (3.2.46)

β4 = [2µ̄(I7 − I4) + 1]Σ12 + 4µ̄Σ12Σ22, (3.2.47)

γ1 = µI
−2/3
3 λ21 + [2µ̄(I7 − I4) + 1]Σ11 + 4µ̄Σ2

12, (3.2.48)

γ2 = µI
−2/3
3 λ22 + [2µ̄(I7 − I4) + 1]Σ22 + 4µ̄Σ2

21, (3.2.49)

δ = [µ(
−2

3
I
−5/3
3 I1 + 1) + 4(λ+

2

3
µ)(I3 − 1)]I3 + 4(

−µ
3
I
−5/3
3 )I3(λ

2
1

+ λ22) + 4(
5µ

9
I
−8/3
3 I1 + 2(λ+

2

3
µ))I23 + 4µ̄(Σ2

12 + Σ11Σ22). (3.2.50)

Since we assumed τij = 0, i 6= j, implies Σij = 0, i 6= j then above expressions reduce

α11 = µI
−2/3
3 λ21 + µ(

−2

3
I
−5/3
3 I1 + 1) + 2(λ+

2

3
µ)(I3 − 1))I3

+ 2(µ̄(I7 − I4) +
1

2
)Σ11 + 8(

−µ
3
I
−5/3
3 )I3λ

2
1 + 4(

5µ

9
I
−8/3
3 I1

+ 2(λ+
2

3
µ))I23 + 4µ̄Σ2

11, (3.2.51)

α12 = [2µ(
−2

3
I
−5/3
3 I1 + 1) + 8(λ+

2

3
µ)(I3 − 1)]I3 + 4(

−µ
3
I
−5/3
3 )I3(λ

2
1

+ λ22) + 4(
5µ

9
I
−8/3
3 I1 + 2(λ+

2

3
µ))I23 + 4(µ̄)Σ11Σ22, (3.2.52)

α22 = µI
−2/3
3 λ22 + µ(

−2

3
I
−5/3
3 I1 + 1) + 2(λ+

2

3
µ)(I3 − 1))I3

+ 2(µ̄(I7 − I4) +
1

2
)Σ22 + 8(

−µ
3
I
−5/3
3 )I3λ

2
2 + 4(

5µ

9
I
−8/3
3 I1

+ 2(λ+
2

3
µ))I234µ̄Σ2

22, (3.2.53)

β1 = β2 = β3 = β4 = 0, (3.2.54)

γ1 = µI
−2/3
3 λ21 + [2µ̄(I7 − I4) + 1]Σ11, (3.2.55)

γ2 = µI
−2/3
3 λ22 + [2µ̄(I7 − I4) + 1]Σ22, (3.2.56)

δ = [µ(
−2

3
I
−5/3
3 I1 + 1) + 4(λ+

2

3
µ)(I3 − 1)]I3 + 4(

−µ
3
I
−5/3
3 )I3(λ

2
1

+ λ22) + 4(
5µ

9
I
−8/3
3 I1 + 2(λ+

2

3
µ))I23 + 4µ̄Σ11Σ22. (3.2.57)

In the reference configuration after using Eq. (3.2.34) in Eqs. (2.9.21-2.9.29) the

above material constants reduce to
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α11 = 4(µ̄)τ 211 + τ11 +
28µ

3
+ 8λ, α12 =

22µ

3
+ 8λ+ 4(µ̄)τ11τ22,

α22 = 4(µ̄)τ 222 + τ22 +
28µ

3
+ 8λ, β1 = 4(µ̄)τ11τ12,

β2 = τ12 + 4(µ̄)τ11τ12, β3 = 4(µ̄)τ12τ22,

β4 = τ12 + 4(µ̄)τ12τ22, γ1 = µ+ τ11 + 4(µ̄)τ 212,

γ2 = µ+ τ22 + 4(µ̄)τ 212, δ = µ̄(τ 212 + τ11τ22) +
25µ

3
+ 8λ. (3.2.58)

For τij = 0, i 6= j, the above expressions reduce to

α11 = 4(µ̄)τ 211 + τ11 +
28µ

3
+ 8λ, α12 =

22µ

3
+ 8λ+ 4(µ̄)τ11τ22,

α22 = 4(µ̄)τ 222 + τ22 +
28µ

3
+ 8λ, β1 = β2 = β3 = β4 = 0,

γ1 = µ+ τ11, γ2 = µ+ τ22, δ = 4µ̄τ11τ22 +
25µ

3
+ 8λ. (3.2.59)

3.3 Reflection from a Plane Boundary

We consider the half-space x2 < 0 in the finitely deformed configuration and note

that the boundary x2 = 0 is subjected to the normal traction T22 in this configura-

tion. Using Eq. (2.7.9) the incremental traction per unit area of the boundary is

ṠT0 ν, where ν is the unit outward normal to the boundary. The component form of

ṠTν as follows

Ṡ0piνk = A0piqjuj,qνk. (3.3.1)

We take the incremental boundary condition on x2 = 0 to correspond to vanishing

incremental dead load. Thus, the boundary conditions may be expressed as

Ṡ021 = A02111u1,1 +A02121u1,2 +A02112u2,1 +A02122u2,2 = 0 on x2 = 0,(3.3.2)

Ṡ022 = A01122u1,1 +A02221u1,2 +A02212u2,1 +A02222u2,2 = 0 on x2 = 0.(3.3.3)

After using Eq. (3.1.7) above equations becomes

Ṡ021 = γ2u1,2 + (γ2 − T22)u2,1 = 0 on x2 = 0, (3.3.4)

Ṡ022 = α12u1,1 + α22u2,2 = 0 on x2 = 0. (3.3.5)
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Under the above boundary conditions it was shown by [18] that the underlying

deformation is stable to incremental disturbances of the considered type provided

the inequality

(
γ1γ2
α11α22

)
1
2 (α11α22 − α2

12) + γ1γ2 − (γ2 − T22)2 > 0 (3.3.6)

We now consider a homogeneous plane wave of the form Eq. (3.2.1) propagating in

the half-space x2 < 0. We write Eq. (3.2.1) as

u = Am exp[ik(n.x− ct)], (3.3.7)

where u = (u1, u2),m = (m1,m2),n = (n1, n2) and ω = kc is the frequency. Equa-

tion (3.3.7) may represent a quasi-P wave or a quasi-SV wave or, for a specific

direction, a P wave or an SV wave.

3.3.1 The Case of Two Reflected Waves

Let m+ = m,n+ = n be identified with the incident wave. Let m−,n− be the

corresponding values associated with the reflected wave and m
′
,n

′
be the values

associated with the second reflected wave. Here we have followed the same notation

for m and n as given in [2]. Hence, we have

n
′

1 = n+
1 = n−1 = n1. (3.3.8)

which is the statement of Snell’s law.

We also have n−2 = −n2. The total displacement in x2 < 0 may now be written

as

u = Am+ exp[ik(n+.x− ct)] + ARm− exp[ik(n−.x− ct)]

+ AR
′
m

′
exp[ik(n

′
.x− ct)] (3.3.9)

where R,R
′
are the reflection coefficients k

′
, c

′
are respectively the wave number and

wave speed associated with the second reflected wave, so that k
′
c
′
= ω.
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From Eqs. (3.2.14)and (3.2.15), we note that a change in sign of n2 is reflected

in a change in sign of ξ and change in sign of m2 is reflected in a change in sign

of ξ. Let we take m− = (m1,−m2) since any sign difference can be vanished by

R. Similarly, we have for the second reflected wave ,m
′
2 = ξ

′
m

′
1, with ξ

′
defined

analogously to ξ in Eq. (3.2.14), with c,n replaced by c
′
,n

′
.

ξ
′
= (ρc2 − α11n

2
1 − γ2n

′2
2 )/δn1n

′

2. (3.3.10)

Since m and m
′

are unit vectors we set

m1 = 1/(1 + ξ2)
1
2 , m

′

1 = 1/(1 + ξ
′2)

1
2 . (3.3.11)

3.3.2 Reflection Coefficients

Using Eq. (3.3.9) into the boundary conditions Eq. (3.3.4, 3.3.5) we get the reflection

coefficients R,R
′
. After some simplification, this leads to

R =
n

′
2p

′
q − n2pq

′

n
′
2p

′q + n2pq
′ , (3.3.12)

R
′

= − 2pq

n
′
2p

′q + n2pq
′

m1n
′
2

m
′
1

, (3.3.13)

where p, q, p
′
, q

′
are defined by

p = δα12n
2
1 + α22(ρc

2 − α11n
2
1 − γ2n2

2), (3.3.14)

q = γ2α12n
2
2 + (δ − α12)(ρc

2 − α11n
2
1), (3.3.15)

p
′

= δα12n
2
1 + α22(ρc

2 − α11n
2
1 − γ2n

′2
2 ), (3.3.16)

q
′

= γ2α12n
′2
2 + (δ − α12)(ρc

2 − α11n
2
1), (3.3.17)

and
m1n

′
2

m
′
1

is given by

m1n
′
2

m
′
1

= n2
(δ2n2

1n
′2
2 + (ρc2 − α11n

2
1 − γ2n

′2
2 )2)

1
2

(δ2n2
1n

2
2 + (ρc2 − α11n2

1 − γ2n2
2)

2)
1
2

. (3.3.18)
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If we use the connection

n2 = n1 tan θ (3.3.19)

then Eq. (3.2.10) becomes

(α11γ1 + 2β tan2 θ + α22γ2 tan4 θ)n4
1 − ρc2[α11 + γ1 + (α22

+γ2) tan2 θ]n2
1 + (ρc2)2 = 0, (3.3.20)

which gives an equation for n1 in terms of the angle θ which defines the direction of

the wave normal.

Taking derivative of Eq. (3.2.10) with respect to
γ2n2

2

ρc2
and multiplying both sides

by n2
2 we get

2βn2
1n

2
2 + (α22γ2(n

4
2 + n2

2n
′2
2 ))− (α22 + γ2)n

2
2ρc

2 = 0, (3.3.21)

Subtracting Eq. (3.3.21) from Eq. (3.2.10) we get

α22γ2n
2
2n

′2
2 = (α11n

2
1 − ρc2)(γ1n2

1 − ρc2), (3.3.22)

which gives n
′
2, indirectly in terms of θ. Following this procedure we allows R, R

′

explicitly as a function of θ. On use of the connection

n
′

2 = n1 tan θ
′
, (3.3.23)

and using the notation

ζ = tan θ, ζ
′
= tan θ

′
, (3.3.24)

then Eq. (3.3.20) can be written as

(α11γ1 + 2βζ2 + α22γ2ζ
4)n4

1 − ρc2[α11 + γ1 + (α22 + ζ2]n2
1 + (ρc2)2 = 0, (3.3.25)

and Eq. (3.3.22) becomes

ζ2ζ
′2 =

(α11n
2
1 − ρc2)(γ1n2

1 − ρc2)
α22γ2n4

1

, (3.3.26)
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After using connection Eq. (3.3.19) and Eq. (3.3.23), Eqs. (3.3.12-3.3.18) become

R =
ζ

′
p
′
q − ζpq′

ζ ′p′q + ζpq′
, (3.3.27)

R
′

= − 2pq

ζ ′p′q + ζpq′
m1ζ

′

m
′
1

, (3.3.28)

where p, q, p
′
, q

′
are defined by

p = δα12n
2
1 + α22(ρc

2 − α11n
2
1 − γ2n2

1ζ
2), (3.3.29)

q = γ2α12n
2
1ζ

2 + (δ − α12)(ρc
2 − α11n

2
1), (3.3.30)

p
′

= δα12n
2
1 + α22(ρc

2 − α11n
2
1 − γ2n2

1ζ
′2), (3.3.31)

q
′

= γ2α12n
2
1ζ

′2 + (δ − α12)(ρc
2 − α11n

2
1), (3.3.32)

and m1ζ
′

m
′
1

is given by

m1ζ
′

m
′
1

= ζ

√
δ2n4

1ζ
′2 + (ρc2 − α11n2

1 − γ2n2
1ζ

′2)2

δ2n4
1ζ

2 + (ρc2 − α11n2
1 − γ2n2

1ζ
2)2

. (3.3.33)

3.4 Numerical Results and Discussion

Considering the special class of material we have 2β = α11γ2 + α22γ1 then the Eq.

(3.2.10) decouples in the form

(γ1n
2
1 + γ2n

2
2 − ρc2)(α11n

2
1 + α22n

2
2 − ρc2) = 0 (3.4.1)

3.4.1 Incident P wave for the Reference Configuration

For an incident P using Eq. (3.4.2), we get

α11n
2
1 + α22n

2
2 = ρc2. (3.4.2)

After using Eq. (3.4.2) in Eq. (3.3.26) we get

ζ
′
= −

√
α22ζ2 + α11 − γ1

γ2
. (3.4.3)
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For ζ2ζ
′2 > 0 following inequalities hold (α11n

2
1 − ρc2) < 0 and (γ1n

2
1 − ρc2) < 0 or

α22n
2
2 > 0 and ζ2 > γ1−α11

α22
.

Hence, in Eqs. (3.3.27) and (3.3.28) p, q, p
′
, q

′
are defined as

p = δα12n
2
1 − α22γ2n

2
1ζ

2 + α2
22n

2
2, (3.4.4)

q = γ2α12n
2
1ζ

2 + δα22n
2
2 − α12α22n

2
2, (3.4.5)

p
′

= δα12n
2
1 − α22γ2n

2
1ζ

′2 + α2
22n

2
2, (3.4.6)

q
′

= γ2α12n
2
1ζ

′2 + δα22n
2
2 − α12α22n

2
2, (3.4.7)

and m1ζ
′

m
′
1

is given by

m1ζ
′

m
′
1

= ζ

√
δ2n4

1ζ
′2 + (α22n2

2 − γ2n2
1ζ

′2)2

δ2n4
1ζ

2 + (α22n2
2 − γ2n2

1ζ
2)2

. (3.4.8)

3.4.2 Vanishing of the Reflection Coefficient R
′

From Eqs. (3.3.4,3.3.5) and Eq. (3.3.9) we get

γ2[m1n2(1−R) +m
′

1n
′

2R
′
] + (γ2 − T22)[m2n1(1−R) +m

′

2n1R
′
] = 0,(3.4.9)

α12[m1n1(1 +R) +m
′

1n1R
′
] + α22[(1 +R)m2n2 +m

′

2n
′

2R
′
] = 0. (3.4.10)

The above expressions are used to vanish the reflection coefficient R
′
. Firstly,

we note that for the angle θ = 0 or θ = π
2
, R

′
= 0. More generally it is easy to see

from the boundary conditions that if R
′
= 0 then either R = 1 (see 3.1)with

α12m1n1 + α22m2n2 = 0, (3.4.11)

or R = −1 (see 3.2) with

γ2m1n2 + (γ2 − T22)m2n1 = 0. (3.4.12)

Generally, these conditions depend on the angle of incidence and the principal stress

components. However, in the first case (of R = 1), for τ22 = 0, we get an incident
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SV wave for which α12 = α22, if the material properties allow for such a wave to

exist. It may be noted that the behavior R = 1 exists for large values and R = −1

for very small values of stress components. For the second case (of R = −1), an

incident P-wave is admissible if T22 = 2γ2 and if the material properties allow such

a wave.
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Figure 3.1: Plot of the reflection coefficients R and R
′

from Eqs. (3.3.27) and (3.3.28)

for a specific material with λ = 10, µ = 5, µ̄ = 100 and τ11 = 300.
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Figure 3.2: Plot of the reflection coefficients R and R
′

from Eqs. (3.3.27) and (3.3.28)

for a specific material with λ = 80, µ = 1, µ̄ = 1, τ22 = 0.05 and τ11 = 0.05.

From the boundary conditions, after specialized with n1 = 1 (grazing incidence)

and either of m1 = 1 or m2 = 1 we see that neither P wave nor SV wave propa-

gate parallel to the boundary and generate a wave which propagate away from the

boundary. However, only a P wave may propagate parallel to the boundary. This
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wave satisfy the boundary conditions if the properties of the material are such like

α12 = 0. Similarly, only an SV wave may propagate parallel to the boundary and

this wave satisfy the boundary condition if T22 = γ2.

Graphical representation of Eqs. (3.3.27, 3.3.28) are given in Figs (3.3-3.13) for

various specific values of the material constants. The behavior of two reflected waves

is shown. An reflected SV wave accompanies a reflected P-wave in most of the cases.
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Figure 3.3: Plot of the reflection coefficients R and R
′

from Eqs. (3.3.27) and (3.3.28)

for a specific material with λ = 5, µ = 5, µ̄ = 10 and τ11 = 2.
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Figure 3.4: Plot of the reflection coefficients R and R
′

from Eqs. (3.3.27) and (3.3.28)

for a specific material with λ = 50, µ = 50, µ̄ = 10 and τ11 = 2.
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Figure 3.5: Plot of the reflection coefficients R and R
′

from Eqs. (3.3.27) and (3.3.28)

for a specific material with λ = 100, µ = 100, µ̄ = 10 and τ11 = 2.
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Figure 3.6: Plot of the reflection coefficients R and R
′

from Eqs. (3.3.27) and (3.3.28)

for a specific material with λ = 10, µ = 5, µ̄ = 5 and τ11 = 20.
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Figure 3.7: Plot of the reflection coefficients R and R
′

from Eqs. (3.3.27) and (3.3.28)

for a specific material with λ = 25, µ = 20, µ̄ = 5 and τ11 = 20.
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Figure 3.8: Plot of the reflection coefficients R and R
′

from Eqs. (3.3.27) and (3.3.28)

for a specific material with λ = 50, µ = 40, µ̄ = 5 and τ11 = 20.
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Figure 3.9: Plot of the reflection coefficients R and R
′

from Eqs. (3.3.27) and (3.3.28)

for a specific material with λ = 1, µ = 10, µ̄ = 2 and τ11 = 100.
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Figure 3.10: Plot of the reflection coefficients R and R
′

from Eqs. (3.3.27) and (3.3.28)

for a specific material with λ = 20, µ = 40, µ̄ = 2 and τ11 = 100.
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Figure 3.11: Plot of the reflection coefficients R and R
′

from Eqs. (3.3.27) and (3.3.28)

for a specific material with λ = 50, µ = 60, µ̄ = 2 and τ11 = 100.

Out[495]=

0.5 1.0 1.5
Θ

-1.5

-1.0

-0.5

0.5

1.0

1.5
R

0.5 1.0 1.5
Θ

-0.6

-0.4

-0.2

0.2

0.4

0.6
R'

Figure 3.12: Plot of the reflection coefficients R and R
′

from Eqs. (3.3.27) and (3.3.28)

for a specific material with λ = 100, µ = 100, µ̄ = 10 and τ11 = 0.
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Figure 3.13: Plot of the reflection coefficients R and R
′

from Eqs. (3.3.27) and (3.3.28)

for a specific material with λ = 10, µ = 5, µ̄ = 5 and τ11 = 0.
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Chapter 4

Conclusion and Future Work

We study the effect of initial stress on waves compressible hyperelastic materials. In

particular, we study the problem of reflection of plane waves from the boundary of

a initially stressed half-space. It is found that for an incident P wave, one reflected

P wave and/or reflected SV wave may exist. We find the conditions under which a

P wave is reflected as only a P wave, an SV wave is reflected as only an SV wave

and the case of two reflected waves for an incident P wave.

The mathematical expressions are supported using graphs produced for various

combinations of material constants and principal stress components.

In future, we may analyze incident SV waves and carry out the study in same

manner. The discussion on the wave speed and acoustic tensor Q(n) may be ex-

tended for general expressions of initial stress τ depending on the vector n.

Finally, it is intended that this work will be submitted in very near future for

publication in a well reputed Mathematics/Engineering journal.
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