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Abstract

In this research work, we study the wave propagation in elastic materials which are
initially-stressed. This work is based on the theory of non-linear elasticity and the
theory of invariants.

Using the theory of invariants, we derived the general constitutive equations
for a hyper-elastic material in the presence of initial stress. The constitutive laws
of the material is based on the strain-energy function which also depends on the
combined invariants of the right cauchy-Green deformation tensor and the initial
stress tensor. In three dimensional case for the compressible materials, there are ten
such invariants.

The problem of homogenous plane waves in an initially-stressed compressible
half-space is considered. The basic theory of the problem is to study the reflection
of plane waves from the boundary of half-space. Using the specific strain-energy
function, we deduce the reflection coefficients and then graphically examined the

behavior of one or two reflected waves for an incident P wave.
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Chapter 1

Introduction

The research carried out in this dissertation mainly includes study of wave propa-
gation in initially stressed elastic materials. In particular, the problem of reflection
of waves is considered in an initially stressed half-space. Linearized theory is used
for constitutive equations. We use the theory of infinitesimal deformations super-
imposed on the finite deformations to obtain the incremental equations for initially
stressed deformed hyper-elastic materials. The research is based on the realistic as-
sumption that a material can be internally stressed in its unloaded undeformed (or
reference) configuration. In railway tracks, for example, an initial stress is caused
by bending of metal because of thermal expansion and/or mechanical processing
like reshaping of the metals parts. Internal stresses are imposed on compounds such
as rocks due to processes likewise heating, cooling, burial and many past structural
deformed earth crust events, etc. In Earth crust, internal and all these types of
stresses remain stored inside the material after the compounds are independent of
boundary loads. In all above discussed cases, the material is considered to be ini-
tially stressed. We can use the term initial stress in its broadest sense irrespective
of the processes that cause this stress to develop. The term pre-stress replaces the

term initial stress when there is an associated pre-strain from an unstressed con-



figuration due to an applied load. When an initial stress is present in the absence
of body forces and surface traction (applied loads) it is called residual stress, as in
the definition adopted by Hoger [1]. In the absence of loads we consider a residual
stress which maintains equilibrium in the body. Pre-stresses and residual stresses
are examples of initial stresses but they are different in nature.

In this research work, we consider an initially-stressed hyper-elastic material. For
such materials, we study the effect of initial stress on wave speed and also the prob-
lem of reflection of a homogenous plane wave from an initially-stressed half-space.
In [2] the authors (Ogden and Sotiropolus) examined the effect of a homogenous
pre-stress and finite deformation on the propagation of plane waves in compress-
ible elastic materials and also the reflection of plane wave from the boundary of
a half-space. In this research we follow the notations adopted in [2] however the
nature of various constants appearing in this dissertation is considerably different
from those in [2]. Biot [3, 4] examined the various effects of wave propagation in
an initially stressed material. Also, Tang [5] considered wave motion in an infinite
and initially stressed material medium for various special cases and compared his
results with the already found results. The existence of residual stress in an elastic
body having material symmetry was studied by Hoger [1]. For the development of
basic constitutive equations for residually-stressed materials, we refer to [6, 7, 8, 9].
The work done by Hoger [1] was followed by Man and Lu [10] and they presented a
generalized results which is much more relevant to Biot’s work.

To formulate the problem, we use the theory of invariants as developed in [11].
The effect of the initial stress present in the material is included in the formulation
through the components of the elasticity tensor which reduces to the usual elastic
constants when the initial stresses reduces to zero.

The basic concepts for this research problem are given in Chapter 2 together

with the concept of the elasticity tensor. We present the governing equilibrium



equations for finite elasticity when it depends on the initial stress. We present the
expressions for the invariants for compressible hyper-elastic material with initial
stress (7). In Chapter 2, we consider the general form of elasticity tensor which
depends on the right Cauchy-Green deformation tensor (C) as well as the initial
stress tensor (7). In the case of compressible materials, the detailed expressions for
this tensor are given which are particularized for the deformed and the undeformed
initially stressed reference configuration.

In Chapter 3, we discuss the propagation of plane waves in an initially stressed
compressible half-space. The study of the plane wave propagation in both the cases
of a homogenous compressible material in its un-deformed as well as in deformed
state is not been carried out yet. We confine this dissertation to the study in the
latter case. In this regard, We discuss the reflection of plane wave and derive the
reflection coefficients which ensure the presence of one or two reflected waves. For
instance, we consider the P (primary) waves and find that only one reflected or two
reflected waves may exist, depending on the initial stress components. This theory

is applicable to seismic waves which are used to locate the earthquakes.



Chapter 2

Basics of the Theory of Finite
Deformations in an Elastic

Material

A body B is a set and its elements can be put into one-to-one correspondence with
the points of a region B in the three-dimensional Euclidean point space. B is called
a configuration and the elements of B are called the material points. A particular
but arbitrarily chosen configuration is distinguished as a reference configuration and
is denoted by Bg. Consider that in this reference configuration the body will be at
rest and there are no outer forces present in it. Let the body B is deformed quasi-
statically from Bgr and occupies a new configuration, denoted by B¢ called as the
deformed configuration of B. We refer the readers [11, 12, 13, 14] for the basic

material covered in this chapter.



2.1 Deformation in an Elastic Material

A deformation is represented by the mapping x : Br — B¢ that carries point
X € Bg into the point x = x(X,?) in Be. Let x and X have rectangular Cartesian

coordinates z; and X 4 respectively, where i, A € {1,2,3}, with components
zi = xi(Xa,t), 4, A={1,2,3}. (2.1.1)

We emphasize that Greek and Roman letters are used for the indices associated with
the deformed and un-deformed (reference) configuration, respectively.

Let Grad, Div (grad, div) denote the gradient, divergence and curl operator in
the reference (current) configuration, i.e. with respect to X(x). The deformation

gradient tensor F is defined as
F(X,t) = Gradx = Grad x(X, ), (2.1.2)

in component form F;4 = 0x;/0X 4.

We define J as
J =detF. (2.1.3)

Let F be a tensor such that J > 0. Then the polar decompositions F are given
by

F =RU = VR, (2.1.4)

where U and V are positive definite, symmetric tensors, called the right stretch and
the left stretch tensors, respectively, while R is proper orthogonal tensor.

U and V can be decomposed in the spectral form as
3
U= Z Mu® @ u®)
k=1

3
V=> nviev®, (2.1.5)

k=1



where A\, > 0, k € {1,2,3}, are the eigenvalues called the principal stretches, and
the eigenvectors of U and V are u® and v(®, respectively. u® and v(*) are the
Lagrangian and Eulerian principal axes and ® denotes the tensor product.

In terms of the principal stretches A\, the alternative expressions for J = det F

are provided by
J=detU =detV = A\ \2)3. (2.1.6)
We also note the vectors u® and v(*) have the connection
v =Ru®,  k=1{1,2,3}. (2.1.7)
The right and left Cauchy-Green deformation tensors, C and B are defined by
C=F"F =U?
B = FF" = V?, (2.1.8)
respectively. In the formation of constitutive laws, the tensors C and B play im-

portant role , in particular through their principal invariants defined (for either C

or B) as

L =tr(C), I = %[112 —tr(C?)], Iy = det(C). (2.1.9)

Above expression can be expressed in terms of principal stretches as
L=XMN+X+X, L=XA+XNA 4+, L=AMNN.  (2.1.10)
The useful principal invariants of U are provided alternatively by
iy = tr(U), iy = %[2'12 —tr(U?)], i3 = det(U), (2.1.11)

or, equivalently, in terms of the principal stretches
il == )\1 + )\2 + )\3, ’ig - )\2)\3 —+ )\3)\1 -+ )\1)\2, ’ig == )\1)\2)\3. (2112)

The connections between [, and i,,n = {1,2,3} follow from the above expressions

and are given by

I =i — 2iy, Iy = i3 — 2iyis, I3 =1i;. (2.1.13)



2.2 Motion in an Elastic Material

The rate of change of position of material particle X is the velocity v of a material
particle X is defined by

vV=x= %X(X,t), (2.2.1)

The acceleration a of a material particle X is

62
a=v izﬁx(X,t). (2.2.2)

In each case a superposed dot denotes the material time derivative.
The velocity v is a function of x and ¢, we define the velocity gradient tensor,

denoted by L as
L = gradv, (2.2.3)

which has components form with respect to the basis {e;}

(%i
L — 22 92.2.4
J 8$j ( )
Using the identity we obtain
Gradv = (gradv)F, (2.2.5)
we can write Eq. (2.2.5) by using Eq. (2.2.3),
Gradv = LF. (2.2.6)
Since v = x then we have
.0 -
Gradx = aGradx =F. (2.2.7)
Hence from Eq. (2.2.6) and (2.2.7), we conclude the important connection
F =LF. (2.2.8)



The derivative of the determinant of a tensor we use the result, i.e.

%(det F) = (det F)tr (F'F) = Jtr (F'F), (2.2.9)
using the Eq. (2.2.8), we have
%(det F) = Jtr(L), (2.2.10)
or, we have
J = Jtr(L) = Jdivv, (2.2.11)

where the terms used in above equation such as tr(L) = L; = dv;/dx; = divv.
Here, div is the divergence operator in the deformed configuration. i.e. with respect
to x and divv measures the rate at which the volume changes during the motion.

Also the fact that, FF~! = I, and therefore

F-l=_—F 'FF'=_-F L. (2.2.12)

2.3 Cauchy Theorem-Field Equation for the Mo-
tion of the Continuum

The term stress is used to measure the intensity of force, either on the or within the
bounding surface of a body subjected to loads. Using the concept of force we have
one of the most important theorems which is Cauchy’s Theorem and stated as:

Let (t,b) be a system of surface and body forces for a body B during a motion.
Then a necessary and sufficient condition that the momentum balance laws be satis-
fied is that there exists a second-order tensor field T, called the Cauchy stress tensor,

such that

e for each n unit vector and T is independent of n

t(n) = Tn; (2.3.1)



e Spatial tensor field T is symmetric;
o T satisfies the equation of motion
divT + pb = pv, (2.3.2)

where b is the body force.

2.4 Stress Tensors and Equilibrium Equations for
a Elastic Materials

We define a stress tensor S that gives the measure of force per unit area in the
un-deformed configuration.

The elements of surface area are related by
nda = JFTNdA. (2.4.1)

This result is known as Nanson’s formula which describes how elements of the surface
area deform and it also applies to area elements of an arbitrary shape. Where n and
N be unit normals, and the surface area elements are da and dA in the deformed
and reference configuration, respectively.

Using the Nanson’s formula Eq. (2.4.1) the traction t(n) on the area element da

in the current configuration as
tda = Tnda = JTF 'NdA = STNdA, (2.4.2)
where the first Piola-Kirchhoff stress tensor ST is defined by the expression as
ST = JTF 7. (2.4.3)

Therefore, the nominal stress tensor (second order tensor field) S also referred as

the engineering stress is defined as

S =JF'T. (2.4.4)



The nominal stress tensor satisfies the equation of motion
DivS + p.b = p, X, (2.4.5)
and in general the nominal stress S is not symmetric but holds the connection
FS = STF7, (2.4.6)

where Div is the divergence operator in the reference configuration. We are con-
sidering the case when no body forces are acting which reduces Eq. (2.4.5) to the

form

DivS = p,X. (2.4.7)
In the deformed configuration Eq. (2.4.7) is of the form

divT = pv, (2.4.8)

Egs. (2.4.7) and (2.4.8) can be expressed in the components form as

0S i _
= 0 Xi, 2.4.9
ox, ~ X (2.4.9)
and
oy
Y — o, 2.4.10
oz, " ( )
respectively.

2.5 Initial Stress in a Material

Generally, it is assumed that the reference configuration By is stress free but in
many cases there may be an initial stress present in it. This may be induced in
the case of biological tissues, by some manufacturing process, be generated by the

process of growth, adaptation or remodeling.

10



In this dissertation the term initial stress is used in the broadest sense regardless
of the process that causes this stress. When there is an associated pre-strain from
an unstressed configuration due to an applied load then the term prestress replaces
the term initial stress. However, when an initial stress is present in the absence of

applied loads called residual stress according to the definition given by Hoger [1].

2.6 Hyperelastic Materials

An elastic body is a Green elastic material or a hyperelastic if the nominal stress

A

S(F, X) is the derivative of a scalar function W (F, X).W (F, X) represents the work
done (per unit volume at X) by the stress in deforming the material from B, to B;
(i.e from I to F) and is independent of the path taken in deformation space: see

[15), i.e.
oW (F, X)
oF

where D is the derivative with respect to F. The scalar function W is the strain-

S = S(F,X) = DW(F,X) = (2.6.1)

energy density function.
In terms of the strain energy function W, Eq. (2.6.1) gives the nominal stress.
Using Eq. (2.4.4), the Cauchy stress T is given by
ow

T=J"F_. 2.6.2
5F (2.6.2)
In component form, the nominal and Cauchy stresses are represented as
ow ow
Spi = ==, Ty =J 'Fg. 2.6.3

It is convenient to assume that W is measured from the reference configuration, so
that
W(I) = 0. (2.6.4)

If the reference configuration is stress free then

%—2‘/(1) —0, (2.6.5)

11



for an unconstrained material.

2.7 Incremental Equations

Let x, with x = x(X), be a time-independent deformation and x, with x =
X (X,t) be a finite time-dependent deformation which is “close” to x. The dis-

placement, which can be thought of as a perturbation of x, can be written as
x=x —x=x(X,t) - x(X,t) = x(X), (2.7.1)
and the gradient which is exact
Grady = Grad x — Gradx = F. (2.7.2)

Consider the linear approximation of the stress tensor S. In its exact form the
incremental stress tensor S for an unconstrained material is

e o OW 0w
S§=8—8= T (F) - S (F), (2.7.3)

having linear approximation

S = AF, (2.7.4)

where A is the fourth order elasticity tensor, defined by

A O*W(F,X
A(F,X)[A] = DS(F,X)[A] = % A, (2.7.5)
for each fixed material point X (see, for example, [14]).
The component form of Eq. (2.7.4) is
Sai = Aai,@jp}ﬁa (276>

where Fj3 = i, 5. Following the equation of motion Eq. (2.4.5) for X" and subtract-

ing its counterpart equation for y, we obtain
DIVS + prl.) = er;tta (277)

12



where b and y are the incremental forms of the body force b and y, respectively.

The updated elasticity tensor Ay, in terms of A, is
.AOijkl = Jlez’aFkﬁAajﬁl- (278)

For the derivation of Eq. (2.7.8) see [15]. The updated nominal stress for an uncon-

strained material given by
Sy = AyF, = AT, (2.7.9)

where Fy = T' is the updated incremental form in the reference configuration. In

component form, Eq. (2.7.9) can be written as
SOpi = Aopigitiqs (2.7.10)

. The updated counterparts of Egs. (2.7.7) are
DivS 4 pb = pu, (2.7.11)

where p is the current density.

2.8 Invariants for an Initially-Stressed Compress-

ible Material

We consider an initially stressed homogeneous hyper-elastic material for which the
strain energy function W per unit reference volume depends on the deformation
gradient F' and the initial stress 7. By objectivity we can regard W as a function
of F through the right Cauchy-Green deformation tensor. Thus W = W (C, ).
When subjected to a rotation Q in the reference configuration, C and 7 change

to QCQT and QTQT, respectively. The strain energy is invariant under this change

13



if it depends on the ten invariants I, ..., [1o of the two tensors C and 7 defined by

L=u(C), h=g}-u(@)], I=det(C),

L= (), = %[1} Ctr(r?)], I = det(r),

I; = tr(CT1), Iy = tr(C*r), Iy = tr(CT?),

Ly = tr(C*7?) (2.8.1)

Using Egs. (2.8.1), consi

der that the initial stress to be independent of the defor-

mation, the first derivatives of these invariants are given by

ol 0l 013 1
= 2F; — =2 F;, — F; — =2[3(F ;
aF;'a 1009 8177;04 (077 26 Cow Z’Y)’ aﬂa 3( )am
oly _ 0 0I5 _ 0l _ 0
an’a 7 8F1ioz ’ aE ’
ol o1,
8F7 = QTa'yE'ya aTg = 27—&6067Fz"y + 2Ca57-6'yFi'ya
ol Lo
T 272 Fyy, oF, = 2725Csy Fiy + 2Cas75, Fiy. (2.8.2)
from which we obtain the expressions
ol 0l
Fpam = 2By, FpaaTia = 2(1131)2' - ququ);
0l oly 0I5
Foo—7=20L1, F,,— =0, o =0,
POF, 00 TR, " OF,
0l ol
Fa—:07 Fa_zzzia
PYOF;, "OF, ?
01y 0ly _
Fpa@? = 2(2quqi + quzqi)? FpaaT = 22pa(B 1)aq2qz’v
0l _ _
Fpaﬁ = 2[Zpa(B™agZey Byi + BpaZag(B™) ¢y Bril- (2.8.3)

Evaluating the Eq. (2.8

derivatives as

o5

= 251'047
OFj,
0lg

=4 ats
OF,

.2) in the reference configuration, we have the non-zero

8[2 813 aI’?

aF’ia 51017 aFia (52017 aﬂa Tai

819 2 8[10 2

8Fz 27—0427 aE TOKL (2 8 )



Now consider that the strain energy function W is a function of Iy, I, ..., I;5. Then
oW =~ I
— = W,—, 2.8.5
oF = 2" F (283)

where W, = 0W/0I,.
By definition, the nominal stress tensor S for an initially stressed unconstrained

i.e a compressible material is given by

S = 2W F! 4+ 2Wy(LFT — F'B) + 2WsF ! + 2WrrFT
+ 2Ws(TCF" + CTF") 4 2Wyr?F" 4 2Wyo(7>CF” + CT?F").  (2.8.6)

The Cauchy stress tensor T for an initially stressed unconstrained material is given

by

JT = FS = 2W,B + 2W,B* + 2W5 51 + 21X + 2 (EB + BY)
+ 2WoEB ™'Y 4 2W,(¥BT'EB + BEB™'Y), (2.8.7)

where ¥ = FrFT and B* = [,B — B2.
If the above expression is evaluated in the reference configuration, we get the

expression for 7 as
T = 2(W, + 2Wy + Wa)I 4 2(Wy + 2We)T + 2(Wy + 2Wio) T2, (2.8.8)
which suggests to set

Wi+ 2Wo+ W5 =0, 2(W;+2Ws) =1, Wy+2W;5=0. (2.8.9)

15



2.9 The Elasticity Tensor for an Initially-Stressed
Hyperelastic Material

Using Eqs. (2.8.2), the non-zero second derivatives of the invariants are

0%
= 2504 51”7
aEaFJB BYij
0?1
2 = 2110,40i; + 4F o Fjg — 2F;3Fjo — 2Cap0i; — 2063Bij,  (2.9.1)
aFiaFJB
0%
= AL(F Y 0i(F Vi — 2I3(F Y oi(F Vg
aEaF]IB 3( ) ( )ﬁ] 3( ) .7( )B’
0*I;
— 2 @ 57:'7
@EQFJB Tap J
0%Iy
ZQQBZ 2 Ca61 QC aai' 26& El
8FmF]5 Tapbij + (T)ﬁ J+(T),B i+ Bij
+ 2(7F") o Fig + 2(TF") i Fja,
0%,
=2 2 « 51"7
9%1
OFoFi5 2(1%)apBij + 2(T%C)agbi; + 2(CT%)apdis

+ 20,5 (FT2T)i5 + 2(T2FT) o Fig + 2(T*FT) 3, Fo. (2.9.2)

from the above expressions we obtain

0%
Fpanﬂm = 2Bp404,
ot g
01
FpanB—2 = 201 Byy0ij + 4By Byj — 2BigFjp — 2By Bygdi;
OFiaFjp
, — 2By, Bij, (2.9.3)
0-1
Fpanﬁﬁ = 4]3(5”,5](1 - 2[36iq5jp7
il g
0*I;
Fp‘“FqﬁaF-—Fﬂ = 2Ypg0i5,
ot g
%Iy
FpanB@F—Fg = QquBij + QZp'vaq5ij + 2Bmzvq5ij + 2Eiijq
il g

+ 2%, Biq + 2X4:Bjp, (2.94)

16



for convince in calculation, we drop the non-linear terms. In the reference configu-

ration Eq. (2.9.1) reduces to

0%,
= 2604 5i'7
OF ;o Fig o
0%1,
= 2504 51 462'045' - 251 (S'Q,
aFijﬁ 80ij + JB BYj
0%
— 48,05 — 20004,
8EaF]ﬁ B iVB
0%I;
=2 o 52"7
8FiaF1jﬁ Tap J
0%Iy
aEaij/B = 67'04551']' + 27—@']‘5@6 + QTaj(Siﬁ + 27’51'(5]‘0“
0%1,
=2 2 « 5i'7
0%1
0 = 6(T2)aplij + 2(T2)ij00s + 2(T)a;0is + 2(72) 500 (2.9.5)
OFia Fig

where 3 = 7 = S in the reference configuration. From Eqs. (2.8.5)

0? al 1
= = /r.s 2. .
A OFOF Z:: 8F8F 8F (296)
where W,, = 0°W/0I,.01,.
The updated elasticity tensor in its component form is given by
0?1, ol,. 0I;
A(inqj (ZW FpanﬁaF aF +T; WTSFpanBaEa aF}B> : (297>
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Therefore, taking N = 8 in Eq. (2.9.7), we have for a compressible material

J Aopigi = 2(W1 + 11W2)qu(5,-j + 2W2[2Bpquj — BiyBjp — 0:;Bpy By
— quBij] + 2W3]3(25ip5jq — 6ig0jp) + 2W73,40,5 + 2Wy [quBij
+ Epy Byg0ij + BpyXagbij + XijBpg + Xpj Big + X4 Bjp| + 4W11 B3y B
+ 4Wso (11 By — BiyB.p)(11Bj; — BjsBsg) + 4W33[§5ip(5jq
+ AW1s[211 B, Bj, — BipBjsBsg — BjyBiyBop) + 4Wi313(Biy0,4 + Bjgip)
+ AWz (BipZjq + BjgXip) + AWis[Biy (255 Bsq + BjoXsg) + (XiyBap
+ BiyXop) Bjg] + 4Wasls[11(Biydjq + Bjgdip) — 0ipBjsBsq — Biy Bypdijg]
+ AWar[(1iBip — Biy Byp)Ejq + Zip(11Bjq — BjsBsq)] + 4Was[(11 By
— BiyByp) (86 Bsg + BjsXsq) + (Xiy Byp + BinXap) (11 Bjg — Bjs Bsg)]
+ AWs713[04p 54 + 054 0p) + 4Was I3[0y (2,5 Bsg + BjsXsq) + (Ei’yB'yp
+ Bivgw)éjq] + AWz Xip2ijq + 4W78[Eip(2j5B5q + Bjézéq) + (ZMBWP
+ BiyEp)Ejq] + 4Wss (843 Byp + BinXap) (85 Bsg + BjsXsg), (2.9.8)

which is a expression already noted in [11].

We consider a compressible material the elastic response of which is described
by a general strain energy function W(C, 7). Let this material be subject to a
general pure homogeneous pre-strain such that Aj, Ay, A3 are the principal stretches
corresponding the principal axes x1,xs and x3 respectively. In the refence configu-
ration F =T and use of Eq. (2.8.9) in Eq. (2.9.8), the components of the elasticity
tensor C, in the reference configuration for an unconstrained compressible material

are given by Cpig;

Cpigj = Aopigi = 1(0ij0pg + 0ig0jp — Gipjq) + 20ip0jq + 0ijTpg + t3(0ijTpq
+ OpaTij + 0iqTip + OjpTiq) + a(0ipTjq + 0jqTip) + a5TipTjq.  (2.9.9)
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Here, we have defined

ap =2(W1 + Wa), g =2(Wy + W3) + 4(Why + AWio + 2Wi3 + 4Wag + 4Was + W),
az =2Ws,  ay = 4(Wir + 2Wig + 2Wor + 4AWag + Wiy + 2Wss),
ay = 4(W77 + 4W78 + 4W88)7 (2910)

evaluated in the reference configuration. When 7 = 0, Eq. (2.9.9) gives
Crigji = 01(Opgdij + dighjp — Gipdjq) + 201,054, (2.9.11)

which is the classical expression of fourth order elasticity tensor in the linear theory
of elasticity. Following from Eq. (2.9.8), various expressions for elastic modulli in

this case are given by, for 7 # j,

J Agiiii = 2WIA? + 2Wo X2 (1) — A2) + 2Wals + 2Wr Xy + 12We A28y,

+ AW 4 AWM (I — AD)? + 8Wi A (11 — A7) + 8Wizl3\

+ 8WirAZE s + 16W g\ Sy + 8WosIsAZ (I} — A2) + 8War A2 (14

— ADy + 16Woghi (I — Ay + 4Was I3 4 8War 3%y

4+ 16Wag IsA28; + 4Wrr X2 + 16WigAZ82 + 16Weg A X2, (2.9.12)
J Agii; = AWaAINS + AWs 15 + AW AZNT + AW AN (I — A2) (L1 — AY)

+AWRAIAY (21 = ] — A3) + AW T3 (A7 + X3) + AW (A7S;,

+ AISS5) 4 8WisAIAY (Sii + ;) + AWas 3[L(A] + A7) — Af

— N+ AWy [N (I — A))E55 4 X (1 — X)) + 8WasA?AZ[(1

— M) + (I — X)Si] + AWss I3 + AW I3(Si + 5j5)

+ 8Wss(A7Es + AJX55) + AWerXiX; + 8Was (A 4+ A3) 455

+ 16WssA? A3 5555, (2.9.13)
J Aoijiz = 2WIAT + 2Wa(ILA] — APAS — AY) 4 2Wr S + 2Ws(A35;

+ 2XIT55 4 ATS) + AW SE + 8Wig (A 4 A7),

+ AWss (X7 + A5)°%]

150

(2.9.14)
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J Avijzi = —2WaNi X5 — 2WsIs + 2Ws( XISy + ATS5) + AW S,

+ 8Wrs(A + A2)SE, + AWss (A7 + A3)°%7,
J Aijzi = 2[Wr + Ws(3X3 + A7) + 2Wir A2 + 2Wis A2 (A + %)

+ 2War N3 (11 — A3) 4 2Was A3 (11 — A3) (A + A3) + 2War 1

+ 2WasI3(A] + A5y + 4[War + Was(3A7 + A7)

+ 2Wes A2 (A + X9)] 84555, (2.9.16)
J Aviiij = 2[2WA? + 2Wig X7 + 2WishZ (A7 4+ X3) + 2War A7 (I — )

+ 2Was A (Iy — X)) (A7 + A7) + 2Warls 4 2Was I (A7 4 A2)]%y;

+ AWrr + Wrs(3A? 4+ A7) + 2Wes A7 (A7 + A2)]55;50, (2.9.17)
J Aviing = J Aviije = J Aojrii = J Aowjii = AWir Xl + WisAZ (A7 + A7)

+ WaordP (I = A7) 4+ Washi (I = A7) (A + A7) + Wi I3

+ Wasl3(AZ + A0S + 4[War + Wis(207 + A2 + A7)

+ 2Wss A7 (A] + A)IE 502, (2.9.18)
JAvijri = JAvijie = JAoikji = JAokii; = 2WAIEjp + 4[War + Wis(2A7

+ AT+ L) A Was(A7 + A5 (A + A0)]Z45 S, (2.9.19)
J Aviksie = J Aojrie = 2[Wr + W (A7 + X7 + X)]8i; + 4[War + Wrs(A]

+ A3+ 207) + Was (A + M) (A3 + A0S (2.9.20)

(2.9.15)

Let 7, (¢ = 1,2,3) denote the normal initial stress components and 7;;,1 # j # k,
(1,7 € {1,2,3}) denote the shear components of the initial stress. When \; =1, i =
1,2,3 and ¥;; = 7;; then Eqgs. (2.9.12-2.9.20) reduces in the reference configuration

Aoiiii = 2Wh + 4Ws + 2W3 + 2WoTi; + 12Wery + 4W11 + 16Way
+ 16Wig + 8Wi3 + 8WirTi; + 16WigTi; + 16Wa3 + 16War T,
+ 32WasTs; + 4Wss + 8WrTis + 16WssTis + 4AWerr)h + 16Wosts,
+ 16WgsTs, (2.9.21)
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AOiijj = 4W2 + 4W3 -+ 4W11 + 16W12 -+ 8W13 -+ 8W17(7'ii + Tjj)
+ 8W18<Tii + Tjj) + 16W23 + 8W27<Tii + Tjj) + 16W28(TZ'2‘ + Tjj)
+ AWss + AWsr (15 + 755) + 8Ws (73 + 755) + dAWerTiiTy;

+ 16WrsTiTj; + 16Wss iy, (2.9.22)
Aogiji = 2W1 + 2Wa + 2Wery; 4 2Ws (373 + 755) + AWerr)s + 16WrsT),

+ 16WssT;, (2.9.23)
Agijji = —2Wo — 2Ws + 2Ws(1i; + 755) + 4W777'2-2j + 16W787'i2j

+ 16WesT), (2.9.24)
Aoijij = 2[Wr + 4Wg + 2Wy7 + 4Wig + 4Wor + 8Wag + 2Wsy

+ dWss]Tij + 4[Wor + 4Was + 4Wes] 7575, (2.9.25)
Aoiiij = 2[2Ws + 2Wi7 + AWy + AWy + 8Was + 2Wsr + AWss|T;;

+ A[Wrr + 4Wrs + AWss| 735731, (2.9.26)
Aviir; = Aviijie = Aojric = Aokjii = 4Wizr + 2Wis + 2War + 4Wog

+ War + 2Was]Tjn + 4[War + 4Wrg + AWes| 71 Tii, (2.9.27)
Aoijki = Aoijit = Aoikji = Aokiij = 2WsTjr + 4[Wrr + 4Wrg

+ AWss |7 Tik, (2.9.28)

Aoirie = Aojri = 2[Wr + 3Ws]7i; + 4[Wer + AWeg + AW | i Tji, (2.9.29)
When 7 = 0 then Egs. (2.9.21-2.9.29) become

Ciiii = 2W1 + 4Wo + 2W3 + 4W11 4+ 16Wag + 16W1o + 8Wi3 + 16Wos

+ 4Ws3, (2.9.30)
Ciijj = AWy 4+ 4Ws 4+ 4W51 + 16Wig + 8Wi3 + 16Wag + 4Was, (2.9.31)
Cijij = 2W1 + 2W,, (2.9.32)
Cijji = —2Wy — 2Ws, (2.9.33)
Cijji = Ciiij = Ciitj = Cijii = Cirjre = 0, (2.9.34)

which when used in appropriate strain energy function from the linear theory of

elasticity, can reduce to the expression in the classical theory.
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Chapter 3

Propagation of Plane Waves in

Initially-Stressed Elastic Materials

In this chapter, we study the phenomenon of wave propagation in an initially stressed
compressible material. Using the theory of non-linear elasticity presented in chapter
2 and the theory of invariants, we derive the general constitutive equations for a
hyper-elastic material in the presence of initial stress. Here we follow the approach
as in [2]. The constitutive law of the material is based on a strain-energy function
(defined per unit reference volume) which in turn depends on the combined invari-
ants of the right cauchy-Green deformation tensor and the initial stress tensor. For
a compressible material, there are ten such independent invariants in the general
three-dimensional case. The effect of initial stress is studied on the wave speed of

homogenous plane waves in a compressible half-space.
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3.1 The Effect of Initial Stress on the Propaga-
tion of Homogenous Plane Wave in a Homo-
geneously Deformed Infinite Medium

Consider an initially stressed medium with initial stress 7 whose elastic response is
characterized by the strain energy function W(C, 7). We consider incremental mo-
tions in an infinite medium subject to homogeneous deformation and homogeneous

initial stress. The equation of motion for a compressible material is given by

Aopiqjljpg = Plit; (3.1.1)

where p is the density of the material in the deformed configuration.

Fori=1

Aori11u 11 + 2A02111u1 12 + Ao2121U1,22 + Aor112U2. 11

+(Aoni2z + Aozi12) U212 + Ao2e21tz.22 = pUn s, (3.1.2)
for i =2

A01112U1,11 + (A01122 + A02112)U1,12 + A02221U1,22

+Aoi212u2,11 + 2A01220u2,12 + Ao2202U2 22 = pus - (3.1.3)
Here we use a connection
Aoijji = Aoiizi = Aoijij — Tiis (3.1.4)

which can be easily verified by using Eq. (2.8.7) and Egs. (2.9.12-2.9.20). After
using the above connection, Eqgs. (3.1.2) and (3.1.3) reduces to

a1y + 281Uz 11 4 Battg 12 4 Oug 12 + Yo 02 + Batio 22 = pU 4, (3.1.5)
Brur 11 + YiUa11 + 0ur 2 + 284U 12 + Batin 20 + ool 29 = pUa iy, (3.1.6)
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where aq1, aog, 71,72, 0 are material constants and , ¢ indicating differentiation with

respect to t and

i = JAviiii, P = JAoiiz, B2 = J Ao,
Bs = JApa21, Bi=JAo1222, 71 = JAo1212,
Yo = JAp121, 0= aqg + 2 — The = cia + 71 — Th1. (3.1.7)

Let we assume that 7;; = 0,7 # j which implies ¥;; = 0,7 # j so that 8; = B, =
Ps = B4 = 0 then Egs. (3.1.5,3.1.6) reduce to

Q1111 + Oug 2 + Yol 22 = PU g, (3.1.8)

MU211 + OUL 12 + Qoo 0o = PUsg . (3.1.9)

On elimination of either u; or uy from Eqgs. (3.1.8) and (3.1.9) it is seen that u; and

uy each satisfy the same equation, namely

2
anitiai + (oo + 7172 — 67) ;1122 + Q22U 2220

= plagr + )i + p(oaz + 72) Ui 200 — p2ui,tttta (3.1.10)

for i € (1,2).

Equation (3.1.10) seems to be exactly of the form of Eq. (2.7) of [2]. However the
two equations are entirely different in nature as the various material constants in
this case depend on the initial stress. Taking the special case of 7 = 0 we get the

same values of the various constants for an isotropic material as in [2].

3.2 Homogeneous Plane Waves

Consider an incremental plane wave of the form

(ur,us) = A(my, my) explik(nizy + noxg — ct)], (3.2.1)
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where £ is the wave number and c is the wave speed, (n1,n5) are the components of
the wave normal vector, (mj,ms) the components of the polarization vector and A
is an arbitrary constant giving the measure of the amplitude of the wave.

Using Eq. (3.2.1) in Egs. (3.1.8) and (3.1.9) gives the propagation condition

(propagation equation), for a compressible material
Q(n)m = pc’m, (3.2.2)

where n = (ny,n2), m = (my, my) and Q(n) is the so-called acoustic tensor (see,

for example, [14]). It depends on n and is defined in its component form as

Qij (n) = AOpianpnq~ (323)
2 2 2 2
anny + 252”1”2 + Y2n3 ﬁml + 6”177/2 + 53n2
Q(n) = ) ) ) ) (3.2.4)
ping + oning + [3n; mng + 2Bsming + agans

For a particular choice of n it determines possible wave speeds and polarizations
corresponding to plane waves propagating in that direction. The wave speeds are

determined by the characteristic equation
det(Q(n) — pc’I) = 0, (3.2.5)

where I is the (two-dimensional) identity matrix, then the above equation can be

written in matrix form as follows.

det( Qu Qo — pc? b ) =0, (3.2.6)

Q21 Q22 01

From Eq. (3.2.6) we obtain an explicit quadratic for pc?, namely

(pc*)? = [(Qu + Qa2)]pc® + QuQaz — Q12Qa =0, (3.2.7)

where

Qu = 041171% + 2B9n1ng + 72”%; Q12 = 5171% + Snyny + 53”3,
Qa1 = Bini +0nany + B3ns, Qoo = mni + 2B4ning + anj. (3.2.8)
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Since we assumed that 7;; = 0,7 # j which implies ¥;; = 0,7 # j so that 8, = f, =
B3 = 4 = 0 then Eq. (3.2.8) reduce to

Qu = 011171% + 727137 Q12 = Q21 = 6nng, Qo = 71”% + 0422713' (3.2-9)

Equivalently, by substituting Eq. (3.2.1) into Eq. (3.1.10) we obtain an explicit

quadratic for pc?, namely

(pc®)? = [(a11 +71)nf + (@22 + y2)n3lpc® + annyint + 28ning
+ Qoyany = 0, (3.2.10)

where
26 = aurag + Y2 — 0% (3.2.11)

Equation (3.2.10) yields two positive solutions for pc? if and only if the strong

ellipticity inequalities hold. These inequalities is followed from [2] which are
a;; >0, ap >0, >0 >0 (3.2.12)
and
B> —(anrammnye) . (3.2.13)
From Eq. (3.2.2) we also have
my = &my, (3.2.14)
where

2 2 2
_pct —auni —Yen; Onins

§

= 3.2.15
dnqyns pc? — yn? — aipan?’ ( )

Equation (3.2.15) is an alternative statement of Eq. (3.2.10).

We may rewrite Eq. (3.2.10 as a quadratic for n? by using n? + n2 = 1. Thus,

(a1 + aseys — 28)n7 + [28 — 2a0970 — pc®(animn) + pc*(aseys)]nd
+(aga — pc?) (72 — pc?) = 0. (3.2.16)
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From above equation we see that if material properties are such that
20 = anm + a2, (3.2.17)

then Eq. (3.2.15) may be simplified to give

(@22 — p?) (72 — pc®) — (a1 — pc®) (1 — pe?)|ni
= (agy — pc®)(y2 — pc?). (3.2.18)

In general, Eq. (3.2.2) does not admit pure longitudinal or pure transverse waves.
Exceptions are as follows.

(a) Longitudinal waves. A longitudinal wave may propagate in a principal direction
with speed given by pc? = ayy for ny = 1 or pc? = gy for ny = 0. Using Eq. (3.2.2)
where m = n, a longitudinal wave may also propagate in a direction defined by

0422—72—5
Qi+ ag — 7 — 72 — 20

(3.2.19)

2 _
nl_

with wave speed given by

p? — 0z = (1 +8)(2 +9) (3.2.20)
a1t an—7——20 B

The existence of such a wave requires, in particular, that the inequality holds
(@11 — 71 —0) (g2 — 72 — 6) > 0. (3.2.21)

(b) Shear waves. As in (a) a shear wave may propagate in a principal direction. In
this case the wave speeds are given by pc? = 7, for ny = 1 or pc? = 7, for ny = 0.
For m = —n, using Eq. (3.2.2) a shear wave may also propagate in the direction

defined by Eq. (3.2.19), but with speed given by

pc? = (a11 — 6)(aze — ) — N7 (3.2.22)
1+ — Y1 — Y — 20 o

The results obtained in Eq. (3.2.19-3.2.22) were obtained in [15] and, more recently,
in [16]; see also [17]. Cases (a)and (b) apply in respect of a general form of strain-

energy function.
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The strong ellipticity condition, for an arbitrary choice of non-zero m and n for

compressible materials in deformed configuration is given by
Qijmim; = Aopiginpyngmym; > 0, for all non-zero m, n. (3.2.23)

Taking the scalar product of Eq. (3.2.2), we find

pCQ = [Q(n>m] cm = AOpianpnqmimj~ (3224)

The above equation holds for the compressible materials. The strong ellipticity
condition Eq. (3.2.23) thus guarantees positive values for pc?. However, ¢ can be
either negative or positive.

Using Eq. (2.9.8) in Eq. (3.2.3), we get for the compressible material

Q(n) = [2(Wy 4+ Woly)B™ — 2W, B2®) 4 oW, 5™ 4 AWy (S B) ™I
— 2(W,B™ — Wex ) B + 2W5 B + 2(Wsls + 2WssI2)n @ n
+ 2(Way + 2Wiy + 4Wi51)Bn @ Bn + 2(Ws + 2W3;)(Bn ® n
+ ¥n ® Bn) + 4Wy»B*n ® B'n — 4WW15(Bn ® B’n 4+ B’n ® Bn)
+ 413(Wi3 + Wasly)(Bn® n+n ® Bn) + 4W5[Bn ® (¥B
+ BX)n + (B + BX)n ® Bn] — 4Wy3/3(n ® B*n + B*n ® n)
+ 4Wy(B'n® ¥n+ ¥n ® B'n) + 4Wy[B'n® (¥B + BX)n
+ (¥B+ BY)n ® B'n] + 4W3;[3(n ® ¥n + ¥n ® n)
+ 4W3s3in ® (¥B + BY)n + (¥B + BYX)n ® n]
+ AW 3n @ ¥n + 4Wxs[E¥n ® (¥B + BX)n
+ (B + BX)n ® In] + 4Ws(IB + BY)n ® (XB + BX)n, (3.2.25)

where we have defined B®™ =n-Bn, 2™ =n-Xn, B2® =n-B?n and (XB)™ =

n - XBn. Here we use the same notation as given in [11].
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In components form Q(n) is defined as

Qi;(n) = 2(W, + Wol,) B™ — 2W, B2™ 4 21,2 4 4 (X B) ™15
— 2(WoB™ — WX ) By + 2Wy B™Y, 4 2(Wals 4 2WssI2)nn,
+ 2(Wy + 2Wyy + 4Wioly) Bio Bajning + 2(Ws + 2Wi7)[BiaSa;
+ Yo Baoj|ning + 4Was (I, Bij — BiaBa;)(I1 Bij — BiyByj)nin;
— 8Wi3Bio Bay Byjnin; + 81s(Wis + Wasly) Byyning + 16Wis[Bi; (Lia Ba;
+ BiaXaj) + (ZiaBaj + BiaXaj)Bijlnin; — 8WasI3Bio Bajning
+ AWor (11 Bia — BiyBya)Xaj — (Bia(l1Baj — BayByj)))nin;
+ 4Was(I1 Bij — BiyBy;)(ZiaBaj + BiaYaj + SiaBaj + BiaYa;) (11 Bi;
— By B.;))nin; + 8War IsXnin; + 4Wagls((ZiaBaj + BiaXa;
+ YiaBaj + BiaXa;)nin; 4+ 4WerBia X 1:in;4Was [Si5 (Zia Baj
+ BioYaj + SiaBaj + BiaYa;)Xijlnin; + 4Wss(LiaBa;
+ BiaYaj)(ZiyByj + Biy X)), (3.2.26)

In the absence of shear initial stress the above expression reduces to

Qi;(n) = 2(W, + Wol,) B™ — 2W, B> ™), — 2W, B®™ By; + 2(Ws 15
+ 2Was I3 nin + 2(Wy + 2Wiy + 4Wiol1) Big Bajning + 4Wao (I, By
— BiaBaj)(I1Bij — BiyBj)nin; — 8WiyBio Bay Byjnin; + 8I3(Wis
+ Wasly)Bijning — 8Wagl3 Bio Bojnin, (3.2.27)

In the reference configuration, B2™ = B®™ = 1, B*™ =2 and (XB)™ = 700 we

have

Qn) = (a1 + (1 + a3)T™) I+ awn ®@n + ayr
+ (a3 + as)(n®NT + TN ®N) + 5T @ TN, (3.2.28)
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where

o] = 2(W1 —+ WQ),
Qg = 2(W2 + Wg) —+ 4(W11 + 4Wio + 2Wi3 + 4Woo + 4Wos + ng),

Qg = 2W8a
ay = 4(W17 + 2W18 + 2W27 + 4W28 + W37 + 2W38),
a5 = 4(W77 + 4W78 + 4W88)- (3229)

In components form Eq. (3.2.28) is defined as

Qiy(n) = (ar + (1 + as)7™)d;; + asnin; + g
+ 2(as3 4 au)mijning + o5 (T);min;, (3.2.30)

Since we assumed 7;; = 0,7 # j, implies ¥;; = 0,¢ # j then above expression reduce

to

Qij(n) = a1;; + asnyn;, (3.2.31)

3.2.1 Specific Strain Energy Function W for an Initially-

Stressed Compressible Materials

We consider a compressible material whose elastic response is characterized by the

strain energy function W(C, ) given by

_ 2
(I3 L+ 1= 3) + (A + S (s — 1)°

(I — I)* + %(17 — L), (3.2.32)

W:

NN

_|_

where u, A are Lame’s parameters, as appeared in the classical linear theory of
elasticity and i is a material constant with dimensions of (stress)™!. The above
model is motivated through the definition of a Neo-Hookean linear elasticity model.

When 7 = 0, Eq. (3.2.32) behaves nearly like Neo-Hookean classical solid. Using Eq.
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(3.2.32), in the deformed configuration, the required derivatives of W with respect

to various invariants are

Wl = H[{;2/37 W13 = 1155/37

2 3
-2 __ 2
Wy = g(?fg B+ 1) +200+ (I = 1),
ol 2 1
Wiy = ?“13 V2N G, W= il = L) - 3,
1
W7 == ﬂ([7 - [4) —I— 5, W77 = [L, (3233)
which in the reference configuration reduce to
- - 9
W1:%71 W13:1?'u, W3:7M, W33:?M+2)\7
W4 == —5, W7 - 57 W77 - ﬂ (3234)
Using Eq. (3.2.33) in Eq. (3.2.25), we have
~2/3pm) | (97 g o (14, s
Q) = |uly ™" B™ + 2017 — L) + 1Z I+ [uly ™ 4
2, 2 4 a3
+ 8(\ + g,u)l3 + =4\ + gﬂ)][g]n ®@n— 5'“]3 (Bn®n
+n®Bn) +443n ® Xn, (3.2.35)

for a compressible material in the deformed configuration. Also, using Eq. (3.2.34)

in Eq. (3.2.28) gives
- 35 .
Q) = (p+ )T+ (Fu+ 4 n@n+ dirn @ o, (3.2.36)

for a compressible material in the reference configuration.
From Eq. (3.2.24), it follows for a compressible material in the deformed config-
uration that

_ 14 _ 2
pc? = puly B 4 2L — L) + US® 4 [ody L+ 8+ )13

F = A+ ]l m)? — S (m B m)

+ 4fi(m - ¥n)?, (3.2.37)
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which in the reference configuration reduces to

pct = p+ 7+ (?;—5u +4\)(n - m)? + 4ji(m - ¥n)>. (3.2.38)

For the particular choice 7 = 7n ® n, we have ¥ = 7Fn ® Fn. Equation (3.2.37)

thus reduces to

p? = pl?PB™ 1 7201 — 1) + 1](n - Fn)?

14 2 2
B 80+ 208+ (u— A0+ )l m)?
— Z—l,ufz;z/g(m -Bn)(n-m) + 4ji7(m - Fn)*(n - Fn)?, (3.2.39)

3

For arbitrary m and n, a real speed exists if

. 4
L 2BBM 4 r2u(I; — I) + 1](n - Fn)? + [—puly 2/31

9
FSOH 2B+ (n 40+ )] m)? — Sy m B m)
+ 4jit(m - Fn)*(n - Fn)? > 0. (3.2.40)

In deformed configuration after using Eq. (3.1.7) and Eq. (3.2.33) in Eqgs. (2.9.12-
2.9.20), we get

_ -2 _ 2
o = puly PN+ p(5 L L 1)+ 200+ S (s = 1) s

3

+ 2(a(I; — 1y) + %)211 + 8(%“155/3)13/\§ + 4(%“138/311

P20+ ) B+ 4, (3241
Qo = [2u(%2155/311 +1) +8(\+ ;M)(Jg —1]I5 + 4(%“1;5/3)13@%

+ A3) + 4(%"13‘8/311 +2(A + ;u))lg + 4(1) 11 Do, (3.2.42)
az = puly PN+ p(5 1L+ 1) 4 200+ §u><13 — 1)1

+ 20l — Iy) + %)222 + 8(%”13_5/3)13)\3 + 4(%“13‘8/311

+ 2(A + ;u))lg + 4155, (3.2.43)

51 = 4ﬂ211212, (3244)
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Bo = [20(17 — 1) 4+ 1391 + 4aX01 311, ( )

B3 = 411291 Yoo, ( )

By = [20(L7 — 1) 4+ 1312 + 4aX12X09, (3.2.47)

1 = ply PN+ (201 = 1) + 1S + 435, (3.2.48)

Yo = puly PN + 20(I; — L) + ]222 + 433, ( )

5= 2T+ 1) 40+ S0 = DI+ (LR 03
(

YT
FA2) +4( :1 BT 20+ u))ﬂ 452, + X110, (3.2.50)
Since we assumed 7;; = 0,7 # j, implies ;; = 0,7 # j then above expressions reduce

_ -2 _ 2
o = puly PN+ p(5 L 1) 4 200+ S (s = 1) s

1 — D g
+ 2l = 1)+ 5) S0+ 8( I LA + 41T

+ 2(\ + ;u))ﬂ +4a%3, (3.2.51)
a1y = [%(%2155/311 +1) +8(A+ gu)(lg = D]+ 4(%“155/3)13@?
+A3) + 4(%“13‘8/311 +2(\ + ;M))Jg + 4(f1) S 11299, (3.2.52)
s = ply PN+ ,u(%2f B+ 1) + 200+ gu)(fg — 1)1
2l — I) + %)222 + 8(%”13_5/3)13)\3 + 4(%“13‘8/311
+ 2\ + gu))ﬂzmzm, (3.2.53)
b1 =Po=P3=P1=0, (3.2.54)
= pl3 A2+ 201 — L) + 150, (3.2.55)
Yo = puly N2 4+ 201 — 1) + 1]222, (3.2.56)
§ = (5L 1)+ A (T — D]+ A1 108
+ D)+ 4(%“13‘8/311 +2(\ + ;u))fg + 4511 X (3.2.57)

In the reference configuration after using Eq. (3.2.34) in Egs. (2.9.21-2.9.29) the

above material constants reduce to
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- 28 22 _

an = 4(a)m + m + T,u +8\, app= T,u + 8A + 4(A) 11172,
. 28 i

oy = 4([1) oy + Too + T,u +8X, (1 =4()m171e,

Po = Tia +4(R)T11T12, B3 = 4(f1)T12Ta2,
By = Tio + 4()T12me2, 1 = p+ 111 + 4(10) T,

25
Yo = WU+ Tog + 4(,1_1,)7_1227 0= /_L(T122 + 7'117'22) + T'u + 8. (3258)

For 7,; = 0,7 # j, the above expressions reduce to

28 22

an = 4(@)TH + 1+ T,u +8A,  ap= TM + 8\ + 4(1) 11722,
28

(12224(,@)7222“‘7'22%—?”4—8)\7 b1 = P2 =03 =P1=0,

25
M= T, e = i Tes, 0= AfiTiiTes + ?“ 8\ (3.2.59)

3.3 Reflection from a Plane Boundary

We consider the half-space x5 < 0 in the finitely deformed configuration and note
that the boundary x5 = 0 is subjected to the normal traction T3 in this configura-
tion. Using Eq. (2.7.9) the incremental traction per unit area of the boundary is

Sgu, where v is the unit outward normal to the boundary. The component form of

STy as follows
SOink = Aopiqjtj,eVk- (3.3.1)

We take the incremental boundary condition on x5 = 0 to correspond to vanishing

incremental dead load. Thus, the boundary conditions may be expressed as

Spo1 = Apor11ur 1 + Aogio1ur 2 + Ao2112uz1 + Ap2iaeties =0 on 2o = 0,(3.3.2)
3022 = Ap1122u1,1 + Ao2o21u1,2 + Ag212u21 + Ag2azotio s =0 on xg = 0.(3.3.3)

After using Eq. (3.1.7) above equations becomes

3021 = 72U1,2 + (’)/2 — T22)u271 =0 on Ty = 0, (334)

SOQQ = Q12U1,1 + Qoo 2 = 0 on To = 0. (335)
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Under the above boundary conditions it was shown by [18] that the underlying
deformation is stable to incremental disturbances of the considered type provided

the inequality

Y172

)é(allam —ay) + v — (e — Ta2)* > 0 (3.3.6)
Q1102

We now consider a homogeneous plane wave of the form Eq. (3.2.1) propagating in

the half-space x5 < 0. We write Eq. (3.2.1) as
u = Amexp[ik(n.x — ct)], (3.3.7)

where u = (uy,u2), m = (my, ms),n = (ny,n2) and w = kc is the frequency. Equa-
tion (3.3.7) may represent a quasi-P wave or a quasi-SV wave or, for a specific

direction, a P wave or an SV wave.

3.3.1 The Case of Two Reflected Waves

Let m™ = m,n™ = n be identified with the incident wave. Let m~,n~ be the
corresponding values associated with the reflected wave and m’,n" be the values
associated with the second reflected wave. Here we have followed the same notation

for m and n as given in [2]. Hence, we have

ny =nf =ny =n,. (3.3.8)

which is the statement of Snell’s law.
We also have n, = —ns. The total displacement in x5 < 0 may now be written

as

u = Am" explik(nt.x — ct)] + ARm™ exp[ik(n~.x — ct)]
+ AR'm’ explik(n’.x — ct)] (3.3.9)

where R, R’ are the reflection coefficients k', ¢ are respectively the wave number and

wave speed associated with the second reflected wave, so that k'¢’ = w.
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From Egs. (3.2.14)and (3.2.15), we note that a change in sign of ny is reflected

in a change in sign of ¢ and change in sign of ms is reflected in a change in sign

of & Let we take m~ = (mq, —my) since any sign difference can be vanished by

R. Similarly, we have for the second reflected wave ;m, = &£'m/, with ¢ defined

analogously to ¢ in Eq. (3.2.14), with ¢, n replaced by ¢, n’.
¢ = (pc — anni — yang) /onan,.

. / .
Since m and m are unit vectors we set

my=1/(1+&)2, m)=1/(1+¢?):e.

3.3.2 Reflection Coefficients

(3.3.10)

(3.3.11)

Using Eq. (3.3.9) into the boundary conditions Eq. (3.3.4, 3.3.5) we get the reflection

cocfficients R, R'. After some simplification, this leads to

R el d—napq
nyp'q + nopq’’
R _ 2pq min,

Y

nap'q + napqg My

where p,q,p’, ¢ are defined by

p= 5041271% + 0422(p02 — 041171% - 72”%),
q = ya0ians + (6 — ap)(pc® — apn?),
p = danan? + agn(pc® — ann? — yony),

q = ainy + (6 — ap)(pc® — anni),

’
min . .
and —72 is given by
my

ml”lz n (5271%”/22 + (P02 - 041171% - ”7271/22)2)%

2 :
my (62nnf + (pc® — ann} — y2n3)?):
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(3.3.13)

3.3.14
3.3.15
3.3.16

o~ o~ o~ o~
~—  ~— ~— —

3.3.17

(3.3.18)



If we use the connection
ng = nq tand (3.3.19)
then Eq. (3.2.10) becomes

(1171 + 2Btan? 0 + gy, tan® 0)n] — pclan; + 1 + (oo
+72) tan® ]nT + (pc)? = 0, (3.3.20)

which gives an equation for n; in terms of the angle # which defines the direction of
the wave normal.
Taking derivative of Eq. (3.2.10) with respect to %ﬁ and multiplying both sides

by nZ we get
260202 + (oo (nl + n2n2)) — (age + v2)n2pc? = 0, (3.3.21)
Subtracting Eq. (3.3.21) from Eq. (3.2.10) we get
aoyaning = (aqin? — pc?)(yin? — pc?), (3.3.22)

which gives n,, indirectly in terms of #. Following this procedure we allows R, R’

explicitly as a function of . On use of the connection
ny = ny tand (3.3.23)
and using the notation
¢ =tanf, ¢ =tané, (3.3.24)
then Eq. (3.3.20) can be written as
(c1171 + 2B¢% + aoaal)nt — pc®lant + 71 + (aos + CIng + (pc®)? = 0, (3.3.25)

and Eq. (3.3.22) becomes

(anni — pc?)(ynf — pc?)
0622’727111l

C2<'2 —

: (3.3.26)
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After using connection Eq. (3.3.19) and Eq. (3.3.23), Egs. (3.3.12-3.3.18) become

R SPa=Cr (3.3.27)
Cpq+Cpg
: 2 '
Ro—__ 2 e (3.3.28)
Cpqg+Cpg my
where p,q,p’, ¢ are defined by
p = daian? + ags(pc? — apn? — yon2¢?), (3.3.29)
q = Y2012n7C* + (0 — a12)(pc® — ayn?), (3.3.30)
p' = 50412n% + G(QQ([)CQ — ann% - ygn%C/Q), (3.3.31)
g = 'ygalgnfglz + (6 — a12)(pc® — apn?), (3.3.32)
and m#,cl is given by
my
G [OnAC + (pe? = an —93niC?)? (3.3.33)
m 0*ni¢? + (pc® — anni — 12nic?)?

3.4 Numerical Results and Discussion

Considering the special class of material we have 28 = 117y + a97y1 then the Eq.

(3.2.10) decouples in the form

(’yln% + 72n§ — pcz)(annf + a22n§ — ch) =0 (3.4.1)

3.4.1 Incident P wave for the Reference Configuration
For an incident P using Eq. (3.4.2), we get
a1n + ageny = pc’. (3.4.2)

After using Eq. (3.4.2) in Eq. (3.3.26) we get

¢ = _\/0422C2 Toun—mn (3.4.3)
V2
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For ¢?¢? > 0 following inequalities hold (ay;n? — pc?) < 0 and (yn} — pc?) < 0 or
Q9on3 > 0 and (? > 1=

Q22

Hence, in Eqs. (3.3.27) and (3.3.28) p,q,p, ¢ are defined as

p = Saon? — anpyeniC® + ajyns, (3.4.4)
q = 12012niC” + dagan — auaaigany, (3.4.5)
"= Saan? — agpeniC? + aZyn?, (3.4.6)
¢ = 12012n3¢” + Sazan3 — a1z0mn3, (3.4.7)
and ™% is given by
my

md \/5%1%’2 + (@2m3 — 1m3C2) (3.48)

m 32n{C? + (azeni — 1ni?)?
3.4.2 Vanishing of the Reflection Coefficient R’

From Egs. (3.3.4,3.3.5) and Eq. (3.3.9) we get

Ya[mina (1 — R) + mlln;Rl] + (y2 — To2)[mani(1 — R) + m;anl] =0,(3.4.9)
0412[7711”1(1 + R) + m;an,] + CYQQ[(l + R)m2n2 + m;n;R/] =0. (3410)

The above expressions are used to vanish the reflection coefficient R'. Firstly,

/

we note that for the angle § =0 or § = 7, R = 0. More generally it is easy to see

from the boundary conditions that if R = 0 then either R = 1 (see 3.1)with
Q12MNy + QgaMong = 0, (3.4.11)
or R = —1 (see 3.2) with
Yomyng + (y2 — Tag)meny = 0. (3.4.12)

Generally, these conditions depend on the angle of incidence and the principal stress

components. However, in the first case (of R = 1), for 195 = 0, we get an incident
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SV wave for which ajs = s, if the material properties allow for such a wave to
exist. It may be noted that the behavior R = 1 exists for large values and R = —1
for very small values of stress components. For the second case (of R = —1), an

incident P-wave is admissible if Thy = 2y, and if the material properties allow such

a wave.

R R
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,05 L
-02r

710 -
-04r

_15 L

Figure 3.1: Plot of the reflection coefficients R and R from Eqs. (3.3.27) and (3.3.28)
for a specific material with A = 10, 4 =5, g = 100 and 71; = 300.
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Figure 3.2: Plot of the reflection coefficients R and R from Eqs. (3.3.27) and (3.3.28)
for a specific material with A =80, u =1, g =1, 799 = 0.05 and 71; = 0.05.

From the boundary conditions, after specialized with n; = 1 (grazing incidence)
and either of m; = 1 or my = 1 we see that neither P wave nor SV wave propa-
gate parallel to the boundary and generate a wave which propagate away from the

boundary. However, only a P wave may propagate parallel to the boundary. This
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wave satisfy the boundary conditions if the properties of the material are such like
a1 = 0. Similarly, only an SV wave may propagate parallel to the boundary and
this wave satisfy the boundary condition if T5y = 5.

Graphical representation of Eqs. (3.3.27, 3.3.28) are given in Figs (3.3-3.13) for
various specific values of the material constants. The behavior of two reflected waves
is shown. An reflected SV wave accompanies a reflected P-wave in most of the cases.

R R
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—04}

-150

Figure 3.3: Plot of the reflection coefficients R and R from Eqs. (3.3.27) and (3.3.28)

for a specific material with A =5, p =5, it = 10 and 711 = 2.
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Figure 3.4: Plot of the reflection coefficients R and R from Eqs. (3.3.27) and (3.3.28)
for a specific material with A =50, ¢ =50, g = 10 and 717 = 2.
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Figure 3.5: Plot of the reflection coefficients R and R’ from Eqs. (3.3.27) and (3.3.28)
for a specific material with A = 100, . = 100, 5 = 10 and 717 = 2.
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Figure 3.6: Plot of the reflection coefficients R and R’ from Eqs. (3.3.27) and (3.3.28)

for a specific material with A =10, p =5, i = 5 and 717 = 20.
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Figure 3.7: Plot of the reflection coefficients R and R from Eqs. (3.3.27) and (3.3.28)

for a specific material with A =25, 4 =20, &t = 5 and 71 = 20.
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Figure 3.8: Plot of the reflection coefficients R and R from Eqs. (3.3.27) and (3.3.28)

for a specific material with A = 50, 4 =40, &t = 5 and 71 = 20.
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Figure 3.9: Plot of the reflection coefficients R and R from Eqs. (3.3.27) and (3.3.28)
for a specific material with A =1, y =10, 5 = 2 and 71; = 100.
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Figure 3.10: Plot of the reflection coefficients R and R’ from Egs. (3.3.27) and (3.3.28)
for a specific material with A = 20, 4 =40, g = 2 and 77 = 100.

43



1sr 031

10t 02f
05p o1lf
. . . 9 . . . 9
0.5 1.0 15 1.0 1
_05}F -01r
—1.0F =021
_15LC -03+

Figure 3.11: Plot of the reflection coefficients R and R’ from Egs. (3.3.27) and (3.3.28)
for a specific material with A = 50, 4 = 60, g = 2 and 77 = 100.
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Figure 3.12: Plot of the reflection coefficients R and R’ from Egs. (3.3.27) and (3.3.28)
for a specific material with A = 100, . = 100, & = 10 and 711 = 0.
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Figure 3.13: Plot of the reflection coefficients R and R’ from Egs. (3.3.27) and (3.3.28)

for a specific material with A =10, 4 =5, 5 =5 and 711 = 0.
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Chapter 4

Conclusion and Future Work

We study the effect of initial stress on waves compressible hyperelastic materials. In
particular, we study the problem of reflection of plane waves from the boundary of
a initially stressed half-space. It is found that for an incident P wave, one reflected
P wave and/or reflected SV wave may exist. We find the conditions under which a
P wave is reflected as only a P wave, an SV wave is reflected as only an SV wave
and the case of two reflected waves for an incident P wave.

The mathematical expressions are supported using graphs produced for various
combinations of material constants and principal stress components.

In future, we may analyze incident SV waves and carry out the study in same
manner. The discussion on the wave speed and acoustic tensor Q(n) may be ex-
tended for general expressions of initial stress 7 depending on the vector n.

Finally, it is intended that this work will be submitted in very near future for

publication in a well reputed Mathematics/Engineering journal.
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