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Abstract

In this thesis, we discuss the Stanley depth of the quotient of some monomial ideals.

We discuss the Stanley depth of the quotient of irreducible monomial ideals and

quotient of complete intersection monomial ideals. We also discuss about some

sharp bounds for the Stanley depth and Stanley’s conjecture for such quotients.

As our contribution to this area, we find a lower bound for the Stanley depth of

the quotient of monomial maximal ideal and a monomial ideal. Also we find a lower

bound for the Stanley depth of the quotient of maximal ideal and a class of ideals

having large number of generators. Furthermore, we find bounds for the Stanley

depth of the quotient of some other classes of monomial ideals.
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Introduction

Richard. P. Stanley (1982) introduced the idea of what is now called the Stan-

ley depth of a finitely generated Zn-graded module over a Zn commutative ring,

in paper [20]. This is geometric invariant of a module that relates to an alge-

braic invariant of the module called simply the depth. Stanley conjectured that

depth(M) ≤ sdepth(M), for all finitely generated Zn-graded modules M , but it still

remains largely open. In [9], Herzog, Vladoiu and Zheng showed that Stanley depth

of monomial ideal can be computed in finite steps by partitioning a finite poset

associated to the monomial ideal into intervals. The difficulty of computing Stanley

depths is one of the main obstacles for verifying the Stanley’s conjecture. It is still

practically very difficult to find the Stanley depth for modules even for monomial

ideals, if the method of Herzog is applied.

This thesis consists of four chapters. First chapter gives the detailed overview

of definitions, results, and examples, related to abstract algebra and commutative

algebra, that are fundamental to the development later in this project.

Second chapter review the fundamentals of the theory of Stanley depth and

Stanley decomposition. Here we recall the principle results related to the depth and

Stanley depth of some multigraded S-modules, where S is a polynomial ring in n

variables over a field K.

In third chapter, Stanley depth of the quotient of two irreducible monomial

ideals are computed and it is shown that Stanley’s conjecture holds for these type of

monomial ideals. Theorem 3.2.4 says that there exist some sharp bounds for Stanley

depth of quotient of two complete intersection monomial ideals, and Corollary 3.2.6

says that Stanley’s conjecture holds for these type of quotients.

In chapter four, we find a lower bound for the Stanley depth of the quotient of

monomial maximal ideal and a monomial ideal. Also we find a lower bound for the

Stanley depth of the quotient of maximal ideal and a class of ideals having large

number of generators. Furthermore, we prove that there exists some good bounds

for the Stanley depth of quotient of two monomial ideals when these ideals are the

intersections of prime ideals generated by pairwise disjoint set of variables.
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Chapter 1

Preliminaries

This chapter consist of a brief introduction of basic concepts of abstract algebra

and commutative algebra. It gives us a detailed overview of definitions, results,

and examples related to them. These concepts will be helpful in the results of next

chapters.

Definition 1.0.1. A ring R is a nonempty set together with two binary operations

“ + ” and “ · ” (called addition and multiplication) satisfying the following axioms:

(1) (R,+) is an abelian group,

(2) R is associative with respect to “ · ”,

(3) For all a, b, c ∈ R, the left distributive law, a · (b + c) = (a · b) + (a · c) and

the right distributive law (a+ b) · c = (a · c) + (b · c) hold.

Definition 1.0.2. A ring R is said to be commutative, if multiplication in R is

commutative that is for all a, b ∈ R, a · b = b · a.

Definition 1.0.3. A ring R is said to have an identity, if it contains identity with

respect to multiplication.

Proposition 1.0.1 ([7]). Let R is a ring with additive identity 0, then for any

x, y ∈ R, we have

(1) 0x = x0 = 0,
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(2) x(-y) = (-x)y = -(xy),

(3) (-x)(-y) = xy.

Example 1.0.1. (Z,+, ·), (Q,+, ·), (R,+, ·) and (C,+, ·), are some examples of

ring.

Example 1.0.2. The quotient group Z/nZ is a commutative ring with identity (the

element 1̄) under the operations of addition and multiplication of residue classes.

Example 1.0.3. Let H denote the set of real quaternion, then it has elements of the

form a+bi+cj+dk, where a, b, c, d ∈ R, where addition is defined componentwise by

(a1+b1i+c1j+d1k)+(a2+b2i+c2j+d2k) = (a1+a2)+(b1+b2)i+(c1+c2)j+(d1+d2)k

and multiplication is defined by expanding (a1 +b1i+c1j+d1k)(a2 +b2i+c2j+d2k),

using the distributive law and simplifying, i2 = j2 = k2 = −1, i · j = −j · i = k,

j · k = −k · j = i, k · i = −i · k = j (where the real number coefficients commute

with i, j and k). H is a non-commutative ring with identity 1 + 0i+ 0j + 0k = 1.

Definition 1.0.4. A commutative ring R with identity 1 6= 0 is called a division

ring (or skew field), if for every non-zero element x ∈ R, there exist y ∈ R such that

xy = yx = 1.

Example 1.0.4. The set of rational numbers Q, and set of real numbers R are

division rings.

Definition 1.0.5. Let R be a ring with unity 1 6= 0. An element x of R is called a

unit in R, if there exist some y in R such that xy = yx = 1.

Theorem 1.0.2 ([7]). In the ring Z/nZ, all those elements which are relatively

prime to n are units in Z/nZ.

Example 1.0.5. The units of set of integers Z are ±1.

Example 1.0.6. All non-zero elements of the ring Z5 are units, because all non-zero

elements of Z5 are relatively prime to 5.

Definition 1.0.6. A commutative division ring is called a field.
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Remark 1.0.1 ([7]). If R is a commutative ring with unity 1 6= 0, and every non-

zero element of R is a unit. Then R is a field.

Example 1.0.7. (Q,+, ·), (R,+, ·) and (C,+, ·) are fields.

Example 1.0.8. Let D be a rational number, which is not a perfect square in Q,

and define

F = {a+ b
√
D : a, b ∈ Q}.

Then F is a field.

Definition 1.0.7. Let R ba a ring, a non-zero element x ∈ R is called a zero divisor,

if there exist a non-zero element y ∈ R such that either xy = 0 or yx = 0.

Theorem 1.0.3 ([7]). In the ring Z/nZ, the zero divisors are precisely those non-

zero elements that are not relatively prime to n.

Corollary 1.0.4 ([7]). If p is a prime. Then Z/pZ has no zero divisors.

Example 1.0.9. Z3 contain no zero divisors, because 3 is a prime number.

Definition 1.0.8. A commutative ring R with unity 1 6= 0 without zero divisors is

called an integral domain.

Proposition 1.0.5 ([7]). Assume x, y and z are elements of any ring R with x not

a zero divisor. If xy = xz, then either x = 0 or y = z. In particular, if x, y and z

are any elements in an integral domain and xy = xz, then either x = 0 or y = z.

Theorem 1.0.6. Every field F is an integral domain.

Theorem 1.0.7 ([7]). Any finite integral domain is a field.

Corollary 1.0.8 ([7]). If p is a prime, then Zp is a field.

Example 1.0.10. Z19 contain no zero divisors, because 19 is prime. So Z19 is an

integral domain, also Z19 is finite. So from Corollary 3.1.1, we have Z19 is a field.

Definition 1.0.9. Let R be a ring. A nonempty subset S of R is called a subring.

If
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(1) S is an additive subgroup of R,

(2) S is closed under multiplication.

Example 1.0.11. (a) Z is a subring of R.

(b) nZ is a subring of Z and {0, 2} is a subring of Z4.

Example 1.0.12. Let D be a square free integer. Then the set

H = {a+ b
√
D : a, b ∈ Z}

form a subring of the field F = {a+ b
√
D : a, b ∈ Q}.

Remark 1.0.2. (1) A subring of a ring with identity can be a ring without iden-

tity.

(2) A subring of a ring without identity can be a ring with identity.

(3) A subring of a ring with identity can be a ring with same identity.

(4) A subring of a ring with identity can be ring with different identity.

Example 1.0.13. (1) 2Z is a subring of Z. The ring Z has the identity 1, but 2Z
has no identity.

(2) Q and Z both have identities which are same.

Definition 1.0.10. The polynomial ring R[x] in variable x with coefficients from a

ring commutative R is the set of all polynomials

anx
n + an−1x

n−1 + . . .+ a1x+ a0

with n ≥ 0 and each ai ∈ R. If an 6= 0, then the polynomial is of degree n, anx
n

is the leading term and an is the leading coefficient. R[x] is a commutative ring

with identity same as the identity of ring R. The polynomial ring in the variables

x1, x2, . . . , xn with coefficients in R is denoted by R[x1, x2, . . . , xn], and is defined

inductively by

R[x1, x2, . . . , xn] = R[x1, x2, . . . , xn−1][xn].
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This definition means that we can consider polynomials in n variables with coeffi-

cients in R simply as polynomials in one variable xn, but now with coefficients that

are themselves polynomials in n− 1 variables.

Proposition 1.0.9 ([7]). Let R be an integral domain and let p(x) and q(x) be a

nonzero elements of R[x]. Then

(1) degree p(x)q(x) = degree p(x) + degree q(x).

(2) The units of R[x] are just the units of R.

(3) R[x] is an integral domain.

Remark 1.0.3. If S is a subring of ring R, then S[x] is a subring of R[x].

Definition 1.0.11. Let R1 and R2 be rings. A ring homomorphism is a map

ϕ : R1 → R2 satisfying:

(a) ϕ(x+ y) = ϕ(x) + ϕ(y), for all x, y ∈ R1.

(b) ϕ(xy) = ϕ(x)ϕ(y), for all x, y ∈ R1.

The kernel of the ring homomorphism ϕ, denoted by ker(ϕ) is the set

ker(ϕ) = {r ∈ R1 : ϕ(r) = 0R2}.

A bijective ring homomorphism is called an isomorphism.

Example 1.0.14. The map ψ : Z→ Z/2Z defined by

ψ(n) =

0, if n is even;

1, if n is odd.

is a ring homomorphism.

Example 1.0.15. For n ∈ Z, the map ψn : Z→ Z, defined by ψn(x) = nx is not a

ring homomorphism, if n is not 0 and 1.

Proposition 1.0.10. Let R1 and R2 be rings and let ψ : R1 → R2 be a ring

homomorphism.
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(1) The Im(ψ) is a subring of S.

(2) The ker(ψ) is a subring of R. Furthermore, if x ∈ ker(ψ), then rx and

xr ∈ ker(ψ) for every r ∈ R1, that is ker(ψ) is closed under multiplication by

elements from R1.

Definition 1.0.12. Let I be a subset of the ring R, and consider the following three

properties.

(1) I is an additive subgroup of R.

(2) If x ∈ I and r ∈ R, then rx ∈ I, In other words rI ⊂ I for every r ∈ R.

(3) If x ∈ I and r ∈ R, then xr ∈ I, In other words Ir ⊂ I for every r ∈ R.

If (1) and (2) holds, I is said to be a left ideal of R. If (1) and (3) holds, I is said

to be a right ideal of R. If all three properties hold, I is said to be an ideal (or two

sided ideal) of R.

Remark 1.0.4. (1) Every ideal is a subring.

(2) A subring in general is not an ideal. For instance Z is a subring of R, but not

an ideal of R. Because 2 ∈ Z and (3/5) ∈ R, but (2)(3/5) = (6/5) 6∈ Z.

Proposition 1.0.11 ([7]). Let R be a ring. A non-empty subset I of ring R is an

ideal if and only if for all x, y ∈ I and r ∈ R, x− y ∈ I, xr ∈ I and rx ∈ I.

Remark 1.0.5. Let ψ : R → S be a ring homomorphism, then ker(ψ) is an ideal

of R.

Proposition 1.0.12. Every proper ideal is the kernel of a ring homomorphism.

Proposition 1.0.13. Let I be an ideal of R. Then

(1) I = R iff I contains a unit.

(2) Assume R is commutative. Then R is a field if and only if its only ideals are

0 and R.

7



Definition 1.0.13. Let I be a proper ideal of the ring R, since I is a subgroup

of the additive group R, so clearly I is a normal subgroup of R, and we can form

the quotient ring R/I, consisting of cosets r + I, r ∈ R, we define multiplication of

cosets in the natural way

(r1 + I)(r2 + I) = r1r2 + I.

Example 1.0.16. nZ is an ideal of Z for any n ∈ Z, and clearly nZ is a normal

subgroup of Z, because it is an additive subgroup of additve group Z. The associated

quotient ring is Z/nZ.

Theorem 1.0.14 ([7]). (First Isomorphism Theorem for Rings) If f : R→ S

is a ring homomorphism, then kerf is an ideal of R and image of f is a subring of

S, and Im(f) is isomorphic to R/kerf , that is

Im(f) ∼= R/kerf.

Theorem 1.0.15 ([7]). (Second Isomorphism Theorem for Rings) Let I be

an ideal of the ring R and let S be a subring of R. Then S+I = {x+y | x ∈ S, y ∈ I}
is a subring of R, S ∩ I is an ideal of S and

S/(S ∩ I) ∼= (S + I)/I.

Theorem 1.0.16 ([7]). (Third Isomorphism Theorem for Rings) Let I and

J be ideals of R with J ⊆ I. Then I/J is an ideal of R/J , and

(R/J)/(I/J) ∼= R/I.

Theorem 1.0.17. (Correspondence Theorem for Rings) Let I be an ideal of

the ring R, then the canonical map φ : R→ R/I set up a one-to-one correspondence

between

(1) The set of all subrings of R containing I and the set of all subrings of R/I.

(2) The set of all ideals of R containing I and the set of all ideals of R/I.

Definition 1.0.14. Let I and J be ideals of R. Then
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(1) Denote the sum of I and J by (I, J) = I + J and define as (I, J) = I + J =

{x+ y | x ∈ I, y ∈ J}.

(2) Denote the product of I and J by IJ and define to be the set of all finite sums

of elements of the form xy with x ∈ I and y ∈ J .

Example 1.0.17. (1) Let I = 6Z and J = 8Z, then I + J consists elements of

the form 6x + 8y with x, y ∈ Z. Since every such integer is divisible by 2, so

the ideal I + J is contained in 2Z, that is I + J ⊆ 2Z. On the other hand

2 = 6(3) + 8(−2), shows that the ideal I + J contains 2Z, that is 2Z ⊆ I + J .

Therefore we have 6Z + 8Z = 2Z. In general mZ + nZ = dZ, where d is the

greatest common divisor of m and n.

(2) The product IJ contains of all finite sum of elements of the form (6x)(8y)

with x, y ∈ Z and IJ = 48Z.

Definition 1.0.15. Let I be an ideal in R, I is said to be a principal ideal, if it is

generated by a single element and it is written as I = (x), where x ∈ R.

Example 1.0.18. Let R = Z, then nZ, where n ∈ Z is an ideal of Z, nZ is a

principal ideal and is generated by n, and is denoted by (n).

Definition 1.0.16. Let R is a ring with unity and A be any subset of R. (A) is

said to be the ideal generated by A, if it is the smallest ideal of R containing A. If

A is a finite set, then (A) is called a finitely generated ideal.

Definition 1.0.17. An ideal generated by a finite set is called a finitely generated

ideal.

Definition 1.0.18. Let R be a ring. An ideal M in R is called maximal ideal. If

M 6= R and the only ideals containing M are M and R.

Proposition 1.0.18 ([7]). In a ring with identity, every proper ideal is contained

in a maximal ideal.

Proposition 1.0.19. Assume R is commutative. The ideal M is a maximal ideal

if and only if the quotient ring R/M is a field.
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Example 1.0.19. Let n be an non-negative integer, The ideal nZ of Z is a maximal

ideal if and only if Z/nZ is a field, and Z/nZ is a field if and only if n is a prime.

Thus if n is prime, then nZ is a maximal ideal of Z.

Definition 1.0.19. Let R be a commutative ring. If I 6= R is an ideal in R. Then

I is called a prime ideal. If ab ∈ I, where a, b ∈ R, then either a ∈ I or b ∈ I.

Proposition 1.0.20 ([7]). Let R be a commutative ring. Then the ideal I is a prime

ideal in R if and only if the quotient ring R/I is an integral domain.

Corollary 1.0.21 ([7]). In commutative ring, a maximal ideal is a prime ideal.

Example 1.0.20. (1) Since Z[x]/(x) ∼= Z, and Z is an integral domain, so Z[x]/(x)

is an integral domain and from Proposition (3.1.2), we have (x) is a prime ideal

in Z[x].

(2) The principle ideals generated by prime in Z are both prime and maximal

ideals.

Definition 1.0.20. Let R be a commutative ring. A proper ideal P of R is called

primary ideal for a, b ∈ R, if whenever ab is an element of P , then either a ∈ P or

bn ∈ P for some integer n > 0.

Definition 1.0.21. Let I be an ideal in a commutative ring R. Then the radical of

I, is denoted by radI, is the collection of elements in R some power of which lie in

I, that is

rad(I) = {r ∈ R | rk ∈ I, for some k ≥ 1}.

Remark 1.0.6. (1) Every prime ideal is primary.

(2) Let P is an ideal, whose radical is a maximal ideal. Then P is a primary ideal.

Definition 1.0.22. A partially ordered set Q is said to satisfy the ascending chain

condition (ACC), if every strictly ascending sequence of elements eventually termi-

nates. Equivalently, given any sequence

q1 ≤ q2 ≤ q3 ≤ . . . ,
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there exists a positive integer n such that

qn = qn+1 = qn+2 = . . .

Definition 1.0.23. A partially ordered set Q is said to satisfy the descending chain

condition (DCC), if every strictly descending sequence of elements eventually termi-

nates, that is there is no infinite descending chain. Equivalently, every descending

sequence

q1 ≥ q2 ≥ q3 ≥ . . . ,

of elements of Q eventually terminates.

Definition 1.0.24. A commutative ring R is said to be Noetherian ring, if it satisfy

the ascending chain condition on ideals with respect to inclusion, that is whenever

I0 ⊆ I1 ⊆ I2 ⊆ . . . ,

is an increasing chain of ideals of R, then there is a positive integer r such that

Ik = Ir for all k ≥ r.

Proposition 1.0.22 ([7]). (1) Let R is a Noetherian ring and I is an ideal of R,

then the quotient R/I is a Noetherian ring.

(2) Any homomorphic image of a Noetherian ring is Noetherian.

Theorem 1.0.23 ([7]). Let R be a commutative ring, then the following are equiv-

alent:

(1) R is a Noetherian ring.

(2) Every nonempty set of ideals of R contains a maximal element under inclusion.

(3) Every ideal of R is finitely generated.

Example 1.0.21. (1) Every Principle ideal domain is Noetherian, because ev-

ery ideal of Principle ideal domain is finitely generated. In particular Z is

Noetherian.
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(2) The ring Z[x1, x2, x3, . . .] is not Noetherian. Since the ideal (x1, x2, x3, . . .)

cannot be generated by any finite set.

Remark 1.0.7. A Noetherian ring may have arbitrarily long ascending chains of

ideals and may have infinitely long descending chains of ideals. For example, Z has

the infinite descending chain

(2) ⊃ (4) ⊃ (8) ⊃ . . .

that is, a Noetherian ring need not satisfy the descending chain condition on ideals.

Theorem 1.0.24 (Hilbert’s Basis Theorem). If R is a Noetherian ring, then R[x]

is also a Noetherian ring.

Corollary 1.0.25. If R[x1] is a Noetherian ring, then R[x1][x2] = R[x1, x2] is also a

Noetherian ring, and by induction, we can say that R[x1, x2, . . . , xn] is also Noethe-

rian ring.

Definition 1.0.25. A ring that has a unique maximal ideal is called a Local ring.

Definition 1.0.26. Let R be a commutative ring. A non empty set M is said to

be an R-module (or a module over R), if it satisfies the following conditions:

(1) M is an abelian group under a binary operation of addition.

(2) An action of R on M (that is, a map R×M →M) denoted by rm, such that

for all r1, r2 ∈ R and m,n ∈M .

(a) (r1 + r2)m = r1m+ r2m.

(b) (r1r2)m = r1(r2m).

(c) r1(m+ n) = r1m+ r1n.

(d) 1m = m.

If R is a field F , then the axioms of an R-module coincide with the axioms of a

vector space over F .
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Example 1.0.22. (1) Let R = Z, let G be any abelian group (finite or infinite)

and write operation of G as “+”, for any n ∈ Z and g ∈ G define

ng =


g + g + . . .+ g (n times) if n > 0;

0 if n = 0;

−g − g − . . .− g (−n times) if n < 0.

Here 0 is the additive identity of group G. This definition of an action of

the integers on G makes G into a Z-module. Thus every abelian group is a

Z-module.

(2) If R is any ring and n a natural number. Then the cartesian product Rn is

module over R, if we use component wise operations.

Definition 1.0.27. Let R be a ring. An additive subgroup N of the R-module M

is called a submodule of M , if whenever r ∈ R and n ∈ N , then rn ∈ N .

Remark 1.0.8. Submodules of M are subsets of M , which are themselves modules

under the restricted operations.

Proposition 1.0.26 ([7]). Let R be a commutative ring and let M be an R-module.

A subset M1 of M is a submodule of M if and only if

(1) M1 6= φ, and

(2) x− y ∈M1 and xr ∈M1, for all x, y ∈M1 and r ∈ R.

Definition 1.0.28. Let R be a ring and let M and N be R-modules. A map

φ : M → N is an R-module homomorphism, if it satisfies the following conditions:

(1) φ(a+ b) = φ(a) + φ(b), for all a, b ∈M , and

(2) φ(ra) = rφ(a), for all r ∈ R, a ∈M .

Definition 1.0.29. AnR-module homomorphism is an isomorphism (ofR-modules),

if it is both injective and surjective. If φ : M → N is an R-module isomorphism,

then the modules M and N are said to be isomorphic and is denoted by M ∼= N .

13



Definition 1.0.30. If φ : M → N is an R-module homomorphism, then kernel of

φ is the set

ker(φ) = {m ∈M : φ(m) = 0}.

Image of φ is the set

φ(M) = {n ∈ N : n = φ(m), for some m ∈M}.

Example 1.0.23. If R is a ring and M = R is a module over itself, then R-

module homomorphism (from R to itself) need not be ring homomorphisms and ring

homomorphisms need not be R-module homomorphisms. For example when R = Z.

The Z-module homomorphism φ : r 7→ 2r is not a ring homomorphism, because

φ(mn) = 2mn 6= φ(m)φ(n) = 4mn. When R = F [x], the ring homomorphism

ψ : f(x) 7→ f(x2) is not an F [x]-module homomorphism, because x2 = ψ(x) =

ψ(x.1) = xψ(1) = x.

Theorem 1.0.27 ([7]). (First Isomorphism Theorem For Modules) Let

M1,M2 be R-modules and let ϕ : M1 → M2 be an R-module homomorphism. Then

kerϕ is a submodule of M1 and

M1/kerϕ ∼= ϕ(M1).

Theorem 1.0.28 ([7]). (Second Isomorphism Theorem for Modules) Let

M1,M2 be submodules of the R-module M . Then

(M1 +M2))/M2
∼= M1/(M1 ∩M2).

Theorem 1.0.29 ([7]). (Third Isomorphism Theorem for Modules) Let M

be an R-module, and let M1,M2 be submodules of M with M1 ⊆M2. Then

(M/M1)/(M2/M1) ∼= M/M2.

Definition 1.0.31. If M is an R-module and if M1,M2, . . . ,Ms are submodules of

M , then M is said to be the direct sum of M1, . . . ,Ms, if every element m ∈M can

be written in a unique manner as m = m1 + m2 + . . . + ms, where m1 ∈ M1,m2 ∈
M2, . . . ,ms ∈Ms.
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Definition 1.0.32. An R-module M is said to be cyclic, if there is an element

m0 ∈M such that every m ∈M is of the form m = rm0, where r ∈ R.

Definition 1.0.33. An R-module M is said to be finitely generated, if there exist

elements m1,m2, . . . ,ms ∈ M such that every m in M is of the form m = r1m1 +

r2m2 + . . .+ rsms, where r1, r2, . . . , rs ∈ R. The set {m1,m2, . . . ,ms} is referred as

a generating set for M .

Definition 1.0.34. An R-module M is said to be Noetherian R-module or to satisfy

the ascending chain condition on its submodules with respect to inclusion, if every

increasing chain of submodules stops that

M0 ⊆M1 ⊆M2 ⊆ . . . ,

is an increasing chain of submodules of M , then there is a positive integer r such

that Mk = Mr for all k ≥ r.

Example 1.0.24. (1) The integers, considered as a module over the ring of inte-

gers is a Noetherian module.

(2) Every field over itself is a Noetherian module.

Proposition 1.0.30 ([21]). If M is a finitely generated R-module over a Noetherian

ring R, then M is a Noetherian module.

Proposition 1.0.31 ([21]). If R is a Noetherian ring and I is an ideal of R, then

R/I and Rn are Noetherian R-modules. In particular any sub-modules of Rn is

finitely generated.

Definition 1.0.35. Let M be an R-module. The annihilator of M is given by

AnnR(M) = {x ∈ R : xM = 0}.

Example 1.0.25. Let M = Z/5Z. Then Ann(Z/5Z) = 5Z = 0.

Definition 1.0.36. Let R be a commutative ring and M be an R-module. Then

an element r 6= 0 of R is called a zero divisor in the module M if there is an m ∈M
such that rm = mr = 0.
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Definition 1.0.37. Let R be a commutative ring and M be an R-module. We say

that a non-zero element r ∈ R is an M -regular element, if for any m ∈ M , rm = 0

implies m = 0. In other words r is not a zero divisor on M .

Definition 1.0.38. A sequence a = (a1, a2, . . . , an) of elements of a ring R is called

an M -regular sequence or simply M -sequence, if it satisfy the following axioms:

(1) ai is an M/(a1, a2, . . . , ai−1)M -regular element for i = 1, 2, . . . , n.

(2) M/aM 6= 0.

Example 1.0.26. If S = K[x1, x2, . . . , xn] be a module over itself, then x1, x2, . . . , xn

is a regular sequence on S.

Definition 1.0.39. Let (R,m) be a Noetherian local ring and M a finite R-module.

Then the common length of all maximal M - regular sequence in m is called the depth

of M , written as depth(M).

Proposition 1.0.32. An R-module M has a depth zero, if and only if every element

in m is a zero divisor on M .

1.1 Monomial ideals

Let K be a field and let S = K[x1, x2, . . . , xn] be the polynomial ring in n indeter-

minates xi over K. Let Rn
+ denote the set of those vectors b = (b1, b2, . . . , bn) ∈ Zn

with each bi ≥ 0 and Zn+ = Rn
+ ∩ Zn. Any product xb11 . . . x

bn
n with bi ∈ Z+ ∪ {0} is

called a monomial. A monomial w = xb11 . . . x
bn
n can be written in the form w = xb,

with b = (b1, b2, . . . , bn) ∈ Zn+. Let W denote the set of all monomials of S, then

W form a K-basis of S. In other words, any polynomial f ∈ S can be written as

a linear combination of monomials with coefficients from field K in a unique way.

Write

g =
∑
w∈W

bww with bw ∈ K.

Then we call the set

supp(f) = {w ∈ W : bw 6= 0},
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the support of f . And the set

supp(w) = {xj : xj|w},

is called the support of monomial w.

Definition 1.1.1. An ideal I ⊂ S is called a monomial ideal, if it is generated by

monomials.

Theorem 1.1.1. The set W of monomials belonging to I ⊂ S is a K-basis of I.

Proposition 1.1.2. Let v1, . . . , vm be a monomial system of generators of the mono-

mial ideal I ⊂ S. Then the monomial u belongs to I if and only if there exists a

monomial w such that u = wvi for some i.

Proposition 1.1.3. Every monomial ideal I ⊂ S has a unique minimal monomial

set of generators. Usually G(I) denote the unique minimal set of monomial gener-

ators of the monomial ideal I. Where by |G(I)|, we mean the minimum number of

monomials in I.

Example 1.1.1. Let S = K[x1, x2, x3, x4]. Then I = (x21x
2
2, x

2
2x

3
3, x

2
1x

2
4) is the

monomial ideal. Here G(I) = {x21x22, x22x33, x21x24}.

Definition 1.1.2. A monomial xα1
1 x

α2
2 . . . xαm

m is called squarefree. If α′is are 0 or 1.

Definition 1.1.3. A monomial ideal I ⊂ S is called a squarefree monomial ideal,

if I is generated by squarefree monomials.

Example 1.1.2. Let S = K[x1, x2, x3, x4]. Then I = (x1x2x3, x1x3x4, x2x4) is a

square free monomial ideal.

Definition 1.1.4. The radical of an ideal I ⊂ S in a commutative ring R is denoted

by Rad(I) or
√
I and is defined as

√
I = {r ∈ R : rn ∈ I, for some integer n > 0}.

Proposition 1.1.4 ([8]). Let J be a monomial ideal. Then {
√
v : v ∈ G(J)} is a

set of generators of
√
J .
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Definition 1.1.5. An ideal J is called radical ideal, if J = rad(J).

Corollary 1.1.5 ([8]). A monomial ideal J is a radical ideal, that is J =
√
J , if

and only if J is a squarefree monomial ideal.

Example 1.1.3. (1) The radical of the ideal 4Z is 2Z.

(2) In general the radical of nZ is rZ, where r is the product of all prime factors

of n.

(3) Let S = K[x1, x2, x3, x4, x5]. The radical of ideal I = (x21x
2
2, x

2
3x

2
4, x

2
5) is

√
I =

(x1x2, x3x4, x5).

Definition 1.1.6. A monomial ideal I is called p-primary ideal, if its radical is

equal to p.

Definition 1.1.7. A monomial ideal I is called irreducible, If it cannot be written

non-trivially as a proper intersection of two other monomial ideals, that is if

I = P ∩Q, then I = P or I = Q.

Corollary 1.1.6. Let I ⊂ S = K[x1, . . . , xn] be a monomial ideal. Then I is

irreducible, if and only if it is generated by pure power of the variables.

Theorem 1.1.7. In a Noetherian ring, every irreducible ideal is primary.

Proposition 1.1.8. The irreducible ideal (xb1j1, . . . , x
bk
jk) is (xj1, . . . , xjk) -primary.

Remark 1.1.1. Converse of the above proposition is not true. For instance Let

I = (x21, x
2
2, x1x2).

Then I is (x1, x2)- primary. And

I = (x1, x
2
2) ∩ (x21, x2),

where

(x21, x
2
2, x1x2) ⊂ (x1, x

2
2),

and

(x21, x
2
2, x1x2) ⊂ (x21, x2).

So I is not irreducible.
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Proposition 1.1.9 ([8]). Let I and J be monomial ideals. Then I∩J is a monomial

ideal, and its set of generators is defined as

{lcm(u, v) : u ∈ G(I), v ∈ G(J)}.

Definition 1.1.8. Let I, J ⊂ S be two monomial ideals. The set

I : J = {f ∈ S| fh ∈ I for all h ∈ J},

is an ideal and is called the colon ideal of I with respect to J .

Proposition 1.1.10. Let I and J be monomial ideals. Then I : J is a monomial

ideal, and

I : J =
⋂

w∈G(J)

I : (w).

Moreover {v/gcd(v, w) | v ∈ G(I)} is a set of generators of I : (w).

Definition 1.1.9. A monomial prime ideal I ⊂ S is an ideal, which is generated by

variables not of its powers.

Corollary 1.1.11. A squarefree monomial ideal is an intersection of monomial

prime ideals.

Example 1.1.4. Let S = K[x1, x2, x3] and I = (x1, x3). Then I is a monomial

prime ideal, because it is generated by variables not of its powers.

Definition 1.1.10. Let R be a ring and I ⊂ R is an ideal. A prime ideal P is called

a minimal prime ideal I, if I ⊂ R and there is no prime ideal containing I, which is

properly contained in P . We denote the set of minimal prime ideals of I by Min(I).

Definition 1.1.11. A presentation of an ideal J as an intersection J =
⋂m
i=1 Pi of

ideals is called irredundant, if none of the ideals Pi can be omitted in this presenta-

tion.

Theorem 1.1.12. Let J ⊂ S = K[x1, . . . , xn] be a monomial ideal. Then J =⋂m
i=1 Pi, where each Pi is generated by pure powers of the variables. Moreover, an

irredundant presentation of this form is unique.
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Lemma 1.1.13 ([8]). Suppose J has irredundant presentation J = P1∩P2∩ . . .∩Pm
as an intersection of prime ideals. Then

Min(J) = {P1, P2, . . . , Pm}.

Corollary 1.1.14 ([8]). Let J ⊂ S be a squarefree monomial ideal. Then

J =
⋂

p∈Min(J)

p.

And each p ∈Min(J) is a monomial prime ideal.

Definition 1.1.12. Let G(I) = {u1, u2, . . . , um}. Then I is called a complete inter-

section ideal if and only if

supp(ui) ∩ supp(uj) = ∅ for all i 6= j.

Example 1.1.5. Let S = K[x1, x2, . . . , x7] and I = (x21x
2
2, x3x

2
5, x

2
4, x

2
6x

2
7). Then I

is a complete intersection monomial ideal.

Definition 1.1.13. A presentation of an ideal I as intersection I =
⋂s
i=1 Pi, where

each Pi is a primary ideal is called a primary decomposition of I.

Theorem 1.1.15. In Noetherian ring, every ideal can be written as an intersection

of finite number of primary ideals.

Definition 1.1.14. Let M be an R-module, then a prime ideal P is called an

associated prime ideal of M , if there is an injective morphism of R-modules:

ϕ : R/P ↪→M.

The set of associated primes of M is denoted by AssR(M).

Definition 1.1.15. Let R be a Noetherian ring and M a finitely generated R-

module. A prime ideal P ⊂ R is called an associated prime ideal of M , if there

exists a non-zero element m ∈M such that P = Ann(m).

Corollary 1.1.16. The associated prime ideals of a monomial ideal are monomial

prime ideals.
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Example 1.1.6. Let I = (x31, x
3
2, x

2
1x

2
3, x1x2x

2
3, x

2
2x

2
3). Then

I = (x31, x
3
2, x

2
3) ∩ (x21, x2) ∩ (x1, x

2
2),

is irredundant presentation as intersection of irreducible ideals, andAss(I) = {(x1, x2, x3), (x1, x2)}.

Corollary 1.1.17. Let I ⊂ S be a monomial ideal, and let q ∈ Ass(I). Then there

exists a monomial u such that q = I : u.

Definition 1.1.16. Let (G,+) is an abelian semi-group. Then a (commutative)

ring R is called a graded ring or G-graded. If there is a family of subgroups of R,

{Rg}g∈G, such that:

R =
⊕
g∈G

Rg = R0 ⊕R1 ⊕R2 ⊕R3 ⊕ . . . (as a group),

such that RgRh ⊂ Rg+h, for all g, h ∈ G.

Definition 1.1.17. An element of any factor Rk of the decomposition are called

homogenous element of degree k and Rk is called the homogenous component of R

of degree k.

Definition 1.1.18. Let R is G-graded ring. Then an R-module M is called G-

graded module, if M is the direct sum of additive subgroups:

M =
⊕
g∈G

Mg = M0 ⊕M1 ⊕M2 ⊕M3 ⊕ . . . ,

such that RgMh ⊂Mg+h, for all g, h ∈ G.

Example 1.1.7. (1) Every ring R itself is a graded ring by letting R0 = R and

Rn = 0 for all n 6= 0.

(2) Let G = Z and S = K[x] =
⊕

n∈ZKx
n, where Kxn = 0 if n < 0. Then S is

Z-graded, because

S = S0 ⊕ S1 ⊕ S2 ⊕ S3 ⊕ . . . ,

where S0 = K, S1 = {kx : k ∈ K}, S2 = {kx2 : k ∈ K}, . . .
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Example 1.1.8. Let R be a ring and x1, . . . , xn is the variables of R. For m =

(m1, . . . ,md) ∈ Nd, let xm = xm1
1 . . . xmd

n . Then the polynomial ring S = R[x1, x2, . . . , xn]

is a graded ring, where

Sn =

{∑
m∈Nd

rmx
m | rm ∈ R and m1 + .....+md = n

}
.

This is called the standard grading on the polynomial ring S = R[x1, . . . , xn], where

S0 = R.

Example 1.1.9. Every graded ring is a graded module over itself.

Proposition 1.1.18. Let R be a graded ring, M a graded R-module and N a sub-

module of M . Then M/N is a graded R-module.

Example 1.1.10. Let u ∈ Zn, then f ∈ S is said to be homogenous of degree u. If

it is in the form cxu, where c ∈ K. The polynomial ring S = K[x1, x2, . . . , xn] is a

Zn-graded ring with graded components

Su =

Kxu, u ∈ Zn+;

0, otherwise.

Definition 1.1.19. An S-module M is called Zn-graded module, if

M =
⊕
u∈Zn

Mu,

such that SuMv ⊂Mu+v, for all u, v ∈ Zn.

Example 1.1.11. Let S = K[x1, x2, x3, x4] be a polynomial ring over a field K,

clearly S is graded ring with maximal idealm = (x1, x2, x3, x4). Let I = (x1x
2
3, x

2
2x3, x

2
2x

2
4) ⊂

S be an ideal, and M = S/I. Then x1−x4, x1−x2−x3 is a maximal regular sequence

on M . Hence depth(M) = 2.

Definition 1.1.20. Let R be a commutative ring. The chain of prime ideals of the

form

P0 ( P1 ( P2 ( . . . ( Pn (1.1.1)

has lenght n. The krull dimension of a commutative ring R is the supremum of the

lenghts of all chains of prime ideals as mentioned in (1.1.1).
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(1) A field K has krull dimension 0.

(2) A principle ideal domain that is not a field has a krull dimension 1.

(3) K[x1, x2, . . . , xn] has krull dimension n.

Example 1.1.12. The ring of integers Z has krull dimension 1, because it is a

principle ideal domain, which is not a field.

Definition 1.1.21. Height of a prime ideal P is define as

ht(P ) = max{k : there exist a chain of prime ideals P0 ⊂ P1 ⊂ P2 ⊂ . . . ⊂ Pk = P},

and Height of any ideal I is defined as

ht(I) = min{ht(P ) : P is a prime ideal and I ⊂ P}.

Definition 1.1.22. Let R be a ring. The krull dimension of R-module M is

dim(M) = dim(R/ann(M)).

And the co-dimension of M is

codim(M) = dim(R)− dim(M).

Let M be a finitely generated module over the Noetherian ring R. Then Ass(M) is

finite and

dim(M) = sup{dim(R/Pi) : Pi ∈ Ass(M)}.

Definition 1.1.23. Let (R,+, ·) be a ring. A finite or infinite sequence

. . .M0
f1−→M1

f2−→M2
f3−→ . . .

fn−→Mn . . . , (1.1.2)

of R-modules and R-module homomorphisms is called exact, if the image of each

homomorphism is equal to the kernel of the next, that is

Im(fk) = ker(fk+1).
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Definition 1.1.24. The sequence (1.1.2) of definition 1.1.23 is a short exact se-

quence, if it is finite and of the form

0→M0
f1−→M1

f2−→M2 → 0.

Where f1 is monomorphism and f2 is epimorphism.

Remark 1.1.2. If N is a submodule of R-module M . Then

0→ N
d1−→M

d2−→M/N → 0,

is a short exact sequence.

Example 1.1.13.

0→ Z 2−→ Z→ Z/2Z→ 0,

is a short exact sequence. Because the map 2 from Z to Z is monomorphism, and

the map ϕ : Z→ Z/2Z is epimorphism.
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Chapter 2

Stanley decomposition and the

Stanley depth

This chapter includes the discussion about Stanley decomposition, Stanley depth

and depth of Zn-graded S-modules, where S is the polynomial ring in n variables

over a field. We also discuss about a conjecture of R. P. Stanley given in [20]. Some

results related to Stanley depth and Stanley’s conjecture obtained in recent years

are also discussed.

2.1 Stanley decomposition and the Stanley depth

Definition 2.1.1. Let K be a field and S = K[x1, x2, . . . , xn] a polynomial ring over

K in n indeterminates x1, x2, . . . , xn. Let M be a finitely generated multigraded

(that is Zn-graded) S-module. Let v ∈ M be a homogenous element in M and

Z ⊆ {x1, x2, . . . , xn}. We denote by vK[Z] the K-subspace of M , which is generated

by all elements vw, where w is a monomial in K[Z]. The Zn-graded K-subspace

vK[Z] ⊂ M is called a Stanley space of dimension |Z|, if vK[Z] is a free K[Z]-

module. Where |Z| denotes the number of elements of Z. A Stanley decomposition

(vector space decomposition) of M is a presentation of the K-vector space M as a

finite direct sum of Stanley spaces

D : M =
s⊕
i=1

viK[Zi].

25



The number

sdepth(D) = min{|Zi| : i = 1, 2, . . . , s},

is called the Stanley depth of decomposition and the number

sdepth(M) = max{sdepth(D) : D is a Stanley decomposition of M},

is called the Stanley depth of M .

Conjecture 2.1.1. Stanley conjectured in [20], that

sdepth(M) ≥ depth(M),

for all finitely generated Zn-graded S-modules M . This conjecture has been proved

in several special cases, but it is still open in general.

2.2 The method of Herzog

Let J ⊂ I ⊂ S be monomial ideals. Then I/J is a Zn-graded. Now we will discuss

the method of Herzog as described in [9]. By using this method, we can compute

Stanley depth of monomial ideal (I/J) by using posets. Suppose I is generated by

monomials xa = xa11 , . . . , x
an
n and J is generated by xb = xb11 , . . . , x

bn
n . We choose

g ∈ Nn such that ai ≤ g and bj ≤ g for all i and j. The set PgI/J is the char-

acteristic poset of I/J with respect to g, where g is the join of all ai, bj define as

g = (a ∨ b)(i) = max{a(i), b(j)}. For this g, the poset has the least number of

elements and we denote it by simply PI/J . In order to describe the Stanley decom-

position of I/J from a partition of PgI/J . We shall need the following notation:

For each b ∈ PgI/J , we set Zb = {xj : b(j) = g(j)}, we also introduce the function

ρ : PgI/J → Z≥0, c 7−→ ρ(c).

Where

ρ(c) = |{j : c(j) = g(j)}| = |Zc|.

Then we have the following result.
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Theorem 2.2.1. [9, Theorem 2.1] Let ρ : PgI/J =
⋃s
j=1[cj, dj] be a partition of PgI/J .

Then

D(P) : I/J =
s⊕
j=1

(⊕
c

xcK[Zdj ]

)
,

is a Stanley decomposition of I/J , where the inner direct sum is taken over all

c ∈ [ci, di], for which c(i) = cj(i), for all i with xi ∈ Zdj . Moreover,

sdepthD(P) = min{ρ(dj) : j = 1, . . . , s}

Example 2.2.1. Let I = (x21, x
2
2) ⊂ S = K[x1, x2], if we consider g = (2, 2). The

characteristic poset of I with respect to g is

ρ
(2,2)
I = {(2, 0), (0, 2), (2, 1), (1, 2), (2, 2)}.

Partition of posets ρ
(2,2)
I is :

P1 = [(2, 0), (2, 0)] ∪ [(0, 2), (0, 2)] ∪ [(1, 2), (1, 2)] ∪ [(2, 1), (2, 2)].

We have for [(2, 0), (2, 0)], Zdi = {xj : di(j) = g(j)} = {x1}, so all elements in

the interval [(2, 0), (2, 0)], whose first term is same as c(1) = 2 is (2, 0), and for

[(2, 0), (2, 0)] inner direct sum is (x21K[x1]). For [(0, 2), (0, 2)] inner direct sum is

(x22K[x2]), for [(1, 2), (1, 2)] inner direct sum is (x1x
2
2K[x2]) and for [(2, 1), (2, 2)]

inner direct sum is (x21x2K[x1, x2]). Hence Stanley decomposition for partition is

D : I = x21K[x1]
⊕

x22K[x2]
⊕

x1x
2
2K[x2]

⊕
x21x2K[x1, x2].

And

sdepthS(I) ≥ 1.

Example 2.2.2. Let S = K[x1, x2] , I = (x31x
5
2, x

4
1x

4
2, x

6
1x2) and J = (x51x

6
2, x

7
1x

2
2),

Then

I/J = {x31x52, x41x52, x41x62, x41x42, x51x42, x61x42, x41x52, x31, x62, x61x2, x61x22, x51x52, x61x52, x81x2, x41x72}.

The characteristic poset of I/J with respect to g = (8, 7) is
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P(8,7)
I/J = {(3, 5), (4, 5), (3, 6), (4, 6), (4, 4), (5, 4), (6, 4), (6, 1), (6, 2), (5, 5), (6, 5), (8, 1), (4, 7)}.

Partition of the posets P(8,7)
I/J is

P1 : P(8,7)
I/J = [(3, 5), (4, 7)] ∪ [(5, 4), (6, 5)] ∪ [(6, 1), (8, 1)] ∪ [(4, 4), (4, 4)]∪

[(6, 2), (6, 2)] ∪ [(6, 4), (6, 4)].

Stanley decomposition for partition is

D(P1) := (x31x
5
2K[x2]

⊕
x41x

5
2K[x2])

⊕
(x51x

4
2K
⊕

x51x
5
2K
⊕

x61x
5
2K)

⊕
(x61x2K[x1])

⊕
(x41x

4
2K)

⊕
(x61x

2
2K)

⊕
(x61x

4
2K).

Stanley depth of the decomposition is

sdepthD(P1) = 0.

Another partition of P(8,7)
I/J is

P2 : P(8,7)
I/J = [(3, 5), (4, 7)] ∪ [(6, 1), (8, 1)] ∪ [(5, 4), (5, 5)]∪

[(4, 4), (4, 5)] ∪ [(6, 4), (6, 4)].

And corresponding Stanley decomposition is

D(P2) := (x31x
5
2K[x2]

⊕
x41x

5
2K[x2])

⊕
(x61x2K[x1])

⊕
(x51x

4
2K
⊕

x51x
5
2K)

⊕
(x41x

4
2K)

⊕
(x41x

5
2K)

⊕
(x61x

4
2K).

Stanley depth of the other decomposition is
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sdepthD(P2) = 0.

Hence by Cocoa,

sdepthS(I/J) = 0

2.3 Values and bounds for the Stanley depth of

monomial ideals

Proposition 2.3.1. [16, Proposition 1.3] Let I ⊂ S be a monomial ideal. Then

sdepthS(I : u) ≥ sdepthS(I) for each monomial u 6∈ I.

Theorem 2.3.2. [2, Theorem 2.2] Let S = K[x1, x2, . . . , xn] be a polynomial ring

over a field K. If m = (x1, x2, . . . , xn) be the maximal ideal in S, then

sdepth(m) =
⌈n

2

⌉
.

Theorem 2.3.3. [3, Theorem 1.3] Let b1, b2, . . . , bn be some positive integers, Then

sdepth((xb11 , . . . , x
bn
n )) = sdepth((x1, . . . , xn)) =

⌈n
2

⌉
.

In particular,

sdepth((xb11 , . . . , x
bm
m )) = n−m+

⌈m
2

⌉
for any 1 ≤ m ≤ n.

Theorem 2.3.4. [3, Theorem 2.1] Let J ⊂ S be a complete intersection monomial

ideal. Then

sdepth(J) = sdepth(
√
J).

Lemma 2.3.5. [3, Lemma 2.2] Let J
′ ⊂ S[xn+1] be a monomial ideal, we consider

the homomorphism ψ : S[xn+1] → S, ψ(xi) = xi for i ≤ n and ψ(xn+1) = 1. Let

I = ψ(I
′
), then

sdepth(I
′
) ≤ sdepth(I) + 1.
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Lemma 2.3.6. [5, Lemma 1.1] Let v, w ∈ S be two monomials and Y, Z ⊂ x1, . . . , xn,

such that supp(v) ⊂ Y and supp(w) ⊂ Z. Then

vK[Y ] ∩ wK[Z] = lcm(v, w)K[Y ∩ Z].

Proposition 2.3.7. [5, Proposition 3.1] The following statements are equivalent:

(1) For any integer n ≥ 1 and any monomial ideal J ⊂ S = K[x1, . . . , xn]. Stanley

conjecture holds for J , that is

sdepthS(J) ≥ depthS(J).

(2) For any integer n ≥ 1, and any monomial ideals I, J ⊂ S = K[x1, . . . , xn]. If

sdepthS(I + J) ≥ depthS(I + J), then

sdepthS(J) ≥ depthS(J).

Theorem 2.3.8. [17, Theorem 4.2] Let J =
⋂4
k=1 Pk be a reduced intersection of

four monomial prime ideals of S. Then Stanleys Conjecture holds for J .

Theorem 2.3.9. [23, Theorem 2.4] Let J ⊂ S = K[x1, x2, . . . , xn] be a monomial

ideal minimally generated by m elements. Then

sdepth(J) = n−
⌊m

2

⌋
.

Theorem 2.3.10. [14, Theorem 2.3] Let J be a monomial ideal of S with |G(J)| =
m. Then

sdepth(J) ≥ max
{

1, n−
⌊m

2

⌋}
.

Lemma 2.3.11. [14, Lemma 2.4] Let M be a Zn-graded S-module, and suppose

that M1 and M2 be its two submodules. Let

0→M1 →M →M2 → 0,

be an exact sequence. Then

sdepth(M) ≥ min {sdepth(M1), sdepth(M2)} .
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Theorem 2.3.12. [10, Theorem 2.8] Let P and P
′

be two primary monomial ideals

with
√
P = (x1, . . . , xs) and

√
P ′ = (xs+1, . . . , xn), where s ≥ 2 and n ≥ 4. Then

sdepth(P ∩ P ′) ≤ n+ 2

2
.

Corollary 2.3.13. [10, Corollary 2.10] Let P and P
′

be two irreducible monomial

ideals with
√
P = (x1, . . . , xs) and

√
P ′ = (xs+1, . . . , xn). Suppose that n is even.

Then

sdepth(P ∩ P ′) =

n
2

+ 1, if s is odd;

n
2
or n

2
+ 1, if s is even.

Lemma 2.3.14. [10, Lemma 2.11] Let I ⊂ S be a monomial ideal, and let I
′

=

(I, xn+1) be a monomial ideal of S
′
= S[xn+1]. Then

sdepthS(I) ≤ sdepthS′ (I
′
) ≤ sdepthS(I) + 1.

Proposition 2.3.15. [10, Proposition 2.13] Let P and P
′

be two primary monomial

ideals with
√
P = (x1, . . . , xs) and

√
P ′ = (xt+1, . . . , xn), where 1 < t ≤ s < n,

n ≥ 4. Then

sdepth(P ∩ P ′) ≤ n+ s− t+ 2

2
.

Proposition 2.3.16. [10, Proposition 2.16] Let P and P
′

be two primary monomial

ideals with
√
P = (x1, . . . , xs) and

√
P ′ = (xt+1, . . . , xn), where 1 < t ≤ s < n. Then

sdepth(P ∩ P ′) ≤ min

{
n−

⌊s
2

⌋
, n−

⌊
n− s

2

⌉}
.

Theorem 2.3.17. [10, Theorem 2.19] Let P and P
′

be two primary monomial ideals

with
√
P = (x1, . . . , xs) and

√
P ′ = (xt+1, . . . , xp), where 1 < t ≤ s < p ≤ n, n ≥ 4.

Then

sdepth(P ∩ P ′) ≤ min

{
2n+ s− p− t+ 2

2
, n−

⌊s
2

⌋
, n−

⌊
p− s

2

⌋}
.

Theorem 2.3.18. [13, Theorem 2.2] Let I =
⋂s
i=1 Pi be a monomial ideal in S such

that each Pi is irreducible and G(
√
Pi) ∩G(

√
Pj) = ∅ for all i 6= j. Then

sdepth(I) = sdepth(
√
I).
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Theorem 2.3.19. [13, Theorem 2.6] Let I =
⋂r
i=1Qi be a monomial ideal in S,

where each Qi is a monomial prime ideal and
∑r

i=1Qi = m, where m is the maximal

ideal. Suppose G(Qi) ∩G(Qj) = ∅ for all i 6= j. Then

sdepth(I) ≤ n+ r

2
.

Corollary 2.3.20. [13, Corollary 2.7] Let I =
⋂r
i=1Qi be a monomial ideal in S

such that G(
√
Qi) ∩ G(

√
Qj) = ∅ for all i 6= j, ht(Qi) = di,

∑r
i=1

√
Qi = m and

A = {Qi : ht(Qi) is odd}. Then

n+ |A|
2

≤ sdepth(I) ≤
⌊
n+ r

2

⌋
.

Corollary 2.3.21. [13, Corollary 2.10] Let I =
⋂r
i=1Qi be a monomial ideal in

S such that each Qi is irreducible and G(
√
Qi) ∩ G(

√
Qj) = ∅ for all i 6= j and∑r

i=1Qi = m. Suppose that r is odd and |A| = r − 1. Then

sdepth(I) =
n+ r − 1

2
.

Lemma 2.3.22. [18, Lemma 1.2] Let S = K[x1, . . . , xn] and I ⊂ S
′
= K[x1, . . . , xk],

J ⊂ S
′′

= K[xk+1, . . . , xn], where 1 < k < n be monomial ideals. Then

sdepthS(IS ∩ JS) ≥ sdepthS′ (I) + sdepthS′′ (J).

Lemma 2.3.23. [12, Lemma 3.1] Let S = K[x1, . . . , xn] be a polynomial ring and

I
′ ⊂ S

′
= K[xn+1], xn+1 being a new variable. If I

′ ∩ S 6= (0), then

sdepthS(I
′ ∩ S) ≥ sdepthS[xn+1](I

′
)− 1.

Lemma 2.3.24. [19, Lemma 4.1] Let P , P
′ ⊂ S = K[x1, ....., xn] be two non-zero

irreducible monomial ideals such that
√
P = {x1, . . . , xr},

√
P ′ = {xr+1, . . . , xn} for

some integer r with 1 ≤ r ≤ n. Then

sdepth(P ∩ P ′) ≥
⌈r

2

⌉
+

⌈
n− r

2

⌉
≥ n/2.

Lemma 2.3.25. [1, Lemma 2.1] Let I ⊂ S = K[x1, x2, . . . , xn] be a monomial ideal,

Janet’s algorithm gives a Stanley decomposition of I.
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2.4 Values and bounds for the Stanley depth of

quotient ideals

Lemma 2.4.1. [9, Lemma 3.6] Let J ⊂ I be monomial ideals of S, and let S
′

=

S[xn+1] be the polynomial ring over S in the variable xn+1. Then

depth(IS
′
/JS

′
) = depth(I/J) + 1.

sdepth(IS
′
/JS

′
) = sdepth(I/J) + 1.

Proposition 2.4.2. [4, Proposition 1.2] Let J ⊂ S be a monomial ideal. Then

sdepth(S/J) ≥ n−G(J).

Theorem 2.4.3. [4, Theorem 1.4] Let I ⊂ S be a monomial ideal which is not

principle. Assume I = uI
′

, where u ∈ S is a monomial and I
′
= (I : u). Then

(1) sdepth(S/I) = sdepth(S/I
′
).

(2) sdepth(I) = sdepth(I
′
).

Corollary 2.4.4. [4, Corollary 3.3] If I ⊂ K[x1, x2, x3] is a monomial ideal, then

sdepth(I) ≥ sdepth(S/I) + 1.

In particular, if

sdepth(I) = 1, then depth(I) = 1.

Theorem 2.4.5. [22, Theorem 1.1] Let J ⊂ S = K[x1, x2, . . . , xn] be a monomial

ideal and v ∈ S be a monomial regular on S/J . Then

sdepth(S/(J, v)) = sdepth(S/J)− 1.

In particular, J is a Stanley ideal if and only if (J, v) is a Stanley ideal.

Theorem 2.4.6. [10, Theorem 2.1] Let J ⊂ I be two monomial ideals of S and
√
I

and
√
J be the radical ideals of I and J respectively. Then

sdepthS(I/J) ≤ sdepthS(
√
I/
√
J).
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Corollary 2.4.7. [10, Corollary 2.2] Let J ⊂ S be a monomial ideal and
√
J be its

radical. Then

sdepth(S/J) ≤ sdepth(S/
√
J).

And

sdepth(J) ≤ sdepth(
√
J).

Corollary 2.4.8. [10, Corollary 2.3] Let J ⊂ I be two monomial ideals of S, and let
√
I and

√
J be the radical ideals of I and J , respectively. If sdepth(I/J) = dim(I/J),

then

sdepth(
√
I/
√
J) = dim(

√
I/
√
J).

Theorem 2.4.9. [13, Theorem 3.1] Let S = K[x1, . . . , xn] be a polynomial ring and

P1, P2, . . . , Pr monomial irreducible ideals of S such that G(
√
Pi)∩G(

√
Pj) = ∅ for

all i 6= j. Let ht(Pi) = di and
∑r

i=1 di = n. If I = P1 ∩ P2 ∩ ... ∩ Pr, then

sdepth(S/I) ≥ min

{
n− d1,min2≤i≤r

{⌈
d1
2

⌉
+ . . .+

⌈
di−1

2

⌉
+ di+1 + . . .+ dk

}}
.

Corollary 2.4.10. [13, Corollary 3.4] Let d1 ≥ d2 = . . . = dr, then

sdepth(S/I) ≥
⌈
d1
2

⌉
+

⌈
d2
2

⌉
+ . . .+

⌈
dr−1

2

⌉
.

Lemma 2.4.11. [19, Lemma 1.2] Let P be a primary monomial ideal in S =

K[x1, . . . , xn]. Then

sdepth(S/P ) = dim(S/P ) = depth(S/P ).

Lemma 2.4.12. [19, Lemma 1.3] Let I, J be two monomial ideals in a polynomial

ring S = K[x1, . . . , xn]. Then

sdepth(S/(I ∩ J)) ≥max{min {sdepth(S/I), sdepth(I/(I ∩ J))} ,

min {sdepth(S/J), sdepth(J/(I ∩ J))}}.

Corollary 2.4.13. [3, Corollary 2.4] If I, J ⊂ S are two monomial ideals and

|G(J)| = m. Then

sdepth((I + J)/I) ≥ sdepth(S/I)−
⌊m

2

⌋
.
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Lemma 2.4.14. [1, Lemma 2.3] If I ⊂ S = K[x1, x2, . . . , xn] is a square free

monomial ideal, Janet’s algorithm gives a square free Stanley decomposition of S/I

recursively.

Lemma 2.4.15. [16, Lemma 2.3] Let S∗ = K[x1, . . . , xn−1] be a polynomial ring in

n− 1 variables over a field K. Let I, J ⊂ S∗, J ⊂ I, I 6= J be two monomial ideals,

T = (I + xnJ)S such that

(1) depthS∗(S
∗/J) = depthS(S/T )− 1.

(2) depthS∗(J) ≥ 1 + depthS∗(S
∗/J).

(3) sdepthS∗(I/J) ≥ depthS∗(I/J). Then

sdepthS(T ) ≥ 1 + depthS(S/T ).
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Chapter 3

Stanley depth of quotient of

monomial complete intersection

ideals

In this chapter we discuss in detail the results of paper [6]. In this paper Stanley

depth of quotient of irreducible monomial ideals and quotient of complete inter-

section monomial ideals J ⊂ I ⊂ S are discussed. If J ( I ⊂ S are complete

intersection monomial ideals, then some sharp bounds exist for sdepthS(I/J), and

also Stanley’s conjecture holds for quotients of complete intersection monomial ide-

als.

3.1 The Case Of irreducible ideals

Lemma 3.1.1. [6, Lemma 1.1] Let b be a positive integer, and J ( I ⊂ S∗ =

K[x2, . . . , xn] be monomial ideals. Then

(xb1, I)/(xb1, J) ∼=
b−1⊕
i=0

xi1(I/J),

as Zn-graded, S∗-modules. Moreover

sdepthS((xb1, I)/(xb1, J)) = depth∗S(I/J).
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Proof. let v ∈ (xb1, I)/(xb1, J) be a monomial. Then v = xi1 · v
′
, for some nonnegative

integer i and some monomial v
′ ∈ S∗. Since v 6∈ (xb1, J), it follows that i < b and

also v
′ 6∈ J . On the other hand, since v ∈ (xb1, I) and v 6∈ xb1S, it follows that v

′ ∈ I.

Therefore, v ∈
⊕b−1

i=0 x
i
1(I/J), so we have

((xb1, I)/(xb1, J)) ⊆
b−1⊕
i=0

xi1(I/J). (3.1.1)

Conversely, let us take a monomial v
′ ∈ (I/J) and an integer 0 ≤ i < b. Since

v
′ 6∈ J , so v

′ 6∈ (xb1, J) also v
′ ∈ I, so v

′ ∈ (xb1, I). Thus v
′ ∈ (xb1, I)/(xb1, J), since

(xb1, I)/(xb1, J) ⊆ S/(xb1, J) is an ideal of S/(xb1, J). So by definition of ideal, for

v
′ ∈ (xb1, I)/(xb1, J) and xi1 ∈ S/(xb1, J), we have xi1v

′ ∈ (xb1, I)/(xb1, J). Thus

b−1⊕
i=0

xi1(I/J) ⊆ (xb1, I)/(xb1, J). (3.1.2)

Hence from equation (3.1.1) and (3.1.2) , we have

(xb1, I)/(xb1, J) ∼=
b−1⊕
i=0

xi1(I/J).

By this decomposition clearly

sdepthS(xb1, I)/(xb1, J) ≥ sdepthS∗(I/J). (3.1.3)

Also

I/J = (xb1, I)/(xb1, J) ∩ (S∗/J), (3.1.4)

via the natural injection I/J ↪→ (xb1, I)/(xb1, J). In order to prove the other inequal-

ity, we consider a Stanley decomposition of viK[Zi] =
⊕s

j=1 viK[Zi]. Note that

viK[Zi] ∩ S∗ = 0, if x1 ∈ supp(vi) or x1|v , otherwise viK[Zi] ∩ S∗ = viK[Zi]. Thus

from equation (3.1.4), we have

I/J =
⊕

x1 6∈supp(vi)

viK[Zi].

And thus

sdepthS∗(I/J) ≥ sdepthS((xb1, I)/(xb1, J)). (3.1.5)
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Hence from equation (3.1.3) and (3.1.5), we have

sdepthS((xb1, I)/(xb1, J)) = sdepthS∗(I/J)

.

Corollary 3.1.2. [6, Corollary 1.2] Let 0 ≤ p < q be integer. Then

sdepthS((x1, x2, . . . , xq)/(x1, x2, . . . , xp)) = q − p− bq − p
2
c.

Proof. We use induction on p.

(1) If p = 0, then by [2, Theorem 2.2], we have

sdepth(x1, x2, . . . , xq) =
⌈q

2

⌉
= q −

⌊q
2

⌋
.

(2) The case p = q is trivial.

(3) Now we assume 1 ≤ p < q. Let S
′

= K[x2, x3, . . . , xq] and denote I =

(x2, x3, . . . , xq) ⊂ S
′
and J = (x2, x3, . . . , xp) ⊂ S

′
. Then According to Lemma

3.1.1

(x1, I)/(x1, J) ∼= (I/J).

And thus by induction hypothesis

sdepthS(x1, I)/(x1, J) = sdepthS′ (I/J) = (q−1)−(p−1)−
⌊

(q − 1)− (p− 1)

2

⌋
.

Thus

sdepthS((x1, x2, . . . , xq)/(x1, x2, . . . , xp)) = q − p−
⌊
q − p

2

⌋
.

If we denote S∗∗ = K[xp+1, ..., xq], note that the above corollary follow also

from the isomorphism of multigraded S∗∗-modules.

(x1, ...., xq)/(x1, . . . , xp) ∼= (xp+1, . . . , xq).
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Lemma 3.1.3. [6, Lemma 1.3] Let 1 ≤ a < b be integers, and I ⊂ S∗ = K[x2, x3, . . . , xn]

be a monomial ideal. Then

(xa1, I)/(xb1, I) ∼=
b−1⊕
i=a

xi1(S
∗/I),

as Zn-graded S∗-modules. Moreover

sdepthS((xa1, I)/(xb1, I)) = sdepthS∗(S
∗/I).

Proof. Let u ∈ (xa1, I)/(xb1, I). Then we write u = xi1 · u
′
, for some integer a ≤ i < b

and some monomial u
′ ∈ S∗. Since u 6∈ (xb1, I), it follows that i < b and u

′ 6∈ I. Also

u ∈ (xa1, I), so a ≤ i < b and u
′ ∈ S∗. Therefore u

′ ∈ (S∗/I), so

((xa1, I)/(xb1, I)) ⊆
b−1⊕
i=a

xi1(S
∗/I). (3.1.6)

Conversely, if we take an arbitrary monomial u
′ ∈ (S∗/I) and a ≤ i < b. Then

clearly, u
′ ∈ (xa1, I)/(xb1, I). Since (xa1, I)/(xb1, I) ⊆ S/(xb1, I) is an ideal. So by

definition of ideal for u
′ ∈ (xa1, I)/(xb1, I) and xi1 ∈ S/(xb1, I), we have xi1.u

′ ∈
(xa1, I)/(xb1, I). Thus

b−1⊕
i=a

xi1(S
∗/I) ⊆ (xa1, I)/(xb1, I). (3.1.7)

Hence from equation (3.1.6) and (3.1.7), we have

(xa1, I)/(xb1, I) ∼=
b−1⊕
i=a

xi1(S
∗/I).

The above isomorphism implies

sdepthS(xa1, I)/(xb1, I) ≥ sdepthS∗(S
∗/I). (3.1.8)

Also note that

xa1(S
∗/I) = (xa1, I)/(xb1, I) ∩ xa1(S∗/I), (3.1.9)

via natural injection xa1S
∗/I ↪→ (xa1, I)/(xb1, I). In order to prove other in-equality,

let us consider Stanley decomposition of (xa1, I)/(xb1, I) =
⊕r

i=1 uiK[Zi]. Note that

39



uiK[Zi]∩S∗ = 0, if x1|u or x1 ∈ supp(ui), otherwise, uiK[Zi]∩S∗ = uiK[Zi]. Thus

from equation (3.1.9), we have

S∗/I =
⊕

x1 6∈supp(ui)

uiK[Zi].

Clearly

sdepthS∗(S
∗/I) ≥ sdepthS(xa1, I)/(xb1, I). (3.1.10)

Hence from equation (3.1.8) and (3.1.10), we have

sdepthS(xa1, I)/(xb1, I) = sdepthS∗(S
∗/I).

Lemma 3.1.4. [6, Lemma 1.4] Let 1 ≤ a < b be integers and J ⊂ I ⊂ S∗ =

K[x2, . . . , xn] be monomial ideals. Then

sdepthS((xa1, I)/(xb1, J) ≥ min {sdepth∗S(I/J), sdepth∗S(S∗/J)} .

Proof. Since (xa1, J)/(xb1, J) ⊆ (xa1, I)/(xb1, J) is a Zn-graded submodule. So

0→ (xa1, J)/(xb1, J)→ (xa1, I)/(xb1, J)→ ((xa1, I)/(xb1, J))/((xa1, J)/(xb1, J))→ 0,

is a short exact sequence. Thus we have

(xa1, I)/(xb1, J) ∼= ((xa1, I)/(xb1, J))/((xa1, J)/(xb1, J))
⊕

(xa1, J)/(xb1, J).

Now by the third isomorphism theorem, we have

(xa1, I)/(xb1, J) ∼= (xa1, I)/(xa1, J)
⊕

(xa1, J)/(xb1, J), (3.1.11)

as Zn-graded, S∗-modules. Now by [14, Lemma 2.4], we have

sdepthS(xa1, I)/(xb1, J) ≥ min
{
sdepthS(xa1, I)/(xa1, J), sdepthS(xa1, J)/(xb1, J)

}
.

(3.1.12)

By lemma 3.1.1, we have

sdepthS(xa1, I)/(xa1, J) = sdepthS∗(I/J).
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Also by lemma 3.1.3, we have

sdepthS(xa1, J)/(xb1, J) = sdepthS∗(S
∗/J).

Hence from equation (3.1.12), we have

sdepthS(xa1, I)/(xb1, J) ≥ min{sdepthS∗(I/J), sdepthS∗(S
∗/J)}.

Theorem 3.1.5. [6, Theorem 1.5] Let 0 ≤ p ≤ q be integers. Let ai ≥ 1, for

1 ≤ i ≤ q and bi ≥ ai, for 1 ≤ i ≤ p, be some integers. Then

sdepthS((xa11 , . . . , x
aq
q )/(xb11 , . . . , x

bp
p )) = q − p−

⌊
q − p

2

⌋
.

And thus

sdepthS((xa11 , . . . , x
aq
q )/(xb11 , . . . , x

bp
p )) ≥ depthS((xa11 , . . . , x

aq
q )/(xb11 , . . . , x

bq
p )).

Proof. We use induction on p.

(1) Let p = 0. Then by [3, Theorem 1.3], we have

sdepthS((xa11 , x
a2
2 , . . . , x

aq
q )) =

⌈q
2

⌉
= q −

⌊q
2

⌋
, as required.

(2) Let p = q. Then (xa11 , . . . , x
aq
q )/(xb11 , . . . , x

bp
p ) is a finite K- vector space, and

thus its Stanley depth is 0.

(3) Now assume 1 ≤ p ≤ q. We denote S∗ = K[x2, x3, . . . , xq], I = (xa22 , . . . , x
aq
q ) ⊂

S∗, and J = (xb22 , . . . , x
bp
p ) ⊂ S∗. By induction hypothesis, we have

sdepthS∗(I/J) = (q − 1)− (p− 1)−
⌊

(q − 1)− (p− 1)

2

⌋
.

Thus

sdepthS∗(I/J) = q − p−
⌊
q − p

2

⌋
(3.1.13)
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On the other hand by [22, Theorem 1.1], or by [9, lemma 3.6], we have

sdepthS∗(S
∗/J) = sdepth(S∗)− (p− 1). So

sdepthS∗(S
∗/J) = (q − 1)− (p− 1) = q − p.

Now according to Lemma 3.1.4, we have

sdepthS((xa11 , . . . , x
aq
q )/(xb11 , . . . , x

bp
p )) ≥ min {sdepthS∗(I/J), sdepthS∗(S

∗/J)} .

Thus

sdepthS((xa11 , . . . , x
aq
q )/(xb11 , . . . , x

bp
p )) ≥ sdepthS∗(I/J) = q − p−

⌊
q − p

2

⌋
.

(3.1.14)

In order to prove other inequality, we will consider two cases:

case(a) If a1 = b1, so by Lemma 3.1.1, we have

sdepthS((xa11 , ...., x
aq
q )/(xb11 , ...., x

bp
p )) = sdepthS∗(I/J) = q−p−

⌊
q − p

2

⌋
.

case(b) Assume a1 < b1, we denote a = a1, b = b1. By short exact sequence

0→ (xa1, J)/(xb1, J)→ (xa1, I)/(xb1, J)→ ((xa1, I)/(xb1, J))/((xa1, J)/(xb1, J))→ 0.

We consider decomposition

(xa1, I)/(xb1, J) ∼= (xa1, I)/(xa1, J)
⊕

(xa1, J)/(xb1, J).

Now by Lemma 3.1.1, and Lemma 3.1.3, we have

(xa1, I)/(xb1, J) ∼=
a−1⊕
i=0

xi1(I/J)
⊕ b−1⊕

i=a

xi1(S
∗/J). (3.1.15)

Also

I/J = (xa1, I)/(xb1, J) ∩ (S∗/J), (3.1.16)
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via natural injection I/J ↪→ (xa1, I)/(xb1, J). Now we consider a Stan-

ley decomposition of (xa1, I)/(xb1, J) =
⊕r

j=1 vjK[Zj], so from equation

(3.1.16), we have

I/J =
r⊕
j=1

(vjK[Zj] ∩ S∗/J). (3.1.17)

Note that vjK[Zj] ∩ S∗ = 0, if x1 ∈ supp(vj), otherwise vjK[Zj] ∩ S∗ =

vjK[Zj]. Thus from equation (3.1.17), we have

I/J =
⊕

x1 6∈supp(vj)

vjK[Zj].

Clearly, sdepthS∗(I/J) ≥ sdepthS(xa1, I)/(xb1, J). Thus

q − p− bq − p
2
c ≥ sdepthS(xa1, I)/(xb1, J). (3.1.18)

Hence from equation (3.1.14), and (3.1.18), we have

sdepthS(xa1, I)/(xb1, J) = q − p− bq − p
2
c.

In order to complete the proof, notice that depthS(xa11 , . . . , x
aq
q )/(xb11 , . . . , x

bp
p ) =

1, if q > p and 0, if p = q.

3.2 The case of complete intersection ideals

Lemma 3.2.1. [6, Lemma 2.1] Let 1 ≤ p < q be integer, J ( I ⊂ S∗ =

K[x1, x2, . . . , xp] be distinct monomial ideals, and let J1 ⊂ S∗∗ = K[xp+1, . . . , xn]

be a monomial ideal. Then

sdepthS(I, J1)/(J, J1) ≥ sdepthS∗∗(S
∗∗/J1) + sdepthS∗(I/J).

Proof. Let v ∈ (I, J1)/(J, J1) be a monomial. Then we write v = v
′
.v
′′
, where

v
′ ∈ S∗ and v

′′ ∈ S∗∗. Since v ∈ (I, J1), it follows that v ∈ IS or v ∈ J1S. Thus
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v
′ ∈ I and v

′′ ∈ S∗∗. On the other hand, since v 6∈ (J, J1), it follows that v 6∈ JS or

v 6∈ J1S. Therefore we get v
′ 6∈ J and v

′′ 6∈ J1. Thus v
′ ∈ (I/J) and v

′′ ∈ (S∗∗/J1).

So v ∈ (I/J).(S∗∗/J1). Therefore

(I, J1)/(J, J1) ⊆ (I/J).(S∗∗/J1) (3.2.1)

Conversely, Let v
′ ∈ (I/J), and v

′′ ∈ (S∗∗/J1). Since v
′ ∈ I, so v

′ ∈ (I, J1). Also

v
′ 6∈ J , so v

′ 6∈ (J, J1). Thus v
′ ∈ (I, J1)/(J, J1). Since (I, J1)/(J, J1) ⊆ S/(J, J1) is

an ideal, so by definition of ideal for v
′ ∈ (I, J1)/(J, J1) and v

′′ ∈ S/(J, J1), we have

v
′
.v
′′ ∈ (I, J1)/(J, J1). Therefore

(I/J).(S∗∗/J1) ⊆ (I, J1)/(J, J1). (3.2.2)

Hence from equation (3.2.1) and (3.2.2), we have

(I, J1)/(J, J1) = (I/J).(S∗∗/J1). (3.2.3)

Now, let us consider two Stanley decompositions I/J =
⊕s

i=1 uiK[Yi], and S∗∗/J1 =⊕r
j=1wjK[Zj]. It follows from equation (3.2.3), that

(I, J1)/(J, J1) =
s⊕
i=1

r⊕
j=1

uiwjK[Yi ∪ Zj],

is a Stanley decomposition, and thus

sdepthS(I, J1)/(J, J1) ≥ sdepthS∗∗(S
∗∗/J1) + sdepthS∗(I/J).

Lemma 3.2.2. [6, Lemma 2.2] Let 1 ≤ p < q be integer, J ( I ⊂ S∗ =

K[x1, . . . , xp] be monomial ideals and J1 ⊂ I1 ( S∗∗ = K[xp+1, . . . , xq] be other

monomial ideals. Then

sdepthS(I, I1)/(J, J1) ≥min{sdepthS∗
(
S∗

I

)
+ sdepthS∗∗

(
I1
J1

)
,

sdepthS∗∗

(
S∗∗

J1

)
+ sdepthS∗

(
I

J

)
}.
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Proof. Since (I, J1)/(J, J1) ⊆ (I, I1)/(J, J1) is a Zn-graded submodule. So

0→ (I, J1)/(J, J1)→ (I, I1)/(J, J1)→ ((I, J1)/(J, J1))/((I, I1)/(J, J1))→ 0,

is a short exact sequence. By third isomorphism theorem, we have

0→ (I, J1)/(J, J1)→ (I, I1)/(J, J1)→ (I, J1)/(I, I1)→ 0,

is a short exact sequence. And by [22, Theorem 1.1], we have

sdepthS(I, I1)/(J, J1) ≥ min{sdepthS(I, J1)/(J, J1), sdepthS(I, J1)/(I, I1)}.
(3.2.4)

Now from Lemma 3.2.1, we have

sdepthS(I, I1)/(J, J1) ≥min{sdepthS∗∗
(
S∗

I1

)
+ sdepthS∗

(
I

J

)
,

sdepthS∗

(
S∗

I

)
+ sdepthS∗∗

(
I1
J1

)
}.

If w ∈ S. Then supp(w) = {xi : xi|w} denote the support of monomial w.

Lemma 3.2.3. [6, Lemma 2.3] Let u1, . . . , up ∈ S and v1, . . . , vp ∈ S be two regular

sequences of monomials such that uj|vj and vi 6= ui for some index i. Then

sdepthS((u1, . . . , up)/(v1, . . . , vp)) = n− p.

Moreover, (u1, . . . , up)/(v1, . . . , vp) has a Stanley decomposition with all its Stanley

spaces of dimension n− p.

Proof. We use induction on p ≥ 1.

(1) If p = 1. By the short exact sequence,

0→ S/(I : u)→ S/I → S/(I, u)→ 0.

We have

(I, u)/I ∼= S/(I : u). (3.2.5)
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Let u = u1 and I = v1. So from (3.2.5), we have

(u1)/(v1) ∼= S/(v1/u1).

And therefore by [22, Theorem 1.1], we have

sdepthS((u1/(v1)) ∼= sdepth(S)− 1 = n− 1.

(2) Now assume p > 1. We apply Lemma 3.2.2 for I = (u1, . . . , up−1), I1 = (up)

and J = (v1, . . . , vp−1), J1 = (vp). So we get

sdepthS((u1, . . . , up)/(v1, . . . , vp)) ≥ min{sdepthS∗
(
S∗

I

)
+sdepthS∗∗

(
I1
J1

)
,

sdepthS∗∗

(
S∗∗

I1

)
+ sdepthS∗

(
I

J

)
}. (3.2.6)

Since, sdepth(S/J) = sdepthS∗(S
∗/J)+sdepth(S∗∗), and also by [22, Theorem

1.1], we have

sdepthS∗∗(J1/I1) = sdepth(S∗∗)− 1.

So from equation (3.2.6), we have

sdepthS((u1, . . . , up)/(v1, . . . , vp)) ≥ min{sdepthS(S/J)−1, sdepthS(S/I1)−1}.

Thus

sdepthS((u1, . . . , up)/(v1, . . . , vp)) ≥ n− (p− 1)− 1 = n− p. (3.2.7)

In order to prove the opposite inequality, letuK[Z] be a Stanley space of

(u1, . . . , up)/(v1, . . . , vp). Since viS ∩ uK[Z] = (0), it follows that there exist

an index ji such that xji 6∈ Z. Since v1, . . . , vp is a regular sequence, so their

support are disjoint and therefore, {xj1, . . . , xjp} is a set of p variables, which

do not belong to Z. Thus |Z| ≤ n− p, so

sdepthS((u1, ...., up)/(v1, ...., vp)) ≤ n− p. (3.2.8)

Hence from equation (3.2.7) and (3.2.8), we have

sdepthS((u1, . . . , up)/(v1, . . . , vp)) = n− p.
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Note that the inequality ” ≤ ” also follow from the inequalities

sdepthS((u1, . . . , up)/(v1, . . . , vp)) ≤dim((u1, . . . , up)/(v1, . . . , vp)

≤ dim(S/(v1, . . . , vp)) = n− p.

Theorem 3.2.4. [6, Theorem 2.4] Let J ( I ⊂ S be complete intersection monomial

ideals. Assume I is generated by q monomials and J is generated by p monomials.

Then

n− p ≥ sdepth(I/J) ≥ n− p−
⌊
q − p

2

⌋
.

Proof. Assume I = (u1, . . . , uq) and J = (v1, . . . , vp). Since v1, . . . , vp is a regular

sequence on S, so their support are disjoint. If we take uK[Z] be a Stanley space

of I/J . It follows as in proof of Lemma 3.2.3 that |Z| ≤ n− p, and thus

n− p ≥ sdepthS(I/J). (3.2.9)

In order to prove the second inequality, we use induction on p.

(1) If p = 0, then by [23, Theorem 2.4], we have

sdepthS(I/J) = sdepthS(I) = n−
⌊q

2

⌋
.

(2) Let p = q. Then by 3.2.3, we have

sdepthS(I/J) = n− p.

(3) Now assume that 1 ≤ p < q. Since J ⊂ I, so we can assume that u1|v1.
Note that u1 - vi for all i > 1, because if p ≥ 2 and also u1|v2. Then

supp(v1) ∩ supp(v2) ⊇ supp(u1). Which is contradiction to the fact that v1

and v2 is a regular sequence. Thus by using induction, we may assume that

uj|vj, for all 1 ≤ j ≤ p. We denote I1 = (u1, . . . , up) and I2 = (up+1, . . . , uq).

Since I1/J ⊆ (I1, I2)/J is a Zn-graded submodule, so

0→ I1/J → (I1, I2)/J → ((I1, I2)/J)/(I1/J)→ 0,
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is a short exact sequence. Thus

(I1, I2)/J = (I1, I2)/I1
⊕

I1/J.

We have

sdepthS(I1, I2)/J ≥ min{sdepth(I1, I2)/I1), sdepth(I1/J)}. (3.2.10)

Using [5, Corollary 2.4], we have

sdepthS((I1, I2)/I1) ≥ sdepthS(S/I1)−
⌊
q − p

2

⌋
.

Also by [22, Theorem(1.1)], we have from above

sdepthS((I1, I2)/J) ≥ n− p−
⌊
q − p

2

⌋
. (3.2.11)

On the other hand if J ( I1, so by Lemma 3.2.3 we have,

sdepthS(I1/J) = n− p. (3.2.12)

Put equation (3.2.11) and (3.2.12) in equation (3.2.10), we have

sdepthS((I1, I2)/J) ≥ min{n− p−
⌊
q − p

2

⌋
, n− p}.

Thus

sdepthS((I1, I2)/J) ≥ n− p−
⌊
q − p

2

⌋
. (3.2.13)

Hence from equation (3.2.9) and (3.2.13), we have

n− p ≥ sdepthS(I/J) ≥ n− p−
⌊
q − p

2

⌋
.

Corollary 3.2.5. [6, Corollary 2.5] Let J ( I ⊂ S be monomial complete intersec-

tion ideals. Assume I is generated by q = p+ 1 monomials and J is generated by p

monomials. Then

sdepthS(I/J) = n− p.
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Corollary 3.2.6. [6, Corollary 2.6] If J ( I ⊂ S be complete intersection monomial

ideals, then

sdepthS(I/J) ≥ depthS(I/J).

Proof. It is enough to notice that depthS(I/J) = n−q+1 if q > q, or depthS(I/J) =

n− q, if q = p and then apply Theorem 3.2.5.

Lemma 3.2.7. [6, Lemma 2.7] Let 1 ≤ p < q be integer, J ( I ⊂ S∗ =

K[x1, . . . , xp] be distinct monomial ideals and let u ∈ S∗∗ = K[xp+1, . . . , xq] be a

monomial. Then

sdepthS(I, u)/(J, u) = sdepthS(IS/JS)− 1.

Proof. Let v ∈ (I, u)/(J, u). Then we write v = v
′
.v
′′
, where v

′ ∈ (I/J) and

v
′′ ∈ S∗∗. Since v ∈ (I, u), so v ∈ IS and v ∈ uS, and thus v

′ ∈ I and v
′′ ∈ S∗∗.

Also since v 6∈ (J, u), so v 6∈ JS and v 6∈ uS. Thus v
′ 6∈ J and v

′′ 6∈ (u). So we have

v
′ ∈ (I/J) and v

′′ ∈ S∗∗/(u). Thus v ∈ (I/J).(S∗∗/(u)) and

(I, u)/(J, u) ⊆ (I/J).(S∗∗/(u)). (3.2.14)

Conversely, If we take arbitrary monomials v
′ ∈ (I/J) and v

′′ ∈ S∗∗/(u). Since

v
′ ∈ I, so v

′ ∈ (I, u). Also v
′ 6∈ J , so v

′ 6∈ (J, u). Thus v
′ ∈ (I, u)/(J, u). Since

(I, u)/(J, u) ⊆ S/(J, u) is an ideal of S/(J, u), so by definition of ideal, for v
′′ ∈

(I, u)/(J, u) and v
′′ ∈ S/(J, u), we have v

′
.v
′′ ∈ (I, u)/(J, u), so

(I/J).(S∗∗/(u)) ⊆ (I, u)/(J, u) (3.2.15)

From equation (3.2.14) and (3.2.15), we have

(I, u)/(J, u) = (I/J).(S∗∗/(u)). (3.2.16)

Hence by Lemma 3.2.1, we have

sdepthS(I, u)/(J, u) ≥ sdepthS∗(I/J) + sdepthS∗∗(S
∗∗/(u)). (3.2.17)

Since, sdepthS∗∗(S
∗∗/(u)) = sdepth(S∗∗) − 1 = q − p − 1. Hence from equation

(3.2.16), we have

sdepthS(I, u)/(J, u) ≥ sdepthS∗(I/J) + n−m− 1.
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Thus

sdepthS(I, u)/(J, u) ≥ sdepthS(IS/JS)− 1. (3.2.18)

In order to prove the other in-equality, Let (I, u)/(J, u) =
⊕r

j=1 vjK[Zj] be a Stanley

decomposition with its Stanley depth equal with sdepthS((I, u)/(J, u)). Also I/J =

((I, u)/(J, u)) ∩ (S∗/J), via natural injection I/J ↪→ (I, u)/(J, u), so

I/J = (
r⊕
j=1

vjK[Zj]) ∩ (S∗/J) =
r⊕
j=1

(vjK[Zj] ∩ (S∗/J)). (3.2.19)

If vj 6∈ S∗, then vjK[Zj] ∩ (S∗/J) = {0}, and if vj ∈ S∗, then vjK[Zj] ∩ (S∗/J) =

vjK[Zj\{xp+1, . . . , xq}]. Note that {xp+1, . . . , xq} 6∈ Zj, because uS∩vjK[Zj] = {0}.
Thus |Zj\{xp+1, . . . , xq}| ≥ |Zj| − {q − p − 1}. Hence from equation (3.2.19), we

have

sdepthS∗(I/J) ≥ sdepthS(I, u)/(J, u)− q + p+ 1.

It follows that

sdepthS(I, u)/(J, u) ≤ sdepthS(IS/JS)− 1. (3.2.20)

Hence from equation (3.2.18) and (3.2.20), we have

sdepthS(I, u)/(J, u) = sdepthS(IS/JS)− 1.

Lemma 3.2.8. [6, Lemma 2.8] Let 1 ≤ p < q be integer, I ⊂ S∗ = K[x1, . . . , xp]

be a monomial ideal and let u, v ∈ S∗∗ = K[xp+1, . . . , xq] be distinct monomials with

u|v. Then

sdepthS(I, u)/(I, v) = sdepthS(S/IS)− 1.

Proof. Let w ∈ (I, u)/(I, v) be a monomial. Then we write w = w
′
.w
′′
, where

w
′ ∈ S∗ and w

′′ ∈ S∗∗. Since w ∈ (I, u), so w ∈ IS and w ∈ uS, thus w
′ ∈ S∗ and

w
′′ ∈ (u). Also Since w 6∈ (I, v), so w 6∈ IS and w 6∈ vS. Thus w

′ 6∈ I and w
′′ 6∈ (v),

so we get w
′ ∈ (S∗/I) and w

′′ ∈ (u)/(v). Thus

(I, u)/(I, v) ⊆ (S∗/I).((u)/(v)) (3.2.21)
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Conversely, let us take an arbitrary monomials, w
′ ∈ (S∗/I), and w

′′ ∈ (u)/(v).

Since w
′′ ∈ (u), so w

′′ ∈ (I, u), also since w
′′ 6∈ (v), so w

′′ 6∈ (I, v). Therefore

w
′′ ∈ (I, u)/(I, v), since (I, u)/(I, v) ⊆ S/(I, v) is an ideal, so by definition of ideal

for w
′ ∈ S/(I, v) and w

′′ ∈ (I, u)/(I, v), we have w
′
.w
′′ ∈ (I, u)/(I, v). Therefore

(S∗/I).((u)/(v)) ⊆ (I, u)/(I, v). (3.2.22)

Hence from equation (3.2.21) and (3.2.22), we have

(I, u)/(I, v) ∼= (S∗/I).((u)/(v)).

By Lemma 3.2.1 ,we have

sdepthS(I, u)/(I, v) ≥ sdepthS∗(S
∗/I) + sdepthS∗∗((u)/(v)). (3.2.23)

Since, sdepthS∗∗((u)/(v)) = sdepth(S∗∗) − 1 = n − m − 1. Hence from equation

(3.2.23), we have

sdepthS(I, u)/(I, v) ≥ sdepthS(S/IS)− 1. (3.2.24)

In order to prove other inequality, note that

u(S∗/I) = (I, u)/(I, v) ∩ u(S∗/I), (3.2.25)

via natural injection u(S∗/I) ↪→ (I, u)/(I, v). Thus by using similar argument as in

proof of Lemma 3.2.7 ,we have

sdepthS(I, u)/(I, v) ≤ sdepthS(S/SI)− 1. (3.2.26)

Hence from equation (3.2.24) and (3.2.26), we have

sdepthS(I, u)/(I, v) = sdepthS(S/IS)− 1.

Theorem 3.2.9. [6, Theorem 2.9] Let u1, . . . , uq ∈ S and v1, . . . , vp ∈ S be two

regular sequences with ui|vi for all 1 ≤ i ≤ p, where q ≥ p are positive integers. We

consider the monomial ideals I = (u1, . . . , uq) ⊂ S and J = (v1, . . . , vp) ⊂ S. We

also assume that up+1, . . . , uq is a regular sequence on S/J . Then

sdepth(I/J) = n− p−
⌊
q − p

2

⌋
.
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Proof. We use induction on p.

(a) If p = 0. Then by [23], and [9, Lemma 3.6], we have

sdepthS(I/J) = sdepthS(J) = n−
⌊q

2

⌋
.

(b) If p = q. Then by Lemma 3.2.2, we get

sdepthS(I/J) = n− p.

(c) Now assume 1 ≤ p < q, we denote I1 = (u2, . . . , uq) and J1 = (v2, v3, . . . , vp).

By induction hypothesis, we have

sdepthS(I1/J1) = n− (p− 1)−
⌊

(q − 1)− (p− 1)

2

⌋
.

Thus

sdepthS(I1/J1) = n− p−
⌊
q − p

2

⌋
+ 1. (3.2.27)

Here we take two cases:

Cases(1) If u1 = v1, then by Lemma 3.2.7, we have

sdepthS(I1, u1)/(J1, v1) = sdepthS(I1S/J1S)− 1.

Now from equation (3.2.27), we have

sdepthS(I/J) = n− p− bq − p
2
c+ 1− 1.

Thus

sdepthS(I/J) = n− p−
⌊
q − p

2

⌋
. (3.2.28)

Cases(2) If u1 6= v1. By Theorem 3.2.6, we have

sdepthS(I/J) ≥ n− p− bq − p
2
c.

Note that this inequality also deduced from Lemma 3.2.7, and Lemma

3.2.8 using the decomposition

I/J = (I1, u1)/(J1, u1)
⊕

(J1, u1)/(J1, v1).
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We have

sdepthS(I/J) ≥ min{sdepthS(I1, u1)/(J1, u1), sdepthS(J1, u1)/(J1, v1)}.
(3.2.29)

From equation (3.2.28), we have

sdepthS(I/J) ≥ min{n− p−
⌊
q − p

2

⌋
, sdepth(S/I1S)− 1}

sdepthS(I/J) ≥ min{n− p−
⌊
q − p

2

⌋
, n− p}

sdepthS(I/J) ≥ n− p−
⌊
q − p

2

⌋
. (3.2.30)

In order to prove the other inequality, we consider a Stanley decomposi-

tion I/J =
⊕r

j=1wjK[Zj] with its Stanley depth equal to sdepth(I/J).

Since by hypothesis, u2, u3, . . . , uq is a regular sequence on S/(v1), so by

reordering of variables, we may assume that supp(v1) = {xm+1, xm+2, . . . , xn}
and u2, u3, . . . , uq ∈ S∗ = K[x1, x2, . . . , xm], where 1 ≤ m < n is an inte-

ger. Thus I1 and J1 are the extension in S for some monomial ideals in

Ī1, J̄1 ⊂ S∗ generated by the same monomials as I1 and J1. Note that

(Ī1/J̄1) = (I/J) ∩ (S∗/J̄1),

where we regard S∗/J̄1 as a submodule of S/J . Using the same argument

as in the proof of Lemma 3.2.7, we get

sdepthS∗(Ī1/J̄1) ≥ sdepthS(I/J)− n+m+ 1. (3.2.31)

On the other hand, by induction hypothesis, we have

sdepthS∗(Ī1/J̄1) = m− p+ 1−
⌊
q − p

2

⌋
.

So from equation (3.2.30), we have

sdepthS(I/J) ≤ n− p−
⌊
q − p

2

⌋
. (3.2.32)

Hence from (3.2.30) and (3.2.32), we have

sdepthS(I/J) = n− p−
⌊
q − p

2

⌋
.
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Remark 3.2.1. [6, Remark 2.10] Note that the hypothesis up+1, up+2, . . . , uq is a

regular sequence on S/I from the Theorem 3.2.9 is essential in order to have the

equality. Take for instance, I = (x1, x2, x3) ⊂ S and J = (x1x2x3). Then

I/J = x1K[x1, x2]⊕ x2K[x2, x3]⊕ x3K[x1, x3],

is a Stanley decomposition for I/J , and therefore

sdepthS(I/J) = 2 > 3− 1−
⌊

3− 1

2

⌋
= 1.

Proposition 3.2.10. [6, Proposition 2.11]

Let J ⊂ I ⊂ S be monomial ideals and let v ∈ S be a monomial. Then either

(J : v) = (I : v), either

sdepthS(I : v)/(J : v) ≥ sdepthS(I/J).

Proof. It is enough to consider the case v = x1 and to assume that (J : x1) ( (I : x1).

Firstly, note that x1(I : x1) = I ∩ (x1) and x1(J : x1) = J ∩ (x1). Therefore we have

(I : x1)/(J : x1) ∼= (I ∩ (x1))/(J ∩ (x1)) ∼= (I/J) ∩ (x1),

as multigraded K-vector spaces. Let I/J =
⊕r

i=1 uiK[Zi] be a Stanley decomposi-

tion for I/J . It follows that

(I/J) ∩ (x1) =
r⊕
i=1

(uiK[ZI ] ∩ x1S).

One can easily see that, if x1 6∈ supp(ui)∪Zi, then uiK[Zi]∩x1S = {0}. Otherwise,

we claim that uiK[Zi] ∩ x1S = LCM(ui, x1)K[Zi]. Indeed, if x1|ui, then uiK[Zi] ⊂
x1S and the previous equality holds. If x1 - ui, then x1 ∈ Zi and LCM(ui, x1) =

x1ui. Obviously, we get

x1uiK[Zi] ⊆ uiK[Zi] ∩ x1S. (3.2.33)

For the other inclusion, choose v ∈ uiK[Zi] ∩ x1S a monomial. It follows that

v ∈ uiK[Zi] and x1|v, so x1ui|v, since x1 - ui. Therefore v ∈ x1uiK[Zi], so

uiK[Zi] ∩ x1S ⊆ x1uiK[Zi]. (3.2.34)
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Hence from equation (3.2.33) and (3.2.34), we have

uiK[Zi] ∩ x1S = x1uiK[Zi].

By our assumption that (J : x1) ( (I : x1), there exist some i such that uiK[Zi] ∩
x1S 6= {0}. Thus we obtain a Stanley decomposition for (I/J)∩(x1) with its Stanley

depth ≥ than the Stanley depth of the given decomposition for I/J .
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Chapter 4

Bounds for the Stanley depth of

quotient of some monomial ideals

In this chapter, we show that lower bound exist for quotient of monomial ideal

(m/I), where m is a maximal ideal and I ⊂ S = K[x1, . . . , xn] is any ideal. We also

give some good bounds for quotient of monomial ideals J ⊆ I ⊂ S = K[x1, . . . , xn],

where I and J is the intersection of some prime ideals.

4.1 Bounds for the quotient of maximal ideals

Let I ( m ⊂ S = K[x1, . . . , xn] be monomial ideals, where m = (x1, . . . , xn) is a

maximal ideal. Let us suppose

m ∩ xknS
′
= xknmk.

Where mk ⊂ S
′

= K[x1, . . . , xn−1] be a monomial ideals, and we have an inclusion

of the form

m0 ⊆ m1 ⊆ m2 ⊆ . . .

Also let us suppose

I ∩ xknS
′
= xknIk.

Where Ik ⊂ S
′

be a monomial ideals and we have an inclusion of the form

I0 ⊆ I1 ⊆ I2 ⊆ . . .
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Lemma 4.1.1. Let m be a maximal ideal and I ⊂ S = K[x1, . . . , xn] be a monomial

ideal. Then

m/I ∼= m0/I0 ⊕ xn(S
′
/I1)⊕ . . .⊕ xq−1n (S

′
/Iq−1)⊕ . . .

Proof. Let us consider

m/I ∩ xknS
′
= xkn(mk/Ik).

Then by Janet’s algorithm, we have a decomposition in form

m/I ∼= (m0/I0)⊕ xn(m1/I1)⊕ x2n(m2/I2)⊕ . . .⊕ xq−1n (mq−1/Iq−1)⊕ . . . (4.1.1)

Since m contain variable xn. So m1 = m2 = m3 . . . = S
′
. Hence from equation

(4.1.1), we have

m/I ∼= m0/I0 ⊕ xn(S
′
/I1)⊕ . . .⊕ xq−1n (S

′
/Iq−1)⊕ . . .

Example 4.1.1. Letm = (x1, x2, x3, x4) is a maximal ideal and I = (x21x2, x2x
2
3, x

2
1x

2
4)

is a monomial ideal on S = K[x1, x2, x3, x4]. Then by using Lemma 3.1.1, we have

q = degx4(I) = 2

Also by Janet’s algorithm , we have

m0 = (x1, x2, x3), m1 = S
′
, m2 = S

′
, m3 = S

′
and I0 = (x21x2, x2x

2
3), I1 =

(x21x2, x2x
2
3), I2 = (x21, x2x

2
3), I3 = (x21, x2x

2
3). Clearly

m0 ⊆ m1 ⊆ m2 ⊆ . . .

and

I0 ⊆ I1 ⊆ I2 ⊆ . . .

Thus we have a decomposition of the form

m/I ∼= (x1, x2, x3)/(x
2
1x2, x2x

2
3)⊕ x4(S

′
/(x21x2, x2x

2
3))⊕ x24(S

′
/(x21, x2x

2
3))[x4].
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Proposition 4.1.2. Let I be a monomial ideal and m = (x1, . . . , xn) ⊂ S =

K[x1, . . . , xn] a maximal ideal. Then

sdepthS(m/I) ≥ n− |G(I)| −
⌊
n− |G(I)|

2

⌋
.

Proof. By induction and by Lemma 4.1.1, we have

sdepthS(m/I) ≥ n− |G(I)| −
⌊
n− |G(I)|

2

⌋
.

Example 4.1.2. Let m = (x1, x2, x3, x4) is a maximal ideal and I = (x1x2, x3x4) is

monomial ideal. Then

m/I = {x1, x2, x3, x4, x1x3, x1x4, x2x3, x2x4}.

Corresponding Stanley decompositions of m/I is as follow:

D1 : m/I = x1K[x1, x4]⊕ x2K[x2, x3]⊕ x3K[x1, x3]⊕ x4K[x2, x4]

D2 : m/I = x1K[x1, x3]⊕ x2K[x2, x4]⊕ x3K[x2, x3]⊕ x4K[x1, x4].

So by cocoa

sdepthS(m/I) = 2.

And by using Proposition 4.1.2, we have

sdepthS(m/I) ≥ 4− 2−
⌊
4−2
2

⌋
. Thus

sdepthS(m/I) ≥ 1.

Which is a good Lower bound to sdepth(m/I).
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4.2 Stanley depth of quotient of intersection of

monomial ideals

Lemma 4.2.1. Let S = K[x1, . . . , xn] be a polynomial ring and P1, P2, P3, P4 a

monomial prime ideals such that G(Pi) ∩G(Pj) = ∅, for all i 6= j. Let ht(Pi) = ri,∑4
i=1 ri = n, J = P1 ∩ P2 ∩ P3 and I = P1 ∩ P2 ∩ P3 ∩ P4, where J ( I ⊂ S. Then

sdepthS(I/J) ≥
⌈r1

2

⌉
+
⌊r2

2

⌋
+
⌈r3

2

⌉
.

Proof. By Second isomorphism theorem, we have

(P1 ∩ P2 ∩ P3)/(P1 ∩ P2 ∩ P3 ∩ P4) ∼= (P1 ∩ P2 ∩ P3 + P4)/P4. (4.2.1)

And also

(P1 ∩ P2 ∩ P3 + P4)/P4
∼= (P1 ∩ P2 ∩ P3) ∩K[xj : xj 6∈ G(P4)].

Now by using [18, Lemma 1.2], we have

sdepthS(P1 ∩ P2 ∩ P3) ∩K[xj : xj 6∈ G(P4)] ≥sdepthS′ (P1 ∩ P2 ∩ P3)+

sdepthS′′ (K[xj : xj 6∈ G(P4)]).

Again by using [18, Lemma 1.2], we have

sdepthS(P1 ∩ P2 ∩ P3) ∩K[xj : xj 6∈ G(P4)] ≥sdepthS1(P1) + . . .+ sdepthS4(P3)+

sdepthS′′ (K[xj : xj 6∈ G(P4)]).

Now by using [9, Lemma 3.6], we have

sdepthS(P1 ∩ P2 ∩ P3) ∩K[xj : xj 6∈ G(P4)] ≥
⌈r1

2

⌉
+
⌊r2

2

⌋
+
⌈r3

2

⌉
.

Hence from equation (4.2.1), we have

sdepthS(P1 ∩ P2 ∩ P3)/(P1 ∩ P2 ∩ P3 ∩ P4) ≥
⌈r1

2

⌉
+
⌊r2

2

⌋
+
⌈r3

2

⌉
.
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Proposition 4.2.2. Let S = K[x1, . . . , xn] be a polynomial ring m a maximal ideal

on S and P1, P2, . . . , P5 a monomial prime ideals of S such that G(Pi)∩G(Pj) = ∅,
for all i 6= j. Let ht(Pi) = ri,

∑5
i=1 ri = n, if I = P1 ∩ P2 ∩ . . . ∩ P5. Then

sdepthS(m/I) ≥ min{n− r1 −
⌊
n− r1

2

⌋
,min{

⌈r1
2

⌉
+ r3 + r4 + r5,

⌈r1
2

⌉
+
⌊r2

2

⌋
+ r4

+ r5,
⌊r1

2

⌋
+
⌊r2

2

⌋
+
⌊r3

2

⌋
+ r5,

⌊r1
2

⌋
+
⌊r2

2

⌋
+
⌊r3

2

⌋
+
⌊r4

2

⌋
}}.

Proof. As a K-Linear space m/I is isomorphic to the direct sum of some multigraded

modules as

m/I ∼= m/P1 ⊕ P1/(P1 ∩ P2)⊕ . . .⊕ (P1 ∩ . . . ∩ P4)/(P1 ∩ . . . ∩ P5).

sdepthS(m/I) ≥min{sdepth(m/P1), sdepth(P1/P1 ∩ P2), . . . ,

sdepth(P1 ∩ . . . ∩ P4)/(P1 ∩ . . . ∩ P5)}.

Now By [6, Corollary 1.2], we have

sdepthS(m/I) = n− r1 −
⌊
n− r1

2

⌋
. (4.2.2)

And also by Lemma 4.2.1, we have

sdepthS(P1 ∩ . . . ∩ P4)/(P1 ∩ . . . ∩ . . . ∩ P5) ≥
⌈r1

2

⌉
+
⌈r2

2

⌉
+
⌊r3

2

⌋
+
⌊r4

2

⌋
.

(4.2.3)

Put equations (4.2.2) and (4.2.3) in above inequality, we have

sdepthS(m/I) ≥ min{n− r1 −
⌊
n− r1

2

⌋
,min{

⌈r1
2

⌉
+ r3 + r4 + r5,

⌈r1
2

⌉
+
⌊r2

2

⌋
+ r4

+ r5,
⌊r1

2

⌋
+
⌊r2

2

⌋
+
⌊r3

2

⌋
+ r5,

⌊r1
2

⌋
+
⌊r2

2

⌋
+
⌊r3

2

⌋
+
⌊r4

2

⌋
}}.
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Lemma 4.2.3. Let S = K[x1, . . . , xn] be a polynomial ring and P1, P2, P3, P4 be a

monomial prime ideals such that G(P1) ∩G(Pj) = ∅, for all i 6= j. Let ht(Pi) = ri,∑4
i=1 ri = n, if J = P1 ∩P2 ∩P3 ∩P4 and I = P1 ∩P2 ∩P3, where J ( I ⊂ S. Then

sdepthS(I/J) ≤
⌈r1

2

⌉
+ r3 + r4.

Proof. Let u ∈ S be a monomial. Then by [6, Proposition 2.11], we have

sdepthS(P1 ∩ P2 ∩ P3)/(P1 ∩ P2 ∩ P3 ∩ P4) ≤ sdepthS(P1 ∩ P2)/(P1 ∩ P2 ∩ P3).

Again applying [6, Proposition 2.11], we have

sdepthS(P1 ∩ P2)/(P1 ∩ P2 ∩ P3) ≤ sdepthS(P1/P1 ∩ P2). (4.2.4)

By second isomorphism theorem, we have

(P1/P1 ∩ P2) ∼= (P1 + P2)/P2.

Also

(P1 + P2)/P2
∼= P1 ∩K[xj : xj 6∈ G(P1)].

So we have

(P1/P1 ∩ P2) ∼= P1 ∩K[xj : xj 6∈ G(P1)]. (4.2.5)

By [9, Lemma 3.6] and [18, Lemma 1.2], we have

sdepthS(P1 ∩K[xj : xj 6∈ G(P1)] =
⌈r1

2

⌉
+ r3 + r4.

So from equation (4.2.5), we have

sdepthS(P1/P1 ∩ P2) =
⌈r1

2

⌉
+ r3 + r4.

Hence from equation (4.2.4), we have

sdepthS(P1 ∩ P2 ∩ P3)/(P1 ∩ P2 ∩ P3 ∩ P4) ≤
⌈r1

2

⌉
+ r3 + r4.
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