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Abstract

To predict the bioactivity of chemical compounds physicochemical properties

and topological indices such as Wiener index, Szeged index, Randić index, Zagreb

index, atom-bond connectivity (ABC) index and geometric-arithmetic (GA) index

are rapidly used in the study of Quantitative Structure-Activity (QSAR) and Quan-

titative Structure-Property Relationship (QSPR).

To compute and study the topological indices of molecular graphs and nanos-

tructures is a respected problem in both combinitorial chemistry and in theoretical

nanoscience. In this thesis, we consider a hetrofuntional dendrimer HFD(ei) and

compute its eccentricity based topological indices, namely eccentric connectivity in-

dex and eccentricity based Zagreb index.

Furthermore, we compute the nullity and number of Kekulé structure. If the

Kekulé structure does not exist, we find the size of a maximum matching of HFD(ei).

We also compute first version of atom-bond connectivity index (ABC), fourth ver-

sion of atom bond connectivity index (ABC4), first version of geometric-arithmetic

index (GA), fifth version of geometric-arithmetic index (GA5) and Randić index

(Rα) for a hetrofunctional dendrimer HFD(ei).
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Introduction

During the past two decades, there has been a considerable progress in the appli-

cations of algebraic graph theory in chemistry. Graph theory is concerned with

manipulations of structures and structural informations. This involves classification

of structures, that is, their grouping into smaller lots, characterization of structures,

which can be accomplished by enumeration of selected structural invariants, and

ordering of structurees, which implies a decision of which among two or more struc-

tures should be taken first in the sequence. The first two chapters of this thesis are

devoted to some basic definitions and terminologies of graphs. In the first chap-

ter, we define basic definitions of graph theory, after that we introduce chemical

graph theory and some major types of chemical graphs that are commonly studied

in chemical graph theory.

In the second chapter we give a brief history of some well-known topological

indices mainly distance related topological indices, degree based topological indices,

and counting based topological indices. In the class of distance based topological

indices, we give a brief introduction of Wiener index, Harary index, Szeged index

and Balaban index. In the class of degree based of topological indices, we discuss

different types of degree based topological indices that are Randić index, sum con-

nectivity index, Zagreb index and atom-bond connectivity index. In the counting

related polynomials and topological indices, we give a brief introduction of counting

polynomials and counting related indices that are Omega index, Sadhana index and

Padmakar-Ivan (PI) index, to name of few.

In the third chapter, we consider a hetrofunctional dendrimer, HFD(ei) denoted

byD[n]. We discuss its structure and compute eccentric connectivity index (ξ(D[n]))

and eccentricity based Zagreb indices.

In the fourth chapter, we compute the nullity and number of Kekulé structures in

a class of hetrofunctional dendrimer, HFD(ei). When there is no Kekulé structure,

we find the size of a maximum matching in this dendrimer. Furthermore, we compute

the first and fourth version of atom-bond connectivity index. We also calculate



the first and fifth version of geometric-arithmetic index and Randić index of this

dendrimer.

A conclusion section highlighting the contribution made in this thesis with some

possible open problems arising from the thesis is given at the end of this thesis.
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Chapter 1

Fundamentals of Graph Theory

1.1 Introduction

In this chapter we discuss some basic concepts of graph theory. We first give a

brief introduction and concept of some basic terminologies of graph theory. We also

give some basic definitions of chemical graph theory.

1.2 History of graph theory

A Swiss mathematician Leonhard Paul Euler (1701-1783), also known as Euler,

spent most of his life in Germany and Russia. He was the first mathematician

who solved the first problem with the use of graph theory. The credit goes to him

for creation of first graph to simulate a real time problem and situation to solve a

problem which was said to be the toughest problem of that time.

1.2.1 The Königsberg bridge problem

As by the name, this problem originated in the city of Königsberg located on

the river Preger which is a part of Russia. This city is now named as Kaliningrad.

By the way of seven bridges two islands were connected with the main-land. There

existed a thought among people if there was any possible way to walk once and only

once over all the bridges?
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In 1736 one person came out with the solution in terms of graph theory. His

name was Euler. He was the one to prove that it was impossible to walk through

these seven bridges exactly one time. He formulated the problems in terms of graph

theory. By removing all unnecessary features he abstracted the case of Königsberg.

By using line segments as bridges and dots representing landmasses he drew a picture

in which the line segments connected the dots.

Hence, the problem was clarified to the maximum extent. The problem can

be simply seen now as the way of tracing the graph with a pencil without lifting it.

It could be tried in all possible ways but soon one would come to know that it is

impossible. Euler not only proved but also explained why it is impossible and what

should be the attribute of the graphs so that its edge could be stretched across only

once. He then came out with the concept of edges and nodes. The number of edges

touching a given node is termed as degree of the node. Euler put forward that any

graph could be traversed with each edge traversed absolutely once if and only if it

had zero or exactly two nodes with odd degrees.

1.3 What is graph theory?

Graph theory is a branch of mathematics related to the study of graphs. This

branch deals with mathematics and computer science simultaneously. In graph

theory the term graph does not refer any data such as in line graph or bar graph.

Here the term graph represents an ordered pair G = (V (G), E(G)). In this ordered

pair, V (G) is the set of vertices (nodes, points) and E(G) represents the set of

edges. If we want to establish a telephone network via cable that each telephone

is reachable from others at minimum cost. If we want to decide the shortest route

between two states. If a salesman want to travel in different cities in such a way that

time should be minimize. These and there are so many other problems in daily life

which involves graph theory. So, we can define a graph as a triple consisting a vertex

set V (G), edge set E(G), and a relation that associate each edge with two vertices.

In Fig.1.1, G is a graph with E(G) = {e1, e2, · · · , e7} and V (G) = {v1, v2, · · · , v6}.
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Figure 1.1: Graph G and its subgraphs.

A graph H is a subgraph of a graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G), and is

written as H ⊆ G. The subgraph H of a graph G is said to be a proper subgrah if

V (H) is a proper subset of V (G) or E(H) is a proper subset of E(G). A subgraph H

of a graph G is said to be a spanning subgraph of G if V (H) = V (G). A subgraph F

of a graph G is said to be an induced subgraph of G if u, v ∈ V (F ) and uv ∈ E(G),

then uv ∈ E(F ).
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1.4 Basic concepts and definitions

An edge of a graph G = (V (G), E(G)) whose end points are u and v is called

uv-edge or simply uv. An edge whose end vertices are same is called a loop. Two

edges whose end points are same are called multiple edges. Two vertices u and v are

end points of an edge then u is said to be adjacent to v or v is said to be adjacent

to u. For a vertex u ∈ V (G), the set of vertices adjacent to u is called neighborhood

of u and is written as NG(u). The number of edges incident on a vertex u is called

the degree of vertex u and is denoted by du or simply d(u). Each loop counts twice

in counting the degree of a graph.
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e
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e
4

v
1v

1

c

Figure 1.2: a. A vertex, b. loop and c. multigraph

If the degree of a vertex is 0 then the vertex is called an isolated vertex. A vertex

which has a degree 1 is called a pendent vertex or end-vertex. A graph that does not

contain any loop and multiple edges is called a simple graph. A graph is said to be

a finite graph if it contains finite number of vertices. A (u, v)-path on n vertices is a

graph with vertex set {u = v0, v1, . . . , vn = v} and edge set {vivi+1 | 0 ≤ i ≤ n− 1}.
The number of edges in path is called the length of a path. A graph G has a (u, v)-

path, then the distance from u to v, written dG(u, v) or simply d(u, v) is the least

length of (u, v)-path. A graph is said to be a connected graph if, for every pair of

vertices u, v ∈ V (G) there exists a (u, v)-path otherwise, it is called disconnected

graph. In a disconnected graph each maximal connected subgraph of G is called a

component. A connected subgraph H ′ of a graph G is maximal if H ′ is not contained

in any other connected subgraph of G. Obviously, connected graph consists of only

one component. The eccentricity written as ec(v) of a vertex v in a connected graph

G is the maximum distance between v and any other vertex u of G.

4



v
1 v

2
v

3

e
1

e
2

e
3

e
4

e
5 e

6

v
4 v

5e
7

v
1

v
2

v
3

e
1

e
2

e
4

e
5 e

6

v
4

v
5 e

7
v

6

H1
H2

Figure 1.3: H1. Simple connected graph H2. Disconnected graph with two compo-

nents.

Two graphs G1 =
(
V (G1), E(G1)

)
and G2 =

(
V (G2), E(G2)

)
are said to be iso-

morphic (written as G1
∼= G2) if there exist a mapping f : V (G1) → V (G2) which

satisfy the following conditions:

1. f is a bijective function (one-to-one and onto),

2. for all vertices u, v ∈ V ; (u, v) ∈ E(G1)⇔ (f(u), f(v)) ∈ E(G2).

The function f is called an isomorphism.
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Figure 1.4: Two isomorphic graphs.
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1.5 Some special classes of graphs

A path is a most simple class of a graph that is defined above. A path with

n + 1 vertices has n edeges and is denoted by Pn. A cycle is a simple graph whose

vertices can be arranged in a cycle sequence such that every pair should be adjacent

if they are consecutive in sequence. A cycle with n vertices is denoted Cn where n

is called lenght of cycle. A cycle that consists on three vertices is called a triangle.

A cycle that consists on four vertices is called a quadrilateral, a cycle which consists

on five vertices is called a pentagon and a cycle with six vertices is called a hexagon

and so on. A graph that does not contain any cycle is called an acyclic graph. A

triangle quadrilateral pentagon hexagon

Figure 1.5:

connected acyclic graph is called a tree and is denoted by T . An acyclic graph is

called a forest.

A simple graph G is said to be a complete graph in which each pair of distinct

vertices from V (G) is connected by a unique edge. A complete graph with n vertices

is denoted by Kn.

A graph G is said to be a bipartite graph if its vertex set V (G) can be partitioned

in to two subsets X and Y in such a way that each edge has one end in X and

other end in Y . The pair (X, Y ) is called the bipartition of the bipartite graph. A

bipartite graph with bipartition (X, Y ) is represented as G[X, Y ]. A graph G[X, Y ]

is called a complete bipartite graph if each vertex in X is adjacent to each vertex of

Y . A complete bipartite graph with bipartition (X, Y ) is denoted by Km,n, where

m = |X| and n = |Y |. A complete bipartite graph is said to be a star if |X| = 1 or

|Y | = 1.
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Figure 1.7: Complete graph Ki(1 ≤ i ≤ 5).

K3,4  K1,4 ::  Star  

Figure 1.8: Complete birpartite graphs K3,4 and K1,4.
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1.6 Chemical graph theory

A molecular graph or a chemical graph is a representation of the structural for-

mula of a chemical compound in terms of graph theory. The vertices of a molecular

graph correspond to the atoms of the compound and the edges correspond to chem-

ical bonds between them [29].

Chemical graph theory is the topological branch of mathematical chemistry

which applies graph theory to mathematical modeling of chemical phenomena. The

pioneers of the chemical graph theory are Alexandru Balaban, Ante Graovac, Ivan

Gutman, Haruo Hosoya, Milan Randić and Nenad Trinajstić [40]. Model of a chemi-

cal system represents a chemical graph which is used to characterize the instructions

among its components such as atoms, bonds, groups of atoms or molecules. A chem-

ical graph with hydrogen molecule have the same topological properties as if it does

not contain the hydrogen molecule. For example, consider the structure of benzene

C6H6. Here, six hydrogen atoms are to complete their valency. It is convention

in chemical graph theory to consider hydrogen depleted molecules because the hy-

drogen atoms are present their to complete the valancy of corbon items (Fig. 1.9).

The molecular graph with hydrogen vertices deleted is called hydrogen depleted

molecular graph or hydrogen suppressed molecular graph (Fig. 1.10).

Figure 1.9: Hydrogen depleted graph of Benzene C6H6

8



Figure 1.10: A chemical structure and its hydrogen depleted regresntation (molec-

ular graph.

1.6.1 The first use of chemical graph theory

Much of the current panorama of graph theory has been erected on foundations

that are essentially graph-theoretical in nature. Chemical graphs are now being

used for many different purposes in all major branches of chemistry [5]. The present

widespread usage of the chemical graph renders the origins of the earliest implicit

application of graph theory of some considerable interest. Chemical graphs were

first introduced in the latter half of the 18th century. To understand the need for

them at that time and the circumstances of their introduction into the chemical

literature, it will be necessary to say something about the prevailing attitudes in

chemistry. Chemical thinking in the 18th century was steeped in Newtonian ideas,

especially those pertaining to the internal structure of matter and the short-range

forces existing between particles.

In 1687, Newton [10] himself had stated that all natural phenomena depend

upon certain forces by which the particles of bodies, by some causes, are either mu-

9



tually impelled towards one another, and cohere in regular figures, or are repelled

and recede from another.

The first chemical graph, clearly recognizable as such, were drawn by the

Scottish chemist, William Cullen. In 1758, Cullen [47] started using so-called “affin-

ity diagrams” in his lecture to represent the supposed forces, existing between pairs

of molecules undergoing various chemical reactions. Unfortunately, these diagrams

were used completely for illustrating his chemistry lecture notes, and none were

ever published. Later on, Black [11] published similar diagrams those are used by

Cullen in his lectures and claim falsely that he invented them. At the end of the

18th century, such diagrams became commonplace in British chemistry textbooks

of that period. Reproductions of two surviving diagrams, due to Cullen, are shown

(Fig. 1.11).

The numbers (or, in some cases, symbols) appearing between pairs of re-

A

DC

B

10

6

8 9 x x-4

x-2

x-2

Mur. A

Lime
Carbonic acid

Vol-alkali

Figure 1.11: Examples of the first chemical graphs used by Cullen and Balck in 1758

to represent the interactions of chemical substances. The supposed forces between

pairs of substances are indicated either in terms of numbers or symbols.

acting substances represent the magnitude of the gravitational attraction existing

between the substances. It should be noted that these numbers have no physical

basis whatsoever and thus express no more than a totally fictitious quantification of

imagined forces acting between the substances concerned.
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It was probably after seeing such diagrams that the Irish chemist William

Higgins had the inspiration of representing the forces between the constituent com-

ponents, that is the atoms, of molecules. It was most likely in the wake of seeing

such graphs that the Irish scientist, William Higgins, had the motivation of speak-

ing to the powers between the constituent parts, that is the iotas of particles. In a

book published in 1789, Higgins [35] used a series of diagrams similar to those of

Cullen to portray s number of different individual molecules. Examples of some of

his diagrams, depicting the five oxides of nitrogen, are reproduced in (Fig. 1.12)

In these diagrams (Fig. 1.12), the nitrogen atom is always represented by the

symbol P (standing for phlogisticated air) whereas the oxygen atoms are denoted by

the symbols a through e. After Cullen, Higging inserted arbitrary numbers between

the various pairs of atoms in a vain attempt to quantify the force of attraction be-

tween them. It is important to emphasize here that the lines joining pairs of atoms

are not to be interpreted as chemical bonds in the modern sense. The concept of

the chemical bond was developed only some three quarters of a century later. The

spatial arrangement of atoms was also not understood at the time of Higgins, and

so all of his representation are two-dimensional. Morover, in all of the diagrams in

(Fig. 1.12), atoms are portrayed in topologically incorrect position. In spite of these

evident drawbacks, however, the insight of Higgins were quite remarkable for his

time.
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1789 to represen individual chemical species. Depicted here are the five oxide of

nitrogen. The numbers indicate the supposed forces between pairs of atoms.
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1.6.2 Equivalance between chemical and mathematical terms

It has been observed that chemist made use of graph theory unconsciously while

writing organic chemical formulas and figuring out all constitutional isomers. Re-

alizing this need, Balaban [8] introduced the chemical versus graph-theoretical vo-

cabulary shown in Table 1.1.

Chemical Term Mathematical (graph-theoretical) term

Atom Vertex

Molecule Molecular graph

Covalent bond Edge

Acyclic hydrocarbon Tree

Alternant structure Bipartite graph

Valency of an atom Vertex degree (number of lines at that vertex)

Skeletal structure Hydrogen-depleted graph

Number of rings Cyclomatic number

[n]Annulene n-Vertex cycle

Hückel theory Spectral theory

Topological matrix Adjacency matrix

Energy level Eigenvalue

Nonbonding level Zero eigenvalue

Bonding level Negative eigenvalue

Antibonding level Positive eigenvalue

Secular polynomial Characteristic polynomial

Kekulé resonance formula Perfect matching, 1-factor

Table 1.1: Equivalence between chemical and mathematical terms in describing

constitutional formulas (represented by a molecular graphs).
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1.7 Types of chemical graphs

There are different types of chemical graphs. Some of most common chemical

graphs that are studied frequently in graph theory are as follows.

1.7.1 Fullerene

A fullerene is a molecule of carbon in the form of a hollow sphere, ellipsoid,

tube, and many other shapes. Spherical fullerenes are also called buckyballs and they

resemble the balls used in football [28]. Cylindrical ones are called carbon nanotubes.

Fullerenes are similar in structure to graphite, which is composed of stacked graphene

sheets of linked hexagonal rings; but they may also contain pentagonal (or sometimes

heptagonal) rings.

Figure 1.13: Fullerene C60

Since the discovery of fullerenes in 1985 [37], structural variations on fullerenes

have evolved well beyond the individual clusters themselves. Examples include

• Buckyball clusters

• Nanotubes

• Megatubes
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• polymers

• nano “onions”

• linked “ball-and-chain” dimers

• fullerene rings

Fullerenes have been extensively used for several biomedical applications includ-

ing the design of high-performance MRI contrast agents, X-Ray imaging contrast

agents, photodynamic therapy and drug and gene delivery, summarized in several

comprehensive reviews.

1.7.2 Nanotubes

A carbon nanotube is a tube-shaped material, made of carbon, having a diame-

ter measuring on the nanometer scale [44]. A nanometer is one-billionth of a meter,

or about one ten-thousandth of the thickness of a human hair. The graphite layer

appears somewhat like a rolled-up chicken wire with a continuous unbroken hexag-

onal mesh and carbon molecules at the apexes of the hexagons.

Carbon nanotubes have many structures, differing in length, thickness, and in the

type of helicity and number of layers. Although they are formed from essentially

the same graphite sheet, their electrical characteristics differ depending on these

variations, acting either as metals or as semiconductors.

As a group, carbon nanotubes typically have diameters ranging from less than 1 nm

up to 50 nm. Their lengths are typically several microns, but recent advancements

have made the nanotubes much longer, and measured in centimeters.

Carbon nanotubes can be categorized by their structures:

• Single-wall Nanotubes (SWNT)

• Multi-wall Nanotubes (MWNT)

A cylendrical shape nanotube with open ends is shown in following figure (Fig. 1.14)
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Figure 1.14: Carbon nanotube.

Carbon nanotube technology can be used for a wide range of applications that

are as follows:

• Conductive plastics

• Structural composite materials

• Flat-panel displays

• Gas storage

• Antifouling paint

• Micro- and nano-electronics

• Radar-absorbing coating

• Technical textiles

• Ultra-capacitors

• Atomic Force Microscope (AFM) tips

• Batteries with improved lifetime
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• Biosensors for harmful gases

• Extra strong fibers

1.7.3 Nanotorus

A nanotorus is theoretically described as carbon nanotube bent into a torus

(doughnut shape) [43]. Nanotori are predicted to have many unique properties, such

as magnetic moments 1000 times larger than previously expected for certain specific

radii, or may be used as a black body whose emissivity or absorbance is almost of

1.0. Its properties vary widely depending on radius of the torus and radius of the

tube. It is expected that the nanotorus has also have unique mechanical properties.

A nanotorus is shown in the following (Fig. 1.15)

Figure 1.15: Nanotorus

1.7.4 Nanocones

Carbon nanocones are conical structures which are made predominantly from

carbon and which have at least one dimension of the order one micrometer or smaller.

Nanocones have height and base diameter of the same order of magnitude; this dis-

tinguishes them from tipped nanowires which are much longer than their diameter.

Nanocones occur on the surface of natural graphite. Hollow carbon nanocones can

also be produced by decomposing hydrocarbons with a plasma torch [18]. Electron

microscopy reveals that the opening angle (apex) of the cones is not arbitrary, but

has preferred values of approximately 20o, 40o, and 60o.
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A nanocone is shown in the following (Fig.1.16). Carbon nanocones are produced

Figure 1.16: Nanocone .

in an industrial process that decomposes hydrocarbons into carbon and hydrogen

with a plasma torch having a plasma temperature above 2000 oC.

1.7.5 Dendrimer

Dendrimers are repetitively branched molecules. The name comes from the

Greek word δένδρoν (dendron), which translates to tree. Synonymous terms for

dendrimer include arborols and cascade molecules. However, dendrimer is currently

internationally accepted term [2]. A dendrimer is typically symmetric around the

core, and often adopts a spherical three-dimensional morphology. The word dendron

is also encountered frequently. A dendron usually contains a single chemically ad-

dressable group called the focal point or core. The difference between dendrons and

dendrimers is illustrated in the (Fig. 1.17), but the terms are typically encountered

interchangeably.

Applications of dendrimers typically involve conjugating other chemical species

to the dendrimer surface that can function as detecting agents (such as a dye
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Figure 1.17: Dendrimer .

molecule), affinity ligands, targeting components, radioligands, imaging agents, or

pharmaceutically active compounds. Dendrimers have very strong potential for

these applications because their structure can lead to multivalent systems.
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Chapter 2

Topological indices of molecular

graphs

2.1 Introduction

In this chapter, we discuss the concept of topological indices and there types

of indices that depend on different graph-theoretic parameters such as degree and

distance. Moreover, we will also discuss some known results in the literature related

to these topological indices.

2.2 Introduction to topological indices

In graph-theoretical terms, a topological descriptor is a single numeric number

that represents a chemical structure. Topological descriptors are structural invari-

ants that do not depende on the pictorial representation or the labeling of the graph.

In the spit of loss of information by the projection in a single number of a structure,

such descriptors found vast applications in the correlation and prediction of many

molecular properties and also in test of association and isomorphisms. At the point

when topological descriptor corresponds with a molecular property it can be named

as molecular index or topological index (TI).
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More than hundred of topological descriptors are proposed, such a large num-

ber of descriptors raises the question how to select the descriptor? So, following is

the list of desirable attributes for a topological index.

• Explicit structural analysis

• A topological index has good correlation with at least one property

• Good discrimination of isomers

• They can be Locally described

• Generalizable to higher analogues

• Toplogical indices should be linearly independent

• Simplicity

• Not depend on physico-chemical properties

• Not trivially related to other indices

• Capability of construction

• Based on similar structural concepts

• Show a correct size-dependence

• Topological index should be gradualy change with gradual change in structures

2.3 Some major classes of topological indices

In literature, there are hundred of topological indices. It is very difficult to

discuss all of them. We will classify them with respect to graph parameters such

as degree and distance etc. Here, we define some degree based, distance based and

counting related topological indices. The indices which are constructed by using the

concept of valency or degree of the vertex in known as degree based indices. The
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indices that are purely defined using the concept of distances in a graph are known

as distance based indices. The indices that are based on counting polynomials are

said to be counting related indices. In these classes, all types of indices can not be

covered because there are some type of indices that are defined using both distance

and degree of a graph, that is, degree distance index.

Here and on ward, G is considered to be a simple graph with vertex set V (G)

and edge set E(G). The distance between vertices u and v is denoted as dG(u, v) or

simply d(u, v) while d(u) or du is the degree of a vertex u ∈ V (G). We also define

δG(u) = Su =
∑

v∈NG(u)

d(v), where NG(u) = {v ∈ V (G) | uv ∈ E(G)}.

2.4 Distance based topological indices

Distance based topological indices are defined on the ground of distance between

two vertices in a connected graph. Some well known distance based topological

indices are as follows:

• Wiener index

• Harary index

• Szeged index

• Balaban index, etc

2.4.1 Wiener Index

In 1947-48, Harold Wiener [51] proposed one of the first molecular descriptors of

the topological nature of simple graph saturated hydrocarbons (alkanes). At that

time Wiener called it the path number. He defined the path number as the sum of the

number of bonds linking all pairs of atoms. Now a days, this molecular descriptor

known as the Wiener index, and denoted by W . As the value of W is smaller the

graph is more compact. Let G be a graph with vertex set V (G) and edge set E(G).

The Wiener index of graph G is defined as

W (G) =
1

2

∑
(u,v)

d(u, v),
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where (u, v) be any ordered pair of vertices in G and d(u, v) is the distance between

vertices u and v.

It is difficult to compute all the distances in a graph having large number of

edges and vertices, so researchers developed some special techniques to calculate

these indices which reduced the computational complications of these indices.

Index W is important not just on the grounds that it was the first topological

index to be invented, it is also important because it is easy to compute and it is

entirely successful for some applications. Its fundamental disadvantage is its high

degeneracy, that is, the way that numerous different graphs have the same W value.

2.4.2 Szeged Index

Szeged index was introduced by Gutman [24] and abrivated as Sz. It is a modified

version of Wiener index for cycle molecules. It was named as Szeged index because

it was conceived by Gutman at the Attila Jozsef University in Szeged.

Szeged index is more significant and power full than Wiener index in such a way

that Wiener index only correlate the boiling point of branched alkanes, whereas the

Szeged index associate the important physico-chemical property for both branched

and cyclo-alkanes.

Let G be a graph with vertex set V (G) and edge set E(G). Consider two

adjacent vertices u and v in G and let e = uv be the edge between them. The set

of all vertices of G lying closer to u than v is denoted by Bu(e) and the set of all

vertices lying closer to v then to u, is denoted by Bv(e), that is

Bu(e) = {x ∈ V (G) | d(x, u) < d(x, v)},

Bv(e) = {x ∈ V (G) | d(x, v) < d(x, u)}.

Note that all the vertices which are at equidistant from u or v should be ignored.

Now, define

nu(e) = |Bu(e)| and nv(e) = |Bv(e)|.
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The Szeged index can be defined as

Sz(G) =
∑

e=uv∈E(G)

nu(e)nv(e).

2.4.3 Balaban index

The Balaban index was introduced about 30 years ago [7]. It is also called

distance-connectivity index or average distance sum-connectivity index. It is a very

particular molecular descriptor and molecule size or number of rings do not increase

its value considerably. The Balaban index has very low degeneracy as compared to

the Wiener index. This is also called J index. It is one of the most famous known

graph invariant. It is a first index of a graph with very low degeneracy.

Let G be a graph with vertex set V (G) and edge set E(G). The Balaban index

is defined as follow:

J(G) =
m

µ+ 1

∑
uv∈E(G)

1
√
σuσv

,

where σu =
∑

w∈V (G)

d(u,w) and µ = m− n+ 1 is called the cyclomatic number of G

where m = |E(G)| and n = |V (G)|.

In the various studies of QSAR and QSPR, Balaban index has been used fre-

quently [4]. From the different kind of distance based topological indices, Wiener

index and Balaban index are two important indices.

2.5 Degree based topological indices

The degree based topological indices are based on the degree of the vertex.

These type of indices are very important because of their applications in chemistry

pharmaceutical and drug design. The degree based indices correlate many physico-

chemical properties such as, strain energy, boiling point and resonance energy in

more effective way with more foresight power. Now, we discuss some famous degree

based topological indices which are as follows:
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• Randić index

• Sum-connectivity index

• Zagreb index

• Atom-Bond Connectivity index

• Geometric-Arithmetic index, etc.

2.5.1 Randić index

In 1975, the chemist Milan Randić [39] proposed a topological index named as

“branching index”. It is suitable for calculating degree of the stretching of the

carbon-atom skeleton of saturated of hydrocarbons. Later on, the branching index

was renamed as “molecular connectivity index” and frequently referred as the Randić

index.

For a graph G with vertex set V (G) and edge set E(G), the Randić index of G is

defined as follows:

R− 1
2
(G) =

∑
uv∈E(G)

1√
dudv

.

Here, du and dv represent the degree of vertices u and v, respectively.

In 1998 Bollobás and Erdös [6] and Amic et al. [1] proposed general Randić index

independently. Then it has been widely studied by both theoretical chemists and

mathematicians [34].

For a graph G with vertex set V (G) and edge set E(G) the general randić index

Rα(G) is the sum of (dudv)
α over all edges e = uv ∈ E(G) defined as

Rα(G) =
∑

uv∈E(G)

(dudv)
α,

Randić index has a very good correlation with physico-chemical properties of alka-

nes: that is, enthalpies of formation, boiling point, chromatographic retention times,

surface area, parameters in the Antoine equation for vapor pressure, etc [36].

In subsequent years, a large number of applications of Randić index are re-

ported. Most of them related with the pharmacological and medicinal issues.
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2.5.2 Zagreb index

More than 40 years ago, Gutman and Trinajstić [22] examined the dependence

of total π-electron energy on molecular structure. They found that in the approx-

imation for total π-electron energy the following two terms accour for a graph G

with vertex set V (G) and edge set E(G)

M1 =
∑

u∈V (G)

(du)
2,

M2 =
∑

uv∈E(G)

(dudv).

It was instantly perceived that M1 and M2 reflects the degree of stretching

of molecular skeleton (and are thus responsible for the degree of π-electron energy

with increasing branching). Later on, Gutman and Trinajstić [23] itself elaborated

this point of view. Eventually, M1 and M2 were named the first Zagreb-Group index

and second Zagreb-Group index, respectively. These names were later abbreviated

into first Zagreb index and second Zagreb index [46].

Later on, after some more modifications made by Gutman and Trinajstić [33],

the Zagreb index can be defined in such a way that for a graph G with vertex set

V (G) and edge set E(G), the first Zagreb index is defined as:

M ′
1(G) =

∑
uv∈E(G)

(du + dv).

The second Zagreb index is defined in same way as defined above. It is defined as

the product of degree of end vertices of all edges of G, that is,

M ′
2(G) =

∑
uv∈E(G)

(du × dv).

A lot of research has been done on these indices and their variants. In the field of

theoretical chemistry, large number of paper has been published by the researchers

of this interesting interdisciplinary area.

2.5.3 Atom-bond connectivity index

One of the famous connectivity topological index is atom-bond connectivity

(ABC) index proposed by Estrada et al. [19]. Let G be a graph with vertex set
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V (G) and edge set E(G), the ABC index is defined as follows:

ABC(G) =
∑

uv∈E(G)

√
du + dv − 2

dudv
,

ABC index is very efficient in correlating some important physico-chemical proper-

ties like strain energy as well as stability of both branched and cyclo-alkanes.

There are five versions of ABC index, which have been defined later on. Let

G be a graph with vertex set V (G) and edge set E(G) the generalized ABC index

is defined as follows:

ABCk(G) =
∑

uv∈E(G)

√
Qu +Qv − 2

QuQv

,

where k ∈ {1, 2, · · · , 5} and Qu is the quantity which is uniquely related to the

vertex u.

• When k = 1 then Qu = du and Qv = dv where, du represents the degree of

vertex u and dv represents the degree of vertex v.

• When k = 2 then Qu = nu where, nu represents the number of vertices of G

whose distances to vertex u are smaller than those to other vertex v of the

edge e = uv .

• When k = 3 then Qu = mu where, mu represents the number of edges of G

lying closer to vertex u than to v of the edge e = uv.

• When k = 4 then Qu = Su where, Su =
∑

v∈NG(u)

d(v) and NG(u) = {v ∈ V (G) |

uv ∈ E(G)}.

• When k = 5 then Qu = ec(u) where, ec(u) = max
v∈V (G)

d(u, v).

2.5.4 Geometric-arithmetic index

Now, we discuss another famous topological index, that is, Geometric-Arithmetic

(GA) index which was introduced by Vukičević et al. [48]. Let G be a graph with
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vertex set V (G) and edge set E(G). Then its GA index is defined as follows:

GA(G) =
∑

uv∈E(G)

2
√
dudv

(du + dv)
.

GA index is used to predict the bio-activity of chemical compounds. It is also

important for physico-chemical properties such as entropy, enthalpy of vaporization,

standard enthalpy of vaporization, enthalpy of formation, and a centric factor. GA

index has more predictive power and somewhat better predictive power as compared

to Randić index.

There are some versions of GA index which are defined consequently. Let G be a

graph with vertex set V (G) and edge set E(G), the generalized GA index is defined

as follows:

GAk(G) =
∑

uv∈E(G)

2
√
QuQv

(Qu +Qv)
,

where k ∈ {1, 2, · · · , 5} and Qu is the quantity which is uniquely related to the

vertex u.

• When k = 1 then Qu = du and Qv = dv where, du represents the degree of

vertex u and dv represents the degree of vertex v.

• When k = 2 then Qu = nu where, nu represents the number of vertices of G

whose distances to vertex u are smaller than those to other vertex v of the

edge e = uv .

• When k = 3 then Qu = mu where, mu represents the number of edges of G

lying closer to vertex u than to v of the edge e = uv.

• When k = 4 then Qu = ec(u) where, ec(u) = max
v∈V (G)

d(u, v).

• When k = 5 then Qu = Su where, Su =
∑

v∈NG(u)

d(v) and NG(u) = {v ∈ V (G) |

uv ∈ E(G)}.
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2.6 Counting related polynomials and topological

indices

2.6.1 Counting polynomials

Counting polynomials are those polynomials having at exponent the extent of a

property partition and coefficients the multiplicity/occurrence of the corresponding

partition. For a graph G, a counting polynomial is defined as:

P (G, x) =
∑
k

m(G, k)xk, (2.1)

where the coefficients m(G, k) can be calculated by various methods, techniques and

algorithms. The expression (2.1) has been independently explained by Harary et al.

[17]. The corresponding topological index of P (G, x) is denoted by P (G) and it is

defined as follows:

P (G) = P ′(G, x)|x=1 =
∑
k

m(G, k)× k,

where P ′(G, x) defined the first derivative of P (G, x) with respect to x. A

moleculer/chemical graph is a simple finite graph in which vertices denote the atoms

and edges denote the chemical bonds in underlying chemical structure. A graph can

be represented by a matrix, a sequence, a polynomial and by a numeric number

(often called a topological index) which represents the whole graph and these rep-

resentations are aimed to be uniquely defined for that graph.

Two edges e = uv and f = xy in E(G) are said to be codistant, usually denoted by

e co f , if

d(x, u) = d(y, v)

and

d(x, v) = d(y, u) = d(x, u) + 1 = d(y, v) + 1.

The relation “co” is reflexive as e co e is true for all edges in G, also symmetric

as if e co f then f co e for all e, f ∈ E(G) but the relation “co” is not necessarily

transitive [25]. Consider

C(e) = {f ∈ E(G) : f co e}.
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If the relation is transitive on C(e) also, then C(e) is called an orthogonal cut. Let

e = uv and f = xy be two edges of a graph G, which are opposite or topologically

parallel, and this relation is denoted by e op f . A set of opposite edges, within the

same face or ring, eventually forming a strip of adjacent faces/rings, is called an

opposite edge strip ops, which is a quasi-orthogonal cut qoc (i.e. the transitivity

relation is not necessarily obeyed). Note that “co” relation is defined in the whole

graph while “op” is defined only in a face/ring. The length of ops is maximal irre-

spective of the string edge [25].

The following indices are examples of counting related topological indices.

• Omega polynomial / index

• Sadhana polynomial / index

• Padmakar-Ivan (PI) polynomial / index

• Non-Equidistance index, etc.

The construction is almost same for all indices which are mentioned above. All

of them are defined on the base of counting the opposite edge strips ops defined

above. We discuss two or three famous among them which are Omega, Sadhana

and PI polynomials and their corresponding indices.

2.6.2 Omega index

Diudea [16] introduced the omega polynomial in 2006 on the ground of op strips. The

Omega polynomial is proposed to describe cycle-containing molecular structures,

particularly those associated with nanostructures. Let G be a graph. Then its

Omega polynomial denoted by Ω(G, x) in x is defined as follows:

Ω(G, x) =
∑
k

m(G, k)× xk,

where m(G, k) be the number of ops of length k.
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The corresponding index of Ω(G, x) is Omega index Ω(G) and it is defined as

follows:

Ω(G) = Ω′(G, x)|x=1 =
∑
k

m(G, k)× k.

Where Ω′(G, x) defined the first derivative of Ω(G, x) with respect to x.

2.6.3 Sadhana index

The Sadhana polynomial is based on counting opposite edge strips in any graph.

This polynomial counts equidistant edges in a graph G [15]. Let G be a graph. Then

Sadhana polynomial denoted by Sd(G, x) is defined as follows:

Sd(G, x) =
∑
k

m(G, k)× xe−k,

where m(G, k) be the number of ops of length k and e = |E(G)| is the edge set

cardinality of G.

The corresponding index of Sd(G, x) id Sadhana index Sd(G), and it is defined

as follows:

Sd(G) = Sd′(G, x)|x=1 =
∑
k

m(G, k)× e− k.

Where Sd′(G, x) defined the first derivative of Sd(G, x) with respect to x.

2.6.4 PI index

The PI polynomial is also based on counting opposite edge strips in any graph. This

polynomial counts non-equidistant edges in a graph G [15]. Let G be a graph. Then

PI polynomial denoted by PI(G, x) is defined as follows:

PI(G, x) =
∑
k

m(G, k)× k × xe−k.

where m(G, k) be the number of ops of length k and e = |E(G)| is the edge set

cardinality of G.
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The corresponding index of PI(G, x) is PI index PI(G), and it is defined as

follows:

PI(G) = PI ′(G, x)|x=1 =
∑
k

m(G, k)× k × e− k.

Where PI ′(G, x) defined the first derivative of PI(G, x) with respect to x.

2.7 Application of topological indices

• Topological indices are numerical parameters of a graph which characterize its

topology and are usually graph invariant.

• Topological indices are used in the development of quantitative structure-

activity relationships (QSARs) in which the biological activity or other prop-

erties of molecules are correlated with their chemical structure.

• In the QSAR /QSPR study, physicochemical properties and topological indices

such as Szeged index, Wiener index, Randić index, Zagreb index, ABC index

are used to predict bioactivity of the chemical compounds.

• Topological indices correlates physico-chemical properties (Boiling point, sta-

bility, strain energy, entropy,enthalpy of vaporization, enthalpy of formation

etc) of certain chemical compounds.

Topological indices play a vital role in QSAR /QSPR study. They correlate

the certain physico-chemical properties of chemical compounds specially organic

compounds. The chemical significance of some topological indices in mathematical

chemistry is following.

• Randić index has been closely correlated with many chemical properties and

found to parallel the boiling point and Kovats constants. In addition, the

Randić index appears to predict the boiling points of alkanes more closely, and

only it takes into account the bonding or adjacency degree among carbons in

alkanes.
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• Szeged index correlates the physico-chemical properties of both cyclic and

branched alkanes.

• The atom-bond connectivity (ABC) index provides a good model for the sta-

bility of linear and branched alkanes as well as the strain energy of cycloalkanes.

• Wiener index is considered to represent a measure compactness of the molecules.

• Wiener index also show that the Wiener index number is closely correlated

with the boiling points of alkane molecules. Later work on quantitative struc-

tureactivity relationships shows that it is also correlated with other quantities

including the parameters of its critical point,the density, surface tension, and

viscosity of its liquid phase,and the van der Waals surface area of the molecule.

• For certain physico-chemical properties, the predictive power of GA index is

somewhat better than predictive power of the Randić connectivity index.

• The counting polynomials are useful in topological description of benzenoid

structures as well as in counting some single number descriptors, also called

topological indices. The qoc strips could account for the helicity of nanotubes

and nanotori.
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Chapter 3

Eccentricity based topological

indices of a hetrofunctional

dendrimerg

3.1 Introduction

Dendrimers, have attracted attention for their drug-delivery applications because

of the ease of their synthesis, the ability to achieve well-defined shapes and sizes and

their chemical diversity. Because of dendrimers’ interior void space and surface func-

tional groups, they are well-suited for use as carrier molecules in drug delivery.

Topological indices are very helpful in drug designing and have very wide applica-

tion. Now So, we consider a hetrofunctional dendrimer (HFD(ei)-G3-e-(allyl) 16-

i-(hydroxyl) 28) and compute some eccentricity based topological indices. All the

work in this chapter has been published in an international journal [21].

3.2 Eccentircity based Topological indices

These types of indices are based on the eccentricity of vertex u, where u ∈ V (G).
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Figure 3.1: A dendrimer HFD(ei)-G3-e-(allyl) 16-i-(hydroxyl) 28

[50]
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3.2.1 Eccentric connectivity index

Sharma et al. [45] introduced the eccentric connectivity index. Now a days it is

used for mathematical modeling of biological activities of diverse nature.

LetG be a graph with vertex set V (G) and edge set E(G). The eccentric connectivity

index can be defined as

ξ(G) =
∑

u∈V (G)

d(u)ec(u),

where d(u) represent the degree of vertex u and ec(u) represents the eccentricity of

vertex u.

3.2.2 Eccentircity based Zagreb indices

Zagreb indices have been introduced more than thirty years ago by Gutman and

Trinajstic [26] as discussed in Chapter 2. Let G be a graph with vertex set V (G)

and edge set E(G). Zagreb index are defined as:

M1(G) =
∑

v∈V (G)

(d(v))2,

M2(G) =
∑

uv∈E(G)

d(u)d(v).

Some new versions of Zagreb indices of a molecular graph G that are exprssed in

terms of eccentricity are introduced by Ghorbani and Hosseinzadeh [27]. They are

defined as follows

M∗∗
1 (G) =

∑
v∈V (G)

(ec(v))2, (3.1)

M∗
2 (G) =

∑
uv∈E(G)

ec(u)ec(v), (3.2)

Where ec(u) represents the eccentricity of a vertex u ∈ V (G).

3.3 HFD(ei) dendrimer

HFD [50] are considered as state-of-art macromolecules having a large number of

potential applications. With respect to positions of hetrofunctional group in HFD,
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Figure 3.2: D[n] with n = 6.

there are following three possibilities: external (e); internal (i); or combination

of external and internal (ei). We select a HFD(ei)-G3-e(allyl) 16-i-(hydroxyl) 28

denoted by D[n] and is shown in Fig. 3.2 which is an HFD with internal hydroxyl

and peripheral allyl group. The graphs corresponding to different growth stages are

shown in Fig. 3.3−3.4. It is evident that order and size of D[n] are equal.

The order and size of D[n] is given below:

order of D[n] = size of D[n] =

{
16× 2t+1 + 8× 2t − 38 if n = 2t, t ≥ 1

24× 2t+1 − 38 if n = 2t+ 1, t ≥ 0.

3.4 The eccentric connectivity index

This section is devoted to compute the eccentric connectivity index of the dendrimer

D[n] shown in Fig. 3.3−3.4.

Theorem 3.4.1. The eccentric connectivity index of D[n] for n = 2t+1 where t ≥ 0

is given by

ξ(D[n]) = 2112t× 2t − 936× 2t − 836t+ 1036.

Proof. Using the symmetry of the nanostar dendrimer D[n], we use only one branch

of D[n] as labeled in Fig. 3.3−3.4. We take one representative from a set of vertices
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which have same degree and eccentricity. These representatives are labeled by v,

w, x, y, ai, bi, ci, di, ei, fi, gi, hi, vi, wi, xi, yi. Here we have 1 ≤ i ≤ n−1
2

when

n ≥ 3. The representatives of vertices of D[n] with their degrees, eccentricities and

frequencies of occurrence are given as follows.

Repersentative Degree Eccentricity Frequency

v 2 11t+ 4 4

w 3 11t+ 5 2

x 2 11t+ 6 2

y (n = 1) 1 7 2

y (n 6= 1) 3 11t+ 7 2

Table 3.1: The vertices introduced for the core (first generation) with their degree,

eccentricity and frequency for n ≥ 1, where n is odd.

Representative Degree Eccentricity Frequency

ai 2 11t+ 11i− 3 2i+1

bi 3 11t+ 11i− 2 2i+1

ci 2 11t+ 11i− 1 2i+1

di 1 11t+ 11i− 1 2i+1

ei 2 11t+ 11i 2i+1

fi 2 11t+ 11i+ 1 2i+1

gi 2 11t+ 11i+ 2 2i+1

hi 2 11t+ 11i+ 3 2i+1

Table 3.2: The vertices introduced at second generation with their degree, eccen-

tricity and frequency for n ≥ 3, where n is odd.
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Representative Degree Eccentricity Frequency

vi 2 11t+ 11i+ 4 2i+1

wi 2 11t+ 11i+ 5 2i+1

xi 2 11t+ 11i+ 6 2i+1

yi(i = t) 1 11t+ 11i+ 7 2i+1

yi(i 6= t) 3 11t+ 11i+ 7 2i+1

Table 3.3: The vertices introduced at third generation with their degree, eccentricity

and frequency for n ≥ 3, where n is odd.

When n = 1 then t = 0. Using Table 3.1, the eccentric connectivity index of

ξ(D[1]) can be written as follows:

ξ(D[1]) =
∑
u∈D[n]

d(u)ec(u)

= (4× 2× 4) + (2× 3× 5) + (2× 2× 6) + (2× 1× 7)

= 100

= 2112(0)× 20 − 936× 20 − 836(0) + 1036.

When n = 3 then t = 1. Using Tables 3.1 and 3.2, the eccentric connectivity index

of D[3] can be written as follows:

ξ(D[3]) =
∑
u∈D[n]

d(u)ec(u)

=
(

(4× 2× 15) + (2× 3× 16) + (2× 2× 17) + (2× 3× 18)
)

+
(

(4× 2× 19) + (4× 3× 20) + (4× 2× 21) + (4× 1× 21)

+(4× 2× 22) + (4× 2× 23) + (4× 2× 24) + (4× 2× 25)
)

+
(

(4× 2× 26) + (4× 2× 27) + (4× 2× 28) + (4× 1× 29)
)

= 2552

= 2112(1)× 21 − 936× 21 − 836(1) + 1036.
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When n ≥ 5, then using Tables 3.1−3.3, the eccentric connectivity index is ob-

tained as follows:

ξ(D[n]) =
∑
u∈D[n]

d(u)ec(u)

=
(

(2× 4)× (11t+ 4) + (3× 2)× (11t+ 5) + (2× 2)× (11t+ 6)

+(3× 2)× (11t+ 7)
)

+

(
t∑
i=1

(
2× 2i+1 × (11t+ 11i− 3)

+3× 2i+1 × (11t+ 11i− 2) + 2× 2i+1 × (11t+ 11i− 1)

+2i+1 × (11t+ 11i− 1) + 2× 2i+1 × (11t+ 11i)

+2× 2i+1 × (11t+ 11i+ 1) + 2× 2i+1 × (11t+ 11i+ 2)

+2× 2i+1 × (11t+ 11i+ 3)
))

+

(
t∑
i=1

(
2× 2i+1 × (11t+ 11i+ 4)

+2× 2i+1 × (11t+ 11i+ 5) + 2× 2i+1 × (11t+ 11i+ 6)
)

+
t−1∑
i=1

(
3× 2i+1 × (11t+ 11i+ 7)

)
+
(
1× 2t+1 × (22t+ 7)

))
= 2112t× 2t − 936× 2t − 836t+ 1036.

The proof is complete.

Theorem 3.4.2. The eccentric connectivity index of D[n], for n = 2t, where t ≥ 1

is given by

ξ(D[n]) = 1760t× 2t − 1336× 2t − 836× t+ 1340.

Proof. Using the symmetry of the nanostar dendrimer D[n], we use only one branch

of D[n] as labeled in Fig. 3.3−3.4. We take one representative from a set of vertices

which have same degree and eccentricity. These representatives are labeled by v, w,

x, y, ai, bi, ci, di, ei, fi, gi, hi. Here, we have 1 ≤ i ≤ n
2
.
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Representative Degree Eccentricity Frequency

v 2 11t 4

w 3 11t+ 1 2

x 2 11t+ 2 2

y 3 11t+ 3 2

Table 3.4: The vertices introduced for the core (first generation) with their degree,

eccentricity and frequency for n ≥ 2, where n is even.

Representative Degree Eccentricity Frequency

ai 2 11t+ 11i− 7 2i+1

bi 3 11t+ 11i− 6 2i+1

ci 2 11t+ 11i− 5 2i+1

di 1 11t+ 11i− 5 2i+1

ei 2 11t+ 11i− 4 2i+1

fi 2 11t+ 11i− 3 2i+1

gi 2 11t+ 11i− 2 2i+1

hi(i = t) 1 11t+ 11i− 1 2i+1

hi(i 6= t) 2 11t+ 11i− 1 2i+1

Table 3.5: The vertices introduced at second generation with their degree, eccen-

tricity and frequency for n ≥ 2, where n is even.

When n = 2 then t = 1. Using Table 3.4, we get

ξ(D[2]) =
∑

u∈V (D[n])

d(u)ec(u)

=
(

(4× 2× 11) + (2× 3× 12) + (2× 2× 13) + (2× 3× 14)
)

+
(

(4× 2× 15) + (4× 3× 16) + (4× 2× 17) + (4× 1× 17)

+(4× 2× 18) + (4× 2× 19) + (4× 2× 20) + (4× 1× 21)
)

= 1352

= 1760(1)× 21 − 1336× 21 − 836× 1 + 1340.
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Now we take the representative from a set of vertices which are introduce at n = 3

and have same degree and eccentricity also. These representatives are labeled

vi,wi,xi,yi. Here 1 ≤ i ≤ t− 1 and t = n
2
.

Representative Degree Eccentricity Frequency

vi 2 11t+ 11i 2i+1

wi 2 11t+ 11i+ 1 2i+1

xi 2 11t+ 11i+ 2 2i+1

yi 3 11t+ 11i+ 3 2i+1

Table 3.6: The vertices introduced at third generation with their degree, eccentricity

and frequency for n ≥ 4, where n is even.

When n ≥ 4, then using Tables 3.4−3.6, the eccentric connectivity index of D[n]

can be written as follows.

ξ(D[n]) =
∑
u∈D[n]

d(u)ec(u)

=

(
2× 4× 11t+ (3× 2)× (11t+ 1) + (2× 2)× (11t+ 2) + (3× 2)

×(11t+ 3)

)
+

(
t∑
i=1

(
2× 2i+1 × (11t+ 11i− 7) + 3× 2i+1 × (11t+ 11i− 6)

+2× 2i+1 × (11t+ 11i− 5) + 1× 2i+1 × (11t+ 11i− 5) + 2× 2i+1

×(11t+ 11i− 4) + 2× 2i+1 × (11t+ 11i− 3) + 2× 2i+1 × (11t+ 11i− 2)
)

+
t−1∑
t=1

(
2× 2i+1 × (11t+ 11i− 1)

)
+
(
1× 2t+1 × (22t− 1)

))

+

( t−1∑
i=1

(
2× 2i+1 × (11t+ 11i) + 2× 2i+1 × (11t+ 11i+ 1)

+2× 2i+1 × (11t+ 11i+ 2) + 3× 2i+1 × (11t+ 11i+ 3)
))

= 1760t× 2t − 1336× 2t − 836× t+ 1340.

The proof is complete.
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3.5 Eccentricity based Zagreb indices

This section deals with some eccentricity based Zagreb indices defined in equations

(3.1) and (3.2).

Theorem 3.5.1. The second Zagreb eccentricity index M∗
1 of D[n], for n = 2t+ 1,

where t ≥ 0 is given by

M∗
1 (D[n]) = 23232t2 × 2t − 19536t× 2t − 4598t2 + 16196× 2t + 10912t− 15912.

Proof. When n = 1 then t = 0. We use Table 3.1 to get

M∗
1 (D[1]) =

∑
v∈V (D[1])

(ec(v))2

= 4× (4)2 + 2× (5)2 + 2× (6)2 + 2× (7)2

= 284

= 23232(02)× 20 − 19536(0)× 20 − 4598(02) + 16196× 20

+10912(0)− 15912.

When n = 3 then t = 1. We use Table 3.1 and Table 3.2 to get

M∗
1 (D[3]) =

∑
v∈V (D[3])

(ec(v))2

=
(

4× (15)2 + 2× (16)2 + 2× (17)2 + 2× (18)2
)

+
(

4× (19)2

+4× (20)2 + 4× (21)2 + 4× (21)2 + 4× (22)2 + 4× (23)2 + 4× (24)2

+4× (25)2
)

+
(

4× (26)2 + 4× (27)2 + 4× (28)2 + 4× (29)2
)

= 30186

= 23232(12)× 21 − 19536(1)× 21 − 4598(12) + 16196× 21 + 10912(1)

−15912.
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When n ≥ 5, then we use Tables 3.1−3.3 to get

M∗
1 (D[n]) =

∑
v∈V (D[n])

(ec(v))2

=

(
4× (11t+ 4)2 + 2× (11t+ 5)2 + 2× (11t+ 6)2 + 2× (11t+ 7)2

)

+

(
t∑
i=1

(
2i+1 × (11t+ 11i− 3)2 + 2i+1 × (11t+ 11i− 2)2

+2i+1 × (11t+ 11i− 1)2 + 2i+1 × (11t+ 11i− 1)2 + 2i+1 × (11t+ 11i)2

+2i+1 × (11t+ 11i+ 1)2 + 2i+1 × (11t+ 11i+ 2)2

+2i+1 × (11t+ 11i+ 3)2
))

+

(
t∑
i=1

(
2i+1 × (11t+ 11i+ 4)2

+2i+1 × (11t+ 11i+ 5)2 + 2i+1 × (11t+ 11i+ 6)2
)

+
t−1∑
i=1

(
2i+1 × (11t+ 11i+ 7)2

)
+
(
2t+1 × (22t+ 7)2

))
= 23232t2 × 2t − 19536t× 2t − 4598t2 + 16196× 2t + 10912t− 15912.

The proof is complete.

Theorem 3.5.2. The second Zagreb-eccentricity index M∗
1 of D[n], for n = 2t,

where t ≥ 1 is given by

M∗
1 (D[n]) = 19360t2×2t−28512t×2t−4598t2 +20488×2t+14256t−20488. (3.3)

Proof. When n = 2 then t = 1. Using Table 3.4, we get

M∗
1 (D[2]) =

∑
v∈V

[ec(v)]2

=
(

4× (11)2 + 2× (12)2 + 2× (13)2 + 2× (14)2
)

+
(

4× (15)2 + 4× (16)2

+4× (17)2 + 4× (17)2 + 4× (18)2 + 4× (19)2 + 4× (20)2 + 4× (21)2
)

= 11824

= 19360(12)× 21 − 28512(1)× 21 − 4598(12) + 20488× 21 + 14256(1)− 20488.
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When n ≥ 4, the using Tables 3.4−3.6, we get

M∗
1 (D[n]) =

∑
v∈V (D[n])

(ec(v))2

=
(

4× (11t)2 + 2× (11t+ 1)2 + 2× (11t+ 2)2 + 2× (11t+ 3)2
)

+(
t∑
i=1

(
2i+1 × (11t+ 11i− 7)2 + 2i+1 × (11t+ 11i− 6)2 +

2i+1 × (11t+ 11i− 5)2 + 2i+1 × (11t+ 11i− 5)2 +

2i+1 × (11t+ 11i− 4)2 + 2i+1 × (11t+ 11i− 3)2 +

2i+1 × (11t+ 11i− 2)2
)

+
t−1∑
i=1

(
2i+1 × (11t+ 11i− 1)2

)
+
(
1× 2t+1 × (22t− 1)2

))
+

(
t−1∑
i=1

(
2i+1 × (11t+ 11i)2 +

2i+1 × (11t+ 11i+ 1)2 + 2i+1 × (11t+ 11i+ 2)2 +

2i+1 × (11t+ 11i+ 3)2
))

= 19360t2 × 2t − 28512t× 2t − 4598t2 + 20488× 2t + 14256t− 20488.

The proof is complete.

Theorem 3.5.3. The third Zagreb eccentricity index M∗
2 (D[n] of D[n] for n = 2t+1,

is given by

M∗
2 (D[n]) =


256 if t = 0,

23232t2 × 2t − 20592t× 2t − 4598t2

+16640× 2t + 11396t− 16384. if t ≥ 1.

Proof. Using the symmetry of the nanostar dendrimer D[n], we use only one branch

of D[n] as labeled in Fig. 6-10. We take one representative from a set of vertices

which have same degree and eccentricity. These representatives are labeled by u, v,

w, x, y, ai, bi, ci, di, ei, fi, gi, hi.
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When n = 1 then t = 0. We use Table 3.1 to compute M∗
2 as follows:

M∗
2 (D[1]) =

∑
uv∈E

ec(u)ec(v)

= 2× (4× 4) + 4× (4× 5) + 2× (5× 6) + 2× (6× 7)

= 256.

When n = 3, we have t = 1, Using Table 3.1 and Table 3.2, we compute M∗
2 as

follows:

M∗
2 (D[3]) =

∑
uv∈E

ec(u)ec(v)

=
(

2× (15× 15) + 4× (15× 16) + 2× (16× 17) + 2× (7× 18)
)

+
(

4× (18× 19) + 4× (19× 20) + 4× (20× 21) + 4× (20× 21)

+4× (21× 22) + 4× (22× 23) + 4× (23× 24) + 4× (24× 25)
)

+
(

4× (25× 26) + 4× (26× 27) + 4× (28× 29)
)

= 28974.

When n ≥ 5, we use Tables 3.1−3.3 to compute M∗
2 as follows:

M∗
2 (D[n]) =

∑
uv∈E

ec(u)ec(v)

= 2× (11t+ 4)× (11t+ 4) + 4× (11t+ 4)× (11t+ 5) +

2× (11t+ 5)× (11t+ 6) + 2× (11t+ 6)× (11t+ 7)

+4× (11t+ 7)× (11t+ 8) + 22 × (11t+ 8)× (11t+ 9) +

23 × (11t+ 9)× (11t+ 10) + 22 × (11t+ 10)× (11t+ 11) +

22 × (11t+ 11)× (11t+ 12) + 22 × (11t+ 12)× (11t+ 13)

+22 × (11t+ 13)× (11t+ 14) + 22 × (11t+ 14)× (11t+ 15) +

22 × (11t+ 15)× (11t+ 16) + 22 × (11t+ 16)× (11t+ 17) +

22 × (11t+ 17)× (11t+ 18) +
t−1∑
i=1

(
2i+2 × (11t+ 11i+ 7)× (11t+ 11(i+ 1)− 3) +

2i+2 × (11t+ 11(i+ 1)− 3)× (11t+ 11(i+ 1)− 2) +
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2i+3 × (11t+ 11(i+ 1)− 2)× (11t+ 11× (i+ 1)− 1) +

2i+2 × (11t+ 11(i+ 1)− 1)× (11t+ 11(i+ 1)) +

2i+2 × (11t+ 11(i+ 1))× (11t+ 11(i+ 1) + 1) +

2i+2 × (11t+ 11(i+ 1) + 1)× (11t+ 11(i+ 1) + 2) +

2i+2 × (11t+ 11(i+ 1) + 2)(11t+ 11(i+ 1) + 3) +

2i+2 × (11t+ 11(i+ 1) + 3)× (11t+ 11(i+ 1) + 4) +

2i+2 × (11t+ 11(i+ 1) + 4)× (11t+ 11(i+ 1) + 5) +

2i+2 × (11t+ 11(i+ 1) + 5)× (11t+ 11(i+ 1) + 6) +

2i+2 × (11t+ 11(i+ 1) + 6)× (11t+ 11(i+ 1) + 7)
)

= 23232t2 × 2t − 20592t× 2t − 4598t2 + 16640× 2t + 11396t− 16384.

This completes the proof.

Theorem 3.5.4. The third Zagreb eccentricity index of D[n] for n = 2t where t ≥ 1

is given by

M∗
2 (D[n]) =


11214 if n = 2,

19360t2 × 2t − 29392t× 2t − 4598t2 + 21136× 2t

+14740t− 21136. if n > 2.

Proof. When n = 2 then t = 1. We have

M∗
2 (D[2]) =

∑
uv∈E(D[2])

ec(u)ec(v)

= 2× (11× 11) + 4× (11× 12) + 2× (12× 13) + 2× (13× 14)

+4× (14× 15) + 4× (15× 16) + 8× (17× 18) + 4× (17× 18)

+4× (18× 19) + 4× (19× 20) + 4× (20× 21)

= 11214.
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When n ≥ 4 then using Tables 3.4−3.6, we have

M∗
2 (D[n]) =

∑
uv∈E(D[n])

ec(u)ec(v)

= 2× (11t)× (11t) + 4× (11t)× (11t+ 1) + 2× (11t+ 1)× (11t+ 2)

+2× (11t+ 2)× (11t+ 3) + 4× (11t+ 3)× (11t+ 4)

+
t−1∑
i=1

(
2i+1 × (11t+ 11i− 7)× (11t+ 11i− 6)

+2i+2 × (11t+ 11i− 6)× (11t+ 11i− 5) + 2i+1 × (11t+ 11i− 5)

×(11t+ 11i− 4) + 2i+1 × (11t+ 11i− 4)× (11t+ 11i− 3)

+2i+1 × (11t+ 11i− 3)× (11t+ 11i− 2)

+2i+1 × (11t+ 11i− 2)× (11t+ 11i− 1) + 2i+1 × (11t+ 11i− 1)

×(11t+ 11i) + 2i+1 × (11t+ 11i)× (11t+ 11i+ 1)

+2i+1 × (11t+ 11i+ 1)× (11t+ 11i+ 2) + 2i+1 × (11t+ 11i+ 2)

×(11t+ 11i+ 3) + 2i+2 × (11t+ 11i+ 3)× (11t+ 11(i+ 1)− 7)
)

+2t+1 × (11t+ 11t− 7)× (11t+ 11t− 6) + 2t+2 × (11t+ 11t− 6)

×(11t+ 11t− 5) + 2t+1 × (11t+ 11t− 5)× (11t+ 11t− 4)

+2t+1 × (11t+ 11t− 4)× (11t+ 11t− 3) + 2t+1 × (11t+ 11t− 3)

×(11t+ 11t− 2) + 2t+1 × (11t+ 11t− 2)× (11t+ 11t− 1)

= 19360t2 × 2t − 29392t× 2t − 4598t2 + 21136× 2t + 14740t− 21136.

This completes the proof.
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Representative Eccentricity Frequency

[u, v] [11t+ 4, 11t+ 4] 2

[v, w] [11t+ 4, 11t+ 5] 22

[w, x] [11t+ 5, 11t+ 6] 2

[x, y] [11t+ 6, 11t+ 7] 2

[y, a1] [11t+ 7, 11t+ 8] 22

[a1, b1] [11t+ 8, 11t+ 9] 22

[b1, c1] [11t+ 9, 11t+ 10] 23

[c1, e1] [11t+ 10, 11t+ 11] 22

[e1, f1] [11t+ 11, 11t+ 12] 22

[f1, g1] [11t+ 12, 11t+ 13] 22

[g1, h1] [11t+ 13, 11t+ 14] 22

[h1, v1] [11t+ 14, 11t+ 15] 22

[v1, w1] [11t+ 15, 11t+ 16] 22

[w1, x1] [11t+ 16, 11t+ 17] 22

[x1, y1] [11t+ 17, 11t+ 18] 22

[yi, ai+1] [11t+ 11i+ 7, 11t+ 11(i+ 1)− 3] 2i+2

[ai+1, bi+1] [11t+ 11(i+ 1)− 3, 11t+ 11(i+ 1)− 2] 2i+2

[bi+1, ci+1] [11t+ 11(i+ 1)− 2, 11t+ 11(i+ 1)− 1] 2i+3

[ci+1, ei+1] [11t+ 11(i+ 1)− 1, 11t+ 11(i+ 1)] 2i+2

[ei+1, fi+1] [11t+ 11(i+ 1), 11t+ 11(i+ 1) + 1] 2i+2

[fi+1, gi+1] [11t+ 11(i+ 1) + 1, 11t+ 11(i+ 1) + 2] 2i+2

[gi+1, hi+1] [11t+ 11(i+ 1) + 2, 11t+ 11(i+ 1) + 3] 2i+2

[hi+1, vi+1] [11t+ 11(i+ 1) + 3, 11t+ 11(i+ 1) + 4] 2i+2

[vi+1, wi+1] [11t+ 11(i+ 1) + 4, 11t+ 11(i+ 1) + 5] 2i+2

[wi+1, xi+1] [11t+ 11(i+ 1) + 5, 11t+ 11(i+ 1) + 6] 2i+2

[xi+1, yi+1] [11t+ 11(i+ 1) + 6, 11t+ 11(i+ 1) + 7] 2i+2

Table 3.7: The edge partition of D[n], with respect to the representatives of pair

of end-vertices and their frequency of occurrence. The eccentricities are taken from

Table 3.1, Table 3.2 and Table 3.3, Here n is odd, t = n−1
2

, 1 ≤ i ≤ t− 1
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Representative Eccentricity Frequency

[u, v] [11t, 11t] 2

[v, w] [11t, 11t+ 1] 22

[w, x] [11t+ 1, 11t+ 2] 2

[x, y] [11t+ 2, 11t+ 3] 2

[y, a1] [11t+ 3, 11t+ 4] 22

[ai, bi] [11t+ 11i− 7, 11t+ 11i− 6] 2i+1

[bi, ci] [11t+ 11i− 6, 11t+ 11i− 5] 2i+2

[ci, ei] [11t+ 11i− 5, 11t+ 11i− 4] 2i+1

[ei, fi] [11t+ 11i− 4, 11t+ 11i− 3] 2i+1

[fi, gi] [11t+ 11i− 3, 11t+ 11i− 2] 2i+1

[gi, hi] [11t+ 11i− 2, 11t+ 11i− 1] 2i+1

[hi, vi] [11t+ 11i− 1, 11t+ 11i] 2i+1

[vi, wi] [11t+ 11i, 11t+ 11i+ 1] 2i+1

[wi, xi] [11t+ 11i+ 1, 11t+ 11i+ 2] 2i+1

[xi, yi] [11t+ 11i+ 2, 11t+ 11i+ 3] 2i+1

[yi, ai+1] [11t+ 11i+ 3, 11t+ 11(i+ 1)− 7] 2i+2

[at, bt] [22t− 7, 22t− 6] 2t+1

[bt, ct] [22t− 6, 22t− 5] 2t+2

[ct, et] [22t− 5, 22t− 4] 2t+1

[et, ft] [22t− 4, 22t− 3] 2t+1

[ft, gt] [22t− 3, 22t− 2] 2t+1

[gt, ht] [22t− 2, 22t− 1] 2t+1

Table 3.8: The edge partition of D[n] with respect to the representatives of pair of

end-vertices and their frequency of occurrence. The eccentricities are taken from

Table 3.4, Table 3.5 and Table 3.6. Here n is even, t = n
2
, 1 ≤ i ≤ t− 1
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Chapter 4

Degree-based topological indices

of a hetrofunctional dendrimer

4.1 Introduction

In this chapter, we compute the nullity and number of Kekulé structures in a

class of hetrofunctional dendrimer (HFD)ei (Fig. 3.2). When there is no Kekulé

structure, we find the size of a maximum matching in this dendrimer. Furthermore,

we compute the first and fifth version of geometric-arithmetic index and Randić

index of this dendrimer. All these work has been submitted in a international

journal for publish [38].

4.2 Basic definition

Let G be a graph with vertex set V (G) and edge set E(G). A subset M ⊆ E(G) is

called a matching if no two edges in M share an end-vertex. A vertex v ∈ V (G) is

said to be M -saturated if v is incident with an edge in M . Otherwise, v is said to

be M -unsaturated. The matching M is called perfect if it saturates all the vertices

of G. A path in G is said to be M -alternating if its edges alternately lie in M

and E(G) \M . An M -alternating path is said to be M -augmenting path if both of

its ends are M -unsaturated. Perfect matchings correspond to Kekulé structures in
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molecular graphs, which play an important role in analysis of the resonance energy

and stability of hydro-carbon compounds [33]. The organic compounds without

any Kekulé structure are known to chemically unstable. Thus study of Kekulé

structures of chemical compounds is very important as it explains their physico

chemical properties [42].

The anti-Kekulé number of a connected graph G, denoted by ak(G), is the

minimum number of edges which must be deleted from G to obtain a connected

subgraph that does not contain any Kekulé structure. Obviously, when a graph G

does not contain any Kekulé structure then ak(G) = 0. If it is not possible to find a

connected spanning subgraph of G without any Kekulé structure then ak(G) =∞.

The adjacency matrix A(G) = [aij]n×n of a graph G is defined by

aij =

{
1 if vivj ∈ E(G)

0 otherwise
(∀vi, vj ∈ V (G)).

The eigenvalues of A(G) are called the eigenvalues of the graph G. Similarly the

spectrum of the graph G is the multiset of eigenvalues of A(G). The nullity η(G) of

graph G is the multiplicity of the eigenvalue zero in the spectrum of G. The graph G

is singular if η(G) > 0 and non-singular otherwise. In [14], Collatz and Sinogowitz

posed the problem of characterizing singular graphs. Since then, the theory of

nullity of graphs has stimulated much research because of its noteworthy applications

in chemistry. The role of nullity of graphs in chemistry was first recognized by

Gutman [13].

4.3 The Kekulé structures and maximum match-

ings in D[n]

In this next section, we find the number of Kekulé structures in the dendrimer D[n].

When there is no Kekulé structure in D[n], we find a maximum matching in it and

give the size of this maximum matching for any stage n (≥ 1).

We first give the following lemma.

Lemma 4.3.1. For n = 1, there are two Kekulé structures in D[n].
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(a) (b)

Figure 4.1: Two distinct perfect matchings in D[n] with n = 1, where thick edges

represent a matching.

Proof. Consider the matchings represented by the thick edges in Fig. 4.1-(a) and

Fig. 4.1-(b). There is only one hexagon in D[1] and a hexagon has exactly two

Kekulé structures. Thus D[1] has two Kekule structures.

In the next lemma, we show that D[n] contains no Kekule structure when n

exceeds 1.

Lemma 4.3.2. For n ≥ 2, D[n] has no Kekulé structure.

Proof. From the structure of D[n], we see that if n is even then D[n] contains a path

P7 whose end vertices have degree 1 in D[n]. Denote by v1, v2, · · · , v7 the vertices of

P7. Then d(v1) = d(v7) = 1, d(v2) = 3 and all other internal vertices of P7 has degree

2 in D[n]. If M is a perfect matching in D[n] then v1v2 ∈ M . Since 1 ≤ d(vi) ≤ 2

for i ∈ {3, 4, · · · , 7}, P7 has one M -unsaturated vertex which contradicts the fact

that M is a perfect matching.

If n is odd then D[n] contains a path P11. By similar arguments as given above,

one can show that D[n] has no perfect matching. Thus D[n] has no Kekulé structure.

Observation 1: Consider a tree Tn on n-vertices, n ≥ 7, shown in Fig. 4.4 such

that

(i) d(x, y) and d(z, w) are odd.

(ii) d(y, z) is even.

Then from the construction of Tn, we can easily see that the size of a maximum

matching in Tn is bn
2
c − 1.
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Figure 4.2: D[n] with n = 2 and n = 4. The thick edges represent a matching.
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Figure 4.3: D[n] with n = 3 and n = 5. The thick edges represent a matching M .
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x

y z

w

Figure 4.4: A tree Tn, n ≥ 7.

Observation 2: Let Tn1 and Tn2 be two trees that satisfies (i) and (ii) of Obser-

vation 1, where n1, n2 ≥ 7. We join Tn1 with Tn at vertex x and Tn2 with Tn at

vertex w and the resulting tree, say Tn+n1+n2 , is shown in Fig. 4.5. Then the size of

a maximum matching in Tn+n1+n2 is bn
2
c+ bn1

2
c+ bn2

2
c − 3.

x w

Tn

y z

Figure 4.5: Joining of Tn1 and Tn2 with Tn.

Let M denotes a matching in D[n] formed by the thick edges shown in Fig. 4.3.

In the next theorem, we show that M represents a maximum matching in D[n].

Moreover, we give the size of this maximum matching.

Theorem 4.3.1. The size of the maximum matching M in D[n] is given by

|M | =

{
18× 2t − 18 if n = 2t

11× 2t+1 − 18 if n = 2t+ 1,

where t ≥ 1 is an integer.

Proof. Let n = 2. Then from Fig. 4.2, one can see that there are two copies of a

tree T17 each of which joined with one pendent vertex of D[1]. The tree T17 satisfies

(i) and (ii) of observation 1. By Observation 1, the size of a maximum matching in
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T17 is b17
2
c − 1. The size of maximum matching M in D[2] is

|M | = 2
(
b17

2
c − 1

)
+ 4

= 18 (4.1)

= 18× 21 − 18.

Let n = 3. Then from Fig. 4.3, we note that there are two copies of a tree T25 each

of which is joined with one pendent vertex of D[1]. The tree T25 satisfies (i) and

(ii) of Observation 1. By Observation 1, the size of a maximum matching in T25 is

b25
2
c − 1. Thus, the size of maximum matching M is D[3] is

|M | = 2
(
b25

2
c − 1

)
+ 4

= 26 (4.2)

= 11× 21+1 − 18.

Let n = 4. Then from Fig. 4.2, we note that there are four copies of a tree T17

each of which is joined with one of pendent vertex of two copies of a tree T25. The

graph obtained after joining two copies of T17 with T25 satisfies the condition of

Observation 2. Thus by Observation 2, the size of maximum matching in the join of

two copies of T17 and T25 is b25
2
c + 2b17

2
c − 3. Thus the size of maximum matching

M in D[4] is

|M | = 2
(
b25

2
c+ 2b17

2
c − 3

)
+ 4

= 54 (4.3)

= 18× 22 − 18.

Let n = 5. Then from Fig. 4.3, we observe that there are four copies of a tree

T25 each of which is joined with one pendent vertex of two copies of a tree T25. By

similar arguments used to find the size of a maximum matching in D[4], we conclude

that the size of a maximum matching M in D[5] is given by

|M | = 2
(
3b25

2
c − 3

)
+ 4

= 70 (4.4)

= 11× 22+1 − 18.
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Since the growth of D[n] is systematic, from (4.1) and (4.3), we conclude that when

n = 2t, t = 1, 2, ..., the size of a maximum matching M in D[n] is given by

|M | = 18× 2t − 18.

From (4.2) and (4.4), we observe that when n = 2t + 1, where t = 1, 2, ..., the size

of a maximum matching M in D[n] is given by:

|M | = 11× 2t+1 − 18.

This proves the required assertion.

From Theorem 4.3.1, we have the following result.

Corollary 4.3.1. The anti-Kekulé number of D[n] for n ≥ 2 is 0.

4.4 The nullity of hetrofunctional dendrimers D[n]

In this section, we calculate the nullity of the hetrofunctional dendrimers D[n]. Let

M be the maximum matching in the graph D[n] as shown in Fig. 4.2 and Fig. 4.3.

The next lemma is useful in calculating the nullity of bipartite graphs.

Lemma 4.4.1 (Cvetkovic, Gutman [12]). If a bipartite graph G with n ≥ 1 vertices

does not contain any cycle of length r ≡ 0(mod4), then η(G) = |V | − 2|M |, where

|M | is the size of its maximum matching.

The following lemma is useful in finding nullity of graphs with pendent vertices.

Lemma 4.4.2 (Cvetkovic, Gutman [13]). Let v be a pendant vertex in a graph G

and u be the vertex adjacent to v. Then η(G) = η(G − u − v), where G − u − v is

the graph obtained from G by deleting the vertices u and v.

The nullity of a path and cycle is computed as follows.

Lemma 4.4.3 (Cvetkovic, Gutman [13]). (i) The eigenvalues of the path Pn are of

the form 2 cos( kπ
n+1

), where k = 1, . . . , n. Thus,

η(Pn) =

{
1 if n is odd

0 if n is even.
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(ii) The eigenvalues of the cycle Cn are 2 cos(2kπ
n

), where k = 0, 1, . . . , n− 1. Thus

η(Cn) =

{
2 if n ≡ 0(mod4)

0 otherwise.

The following lemma states that the sum of the nullities of components of a graph

is equal to nullity of graph.

Lemma 4.4.4 (Gutman, Borovicanin [32]). Let G =
t⋃
i=1

Gi, where Gi, for each

i = 1, . . . , t, are connected components of G. Then η(G) =
t∑
i=1

η(Gi).

Next theorem gives the nullity of D[n].

Theorem 4.4.1. The nullity of D[n] is given by

η(D[n]) =

{
0 if n = 1

4× 2t − 2 if n ≥ 2,

where t = bn
2
c.

Proof. Note that D[1] is a bipartite graph and does not contain any cycle of length

r ≡ 0( mod 4). Also, the size of maximum matching in D[1] is 5. Thus, Lemma 4.4.1

gives

η(D[1]) = 0

Now, let n ≥ 2. Again D[n] is a bipartite graph for each n ≥ 2 and does not contain

any cycle of length of r ≡ 0(mod4). By Theorem 4.3.1, the size of a maximum

matching in D[n] is 18× 2t − 18 when n = 2t and 11× 2t+1 − 18 when n = 2t+ 1.

When n = 2t, Lemma 4.4.1 gives

η(D[n]) =
(
16× 2t+1 + 8× 2t − 38

)
−
(
18t − 18

)
= 4× 2t − 2.

When n = 2t+ 1, Lemma 4.4.1 yields

η(D[n]) =
(
24× 2t+1 − 38

)
− 2
(
11× 2t+1 − 18

)
= 4× 2t − 2.

This proves the assertion.
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4.5 Some degree based topological indices of het-

rofunctional dendrimers

This section deals with some degree based topological indices of the dendrimer D[n].

Let G be a simple connected graph with vertex set V (G) and the edge set E(G).

The degree of vertex v ∈ V (G) is denoted by dv. Also, define Su =
∑

v∈NG(u) dv,

where NG(u) = {v ∈ V (G)|uv ∈ E(G)}. Introduced by Estarada et al. [20], the

atom bond connectivity index (hencefourth, ABC − Index) is defined by

ABC(G) =
∑

uv∈E(G)

√
du + dv − 2

dudv
. (4.5)

Recently, Ghorbani et al. [30] introduced the fourth version of ABC−Index defined

by

ABC4(G) =
∑

uv∈E(G)

√
Su + Sv − 2

SuSv
. (4.6)

Another well-known connectivity topological descriptor is the geometric-arithmetic

index (henceforth, GA − index), which was introduced by Vukic̆ević and Furtula

[49] and is defined by

GA(G) =
∑

uv∈E(G)

2
√
dudv

du + dv
. (4.7)

Graovac et al. [31] proposed the fifth version of GA− index, which is defined by

GA5(G) =
∑

uv∈E(G)

2
√
SuSv

Su + Sv
. (4.8)

With each edge uv, we associate two pairs (du, dv) and (Su, Sv). The edge partition

of the dendrimer D[n] with respect to degrees of the end-vertices of edges and with

respect to the sum of degrees of the neighbours of end-vertices of edges is given by

Table 4.1 and Table 4.2, respectively.

4.5.1 Results for ABC and ABC4-Index

Now, we compute the ABC and ABC4-indices of the dendrimer D[n] using the edge

partition shown in Tables 4.1 −4.2.
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(du, dv) Number of edges

(1, 2) 2t+1

(2, 3)
∑t

i=1 2i +
∑t

i=0(2
i × 6)

(2, 2) 2 +
∑t+1

i=2(2
i × 3) +

∑t
i=2(2

i × 4) if n = 2t

(2, 2) 2 +
∑t+1

i=2(2
i × 3) +

∑t
i=1(2

i+1 × 4) if n = 2t+ 1

(1, 3)
∑t

i=1 2i+1

Table 4.1: (du, dv)-type edge partion of D[n], for n ≥ 3 and t = bn
2
c.

(Su, Sv) Number of edges

(5, 5)
∑t

i=0 2i+1

(5, 6) 3× 2t+1 − 4

(6, 6) 4 +
∑t

i=1 2i+1

(5, 3)
∑t

i=1 2i+1

(5, 4) 3× 2t+1 − 8

(4, 4)
∑t

i=1 2i+1 +
∑t−1

i=1(4× 2i+1) if n = 2t

(4, 4)
∑t

i=1(5× 2i+1) if n = 2t+ 1

(4, 3) 2t+1

(3, 2) 2t+1

Table 4.2: (Su, Sv)-type edge partion of D[n], for n ≥ 3 and t = bn
2
c.

Theorem 4.5.1. The atom-bond connectivity index of D[n], for n = 2t + 1, where

t ≥ 0 is given by

ABC(D[n]) = 22
√

2× 2t − 17
√

2 +
4

3

√
6× 2t − 4

3

√
6.

Proof. We use equation (4.5) and the edge partitions in Table 4.1.

61



For n = 1, we have

ABC(D[1]) =
∑

uv∈D(1)

√
du + dv − 2

dudv

= 2×
√

1 + 2− 2

1× 2
+ 6×

√
2 + 3− 2

2× 3
+ 2×

√
2 + 2− 2

2× 2

= 5
√

2

= 22
√

2× 20 − 17
√

2 +
4

3

√
6× 20 − 4

3

√
6.

For n ≥ 3, we have

ABC(D[n]) =
∑

uv∈D(n)

√
du + dv − 2

dudv

= 2t+1 ×
√

1 + 2− 2

1× 2
+
( t∑
i=1

2i +
t∑
i=0

(2i × 6)
)
×
√

2 + 3− 2

2× 3

+
(

2 +
t+1∑
i=2

(2i × 3) +
t∑
i=1

2i+1 × 4)
)
×
√

2 + 2− 2

2× 2

+
t∑
i=1

2i+1 ×
√

1 + 3− 2

1× 3

= 22
√

2× 2t − 17
√

2 +
4

3

√
6× 2t − 4

3

√
6.

This completes the proof.

Theorem 4.5.2. The atom-bond connectivity index of D[n], for n = 2t, where t ≥ 1

is given by

ABC(D[n]) = 18
√

2× 2t − 17
√

2 +
4

3

√
6× 2t − 4

3

√
6. (4.9)

Proof. We use equation (4.5) and the edge partitions in Table 4.1.
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For n = 2, we have

ABC(D[2]) =
∑

uv∈D(2)

√
du + dv − 2

dudv

= 4×
√

1 + 2− 2

1× 2
+ 20×

√
2 + 3− 2

2× 3
+ 14×

√
2 + 2− 2

2× 2

+14×
√

1 + 3− 2

1× 3

= 19
√

2 +
4

3

√
6

= 18
√

2× 21 − 17
√

2 +
4

3

√
6× 21 − 4

3

√
6.

For n ≥ 4, we have

ABC(D[n]) =
∑

uv∈D(n)

√
du + dv − 2

dudv

= 2t+1 ×
√

1 + 2− 2

1× 2
+
( t∑
i=1

2i +
t∑
i=0

(2i × 6)
)
×
√

2 + 3− 2

2× 3

+
(

2 +
t+1∑
i=2

(2i × 3) +
t∑
i=2

2i × 4)
)
×
√

2 + 2− 2

2× 2

+
t∑
i=1

2i+1 ×
√

1 + 3− 2

1× 3

= 18
√

2× 2t − 17
√

2 +
4

3

√
6× 2t − 4

3

√
6.

This completes the proof.

Theorem 4.5.3. The fourth atom-bond connectivity index of D[n], for n = 2t+ 1,

where t ≥ 0 is given by

ABC4(D[n]) =



9
5

√
2 + 2

5

√
30 + 2

3

√
3 if t = 0,

1
15

(
2

2t+1
2 ×

(
9
√

15 + 22
√

5 + 75
√

3 + 39
)

+

2t ×
(

5
√

15− 9
√

35
)
− 6
√

30− 12
√

10− 12
√

35

)
−

5
√

6− 4
5

√
2. if t ≥ 1.
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Proof. When n = 1, the fourth atom-bond connectivity index of D[1] can be written

as follows:

ABC4(D[1]) =
∑

uv∈E(D[n])

√
Su + Sv − 2

SuSv

= 2×
√

5 + 5− 2

5× 5
+ 4×

√
5 + 6− 2

5× 6
+ 2×

√
6 + 4− 2

6× 4

+2×
√

4 + 2− 2

4× 2
.

=
9

5

√
2 +

2

5

√
30 +

2

3

√
3.

When n ≥ 3, using Table 4.2, the fourth atom-bond connectivity index of D[n] can

be written as follows:

ABC4(D[n]) =
∑

uv∈E(D[n])

√
Su + Sv − 2

SuSv

=
t∑
i=0

2i+1 ×
√

5 + 5− 2

5× 5
+
(
3× 2t+1 − 4

)
×
√

5 + 6− 2

5× 6

+
(
4 +

t∑
i=1

2i+1
)
×
√

6 + 6− 2

6× 6
+

t∑
i=1

2i+1 ×
√

5 + 3− 2

5× 3

+
(
3× 2t+1 − 8

)
×
√

5 + 4− 2

5× 4
+
( t∑
i=1

5× 2i+1
)
×
√

4 + 4− 2

4× 4

+2t+1 ×
√

4 + 3− 2

4× 3
+ 2t+1 ×

√
3 + 2− 2

3× 2

=
1

15

(
2

2t+1
2 ×

(
9
√

15 + 22
√

5 + 75
√

3 + 39
)

+ 2t ×
(

5
√

15− 9
√

35
)

−6
√

30− 12
√

10− 12
√

35

)
− 5
√

6− 4

5

√
2.

This completes the proof.

Theorem 4.5.4. The fourth atom-bond connectivity index of D[n], for n = 2t,
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where t ≥ 1 is given by

ABC4(D[n]) =



22
5

√
2 + 4

5

√
30 + 32

15

√
10 + 2

5

√
35 +

√
6 + 2

3

√
15 if t = 1,

1
15

(
2

2t+1
2 ×

(
9
√

15 + 22
√

5 + 45
√

3 + 39
)

+

2t ×
(

5
√

15− 9
√

35
)
− 6
√

30− 12
√

10− 12
√

35

)
−

5
√

6− 4
5

√
2. if t ≥ 2.

Proof. When n = 2, the fourth atom-bond connectivity index of D[2] can be written

as follows:

ABC4(D[2]) =
∑

uv∈E(D[n])

√
Su + Sv − 2

SuSv

= 6×
√

5 + 5− 2

5× 5
+ 8×

√
5 + 6− 2

5× 6
+ 8×

√
6 + 6− 2

6× 6

+4×
√

5 + 3− 2

5× 3
+ 4×

√
5 + 4− 2

5× 4
+ 4×

√
4 + 4− 2

4× 4

+4×
√

3 + 2− 2

3× 2
+ 4×

√
4 + 3− 2

4× 3

=
22

5

√
2 +

4

5

√
30 +

32

15

√
10 +

2

5

√
35 +

√
6 +

2

3

√
15.

When n ≥ 4, using Table 4.2, the fourth atom-bond connectivity index of D[n] can

be written as follows:
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ABC4(D[n]) =
∑

uv∈E(D[n])

√
Su + Sv − 2

SuSv

=
t∑
i=0

2i+1 ×
√

5 + 5− 2

5× 5
+
(
3× 2t+1 − 4

)
×
√

5 + 6− 2

5× 6

+
(
4 +

t∑
i=1

2i+1
)
×
√

6 + 6− 2

6× 6
+

t∑
i=1

2i+1 ×
√

5 + 3− 2

5× 3

+
(
3× 2t+1 − 8

)
×
√

5 + 4− 2

5× 4
+
( t∑
i=1

2i+1 +
t−1∑
i=1

(4× 2i+1)
)

×
√

4 + 4− 2

4× 4
+ 2t+1 ×

√
4 + 3− 2

4× 3
+ 2t+1 ×

√
3 + 2− 2

3× 2

=
1

15

(
2

2t+1
2 ×

(
9
√

15 + 22
√

5 + 45
√

3 + 39
)

+ 2t ×
(

5
√

15− 9
√

35
)

−6
√

30− 12
√

10− 12
√

35

)
− 5
√

6− 4

5

√
2.

The proof is complete.

4.5.2 Results for GA and GA5-Index

Now, we compute the GA and GA5-indices of the dendrimer D[n] using the edge

partitions shown in Tables 1-2.

Theorem 4.5.5. The geometric-arithmetic index of D[n], for n = 2t + 1 where

t ≥ 0 is given by

GA(D[n]) =



4
3

√
2 + 12

5

√
6 + 2 if t = 0,

2
2t+1

2 ×
(

4
3

+ 28
5

√
3
)

+ 2t ×
(

28 + 2
√

3
)
−

16
5

√
6− 2

√
3− 26 if t ≥ 1.
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Proof. When n = 1, the geometric-arithmetic index ofD[1] can be written as follows:

GA(D[1]) =
∑

uv∈D[n]

2
√
dudv

du + dv

= 2× 2
√

1× 2

1 + 2
+ 6× 2

√
2× 3

2 + 3
+ 2× 2

√
2× 2

2 + 2

=
4

3

√
2 +

12

5

√
6 + 2.

When n ≥ 3, using Table 4.1, the geometric-arithmetic index of D[n] can be written

as follows:

GA(D[n]) =
∑

uv∈D[n]

2
√
dudv

du + dv

= 2t+1 × 2
√

1× 2

1 + 2
+
( t∑
i=1

2i +
t∑
i=0

(2i × 6)
)
× 2
√

2× 3

2 + 3
+

(
2 +

t+1∑
i=2

(2i × 3) +
t∑
i=1

(2i+1 × 4)
)
× 2
√

2× 2

2 + 2
+
( t∑
i=1

2i+1
)
× 2
√

1× 3

1 + 3

= 2
2t+1

2 ×
(4

3
+

28

5

√
3
)

+ 2t ×
(

28 + 2
√

3
)
− 16

5

√
6− 2

√
3− 26.

This completes the proof.

Theorem 4.5.6. The geometric-arithmetic index of D[n], for n = 2t, where t ≥ 1

is given by

GA(D[n]) =



8
3

√
2 + 8

√
6 + 14 + 2

√
3 if t = 1,

2
2t+1

2 ×
(

4
3

+ 28
5

√
3
)

+ 2t ×
(

20 + 2
√

3
)
−

16
5

√
6− 2

√
3− 26 if t ≥ 2.

Proof. When n = 2, the geometric-arithmetic index ofD[2] can be written as follows:

GA(D[2]) =
∑

uv∈D[n]

2
√
dudv

du + dv

= 4× 2
√

1× 2

1 + 2
+ 20× 2

√
2× 3

2 + 3
+ 14× 2

√
2× 2

2 + 2
+ 4× 2

√
1× 3

1 + 3

=
8

3

√
2 + 8

√
6 + 14 + 2

√
3.
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When n ≥ 4, using Table 4.1, the geometric-arithmetic index of D[n] can be written

as follows:

GA(D[n]) =
∑

uv∈D[n]

2
√
dudv

du + dv

= 2t+1 × 2
√

1× 2

1 + 2
+
( t∑
i=1

2i +
t∑
i=0

(2i × 6)
)
× 2
√

2× 3

2 + 3
+

(
2 +

t+1∑
i=2

(2i × 3) +
t∑
i=2

(2i × 4)
)
× 2
√

2× 2

2 + 2
+
( t∑
i=1

2i+1
)2
√

1× 3

1 + 3

= 2
2t+1

2 ×
(4

3
+

28

5

√
3
)

+ 2t ×
(

20 + 2
√

3
)
− 16

5

√
6− 2

√
3− 26,

which is the required result.

Theorem 4.5.7. The fifth geometric-arithmetic index of D[n], for n = 2t+1, where

t ≥ 0 is given by

GA5(D[n]) =


2 + 8

11

√
30 + 4

5

√
6 + 4

3

√
2 if t = 0,

2
2t+1

2 ×
(

12
11

√
15 + 4

5

√
3
)

+ 2t ×
(

28 +
√

15 + 8
3

√
5 + 8

7

√
3
)

− 8
11

√
30− 32

9

√
5−
√

15− 22 if t ≥ 1.

Proof. When n = 1, the fifth geometric-arithmetic index of D[1] can be written as

follows:

GA5(D[1]) =
∑

uv∈D[n]

2
√
SuSv

Su + Sv

= 2× 2
√

5× 5

5 + 5
+ 4× 2

√
5× 6

5 + 6
+ 2× 2

√
6× 4

6 + 4
+ 2× 2

√
4× 2

4 + 2

= 2 +
8

11

√
30 +

4

5

√
6 +

4

3

√
2.

When n ≥ 3, using Table 4.2, the geometric-arithmetic index of D[n] can be written

as follows:

68



GA5(D[n]) =
∑

uv∈D[n]

2
√
SuSv

Su + Sv

=
( t∑
i=0

2i+1
)
× 2
√

5× 5

5 + 5
+
(

3× 2t+1 − 4
)
× 2
√

5× 6

5 + 6

+
(

4 +
t∑
i=1

2i+1
)
× 2
√

6× 6

6 + 6
+
( t∑
i=1

2i+1
)
× 2
√

5× 3

5 + 3

+
(

3× 2t+1 − 8
)
× 2
√

5× 4

5 + 4
+
( t∑
i=1

(5× 2i+1)
)
× 2
√

4× 4

4 + 4

+
(

2t+1
)
× 2
√

4× 3

4 + 3
+
(

2t+1
)
× 2
√

3× 2

3 + 2

= 2
2t+1

2 ×
(12

11

√
15 +

4

5

√
3
)

+ 2t ×
(

28 +
√

15 +
8

3

√
5 +

8

7

√
3
)

− 8

11

√
30− 32

9

√
5−
√

15− 22.

This completes the proof.

Theorem 4.5.8. The fifth geometric-arithmetic index of D[n], for n = 2t, where

t ≥ 1 is given by

GA5(D[n]) =


18 + 16

11

√
30 +

√
15 + 16

9

√
5 + 8

5

√
6 + 16

7

√
3 if t = 1,

2
2t+1

2 ×
(

12
11

√
15 + 4

5

√
3
)

+ 2t ×
(

20 +
√

15 + 8
3

√
5 + 8

7

√
3
)

− 8
11

√
30− 32

9

√
5−
√

15− 22 if t ≥ 2.

Proof. When n = 2, the fifth geometric-arithmetic index of D[2] can be written as

follows:

GA5(D[2]) =
∑

uv∈D[n]

2
√
SuSv

Su + Sv

= 6× 2
√

5× 5

5 + 5
+ 8× 2

√
5× 6

5 + 6
+ 8× 2

√
6× 6

6 + 6
+ 4× 2

√
5× 3

5 + 3

+4× 2
√

5× 4

5 + 4
+ 4× 2

√
4× 4

4 + 4
+ 4× 2

√
3× 2

3 + 2
+ 4× 2

√
4× 3

4 + 3

= 18 +
16

11

√
30 +

√
15 +

16

9

√
5 +

8

5

√
6 +

16

7

√
3.
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When n ≥ 4, using Table 4.2, the geometric-arithmetic index of D[n] can be written

as follows:

GA5(D[n]) =
∑

uv∈D[n]

2
√
SuSv

Su + Sv

=
( t∑
i=0

2i+1
)
× 2
√

5× 5

5 + 5
+
(

3× 2t+1 − 4
)
× 2
√

5× 6

5 + 6

+
(

4 +
t∑
i=1

2i+1
)
× 2
√

6× 6

6 + 6
+
( t∑
i=1

2i+1
)
× 2
√

5× 3

5 + 3

+
(

3× 2t+1 − 8
)
× 2
√

5× 4

5 + 4
+
( t∑
i=1

2i+1 +
t−1∑
i=1

(4× 2i+1)
)

×2
√

4× 4

4 + 4
+
(

2t+1
)
× 2
√

4× 3

4 + 3
+
(

2t+1
)
× 2
√

3× 2

3 + 2

= 2
2t+1

2 ×
(12

11

√
15 +

4

5

√
3
)

+ 2t ×
(

20 +
√

15 +
8

3

√
5 +

8

7

√
3
)

− 8

11

√
30− 32

9

√
5−
√

15− 22.

This completes the proof.

4.6 Randić index

The very first and oldest degree based topological index is the Randić index, which

was introduced by Milan Randić [41] in 1975. The Randić index of a graph G =(
V (G), E(G)

)
is defined as

R− 1
2

=
∑

uv∈E(G)

1√
dudv

. (4.10)

Later on, the general Randić index was introduced by Bollobas and Erdös [9] and

Amic et al. [3] in 1988. The general Randić index of the graph is defined as

Rα(G) =
∑

uv∈E(G)

(
dudv

)α
, (4.11)

where α ∈ R.
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Theorem 4.6.1. The Randić index is given by for n = 2t + 1, where t ≥ 0 can be

defined as

Rα(D[n]) =



106× 2t+1 − 164 if α = 1,

2
2t+1

2 ×
(
14
√

3 +
√

2
)

+ 2t ×
(
4
√

3 + 56
)
− 8
√

6− 4
√

3− 52 if α = 1
2
,

22t+1 × 35
6
− 55

6
if α = −1,

2
2t+1

2 ×
(
1 + 7√

3

)
+ 2t ×

(
14 + 4√

3

)
− 4

3

√
6− 4

3

√
3− 13 if α = −1

2
.

Proof. We use the Table 4.1 to prove the result.

When α = 1:

By using Table 4.1 and equation (4.11), we get:

R1(D[n]) =
∑

uv∈E(D[n])

(
dudv

)1
=

( t∑
i=1

2i +
t∑
i=0

(2i × 6)
)
×
(
2× 3

)1
+
(

2 +
t+1∑
i=2

(2i × 3) +
t∑
i=1

(2i+1 × 4)
)

×
(
2× 2

)1
+
( t∑
i=1

2i+1
)
×
(
1× 3

)1
+ 2t+1 ×

(
1× 2

)1
= 106× 2t+1 − 164.

When α = 1
2
:

By using Table 4.1 and equation (4.11), we get:

R 1
2
(D[n]) =

∑
uv∈E(D[n])

(
dudv

) 1
2

=
( t∑
i=1

2i +
t∑
i=0

(2i × 6)
)
×
(
2× 3

) 1
2 +

(
2 +

t+1∑
i=2

(2i × 3) +
t∑
i=1

(2i+1 × 4)
)

×
(
2× 2

) 1
2 +

( t∑
i=1

2i+1
)
×
(
1× 3

) 1
2 + 2t+1 ×

(
1× 2

) 1
2

= 2
2t+1

2 ×
(
14
√

3 +
√

2
)

+ 2t ×
(
4
√

3 + 56
)
− 8
√

6− 4
√

3− 52.

When α = −1:
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By using Table 4.1 and equation (4.11), we get:

R−1(D[n]) =
∑

uv∈E(D[n])

(
dudv

)−1
=

( t∑
i=1

2i +
t∑
i=0

(2i × 6)
)
×
(
2× 3

)−1
+
(

2 +
t+1∑
i=2

(2i × 3) +
t∑
i=1

(2i+1 × 4)
)

×
(
2× 2

)−1
+
( t∑
i=1

2i+1
)
×
(
1× 3

)−1
+ 2t+1 ×

(
1× 2

)−1
= 2t+1 × 35

6
− 55

6
.

When α = −1
2
:

By using Table 4.1 and equation (4.11), we get:

R− 1
2
(D[n]) =

∑
uv∈E(D[n])

(
dudv

)− 1
2

=
( t∑
i=1

2i +
t∑
i=0

(2i × 6)
)
×
(
2× 3

)− 1
2 +

(
2 +

t+1∑
i=2

(2i × 3) +
t∑
i=1

(2i+1 × 4)
)

×
(
2× 2

)− 1
2 +

( t∑
i=1

2i+1
)
×
(
1× 3

)− 1
2 + 2t+1 ×

(
1× 2

)− 1
2

= 2
2t+1

2 ×
(
1 +

7√
3

)
+ 2t ×

(
14 +

4√
3

)
− 4

3

√
6− 4

3

√
3− 13.

This completes the proof.

Theorem 4.6.2. The Randić index of D[n] for n = 2t, where t ≥ 1, can be defined

as

Rα(D[n]) =



90× 2t+1 − 164 if α = 1,

2
2t+1

2 ×
(
14
√

3 +
√

2
)

+ 2t ×
(
4
√

3 + 40
)
− 8
√

6− 4
√

3− 52 if α = 1
2
,

22t+1 × 29
6
− 55

6
if α = −1,

2
2t+1

2 ×
(
1 + 7√

3

)
+ 2t ×

(
10 + 4√

3

)
− 4

3

√
6− 4

3

√
3− 13 if α = −1

2
.
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Proof. We use the Table 4.1 to prove the results.

When α = 1:

By using the edge partition in Table 4.1 and formula (4.11), we get:

R1(D[n]) =
∑

uv∈E(D[n])

(
dudv

)1
=

( t∑
i=1

2i +
t∑
i=0

(2i × 6)
)
×
(
2× 3

)1
+
(

2 +
t+1∑
i=2

(2i × 3) +
t∑
i=2

(2i × 4)
)

×
(
2× 2

)1
+
( t∑
i=1

2i+1
)
×
(
1× 3

)1
+ 2t+1 ×

(
1× 2

)1
= 90× 2t+1 − 164.

When α = 1
2
:

By using the edge partition in Table 4.1 and formula (4.11), we get:

R 1
2
(D[n]) =

∑
uv∈E(D[n])

(
dudv

) 1
2

=
( t∑
i=1

2i +
t∑
i=0

(2i × 6)
)
×
(
2× 3

) 1
2 +

(
2 +

t+1∑
i=2

(2i × 3) +
t∑
i=2

(2i × 4)
)

×
(
2× 2

) 1
2 +

( t∑
i=1

2i+1
)
×
(
1× 3

) 1
2 + 2t+1 ×

(
1× 2

) 1
2

= 2
2t+1

2 ×
(
14
√

3 + 2
)

+ 2t ×
(
4
√

3 + 40
)
− 8
√

6− 4
√

3− 52.

When α = −1:

By using the edge partition in Table 4.1 and formula (4.11), we get:

R−1(D[n]) =
∑

uv∈E(D[n])

(
dudv

)−1
=

( t∑
i=1

2i +
t∑
i=0

(2i × 6)
)
×
(
2× 3

)−1
+
(

2 +
t+1∑
i=2

(2i × 3) +
t∑
i=2

(2i × 4)
)

×
(
2× 2

)−1
+
( t∑
i=1

2i+1
)
×
(
1× 3

)−1
+ 2t+1 ×

(
1× 2

)−1
= 2t+1 × 29

6
− 55

6
.
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When α = −1
2
:

By using the edge partition in Table 4.1 and formula (4.11), we get:

R− 1
2
(D[n]) =

∑
uv∈E(D[n])

(
dudv

)− 1
2

=
( t∑
i=1

2i +
t∑
i=0

(2i × 6)
)
×
(
2× 3

)− 1
2 +

(
2 +

t+1∑
i=2

(2i × 3) +
t∑
i=2

(2i × 4)
)

×
(
2× 2

)− 1
2 +

( t∑
i=1

2i+1
)
×
(
1× 3

)− 1
2 + 2t+1 ×

(
1× 2

)− 1
2

= 2
2t+1

2 ×
(
1 +

7√
3

)
+ 2t ×

(
10 +

4√
3

)
− 4

3

√
6− 4

3

√
3− 13.

This completes the proof.

4.7 Conclusion

Topological indices are the numeric numbers which represent the whole structure

of the graph. Topological indices developed for the purpose of obtaining correlations

with physicochemical properties and biological activity of chemical substances have

been applied for a very extensive rang.

In this thesis, first we introduce the graph theory and chemical graph theory.

Further we discuss topological indices and give a brief introduction of different types

of topological indices. After that, we consider a calss of hetrofunctional dendrimer

and compute their eccentricity based topological indices, that is, eccentric connectiv-

ity indices. We also compute some eccentricity based Zagreb indices for this family

of dendrimers.

Furthermore, for the matching based topological indices, we study number of

perfect matchings and anti-Kekulé number of the dendrimer, when there is no perfect

matching then we find size of maximum matching . For spectrum based topological

indices, we computed nullity of the molecular these dendrimer. In the case of degree

based topological indices, first we calculate the exact formula for the first and fourth

of atom-bond connectivity index, first and fifth version of geometric-arithmatic index

and Randić index for the hetrofunctional dendrimer.
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