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Abstract

The theory of fractional impulsive di�erential equations is used for modeling some real world pro-

cesses in di�erent areas of science and technology. The motivation behind this work is to establish

the existence results of fractional impulsive di�erential equations. Both initial value problems and

boundary value problems have been discussed in this work.

We study some priliminary facts to establish the solution of fractional impulsive di�erential equa-

tions. We prove the existence and uniqueness results of the solution of both initial and boundary

value problems. Then we present Ulam's type stability for fractional impulsive di�erential equa-

tions. Finally, we study the existence result of multi-point boundary value problems for fractional

order impulsive di�erential equations. We have also prove that positive solution of this multi-point

boundary value problem exist under certain conditions on the nonlinear functions.

v



Contents

1 Introduction 1

2 Preliminaries 3

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 The Gamma function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.2 History of fractional calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.3 Applications of fractional calculus . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Fractional derivatives and integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Impulsive di�erential equations . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Fractional di�erential equations . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.3 An application of impulsive equations as "predator-prey" model . . . . . . . . 16

2.3 Some results from analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Krasnoselskii's cone �xed point theorem . . . . . . . . . . . . . . . . . . . . . 19

3 Existence and uniqueness of solution of fractional impulsive di�erential equations 22

3.1 Existence and uniqueness: Initial value problem . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Existence of solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.2 Uniqueness of solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.3 Continuity and bounds of solution . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Existence and uniqueness: Boundary value problem . . . . . . . . . . . . . . . . . . . 27

3.2.1 Existence of solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.2 Uniqueness of solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Ulam's stability of impulsive fractional di�erential equations 34

4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Stability results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Positive solutions for multi-point fractional impulsive boundary value problem 39

5.1 Green's function and its properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

vi



vii

5.2 Existence of positive solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

References 52



Chapter 1

Introduction

The fractional di�erential equations have proved to be important tools in the modeling of various

processes in the �elds of engineering, science, physics and economics. On the other hand, the study

of impulsive di�erential equations is also an important �eld of research which has been investigated

by a number of mathematician in the recent years. These equations better model phenomena and

dynamical processes which involves great changes in short times, for example, in Physics, Biotech-

nology and Robotics. To understand more about the recently used techniques for these type of

problems we refer the books [8, 9]. We will study the impulsive fractional di�erential equations

from theoretical aspects of existence and uniqueness of solutions. We will also establish the positive

solutions for impulsive fractional multi-point boundary value problems.

In Chapter 1, we describe the preliminary facts which are necessary to establish the existence

of solution and also positive solution for impulsive fractional di�erential equations. In �rst section,

we explain Gamma function, history of fractional calculus and its applications. In second section,

we present fractional derivatives, integrals and impulsive di�erential equations with an application.

Then in the last section we give some de�nitions and results from analysis.

In Chapter 2, we discuss some results for the existence and uniqueness of solutions for impulsive

fractional initial value problem

cDαy(t) = f(t, y), t 6= tk, 0 < α ≤ 1,

y(tk + 0)− y(tk) = Ik(y(tk)), k = 1, 2, · · ·, n,

y(t0) = y0,

(1.0.1)

and for impulsive fractional boundary value problem

cDαy(t) = f(t, y(t)) for t ∈ [0, 1], 1 < α ≤ 2,

∆y(tk) = Pk(y(tk)),

∆y′(tk) = Qk(y(tk)),

y(0) =g(y), y(1) = k, k ∈ R.

(1.0.2)

1
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where cDα is the Caputo fractional derivative, f : [0, 1] × R → R, is a continuous function, g :

C([0, 1],R) → R a continuous function, Pk, Qk : R → R, k = 1, · · ·, n, 0 = t0 < t1 < · · · < tn <

tn+1 = 1. In �rst section we will use Schaefer's �xed point theorem to establish the existence result

for (1.0.1) then we will discuss its uniqueness, continuity and bounds of solution. In second section

of this chapter we will present two results for existence and uniqueness of solution of (1.0.2).

In Chapter 3, we will establish the Ulam's type stability of the following fractional impulsive

di�erential equations

cDαy(t) = f(t, y), t ∈ J ′ = J \ {t1, · · ·, tm}, J = [0, T ], T > 0, 0 < α ≤ 1,

y(tk + 0)− y(tk) = Ik(y(tk)), k = 1, 2, · · ·, n.
(1.0.3)

We will also show that equation (1.0.3) is generalized Ulam-Hyers-Rassias stable.

Finally in Chapter 4, we study positive solutions for fractional impulsive boundary value problem

Dαy(t) + λg(t, y(t)) = 0, t ∈ J, t 6= tk, 1 < α ≤ 2, (1.0.4)

∆y′(tk) + Ik(y(tk)) = 0, k = 1, 2, · · · , n (1.0.5)

ay(0)− by′(0) =
m−2∑
i=1

aiy(ξi), cy(1) + dy′(1) =
m−2∑
i=1

biy(ξi), (1.0.6)

where J = [0, 1], t0 = 0 < t1 < t2 < · · · < tn < tn+1 = 1, ∆y′(tk) = y′(t+k )− y′(t−k ), y(t+k ) and y(t−k )

represents the right hand limit and left hand limit of the function y(t) at t = tk, 0 < ξi < ξi+1 < 1,

ξi 6= tk and i = 1, 2, · · · ,m − 3. In the �rst section we construct �xed point operator and Green

function. We also establish some interesting properties of the Greens function. We construct a cone

and then de�ne a completely continuous map by Green's functions. In the second section of this

chapter we establish the necessary conditions for the existence of at least one positive solution. Also

we establish the interval for parameter λ for which there exists at least one solution of the boundary

value problem (1.0.4)-(1.0.6).



Chapter 2

Preliminaries

2.1 Introduction

In this chapter, we recall some basic de�nitions and known results which are necessary to establish

the existence, uniqueness and stability of solution of a fractional impulsive boundary value problem.

The Gamma function, fractional derivatives and integrals, impulsive di�erential equations, fractional

di�erential equations and Krasnoselskii's cone �xed point theorem are discussed in detail. The basic

idea of Krasnoselskii's cone �xed point theorem is to establish the positive solution of boundary

value problem. Several examples will be provided to explain the given results.

2.1.1 The Gamma function

One of the basic functions of fractional calculus is Euler's Gamma function, which is actually the

generalization of factorial.

For z > 0, the Gamma function is de�ned by the formula

Γ(z) =

∫ ∞
0

tz−1e−tdt. (2.1.1)

The Gamma function given by (2.1.1) is uniformly convergent for all z in [a, b] where 0 < a ≤ b <∞,

and hence , Γ(z) is a continuous function for all z > 0.

Properties

Some basic properties of gamma function are:

(i)

Γ(z + 1) = zΓ(z) z > 0 as, (2.1.2)

3
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Γ(z + 1) =

∫ ∞
0

e−ttzdt

=
−tz

et

∣∣∣∞
0

+ z

∫ ∞
0

e−ttz−1dt

=zΓ(z).

In particular,

Γ(z + 1) = z!. (2.1.3)

So Gamma function is also called as generalized factorial function.

(ii)

Γ(z)Γ(1− z) =
π

sinπz
0 < z < 1.

(iii)

22z−1Γ(z)Γ

(
z +

1

2

)
=
√
πΓ(2z) z > 0.

Now to calculate gamma of rational numbers, we put t = u2 in (2.1.1)

Γ(z) = 2

∫ ∞
0

exp(−u2)u2z−1du, Re(z) > 0.

Letting z = 1
2 , we �nd

Γ

(
1

2

)
= 2

∫ ∞
0

exp(−u2)du = 2

√
π

2
=
√
π.

Using (2.1.2), we �nd

Γ

(
3

2

)
=

1

2
Γ

(
1

2

)
=

√
π

2
.

Similarly, we can get the values of Γ
(

5
2

)
,Γ
(

7
2

)
, · · ·,Γ

(
2n+1

2

)
.

To extend the gamma function for negative values of z, (2.1.2) can be rewrite as

Γ(z) =
Γ(z + 1)

z
, z 6= 0,−1,−2, · · ·.

For example

Γ

(
−1

2

)
=

Γ
(

1
2

)
−1

2

= −2Γ

(
1

2

)
= −2

√
π,

Γ

(
−3

2

)
=

Γ
(
−1

2

)
−3

2

=
4

3

√
π.
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2.1.2 History of fractional calculus

Basically, calculus discovered in seventieth century by Issac Newton (1642-1727) and Gottfried Wi-

helm Leibniz (1646-1716). John Von Neumann's (1903-1957) quoted the importance of calculus

as: "...the calculus was the �rst achievement of modern mathematics and it is di�cult to overes-

timate its importance. Leibniz (1646-1716) �rst introduced the idea of symbolic method and used

the symbol dny
dxn = Dny for the nth derivative, where n ≥ 0. The concept of fractional calculus

was introduced in 1695. L Hospital (1661-1704) asked Leibniz "What if the order will be n = 1
2".

Leibniz (1695) answered, "It will lead to a paradox, from which one day useful consequences will be

drawn". Can the concept of derivatives Dny be extended so that n is any rational, irrational, or com-

plex number? Leibniz gave the fractional order derivative for non-integer values of n as quoted in [1]:

dnemx

dxn
= mnemx.

L.Euler (1730) developed the formula for nth derivative as:

dnxm

dxn
= m(m− 1) · · · (m− n+ 1)xm−n.

Since

Γ(m+ 1) = m(m− 1) · · · (m− n+ 1)Γ(m− n+ 1).

Therefore
dnxm

dxn
=

Γ(m+ 1)

Γ(m− n+ 1)
xm−n.

Euler gave this relationship for negative and non-integer (rational) values of n. He introduced the

generalization of factorials to gamma function. Letting m = 1 and n = 1
2 , we have

d
1
2x

dx
1
2

=

√
4x

π
.

Then a few years later, S.F. Lacroix developed the formula for the nth derivative of y = xm, m is

some natural number,

Dnxm =
m!

(m− n)!
xm−n, m ≥ n.

Lacroix used the Euler Gamma function to generalize the factorial and then he further obtained the

formula for the fractional derivative as

Dnxm =
Γ(m+ 1)

Γ(m− n+ 1)
xm−n, m ≥ n.

In particular, he calculated the 1
2 derivative for function y(x) = x as

D
1
2x =

Γ(2)

Γ(3
2)
x

1
2 = 2

√
x

π
.
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On the other hand, in 1832, J. Liouville(1809-1882) provided result for derivatives of integral order

Dneax = aneax,

where a is a positive real number and extended in a natural way to the derivative of arbitrary order

α as

Dαeax = aαeax.

Using the series expansion of a function f(x), Liouville derived the formula

Dαf(x) =
∞∑
n=0

cna
α
ne
anx.

where cn and an are real numbers for n = 1, 2, ···, this formula is known as Liouville′s first formula
for fractional derivative where

f(x) =

∞∑
n=0

cne
anx, Re(an) > 0.

It can be used as a formula for derivative of arbitrary order α, which may rational, irrational or

complex. However, it has a disadvantage that α must be restricted to values where series converges.

In order to extend his �rst formula, Liouville provided another de�nition of a fractional derivative

which was applied to explicit functions of the form x−β , β > 0

Dαx−β = (−1)α
Γ(α+ β)

Γ(β)
x−α−β, β > 0.

This is called the Liouville′s second definition of fractional derivative. He successfully applied

both his de�nitions to problems in potential theory. However, Liouville's �rst de�nition is restricted

to a certain values of α and his second de�nition is not useful to wide class of functions.

George Peacock (1833) favored Lacroix de�nition for fractional derivatives, but other mathe-

maticians favored Liouville's de�nition. According to Peacock-Lacroix the fractional derivative of

a constant gives a result other than zero while the fractional derivative of a constant according to

Liouville's gives zero because Γ(0) = ∞. Two di�erent de�nitions of a fractional derivative when

applied to a constant gave di�erent results.

In 1822, J.B.J.Fourier provided more applicable de�nition for fractional calculus [1]. He gener-

alized the notion of di�erentiation for arbitrary function f(x) by introducing his famous formula,

given by

f(x) =
1

2π

∫ ∞
−∞

f(ξ)dξ

∫ ∞
−∞

cos p(x− ξ)dp,

Fourier made a remark that

Dαf(x) =
1

2π

∫ ∞
−∞

f(ξ)dξ

∫ ∞
−∞

cos
(
px− pξ + α

π

2

)
dp,

and this relationship could serve as a de�nition of the αth order derivative for non-integer α.
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2.1.3 Applications of fractional calculus

The applications of fractional calculus just emerged in last few decades in several diverse areas of sci-

ences, such as physics, bio-sciences, chemistry and engineering, namely in acoustic wave propagation

in inhomogeneous porous material, anomalous di�usion, di�usive transport, �uid �ow, dynamical

processes in self similar structures, dynamics of earthquakes, electromagnetic theory, optics, geology,

viscoelasticity, atmospheric physics, probability and statistics, astrophysics, chemical engineering,

signal processing, nonlinear control, thermal engineering and chaotic dynamics. The fractional cal-

culus is an evolving �eld of science. There is a wonderful universe of mathematics staying within

the boundaries of integer order di�erentiation and integration.

Perhaps

"The fractional calculus is the calculus of the twenty − first century."

Example 2.1.1. [2] Viscoelasticity is the main �eld of the most extensive applications of fractional

di�erential and integral operators. We want to describe the behaviour of certain materials under the

in�uence of external forces. We start with the Newton's law about the relationships between stress

σ(t) and strain ε(t), both of which are taken as functions of time t. If we are dealing with viscous

liquids, then Newton's law

σ(t) = ηD1ε(t),

is the tool of our choice. Here η is a material constant and is called as viscosity of the material.

Hooke's law

σ(t) = ED0ε(t),

where E is the constant known as the modulus of elasticity of the material. These mathematical

models are applicable for ideal solid material and for an ideal �uid. In fact, in real world neither of

such material exist. It can be stated that the zero and first order derivative of strain is proportional

to the stress for solid and stress for �uid respectively.

Now consider a particular experiment where the strain is changed by taking ε(t) = t for t ∈ [0, T ]

with some T > 0. Then stress for elastic solids becomes

σ(t) = Et,

and

σ(t) = η = const,

for a viscous liquid. Now summarizing these equations we have

ψk =
σ(t)

ε(t)
tk, (2.1.4)

where ψ0 = E and ψ1 = η=const. When k = 0 it refers to Hooke's law for solids and for k = 1 it

corresponds to Newton's law for liquids.
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It is common phenomena to �nd so-called viscoelastic materials that exhibit a behavior some-

where between the pure viscous liquid and pure elastic solid, i.e. where we observe a relationship

of the form (2.1.4) with 0 < k < 1, examples of such materials are polymers. When the case of a

constant strain ε is considered, the stress in such a material would change according to the formula

σ(t) = const · t−k,

and after long observations, it converges to zero. Due to this, it once again lies between a viscous

liquid for which σ vanishes identically and an elastic solid whose stress σ is a nonzero constant.

As a result of all these 'interpolation' properties, for a viscoelastic material it is also possible to

model the relation between stress and strain by an equation of the form

σ(t) = νDkε(t),

where ν is a material constant and k ∈ (0, 1) is the parameter.

2.2 Fractional derivatives and integrals

In this section we study fractional derivatives and integrals with their properties. We will explain

two types of impulsive di�erential equations with examples. Then fractional di�erential equations

will be discussed and in the end an application of impulsive equations is given. We will use Caputo

di�erential operator of arbitrary order α in our work.

De�nition 2.2.1. The fractional (arbitrary) order integral of the function f ∈ L1([a, b],R+) of

order α ∈ R+ is de�ned by

Iαa f(t) =
1

Γ(α)

∫ t

a
(t− τ)α−1f(τ)dτ,

where Γ is gamma function. When a = 0, we write

Iαf(t) =
1

Γ(α)

∫ t

0
(t− τ)α−1f(τ)dτ.

Example 2.2.2. Let f(t) = (t− a)γ for some γ > −1 and α > 0. Then

Iαa f(t) =
1

Γ(α)

∫ t

a
(τ − a)γ(t− τ)α−1dτ

=
1

Γ(α)
(t− a)α+γ

∫ 1

0
xγ(1− x)α−1dx =

Γ(γ + 1)

Γ(α+ γ + 1)
(t− a)α+γ .

Properties

The fractional order integral carries some important properties.
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(i) The integration of order α = 0 is an identity operator given as:

I0f(t) = f(t).

(ii) From the de�nition of fractional order integral, it can be seen that fractional integral satis�es

semigroup property

IαIβ = Iα+β = IβIα, α, β ∈ R.

(iii) Fractional integrals are linear

Iα(af(x) + bg(x)) = aIαf(x) + bIαg(x).

(iv) Its e�ect on power functions [1].

Iαtγ =
Γ(γ + 1)

Γ(γ + α+ 1)
tγ+α, where α > 0, γ > −1, t > 0.

(v) De�ning the following function as:

ϕα(t) =
tα−1

Γ(α)
, α > 0,

then

Iαf(t) = ϕα(t) ∗ f(t), α > 0,

where ∗ is a convolution operator.

De�nition 2.2.3. For a function f given on the interval [a, b], the αth Riemann-Liouville fractional

order derivative of f is de�ned by

aD
α
t f(t) =

1

Γ(n− α)

(
d

dt

)n ∫ t

a

f(τ)dτ

(t− τ)α−n+1
,

where n− 1 < α ≤ n ∈ N .

This fractional derivative Dαf is not zero for the constant function. For example, for f(t) = 1 if

α /∈ N
Dα1 =

t−α

Γ(1− α)
, α ≥ 0, t > 0,

for α ∈ N, Dα1 = 0.
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Example 2.2.4. For f(t) = tβ , we have

Dα
0 f(x) =

Γ(β + 1)

Γ(β − α+ 1)
xβ−α α > 0, β > −1.

Riemann-Liouville de�nition for derivative has certain limitation when it is used for modeling of

real-world phenomena associated with fractional di�erential equation. Another modi�ed de�nition

of fractional di�erential operator given by Caputo.

De�nition 2.2.5. Suppose that α > 0, t > a and α, a, t ∈ R. The Caputo di�erential operator of

order α is de�ned as

cDαh(t) =
1

Γ(n− α)

∫ t

a
(t− s)n−α−1h(n)(s)ds,

where n− 1 < α ≤ n ∈ N.

Properties

Some basic properties of the Caputo operator of fractional calculus are [3]

(i) Interpolation

lim
α→n

cDαh(t) = h(n)(t),

lim
α→n−1

cDαh(t) = h(n−1)(t)− h(n−1)(0).

(ii) Linearity
cDα(λf(t) + h(t)) = λDαf(t) +Dαh(t).

(iii) Non-commutative

cDαDmh(t) 6= DmDαh(t).

(iv)

Iα cDαh(t) = h(t).

Lemma 2.2.6. [4] Let α > 0, then

Iα cDαh(t) = h(t) + c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1, ci ∈ R, i = 0, 1, 2, · · ·, n− 1, n = [α] + 1.

Lemma 2.2.7. Let α > 0, then

cDαh(t) = 0, n = [α] + 1

where [α] is a integer value of α, has solutions

h(t) = c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1, ci ∈ R, i = 0, 1, 2, · · ·, n− 1.
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In the next chapter we will use the following result which is a consequence of the above Lemma.

Lemma 2.2.8. Let 0 < α < 1 and let h : [0, T ] → R be continuous. A function y is a solution of

the fractional integral equation

y(t) = y0 +
1

Γ(α)

∫ t

0
(t− s)α−1h(s)ds, (2.2.1)

if and only if y is a solution of the initial value problem for the fractional di�erential equation

cDαy(t) = h(t), t ∈ [0, T ]

y(0) = y0.
(2.2.2)

Proof. Suppose that y is a solution of (2.2.2). By applying Lemma 2.2.6, we have

y(t) + c0 =
1

Γ(α)

∫ t

0
(t− s)α−1h(s)ds,

for some c0 ∈ R. Applying the condition y(0) = y0 in above equation then

c0 = −y0,

and

y(t) = y0 +
1

Γ(α)

∫ t

0
(t− s)α−1h(s)ds.

which is the required result.

2.2.1 Impulsive di�erential equations

Impulsive di�erential equations are di�erential equations involving impulse e�ects which have wide

range of applications and hence became an important mathematical tool in modeling of many real

world processes. For example, impulsive interruptions are observed in population dynamics, biology,

mechanics, industrial robotics, radio engineering, communication security, control theory and neural

networks. In recent years, there have been great studies on the behavior of solutions of impulsive

di�erential equations. The dynamics of many evolution processes from various �elds experience a

change of state abruptly at certain moments of times like earthquake, shock etc. These abrupt

changes are of very short time period and can be neglected in comparison with the duration of the

process. Naturally these short-time perturbations act instantaneously as an impulses. Most of the

problems related to impulsive di�erential equations can be solved analytically.

Basically, the impulsive equations consist of two components [6]. A continuous-time di�erential

equation, which shows the continuous part of the solution. This can be ordinary di�erential equa-

tions, integro-di�erential equations, fractional di�erential equations, partial di�erential equations,
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etc. In particular

x′ = f(t, x),

is a continuous time di�erential equation and the impulse equation, that de�nes the jump function

on that moment where impulse occurs is given as:

∆x(t) = I(t, x(t)).

This component of the impulsive equations is called a jump condition. Moment of impulses is

de�ned as the point at which the impulses occur. Moreover the functions, that de�ne the number

of impulses, are called impulsive functions.

Impulsive di�erential equations are classi�ed into two types according to the way of moment of

the change by impulses are determined, which are as follows [7]:

• Equations with �xed moments of impulse e�ect(the instant of jump are initially �xed at given

points);

• Equations with un�xed(variable) moments of impulse e�ect(the instant of jump occur on

initially given sets i.e.the impulse occurs when certain space-time relations are satis�ed on given

set).

For better understanding, we will give detailed description of these two components of impulsive

di�erential equations.

First type. Impulsive di�erential equations with impulse e�ect at �xed moment.

Assume that Rn be a Euclidean n-space and the points tk ∈ R be �xed are called moments of impulse

such that tk+1 > tk, k = 0, 1, 2, · · ·. Also at t = tk, x(t+k ) and x(t−k ) represent the right limit and

left limit respectively.

Consider

x′(t) = f(t, x(t)) for t ≥ t0, t 6= tk, (2.2.3)

x(tk + 0)− x(tk − 0) = Ik(x(tk − 0)), t = tk, for k = 1, 2, · · ·, (2.2.4)

where Ik : Rn → Rn represents the jump of state at each tk, x ∈ Rn, f : R × Rn → Rn is a given

function and t0 < t1 < · · · < tk < tk+1 < · · ·, k = 1, 2, 3, · · ·
Equations (2.2.3), (2.2.4) together with the initial condition

x(t0) = x0. (2.2.5)

form a initial value problem for the system of impulsive di�erential equations.

Generally, the solutions of the impulsive di�erential equations are piecewise continuous functions

having a point of discontinuity at the impulsive moment. Let x(t) = x(t; t0, x0) be the solution of

initial value problem for the system of impulsive di�erential equations (2.2.3),(2.2.4),(2.2.5).
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The solution of the impulsive di�erential equations (2.2.3),(2.2.4),(2.2.5) is characterized by the fol-

lowing:

(i) For t = t0 the solution x(t) satis�es the initial condition (2.2.5).

(ii) For t ∈ (tk, tk+1], the solution x(t) satis�es the (2.2.3).

(iii) For t = tk the solution x(t) satis�es the equation (2.2.4).

Furthermore we will assume that

x(tk) = x(tk − 0)=limt→tk−0 x(t) <∞ and x(tk + 0) = limt→tk+0 x(t) <∞.

Now we consider the motion of the point (t, x) of the integral curve of the solution of the system

of impulsive di�erential equations (2.2.3),(2.2.4) with initial condition (2.2.5) is performed in the

following pattern.

The point (t, x) begins its motion from the point (t0, x0), t0 ∈ R of the set D ⊂ R × Rn and

continues to move along the integral curve (t, x(t)) explained by the solution of (2.2.3) with initial

condition x(t0) = x0 until moment t1 > t0 and at that moment the point instantaneously moves from

position (t1, x1) to position (t1, x
+
1 ), where x1 = x(t1), x+

1 = x1 + I1(x1). Then the point goes on

moving along the integral curve described by the solution of the corresponding system (2.2.3)-(2.2.4)

with initial condition x(t1) = x+
1 until moment t2 > t1 at which it jumps and the amount of the

jump is determined by the equality (2.2.4) and so on.

We will give some examples to illustrate the behavior of the solutions of the impulsive di�erential

equations with �xed moment of impulses.

Example 2.2.9. Given is the fractional impulsive di�erential equation

Dαx(t) = t, t 6= k, k = 1, 2, · · · and α ∈ (0, 1], (2.2.6)

x(k + 0)− x(k − 0) = d. (2.2.7)

The solution of the corresponding di�erential equation is:

IαDαx(t) = Iαt,

x(t) + c =
1

Γ(α)

∫ t

0
(t− s)α−1sds,

x(t) + c =
tα+1

Γ(α+ 2)
,

where c is some constant whose value can be determined by taking initial point as x(0) = x0 then

solution becomes:

x(t) = x0 +
tα+1

Γ(α+ 2)
,
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for t ≥ 0. The solution of the impulsive di�erential equation (2.2.6),(2.2.7) with initial condition

x(0) = x0 is:

x(t) = x0 +
tα+1

Γ(α+ 2)
+ kd,

for t ∈ (k, k + 1], k = 1, 2, · · ·. The solution is piecewise continuous function, which is increasing

for d > 0, decreasing for d < 0, and for d = 0 the solution coincides with the solution of the

corresponding di�erential equation without impulses.

Second type. Impulsive di�erential equations with impulse at variable times.

Systems of impulsive equations with variable moments involve di�cult problems than systems with

�xed moment of impulses. So solution of the problem at di�erent points will have di�erent points

of discontinuity.

Let the sequence of sets σk = {(t, x) ∈ R× Rn : t = τk(x)}, k = ±1,±2, · · · be given.
Consider the impulsive di�erential equation

Dαx = f(t, x) for t 6=, τk(x), k = ±1,±2, · · ·, α ∈ (0, 1). (2.2.8)

x(t+ 0)− x(t− 0) = Ik(x(t)) for t = τk(x(t)), k = ±1,±2, · · ·, (2.2.9)

where x ∈ Rn, f : R × Rn → Rn, Ik : Rn → Rn, k = 1, 2, 3, · · ·, the functions τk(x) are such that

τk(x) < τk+1(x) for k = ±1,±2, · · ·, limk→∞ τk(x) =∞ (limk→−∞ τk(x) = −∞).

The moments of impulsive e�ect of (2.2.8)-(2.2.9) depend on the functions t = τk(x), for each k

that de�ne the sets of impulses. For instance, if the initial value problem for the impulsive system

with variable moments has two solutions, these solutions will have di�erent points of discontinuity

at di�erent points depending on the solutions. This case is called as beating. This is the case when

the integral curve of the solution intersects the same set several or in�nitely many times. In this

case the nonexistence of the solution over the whole given interval is observed.

Now we consider the motion of the point (t, x) of the integral curve of the solution of the system

of impulsive di�erential equations (2.2.8),(2.2.9) performed in the following pattern.

Point (t, x) begins its motion from the point (t0, x0), t0 ∈ R, in set D ⊂ R × Rn and continues

to move along the integral curve (t, x(t)) of the corresponding ordinary di�erential equation with

initial condition x(t0) = x0 until moment t1 > t0, at which integral curve meets set σk1 , i.e. until

moment t1 > t0, at which the equality t1 = τk1(x(t1)) holds. At this moment the point transfers

instantaneously from position (t1, x1) to position (t1, x
+
1 ), x1 = x(t1), x+

1 = x1 + Ik1(x1) and it

continues to move on the integral curve of the solution of the corresponding ordinary di�erential

equation with initial condition x(t1) = x+
1 until moment t2 > t1, at which the integral curve meets

set σk2 , then point jumps instantaneously, and the amount of the jump is de�ned by equality (2.2.9)

and so on.

Systems of impulsive di�erential equations with �xed moments of impulse e�ect can be regarded

as a particular case of the systems with variable impulsive perturbations.
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We will give examples to illustrate the behavior of the solutions of the impulsive di�erential

equations with impulse e�ects at variable times.

Example 2.2.10. Consider the initial value problem for the linear impulsive di�erential equation [8]

x′ = 0, t 6= τ(x), (2.2.10)

x(t+ 0)− x(t) = x(t), t = τ(x), (2.2.11)

x(0) = 1, (2.2.12)

where x ∈ R, τ(x) = arctanx.

Solution of (2.2.10) and (2.2.12) is x(t) = 1. The �rst impulse occurs where the curve x(t) = 1

and x = tan t intersects i.e. tan t = 1 ⇒ t1 = arctan(1). In this way general solution of equation

(2.2.10)-(2.2.12) is

x(t; 0, 1) = i for ti−1 < t ≤ ti, i = 1, 2, · · ·

where ti = arctan(i).

Maximum interval on which solution is de�ned is [0, π2 ), because limi→∞ arctan i = arctan(∞) =
π
2 . The integral curve of the solution of the initial value problem for the impulsive equation

(2.2.10),(2.2.11),(2.2.12) intersects in�nitely many times the curve σ = {(t, x) ∈ R×R : t = arctanx}
at moments τi = arctan i, i = 1, 2, · · ·, therefore there occurs beating.

2.2.2 Fractional di�erential equations

Fractional di�erential equation is, in general, an ordinary di�erential equation of arbitrary (non-

integer) order. The results obtained from fractional system are of a more general nature. Fractional

di�erential equation have ability to model complex phenomena. Impulsive fractional di�erential

equations represent a real framework for mathematical modeling to real world problems. Research

in fractional di�erential equations has developed signi�cant potential all over the world because of

its extensive applications in engineering and science. In fact, real-world processes generally or most

likely are fractional order systems.

De�nition 2.2.11. A Fractional di�erential equation of order α, 0 < α < 1 is an equation of the

form

dαy

dtα
= f(y, t),

where y : R→ Rn is an α di�erentiable function in the variable t ∈ R and f(y, t) : Rn × R→ Cn is

a complex valued function.
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2.2.3 An application of impulsive equations as "predator-prey" model

The interaction between two species as "predator prey" is given by mathematical model by Alfred

Lotka and Vito Voltera. Di�erential system of predator-prey model is given as: [9]

Ṗ1(t) = P1(t)[a1 − bP2(t)],

Ṗ2(t) = P2(t)[−a2 + cP1(t)].

At time t, when t ≥ 0, a1 > 0 represents the growth rate of prey and a2 > 0 is the death rate of

predator. P1(t) and P2(t) are the population masses of prey and predator respectively, constants b

and c represents their relationship.

In this type of models impulsive e�ects which exists in the real world has been ignored. For

instance, the birth of many species is an annual birth pulse. In population masses of given species,

impulsive reductions in �shing or in agriculture can be seen by using poisoned chemicals etc. These

factors can greatly e�ect the growth rate of population. If we consider impulsive factors of these

population interaction model than above equation becomes impulsive di�erential equation as:

Ṗ1(t) = P1(t)[a1 − bP2(t)], t 6= tk,

Ṗ2(t) = P2(t)[−a2 + cP1(t)], t 6= tk,

P1(t+k ) = P1(tk), P2(t+k )− P2(t−k ) = gkP2(tk).

Where P2(t−k ) and P2(t+k ) are the population masses of predator before and after the impulsive

e�ects respectively and tk are �xed moments of time, 0 < t1 < · · ·, limk→∞ tk = ∞. At t = tk

the population masses of predator is changed, gk is a real constant which gives the magnitude of

impulsive e�ect at moment tk. At moment tk the population masses increases when gk > 0 and

decreases when gk < 0.

With the help of these models, the environmental and other exterior changes which e�ect the

population masses of the predator momentarily can be considered.

2.3 Some results from analysis

In this section, we give some de�nitions, known results and preliminary facts that will be used to

establish the existence of boundary value problem for fractional impulsive di�erential equations.

De�nition 2.3.1. A subset S of a Banach space R is compact if every sequence in S has a convergent

subsequence.

Note that

• If S is compact then it is closed and bounded.
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De�nition 2.3.2. A subset S of a Banach space R is called convex, if x,y ∈ S implies

K = {z ∈ R | z = αx+ (1− α)y, 0 ≤ α ≤ 1} ⊂ S.

K is called a closed segment with boundary points x and y; any other z ∈ K is called interior point

of K.

Example 2.3.3. Let R be a Banach space. Consider S = {x ∈ R : ‖x‖ ≤ 1}. Let x, y ∈ S so

‖x‖ ≤ 1 and ‖y‖ ≤ 1.

‖αx+ (1− α)y‖ ≤ ‖αx‖+ ‖(1− α)y‖,

= α‖x‖+ (1− α)‖y‖,

≤ α+ 1− α = 1.

Hence S is a convex set.

De�nition 2.3.4. A family {fn(x)}n∈N of functions de�ned on some closed interval I is said to be

uniformaly bounded, if there exists a number M ≥ 0 such that

|fn(x)| ≤M forall x ∈ I and for all f belonging to the given family.

Example 2.3.5. Consider the family of functions

fn(x) = sinnx where x ∈ R, n ∈ Z

is uniformly bounded as

| sinnx| ≤ 1.

De�nition 2.3.6. A family {fn(x)}n∈N of functions is said to be equicontinuous, if for given ε > 0,

there is a δ > 0 such that

|fn(x1)− fn(x2)| < ε whenever |x1 − x2| < δ for all f.

Example 2.3.7. Let X = R and fn(x) = n. Then for any ε > 0, choose any δ > 0 and we have

|fn(x)− fn(y)| = |n− n| = 0 < ε,

whenever |x− y| < δ so {fn} is equicontinuous.

Example 2.3.8. The family {sinnx : n = 1, 2, 3, · · ·} is not equicontinuous on R.
If we can show that functions are not continuous at 0 then they are not continuous on R. Let

x = 0 pick ε = 1
2 , let δ > 0. Then there is n such that π

2n < δ. Let y = π
2n then y < δ but

| sin(nx)− sin(ny)| = | sinny| = sinn
( π

2n

)
= 1 > ε.

So sin(nx) is not equicontinuous.
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De�nition 2.3.9. S ⊂ B (Banach space) is said to be relatively compact i� its closure S is compact.

De�nition 2.3.10. Let B and C be Banach spaces and let T : B → C be linear operator. T is

compact if image T (S) of every bonded set S in B is relatively compact in C.

Theorem 2.3.11. (Arzela-Ascoli) Let K be a compact metric space. A subset S of C(K) is

compact if and only if it is bounded and equicontinuous.

Theorem 2.3.12. (Banach Fixed Point Theorem) Consider a non-empty Banach space X. Let

T : X → X be a contraction mapping on X. Then T has precisely one �xed point.

Theorem 2.3.13. (Schaefer's Fixed Point Theorem) Let X be a Banach space and F : X → X

completely continuous operator. If the set

E(F ) = {y ∈ X : y = λFy for 0 ≤ λ ≤ 1},

is bounded, then F has �xed points.

Theorem 2.3.14. Let K be a closed convex nonempty subset of a Banach space X. Let A, B be

operators such that

(i) Ax+By ∈ K whenever x, y ∈ K.

(ii) A is compact and continuous.

(iii) B is contraction mapping.

Then there exists z ∈ A such that z = Az +Bz.

The next theorem will provide useful integral inequalities which we will use in next chapter

to establish the uniqueness, continuity and bounds of solution of fractional impulsive initial value

problems.

Theorem 2.3.15. Assume that following conditions be satis�ed:

(i) Function ν(t) ∈ PC([0,∞), [0,∞)).

(ii) Function q(t) ∈ PC([0,∞), [0,∞)) is nondecreasing.

(iii) Function µ(t) ∈ PC([0,∞), [0,∞)) satis�es the inequality

µ(t) ≤ q(t)[c+
∑

0<tk<t

βkµ(tk) +

∫ t

0
ν(s)µ(s)ds], (2.3.1)

where c ≥ 0, βk ≥ 0, (k = 1, 2, · · ·) are constants.

Then for t ≥ 0 the inequality

µ(t) ≤ cq2(t)
∏

0<tk<t

q(tk)(1 + βkq(tk))e
∫ t
0 ν(s)q(s)ds, (2.3.2)

holds.
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2.3.1 Krasnoselskii's cone �xed point theorem

In [10] a generalization of Krasnoselskii �xed point theorem for cone maps has been developed to

establish the existence of multiple solutions in the study of boundary value problems.Krasnoselskii

applied his result to establish the existence of periodic solutions of period systems of ordinary

di�erential equations. The main purpose for seeking cone �xed point theorems is to apply them to

obtain the existence of solutions of boundary value problems. The proofs of Krasnoselskii's theorem

and its generalization, mostly use topological index theory.

Krasnoselskii's theorem consists of two parts. The �rst part, called the compressive form has

very much resemblance to the generalized Brouwer-Schauder theorem. The second part is called

the expansive form. The close relationship between Krasnoselskii's theorem and Brouwer-Schauder

theorem is that �rst one is usually stated a cone embedded in a Banach space with a given norm,

where the norm functional plays important roles: to de�ne the region of points and state the

properties of the images under the de�ned mapping. In contrast, Brouwer-Schauder theorem is

more topological in nature without metric.

Krasnoselskii's theorem certainly be interpreted in a non-metric framework. The norm function

is more of a ease rather than a requirement. There are simpler ways to simplify the theorem without

using functionals.

De�nition 2.3.16. Let X be a Banach space. A cone K ⊂ X is a closed convex set such that

λK ⊂ K for all λ ≥ 0 and K ∩ {−K} = {0}.

For example, Rn+ = {x ∈ Rn : x ≥ 0} is a cone. A cone map T : K → K is a completely

continuous map. Any continuous map is completely continuous when X is �nite dimensional. A

point x ∈ K is a �xed point of T if T (x) = x.

Consider 0 < a < b be two given numbers. Now we will �nd the conditions which shows that T

has a �xed point in the annular region K(a, b) = {x ∈ K : a ≤ ‖x‖ ≤ b}. K(a, b) is in general not

convex. We represent Ka = {x ∈ K : ‖x‖ = a} and Kb = {x ∈ K : ‖x‖ = b} the inner and outer

boundaries, respectively, of K(a, b). Given below is a simpli�ed version of Krasnoselskii's original

theorem.

Theorem 2.3.17. Consider K(a, b), T , Ka, and Kb as de�ned above.

1. Compressive Form: T has a �xed point in K(a, b) if

‖T (x)‖ ≥ ‖x‖ for all x ∈ Ka, (2.3.3)

and

‖T (x)‖ ≤ ‖x‖ for all x ∈ Kb. (2.3.4)

2. Expansive Form: T has a �xed point in K(a, b) if

‖T (x)‖ ≤ ‖x‖ for all x ∈ Ka, (2.3.5)
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and

‖T (x)‖ ≥ ‖x‖ for all x ∈ Kb. (2.3.6)

Note that the conditions (2.3.3)-(2.3.6) are compelled only on points on the two curved bound-

aries of K(a, b). Inner points and point on the sides of the cone can be shifted in any direction. It

cannot be speci�ed that any particular image point T (x) must lie inside K(a, b).

When (2.3.3) (or (2.3.4)) holds, then T is compressive on Ka (or Kb) relating to K(a, b). If there

is strict inequality in (2.3.3) (or (2.3.4)), then T is strictly compressive on Ka(or Kb). Similarly

when (2.3.5) (or (2.3.6)) holds, then T is expansive on Ka (or Kb), and T is strictly expansive if

there is strict inequality in (2.3.5) (or (2.3.6)).

The basic method to apply the cone �xed point theorem is to write the boundary value problem

as an integral equation by the use of Green's function to obtain existence results for a problem. The

integral operator is a completely continuous cone map then by �nding suitable constants a and b

so that the hypotheses of the cone theorem are satis�ed, then the K(a, b) has a �xed point that is

equal to a positive solution of the boundary value problem.

The �rst direction of extension of Theorem 2.3.18 is to simplify the conditions (2.3.3)-(2.3.6).

Krasnoselskii's original result is actually stated with weaker postulates. The compressive form,

instead of (2.3.3) and (2.3.4), only require that

T (x)− x /∈ K for all x ∈ Ka,

and

x− T (x) /∈ K for all x ∈ Kb.

This permits some part of the inner boundary Ka to move forward nearer the origin, and some part

of the outer boundary Kb to be pushed away from the origin.

In particular, conditions (2.3.3) and (2.3.4) can be replaced by

∃p ∈ K such that x− T (x) 6= λp, ∀λ ≥ 0, x ∈ Ka. (2.3.7)

and

T (x) 6= λx, for any λ > 1, x ∈ Kb, (2.3.8)

and conditions (1.3.3) and (1.3.4) can be exchanged as

T (x) 6= λx, for any λ > 1, x ∈ Ka. (2.3.9)

∃p ∈ K such that x− T (x) 6= λp, ∀λ ≥ 0, x ∈ Kb. (2.3.10)

In the text, condition (2.3.8) is called the Leray-Schauder condition. By (2.3.8) it means that no

point on Kb is pushed by T away from the origin and by (2.3.7) it means that no point on Ka is

pushed by T towards the origin in a direction along p; pushing it in the opposite direction away
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from the origin. There is an obvious asymmetry in the pair of conditions (2.3.7) and (2.3.8), as

comparison with (2.3.3) and (2.3.4).

The second extension is to look at regions more broader than K(a, b). Guo presented a result,

replaces K(a, b) in Theorem 2.3.18 by the more broader region

J = K ∩ (Ω2 \ Ω1),

where A denotes the closure of a set A and Ω1 and Ω2 are two bounded open sets in X such that

0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2. Boundary of A can also be denoted by ∂A. Assume that the conditions

(2.3.3),(2.3.4) or (2.3.5), (2.3.6) hold, but now for points on K ∩ ∂Ω1 and K ∩ ∂Ω2, instead of on

Ka and Kb, respectively. The hypotheses that Ω1 and Ω2 are open but otherwise arbitrarily means

that we can apply the result to fairly general regions J .

The basic method to get multiple solutions to a boundary value problem is to gather two or

more annular regions together and apply the alternative forms of Krasnoselskii's theorem to each of

the regions to get a �xed point. For instance, consider three positive numbers 0 < a < b < c, and

de�ne the corresponding regions K(a, b) and K(b, c). Let us assume that (2.3.3) and (2.3.4) hold for

Ka and Kb, and (2.3.6) holds for Kc (replace b in (2.3.6) by c). Then there exists one �xed point

in K(a, b) and one �xed point in K(b, c). There is a option that these two �xed points are one and

the same. If this will happen, it must lie on the common boundary Kb. If we have to exclude this

condition, we have to make the stronger assumption that T maps Kb strictly away from Kb.

Hence, a third way to extend the cone theorem is to look for more broader ways to construct

such gathered-annulus structures. For example, we can use the same inner and outer boundaries Ka

and Kc as the example above, but replace Kb by a set of points de�ned by some given continuous

functional. In view of that the conditions (2.3.3)-(2.3.6) will have to be altered.



Chapter 3

Existence and uniqueness of solution of

fractional impulsive di�erential equations

In this chapter, su�cient condition for the existence and uniqueness of solution for fractional im-

pulsive di�erential equations involving Caputo fractional derivative will be discussed. In the �rst

section, we will study the existence, uniqueness and continuity of solution of following fractional

impulsive initial value problem

cDαy(t) = f(t, y), t 6= tk, 0 < α ≤ 1,

y(tk + 0)− y(tk) = Ik(y(tk)), k = 1, 2, · · ·, n,

y(t0) = y0.

where t0 ∈ R is a �xed point and y ∈ Rn. The results presented in section 3.1 are generalizations of

the results in [8]; from integer order to fractional order di�erential equations.

In the second section of this chapter existence and uniqueness of the solution of following frac-

tional impulsive boundary value problem with examples will be discussed.

cDαy(t) = f(t, y(t)) for t ∈ [0, 1], 1 < α ≤ 2,

∆y(tk) = Pk(y(tk)),

∆y′(tk) = Qk(y(tk)), where k = 1, 2, · · ·, n are the number of impulses,

y(0) =g(y), y(1) = k k ∈ R.

where cDα is the Caputo fractional derivative, f : [0, 1] × R → R, is a continuous function, g :

C([0, 1],R) → R a continuous function, Pk, Qk : R → R, k = 1, · · ·, n, 0 = t0 < t1 < · · · < tn <

tn+1 = 1. We de�ne PC([0, 1],R) = {y : [0, 1]→ R : y ∈ C([0, 1],R)}.
Uniqueness of solution of fractional boundary value problem without impulsive condition has been

studied in [11] and other uniqueness results with impulsive conditions are discussed in [4]. Existence

of at least one solution of fractional boundary value problem under the impulsive conditions has

been studied in [12].

22
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3.1 Existence and uniqueness: Initial value problem

In this section we will consider the following impulsive fractional di�erential equation

cDαy(t) = f(t, y), t 6= tk, 0 < α ≤ 1,

y(tk + 0)− y(tk) = Ik(y(tk)),

y(t0) = y0,

(3.1.1)

where t0 ∈ R is a �xed point and y ∈ Rn.
Firstly we will establish its existence of solution by Schaefer's �xed point theorem then we will

study uniqueness, continuity and bounds of the solution of (3.1.1) with the help of some integral

inequalities as in Theorem 2.3.16. In [8] Snezhana has studied the impulsive di�erential equation

(3.1.1) for α = 1. Existence and uniqueness of impulsive initial value problem have also been

discussed in [4].

Lemma 3.1.1. [5] Assume that y ∈ PC(J,R) satis�es

cDαy(t) = h(t), t 6= tk, k = 1, 2, · · · , n, 1 < α ≤ 2, (3.1.2)

then

y(t) = c1 + c2t+
∑

0<tk<t

∆y′(tk)(t− tk) + Iαh(t). (3.1.3)

3.1.1 Existence of solutions

Lemma 3.1.2. Let 0 < α ≤ 1 and let f : [0, 1] → R be continuous. A function y(t; t0, y0) is a

solution of the fractional integral equation

y(t; t0, y0) = y0 +
1

Γ(α)

∫ t

t0

(t− s)α−1f(s, y(s; t0, y0))ds+
n∑
k=1

Ik(y(tk; t0, y0)). (3.1.4)

if and only if y(t; t0, y0) is the solution of fractional impulsive IVP

cDαy(t) = f(t, y), t 6= tk, 0 < α ≤ 1,

y(tk + 0)− y(tk) = Ik(y(tk)), k = 1, 2, · · ·, n

y(t0) = y0.

Proof. Suppose that y(t; t0, y0) is a solution of (3.1.1). By applying Lemma 3.1.1, we have

y(t; t0, y0) = c0 +
1

Γ(α)

∫ t

t0

(t− s)α−1f(s, y(s; t0, y0))ds+
∑

t0<tk<t

∆y(tk),

for some c0 ∈ R. Applying �rst condition y(t0) = y0 in above equation we get c0 = y0 then

y(t; t0, y0) = y0 +
1

Γ(α)

∫ t

t0

(t− s)α−1f(s, y(s; t0, y0))ds+

n∑
k=1

Ik(y(tk; t0, y0)).



24

Our next result is based on Schaefer's �xed point theorem.

Theorem 3.1.3. Assume that:

(i) The function f : J = [0, 1]×R→ R is continuous and there exists a constant M > 0 such that

f(t, y(t; t0, y0)) ≤M for all t ∈ J and all y ∈ R.

(ii) The function Ik : R→ R are continuous and there exists a constant M∗ > 0 such that

Ik(y(tk; t0, y0)) ≤M∗ for each y ∈ R and k = 1, 2, · · ·, n.

Then the initial value problem (3.1.1) has at least one solution on J .

Proof. Transform the problem (3.1.1) into a �xed point problem. Consider the operator F :PC(J,R)→PC(J,R)
de�ned by

F (y)(t; t0, y0) = y0 +
1

Γ(α)

∫ t

t0

(t− s)α−1f(s, y(s; t0, y0))ds+
∑

t0<tk<t

Ik(y(tk; t0, y0)).

The operator F :PC(J,R)→PC(J,R) is continuous and completely continuous. Now it remains to

show that the set

E = {y ∈ PC(J,R) : y(t; t0, y0) = λF (y(t; t0, y0)) for 0 < λ < 1},

is bounded.

Let y ∈ E then y = λF (y(t; t0, y0)) for some 0 < λ < 1. Thus for each t ∈ J , we have

|y(t; t0, y0)| ≤ λ|y0|+
λ

Γ(α)

∫ t

t0

(t− s)α−1|f(s, y(s; t0, y0))|ds+ λ

n∑
k=1

|Ik(y(tk; t0, y0))|.

This implies by (i) and (ii) that for each t ∈ J

‖y(t; t0, y0)‖ ≤ |y0|+
M(t− t0)α

Γ(α+ 1)
+ nM∗ = R.

This shows that the set E is bounded. As a consequence of Schaefer's �xed point theorem, we

deduce that F has a �xed point which is a solution of the problem (3.1.1).

Following will be assumed for the uniqueness, continuity and bounds for solution.

(H1) f(t, y) ∈ C([t0,∞)× Rn,Rn).

(H2) Z(t, s) ∈ C([t0,∞)× [0,∞), [0,∞)) and satis�es the inequality ‖f(t, y)‖ ≤ Z(t, ‖y‖) for t ≥ t0,
y ∈ Rn.

(H3) There exists some functions Q(t) ∈ C([0,∞), [0,∞)) and λ(t) ∈ C([t0,∞), [0,∞)) such that

λ(µ) > 0, µ > 0 and ‖f(t, y)− f(t, x)‖ ≤ λ(t)Q(‖y − x‖) for t ≥ t0 and x, y ∈ Rn.
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(H4) for (t0, y0) ∈ [0,∞)×Rn the initial value problem (3.1.1) has a solution y(t; t0, y0), de�ned for

t ≥ t0.

(H5) there exists functions δk ∈ C([0,∞), [0,∞)), k = 1, 2, · · · such that for y ∈ Rn the inequalities

‖Ik(y)‖ ≤ δk(‖y‖), k = 1, 2, · · · hold.

(H6) there exists functions γk ∈ C([0,∞), [0,∞)), k = 1, 2, · · · such that for x,y ∈ Rnthe inequalities
‖Ik(y)− Ik(x)‖ ≤ γk(‖y − x‖), k = 1, 2, · · · hold.

3.1.2 Uniqueness of solution

Theorem 3.1.4. Assume that the conditions (H1), (H3), (H4) and (H6) hold for Q(y) = y, γk(y) =

βky, βk =constant> 0, k = 1, 2, · · ·. Then the initial value problem (3.1.1) has a unique solution.

Proof. Consider the function µ(t) = ‖y(t; t0, y0) − x(t; t0, y0)‖ ≥ 0, where the functions y(t; t0, y0)

and x(t; t0, y0) are two arbitrary solutions of the initial value problem (3.1.1).

From the integral equation (3.1.4), we have

‖y(t; t0, y0)− x(t; t0, y0)‖ ≤ 1

Γ(α)

∫ t

t0

(t− s)α−1‖f(s, y(s; t0, y0))− f(s, x(s; t0, y0))‖ds

+
∑

t0<tk<t

‖Ik(y(tk; t0, y0))− Ik(x(tk; t0, y0))‖

≤ 1

Γ(α)

∫ t

t0

(1− s)α−1λ(s)Q(‖y(s; t0, y0)− x(s; t0, y0)‖)ds

+
∑

t0<tk<t

γk(‖y(tk; t0, y0)− x(tk; t0, y0)‖),

=
1

Γ(α)

∫ t

t0

λ(s)‖y(s; t0, y0)− x(s; t0, y0)‖ds

+
∑

t0<tk<t

βk‖y(tk; t0, y0)− x(tk; t0, y0)‖.

So we get integral inequality

µ(t) ≤ 1

Γ(α)

∫ t

t0

λ(s)µ(s)ds+
∑

t0<tk<t

βkµ(tk).

Comparing above relation with (2.3.1)(Theorem 2.3.16) we get c = 0, q(t) = 1 and ν(t) = λ(t) then

from (2.3.2) we have µ(t) ≤ 0, that proves the equality µ(t) = 0 for t ≥ t0, hence both solutions are

equal.

3.1.3 Continuity and bounds of solution

Theorem 3.1.5. Assume that the conditions (H1), (H3), (H4) and (H6) hold for Q(µ) = µ, γk(µ) =

βkµ, βk =constant> 0, k = 1, 2, · · ·. Then the initial value problem (3.1.1) has a continuous solution.
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Proof. Consider the function µ(t) = ‖y(t; t0, y0) − x(t; t0, x0)‖ ≥ 0, where the functions y(t; t0, y0)

and x(t; t0, x0) are two arbitrary solutions of the initial value problem (3.1.1).

From the integral equation (3.1.4), we have

‖y(t; t0, y0)− x(t; t0, x0)‖ ≤‖y0 − x0‖+
1

Γ(α)

∫ t

t0

(t− s)α−1‖f(s, y(s; t0, y0))− f(s, x(s; t0, x0))‖ds

+
∑

t0<tk<t

‖Ik(y(tk; t0, y0))− Ik(x(tk; t0, x0))‖

≤ ‖y0 − x0‖+
1

Γ(α)

∫ t

t0

(1− s)α−1λ(s)Q(‖y(s; t0, y0)− x(s; t0, x0)‖)ds

+
∑

t0<tk<t

γk(‖y(tk; t0, y0)− x(tk; t0, x0)‖),

= ‖y0 − x0‖+
1

Γ(α)

∫ t

t0

λ(s)Q(µ(s))ds+
∑

t0<tk<t

γk(µ(tk)).

Comparing above relation with (2.3.1)(Theorem 2.3.16) we get c = ‖y0−x0‖, q(t) = 1 and ν(t) = λ(t)

then from (2.3.2) we have

µ(t) ≤ ‖y0 − x0‖
∏

0<ti<t

(1 + βkq(tk))e
∫ t
t0
λ(s)q(s)ds

, t ≥ t0. (3.1.5)

Let ε > 0 be an arbitrary number, L > t0 be a �xed constant. We de�ne a constant δ = δ(ε) > 0

by the equality

δ = ε

 ∏
t0<ti<L

(1 + βk)e
M(L−t0)

−1

,

where M = max{λ(t) : t ∈ [t0, L]} <∞.

Then from the inequality (3.1.5) for t ∈ [t0, L] follows that µ(t) < ε holds. Hence the solution of the

initial value problem (3.1.1) is continuous.

Theorem 3.1.6. Assume that the conditions (H1), (H2), (H4) and (H5) holds for Z(t, µ) = Lµ,

δ(µ) = βkµ, L =constant> 0, βk =constant≥ 0, k = 1, 2, · · ··. Then we will get bounds of the

solution of (3.1.1).

Proof. From the integral equation (3.1.4), we have

‖y(t; t0, y0)‖ ≤‖y0‖+
1

Γ(α)

∫ t

t0

(t− s)α−1‖f(s, y(s; t0, y0))‖ds+
∑

t0<tk<t

‖Ik(y(tk; t0, y0))‖

≤‖y0‖+
1

Γ(α)

∫ t

t0

(1− s)α−1Z(s, ‖y(s; t0, y0)‖)ds+
∑

t0<tk<t

δk(‖y(tk; t0, y0)‖),

=‖y0‖+
1

Γ(α)

∫ t

t0

(1− s)α−1L‖y(s; t0, y0)‖ds+
∑

t0<tk<t

βk‖y(tk; t0, y0)‖.
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From equation (2.3.1) we have c = ‖y0‖, q(t) = 1 and ν(t) = L(1− t)α−1, then from (2.3.2) we get

‖y(t; t0, y0)‖ ≤ ‖y0‖
∏

0<tk<t

(1 + βk)e
L
α

[(1−t0)α−(1−t)α].

3.2 Existence and uniqueness: Boundary value problem

A Boundary value problem is a system of di�erential equations with solution and derivative values

speci�ed at more than one point. A function is said to be the solution of boundary value problem if

it satis�es the di�erential equation and the boundary condition. In this section we will consider the

following impulsive fractional boundary value problem

cDαy(t) = f(t, y(t)) for t ∈ [0, 1], 1 < α ≤ 2,

∆y(tk) = Pk(y(tk)),

∆y′(tk) = Qk(y(tk)),

y(0) =g(y), y(1) = k k ∈ R.

(3.2.1)

The boundary conditions with non-classical boundary that link the values of unknown function on

the boundary and inside of the domain are called non-local boundary conditions. The analysis of

the derivative operator with non-local boundary conditions provides an important tool to study the

stability of solutions for general classes of di�erential equations.

In this section, we present existence results for the problem (3.2.1) involving Caputo fractional

derivative. We give two results, one based on Theorem 1.3.15 and another one based on Banach

�xed point theorem (Theorem 1.3.13). Two examples are given in this section to demonstrate the

application of our main results.

For measurable functions ν : J = [0, 1]→ R, de�ne the norm [12]

‖ν‖Lp(J) =

(∫
J
|ν(t)|pdt

) 1
p

, 1 ≤ p <∞.

Lp(J,R) denotes the Banach space of all Lebesgue measurable functions ν : J = [0, 1] → R with

‖ν‖Lp(J) <∞.

3.2.1 Existence of solutions

Lemma 3.2.1. Let 1 < α ≤ 2 and let f : [0, 1] → R be continuous. A function y is a solution of

the fractional integral equation

y(t) =
1

Γ(α)

∫ t

0
(t− s)α−1f(s, y(s))ds− t

Γ(α)

∫ 1

0
(1− s)α−1f(s, y(s))ds

+(1− t)
n∑
k=1

Pk(y(tk)) +

n∑
k=1

G(t, tk)Qk(y(tk)) + (1− t)g(y) + kt,
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if and only if y is a solution of the fractional impulsive BVP

cDαy(t) = f(t, y(t)) for t ∈ [0, 1], 1 < α ≤ 2,

∆y(tk) = Pk(y(tk)),

∆y′(tk) = Qk(y(tk)),

y(0) =g(y), y(1) = k k ∈ R.

Proof. Suppose that y is a solution of (3.2.1). By applying Lemma 3.1.1, we have

y(t) =
1

Γ(α)

∫ t

0
(t− s)α−1f(s, y(s))ds+

∑
0<tk<t

∆y(tk) +
∑

0<tk<t

∆y′(tk)(t− tk) + c0 + c1t,

for some c0,c1 ∈ R. Applying �rst condition y(0) = g(y) in above equation we get c0 = g(y) then

y(t) =
1

Γ(α)

∫ t

0
(t− s)α−1f(s, y(s))ds+

∑
0<tk<t

∆y(tk) +
∑

0<tk<t

∆y′(tk)(t− tk) + g(y) + c1t.

Applying second second condition in above equation then

c1 = k − 1

Γ(α)

∫ 1

0
(1− s)α−1f(s, y(s))ds−

n∑
k=1

Pk(y(tk))−
n∑
k=1

Qk(y(tk))(1− tk)− g(y),

and

y(t) =
1

Γ(α)

∫ t

0
(t− s)α−1f(s, y(s))ds− t

Γ(α)

∫ 1

0
(1− s)α−1f(s, y(s))ds+ (1− t)

n∑
k=1

Pk(y(tk))

+
∑

0<tk<t

Qk(y(tk))(t− tk)− t
n∑
k=1

Qk(y(tk))(1− tk) + (1− t)g(y) + kt,

=
1

Γ(α)

∫ t

0
(t− s)α−1f(s, y(s))ds− t

Γ(α)

∫ 1

0
(1− s)α−1f(s, y(s))ds+ (1− t)

n∑
k=1

Pk(y(tk))

+

n∑
k=1

G(t, tk)Qk(y(tk)) + (1− t)g(y) + kt.

which is the required result.

Theorem 3.2.2. Let f : [0, 1]× R→ R be a continuous function mapping with |f(t, y)| ≤ ν(t), for

all (t, y) ∈ [0, 1]× R where ν ∈ L
1
τ ([0, 1],R) and τ ∈ (0, α− 1). Assume that:

(H7) There exists constants M1,M2,M3 > 0 such that |g(y1) − g(y2)| ≤ M1|y1 − y2|, |Pk(y1) −
Pk(y2)| ≤M2|y1 − y2|, |Qk(y1)−Qk(y2)| ≤M3|y1 − y2| for each t ∈ [0, 1] and all y1,y2 ∈ R.

Furthermore if (M1 + n(M2 +M3)) < 1, then the BVP (3.2.1) has at least one solution on [0, 1].
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Proof. Let us choose

r ≥
2‖ν‖

L
1
τ (J)

Γ(α)
(
α−τ
1−τ

)1−τ ,

and denote

Pr = {y ∈ PC([0, 1],R) : ‖y‖PC ≤ r}.

Consider the operators A,B : C([0, 1],R)→ C([0, 1],R) de�ned by

(Ay)(t) = (1− t)
n∑
k=1

Pk(y(tk)) +

n∑
k=1

G(t, tk)Qk(y(tk)) + (1− t)g(y) + kt,

and

(By)(t) =
1

Γ(α)

∫ t

0
(t− s)α−1f(s, y(s))ds− t

Γ(α)

∫ 1

0
(1− s)α−1f(s, y(s))ds.

Firstly, we show that the operator A : C([0, 1],R)→ C([0, 1],R) is contraction.

|A(y1)(t)−A(y2)(t)| ≤|g(y1)− g(y2)|+
n∑
k=1

|Pk(y1(tk))− Pk(y2(tk))|+
n∑
k=1

|Qk(y1(tk))−Qk(y2(tk))|,

≤M1‖y1 − y2‖+ nM2‖y1 − y2‖+ nM3‖y1 − y2‖,

≤(M1 + n(M2 +M3))‖y1 − y2‖.

Consequently A is a contraction.

For any y, z ∈ Pr and t ∈ J = [0, 1], using the estimation condition on f and Holder inequality,

∫ t

0
|(t− s)α−1f(s, y(s))|ds ≤

(∫ t

0
(t− s)

α−1
1−τ ds

)1−τ (∫ t

0
(ν(s))

1
τ ds

)τ
≤
‖ν‖

L
1
τ (J)(

α−τ
1−τ

)1−τ ,

t

∫ 1

0
|(1− s)α−1f(s, y(s))|ds ≤ t

(∫ 1

0
(1− s)

α−1
1−τ ds

)1−τ (∫ 1

0
(ν(s))

1
τ ds

)τ
≤
‖ν‖

L
1
τ (J)(

α−τ
1−τ

)1−τ .

Operator B is uniformly bounded on Pr since

‖By‖PC ≤
2‖ν‖

L
1
τ (J)

Γ(α)
(
α−τ
1−τ

)1−τ ≤ r.

Now we will show that operator B is compact and continuous. Note that B is continuous in view of

continuity of f . To prove operator B is compact, let Ω = J×Pr we can de�ne sup(t,x)∈Ω |f(t, y)| = f0
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for any 0 < t2 < t1 ≤ 1, we have

|(By)(t2)− (By)(t1)| =
∣∣∣ 1

Γ(α)

∫ t2

0
(t2 − s)α−1f(s, y(s))ds− t2

Γ(α)

∫ 1

0
(1− s)α−1f(s, y(s))ds

− 1

Γ(α)

∫ t1

0
(t1 − s)α−1f(s, y(s))ds+

t1
Γ(α)

∫ 1

0
(1− s)α−1f(s, y(s))ds

∣∣∣
≤
∣∣∣∣ 1

Γ(α)

∫ t2

0
[(t2 − s)α−1 − (t1 − s)α−1]f(s, y(s))ds+

1

Γ(α)

∫ t1

t2

(t1 − s)α−1f(s, y(s))ds

∣∣∣∣
+

∣∣∣∣(t2 − t1)

Γ(α)

∫ 1

0
(1− s)α−1f(s, y(s))ds

∣∣∣∣
≤ f0

Γ(α+ 1)
(2(t1 − t2)α + tα2 − tα1 + (t1 − t2),

which tends to zero when t1 → t2. This shows that B is equicontinuous, so B is relatively compact

on Pr. Hence by Arzela-Ascoli theorem, B is compact on Pr. Therefore, Theorem 2.3.15 implies

that problem (3.2.1) has at least one solution on [0, 1]. This completes the proof.

Example 3.2.3. Consider the impulsive fractional boundary value problem, where α = 3
2 and

n = 1,

cD
3
2 y(t) =

ety

(9 + t)(1 + y2)
, t 6= 1

3
,

∆y

(
1

3

)
=

∥∥y (1
3

)∥∥
2 +

∥∥y (1
3

)∥∥ , ∆y′
(

1

3

)
=

∥∥y (1
3

)∥∥
3 +

∥∥y (1
3

)∥∥ ,
g(y) =

n∑
i=1

aiy(ti).

Set f(t, y) = ety
(9+t)(1+y2)

,
∑n

i=1 ai <
1
4 , where 0 < t1 < t2 < · · · < tn < 1ai, i = 1, · · ·, n are given

positive constants.

Let y,z ∈ [0,∞) and t ∈ [0, 1], then clearly,

|f(t, y)| ≤ et

(9 + t)
.

Also

|Pk(y1)− Pk(y2)| ≤ 1

2
|y1 − y2|,

|Qk(y1)−Qk(y2)| ≤ 1

3
|y1 − y2|,

and

|g(y1)− g(y2)| ≤
n∑
i=1

ai|y1 − y2|.

Hence the condition (H7) holds with M1 =
∑n

i=1 ai, M2 = 1
2 and M3 = 1

3 .

Now we will check the condition in Theorem 3.2.2 is satis�ed with α = 1.5, M1 = 0.1, M2 = 0.5 and

M3 = 0.3.

(M1 + n(M2 +M3)) = 0.9 < 1.



31

Then by the Theorem 3.2.2 the problem (3.2.1) has at least one solution.

3.2.2 Uniqueness of solution

Our next result is based on Banach �xed point theorem.

Theorem 3.2.4. Assume that:

(H8) There exists constants L1, L2 > 0 such that |f(t, y1)− f(t, y2)| ≤ L1|y1− y2|, |g(y1)− g(y2)| ≤
L2|y1 − y2| for each t ∈ [0, 1] and all y1,y2 ∈ R.

(H9) There exists a constant L3, L4 > 0 such that |Pk(y1)−Pk(y2)| ≤ L3|y1−y2|, |Qk(y1)−Qk(y2)| ≤
L4|y1 − y2| for each t ∈ [0, 1] and all y1,y2 ∈ R.

if [
2L1

Γ(α+ 1)
+ L2 + n(L3 + L4)

]
< 1, (3.2.2)

then problem (3.2.1) has a unique solution on [0, 1].

Proof. Transform the problem (3.2.1) into a �xed point problem. Consider the operator

F : C([0, 1],R)→ C([0, 1],R) de�ned by

F (y)(t) =
1

Γ(α)

∫ t

0
(t− s)α−1f(s, y(s))ds− t

Γ(α)

∫ 1

0
(1− s)α−1f(s, y(s))ds

+(1− t)
n∑
k=1

Pk(y(tk)) +
n∑
k=1

G(t, tk)Qk(y(tk)) + (1− t)g(y) + kt

Clearly, the �xed points of the operator F are solutions of the problem (3.2.1). Now we use Banach

contraction principle to prove that F has a �xed point. We shall show that F is a contraction.

Let y1,y2 ∈ C([0, 1],R). Then, for each t ∈ [0, 1] we have

|F (y1)(t)− F (y2)(t)| ≤ 1

Γ(α)

∫ t

0
(t− s)α−1|f(s, y1(s))− f(s, y2(s))|ds

+
1

Γ(α)

∫ 1

0
(1− s)α−1|f(s, y1(s))− f(s, y2(s))|ds+ |g(y1)− g(y2)|

+
n∑
k=1

|Pk(y1(tk))− Pk(y2(tk))|+
n∑
k=1

|Qk(y1(tk))−Qk(y2(tk))|,

≤L1‖y1 − y2‖
Γ(α)

∫ t

0
(t− s)α−1ds+

L1‖y1 − y2‖
Γ(α)

∫ 1

0
(1− s)α−1ds

+L2‖y1 − y2‖+ nL3‖y1 − y2‖+ nL4‖y1 − y2‖,

≤ 2L1

Γ(α+ 1)
‖y1 − y2‖+ L2‖y1 − y2‖+ nL3‖y1 − y2‖+ nL4‖y1 − y2‖.

Thus

‖F (y1)− F (y2)‖ ≤
[

2L1

Γ(α+ 1)
+ L2 + n(L3 + L4)

]
‖y1 − y2‖.
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Consequently F is a contraction. As a consequence of Banach �xed theorem, we deduce that F has

a �xed point which is a solution of problem (3.2.1).

Example 3.2.5. Consider the second impulsive fractional boundary value problem,

cDαy(t) = f(t, y(t)) for t ∈ [0, 1], 1 < α ≤ 2,

∆y(tk) = Pk(y(tk)),

∆y′(tk) = Qk(y(tk)),

y(0) =g(y), y(1) = k k ∈ R,

where α = 2 and n = 1,

f(t, y) =
e−ty

(9 + et)(1 + y2)
, t 6= 1

4
,

∆y

(
1

4

)
=

∥∥y (1
4

)∥∥
5 +

∥∥y (1
4

)∥∥ , ∆y′
(

1

4

)
=

∥∥y (1
4

)∥∥
7 +

∥∥y (1
4

)∥∥
g(y) =

n∑
i=1

aiy(ti).

Set
∑n

i=1 ai <
3
4 , where 0 < t1 < t2 < · · · < tn < 1ai, i = 1, · · ·, n are given positive constants.

Let y1, y2 ∈ C([0, 1],R) and t ∈ [0, 1]. Then

|f(t, y1)− f(t, y2)| = e−t

9 + et

∣∣∣∣ y1

(1 + y2
1)
− y2

(1 + y2
2)

∣∣∣∣
=

e−t|y1 − y2|
(9 + et)(1 + y2

1)(1 + y2
2)
,

≤ e−t

(9 + et)
|y1 − y2|,

≤ 1

10
|y1 − y2|.

also

|g(y1)− g(y2)| ≤
n∑
i=1

|y1 − y2|.

Hence the condition (H8) holds with L1 = 1
10 and L2 =

∑n
i=1 ai.

Clearly

|Pk(y1)− Pk(y2)| ≤ 1

5
|y1 − y2|,

and

|Qk(y1)−Qk(y2)| ≤ 1

7
|y1 − y2|.

Hence the condition (H9) holds with L3 = 1
5 and L4 = 1

7 .

Now we will check the condition (3.2.2) is satis�ed with α = 2, L1 = 0.1, L2 = 0.5, L3 = 1
5 and
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L4 = 1
7 . By computations, we have[

2L1

Γ(α+ 1)
+ L2 + n(L3 + L4)

]
=

2(0.1)

Γ(3)
+ 0.5 +

(
1

5
+

1

7

)
= 0.9 < 1.

Then by the Theorem 3.2.4 the problem (3.2.1) has a unique solution.



Chapter 4

Ulam's stability of impulsive fractional

di�erential equations

Ulam in 1940 discussed the stability of functional equations then he posed the problem "Under what

conditions does there exist an additive mapping near an approximately additive mapping"? Hyers

for the �rst time answered Ulam for the Banach spaces in 1941. That's why this type of stability

is called Ulam-Hyers stability. Rassias in 1978 considered the di�erent variables and provide a

generalization result of the Ulam-Hyers stability of mappings. Ulam-Hyers stability and Ulam-

Hyers-Rassias stability have been used by many mathematicians and the analysis of this area has

grown rapidly in mathematical analysis as one of the central subject.

In this chapter, we present four Ulam's type stability results for impulsive fractional di�erential

equations. J. Wang has studied Ulam's type stability for impulsive ordinary di�erential equations

in [13] and for impulsive fractional di�erential equations in [14]. In �rst section, we will give four

Ulam's type stability for fractional impulsive di�erential equations. Finally in the second section we

will present generalized Ulam-Hyers-Rassias stability results with an example.

Consider the following impulsive fractional di�erential equation

cDαy(t) = f(t, y), t ∈ J ′ = J \ {t1, · · ·, tm}, J = [0, T ], T > 0, 0 < α ≤ 1,

y(tk + 0)− y(tk) = Ik(y(tk)), k = 1, 2, · · ·, n,
(4.0.1)

where f : J × R→ R is continuous, Ik : R→ R and tk satisfy 0 = t0 < t1 < · · · < tn < tn+1 = T <

+∞, y(t+k ) = limε→0+ y(tk + ε) and y(t−k ) = limε→0− y(tk + ε) represents the right and left limits of

y(t) at t = tk.

4.1 Preliminaries

In this section, we present Ulam's stability concepts for equation (4.0.1), de�nitions and some

remarks. Consider the Banach spaces C(J,R) of all continuous functions from J into R, PC(J,R) =

34
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{y : J → R : y ∈ C((tk, tk+1],R), k = 0, · · ·, n and there exist y(t−k ) and y(t+k ), k = 1, · · ·, n, with
y(t−k ) = y(tk)} and PC1(J,R) = {y ∈PC(J,R) : y′ ∈PC(J,R)}. Let ε > 0 and φ ∈ PC(J,R+) is

nondecreasing function. Assume the following inequalities

|cDαx(t)− f(t, x(t))| ≤ ε, t ∈ J ′, 0 < α ≤ 1,

|∆x(tk)− Ik(x(tk))| ≤ ε, k = 1, 2, · · ·, n,
(4.1.1)

|cDαx(t)− f(t, x(t))| ≤ φ(t), t ∈ J ′, 0 < α ≤ 1,

|∆x(tk)− Ik(x(tk))| ≤ φ(t), k = 1, 2, · · ·, n,
(4.1.2)

and

|cDαx(t)− f(t, x(t))| ≤ εφ(t), t ∈ J ′, 0 < α ≤ 1,

|∆x(tk)− Ik(x(tk))| ≤ εφ(t), k = 1, 2, · · ·, n,
(4.1.3)

De�nition 4.1.1. Assume that there exists a real number cf,n > 0 such that for each ε > 0 and for

each solution x ∈PC1(J,R) of the inequation (4.1.1) there exists a solution y ∈PC1(J,R) of equation

(4.0.1) then equation (4.0.1) is Ulam-Hyers stable if

|x(t)− y(t)| ≤ cf,nε, t ∈ J.

De�nition 4.1.2. Assume that there exists θf,n ∈ C(R+,R+), θf,n(0) = 0 such that for each

solution x ∈PC1(J,R) of the inequation (4.1.1) there exists a solution y ∈PC1(J,R) of equation

(4.0.1) then equation (4.0.1) is generalized Ulam-Hyers stable if

|x(t)− y(t)| ≤ θf,n(ε), t ∈ J.

De�nition 4.1.3. Assume that there exists cf,n,φ > 0 such that for each ε > 0 and for each solution

x ∈PC1(J,R) of the inequation (4.1.3) there exists a solution y ∈PC1(J,R) of equation (4.0.1) then

equation (4.0.1) is Ulam-Hyers-Rassias stable with respect to φ if

|x(t)− y(t)| ≤ cf,n,φεφ(t), t ∈ J.

De�nition 4.1.4. Assume that there exists cf,n,φ > 0, such that for each solution x ∈PC1(J,R) of

the inequation (4.1.2) there exists a solution y ∈PC1(J,R) of equation (4.0.1) then equation (4.0.1)

is generalized Ulam-Hyers-Rassias stable with respect to φ if

|x(t)− y(t)| ≤ cf,n,φφ(t), t ∈ J.

Remark 4.1.5. A function x ∈ PC1(J,R) is a solution of inequation (4.1.1) if and only if there is

h ∈PC(J,R) and a sequence hk, k = 1, 2, · · ·, n depending on x such that

(i) |h(t)| ≤ ε, t ∈ J and |hk| ≤ ε, k = 1, 2, · · ·, n;
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(ii) cDαx(t) = f(t, x(t)) + h(t), t ∈ J ′, 0 < α ≤ 1;

(iii) ∆x(tk) = Ik(x(tk)) + hk, k = 1, 2, · · ·, n.

Remark 4.1.6. [14] If x ∈ PC1(J,R) is a solution of inequation (4.1.1) then x is a solution of the

following integral inequality∣∣∣∣∣x(t)− x(0)−
k∑
i=1

Ii(x(ti))−
1

Γ(α)

∫ t

0
(t− s)α−1f(s, x(s))ds

∣∣∣∣∣ ≤
(
n+

tα

Γ(α+ 1)

)
ε, t ∈ J. (4.1.4)

By Remark 4.1.5 we have

cDαx(t) = f(t, x(t)) + h(t), t ∈ J ′, 0 < α ≤ 1,

∆x(tk) = Ik(x(tk)) + hk, k = 1, 2, · · ·, n.

Then

x(t) = x(0)+
k∑
i=1

Ii(x(ti))+
k∑
i=1

hi+
1

Γ(α)

∫ t

0
(t−s)α−1f(s, x(s))ds+

1

Γ(α)

∫ t

0
(t−s)α−1h(s)ds, t ∈ (tk, tk+1].

It follows that∣∣∣∣∣x(t)− x(0)−
k∑
i=1

Ii(x(ti))−
1

Γ(α)

∫ t

0
(t− s)α−1f(s, x(s))ds

∣∣∣∣∣ ≤
n∑
i=1

|hi|+
1

Γ(α)

∫ t

0
(t− s)α−1|h(s)|ds

≤ nε+
ε

Γ(α)

∫ t

0
(t− s)α−1ds

≤
(
n+

tα

Γ(α+ 1)

)
ε.

4.2 Stability results

In this section we present the stability result of equation (4.0.1) (by de�nition 4.1.4) with example.

Theorem 4.2.1. [14] Assume f : J × R → R is continuous and there exists a constant Mf > 0

such that |f(t, µ)− f(t, ν)| ≤Mf |µ− ν| for each t ∈ J and all µ, ν ∈ R. Moreover, Ik : R→ R and

there exists constants λk > 0 such that |Ik(µ)−Ik(ν)| ≤ λk|µ−ν| for all µ, ν ∈ R and k = 1, 2, · · ·, n.
If there exists a γφ > 0 such that 1

Γ(α)

∫ t
0 (t − s)α−1φ(s)ds ≤ γφφ(t) for each t ∈ J where φ ∈

PC(J,R+) is nondecreasing function, then equation (4.0.1) is generalized Ulam-Hyers-Rassias stable

with respect to φ.

Example 4.2.2. Consider the following impulsive fractional di�erential equation

cDαy(t) = 0, t ∈ (0, 1]\
{

1

4

}
,

∆y

(
1

4

)
=

∣∣y (1
4

)∣∣2
1 +

∣∣y (1
4

)∣∣2 ,
(4.2.1)
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and the inequations

|cDαx(t)| ≤ ε, t ∈ (0, 1]\
{

1

4

}
,∣∣∣∣∣∆x

(
1

4

)
−

∣∣x (1
4

)∣∣2
1 +

∣∣x (1
4

)∣∣2
∣∣∣∣∣ ≤ ε, ε > 0.

(4.2.2)

Let x ∈ PC([0, 1],R) be a solution of inequation (4.2.2) then there exists h ∈ PC([0, 1],R) and

h1 ∈ R such that

(i) |h(t)| ≤ ε, t ∈ [0, 1], |h1| ≤ ε

(ii) cDαx(t) = h(t), t ∈ [0, 1]\
{

1
4

}
,

(iii) ∆x
(

1
4

)
=
|x( 1

4)|2
1+|x( 1

4)|2
+ h1.

Then we have

x(t) = x(0) + χ( 1
4
,1](t)

( ∣∣x (1
4

)∣∣2
1 +

∣∣x (1
4

)∣∣2 + h1

)
+

1

Γ(α)

∫ t

0
(t− s)α−1h(s)ds

where χ( 1
4
,1](t) is a characteristic function of

(
1
4 , 1
]
.

Assume the unique solution y(t) of (4.2.1) given by

y(t) = x(0) + χ( 1
4
,1](t)

∣∣y (1
4

)∣∣2
1 +

∣∣y (1
4

)∣∣2 .
Then we have

|x(t)− y(t)| =
∣∣∣χ( 1

4
,1](t)

( ∣∣x (1
4

)∣∣2
1 +

∣∣x (1
4

)∣∣2 −
∣∣y (1

4

)∣∣2
1 +

∣∣y (1
4

)∣∣2 + h1

)
+

1

Γ(α)

∫ t

0
(t− s)α−1h(s)ds

∣∣∣
≤χ( 1

4
,1](t)

∣∣∣x(1

4

)
− y

(
1

4

) ∣∣∣2 + |h1|+
1

Γ(α)

∫ t

0
(t− s)α−1h(s)ds

≤χ( 1
4
,1](t)

∣∣∣∣x(1

4

)
− y

(
1

4

)∣∣∣∣2 + ε+
ε

Γ(α+ 1)
, t ∈ [0, 1],

which gives

|x(t)− y(t)| ≤
(

1 +
1

Γ(α+ 1)

)
ε+

((
1 +

1

Γ(α+ 1)

)
ε

)2

, t ∈ [0, 1].

Hence equation (4.2.1) is generalized Ulam-Hyers stable.

Remark 4.2.3. In a Banach space, if we have a nth order di�erential equation then we use Green

function technique to reduce its order in the Banach space as the following example shows.

Now we shall consider the following fractional di�erential equation

cDαy(t) = f(t, y(t)), 1 < α ≤ 2, t ∈ [a, b], (4.2.3)
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where a < b < +∞ and f ∈ C([a, b]× R).

Let us denote the Green function of the following boundary value problem by G

cDαx(t) = f(t, x(t)) + h(t), 1 < α ≤ 2

x(a) = 0, x(b) = 0.

The Green function Gα : [a, b]× [a, b]→ R is de�ned as

Gα(t, s) =


1

Γ(α)

(
(t− s)α−1 + (t−a)(b−s)α−1

(a−b)

)
, s ≤ t,

(t−a)(b−s)α−1

Γ(α)(a−b) , s ≥ t.
(4.2.4)

Theorem 4.2.4. Assume f : J × R → R is continuous and there exists a constant Mf > 0 such

that |f(t, µ) − f(t, ν)| ≤ Mf |µ − ν| for each t ∈ J and all µ, ν ∈ R. If there exists a γφ > 0 such

that
∫ b
a Gα(t, s)φ(s)ds ≤ γφφ(t) for each t ∈ J where φ ∈ PC(J,R+) is nondecreasing function, then

equation (4.2.3) is generalized Ulam-Hyers-Rassias stable with respect to φ.

Proof. Assume that x ∈ C2[a, b] be a solution of the following inequation

|cDαx(t)− f(t, x(t))| ≤ φ(t), ∀ t ∈ [a, b].

Firstly we remark that x is the solution of the following inequality∣∣∣∣x(t)−
(
b− t
a− b

)
y(a)−

(
t− a
a− b

)
y(b)−

∫ b

a
Gα(t, s)f(s, x(s))ds

∣∣∣∣ ≤ ∫ b

a
Gα(t, s)φ(s)ds

≤ γφφ(t).

Now we take y be the solution of following fractional boundary value problem

cDαy(t) = f(t, y(t)), 1 < α ≤ 2,

y(a) = x(a), y(b) = x(b).

So, it is clear that

y(t) =

∫ b

a
Gα(t, s)f(s, y(s))ds, t ∈ [a, b].

So for each t ∈ (tk, tk+1], it follows that

|x(t)− y(t)| ≤
∣∣∣∣x(t)−

∫ b

a
Gα(t, s)f(s, x(s))ds

∣∣∣∣+

∫ b

a
Gα(t, s)|f(s, x(s))− f(s, y(s))|ds

≤ γφφ(t) +Mf

∫ b

a
Gα(t, s)|x(s)− y(s)|ds.

By Theorem 2.3.16, there exists a constant Lf > 0 independent of γφφ(t) such that

|x(t)− y(t)| ≤ Lfγφφ(t) = cf,φφ(t).

Thus, equation (4.2.3) is generalized Ulam-Hyers-Rassias stable. The proof is completed.



Chapter 5

Positive solutions for multi-point

fractional impulsive boundary value

problem

Multi-point boundary value problems occurs in many areas of engineering applications like in mod-

eling the �ow of �uid such as oil, gas and water through multilayer porous medium. The existence of

positive solutions for multi-point boundary value problems is one of the important areas of research

due to its wide applications in engineering like modeling of physical problems having vibrations in

a wire of uniform cross section and consisting of material having di�erent densities, in the elastic

stability theory and also its applications in �uid �ow.

In this chapter, the study of existence of positive solutions of multi-point boundary value prob-

lems for fractional order impulsive di�erential equations with the theory of �xed point theorem

in cones will be discussed. In [16] the existence of multiple positive solutions for the multi-point

boundary value problem of second order di�erential equation with impulse e�ects has been discussed.

Existence results of solutions for three-point impulsive fractional boundary problem have been given

in [17]. We refer the reader to [18, 19] for positive solutions of boundary value problem without

impulses and to [16,17] with impulse e�ect.

M.U. Rehman and P.W. Eloe [5] have developed a simple and general method for constructing

�xed point operator for fractional impulsive di�erential equations. The aim of the chapter is to

apply the method of [5] to multi-point fractional impulsive boundary value problems to establish

the existence results for positive solutions. The results of this chapter are the original work of the

author and her supervisor [20].

39
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Consider the fractional order multi-point impulsive boundary value problem

Dαy(t) + λg(t, y(t)) = 0, t ∈ J, t 6= tk, 1 < α ≤ 2, (5.0.1)

∆y′(tk) + Ik(y(tk)) = 0, k = 1, 2, · · · , n (5.0.2)

ay(0)− by′(0) =

m−2∑
i=1

aiy(ξi), cy(1) + dy′(1) =

m−2∑
i=1

biy(ξi), (5.0.3)

where J = [0, 1], t0 = 0 < t1 < t2 < · · · < tn < tn+1 = 1, ∆y′(tk) = y′(t+k )− y′(t−k ), y(t+k ) and y(t−k )

represents the right hand limit and left hand limit of the function y(t) at t = tk, 0 < ξi < ξi+1 < 1,

ξi 6= tk and i = 1, 2, · · · ,m− 3.

For convenience we consider the following assumptions:

(H1) g ∈ C(J × R+,R+), Ik ∈ C(R+,R+);

(H2) ∆ > 0,
∑m−2

i=1
ai
δ [d+ (1− ξi)c] < 1,

∑m−2
i=1

bi
δ (b+ aξi) < 1;

where

∆ :=

∣∣∣∣∣ 1−
∑m−2

i=1
ai
δ [d+ (1− ξi)c] −

∑m−2
i=1

ai
δ (b+ aξi)

−
∑m−2

i=1
bi
δ [d+ (1− ξi)c] 1−

∑m−2
i=1

bi
δ (b+ aξi)

∣∣∣∣∣
(H3) a, b, c, d > 0.

5.1 Green's function and its properties

Lemma 5.1.1. Assume that (H1), (H2) and (H3) hold. Then y ∈ PC1([0, 1]) ∪ C2(J̄), J̄ =

J\{t1, t2, · · · , tn}, is a solution of multi-point impulsive boundary value problem (5.0.1)-(5.0.3) if

and only if y is solution of following impulsive integral equation

y(t) =λ

∫ 1

0
Gα(t, s)g(s, y(s))ds+

n∑
k=1

H(t, tk)Ik(y(tk)) +
1

δ
(c(1− t) + d)

[
A(g(., y(.))) +B(Ik(y(.)))

]
+

1

δ
(b+ at)

[
C(g(., y(.))) +D(Ik(y(.)))

]
,

(5.1.1)

where

Gα(t, s) =


1
δ (b+ at)

(
c(1−s)α−1

Γ(α) + d(1−s)α−2

Γ(α−1)

)
− (t−s)α−1

Γ(α) , 0 ≤ s ≤ t ≤ 1;

1
δ (b+ at)

(
c(1−s)α−1

Γ(α) + d(1−s)α−2

Γ(α−1)

)
, 0 ≤ t ≤ s ≤ 1,

(5.1.2)

H(t, tk) =


1
δ (b+ at)

(
c(1− tk) + d

)
− (t− tk), 0 ≤ tk ≤ t ≤ 1;

1
δ (b+ at)

(
c(1− tk) + d

)
, 0 ≤ t ≤ tk ≤ 1,

(5.1.3)
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A(g(., y(.))) :=
λ

∆

∣∣∣∣∣
∑m−2

i=1 ai
∫ 1

0 Gα(ξi, s)g(s, y(s))ds −
∑m−2

i=1
ai
δ (b+ aξi)∑m−2

i=1 bi
∫ 1

0 Gα(ξi, s)g(s, y(s))ds 1−
∑m−2

i=1
bi
δ (b+ aξi)

∣∣∣∣∣ , (5.1.4)

B(Ik(y(.))) :=
1

∆

∣∣∣∣∣
∑m−2

i=1 ai
∑n

k=1H(ξi, tk)Ik(y(tk)) −
∑m−2

i=1
ai
δ (b+ aξi)∑m−2

i=1 bi
∑n

k=1H(ξi, tk)Ik(y(tk)) 1−
∑m−2

i=1
bi
δ (b+ aξi)

∣∣∣∣∣ , (5.1.5)

C(g(., y(.))) :=
λ

∆

∣∣∣∣∣ 1−
∑m−2

i=1
ai
δ [d+ (1− ξi)c]

∑m−2
i=1 ai

∫ 1
0 Gα(ξi, s)g(s, y(s))ds

−
∑m−2

i=1
bi
δ [d+ (1− ξi)c]

∑m−2
i=1 bi

∫ 1
0 Gα(ξi, s)g(s, y(s))ds

∣∣∣∣∣ , (5.1.6)

D(Ik(y(.))) :=
1

∆

∣∣∣∣∣ 1−
∑m−2

i=1
ai
δ [d+ (1− ξi)c]

∑m−2
i=1 ai

∑n
k=1H(ξi, tk)Ik(y(tk))

−
∑m−2

i=1
bi
δ [d+ (1− ξi)c]

∑m−2
i=1 bi

∑n
k=1H(ξi, tk)Ik(y(tk))

∣∣∣∣∣ , (5.1.7)

∆ :=

∣∣∣∣∣ 1−
∑m−2

i=1
ai
δ [d+ (1− ξi)c] −

∑m−2
i=1

ai
δ (b+ aξi)

−
∑m−2

i=1
bi
δ [d+ (1− ξi)c] 1−

∑m−2
i=1

bi
δ (b+ aξi)

∣∣∣∣∣ and δ := a(c+ d) + bc. (5.1.8)

Proof. Assume that y(t) is solution of the multi-point boundary value problem (5.0.1)-(5.0.3), then

using Lemma 3.1.1, we have

y(t) = y(0) + y′(0)t−
∑

0<tk<t

Ik(y(tk))(t− tk)− λ
∫ t

0

(t− s)α−1

Γ(α)
g(s, y(s))ds. (5.1.9)

Let c1 = y(0) and c2 = y′(0), the �rst boundary condition in (5.0.3) takes the form

ac1 − bc2 =

m−2∑
i=1

aiy(ξi). (5.1.10)

Now, from (5.1.9), we have

y(1) = c1 + c2 −
n∑
k=1

Ik(y(tk))(1− tk)− λ
∫ 1

0

(1− s)α−1

Γ(α)
g(s, y(s))ds, (5.1.11)

y′(1) = c2 −
n∑
k=1

Ik(y(tk))− λ
∫ 1

0

(1− s)α−2

Γ(α− 2)
g(s, y(s))ds. (5.1.12)

Substituting y(1) and y′(1) from (5.1.11) and (5.1.12) in the second equation in (5.0.3),

cc1 + (c+ d)c2 =cλ

∫ 1

0

(1− s)α−1

Γ(α)
g(s, y(s))ds+ dλ

∫ 1

0

(1− s)α−2

Γ(α− 1)
g(s, y(s))ds

+ c

n∑
k=1

Ik(y(tk))(1− tk) + d

n∑
k=1

Ik(y(tk)) +

m−2∑
i=1

biy(ξi).

(5.1.13)
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Solving (5.1.12) and (5.1.13) for c1 and c2, we have

c1 =
b

δ

(
cλ

∫ 1

0

(1− s)α−1

Γ(α)
g(s, y(s))ds+ dλ

∫ 1

0

(1− s)α−2

Γ(α− 1)
g(s, y(s))ds

)
+
b

δ

(
c

n∑
k=1

Ik(y(tk))(1− tk)

+d
n∑
k=1

Ik(y(tk))

)
+

(c+ d)

δ

m−2∑
i=1

aiy(xi) +
b

δ

m−2∑
i=1

biy(xi),

(5.1.14)

c2 =
a

δ

(
cλ

∫ 1

0

(1− s)α−1

Γ(α)
g(s, y(s))ds+ dλ

∫ 1

0

(1− s)α−2

Γ(α− 1)
g(s, y(s))ds

)
+
a

δ

(
c

n∑
k=1

Ik(y(tk))(1− tk)

+d
n∑
k=1

Ik(y(tk))

)
− c

δ

m−2∑
i=1

aiy(xi) +
a

δ

m−2∑
i=1

biy(xi).

(5.1.15)

Inserting (5.1.12) and (5.1.13) in (5.1.9), we get

y(t) =
λ

δ
(b+ at)

(
c

∫ 1

0

(1− s)α−1

Γ(α)
g(s, y(s))ds+ d

∫ 1

0

(1− s)α−2

Γ(α− 1)
g(s, y(s))ds

)
− λ

∫ t

0

(t− s)α−1

Γ(α)
g(s, y(s))ds+

1

δ
(b+ at)

(
c

n∑
k=1

Ik(y(tk))(1− tk) + d
n∑
k=1

Ik(y(tk))

)

−
∑

0<tk<t

Ik(y(tk))(t− tk) +
1

δ
[c(1− t) + d]

m−2∑
i=1

aiy(ξi) +
1

δ
(b+ at)

m−2∑
i=1

biy(ξi),

(5.1.16)

or,

y(t) =λ

∫ 1

0
Gα(t, s)g(s, y(s))ds+

n∑
k=1

H(t, tk)Ik(y(tk)) +
1

δ
[c(1− t) + d]

m−2∑
i=1

aiy(ξi)

+
1

δ
(b+ at)

m−2∑
i=1

biy(ξi).

(5.1.17)

Now from above equation, we have

m−2∑
i=1

aiy(ξi) =

m−2∑
i=1

aiλ

∫ 1

0
Gα(ξi, s)g(s, y(s))ds+

m−2∑
i=1

ai

n∑
k=1

H(ξi, tk)Ik(y(tk))

+
m−2∑
i=1

ai
δ

[d+ c(1− ξi)]
m−2∑
i=1

aiy(ξi) +
m−2∑
i=1

ai
δ

(b+ aξi)
m−2∑
i=1

biy(ξi),

(5.1.18)

m−2∑
i=1

biy(ξi) =

m−2∑
i=1

biλ

∫ 1

0
Gα(ξi, s)g(s, y(s))ds+

m−2∑
i=1

bi

n∑
k=1

H(ξi, tk)Ik(y(tk))

+

m−2∑
i=1

bi
δ

[(d+ c(1− ξi)]
m−2∑
i=1

aiy(ξi) +

m−2∑
i=1

bi
δ

(b+ aξi)

m−2∑
i=1

biy(ξi).

(5.1.19)
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From equation (5.1.18) and (5.1.19), we have

m−2∑
i=1

aiy(ξi) =
1

∆

∣∣∣∣∣
∑m−2
i=1 aiλ

∫ 1

0
Gα(ξi, s)g(s, y(s))ds+

∑m−2
i=1 ai

∑n
k=1H(ξi, tk)Ik(y(tk)) −

∑m−2
i=1

ai
δ (b+ aξi)∑m−2

i=1 biλ
∫ 1

0
Gα(ξi, s)g(s, y(s))ds+

∑m−2
i=1 bi

∑n
k=1H(ξi, tk)Ik(y(tk)) 1−

∑m−2
i=1

bi
δ (b+ aξi)

∣∣∣∣∣ ,
(5.1.20)

m−2∑
i=1

biy(ξi) =
λ

∆

∣∣∣∣∣ 1−
∑m−2
i=1

ai
δ [d+ (1− ξi)c]

∑m−2
i=1 aiλ

∫ 1

0
Gα(ξi, s)g(s, y(s))ds+

∑m−2
i=1 ai

∑n
k=1H(ξi, tk)Ik(y(tk))

−
∑m−2
i=1

bi
δ [d+ (1− ξi)c]

∑m−2
i=1 biλ

∫ 1

0
Gα(ξi, s)g(s, y(s))ds+

∑m−2
i=1 bi

∑n
k=1H(ξi, tk)Ik(y(tk))

∣∣∣∣∣ .
(5.1.21)

Substituting (5.1.20) and (5.1.21) in (5.1.17) we get (5.1.1).

Conversely, if y satis�es (5.1.1), then one can easily show that y is solution of boundary value

problem (5.0.1)-(5.0.3).

Lemma 5.1.2. The functions Gα(t, s) and H(t, tk) de�ned by (5.1.2) and (5.1.3) respectively sat-

is�es the following conditions:

(i) Gα(t, s) > 0,

(ii) H(t, tk) > 0,

(iii) Gα(t, s) ≥ γαGα(s, s) where γα = bd
(b+a)( c

α−1
+d) ,

(iv) H(t, tk) ≥ γαH(tk, tk).

Proof. (i) For 0 ≤ s ≤ t ≤ 1

Gα(t, s) =
1

δ
(b+ at)

(
c(1− s)α−1

Γ(α)
+
d(1− s)α−2

Γ(α− 1)

)
− (t− s)α−1

Γ(α)

≥1

δ
b

(
c(1− s)α−1

Γ(α)
+
d(1− s)α−2

Γ(α− 1)

)
− (t− s)α−1

Γ(α)
.

As 0 ≤ t− s ≤ 1− s, (1−s)α−1

Γ(α) ≥ (t−s)α−1

Γ(α) and−1 > − bc
δ , therefore

Gα(t, s) ≥bd
δ

(1− s)α−2

Γ(α− 1)
> 0.

For 0 ≤ t ≤ s ≤ 1

Gα(t, s) =
1

δ
(b+ at)

(
c(1− s)α−1

Γ(α)
+
d(1− s)α−2

Γ(α− 1)

)
> 0.

So Gα(t, s) > 0.
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(ii) For 0 ≤ tk ≤ t ≤ 1

H(t, tk) =
1

δ
(b+ at)

(
c(1− tk) + d

)
− (t− tk)

≥1

δ
b
(
c(1− tk) + d

)
− (t− tk)

≥1

δ
b
(
c(1− tk) + d

)
− bc

δ
(t− tk)

=
bc

δ
(1− t) +

bd

δ
> 0.

For 0 ≤ t ≤ tk ≤ 1

H(t, tk) =
1

δ
(b+ at)

(
c(1− tk) + d

)
> 0.

So H(t, tk) > 0.

(iii) For 0 ≤ s ≤ t ≤ 1

Gα(t, s) ≥bd
δ

(1− s)α−2

Γ(α− 1)

Gα(s, s) =
1

δ
(b+ as)

(
c(1− s)α−1

Γ(α)
+
d(1− s)α−2

Γ(α− 1)

)
≤b+ a

δ

(
c(1− s)α−1

Γ(α)
+
d(1− s)α−2

Γ(α− 1)

)
≤b+ a

δ

(
c

α− 1
+ d

)
(1− s)α−2

Γ(α− 1)

1

Gα(s, s)
≥ δ

b+ a

 1(
c

α−1 + d
)
 Γ(α− 1)

(1− s)α−2

Gα(t, s)

Gα(s, s)
≥ bd

(b+ a)
(

c
α−1 + d

)
Gα(t, s) ≥ bd

(b+ a)
(

c
α−1 + d

)Gα(s, s).

For 0 ≤ t ≤ s ≤ 1

Gα(t, s) =
1

δ
(b+ at)

(
c(1− s)α−1

Γ(α)
+
d(1− s)α−2

Γ(α− 1)

)
≥1

δ
b

(
c(1− s)α−1

Γ(α)
+
d(1− s)α−2

Γ(α− 1)

)
As s ≤ 1 and b+as

b+a ≤ 1. Therefore

Gα(t, s) ≥1

δ

b

b+ a
(b+ as)

(
c(1− s)α−1

Γ(α)
+
d(1− s)α−2

Γ(α− 1)

)
=

b

b+ a
Gα(s, s).
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So Gα(t, s) ≥ bd
(b+a)( c

α−1
+d)Gα(s, s), because bd

(b+a)( c
α−1

+d) <
b

b+a . As

c

α− 1
> 0

1
c

α−1 + d
<

1

d

bd

(b+ a)( c
α−1 + d)

<
b

b+ a

Hence Gα(t, s) ≥ γαGα(s, s), where γα = bd
(b+a)( c

α−1
+d) .

(iv) For 0 ≤ tk ≤ t ≤ 1

H(t, tk) =
1

δ
(b+ at)

(
c(1− tk) + d

)
− (t− tk)

≥1

δ
b
(
c(1− tk) + d

)
− (t− tk)

As −1 > − bc
δ

H(t, tk) ≥
1

δ
b
(
c(1− tk) + d

)
− bc

δ
(t− tk)

=
1

δ
bc(1− t) +

bd

δ

≥1

δ
b(c(1− tk) + d)

≥1

δ
b
b+ atk
b+ a

(c(1− tk) + d)

H(t, tk) ≥
b

b+ a
H(tk, tk).

For 0 ≤ t ≤ tk ≤ 1

H(t, tk) =
1

δ
(b+ at)

(
c(1− tk) + d

)
≥1

δ
b
(
c(1− tk) + d

)
≥1

δ
b
b+ atk
b+ a

(c(1− tk) + d)

H(t, tk) ≥
b

b+ a
H(tk, tk).

So H(t, tk) ≥ γαH(tk, tk).
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Construct a cone K = {y ∈ PC[J,R+), y(t) ≥ γα‖y‖}. De�ne operator Tλ : K → K as

Tλy(t) =λ

∫ 1

0
Gα(t, s)g(s, y(s))ds+

n∑
k=1

H(t, tk)Ik(y(tk)) +
1

δ
(c(1− t) + d)

[
A(g(., y(.))) +B(Ik(y(.)))

]
+

1

δ
(b+ at)

[
C(g(., y(.))) +D(Ik(y(.)))

]
.

(5.1.22)

The �xed point of operator (5.1.22) are the solutions of the fractional impulsive boundary value

problem (5.0.1)-(5.0.3).

Lemma 5.1.3. Assume that (H1)-(H3) holds, then the operator de�ned by (5.1.22) is completely

continuous.

Proof. For y ∈ K, by Lemma 5.1.1, Tλy ≥ 0 and Tλy ∈ PC[J,R+) and we have

Tλy(t) =λ

∫ 1

0
Gα(t, s)g(s, y(s))ds+

n∑
k=1

H(t, tk)Ik(y(tk)) +
1

δ
(c(1− t) + d)

[
A(g(., y(.))) +B(Ik(y(.)))

]
+

1

δ
(b+ at)

[
C(g(., y(.))) +D(Ik(y(.)))

]
,

Since a, b, c, d > 0 and1 < α ≤ 2, d

( c
α−1

+d)
< 1 and b

b+a < 1. So bd
(b+a)( c

α−1
+d)

< 1

Ty(t) ≥ bd

(b+ a)
(

c
α−1 + d

) ∫ 1

0
λGα(s, s)g(s, y(s))ds+

bd

(b+ a)
(

c
α−1 + d

) n∑
k=1

H(tk, tk)Ik(y(tk))

+
bd

(b+ a)
(

c
α−1 + d

) 1

δ
(c(1− t) + d)

[
A(g(., y(.))) +B(Ik(y(.)))

]
+

bd

(b+ a)
(

c
α−1 + d

) 1

δ
(b+ at)

[
C(g(., y(.))) +D(Ik(y(.)))

]
,

=
bd

(b+ a)
(

c
α−1 + d

)[λ ∫ 1

0
Gα(s, s)g(s, y(s))ds+

n∑
k=1

H(tk, tk)Ik(y(tk))

+
1

δ
(c(1− t) + d)

[
A(g(., y(.))) +B(Ik(y(.)))

]
+

1

δ
(b+ at)

[
C(g(., y(.))) +D(Ik(y(.)))

]]
=γ‖Tλy‖PC .

Thus, T (K) ⊂ K.

Suppose B ⊂ K is any bounded set, then, for any y ∈ B, there exists Mo > 0 such that

0 ≤ y(t) ≤Mo. Thus, by g ∈ C(J × R+,R+), and Ik ∈ C(R+,R+), we have

M1 = max g(s, y(s)) < +∞, M2 = max(Iky(tk)) < +∞

max
y∈[0,M0]

A(g(., y(.))) ≤ M1

∆

∣∣∣∣∣
∑m−2

i=1 aiλ
∫ 1

0 Gα(ξi, s)ds −
∑m−2

i=1
ai
δ (b+ aξi)∑m−2

i=1 biλ
∫ 1

0 Gα(ξi, s)ds 1−
∑m−2

i=1
bi
δ (b+ aξi),

∣∣∣∣∣ = M1Ã,
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max
y∈[0,M0]

B(Ik(y(.))) ≤ M2

∆

∣∣∣∣∣
∑m−2

i=1 ai
∑n

k=1H(ξi, tk)Ik −
∑m−2

i=1
ai
δ (b+ aξi)∑m−2

i=1 bi
∑n

k=1H(ξi, tk)Ik 1−
∑m−2

i=1
bi
δ (b+ aξi),

∣∣∣∣∣ = M2B̃,

max
y∈[0,M0]

C(f(., y(.))) ≤ M1

∆

∣∣∣∣∣ 1−
∑m−2

i=1
ai
δ [d+ (1− ξi)c]

∑m−2
i=1 aiλ

∫ 1
0 Gα(ξi, s)ds

−
∑m−2

i=1
bi
δ [d+ (1− ξi)c]

∑m−2
i=1 biλ

∫ 1
0 Gα(ξi, s)ds,

∣∣∣∣∣ = M1C̃,

max
y∈[0,M0]

D(Ik(y(.))) ≤ M2

∆

∣∣∣∣∣ 1−
∑m−2

i=1
ai
δ [d+ (1− ξi)c]

∑m−2
i=1 ai

∑n
k=1H(ξi, tk)

−
∑m−2

i=1
bi
δ [d+ (1− ξi)c]

∑m−2
i=1 bi

∑n
k=1H(ξi, tk),

∣∣∣∣∣ = M2D̃.

where Ã, B̃, C̃ and D̃ respectively are the determinants appearing in above inequalities.

So, for any y ∈ B, we obtain

‖Tλy‖ = max
t∈[0,1]

[
λ

∫ 1

0
Gα(t, s)g(s, y(s))ds+

n∑
k=1

H(t, tk)Ik(y(tk))

+
1

δ
(c(1− t) + d)

[
A(g(., y(.))) +B(Ik(y(.)))

]
+

1

δ
(b+ at)

[
C(g(., y(.))) +D(Ik(y(.)))

]]
,

≤max
[
λ

∫ 1

0
Gα(s, s)g(s, y(s))ds+

n∑
k=1

H(tk, tk)Ik(y(tk))

+
d

δ

[
A(g(., y(.))) +B(Ik(y(.)))

]
+

1

δ
(b+ a)

[
C(g(., y(.))) +D(Ik(y(.)))

]]
,

≤ M1λ

δΓ(α)
(b+ a)

(
c

α− 1
+ d

)
+
nM2

δ
(a+ b)(c+ d) +

d

δ
(M1Ã+M2B̃)

+
(a+ b)

δ
(M1C̃ +M2D̃) < +∞.

Thus, Tλ(B) is bounded.

Now we show Tλ(B) is equicontinuous. For any t1, t2 ∈ [0, 1], s ∈ [0, 1], we have

|Gα(t1, s)−Gα(t2, s)| ≤ a(t1−t2)
(
c(1−s)α−1

Γ(α) + d(1−s)α−2

Γ(α−1)

)
, |H(t1, tk)−H(t2, tk)| ≤ (t1−t2)(acδ +ad

δ −1)
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‖Tλy(t1)− Tλy(t2)‖ ≤ max
t∈[0,1]

[
λ

∫ 1

0
|Gα(t1, s)−Gα(t2, s)|g(s, y(s))ds+

n∑
k=1

|H(t1, tk)−H(t2, tk)|Ik(y(tk))

− c
δ

(t1 − t2)
[
A(g(., y(.))) +B(Ik(y(.)))

]
+
a

δ
(t1 − t2)

[
C(g(., y(.))) +D(Ik(y(.)))

]]
,

≤λM1

∫ 1

0
a(t1 − t2)

(
c(1− s)α−1

Γ(α)
+
d(1− s)α−2

Γ(α− 1)

)
+ nM2(t1 − t2)(

ac

δ
+
ad

δ
− 1)

− c
δ

(t1 − t2)(M1Ã+M2B̃) +
a

δ
(t1 − t2)(M1C̃ +M2D̃),

=(t1 − t2)
[
aλM1

(
c

Γ(α+ 1)
+

d

Γ(α)

)
+ nM2(

ac

δ
+
ad

δ
− 1)

− c
δ

(M1Ã+M2B̃) +
a

δ
(M1C̃ +M2D̃)

]
.

Thus, Tλ(B) is equicontinuous. We conclude that Tλ : K → K is compact.

So Tλ : K → K is completely continuous.

5.2 Existence of positive solutions

In this section we give some results for the existence of positive solutions. For convenience and

simplicity following notations will be used in the sequel.

g0 = lim
y→0

inf min
t∈[0,1]

g(t, y)

y
, Ik0 = lim

y→0
inf

Ik(y)

y
, I0 = max

1≤k≤n
{Ik0},

g0 = lim
y→0

sup max
t∈[0,1]

g(t, y)

y
, I0
k = lim

y→0
sup

Ik(y)

y
, I0 = max

1≤k≤n
{I0
k},

g∞ = lim
y→∞

inf min
t∈[0,1]

g(t, y)

y
, Ik∞ = lim

y→∞
inf

Ik(y)

y
, I∞ = max

1≤k≤n
{Ik∞},

g∞ = lim
y→∞

sup max
t∈[0,1]

g(t, y)

y
, I∞k = lim

y→∞
sup

Ik(y)

y
, I∞ = max

1≤k≤n
{I∞k }.

De�ne constants Q1 = 1
δ

(
λ

Γ(α)(a+ b)
(

c
α−1 + d

)
+ (c+ d)Ã+ (a+ b)C̃

)
,

Q2 = 1
δ

(
n(a+ b)(c+ d) + (c+ d)B̃ + (a+ b)D̃

)
, Q3 = bγα

δΓ(α+1)(c+ αd).

Theorem 5.2.1. Assume that g0 > 0 and g∞ < +∞, then for

λ ∈
(

1

Q3g∞

1

Q1g0 +Q2I0

)
, (5.2.1)

the boundary value problem (5.0.1)-(5.0.3) has at least one positive solution.

Proof. By (5.2.1), there exist ε > 0 such that

1

Q3(g∞ − ε)
≤ λ ≤ 1

Q1(g0 + ε) +Q2(I0 + ε)
. (5.2.2)
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By de�nition of g0, there exists r1 > 0 such that

g(t, y) ≤ (g0 + ε)y, Ik(y) ≤ (I0
k + ε)y for 0 < y ≤ r1, t ∈ [0, 1], k = 1, 2, ..., n. (5.2.3)

So for t ∈ [0, 1], y ∈ ∂K,with ‖y‖ = r1, then from (5.2.2) and(5.2.3) we have

‖Tλy‖ ≤λ
∫ 1

0
Gα(s, s)g(s, y(s))ds+

n∑
k=1

H(tk, tk)Ik(y(tk)) +
1

δ
(c+ d)

[
A(g(., y(.))) +B(Ik(y(.)))

]
+

1

δ
(b+ at)

[
C(g(., y(.))) +D(Ik(y(.)))

]
,

≤λ(a+ b)

δΓ(α)

(
c

α− 1
+ d

)
(g0 + ε)‖y‖+

1

δ
n(a+ b)(c+ d)(I0 + ε)‖y‖

+
1

δ
(c+ d)

(
Ã(g0 + ε) + B̃(I0 + ε)

)
‖y‖+

1

δ
(a+ b)

(
C̃(g0 + ε) + D̃(I0 + ε)

)
‖y‖,

=
1

δ

(
λ(a+ b)

Γ(α)

(
c

α− 1
+ d

)
+ (c+ d)Ã+ (a+ b)C̃

)
(g0 + ε)‖y‖+

1

δ
(n(a+ b)(c+ d) + (c+ d)B̃

+(a+ b)D̃)(I0 + ε)‖y‖,

=
(
Q1(g0 + ε) +Q2(I0 + ε)

)
‖y‖ ≤ ‖y‖.

Hence, for Ω1 = {y ∈ PC1[0, 1] : ‖y‖ ≤ r1}, we have

‖Tλy‖ ≤ ‖y‖, for y ∈ K ∪ ∂Ω1. (5.2.4)

By de�nition of g∞, there exists r̄2 > 0, such that

g(t, y) ≥ (g∞ − ε)y, for y ≥ r̄2. (5.2.5)

De�ne r2 = max{2r1, r̄2}. Let y ∈ ∂K with ‖y‖ = r2, then by (5.2.2) and (5.2.5) we have

‖Tλy‖ ≥λ
∫ 1

0
Gα(t, s)g(s, y(s))ds

≥λγα
∫ 1

0
Gα(s, s)(g∞ − ε)yds

≥bλγα
δ

∫ 1

0

(
c(1− s)α−1

Γ(α)
+
d(1− s)α−2

Γ(α− 1)

)
(g∞ − ε)yds,

=
bλγα

δΓ(α+ 1)
(c+ αd)(g∞ − ε)‖y‖

=λQ3(g∞ − ε)‖y‖ ≥ ‖y‖.

Thus, for Ω2 = {y ∈ PC1[0, 1] : ‖y‖ ≤ r2}, we have

‖Tλy‖ ≥ ‖y‖, for y ∈ K ∪ ∂Ω2. (5.2.6)

From (5.2.4), (5.2.6) and Theorem 2.3.18 we conclude that the operator Tλ has a �xed point y ∈
K ∩ (Ω̄2\Ω1), with r1 ≤ ‖y‖ ≤ r2.
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Corollary 5.2.2. Assume that g0 = 0 = I0 and g∞ = +∞, then for λ > 0, the boundary value

problem (5.0.1)-(5.0.3) has at least one positive solution.

Theorem 5.2.3. Assume that g0 > 0 and g∞ < +∞, then for

λ ∈
(

1

Q3g0

1

Q1g∞ +Q2I∞

)
, (5.2.7)

the boundary value problem (5.0.1)-(5.0.3) has at least one positive solution.

Proof. By (5.2.7), there exist ε > 0 such that

1

Q3(g0 − ε)
≤ λ ≤ 1

Q1(g∞ + ε) +Q2(I∞ + ε)
. (5.2.8)

By de�nition of g∞, there exists r1 > 0 such that

g(t, y) ≤ (g∞ + ε)y, Ik(y) ≤ (I∞k + ε)y for 0 < y ≤ r1, t ∈ [0, 1], k = 1, 2, ..., n. (5.2.9)

So for t ∈ [0, 1], y ∈ ∂K,with ‖y‖ = r1, then from (5.2.8) and(5.2.9) we have

‖Tλy‖ ≤λ
∫ 1

0
Gα(s, s)g(s, y(s))ds+

n∑
k=1

H(tk, tk)Ik(y(tk)) +
1

δ
(c+ d)

[
A(g(., y(.))) +B(Ik(y(.)))

]
+

1

δ
(b+ at)

[
C(g(., y(.))) +D(Ik(y(.)))

]
,

≤λ(a+ b)

δΓ(α)

(
c

α− 1
+ d

)
(g∞ + ε)‖y‖+

1

δ
n(a+ b)(c+ d)(I∞ + ε)‖y‖

+
1

δ
(c+ d)

(
Ã(g∞ + ε) + B̃(I∞ + ε)

)
‖y‖+

1

δ
(a+ b)

(
C̃(g∞ + ε) + D̃(I∞ + ε)

)
‖y‖,

=
1

δ

(
λ(a+ b)

Γ(α)

(
c

α− 1
+ d

)
+ (c+ d)Ã+ (a+ b)C̃

)
(g∞ + ε)‖y‖+

1

δ
(n(a+ b)(c+ d) + (c+ d)B̃

+(a+ b)D̃)(I∞ + ε)‖y‖,

= (Q1(g∞ + ε) +Q2(I∞ + ε)) ‖y‖ ≤ ‖y‖.

Hence, for Ω1 = {y ∈ PC1[0, 1] : ‖y‖ ≤ r1}, we have

‖Tλy‖ ≤ ‖y‖, for y ∈ K ∪ ∂Ω1. (5.2.10)

By de�nition of g0, there exists r̄2 > 0, such that

g(t, y) ≥ (g0 − ε)y, for y ≥ r̄2. (5.2.11)

De�ne r2 = max{2r1, r̄2}. Let y ∈ ∂K with ‖y‖ = r2, then by (5.2.8) and (5.2.11) we have
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‖Tλy‖ ≥λ
∫ 1

0
Gα(t, s)g(s, y(s))ds,

≥λγα
∫ 1

0
Gα(s, s)(g0 − ε)yds,

≥bλγα
δ

∫ 1

0

(
c(1− s)α−1

Γ(α)
+
d(1− s)α−2

Γ(α− 1)

)
(g0 − ε)yds,

=
bλγα

δΓ(α+ 1)
(c+ αd)(g0 − ε)‖y‖,

=λQ3(g0 − ε)‖y‖ ≥ ‖y‖.

Thus, for Ω2 = {y ∈ PC1[0, 1] : ‖y‖ ≤ r2}, we have

‖Tλy‖ ≥ ‖y‖, for y ∈ K ∪ ∂Ω2. (5.2.12)

From (5.2.10), (5.2.12) and Theorem 2.3.18 we conclude that the operator Tλ has a �xed point

y ∈ K ∩ (Ω̄2\Ω1), with r1 ≤ ‖y‖ ≤ r2.
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