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Abstract

In this thesis, propagation of surface waves in orthotropic elastic half space, with

and without voids is discussed. Surface wave solutions are obtained by solving the

governing equations for both cases (with and without voids). These solutions satisfy

the boundary conditions and yield the frequency equations. Various graphs are

plotted in each case for illustration purposes and analysis of the solution. The case

of Rayleigh wave in orthotropic material with voids is a new problem and discussed

in detail. Graphs for different choices of elastic constants are drawn between non

dimensional speed and non dimensional wave number. The results established are

valid for waves of smaller wave number. It is found that the speed of Rayleigh waves

is affected considerably due to the presence of voids. The speed of Love waves is,

however, found to remain unaffected by voids as well as rotation.
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Chapter 1

Introduction

Waves are everywhere and have intrinsic effect on human life. Most of the informa-

tion that we receive comes to us in the form of waves. We can cook with the help of

waves, talk to others and see things all because of waves. Earthquakes are detected

and studied by observing the properties of waves that they create. Waves are trans-

mitted through the Earth to detect oil and gas deposits and to study the Earth’s

geological structure. Properties of materials are determined through the behavior

of waves transmitted from them. Non destructive testing is the most efficient and

economic technique to check the cracks and discontinuities in materials or parts of a

system without destroying the material. In other words, when the inspection or test

is completed the part or material can still be used. This technique is also used to

ensure the quality of materials. In this testing waves are produced in the material

and their behavior is studied. In recent years, elastic waves transmitted through the

human body have been used for medical diagnosis and therapy.

Waves are classified as mechanical and electromagnetic waves. Mechanical waves

require a medium to propagate while the electromagnetic waves do not. Here in this

thesis we are only concerned with the former one. Mechanical waves are disturbances

in a deformable medium originated by the forced motion of a portion of the medium,

which propagates from its source point to other positions and transfer energy without

transferring the medium’s particles.

The history of the study of wave propagation is long and fascinating. The notion

of linear elasticity was established by the English scientist Robert Hooke in 1660,

2



but not in a way that was expressible in terms of stress and strain. He observed

that for many materials the displacement under a load was proportional to the force

applied. But the main incentive for the early work on elastic waves was the belief

which remained until the middle of nineteenth century that light is a wave which

can propagate through a special medium called as elastic aether. The idea was

proved wrong later but it helps in developing the theory known as elasticity theory

now a days (Achenbach, 1973). Applications of elastic waves in various fields such

as geophysics was also a stimulus for scientists and mathematicians to study the

waves. The names which made contributions of lasting significance in the field were

Poisson, Cauchy, Lame, Stokes, Christoffel, Lamb and many others. A detailed

discussion of their work is given in the historical introduction to Love’s treatise of

the mathematical theory of elasticity (Love, 1944). Rayleigh (1885) and Love (1944,

1911) also made remarkable additions to the theory in the later part of nineteenth

century.

The existence of Rayleigh waves in elastic isotropic half space was first noted by

Rayleigh (1885). He considered the plane waves in an elastic isotropic half space

and assumed that the amplitude of these waves decreases with depth. He found

that plane waves propagating in this case are non dispersive. It was predicted by

him that these waves may play an important role in the earthquakes and this was

found true later. Love (1911) considered transverse waves of decaying amplitude

in isotropic half space covered with an isotopic layer and the dispersive behavior of

these waves was noted.

The linear theory of elastic materials with voids or pores is a generalization of

the classical theory of elasticity. The classical theory is found inadequate for de-

scribing the behavior of materials having a distribution of pores. In classical theory,

mechanical behavior of materials is studied without considering the effect of micro

structure of material. However some discrepancies were observed between theoreti-

cal and experimental work, indicating that micro structure might be important. For

example, discrepancies were found in the stress concentrations in the area of holes,

cracks, and particularly in materials consisting of grains and pores. Therefore the

theory of elastic materials with voids was established and void volume is taken as a
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separate kinematic variable. The theory has applications in the study of geological

materials like rocks and soil, synthetic materials like ceramics and pressed powders,

and biological structure like bones. In the limiting case when void volume tends to

zero, the theory reduces to the classical theory of elasticity.

Goodman and Cowin (1972) introduced a continuum theory for granular materi-

als like sand, grains, powder etc. The theory is developed from the formal arguments

of continuum mechanics. The concept of distributed body was introduced, which

represents a continuum model for granular as well as porous materials like rocks, soil,

sponge etc. The key idea which serves as foundation for this theory is the represen-

tation of bulk density of the material as the product of matrix density (ratio of mass

and volume without pores of the material) and the volume fraction field (the ratio

of the volume occupied by voids to the bulk volume at a point of the material). This

idea was later used by Nunziato and Cowin (1979) to develop a nonlinear theory of

elastic material with voids. Cowin and Nunziato (1983) introduced a linear theory of

elastic material with voids which helps in the mathematical study of the mechanical

behavior of porous solids. They considered many applications of the linear theory

by investigating the response of the materials to homogeneous deformations, pure

bending of beams and small amplitudes of acoustic waves.

Puri and Cowin (1985) studied the behavior of plane waves in an elastic material

with voids. They found that due to presence of voids there exist three plane waves.

Out of the three waves one is transverse and two are longitudinal. It is explained

that the transverse wave is same as we encounter in classical elasticity and is not

effected by voids. Among the two longitudinal waves one is same as that of linear

elasticity while the other is a result of void pores present in the material. The

coupling of the equations of motion makes the waves dispersive in nature.

Thermal effects on linear elastic material with voids are studied by Iesan (1986).

He derived basic field equations and discussed the condition for propagation of ac-

celeration waves in homogeneous isotropic medium with voids.

Propagation of Love waves in an elastic layer with void pores is discussed by Dey

et al (2004). Where it was reported that two types of Love waves can be transmitted

through such a material. One of them is the same as discovered by Love (1911) and
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the second is the result of voids. But the results he presented are found erroneous.

Tomar and Singh (2005) cosidered the problem of transmission of longitudinal

waves through a plane interface between two dissimilar porous elastic solid half

spaces. It was observed that the presence of the voids influences the reflection and

transmission parameters of the waves only for the case of low frequency incident

longitudinal wave. Whereas for high frequency incident longitudinal wave, the re-

sults coincides with the results of classical elasticity, showing that there is no effect

of presence of voids in the media.

Singh and Tomar (2006) studied the problem of reflection and transmission of

transverse waves at a plane interface between two different porous elastic solid half

spaces. It was reported that contrary to longitudinal waves, presence of voids effect

significantly the reflection and transmission of transverse waves. They found that

for high frequency incident wave, the transverse wave corresponding to the change

in void-volume disappears completely. However, for low frequency incident wave,

this wave exists.

Tomar and Ogden (2014) presented a mathematical study of two dimensional

wave propagation in rotating elastic porous media. They explored the existence of

three waves, one transverse and two longitudinal. All these waves are found to be

coupled. This coupling is the consequence of rotation and porosity. In the absence

of rotation transverse wave propagate without any influence of porosity and depicts

the same properties as that of classical elasticity. However longitudinal waves remain

coupled and show significant effects of voids on their propagation.

A. M. Abd-Alla et al (2015) found that Love waves in fibre-reinforced viscoelastic

media with voids are not influenced by the presence of voids.

In this thesis, propagation of surface waves in orthotropic elastic half space with

voids is studied and effect of porosity of material on the speed of surface waves is

explored. In Particular, Love and Rayleigh waves are considered. Chapter wise

summary of the thesis is given below.

Chapter 2 introduces the reader to the basic concepts of elasticity. The notion of

stress, strain, their relationship, and effect of crystal symmetries on elastic stiffness

tensors are revised. Equation of wave propagation is derived. Types of waves and
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some wave parameters like wave number, phase velocity etc are defined. This chapter

also contains a brief review of propagation of Rayleigh and Love waves in isotropic

elastic half space.

In chapter 3, mathematical expression for the speed of Love waves propagating

in orthotropic elastic half space is derived. A brief introduction to the theory of

linear elastic materials with voids as proposed by Cowin and Nunziato (1983), is

given. Affect of rotation and porosity on the speed of Love waves in orthotropic

elastic half space is studied. It is found that rotation of half space and porosity of

material do not affect the speed of Love waves.

In chapter 4, propagation of Rayleigh waves in orthotropic elastic half space with

and without voids is discussed. Approximate secular equation is established in case

of porous orthotropic elastic half space. Contrary to Love waves, significant impact

of porosity is noticed on speed of Rayleigh waves. Various numerical values of the

elastic constants and void parameters are used to illustrate the effects of voids on

the speed of Rayleigh waves. The results established are valid for waves of smaller

wave number.

In chapter 5 all the results found throughout the thesis are concluded briefly.
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Chapter 2

Basics of Elasticity

The purpose of this chapter is to make the reader familiar with some of the fun-

damental concepts of the theory of elasticity. Use of tensor notations in elasticity

theory is frequent, so tensors are briefly discussed in Section 2.1. Section 2.2 deals

with the very basic concepts of stress, strain, Hook’s law, effect of crystal symmetry

on elasticity constants, and equation of motion etc. The last section gives a review

of the propagation of Love waves and Rayleigh waves in an isotropic material.

2.1 Fundamentals of tensors

Tensors are simple mathematical objects that can be used to describe physical prop-

erties of materials. These provide a natural and concise mathematical framework

for formulating and solving problems in areas such as elasticity, fluid mechanics, and

general relativity etc. The rank (or order) of a tensor is defined by the number of

independent directions required to describe it. These are a mere generalization of

scalars and vectors; a scalar is a zero rank tensor, and a vector is a first rank tensor.

Properties that require one direction (as in the case of a first rank tensor) can be

fully described by a 3× 1 column vector, and properties that require two directions

(as in the case of second rank tensor), can be described by 9 numbers, as a 3 × 3

matrix.

In mathematical terms, an nth rank tensor in an m dimensional space is a math-

ematical object that has n indices and mn components and obeys certain transfor-
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mation rules. More specifically, a first order tensor is a linear operator that sends

vectors to scalars and a second order tensor is a linear operator that sends vectors

to vectors. Similarly a third order tensor is a linear operator that sends vectors to

second order tensors. In the same fashion one can say that a tensor of order n is a

linear mapping which maps a vector to a tensor of order n− 1. Components of an

nth rank tensor transform from one basis to another as

T
′

j1j2...jn
= Qi1j1Qi2j2 ...QinjnTi1i2...in , (2.1.1)

where Qi1j1Qi2j2 ...Qinjn are elements of transformation matrix. Following are some

elementary definitions which will be used in the subsequent chapters.

Definition 1. Transpose of a tensor T in an Euclidean vector space V is a function

Tt defined as

(Ttu) · v = u ·Tv, for any u,v ∈ V. (2.1.2)

Definition 2. A tensor T is symmetric if

Tt = T, (2.1.3)

and antisymmetric if

Tt = −T. (2.1.4)

Definition 3. The Kronecker delta δij is a second rank symmetric tensor defined

as

δij =

1, if i = j,

0, if i ̸= j.

(2.1.5)

On contracting the index i where i ranges from 1 to n, one gets

δii = δ11 + δ22 + ...+ δnn = 1 + 1...+ 1 = n. (2.1.6)

Definition 4. The Levi-Civita or permutation tensor of rank three ϵijk is an anti-
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symmetric tensor defined as

ϵijk =


1, for even permutations of ijk,

−1, for odd permutations of ijk,

0, otherwise.

(2.1.7)

Definition 5. A tensor is called isotropic tensor if its components do not change

with the change in coordinate system.

The Kronecker delta δij defined in Definition 3 is an isotropic tensor of rank two.

And permutation tensor ϵijk given in Definition 4 is an example of a third rank

isotropic tensor.

2.2 Foundations of elasticity

Foundations of elasticity are laid upon the concept of continuum approximation.

This is an idealization of matter as continuous material, that is, atoms and molecules

are distributed continuously, so that one can think of material properties; for exam-

ple, density, as a continuous function of position and time. The continuum material

possesses two properties that it can be subdivide sufficiently many times and all

sub-divisions have identical properties. The continuum approximation can not be

used on the nanometer scale, but gives very good results on a scale larger than the

gap between particles.

2.2.1 Strain, stress and their relationship

Strain and stress are the imperative concepts in the theory of elasticity. The follow-

ing detail is about these notions and their relationship.

Strain:

When a force, either body force or surface force, is applied to a material, it effects

every point of the material. This effect or amount of deformation experienced by the

body compared to its original size and shape is defined as strain. Since the shape

of an object is characterized by the relative positions of its particles, in order to
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analyze deformation one has to focus on the change in displacements of neighboring

particles. Let u(x, t) be the displacement vector. In three dimensional linear case

the strain at point P can be determined by the second rank strain tensor Sij

Sij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
. (2.2.1)

It is evident from above equation that strain tensor Sij is symmetric.

Stress:

In an orthonormal frame of reference, stress tensor Tik is defined as

Tik = lim
∆sk→0

(
∆Fi

∆sk

)
, (2.2.2)

where ∆Fi is the i
th component of force acting on surface element ∆sk by the medium

in positive direction. In the notation Tik, the index i specifies the direction of force

acting on a surface element perpendicular to the k−axis. It can be proved easily

that the stress tensor is symmetric. The component of stress acting perpendicular to

the surface element is called as normal stress, and the one tangential to the surface

is said to be shear stress.

Relationship between stress and strain:

An elastic medium is the one which returns to its initial state after the removal of

external forces. This returns to the initial state due to internal stresses. This means

that stress causes strain or stress is a function of strain and vice versa. Also if there

is no stress there is no strain and vice versa. In an elastic medium there is one to

one relation between stress and strain. It is known experimentally that the elastic

behaviour of most substances can be described adequately for small deformations

with the help of first order term in the Taylor expansion of the function

Tij (Skl) = Tij (0) +

(
∂Tij

∂Skl

)
Skl=0

Skl +
1

2

(
∂2Tij

∂Skl∂Smn

)
Skl=0

SklSmn + · · · . (2.2.3)
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The assumption if there is no stress, there is no strain, and vice versa, means Tij(0) =

0. By ignoring the higher order terms, Eq. (2.2.3) reduces to

Tij = CijklSkl, (2.2.4)

where Cijkl =
(

∂Tij

∂Skl

)
Skl=0

.

The fourth rank tensor Cijkl is called elastic stiffness tensor. This describes the

most general linear relationship between the the second rank tensors Tij and Skl.

This proportionality between stress and strain was first introduced by Robert Hooke

in seventeenth century, for the simple case of a stretched string.

The elastic stiffness tensor Cijkl has 81 components. Due to the symmetries of

stress and strain tensors, the elastic stiffness tensor possesses two symmetries that

are Cijkl = Cjikl, and Cijkl = Cjilk. In addition to these, the stored energy function

also imposes a symmetry condition on stiffness tensor which is Cijkl = Cklij. These

three symmetries reduce the number of independent components of Cijkl from 81 to

21.

It is conventional to use Voigt notation or two index representation of Cijkl in

which a pair of indices corresponds to a single index in the following manner.

(11)←→ 1, (22)←→ 2, (33)←→ 3,

(23) = (32)←→ 4, (13) = (31)←→ 5, (21) = (12)←→ 6.

Thus independent elastic constants are labeled by only two indices α and β ranging

from 1 to 6 that is Cαβ = Cijkl, where α←→ ij and β ←→ kl.

2.2.2 Crystal symmetries and elastic stiffness tensor

A material is called elastically homogeneous if the components of elastic stiffness

tensor Cijkl are constants. Material is said to be isotropic if its properties remain

same in every direction. On the other hand properties of an anisotropic medium are

direction dependent. Anisotropy is a result of crystalline structure of solids. Crystal

structure of solids is an ordered arrangement of atoms and molecules in a periodic
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manner. The smallest unit which on repetition generates the entire crystal is called

a unit cell.

On the basis of symmetries of unit cells the structures of crystals are classified

into seven groups called crystal systems. The seven crystal systems, listed in order of

increasing symmetry, are: triclinic, monoclinic, orthorhombic, trigonal, tetragonal,

hexagonal, and cubic.

Symmetry conditions of crystal systems reduce the number of independent com-

ponents of tensor describing the physical properties of that crystal system. Thus

the 21 independent elastic stiffness constants can be reduced further by considering

the symmetry conditions found in different crystal structures. For example in the

case of an isotropic material, these are reduced from 21 to 2. How these components

reduce in isotropic and orthorhombic crystals is briefly discussed here.

As in isotropic crystals, physical properties do not depend upon the direction,

that is they do not depend upon choice of reference frame. Particularly it means

that elastic stiffness constant Cijkl is not affected by the transformations of reference

frame. It is well known that the tensor δij remains invariant under all transforma-

tions. In order to get isotropic form of Cijkl, every component of Cijkl should be

expressed in terms of components of the tensor δij. Moreover due to the symmetry

δij = δji there are only three distinct fourth rank isotropic tensors: δijδkl, δikδjl,

δilδjk. Therefore the isotropic form of elastic stiffness tensor can be obtained by

writing it as a linear combination of all fourth rank isotropic tensors, that is,

Cijkl = λδijδkl + µ(δikδjl + δilδjk). (2.2.5)

The components of Cijkl for isotropic crystals can be obtained from Eq. (2.2.5), and
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are given in the following matrix

Cαβ =



λ+ 2µ λ λ 0 0 0

λ λ+ 2µ λ 0 0 0

λ λ λ+ 2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ


. (2.2.6)

The constants λ and µ are known as Lame’s constants, named after the French

mathematician G. Lame.

In orthotropic or orthorhombic crystals there are three mutually perpendicular

axes all of different lengths. Unit cell for this crystal system is given in Fig. 2.1.

The crystals belong to this system possess one center of symmetry and three 2-fold

axis of symmetry. If an object is rotated about a line by an angle of 180 degrees

and this leaves the object invariant then the object is said to have a two-fold axis

of symmetry.

Figure 2.1: Unit cell for orthotropic crystals.

Choose a as two-fold axis of symmetry, then the transformation matrix specifying

the change due to rotation is

Q =


−1 0 0

0 −1 0

0 0 1

 . (2.2.7)
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From Eq. (2.1.1), one can write

C
′

ijkl = QpiQqjQrkQslCpqrs, (2.2.8)

C
′

ijkl are components of elastic stiffness tensor after rotation or in new basis and Qij

are components from Eq. (2.2.7). Applying the symmetry transformations to the

tensor gives

C
′

11 = C
′

1111 = (−1)(−1)(−1)(−1)C1111 = C11, (2.2.9)

and

C
′

14 = C
′

1123 = (−1)(−1)(−1)(1)C1123 = −C14. (2.2.10)

But due to symmetry C
′
14 = C14, therefore the result is

C14 = C41 = 0. (2.2.11)

Similarly for C15

C
′

15 = C
′

1113 = (−1)(−1)(−1)(1)C1113 = −C15. (2.2.12)

But due to symmetry C
′
15 = C15, that means

C15 = C51 = 0. (2.2.13)

All other components can be calculated in the same way. It is noted that all the

components in which index 3, 2 or 1 appears an odd number of time will vanish. As

mentioned earlier there are three 2-fold axis so applying the same argument to the

remaining axes leads to the matrix given in Eq. (2.2.14).

Symmetry conditions employed by orthorhombic crystal system reduce the com-

ponents of Cijkl from 21 to 12. Out of these 12 only 9 are independent. The following
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matrix encapsulate the results for orthorhombic case

Cαβ =



C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66


. (2.2.14)

A detailed discussion on crystal symmetries and their effect on elastic stiffness con-

stants is given in (Royer and Dieulesaint, 1996). Wood, aluminum, barium sodium

niobate are some examples of orthotropic materials.

2.2.3 Types of elastic waves and wave parameters

A wave is a disturbance or oscillation that travels through space and matter, ac-

companied by transfer of energy. Few wave parameters describing the properties of

waves are reviewed here briefly.

Wavelength and wave number

The wavelength of a wave is the distance between two peaks. Wave number is a

reciprocal of a wavelength and is denoted by letter k.

Frequency

The frequency f of a wave is the number of waves produced by a source in one

second.

Amplitude

The amplitude of a wave is its maximum disturbance from its undisturbed position.

Phase velocity

Phase velocity c is the rate at which a phase of wave propagates. Phase is position of

a point at some instant on wave measured as an angle. A complete cycle is defined

as 360◦ of phase.
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Angular frequency

Angular frequency ω is 2π times frequency f of a wave that is

ω = 2πf.

It is measured in radians per second.

There is a large variety of elastic waves that can propagate through solids. Their

classification depends upon how the motion of the particles of the solid is related

to direction of wave propagation and on the boundary conditions. Some common

types of elastic waves in solids are longitudinal or primary or P-waves, transverse or

shear or S-waves, and surface waves. A discussion on these waves is reviewed from

(Royer and Dieulesaint, 1996) and the various terms are given briefly as follows.

Longitudinal or P-waves

These waves corresponds to the situation when direction of particle displacement

and wave propagation are parallel. These waves can travel through solids, liquids,

and gases.

Transverse or S-waves

The waves for which particle displacement direction is perpendicular to the wave

propagation direction are called transverse or S-waves. Such type of waves can travel

through solids only.

Surface waves

Waves traveling near the surface or boundary of a solid material and characterized

by a decay in the amplitude as they move away from the surface are called as surface

waves. There are many types of surface waves out of which the most important are

Rayleigh and Love waves. A detailed discussion on these two waves is given in

Section 2.3.

Dispersive and non-dispersive waves

If the speed of waves depends upon wave number then the waves are said to be

dispersive. If speed of waves is independent of wave number then waves are non

dispersive which means waves of any wave number can propagate at the same speed.
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2.2.4 Wave propagation equation

The equation of motion comes from the fundamental law of dynamics that is famous

as Newton’s second law of motion F = ma, where F is force causing an acceleration

a in a body of mass m. Consider a solid in stress such that some disturbance is

propagating through it. Change in displacement at some arbitrary point in solid is

given by u and components of a force at some point due to stress T are given by

Fi =
∂Tij

∂xj

, i, j = 1, 2, 3, (2.2.15)

where Tij are the components of stress tensor T as defined in Eq. (2.2.2). According

to Newton’s second law, this force gives rise to the acceleration ∂2ui

∂t2
along the ith axis

for the unit volume mass ρ. In the absence of body forces the equation of motion

will be
∂Tij

∂xj

= ρ
∂2ui

∂t2
, (2.2.16)

By using Hook’s law given in Eq. (2.2.4), the equation of motion takes the form

Cijkl
∂2ul

∂xk∂xj

= ρ
∂2ui

∂t2
. (2.2.17)

This is a set of three second order partial differential equations, which govern the

wave motion for the three dimensional case. By making use of Eq. (2.2.4) and Eq.

(2.2.5), Hook’s law can be written in the form

Tij = λSkkδij + 2µSij. (2.2.18)

Thus, for a homogenous linear isotropic elastic material, equation of motion becomes

(λ+ µ)▽(▽ · u) + µ▽2u = ρü. (2.2.19)

2.3 Surface waves in isotropic elastic media

Waves generated during earthquakes and artificial explosions propagating along the

Earth’s surface are called as surface waves or sometimes seismic surface waves.

17



Rayleigh waves and Love waves are two most important types of surface waves.

Surface waves traveling along the free surface of an elastic half space were pre-

dicted by Rayleigh (1885). In the later years these waves were named after him as

Rayleigh waves. Rayleigh waves result due to an elliptical motion of particles. They

produce both a vertical and horizontal component of motion in the direction of wave

propagation. Love (1911) proved the existence of transverse waves whose amplitude

decay with depth, in an elastic half space covered with an isotropic elastic layer.

These waves were also named after their discoverer as Love waves. Love waves are

produced due to the side to side motion of ground. The particle motion in these

waves is transverse and parallel to the surface.

The simplest medium in which Rayleigh waves can propagate is a homogeneous

isotropic half-space and are non-dispersive in nature. The simplest model in which

Love waves can propagate consists of a homogeneous isotropic layer on a homoge-

neous isotropic half-space. Love waves depict dispersive nature in this model, that

is their velocities are dependent on wave number. Propagation of Rayleigh waves

and Love waves in an isotropic elastic half space are discussed in (Achenbach, 1973)

and briefly reviewed here.

2.3.1 Love waves

Consider a homogeneous elastic isotropic half space covered with layer of another

isotropic material of thickness H, having material properties specified by Lame’s

constants µ, µB and mass densities ρ, ρB in half space and the layer, respectively,

as shown in Fig. 2.2.

Figure 2.2: Isotropic elastic half space covered with an isotropic layer.
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Dispersion relation for Love waves is as follows

tan

√(
c

cBT

)2

− 1kH

− µ

µB


√
1−

(
c
cT

)2

√(
c
cBT

)2

− 1

 = 0, (2.3.1)

where c is phase velocity, cT =
√

µ
ρ
is transverse wave speed in half space, cBT =

√
µB

ρB

is transverse wave speed in layer, and k is wave number. It is observed from Eq.

(2.3.1) that speed and wave number are related. Hence Love waves are dispersive

in nature.

The left-hand side of Eq. (2.3.1) is negative for c = cBT , and positive for c = cT .

It is noticeable that a real root can be found in the interval cBT < c ≤ cT , and no

real root will exist if cBT > cT .

Consider kH as an independent variable then for kH = 0 phase velocity c is same

as cT . It is observed from the graph given in Fig. 2.3 that with the increase in kH,

the phase velocity c decreases. As the number
√
( c
cBT
)2 − 1∗kH approaches π, 2π,...

the phase velocity c approaches cT . The Lowest modes of Love waves are shown in

the following graph plotted against dimensionless wave number versus dimensionless

phase velocity.
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Figure 2.3: Phase velocity for lowest mode of Love waves.
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2.3.2 Rayleigh waves

The existence of Rayleigh waves for two dimensional case of plane waves in an

isotropic material is reviewed here. Consider that plane waves are propagating in x1

direction along the surface of an elastic half space. Positive direction of x2 is taken

downward. It is assumed that motion is taking place in x1x2-plane only. Figure 2.4

illustrates the geometry of the problem.

Figure 2.4: Isotropic elastic half space.

As the motion is considered in x1x2-plane only so the components of displacement

vector u are

u1 = A exp−kbx2 exp(ι̇k(x1 − ct)), (2.3.2a)

u2 = B exp−kbx2 exp(ι̇k(x1 − ct)), (2.3.2b)

where A and B represents amplitudes of waves, k is wave number, c is phase velocity,

and b is positive real constant. Note that ι̇ =
√
−1 throughout the thesis. Substi-

tution of Eqs. (2.3.2a)-(2.3.2b) into Eq. (2.2.19) and consideration of boundary

condition of vanishing stresses

T21 = µ

(
∂u1

∂x2

+
∂u2

∂x1

)
, (2.3.3a)

T22 = λ

(
∂u1

∂x1

+
∂u2

∂x2

)
+ 2µ

(
∂u2

∂x2

)
, (2.3.3b)

at x2 = 0 yields the following well known expression for the phase velocity of

Rayleigh waves

4

[√(
1− c2

c2L

)(
1− c2

c2T

)]
=

(
2− c2

c2T

)2

. (2.3.4)
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In Eq. (2.3.4), c2L = λ+2µ
ρ

is longitudinal wave velocity and c2T = µ
ρ
is transverse

wave velocity in isotropic material. It is interesting to note that in Eq. (2.3.4) wave

number k does not appear, which means that Rayleigh waves in an isotropic elastic

half space are non dispersive in nature.

It is observed that speed of these waves vary depending on the density and

the elastic properties of the material they pass through. Thus the consideration

of material’s elastic anisotropy and non-homogeneity of half space opens up an

extensive field of study. Searching for the conditions of wave existence in such media

and analyzing their properties because of their application in various branches of

engineering and also in some applied sciences such as geophysics has attracted the

interest of many researchers. In the coming chapter a discussion on the existence of

Love and Rayleigh waves in orthotropic medium is given. Effect of porosity of the

medium on speed of these waves is also analyzed which constitutes of some novel

work.
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Chapter 3

Love Waves in Orthotropic Elastic

Materials

Surface waves are very important from the scientific and practical points of view.

It is a known fact that energy of surface waves is confined to the region very near

to the surface, due to this property they are widely used in sensors. Love wave

sensors are highly sensitive micro acoustic devices which are especially suited for

sensing in liquids. These devices are used for density and viscosity measurements.

Long period Love waves are used for studying earthquake mechanism and to explore

internal structure of Earth.

In this chapter, a study on Love waves in an orthotropic medium with and

without void pores is carried out. In Section 3.1, formulae for Love waves’ speed

in an orthotropic medium is derived and graphs are drawn between dimensionless

speed and dimensionless wave number. The effect of rotation on phase velocity of

Love waves in an orthotropic material is discussed in Section 3.2. Linear theory of

elasticity for porous media is presented in Section 3.3. In Section 3.4 effect of voids

on speed of Love waves is discussed. It is found that speed of Love waves is not

influenced by rotation and presence of voids.
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3.1 Love waves at the boundary between an or-

thotropic elastic half space and an orthotropic

layer

Consider Love waves propagating in x1 direction along the surface of an orthotropic

elastic half space x2 ≥ 0 with material properties C44, C55 and mass density ρ.

Positive direction of x2 is taken downward throughout the thesis. In this case the

non vanishing component of displacement is u3(x1, x2, t). So displacement vector

can be written as u = (0, 0, u3(x1, x2, t)). By using Eq. (2.2.14) and Eq. (2.2.17)

the governing equation of motion obtained is as follows

C55
∂2u3

∂x2
1

+ C44
∂2u3

∂x2
2

= ρ
∂2u3

∂t2
. (3.1.1)

For a surface wave, Eq. (3.1.1) assumes a solution of the form

u3 = A exp(−gx2) exp[ι̇k(x1 − ct)], (3.1.2)

where A is the amplitude, c is the phase velocity of the wave, and g is a positive

real constant. Substitution of Eq. (3.1.2) in Eq. (3.1.1) gives

g = k

√
1

C44

(C55 − ρc2). (3.1.3)

For a free surface, boundary condition at x2 = 0 is

T32 = C44

[
∂u3

∂x2

]
= 0. (3.1.4)

The boundary condition given in Eq. (3.1.4) can be satisfied only if either A = 0 or

g = 0. Both these cases do not represent a surface wave. Now it is considered that

half space is covered with another orthotropic elastic material having thickness H

with material properties CB
44, C

B
55 and mass density ρB as shown in Fig. 3.1.
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Figure 3.1: Orthotropic elastic half space covered with another orthotropic layer.

In layer, the equation of motion is

CB
55

∂2uB
3

∂x2
1

+ CB
44

∂2uB
3

∂x2
2

= ρB
∂2uB

3

∂t2
, (3.1.5)

and a solution assumed in layer is

u3
B = f(x2) exp[ι̇k(x1 − ct)], (3.1.6)

where f(x2) is an arbitrary function. Use of Eq. (3.1.6) in Eq. (3.1.5) yields

uB
3 = [R1 sin(qBx2) +R2 cos(qBx2)] exp[ι̇k(x1 − ct)], (3.1.7)

where

qB = k

√
1

CB
44

(ρBc2 − CB
55). (3.1.8)

Consideration of the condition of vanishing shear stress TB
32 = 0, at free surface

x2 = −H gives

R1 cos(qBH) +R2 sin(qBH) = 0. (3.1.9)

The condition of continuity of displacement and shear stress at x2 = 0 results in

A = R2, (3.1.10)

−C44gA− CB
44qBR1 = 0. (3.1.11)
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For a non trivial solution determinant of above mentioned three equations in A, R1

and R2 should vanish. As a result, the phase velocity c of Love waves is given by

tan

[√
ρBc2

CB
44

− CB
55

CB
44

kH

]
− C44

CB
44


√

C55

C44
− ρc2

C44√
ρBc2

CB
44
− CB

55

CB
44

 = 0. (3.1.12)

For simplification consider

(co)
2 =

C55

ρ
, τ =

ρc2o
C44

, ζ =
C44

CB
44

,

(cBo )
2 =

CB
55

ρB
, τB =

ρB(cBo )
2

CB
44

,

(3.1.13)

where cBo is transverse wave speed in orthotropic layer and co is the transverse

wave speed in orthotropic half space. By introducing these notations, Eq. (3.1.12)

becomes

tan

[√
τB((

c

cBo
)2 − 1)kH

]
− ζ


√
τ(1− ( c

co
)2)√

τB(( c
cBo
)2 − 1)

 = 0. (3.1.14)

(a)
cBo
co

= 0.56, ζ = 0.96, τ = 1.009, τB =
0.96.

(b)
cBo
co

= 0.31, ζ = 2.87, τ = 1.009, τB =
0.88.

Figure 3.2: Plots drawn for dimensionless wave speed c
co

against dimensionless wave

number 2kH
π for orthotropic medium with different parameters.
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It is observed from Eq. (3.1.14) that Love waves are dispersive in nature and a

real root will exist in the interval cBo < c ≤ co, since τ > 0 and τB > 0. Considering

kH as an independent variable, it is observed that c = co for kH = 0. Love modes

are shown in Fig. 3.2 for different set of parameters of orthotropic medium. It can

be seen from the Fig. 3.2 that phase velocity decreases with the increase in kH.

3.2 Acceleration in rotating frame

Before discussing the effect of rotation on speed of Love waves, acceleration of a par-

ticle in a rotating frame is reviewed. For this two frame of references are considered:

one whose coordinates are fixed, another rotating with constant angular velocity Ω

in counterclockwise direction along an axis of rotation. Velocity of a particle moving

in rotating frame of reference when observed from fixed frame will be

u̇
′
= u̇+Ω× u, (3.2.1)

where u̇
′
and u̇ are the velocities of particle in fixed and rotating frame of refer-

ence respectively. Here the superimposed dot represents the time derivative. For

calculating acceleration of particle Eq. (3.2.1) is differentiated with respect to time

ü
′
= ü+ 2Ω× u̇+Ω× (Ω× u). (3.2.2)

The terms Ω× (Ω× u), 2Ω× u̇ in Eq. (3.2.2) are called centripetal acceleration

and Coriolis acceleration, respectively. Centripetal acceleration is the acceleration

of an object moving in a circle and is directed towards the center of the circle. When

an object simultaneously rotates about a point and moves relative to that point, an

acceleration results from this. This acceleration is called Coriolis acceleration. In

index notation, Eq. (3.2.2) is

ü
′

i = üi + ΩjujΩi − Ω2ui + 2ϵijkΩju̇k. (3.2.3)
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3.2.1 Impact of rotation on speed of Love waves

According to Schoenberg and Censore (1973), the equation of motion (2.2.16) for a

medium rotating with constant angular velocity Ω, in the absence of body forces,

get the form
∂Tij

∂xj

= ρ[üi + ΩjujΩi − Ω2ui + 2ϵijkΩju̇k]. (3.2.4)

To study the affect of rotation on speed of Love waves, it is considered that Love

waves are propagating in a rotating elastic homogeneous orthotropic half space cov-

ered with a layer of another orthotropic material in x1 direction. Elastic constant

C44, C55 and CB
44, C

B
55 specify material properties in half space and in layer respec-

tively. If rotation is considered about coordinate axes, three possible cases are as

follows.

If x1 axis or x2 axis is taken as the axis of rotation then angular velocity vector

Ω is Ω = (Ω, 0, 0) or Ω = (0,Ω, 0). Figure 3.3(a) and Fig. 3.3(b) represent the case

when x1 and x2 axes are taken as axis of rotation, respectively.

(a) (b)

Figure 3.3: Rotating orthotropic elastic half space covered with another orthotropic
layer.

The following system of governing equations model the situation in both the

cases

2ρΩ
∂u3

∂t
= 0, (3.2.5a)

C55
∂2u3

∂x2
1

+ C44
∂2u3

∂x2
2

= ρ

(
∂2u3

∂t2
− Ω2u3

)
. (3.2.5b)
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Analysis of Eq. (3.2.5a) reveals that displacement can’t be the function of time or

is constant, this condition reduces the Eq. (3.2.5b) to the form

C55
∂2u3

∂x2
1

+ C44
∂2u3

∂x2
2

= −ρΩ2u3. (3.2.6)

From Eq. (3.2.6) it is noticed that time derivative is not involved in the equation

which mean there is no phase velocity and hence no wave.

Figure (3.4) corresponds to the situation if rotation is taken about x3 axis, that

is about the axis parallel to the direction of particle’s displacement.

Figure 3.4: Rotating orthotropic elastic half space covered with another orthotropic
layer.

The following equation models the situation

C55
∂2u3

∂x2
1

+ C44
∂2u3

∂x2
2

= ρ
∂2u3

∂t2
. (3.2.7)

It is observed that rotational terms do not appear in Eq. (3.2.7), and this is the

same case as discussed in Section 3.1, which means that there will be no effect of

rotation on speed of Love waves if rotation axis is parallel to displacement direction.

It is concluded that speed of Love waves is not effected by rotation of half space.
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3.3 Theory of linear elastic materials with voids

Porous materials occur every where and influence our lives. Some examples of porous

media are animal fur, sandstone, bones, skin, wood, building material such as sand,

cement etc. Applications of porous media in real life are countless, for example

porous materials are used in heat transfer devices and also used as sound absorber

in acoustics. Here in this section, a brief discussion on elastic theory of porous media

is presented.

The nonlinear and linear theories of elastic material with voids were established

by Nunziato and Cowin (1979) and Cowin and Nunziato (1983) respectively. The

basic assumption of the theory is that voids contain nothing of mechanical and

energetic significance and bulk density ρ of the material is product of matrix density

Γ and volume fraction distribution function ν.

ρ = Γν. (3.3.1)

Matrix density Γ is the ratio of mass and volume without pores of the material. The

restriction on void volume fraction distribution function ν is 0 < ν ≤ 1, where limit

ν = 0 is associated with the absence of material while ν = 1 corresponds to absence

of voids in elastic material. It is noticeable that for an incompressible solid, the

matrix density Γ is constant, while the bulk density ρ can vary due to the change in

void volume fraction ϕ, where this change can be written as ϕ = ν(x, t) − ν0(x, t).

ν0(x, t) is volume fraction in reference configuration. In linear theory, the change

in volume fraction ϕ is taken as an independent kinematic variable in addition to

classical displacement vector u.

For a linear elastic continuum with voids the governing equations of motion are

the balance of linear momentum and balance of equilibrated force as proposed by

Cowin and Nunziato (1983). The balance of linear momentum results in

Tij,j + ρFi = ρüi, (3.3.2)

where Tij is symmetric stress tensor and Fi represents components of body force.
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The balance of equilibrated force results in

hi,i + g + ρl = ρk̄ϕ̈, (3.3.3)

where hi is equilibrated stress vector, g is intrinsic equilibrated body force, l is

extrinsic equilibrated body force, k̄ is equilibrated inertia.

In linear theory of elastic material with voids the constitutive relations, relating

different voids and stress parameters as given in Cowin and Nunziato (1983) are

Tij = CijklSkl +Dijkϕ,k +Bijϕ+ TR
ij , (3.3.4)

hi = Aijϕ,j +DijkSjk + fiϕ+ hR
i , (3.3.5)

g = −ϖϕ̇− ξϕ−BijSij − fiϕ,i + gR, (3.3.6)

where Cijkl represents elastic stiffness tensor, TR
ij is stress tensor in reference con-

figuration, Dijk, Bij, fi, ϖ, ξ and Aij are void parameters. All these quantities are

functions of ν0 and its gradient. hR
i and gR are equilibrated stress vector and intrin-

sic equilibrated body force in reference state, respectively. According to Cowin and

Nunziato (1983) in reference state Sij, ϕ and ϕ,i should vanish. And it is required

that TR
ij , h

R
i , and gR satisfy the conditions for mechanical equilibrium in reference

state in the absence of body forces, that is

TR
ij,j = 0, hR

i,i + gR = 0. (3.3.7)

It is assumed that TR
ij , h

R
i , and gR vanish if and only if the gradient of ν0 vanishes

(ν0),i = 0 ⇔ TR
ij = 0, hR

i = 0, gR = 0. (3.3.8)

If material possesses center of symmetry, then the tensors Dijk and fi are identically

zero. According to (Ranjeesh and Kumar, 2011) if material is orthotropic then Aij,

and Bij can be written as

Aij = Aiδij, Bij = Biδij. (3.3.9)
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By imposing above mentioned conditions and assumptions the constitutive relations

given in Eqs. (3.3.4), (3.3.5), and (3.3.6) take the simplified form

Tij = CijklSkl +Bijϕ. (3.3.10)

hi = Aijϕ,j. (3.3.11)

g = −ϖϕ̇− ξϕ−BijSij. (3.3.12)

Therefore in the absence of body forces Fi and extrinsic equilibrated body force l

Eq. (3.3.2) and Eq. (3.3.3) take the form

Cijkluk,jl +Biϕ,i = ρüi, (3.3.13)

Aiϕ,ii −ϖϕ̇− ξϕ−Biui,i = ρk̄ϕ̈. (3.3.14)

3.4 Love waves in orthotropic elastic medium with

voids

To study the influence of voids on speed of Love waves in orthotropic material,

consider a homogeneous orthotropic elastic half space with continuous distribution

of void pores, covered with a layer of another porous orthotropic medium. It is

assumed that wave is propagating in x1 direction, therefore the only non vanishing

component of displacement is u3(x1, x2, t). Geometry of the problem is shown in

Fig. 3.5.
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Figure 3.5: Orthotropic elastic half space with voids covered with porous orthotropic
layer.

By using Eq. (2.2.14) and the conditions of above mentioned problem, Eqs.

(3.3.13), and (3.3.14) reduces to the following system

B1
∂ϕ

∂x1

= 0, (3.4.1a)

B2
∂ϕ

∂x2

= 0, (3.4.1b)

C55
∂2u3

∂x2
1

+ C44
∂2u3

∂x2
2

= ρ
∂2u3

∂t2
, (3.4.1c)

A1
∂2ϕ

∂x2
1

+ A2
∂2ϕ

∂x2
2

−ϖ
∂ϕ

∂t
− ξϕ = ρk̄

∂2ϕ

∂t2
, (3.4.1d)

where C55, C44 are material constants and B1, B2, A1, A2, ϕ,ϖ, ξ, k̄ are parameters

due to the porosity of the material. To solve the system of four partial differential

equations given in Eqs. (3.4.1a)-(3.4.1d), a solution of the form

u3 = A exp(−gx2) exp[ι̇k(x1 − ct)], (3.4.2)

is considered. Following form of void volume fraction ϕ is assumed (A. M. Abd-Alla

et al, 2015)

ϕ = ϕ̄(x2) exp[ι̇k(x1 − ct)]. (3.4.3)

Substitution of Eqs. (3.4.2) and (3.4.3) in Eqs. (3.4.1a)-(3.4.1d) result in

g = k

√
1

C44

(C55 − ρc2), (3.4.4a)

ϕ = 0. (3.4.4b)
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In an orthotropic layer with voids the governing equations are

B
′

1

∂ϕ
′

∂x1

= 0, (3.4.5a)

B
′

2

∂ϕ
′

∂x2

= 0, (3.4.5b)

C
′

55

∂2u
′
3

∂x2
1

+ C
′

44

∂2u
′
3

∂x2
2

= ρ
′ ∂2u

′
3

∂t2
, (3.4.5c)

A
′

1

∂2ϕ
′

∂x2
1

+ A
′

2

∂2ϕ
′

∂x2
2

−ϖ
′ ∂ϕ

′

∂t
− ξ

′
ϕ

′
= ρ

′
k̄

′ ∂2ϕ
′

∂t2
, (3.4.5d)

where C
′
55, C

′
44 are material constants in layer. The constants B

′
1, B

′
2, A

′
1, A

′
2, ϕ

′
, ϖ

′
,

ξ
′
, k̄

′
specify the porosity of the material in layer. In layer solution take the form

u
′

3 = ū3(x2) exp[ι̇k(x1 − ct)], (3.4.6a)

ϕ
′
= ϕ̄′(x2) exp[ι̇k(x1 − ct)]. (3.4.6b)

Use of Eqs. (3.4.6a) and (3.4.6b) in Eqs. (3.4.5a)-(3.4.5d) result in

ϕ
′
= 0, (3.4.7a)

u
′

3 = [C1 sin(q
′
x2) + C2 cos(q

′
x2)] exp[ι̇k(x1 − ct)], (3.4.7b)

where

q
′
= k

√
ρ′c2 − C

′
55

C
′
44

. (3.4.8)

It is observed that results obtained above are the same as explored in Section 3.1,

Eqs. (3.1.3) and (3.1.8), where the propagation of Love waves in orthotropic medium

without voids is discussed. Therefore it is concluded that speed of Love waves is not

affected by voids.
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Chapter 4

Rayleigh Waves in Orthotropic

Elastic Materials

Vibrations produced during civil engineering work are often dominated by surface

waves, the propagation of which is strongly effected by site conditions. So surface

waves specially Rayleigh waves are widely used for materials characterization, and

to discover the mechanical and structural properties of objects.

Since Rayleigh waves propagate near the free boundary of a solid, so their energy

is concentrated in the vicinity of the surface which make these waves sensitive to

surface discontinuities. Non destructive testing using Rayleigh waves is technique

for the inspection of defects in engineering components such as high temperature

turbine rotors, where cracks are expected to form on the surface of the component.

Also, these are one of the seismic waves that are produced inside the Earth by

earthquakes. Because of many applications it is worthwhile to study Rayleigh waves

and analyze wave properties under different conditions.

In this chapter propagation of Rayleigh waves in orthotropic elastic half space

with and without voids is discussed in detail. Section 4.1 is focused on the derivation

of formula for Rayleigh wave speed in an orthotropic medium. Section 4.2 is about

the effect of porosity on speed of Rayleigh waves. Numerical results and discussions

are given in Section 4.3.
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4.1 Rayleigh waves in orthotropic elastic half

space

Consider Rayleigh waves propagating in x1 direction along the surface of an or-

thotropic elastic half space as shown in Fig. 4.1. It is assumed that motion is taking

place in x1x2-plane only and x2 is taken positive in downward direction. As motion

is in x1x2-plane so displacement vector is u = (u1(x1, x2, t), u2(x1, x2, t), 0).

Figure 4.1: Orthotropic elastic half space.

The situation is modeled by the following governing equations obtained from Eq.

(2.2.14) and Eq. (2.2.17)

C11
∂2u1

∂x2
1

+ C12
∂2u2

∂x1∂x2

+ C66

[
∂2u1

∂x2
2

+
∂2u2

∂x1∂x2

]
= ρ

∂2u1

∂t2
, (4.1.1a)

C22
∂2u2

∂x2
2

+ C12
∂2u1

∂x1∂x2

+ C66

[
∂2u2

∂x2
1

+
∂2u1

∂x1∂x2

]
= ρ

∂2u2

∂t2
, (4.1.1b)

where C11, C22, C12, C66, ρ are elastic constants specifying material properties. Re-

arrangement of terms in Eqs. (4.1.1a)-(4.1.1b) and dividing by C66 yields

α
∂2u1

∂x2
1

+ γ
∂2u2

∂x1∂x2

+
∂2u1

∂x2
2

=
1

c21

∂2u1

∂t2
, (4.1.2a)

β
∂2u2

∂x2
2

+ γ
∂2u1

∂x1∂x2

+
∂2u2

∂x2
1

=
1

c21

∂2u2

∂t2
, (4.1.2b)

where α = C11

C66
, β = C22

C66
, γ = C12+C66

C66
, c21 =

C66

ρ
. To solve the above system, a solution
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of the following form is assumed

u1(x1, x2, t) = A exp(−kbx2) exp(ι̇k(x1 − ct)), (4.1.3a)

u2(x1, x2, t) = B exp(−kbx2) exp(ι̇k(x1 − ct)), (4.1.3b)

where A, B are amplitudes of waves, k is wave number, b is some positive real

number, and c is the phase velocity of the wave. Use of Eqs. (4.1.3a)-(4.1.3b) in

Eqs. (4.1.2a)-(4.1.2b) results in

A

[
c2

c21
+ b2 − α

]
− ι̇bBγ = 0, (4.1.4a)

B

[
c2

c21
− 1 + b2β

]
− ι̇bAγ = 0. (4.1.4b)

For non trivial solution of A and B, we must have∣∣∣∣∣∣
c2

c21
+ b2 − α −ι̇bγ

−ι̇bγ c2

c21
− 1 + b2β

∣∣∣∣∣∣ = 0. (4.1.5)

The consequent result is

Rb4 + Sb2 + T = 0, (4.1.6)

where

R = β, (4.1.7a)

S = (
c2

c21
− 1) + β(

c2

c21
− α) + γ2, (4.1.7b)

T = (
c2

c21
− α)(

c2

c21
− 1). (4.1.7c)

Let b21 and b22 be the two roots of the Eq. (4.1.6). The values of b21 and b22 as

calculated from Mathematica are

b21 =

(
β

′
y2 + α

′)
+
√
(β ′y2 + α′)2 − 4β (y2 − α) (y2 − 1)

2β
, (4.1.8a)

b22 =

(
β

′
y2 + α

′)−√
(β ′y2 + α′)2 − 4β (y2 − α) (y2 − 1)

2β
, (4.1.8b)

36



where

β
′
= 1 + β, (4.1.9a)

α
′
= −1− αβ + γ2, (4.1.9b)

y =
c

c1
. (4.1.9c)

To ensure exponential decay, b21 and b22 should be positive and real. Since we have

two values of b1 and b2 so b can be written as their linear combination, that is

u1 = [A1 exp(−kb1x2) + A2 exp(−kb2x2)] exp(ι̇k(x1 − ct)), (4.1.10a)

u2 = [B1 exp(−kb1x2) +B2 exp(−kb2x2)] exp(ι̇k(x1 − ct)). (4.1.10b)

The ratios (B
A
) corresponding to b1 and b2 can be written as

B1

A1

= ι̇α1,
B2

A2

= ι̇α2, (4.1.11)

where

α1 =
α− b21 − y2

b1γ
, (4.1.12a)

α2 =
b2γ

y2 − 1 + b22β
. (4.1.12b)

By using Eq. (4.1.11), u1 and u2 take the form

u1 = [A1 exp(−kb1x2) + A2 exp(−kb2x2)] exp(ι̇k(x1 − ct)), (4.1.13a)

u2 = [iα1A1 exp(−kb1x2) + iα2A2 exp(−kb2x2)] exp(ι̇k(x1 − ct)). (4.1.13b)

From Eq. (2.2.4) and Eq. (2.2.14) the expression for shear stress and normal stress

T21 and T22 in an orthotropic material are respectively

T21 = C66

[
∂u1

∂x2

+
∂u2

∂x1

]
, (4.1.14a)

T22 = C12

[
∂u1

∂x1

]
+ C22

[
∂u2

∂x2

]
. (4.1.14b)
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Boundary conditions of vanishing stresses at x2 = 0, yields

A1 (b1 + α1) + A2 (b2 + α2) = 0, (4.1.15a)

A1 (δ − b1α1) + A2 (δ − b2α2) = 0, (4.1.15b)

where δ = C12

C22
. For non trivial solution, determinant of the above system should

vanish that is ∣∣∣∣∣∣ b1 + α1 b2 + α2

δ − b1α1 δ − b2α2

∣∣∣∣∣∣ = 0. (4.1.16)

The consequent outcome is

(b1 + α1) (δ − b2α2) = (b2 + α2) (δ − b1α1) . (4.1.17)

Equation. (4.1.17) is the formulae for Rayleigh wave speed in an orthotropic mate-

rial. It is observed that Rayleigh waves are non dispersive in this case. The results

reduces to the corresponding Rayleigh equation when the elastic constants of or-

thotropic medium are replaced with those of an isotropic material. For an isotropic

material the values of various parameters are

δ = 1−
(
2c2T
c2L

)
, α = β =

c2L
c2T

, γ =
c2L
c2T
− 1,

b1 =

√
1− c2

c2T
, b2 =

√
1− c2

c2L
, α1 =

1√
1− c2

c2T

, α2 =
b2γ

b22β − b21
,

(4.1.18)

where c2L = λ+2µ
ρ

and for isotropic material c2T = µ
ρ
. By using Eq. (4.1.18) in Eq.

(4.1.17) we get the famous Rayleigh wave velocity equation for isotropic material

given in Eq. (2.3.4).

4.2 Rayleigh waves in porous orthotropic elastic

half space

The effect of porosity on the speed of Rayleigh waves is explored in this section.

Propagation of Rayleigh waves is considered in x1 direction in a homogeneous porous

38



orthotropic elastic half space. It is assumed that motion is taking place in x1x2-

plane and therefore u1(x1, x2, t) and u2(x1, x2, t) are the nonzero components of

displacement. Positive x2 axis is taken in the downward direction. Figure 4.2

illustrates the situation.

Figure 4.2: Homogeneous orthotropic elastic half space with voids.

The problem is governed by the following equations, deduced from Eqs. (3.3.13)

and (3.3.14)

C11
∂2u1

∂x2
1

+ C12
∂2u2

∂x1∂x2

+ C66

[
∂2u1

∂x2
2

+
∂2u2

∂x1∂x2

]
+B1

∂ϕ

∂x1

= ρ
∂2u1

∂t2
, (4.2.1a)

C22
∂2u2

∂x2
2

+ C12
∂2u1

∂x1∂x2

+ C66

[
∂2u2

∂x2
1

+
∂2u1

∂x1∂x2

]
+B2

∂ϕ

∂x2

= ρ
∂2u2

∂t2
, (4.2.1b)

A1
∂2ϕ

∂x2
1

+ A2
∂2ϕ

∂x2
2

−ϖ
∂ϕ

∂t
− ξϕ−

[
B1

∂u1

∂x1

+B2
∂u2

∂x2

]
= ρk̄

∂2ϕ

∂t2
, (4.2.1c)

where C11, C22, C12, C66, ρ are material constants, and B1, B2, A1, A2, ϕ,ϖ, ξ, k̄ spec-

ify the presence of voids. By rearranging the terms and dividing by C66, Eqs.

(4.2.1a)-(4.2.1c) take the form

α
∂2u1

∂x2
1

+ γ
∂2u2

∂x1∂x2

+
∂2u1

∂x2
2

+ λ1
∂ϕ

∂x1

=
1

c21

∂2u1

∂t2
, (4.2.2a)

β
∂2u2

∂x2
2

+ γ
∂2u1

∂x1∂x2

+
∂2u2

∂x2
1

+ λ2
∂ϕ

∂x2

=
1

c21

∂2u2

∂t2
, (4.2.2b)

λ3
∂2ϕ

∂x2
1

+ λ4
∂2ϕ

∂x2
2

− ϖ

C66

∂ϕ

∂t
− ξ

C66

ϕ−
[
λ1

∂u1

∂x1

+ λ2
∂u2

∂x2

]
=

k̄

c21

∂2ϕ

∂t2
, (4.2.2c)

where α = C11

C66
, β = C22

C66
, γ = C12+C66

C66
, λ1 = B1

C66
, λ2 = B2

C66
, λ3 = A1

C66
, λ4 = A2

C66
, and

c21 =
C66

ρ
. To solve the system given in Eqs. (4.2.2a)-(4.2.2c), a solution of following

form is assumed
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u1(x1, x2, t) = f(x2) exp(ι̇k(x1 − ct)), (4.2.3a)

u2(x1, x2, t) = g(x2) exp(ι̇k(x1 − ct)), (4.2.3b)

ϕ(x1, x2, t) = h(x2) exp(ι̇k(x1 − ct)), (4.2.3c)

where f(x2), g(x2), h(x2) are arbitrary functions. By using Eqs. (4.2.3a)-(4.2.3c) in

Eqs. (4.2.2a)-(4.2.2c) we get

[
D2 −

(
k2α− k2c2

c21

)]
f(x2) + γι̇kDg(x2) + λ1ι̇kh(x2) = 0,

(4.2.4a)

γι̇kDf(x2) +

[
βD2 −

(
k2 − k2c2

c21

)]
g(x2) + λ2Dh(x2) = 0,

(4.2.4b)

−λ1ι̇kf(x2)− λ2Dg(x2) +

[
λ4D

2 −
(
λ3k

2 − ϖι̇kc

C66

+
ξ

C66

− k̄k2c2

c21

)]
h(x2) = 0,

(4.2.4c)

where D = d
dx2

. Assuming the following notation

σ1 = k2α− k2c2

c21
, (4.2.5a)

σ2 = k2 − k2c2

c21
, (4.2.5b)

σ3 =
λ3

λ4

(
λ4k

2
)
− ϖι̇c1√

λ4C66

(√
λ4k

)(
c

c1

)
+

ξ

C66

− k̄

λ4

(
λ4k

2
)(c2

c21

)
. (4.2.5c)

Equations (4.2.4a)-(4.2.4c) take the form

[
D2 − σ1

]
f(x2) + γι̇kDg(x2) + λ1ι̇kh(x2) = 0, (4.2.6a)

γι̇kDf(x2) +
[
βD2 − σ2

]
g(x2) + λ2Dh(x2) = 0, (4.2.6b)

−λ1ι̇kf(x2)− λ2Dg(x2) +
[
λ4D

2 − σ3

]
h(x2) = 0. (4.2.6c)

For non trivial solution of the above system of equations, we have∣∣∣∣∣∣∣∣∣
D2 − σ1 γι̇kD λ1ι̇k

γι̇kD βD2 − σ2 λ2D

−λ1ι̇k −λ2D λ4D
2 − σ3

∣∣∣∣∣∣∣∣∣ = 0. (4.2.7)
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This implies (
AD6 −BD4 + CD2 − E

)
= 0,

where

A = βλ4, (4.2.8a)

B = σ1βλ4 + λ4σ2 + βσ3 − λ2
2 − γ2k2λ4, (4.2.8b)

C = λ4σ1σ2 + βσ1σ3 + σ2σ3 − σ1λ
2
2 + k2

(
2λ1λ2γ − βλ2

1 − γ2σ3

)
, (4.2.8c)

E = σ1σ2σ3 − λ2
1σ2k

2. (4.2.8d)

The auxiliary equation can be written as

As3 −Bs2 + Cs− E = 0. (4.2.9)

Let s1, s2, s3 be three positive real roots of Eq. (4.2.9) and by Vieta’s formulas, we

can write

s21 + s22 + s23 =
B

A
, (4.2.10a)

s21s
2
2 + s21s

2
3 + s22s

2
3 =

C

A
, (4.2.10b)

s21s
2
2s

2
3 =

E

A
. (4.2.10c)

A discussion on positive real roots of cubic equation is given in appendix A. From

Eqs. (4.2.10a)-(4.2.10c), the following approximated roots are obtained

s21
k2

= α− c2

c21
, (4.2.11a)

s22
k2

=
1

β

(
1− c2

c21

)
, (4.2.11b)

s23
k2

=
A1

A2

− k̄

λ4

c2

c21
. (4.2.11c)

The arbitrary functions f(x2), g(x2), h(x2) can be written as linear combination of

these roots
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f(x2) =
3∑

n=1

Rn exp(−snx2), (4.2.12a)

g(x2) =
3∑

n=1

R1n exp(−snx2), (4.2.12b)

h(x2) =
3∑

n=1

R2n exp(−snx2), (4.2.12c)

where Rn, R1n and R2n are constants. Substitution of Eqs. (4.2.12a)-(4.2.12c) in

Eqs. (4.2.6a)-(4.2.6c) yields

(
s2n − σ1

)
Rn − γι̇ksnR1n + λ1ι̇kR2n = 0, (4.2.13a)

−γι̇ksnRn +
(
βs2n − σ2

)
R1n − λ2snR2n = 0, (4.2.13b)

−λ1ι̇kRn + λ2snR1n +
(
λ4s

2
n − σ3

)
R2n = 0. (4.2.13c)

Equations (4.2.13a), (4.2.13b), and (4.2.13c) can also be written as

(
s2n
k2
− σ1

k2

)
Rn

k
− γι̇

sn
k

R1n

k
+ λ1ι̇

R2n

k2
= 0, (4.2.14a)

−γι̇sn
k

Rn

k
+

(
β
s2n
k2
− σ2

k2

)
R1n

k
− λ2

sn
k

R2n

k2
= 0, (4.2.14b)

−λ1ι̇
Rn

k
+ λ2

sn
k

R1n

k
+

(
λ4

k2s2n
k2
− σ3

)
R2n

k2
= 0. (4.2.14c)

It can be assumed that R̄n = Rn

k
, σ̄1 = σ1

k2
, s̄n = sn

k
, R̄1n = R1n

k
, R̄2n = R2n

k2
, and

σ̄2 =
σ2

k2
. After introducing these notations, Eqs. (4.2.14a), (4.2.14b), and (4.2.14c)

take the form

(
s̄2n − σ̄1

)
R̄n − γι̇s̄nR̄1n + λ1ι̇R̄2n = 0, (4.2.15a)

−γι̇s̄nR̄n +
(
βs̄2n − σ̄2

)
R̄1n − λ2s̄nR̄2n = 0, (4.2.15b)

−λ1ι̇R̄n + λ2s̄nR̄1n +
(
(λ4k

2)s̄2n − σ3

)
R̄2n = 0. (4.2.15c)

From Eq. (4.2.15b)

R̄2n =

(
βs̄2n − σ̄2

λ2s̄n

)
R̄1n −

(
γι̇

λ2

)
R̄n. (4.2.16)
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By using Eq. (4.2.16) in Eq. (4.2.15a), we get

R̄1n = M1nR̄n, n = 1, 2, 3. (4.2.17)

where

M1n =

[
ι̇λ2s̄n(s̄

2
n − σ̄1 + γ λ1

λ2
)

λ1(βs̄2n − σ̄2)− γλ2s̄2n

]
, n = 1, 2, 3. (4.2.18)

Substitution of Eq. (4.2.17) into Eq. (4.2.15c) results in

R̄2n = M2nR̄n, n = 1, 2, 3 (4.2.19)

where

M2n =

[
ι̇λ1 − λ2s̄nM1n

(λ4k2)s̄2n − σ3

]
, n = 1, 2, 3. (4.2.20)

For simplification, the arbitrary functions given in Eqs. (4.2.12a)-(4.2.12c) can be

redefined as

f(x2) =
3∑

n=1

R̄n exp(−snx2), (4.2.21a)

g(x2) =
3∑

n=1

R̄1n exp(−snx2), (4.2.21b)

h(x2) =
3∑

n=1

R̄2n exp(−snx2). (4.2.21c)

Hence the expression for displacement and void volume function given in Eqs.

(4.2.3a)-(4.2.3c)take the form

u1(x1, x2, t) = R̄n exp(−snx2) exp(ι̇k(x1 − ct)), (4.2.22a)

u2(x1, x2, t) = M1nR̄n exp(−snx2) exp(ι̇k(x1 − ct)), (4.2.22b)

ϕ(x1, x2, t) = M2nR̄n exp(−snx2) exp(ι̇k(x1 − ct)). (4.2.22c)

Applying the boundary condition of vanishing stresses T21 = T22 = 0 at x2 = 0,

gives
3∑

n=1

(ι̇M1n − s̄n)R̄n = 0. (4.2.23)
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C12

3∑
n=1

ι̇R̄n − C22

3∑
n=1

(M1ns̄n)R̄n = 0. (4.2.24)

Expressions for T21 and T22 in an orthotropic medium are given in Eqs. (4.1.14a)-

(4.1.14b).

Due to the presence of voids, a boundary condition on equilibrated stress vector

h as given in (Tomar and Ogden, 2014) is observed. The condition says h · n = 0.

Using Eq. (3.3.11), the condition becomes Ai ▽ ϕ · n = 0, where n is the outward

unit normal on the boundary. Here in this case unit normal is n = (0, 1, 0). This

condition results in
3∑

n=1

(M2ns̄n)R̄n = 0. (4.2.25)

Elimination of constants R̄1, R̄2, R̄3 from Eq. (4.2.23), Eq. (4.2.24), and Eq. (4.2.25)

gives secular equation for Rayleigh waves in homogeneous orthotropic porous elastic

half space, that is∣∣∣∣∣∣∣∣∣
−s̄1 + ι̇M11 −s̄2 + ι̇M12 −s̄3 + ι̇M13

ι̇C12 − C22M11s̄1 ι̇C12 − C22M12s̄2 ι̇C12 − C22M13s̄3

M21s̄1 M22s̄2 M23s̄3

∣∣∣∣∣∣∣∣∣ = 0, (4.2.26)

where, M1n and M2n are same as given in Eq. (4.2.18) and Eq. (4.2.20). Expansion

of determinant given in Eq. (4.2.26) yields

0 = (s̄1)(s̄2)(s̄3) {(M12 −M13)M21 + (M13 −M11)M22 + (M11 −M12)M23}

− w {(M13 −M12)M21(s̄1) + (M11 −M13)M22(s̄2) + (M12 −M11)M23(s̄3)}

+ ι̇w {(M21 −M22)(s̄1)(s̄2) + (M23 −M21)(s̄1)(s̄3) + (M22 −M23)(s̄2)(s̄3)}

+ ι̇ {M13(M11M22 −M12M21)(s̄1)(s̄2)}

+ ι̇ {M12(M13M21 −M11M23)(s̄1)(s̄3) +M11(M12M23 −M13M22)(s̄2)(s̄3)}

(4.2.27)

where w = C12

C22
. This is the approximated dispersion relation for Rayleigh waves

propagating in orthotropic elastic half space.
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4.3 Numerical results and discussion

The approximated dispersion relation given in Eq. (4.2.27) is used to compute the

non-dimensional speed c
c1

of Rayleigh wave propagating in orthotropic elastic half

space with voids. Change in dimensionless speed c
c1
is observed against dimensionless

wave number
√
λ4k.

The elastic and void constants listed in Table 4.1 are used for Figures 4.3, 4.4,

4.5 and taken from (Royer and Dieulesaint, 1996) and (Ranjeesh and Kumar, 2011).

Numerical values of other non dimensional void parameters ξ
′
= ξ

C66
, ϖ

′
= ϖι̇c1√

λ4C66

and k
′
= k̄

λ4
are taken arbitrarily.

Symbol Value Unit

C11 23.9× 1010 N/m2

C22 24.7× 1010 N/m2

C12 10.4× 1010 N/m2

C66 7.6× 1010 N/m2

A1 14.798× 10−5 N
A2 13.9714× 10−5 N
B1 8.52849× 1010 N/m2

B2 7.41× 106 N/m2

ρ 5300 kg/m3

Table 4.1: Elastic constants and void parameters.
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Figure 4.3: Variations of dimensionless wave speed c
c1

against dimensionless wave

number
√
λ4k when ξ

′
= 0.7, k

′
= 1.5 and curve1- ϖ

′
= 55, curve2-

ϖ
′
= 79, curve3- ϖ

′
= 99.
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Figure 4.4: Variations of dimensionless wave speed c
c1

against dimensionless wave

number
√
λ4k when ξ

′
= 0.7, ϖ

′
= 65 and curve1- k

′
= 1.5, curve2-

k
′
= 3, curve3- k

′
= 5.
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Figure 4.5: Variations of dimensionless wave speed c
c1

against dimensionless wave

number
√
λ4k when ϖ

′
= 75, k

′
= 2 curve1-ξ

′
= 0.1, curve2-ξ

′
= 2,

curve3-ξ
′
= 3.5.

Figure 4.3 shows the variations of dimensionless wave speed c
c1

against dimen-

sionless wave number
√
λ4k for gradual increase in ϖ

′
and fixed values of ξ

′
and k

′
.

It is noticed that with the gradual increase in ϖ
′
, speed of Rayleigh wave increases.

Figure 4.4 depicts the variation of dimensionless wave speed c
c1

against dimen-

sionless wave number
√
λ4k when the value of void parameter k

′
increases gradually

and the values of ξ
′
and ϖ

′
are kept constant. It is observed that speed decreases

with the increase in value of k
′
.

The variation of dimensionless wave speed c
c1

against dimensionless wave number
√
λ4k when the value of void parameter ξ

′
increases gradually and the values of k

′

and ϖ
′
are kept constant is shown in Fig. 4.5. It is found that speed decreases with

the increase in value of ξ
′
.

To check the influence of material constants on speed of Rayleigh waves, two

different sets of elastic constants are taken from (Baljeet et al, 2013), and (Royer

and Dieulesaint, 1996), and are given in Table 4.2 and Table 4.3 respectively. For

figures 4.6, 4.7 and 4.8 constants given in Table 4.2 are used. Whereas constants
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given in Table 4.3 are used for figures 4.9, 4.10 and 4.11. Same results are observed as

in the first case. Therefore it is concluded that with the gradual increase inϖ
′
, speed

of Rayleigh wave increases. Whereas by increasing k
′
and ξ

′
speed decreases. Also

with the increase in dimensionless wave number
√
λ4k speed of the wave decreases.

Symbol Value Unit

C11 11.65× 1010 N/m2

C22 11.71× 1010 N/m2

C12 7.69× 1010 N/m2

C66 1.98× 1010 N/m2

A1 14.798× 10−5 N
A2 13.9714× 10−5 N
B1 8.52849× 1010 N/m2

B2 7.41× 106 N/m2

ρ 2.19× 103 kg/m3

Table 4.2: Elastic constants and void parameters.
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Figure 4.6: Variations of dimensionless wave speed c
c1

against dimensionless wave

number
√
λ4k when ξ

′
= 0.2, k

′
= 1 and curve1- ϖ

′
= 5, curve2-

ϖ
′
= 10, curve3- ϖ

′
= 15.
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Figure 4.7: Variations of dimensionless wave speed c
c1

against dimensionless wave

number
√
λ4k when ξ

′
= 0.2, ϖ

′
= 10 and curve1- k

′
= 1, curve2-

k
′
= 2.5, curve3- k

′
= 6.
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Figure 4.8: Variations of dimensionless wave speed c
c1

against dimensionless wave

number
√
λ4k when ϖ

′
= 15, k

′
= 3 curve1-ξ

′
= 0.2, curve2-ξ

′
= 0.5,

curve3-ξ
′
= 0.7.
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Symbol Value Unit

C11 3.01× 1010 N/m2

C22 5.8× 1010 N/m2

C12 1.61× 1010 N/m2

C66 1.58× 1010 N/m2

A1 14.798× 10−5 N
A2 13.9714× 10−5 N
B1 8.52849× 1010 N/m2

B2 7.41× 106 N/m2

ρ 4640 kg/m3

Table 4.3: Elastic constants and void parameters.

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

6

7

8

9

10

dimensionless wave number

d
im

e
n
s
io

n
le

s
s
 s

p
e
e
d

1

3
2

Figure 4.9: Variations of dimensionless wave speed c
c1

against dimensionless wave

number
√
λ4k when ξ

′
= 0.5, k

′
= 0.2 and curve1- ϖ

′
= 25, curve2-

ϖ
′
= 35, curve3- ϖ

′
= 45.
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Figure 4.10: Variations of dimensionless wave speed c
c1

against dimensionless wave

number
√
λ4k when ξ

′
= 0.5, ϖ

′
= 55 and curve1- k

′
= 0.3, curve2-

k
′
= 0.5, curve3- k

′
= 0.7.

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

6

7

8

9

10

dimensionless wave number

d
im

e
n
s
io

n
le

s
s
 s

p
e
e
d

3

1

2

Figure 4.11: Variations of dimensionless wave speed c
c1

against dimensionless wave

number
√
λ4k when ϖ

′
= 45, k

′
= 0.3 curve1-ξ

′
= 0.2, curve2-ξ

′
= 1.5,

curve3-ξ
′
= 2.5.
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Chapter 5

Conclusion

In this thesis, the problems of propagation of Love and Rayleigh waves in orthotropic

elastic half space with and without voids are discussed. The results obtained are

summarized in the following lines.

Dispersive nature of Love waves is noted in orthotropic elastic half space. It is

found that these waves are not affected by the presence of voids. Speed of these

waves is not influenced by rotation of half space as well.

An expression for the speed of Rayleigh waves in orthotropic elastic half space is

derived. An approximate frequency equation is obtained for Rayleigh waves propa-

gating in orthotropic elastic half space with voids. It is observed that the relation

obtained in this case is dispersive and dispersion is caused by the presence of voids.

Numerical results reveals that with the gradual increase in ϖ
′
, speed of Rayleigh

wave increases. Whereas by increasing k
′
and ξ

′
speed decreases. Also with the

increase in dimensionless wave number
√
λ4k speed of the wave decreases.

52



Appendix A

Positive real roots of cubic polynomial

A cubic equation has the form

ax3 + bx2 + cx+ d = 0, where a ̸= 0. (A.1)

All cubic equations have either one real root, or three real roots. Solution of general

cubic equation is found by eliminating x2 term. For this a substitution of following

form is made

x = t− b

3a
. (A.2)

Use of Eq. (A.2) in Eq. (A.1) gives depressed cubic equation

t3 + pt+ q = 0, (A.3)

where p = 3ac−b2

3a2
and q = 2b3−9abc+27a2d

27a3
. If p < 0, then all roots of Eq. (A.1) are

real, and if p > 0 then there will be only one real root.

Also by Descartes’ rule of signs one can identify the possible number of positive

real roots of a polynomial without actually graphing or solving it. The rule states

that the number of positive real roots of a polynomial is bounded by the number

of changes of sign in its coefficients. If n is the maximum number of positive roots

then the number of allowable roots is n, n− 2, n− 4, · · · .

Example: Consider the polynomial

f(x) = 3x7 + 5x6 − x4 − x3 − x2 + x− 1. (A.4)

Since there are three sign changes, so maximum three positive roots are possible.
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For negative roots, starting with a polynomial f(x), write a new polynomial

f(−x). For the new polynomial signs of all odd powers reversed, while the signs of

the even powers remains unchanged. Then proceed as before to count the number

of sign changes n. Then n is the maximum number of negative roots.

Example: Consider the above polynomial again to check the number of negative

roots,

f(−x) = −3x7 + 5x6 − x4 + x3 − x2 − x− 1. (A.5)

In above example, there are four sign changes, so there are a maximum of four

negative roots.
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