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Abstract

Stefan Hilger introduced the theory of time scale in his PhD research work in 1988 [13].

Time scale is an arbitrary non-empty closed subset of real numbers [14]. This theory

unifies continuous and discrete analysis to deal with both rd-continuous and ld-continuous

functions.

My thesis deals with the Laplace transform on time scale by using different time scales.

We consider two papers of Martin Bohner [7] and Gusein Sh. Guseinov [8]. These papers

give us definitions of Laplace transform, convolution, inverse Laplace transform and some

results about these topics on isolated time scale, T = hZ = {hk : k ∈ Z} where h > 0 and

T = qN0 = {qk : k ∈ N0} where q > 1 by using delta operator.

Finally, we extend the work of Martin Bohner and Gusein Sh. Guseinov on their

papers by using nabla operator instead of delta operator. Nabla calculus for time scales

was introduced by F. M. Atici and G.S. Guseinov [3]. We also give definitions of Laplace

transform, convolution, inverse Laplace transform and some results about these topics on

isolated time scale, T = hZ = {hk : k ∈ Z} where h > 0 and T = qN0 = {qk : k ∈
N0} where q > 1 by using nabla operator.
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Chapter 1

Introduction to Time Scale

1.1 Basic Definitions of Time Scale with Delta Operator

An arbitrary non-empty closed subset of real numbers is known as time scale, which is de-

noted by T. Natural numbers, integers, nonnegative integers, real numbers are well known

examples of time scales. The cantor set and [0, 2]∪ [4, 6], [0, 2]∪N are also the examples of

time scales. Open intervals, complex numbers, Rational numbers and irrational numbers

are not time scales.

Definition 1.1.1. Suppose T denotes a time scale. For s ∈ T, the forward jump

operator σ : T → T is defined by

σ(s) = inf{t ∈ T : t > s},

on the other hand, the backward jump operator ρ : T → T is defined by

ρ(s) = sup{t ∈ T : t < s}.

In the above definition, substitute inf ∅ = supT and sup ∅ = inf T, where ∅ denotes the

empty set. If σ(s) > s, then s is right-scattered, whereas if ρ(s) < s, then s is left-

scattered. Points that are left-scattered and right-scattered at the same time are called

isolated. Also, if σ(s) = s and s < supT, then s is called right-dense and if ρ(s) = s

and s > inf T, then s is called left-dense. Points that are right-dense and left-dense at

the same time are called dense. Now, the graininess function µ : T → [0,∞) is defined

as

µ(s) = σ(s)− s.

The set Tk is derived from the time scale T as follows: If T has a left-scattered maximum

m, then Tk = T− {m}. Otherwise, Tk = T. In summary,

Tk =

T\(ρ(supT), supT] if supT < ∞

T if supT = ∞.
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1.2 Examples with Delta Operator

Example 1.2.1. Consider three examples T = R, T = Z and T = am = { 1
m : m ∈ N}∪{0}.

(a) If T = R, then for any s ∈ R

σ(s) = inf{t ∈ R : t > s} = inf(s,∞) = s,

in similar way

ρ(s) = sup{t ∈ R : t < s} = sup(−∞, s) = s.

Thus every point s ∈ R is dense. The graininess function µ becomes

µ(s) = 0 for all s ∈ T.

(b) If T = Z, then for any s ∈ Z

σ(s) = inf{t ∈ Z : t > s} = inf{s+ 1, s+ 2, s+ 3, ...} = s+ 1,

in the same way

ρ(s) = sup{t ∈ Z : t < s} = sup{...s− 3, s− 2, s− 1} = s− 1.

Thus every point s ∈ Z is isolated. The graininess function µ changes into

µ(s) = 1 for all s ∈ T.

In above two cases, the graininess function is constant. Now we will discuss third case for

which the graininess function is not constant.

(c) If T = am = { 1
m : m ∈ N} ∪ {0}, then for any s ∈ am

σ(0) = inf{t ∈ am : t > 0} = inf(0, 1] = 0,

similarly

σ(1) = inf{t ∈ am : t > 1} = inf{∅} = supT = 1.

Now, we find σ(s) where s = 1
m . As we know

m+ 1 > m > m− 1

1

m+ 1
<

1

m
<

1

m− 1

σ

(
1

m

)
= inf

{
t ∈ am : t >

1

m

}
=

1

m− 1
.

σ(s) =


0 if s = 0,

1
m−1 if s = 1

m ,

1 if s = 1.
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Similarly

ρ(s) =


0 if s = 0,

1
m+1 if s = 1

m ,

1 if s = 1.

Thus the points s = 0, 1 are dense and all others points of T are isolated. The graininess

function in these cases are

µ(s) =


0 if s = 0,

1
m(m−1) if s = 1

m ,

0 if s = 1.

1.3 Delta Differentiation

Consider f : T → R and define the delta derivative of f at s ∈ Tk.

Definition 1.3.1. [4, 15] Assume a function f : T → R and let s ∈ Tk. Then define

f△(s) is the number (if exists) with the property that any ϵ > 0, there is a neighborhood

U of s (that is, U = (s− δ, s+ δ)
∩
T for some δ > 0) such that

|[f(σ(s))− f(t)]− f△(s)[σ(s)− t]| ≤ ϵ|σ(s)− t| for all t ∈ U,

where f△(s) called delta (or Hilger) derivative of f at s.

Example 1.3.2. (a) Let a function f : T → R is defined by f(s) = γ for all s ∈ T, where
γ ∈ R is constant, then f△(s) ≡ 0. This is true because for any ϵ > 0

|[f(σ(s))− f(t)]− 0.[σ(s)− t]| = |γ − γ| = 0 ≤ ϵ|σ(s)− t|,

holds for all t ∈ T.
(b) Consider a function f : T → R is defined by f(s) = s for all s ∈ T, then f△(s) ≡ 1.

This is clear since for any ϵ > 0

|[f(σ(s))− f(t)]− 1.[σ(s)− t]| = |σ(s)− t− (σ(s)− t)| = 0 ≤ ϵ|σ(s)− t|,

holds for all t ∈ T.

Theorem 1.3.3. [9, 11] Assume a function f : T → R and let s ∈ Tk. Then:

(a) If f is delta differentiable at s, then f is continuous at s.

(b) If f is continuous at s and s is right-scattered, then f is delta differentiable at s with

f△(s) =
f(σ(s))− f(s)

µ(s)
.
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(c) If s is right-dense, then f is delta differentiable at s if and only if

lim
t→s

f(s)− f(t)

s− t
,

exists as a finite number. In this case

f△(s) = lim
t→s

f(s)− f(t)

s− t
.

(d) If f is delta differentiable at s, then

f(σ(s)) = f(s) + µ(s)f△(s).

Example 1.3.4. Again consider the cases T = R and T = Z.
(a) If T = R, then by Theorem (1.3.3)(c) implies that the function f : R → R is delta

differentiable at the point s ∈ R if and only if

f ′(s) = lim
t→s

f(s)− f(t)

s− t
,

exists, that is, if and only if f is differentiable at s. In this case

f△(s) = lim
t→s

f(s)− f(t)

s− t
= f ′(s),

by Theorem (1.3.3)(c).

(b) If T = Z, then by Theorem (1.3.3)(b) implies that the function f : Z → R is delta

differentiable at s ∈ Z with

f△(s) =
f(σ(s))− f(s)

µ(s)
=

f(s+ 1)− f(s)

1
= ∆f(s),

where ∆ denotes the usual forward difference operator.

1.4 Delta Integration and Continuity

Definition 1.4.1. [2] Assume a function F : T → R is called delta antiderivative of the

function f : T → R such that F△(s) = f(s), for all s ∈ Tk. Then the integral of f is

defined by ∫ s

b
f(τ)△ τ = F (s)− F (b) for all b, s ∈ T.

Definition 1.4.2. A function p : T → C is said to be regressive if

1 + µ(s)p(s) ̸= 0 for all s ∈ T.

Definition 1.4.3. A function f : T → R is called rd-continuous if it is continuous at

each right dense points in T and limt→s−f(t) exists for all left-dense points s ∈ T.
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Theorem 1.4.4. [12] Assume the points a, b ∈ T and a function f : T → R is rd-

continuous.

(a) Let T = R, then ∫ c

a
f(s)∆(s) =

∫ c

a
f(s)ds.

(b) If time scale T consists of only isolated points, then

∫ c

a
f(s)∆(s) =


∑

s∈[a,c) f(s)µ(s) if a < c,

0 if a = c,

−
∑

s∈[c,a) f(s)µ(s) if a > c.

1.5 Basic Definitions of Time Scale with Nabla Operator

Let T denotes time scale with the backward jump operator ρ and the nabla differentiable

operator ▽. Then the graininess function ν : T → [0,∞) is defined by

ν(s) = s− ρ(s).

The set Tk is derived from the time scale T as follows: If T has a right-scattered minimum

m, then Tk = T− {m}. Otherwise, Tk = T.

1.6 Examples with Nabla Operator

Example 1.6.1. Consider three examples T = R, T = Z and T = am = { 1
m : m ∈ N}∪{0}.

(a) If T = R, then for any s ∈ R

ρ(s) = sup{t ∈ R : t < s} = sup(−∞, s) = s.

Thus every point s ∈ R is dense. The graininess function ν becomes

ν(s) = 0 for all s ∈ T.

(b) If T = Z, then for any s ∈ Z

ρ(s) = sup{t ∈ Z : t < s} = sup{...s− 3, s− 2, s− 1} = s− 1.

Thus every point s ∈ Z is isolated. The graininess function ν changes into

ν(s) = 1 for all s ∈ T.

In above two cases, the graininess function is constant. Now, we will discuss third case for

which the graininess function is not constant.
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(c) If T = am = { 1
m : m ∈ N} ∪ {0}, then for any s ∈ am

ρ(s) =


0 if s = 0,

1
m+1 if s = 1

m ,

1 if s = 1.

Thus, the points s = 0, 1 are dense and all others points of T are isolated. The graininess

function in these cases are

ν(s) =


0 if s = 0,

1
m(m+1) if s = 1

m ,

0 if s = 1.

1.7 Nabla Differentiation

Consider f : T → R and define the nabla derivative of f at s ∈ Tk.

Definition 1.7.1. [1] Assume a function f : T → R and let s ∈ Tk. Then define f▽(t)

is the number (if exists) with the property that given any ϵ > 0, there is a neighborhood

U of s (that is, U = (s− δ, s+ δ)) such that

|[f(ρ(s))− f(t)]− f▽(s)[ρ(s)− t]| ≤ ϵ|ρ(s)− t| for all t ∈ U,

where f▽(s) called the nabla derivative of f at s.

Example 1.7.2. (a) Consider a function f : T → R is defined by f(s) = γ for all s ∈ T,
where γ ∈ R is constant, then f▽(s) ≡ 0. This is true because for any ϵ > 0

|f(ρ(s))− f(t)− 0.[ρ(s)− t]| = |γ − γ| = 0 ≤ ϵ|ρ(s)− t|,

holds for all t ∈ T.
(b) Consider a function f : T → R is defined by f(s) = s for all s ∈ T, then f▽(s) ≡ 1.

This is clear since for any ϵ > 0

|f(ρ(s))− f(t)− 1.[ρ(s)− t]| = |ρ(s)− t− (ρ(s)− t)| = 0 ≤ ϵ|ρ(s)− t|,

holds for all t ∈ T.

Theorem 1.7.3. [9, 11] Consider a function f : T → R and let s ∈ Tk. Then:

(a) If f is nabla differentiable at s, then f is continuous at s.

(b) If f is continuous at s and s is left-scattered, then f is nabla differentiable at s with

f▽(s) =
f(s)− f(ρ(s))

ν(s)
.
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(c) If s is left-dense, then f is nabla differentiable at s if and only if

lim
t→s

f(s)− f(t)

s− t
,

exists as a finite number. In this case

f▽(s) = lim
t→s

f(s)− f(t)

s− t
.

(d) If f is nabla differentiable at s, then

fρ(s) = f(ρ(s)) = f(s)− ν(s)f▽(s).

Example 1.7.4. Consider also previous two cases T = R and T = Z.
(a) First assume T = R, then by Theorem (1.7.3)(c) implies that the function f : R → R
is nabla differentiable at the point s ∈ R if and only if

f ′(s) = lim
t→s

f(s)− f(t)

s− t
,

exists, that is if and only if f is differentiable at s. In this case

f▽(s) = lim
t→s

f(s)− f(t)

s− t
= f ′(s),

by Theorem (1.7.3)(c). Thus, for T = R, f ′(s) = f▽(s) = f△(s).

(b) Now consider T = Z, then by Theorem (1.7.3)(b) implies that f : Z → R is nabla

differentiable at the point s ∈ Z with

f▽(s) =
f(s)− f(ρ(s))

ν(s)
=

f(s)− f(s− 1)

1
= ∇f(s),

where ∇ is the usual backward difference operator.

1.8 Nabla Integration and Continuity

Definition 1.8.1. [1] Assume a function F : T → R is called a nabla antiderivative of

the function f : T → R such that F▽(s) = f(s) for all s ∈ Tk. Then the integral of f is

defined as ∫ s

b
f(τ)▽ τ = F (s)− F (b) for all b, s ∈ T.

Definition 1.8.2. A function q : T → C is said to be regressive if

1 + ν(s)q(s) ̸= 0 for all s ∈ T.

Definition 1.8.3. A function f : T → R is called ld-continuous if it is continuous at

each left dense points in T and limt→s+f(t) exists for all right-dense points s ∈ T.

7



Theorem 1.8.4. [12] Assume the points a, c ∈ T and a function f : T → R is ld-

continuous.

(a) Let T = R, then ∫ c

a
f(s)∇(s) =

∫ c

a
f(s)ds.

(b) If time scale T consists of only isolated points, then

∫ c

a
f(s)∇(s) =


∑

s∈(a,c] f(s)ν(s) if a < c,

0 if a = c,

−
∑

s∈(c,a] f(s)ν(s) if a > c.

8



Chapter 2

Laplace Transform with Isolated

Time Scale by using Delta

Operator

2.1 The Exponential Function and Laplace Transform by

using Delta Operator

This section is based on generalized exponential function and Laplace transform for an

arbitrary time scale T by using delta operator.

The set of all rd-continuous and regressive functions p : T → C denoted by R. Suppose

p ∈ R and t ∈ T, where t is any fixed element. Then the initial value problem is

y△(s) = p(s)y(s), y(t) = 1, (2.1.1)

has unique solution on T. This solution is said to be exponential function and is denoted

by ep(s, t).

Assume p ∈ R, then exponential function is defined as

ep(s, t) = exp

∫ s

t
log

1 + µ(τ)p(τ)

µ(τ)
△ (τ) for s, t ∈ T.

Throughout assume that sr denote real numbers, for all r ∈ N0 such that

lim
r→∞

sr = ∞ and ur = sr+1 − sr > 0 for all r ∈ N0, (2.1.2)

while throughout assume that

lim
r→∞

sr = ∞ and u = inf
r∈N0

ur > 0, where ur = sr+1 − sr for r ∈ N0, (2.1.3)

holds. For example, the numbers

sr = hr, r ∈ N0 and sr = qr, r ∈ N0,

9



where h > 0 and q > 1, respectively satisfy previous assumption (2.1.3), while

sr =
√
r, r ∈ N0 and sm = lnm, m ∈ N,

do not satisfy previous assumption (2.1.3).

Suppose z denotes complex number, then

z ̸= − 1

ur
for all r ∈ N0. (2.1.4)

Then solution of the problem (2.1.1) is ez(sr, sm)

y(sr+1) = (1 + urz)y(sr), y(sm) = 1, m, r ∈ N0,

satisfies

ez(sr, sm) =

r−1∏
k=m

(1 + ukz) if r ≥ m, (2.1.5)

and

ez(sr, sm) =
1∏m−1

k=r (1 + ukz)
if r ≤ m,

for m = r, the product are understood to be 1.

Assume that supT = ∞ and fix s0 ∈ T. Also assume that z denotes complex constant

that is regressive. Thus ez(., s0) is well defined on T. Assume x : [s0,∞)T → C is locally

∆-integrable function, that is, this function is ∆-integrable over each compact subinterval

of [s0,∞)T. Then the Laplace transform of x is defined below [7,10]

L{x}(z) =
∫ ∞

s0

x(s)

ez(σ(s), s0)
∆s for z ∈ D{x}, (2.1.6)

where D{x} consists of all those complex numbers z ∈ R for which improper integral

exists.

More general form of Laplace transform is given below.

Definition 2.1.1. Assume (2.1.2) holds. If x : {sr : r ∈ N0} → C represents a function,

then the Laplace transform of this function is defined in this way

x̃(z) = L{x}(z) =
∞∑
r=0

urx(sr)∏r
k=0(1 + ukz)

, (2.1.7)

for those complex values of z ∈ C satisfying (2.1.4) for which this series converges.

Recall previous assumptions (2.1.3) and (2.1.4). Define

Pr(z) =

r∏
k=0

(1 + ukz), r ∈ N0, (2.1.8)

10



represent a polynomial in z whose degree is r+1. Consider

Pr(z)− Pr−1(z) =

r∏
k=0

(1 + ukz)−
r−1∏
k=0

(1 + ukz), r ∈ N0,

Pr(z)− Pr−1(z) =
r−1∏
k=0

(1 + ukz)[1 + urz − 1], r ∈ N0,

Pr(z)− Pr−1(z) = zurPr−1(z), r ∈ N0. (2.1.9)

It is easily verified that

1

Pr−1(z)
− 1

Pr(z)
= z

ur
Pr(z)

, r ∈ N0, (2.1.10)

holds, where P−1(z) = 1.

The numbers αr = −u−1
r , r ∈ N0, are contained in [−u−1, 0). For any positive number

δ > 0 and r ∈ N0, then we set

Dδ = C\
∞∪
r=0

Dr
δ where Dr

δ = {z ∈ C : |z − αr| < δ}, r ∈ N0, (2.1.11)

so that Dδ is closed domain of C, where C is the complex plane and the distance of the

points of Dδ are not less than δ from this set {αr : r ∈ N0}.

Lemma 2.1.2. [7] Assume (2.1.3), (2.1.4), (2.1.8) and (2.1.11) holds. For any z ∈ Dδ,

then

|Pr(z)| ≥ (δu)r+1 and |Pr(z)| ≥ δ(δu)rur for all r ∈ N0. (2.1.12)

Moreover,

lim
r→∞

Pr(z) = ∞ for all z ∈ Dδ provided δ > u−1. (2.1.13)

Proof. For any z ∈ Dδ and r ∈ N0, we have

|Pr(z)| =

∣∣∣∣∣
r∏

k=0

(1 + ukz)

∣∣∣∣∣
=

∣∣∣∣∣
r∏

k=0

uk(u
−1
k + z)

∣∣∣∣∣
=

∣∣∣∣∣
r∏

k=0

(uk(z − αk))

∣∣∣∣∣
= ur

(
r−1∏
k=0

uk

)(
r∏

k=0

|z − αk|

)
≥ uku

kδk+1

= δ(δu)kuk.
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The proof of second statement in (2.1.12) is complete. The proof of first statement in

(2.1.12) is as follows

|Pr(z)| =

(
r∏

k=0

uk

)(
r∏

k=0

|z − αk|

)
|Pr(z)| ≥ (ur+1)(δr+1)

|Pr(z)| ≥ (δu)r+1.

Thus proof of (2.1.13) follows from (2.1.12).

Example 2.1.3. If x(sr) = 1 then its Laplace transform

L{1}(z) = 1

z
,

and Laplace transform of exponential function is defined below

L{eα}(z) =
1

z − α
.

For any z ∈ Dδ, with δ > u−1, by using (2.1.7), (2.1.8), (2.1.10) and (2.1.13)

L{1}(z) =
∞∑
r=0

ur
Pr(z)

=
1

z

∞∑
r=0

[
1

Pr−1(z)
− 1

Pr(z)

]
=

1

z
lim

m→∞

[
1− 1

Pm(z)

]
=

1

z
.

The Laplace transform of the second function, by using (2.1.5) and (2.1.8)

eα(sr) =

r−1∏
k=0

(1 + ukα) = Pr−1(α) for r ∈ N0.

It follows that

L{eα}(z) = ẽα(z) =

∞∑
r=0

ureα(sr)

Pr(z)

=
∞∑
r=0

urPr−1(α)

Pr(z)

=
∞∑
r=0

ur
∏r−1

k=0(1 + ukα)∏r
k=0(1 + ukz)

=
∞∑
r=0

ur
∏r−1

k=0(1 + ukα)

(1 + urz)
∏r−1

k=0(1 + ukz)

=

∞∑
r=0

ur
1 + urz

r−1∏
k=0

1 + ukα

1 + ukz

12



=
∞∑
r=0

ur
1 + urz

r−1∏
k=0

α− αk

z − αk
. (2.1.14)

Since the numbers αk, where k ∈ N0, are contained in [−u−1, 0), thus there exists a

sufficiently large number denoted by R0 > 0, such that∣∣∣∣α− αk

z − αk

∣∣∣∣ ≤ 1

2
for all |z| ≥ R0 and k ∈ N0. (2.1.15)

Thus, the series (2.1.14) converges for the values |z| ≥ R0, because∣∣∣∣ ur
1 + urz

∣∣∣∣ = 1

|z − αr|
≤ 1

δ

is bounded. Next, the Laplace transform of this function by using (2.1.10)

ẽα(z) =

∞∑
r=0

urPr−1(α)

Pr(z)

=
u0

P0(z)
+

∞∑
r=1

urPr−1(α)

Pr(z)

=
u0

P0(z)
+

1

z

∞∑
r=1

[
Pr−1(α)

Pr−1(z)
− Pr−1(α)

Pr(z)

]

=
u0

P0(z)
+

1

z

∞∑
r=1

[
(1 + ur−1α)Pr−2(α)

Pr−1(z)
− Pr−1(α)

Pr(z)

]

=
u0

P0(z)
+

1

z

∞∑
r=1

[
Pr−2(α)

Pr−1(z)
+

αur−1Pr−2(α)

Pr−1(z)
− Pr−1(α)

Pr(z)

]

=
u0

P0(z)
+

1

z

∞∑
r=1

[
Pr−2(α)

Pr−1(z)
− Pr−1(α)

Pr(z)

]
+

α

z

∞∑
r=1

ur−1Pr−2(α)

Pr−1(z)

=
u0

P0(z)
+

1

zP0(z)
− 1

z
lim

m→∞

Pm−1(α)

Pm(z)
+

α

z
ẽα(z)

=
1

z
+

α

z
ẽα(z),

where, the fact used that

lim
m→∞

Pm−1(α)

Pm(z)
= 0,

because of

Pm−1(α)

Pm(z)
=

Pm−1(α)

(1 + umz)Pm−1(z)

=
1

1 + umz

m−1∏
k=0

α− αk

z − αk

and (2.1.15). Thus, the final equality is

ẽα(z) =
1

z
+

α

z
ẽα(z).

Hence

ẽα(z) =
1

z − α
.
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Theorem 2.1.4. [7] Assume (2.1.3) holds. If x : {sr : r ∈ N0} → C is a function and

satisfies this condition

|x(sr)| ≤ CRr for all r ∈ N0, (2.1.16)

where R and C are constants which are positive, then the series converges uniformly which

is in (2.1.7), with respect to z in region Dδ with δ > Ru−1.

Proof. By Lemma (2.1.2) and (2.1.16), the general term of the series in (2.1.7)∣∣∣∣urx(sr)Pr(z)

∣∣∣∣ ≤ urCRr

δ(δu)rur
=

C

δ

(
R

δu

)r

for r ∈ N0 and z ∈ Dδ.

The series
∞∑
r=0

(
R

δu

)r

converges if δ > Ru−1. This completes the proof.

Aδ denotes a class of function x : {sr : r ∈ N0} → C for which the Laplace transform

exists and it satisfying the following condition

∞∑
r=0

(δu)−r|x(sr)| < ∞. (2.1.17)

Theorem 2.1.5. [7] Assume (2.1.3) holds. Let x : {sr : r ∈ N0} → C is a function and

define x△ : {sr : r ∈ N0} → C is another function, by

x△(sr) =
x(sr + ur)− x(sr)

ur
.

Suppose that x ∈ Aδ, then x△ ∈ Aδ too, and

L{x△}(z) = zx̃(z)− x(s0). (2.1.18)

Moreover, we have that x△△ ∈ Aδ

L{x△△}(z) = z2x̃(z)− zx(s0)− x△(s0). (2.1.19)

Proof. Consider

∞∑
r=0

(δu)−r|x△(sr)| =
∞∑
r=0

(δu)−r |x(sr+1)− x(sr)|
ur

≤ u−1
∞∑
r=0

(δu)−r[|x(sr+1)|+ |x(sr)|]

= δ

∞∑
r=0

(δu)−r−1|x(sr+1)|+ u−1
∞∑
r=0

(δu)−r|x(sr)| < ∞.
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This shows that x△ ∈ Aδ. Now by using the definition of Laplace transform (2.1.7)

L{x△}(z) =
∞∑
r=0

urx
△(sr)

Pr(z)

=

∞∑
r=0

x(sr+1)− x(sr)

Pr(z)

=

∞∑
r=0

x(sr+1)

Pr(z)
−

∞∑
r=0

x(sr)

Pr(z)

=

∞∑
r=0

x(sr+1)

Pr+1(z)
(1 + ur+1z)−

∞∑
r=0

x(sr)

Pr(z)

=

∞∑
r=0

x(sr+1)

Pr+1(z)
−

∞∑
r=0

x(sr)

Pr(z)
+ z

∞∑
r=0

ur+1x(sr+1)

Pr+1(z)

= −x(s0)

P0(z)
+ z

[
x̃(z)− u0x(s0)

P0(z)

]
= −(1 + u0z)x(s0)

P0(z)
+ zx̃(z)

= −x(s0) + zx̃(z).

The proof of the second statement (2.1.19) is obtained by applying the first statement

(2.1.18).

L{x△△}(z) = zx̃△(z)− x△(s0)

= z[zx̃(z)− x(s0)]− x△(s0)

= z2x̃(z)− zx(s0)− x△(s0).

Theorem 2.1.6. [7] (Initial and Final Value Theorem). Assume (2.1.3) holds.

Then:

(a) Assume x ∈ Aδ and for some δ > 0, then

x(s0) = lim
z→∞

{zx̃(z)}. (2.1.20)

(b) Assume x ∈ Aδ and for all δ > 0, then

lim
r→∞

x(sr) = lim
z→0

{zx̃(z)}. (2.1.21)

Proof. Let x ∈ Aδ for some δ > 0. It follows by definition of Laplace transform (2.1.7)

x̃(z) =
u0x(s0)

1 + u0z
+

u1x(s1)

(1 + u0z)(1 + u1z)
+

u2x(s2)

(1 + u0z)(1 + u1z)(1 + u2z)
+ ...

and

(1 + u0z)x̃(z) = u0x(s0) +
u1x(s1)

(1 + u1z)
+

u2x(s2)

(1 + u1z)(1 + u2z)
+ ...

15



Hence

lim
z→∞

x̃(z) = 0 and lim
z→∞

{(1 + u0z)x̃(z)} = u0x(s0)

lim
z→∞

[x̃(z) + u0zx̃(z)] = u0x(s0)

u0 lim
z→∞

zx̃(z) = u0x(s0)

lim
z→∞

zx̃(z) = x(s0).

This completes the proof of (2.1.20). To show (2.1.21), let x ∈ Aδ for all δ > 0. By using

the equality which is obtained in the proof of Theorem (2.1.5)

∞∑
r=0

x(sr+1)− x(sr)

Pr(z)
= zx̃(z)− x(s0). (2.1.22)

By using Lemma (2.1.2)

lim
z→0

Pr(z) = 1 for any r ∈ N0.

To arrive at (2.1.21), applying limit at (2.1.22), then

−x(s0) + lim
r→∞

x(sr) = lim
z→0

(zx̃(z))− lim
z→0

x(s0).

Hence

lim
r→∞

x(sr) = lim
z→0

(zx̃(z)).

The proof of second statement is complete.

2.2 The Convolution by using Delta Operator

We are using two basic concepts of shift. These concepts are introduced in [6].

Assume a function f : [s0,∞)T → C, shift (or delay) of this function is denoted by

f̂(s, t) and is defined as solution of the problem

f̂△s(s, σ(t)) = −f̂△t(s, t), t, s ∈ T, s0 ≤ t ≤ s,

f̂(s, s0) = f(s), s ∈ T, s0 ≤ s.
(2.2.1)

For given function f, g : [s0,∞)T → C, convolution of f ∗ g is defined as

(f ∗ g)(s) =
∫ s

s0

f̂(s, σ(t))g(t)∆(t), s ∈ T, s0 ≤ s. (2.2.2)

In this section assume only (2.1.2). For a given f : {sr : r ∈ N0} → C, consider the

shifting problem (2.2.1)

f̂△s(sr, sm+1) = −f̂△t(tr, tm) m, r ∈ N0, r ≥ m,

f̂(sr, s0) = f(sr), r ∈ N0.
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um

[
f̂(sr+1, sm+1)− f̂(sr, sm+1)

]
+ ur

[
f̂(sr, sm+1)− f̂(sr, sm)

]
= 0,

m, r ∈ N0, r ≥ m,

f̂(sr, s0) = f(sr), r ∈ N0.

(2.2.3)

Theorem 2.2.1. [7] Assume (2.1.2) holds. For an arbitrary function f : {sr : r ∈ N0} →
C, shifting problem (2.2.3) has unique solution.

Proof. Setting f̂(sr, sm) = f̂r,m for convenience, let us rewrite (2.2.3)

um(f̂r+1,m+1 − f̂r,m+1) + ur(f̂r,m+1 − f̂r,m) = 0, m, r ∈ N0, r ≥ m, (2.2.4)

f̂r,0 = f(sr), r ∈ N0, (2.2.5)

where f̂r,m is defined for m, r ∈ N0 with m ≤ r is a desired solution. Suppose f̂r,m is a

solution of (2.2.4), (2.2.5). Then there are two cases, m = r and m < r. For m = r,

putting m = r in (2.2.4)

ur(f̂r+1,r+1 − f̂r,r+1) + ur(f̂r,r+1 − f̂r,r) = 0, for all r ∈ N0,

f̂r+1,r+1 − f̂r,r = 0 for all r ∈ N0,

f̂r+1,r+1 = f̂r,r for all r ∈ N0.

Note that f̂r+1,r+1 is constant for all values of r ∈ N0, and since by (2.2.5) f̂0,0 = f(s0),

then

f̂r,r = f(s0) for all r ∈ N0. (2.2.6)

Furthermore, it is enough to show that (2.2.4) has a unique solution satisfying (2.2.5)

and (2.2.6). For this, now discuss the case when m < r. For any i ∈ N0, let us set

Ni = [i,∞) ∩ N0. Put m = r − 1 with r ∈ N1 in (2.2.4), then

ur−1(f̂r+1,r − f̂r,r) + ur(f̂r,r − f̂r,r−1) = 0, for all r ∈ N1.

Putting the value of f̂r,r from (2.2.6), then

ur−1(f̂r+1,r − f(s0)) + ur(f(s0)− f̂r,r−1) = 0, for all r ∈ N1,

ur−1f̂r+1,r − f(s0)(ur−1 − ur)− urf̂r,r−1 = 0, for all r ∈ N1,

ur−1f̂r+1,r = (ur−1 − ur)f(s0) + urf̂r,r−1, for all r ∈ N1.

Hence

f̂r+1,r =

(
1− ur

ur−1

)
f(s0) +

ur
ur−1

f̂r,r−1, for all r ∈ N1, (2.2.7)

by (2.2.5)

f̂1,0 = f(s1). (2.2.8)
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Now by using (2.2.8), we are able to find the value of f̂r+1,r from (2.2.7) recursively in

unique way for all r ∈ N0. Next, put m = r − 2 with r ∈ N2 in (2.2.4), then

ur−2(f̂r+1,r−1 − f̂r,r−1) + ur(f̂r,r−1 − f̂r,r−2) = 0, for all r ∈ N2,

ur−2f̂r+1,r−1 + (ur − ur−2)f̂r,r−1 − urf̂r,r−2 = 0, for all r ∈ N2,

ur−2f̂r+1,r−1 = (ur−2 − ur)f̂r,r−1 + urf̂r,r−2 = 0, for all r ∈ N2.

Hence

f̂r+1,r−1 =

(
1− ur

ur−2

)
f̂r,r−1 +

ur
ur−2

f̂r,r−2, for all r ∈ N2, (2.2.9)

by (2.2.5)

f̂2,0 = f(s2). (2.2.10)

In (2.2.9), the term f̂r,r−1 is known for all r ∈ N1 from the first step. Then, by using

(2.2.10), we are able to find the value of f̂r+1,r−1 from (2.2.9) recursively in unique way

for all r ∈ N1. Repeating this technique, put m = r − i for r ∈ Ni in (2.2.4), then

ur−i(f̂r+1,r−i+1 − f̂r,r−i+1) + ur(f̂r,r−i+1 − f̂r,r−i) = 0, for all r ∈ Ni,

ur−if̂r+1,r−i+1 + (ur − ur−i)f̂r,r−i+1 − urf̂r,r−i = 0, for all r ∈ Ni,

ur−if̂r+1,r−i+1 = (ur−i − ur)f̂r,r−i+1 + urf̂r,r−i = 0, for all r ∈ Ni.

Hence

f̂r+1,r−i+1 =

(
1− ur

ur−i

)
f̂r,r−i+1 +

ur
ur−i

f̂r,r−i, for all r ∈ Ni, (2.2.11)

by (2.2.5)

f̂i,0 = f(si). (2.2.12)

In (2.2.9), the term f̂r,r−i+1 is known for all r ∈ Ni−1 from the previous step. Then, by

using (2.2.12), we are able to find the value of f̂r+1,r−i+1 from (2.2.11) recursively in unique

way for all r ∈ Ni−1. Since we take i ∈ N arbitrarily, so f̂r,m is constructed uniquely in

this way for all m, r ∈ N0 with m ≤ r.

Definition 2.2.2. Assume (2.1.2) holds, suppose two function f, g : {sr : r ∈ N0} → C
and let f̂ is the solution of the previous problem (2.2.3). Then convolution of f and g is

denoted by f ∗ g and is defined by (f ∗ g)(s0) = 0 and

(f ∗ g)(sr) =
r−1∑
k=0

ukf̂(sr, sk+1)g(sk), r ∈ N0.

The following theorem is constructed with the help of the classical theorem of Titch-

marsh [18, 19] for usual continuous convolution. This theorem is discrete analogue for

usual continuous convolution.
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Theorem 2.2.3. [7] Assume (2.1.2) holds and f, g : {sr : r ∈ N0} → C are two functions.

If convolution of f and g on {sr : r ∈ N0} is identically zero, then at least one of the

functions f and g is identically zero on {sr : r ∈ N0}.

Proof. Suppose that f ∗ g is identically zero on {sr : r ∈ N0}. Then by definition (2.2.2)

of convolution and by using the notation f̂(sr, sm) = f̂r,m, we have

u0f̂1,1g(s0) = 0,

u0f̂2,1g(s0) + u1f̂2,2g(s1) = 0,

u0f̂3,1g(s0) + u1f̂3,2g(s1) + u2f̂3,3g(s2) = 0,

.

.

.

u0f̂r,1g(s0) + u1f̂r,2g(s1) + ...+ ur−1f̂r,rg(sr−1) = 0,

(2.2.13)

where r ∈ N. It is enough to show that if one of the function is not identically zero, then

other function must be identically zero. Assume that f : {sr : r ∈ N0} is not identically

zero, then we have to show that g : {sr : r ∈ N0} is identically zero. Suppose f(sm) with

m ∈ N0 be the first of the values of f(s0), f(s1),... that is different from zero. Thus

f(s0) = f(s1) = ... = f(sm−1) = 0 and f(sm) ̸= 0. (2.2.14)

For showing g(sr) = 0 for all r ∈ N0, consider all the values of m ∈ N0 in (2.2.14)

separately. Assume m = 0 in (2.2.14), then by (2.2.14) f(s0) ̸= 0. Assume (2.2.13) as

a homogeneous system of linear equations A0y0 = 0 with y0 = (g(s0), g(s1), ..., g(sr−1))
T .

The determinant of A0 (triangular matrix) is

r−1∏
k=0

ukf̂k+1,k+1 = [f(s0)]
r
r−1∏
k=0

uk,

by using (2.2.6). Hence the determinant of A0 is different from zero by the assumption

f(s0) ̸= 0. Thus A0 is invertible matrix and A0y0 = 0 implies y0 = 0, that is g(s0) =

g(s1) = ... = g(sr−1) = 0. Since r ∈ N is arbitrary, so we get g is identically zero on

{sr : r ∈ N0} .

Assume m = 1 in (2.2.14), then

f(s0) = 0 and f(s1) ̸= 0. (2.2.15)

In this case, (2.2.6) implies that

f̂r,r = f(s0) = 0 for all r ∈ N0, (2.2.16)
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and (2.2.13) becomes

u0f̂2,1g(s0) = 0,

u0f̂3,1g(s0) + u1f̂3,2g(s1) = 0,

u0f̂4,1g(s0) + u1f̂4,2g(s1) + u2f̂4,3g(s2) = 0,

.

.

.

u0f̂r,1g(s0) + u1f̂r,2g(s1) + ...+ ur−2f̂r,r−1g(sr−2) = 0.

(2.2.17)

Next, since f(s0) = 0, then from (2.2.7)

f̂r+1,r =
ur
ur−1

f̂r,r−1, r ∈ N1.

Iterating previous equation and taking into account (2.2.5), then

f̂r+1,r =
ur
u0

f̂1,0 =
ur
u0

f(s1), r ∈ N0. (2.2.18)

Let us consider the system (2.2.17) as before as a system A1y1 = 0, the determinant of A1

is equal to
r−2∏
k=0

ukf̂k+2,k+1 = [f(s1)]
r−1

r−2∏
k=0

uk+1

u0
,

and this is different from zero by (2.2.15). Therefore y1 = 0, that is, g(s0) = g(s1) = ... =

g(sr−2) = 0 and since r ∈ N is arbitrary, so we get g is identically zero on {sr : r ∈ N0} .

Assume m = 2 in (2.2.14), then

f(s0) = f(s1) = 0 and f(s2) ̸= 0. (2.2.19)

In this case, (2.2.16) and (2.2.18) still hold. Besides, from f(s1) = 0, (2.2.18) yields

f̂r+1,r = 0 for all r ∈ N0. (2.2.20)

Therefore (2.2.13) becomes

u0f̂3,1g(s0) = 0,

u0f̂4,1g(s0) + u1f̂4,2g(s1) = 0,

u0f̂5,1g(s0) + u1f̂5,2g(s1) + u2f̂5,3g(s2) = 0,

.

.

.

u0f̂r,1g(s0) + u1f̂r,2g(s1) + ...+ ur−3f̂r,r−2g(sr−3) = 0.

(2.2.21)
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Next, since f̂r,r−1 = 0 for r ∈ N1 by (2.2.20), then by (2.2.9)

f̂r+1,r−1 =
ur
ur−2

f̂r,r−2, r ∈ N2.

Iterating the last equation, then

f̂r+1,r−1 =
urur−1

u1u0
f̂2,0 =

urur−1

u1u0
f(s2), r ∈ N1.

Writing the system (2.2.21) again as A2y2 = 0, the determinant of A2 is equal to

r−3∏
k=0

ukf̂k+3,k+1 = [f(s2)]
r−2

r−3∏
k=0

uk+2uk+1

u1u0
,

and this is different from zero by (2.2.19). Then y2 = 0, that is g(s0) = g(s1) = ... =

g(sr−3) = 0 and since r ∈ N is arbitrary, so we get that g is identically zero on {sr : r ∈ N0}.
We observe that one can discuss the system Amym = 0 and argue in this way for any value

of m ∈ N0 in (2.2.14) in order to obtain that g(sr) = 0 for all r ∈ N0.

Theorem 2.2.4. [7] (Convolution Theorem). Assume (2.1.2) holds and f, g : {sr :

r ∈ N0} → C are two functions such that L{f}(z), L{g}(z), L{f ∗ g}(z) exist for a given

z ∈ C satisfying (2.1.4). Then, at the point z,

L{f ∗ g}(z) = L{f}(z). L{g}(z) (2.2.22)

Proof. For our convenience, we set

er,m(z) = ez(sr, sm) and f̂r,m = f̂(sr, sm).

Then by (2.1.4)

er,r(z) = 1 for all r ∈ N0 (2.2.23)

er+1,m(z) = (1 + urz)er,m(z) for all r,m ∈ N0 with m ≤ r, (2.2.24)

er,m+1(z) =
er,m(z)

(1 + umz)
for all r,m ∈ N0 with m+ 1 ≤ r, (2.2.25)

and shifting problem (2.2.3) can be rewritten as (2.2.4), (2.2.5). By using definition of

Laplace transform (2.1.7) and the definition of convolution (2.2.2)

L{f ∗ g}(z) =
∞∑
r=1

ur(f ∗ g)(sr)
er+1,0(z)

=

∞∑
r=1

ur
er+1,0(z)

r−1∑
k=0

ukf̂r,k+1g(sk)

=

∞∑
k=0

ukg(sk)

∞∑
r=k+1

urf̂r,k+1

er+1,0(z)
.

Substituting here

er+1,0(z) = er+1,k+1(z)ek+1,0(z),
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we get that

L{f ∗ g}(z) =
∞∑
k=0

ukg(sk)

ek+1,0(z)

∞∑
r=k+1

urf̂r,k+1

er+1,k+1(z)
.

Hence

L{f ∗ g}(z) = L{g}(z)
∞∑

r=k+1

urf̂r,k+1

er+1,k+1(z)
. (2.2.26)

For our convenience, we set

Φm =

∞∑
r=m

urf̂r,m
er+1,m(z)

, m ∈ N0. (2.2.27)

The target is to show that Φm is independent of the value m ∈ N0, then

∞∑
r=k+1

urf̂r,k+1

er+1,k+1(z)
=

∞∑
r=0

urf̂r,0
er+1,0(z)

=

∞∑
r=0

urf(sr)

er+1,0(z)
= L{f}(z),

thus yields (2.2.22) by using (2.2.26). Now, the remaining part is to show that Φm does

not depend on the value of m ∈ N0. Now putting er,m = er,m(z) and by using (2.2.4) and

(2.2.23), (2.2.24) and (2.2.25)

Φm+1 =

∞∑
r=m+1

urf̂r,m+1

er+1,m+1
=

∞∑
r=m+1

urf̂r,m + umf̂r,m+1 − umf̂r+1,m+1

er+1,m+1

=
∞∑

r=m+1

urf̂r,m
er+1,m+1

− um

∞∑
r=m+1

[
f̂r+1,m+1

er+1,m+1
− f̂r,m+1

er,m+1
+

f̂r,m+1

er,m+1
− f̂r,m+1

er+1,m+1

]

=
∞∑

r=m+1

urf̂r,m
er+1,m+1

− um

∞∑
r=m+1

[
f̂r+1,m+1

er+1,m+1
− f̂r,m+1

er,m+1
+

f̂r,m+1(1 + urz)

er+1,m+1
− f̂r,m+1

er+1,m+1

]

=

∞∑
r=m+1

urf̂r,m
er+1,m+1

− um

∞∑
r=m+1

[
f̂r+1,m+1

er+1,m+1
− f̂r,m+1

er,m+1
+

f̂r,m+1

er+1,m+1
− f̂r,m+1

er+1,m+1
+

urzf̂r,m+1

er+1,m+1

]

=

∞∑
r=m+1

urf̂r,m
er+1,m+1

− um

∞∑
r=m+1

[
f̂r+1,m+1

er+1,m+1
− f̂r,m+1

er,m+1

]
− um

∞∑
r=m+1

f̂r,m+1

er+1,m+1
urz

=

∞∑
r=m+1

urf̂r,m
er+1,m

(1 + umz) + um
f̂m+1,m+1

em+1,m+1
− um

∞∑
r=m+1

f̂r,m+1

er+1,m+1
urz

=

∞∑
r=m+1

urf̂r,m
er+1,m

(1 + umz) + um
f̂m,m

em+1,m
(1 + umz)− um

f̂m,m

em+1,m
(1 + umz)

+ umf̂m+1,m+1 − umz

∞∑
r=m+1

f̂m,m+1

er+1,m+1
ur

= (1 + umz)Φm − um
f̂m,m

em+1,m
(1 + umz) + umf̂m+1,m+1 − umzΦm+1

= (1 + umz)Φm − um
f̂m,m

1 + umz
(1 + umz) + umf̂m+1,m+1 − umzΦm+1
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= (1 + umz)Φm − umf̂m,m + umf̂m+1,m+1 − umzΦm+1

= (1 + umz)Φm − umf̂m,m + umf̂m,m − umzΦm+1

= (1 + umz)Φm − umzΦm+1,

by using the fact that f̂r,r = f(s0) for all r ∈ N0. Consequently

(1 + umz)Φm+1 = (1 + umz)Φm.

Hence Φm+1 = Φm as 1 + umz ̸= 0 under condition (2.1.4).

2.3 The Inverse Laplace Transform by using Delta Operator

Theorem 2.3.1. [7] (Uniqueness Theorem). Assume (2.1.3) holds and suppose x :

{sr : r ∈ N0} → C is a function in the space Aδ, that is x satisfies (2.1.17). Further, let

x̃(z) denotes the Laplace transform of x which is defined by (2.1.7) for z ∈ Dδ. If x̃(z) ≡ 0

for z ∈ Dδ, then x(sr) = 0 for all r ∈ N0.

Proof. By using the definition of Laplace transform (2.1.7), we have

u0x(s0)

1 + u0z
+

u1x(s1)

(1 + u0z)(1 + u1z)
+

u2x(s2)

(1 + u0z)(1 + u1z)(1 + u2z)
+ ... ≡ 0, (2.3.1)

for z ∈ Dδ. Multiplying (2.3.1) by 1+u0z and then passing the limit as |z| → ∞, then we

get x(s0) = 0. Use x(s0) = 0 in (2.3.1) and get

u1x(s1)

(1 + u0z)(1 + u1z)
+

u2x(s2)

(1 + u0z)(1 + u1z)(1 + u2z)
+ ... ≡ 0.

Nowmultiplying this equation by (1+u0z)(1+u1z) and then passing the limit as |z| → ∞ to

obtain x(s1) = 0. By repeating this technique, we find x(s0) = x(s1) = x(s2) = ... = 0.

Theorem (2.4.1) gives that inverse of Laplace transform exists. The inverse Laplace

transform can be found out by using the formula stated in the following theorem.

Theorem 2.3.2. [7] (Inverse Laplace Transform). Assume (2.1.3) holds, suppose

x ∈ Aδ and let x̃(z) denotes its Laplace transform which is defined by (2.1.7). Then

x(sr) =
1

2Πi

∫
Γ
x̃(z)

r−1∏
k=0

(1 + ukz)dz for r ∈ N0, (2.3.2)

where Γ denotes any positive oriented closed curve in Dδ that contains all points αk = −u−1
k

for k ∈ N0.

Proof. Integrating the equality

x̃(z) =
u0x(s0)

1 + u0z
+

u1x(s1)

(1 + u0z)(1 + u1z)
+

u2x(s2)

(1 + u0z)(1 + u1z)(1 + u2z)
+ ..., (2.3.3)
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over the curve Γ with respect to z and then we can take term-by-term integration, and

get that ∫
Γ
x̃(z)dz = u0x(s0)

∫
Γ

dz

1 + u0z
+ u1x(s1)

∫
Γ

dz

(1 + u0z)(1 + u1z)

+ u2x(s2)

∫
Γ

dz

(1 + u0z)(1 + u1z)(1 + u2z)
+ ...

Next ∫
Γ

dz

1 + u0z
=

1

u0

∫
Γ

dz

z − α0
=

2πi

u0
,

and ∫
Γ

dz∏r−1
k=0(1 + ukz)

= 0 for all r ∈ N− {1},

because P (z) denotes the polynomial whose degree greater than or equal to two and if Γ

be any closed contour containing all the roots of the polynomial P (z), then∫
Γ

dz

P (z)
= 0.

Therefore

x(s0) =
1

2πi

∫
Γ
x̃(z)dz.

Now multiplying (2.3.3) by 1 + u0z and then integrating over Γ with respect to z, then∫
Γ
(1 + u0z)x̃(z)dz = u0x(s0)

∫
Γ
dz + u1x(s1)

∫
Γ

dz

1 + u1z

+ u2x(s2)

∫
Γ

dz

(1 + u1z)(1 + u2z)
+ ....

Next, ∫
Γ
dz = 0,

∫
Γ

dz

1 + u1z
=

1

u1

∫
Γ

dz

z − α1
=

2πi

u1
,

and ∫
Γ

dz∏r
k=1(1 + ukz)

= 0 for all r ∈ N− {1}.

Therefore

x(s1) =
1

2πi

∫
Γ
x̃(z)(1 + u0z)dz.

Repeating this technique, we are able to obtain this formula (2.3.2) for an arbitrary r ∈
N0.

2.4 Examples

The time scale which used in these examples are defined in [16,17].
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Example 2.4.1. Let sr = hr, r ∈ N0, where h > 0 is any fixed real number. In this case

ur = sr+1 − sr = (r + 1)h− rh = h for all r ∈ N0.

Note that (2.1.3) holds with u = h. For a function x : {hr : r ∈ N0} → R, its Laplace

transform (2.1.7) becomes

L{x}(z) = x̃(z) = h

∞∑
r=0

x(rh)

(1 + hz)r+1
.

The inversion formula (2.3.2) takes the form

x(rh) =
1

2Πi

∫
Γ
x̃(z)(1 + hz)rdz, r ∈ N0,

where Γ denotes positive oriented curve that encloses the point − 1
h .

Example 2.4.2. Let sr = qr, r ∈ N0, where q > 1 is any fixed real number. Then

ur = sr+1 − sr = qr+1 − qr = (q − 1)qr = q′qr for all r ∈ N0, where q′ = q − 1.

Notice that (2.1.3) holds with u = q′. For a function x : {qr : r ∈ N0} → R, its Laplace

transform (2.1.7) becomes

L{x}(z) = x̃(z) = q′
∞∑
r=0

qrx(qr)∏r
k=0(1 + q′qkz)

.

The inversion formula (2.3.2) takes the form

x(qr) =
1

2Πi

∫
Γ
x̃(z)

r−1∏
k=0

(1 + q′qkz)dz, r ∈ N0,

where Γ denotes positive oriented curve that contains all points −(q′qk)−1 with k ∈ N0.
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Chapter 3

The h-Laplace and q-Laplace

Transform in Time Scale

3.1 The Exponential Function and The Laplace Transform

This section consist definition of exponential function for an arbitrary time scale T and

some properties regarding exponential functions are also discussed. All these properties

are given in [6, 10].

The set R under the operation of addition ⊕ is an abelian group where ⊕ is defined

by

(p⊕ g)(s) = p(s) + g(s) + µ(s)p(s)g(s) for all s ∈ T.

For any g ∈ R, ⊖g denotes the additive inverse of g, defined by

(⊖g)(s) = − g(s)

1 + µ(s)g(s)
for all s ∈ T.

The subtraction ⊖ on R is defined by

(p⊖ g)(s) = (p+ (⊖g))(s) = p(s) + (⊖(g))(s) + µ(s)p(s)(⊖g)(s)

= p(s)− g(s)

1 + µ(s)g(s)
− µ(s)p(s)g(s)

1 + µ(s)g(s)

=
p(s) + µ(s)p(s)g(s)− g(s)− µ(s)p(s)g(s)

1 + µ(s)g(s)

=
p(s)− g(s)

1 + µ(s)g(s)
, for all s ∈ T.

Similarly, the following properties directly follows from the definition

g ⊖ g = 0,

⊖(⊖g) = g,

⊖(p⊖ g) = g ⊖ p,

⊖(p⊕ g) = (⊖p)⊕ (⊖g).
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(R,⊕) is said to be regressive group.

Let p ∈ R and fix a point s0 ∈ T. Then the initial value problem

y△ = p(s)y, y(s0) = 1, (3.1.1)

has a unique solution on T.

Definition 3.1.1. If p ∈ R and s0 ∈ T, then (3.1.1) has a unique solution is said to be

exponential function which is denoted by ep(., s0).

Few properties of exponential functions are stated in the form of following theorem.

Theorem 3.1.2. [6, 10] If p, g ∈ R, then

(1) e0(s, t) ≡ 1 and ep(s, s) ≡ 1;

(2) ep(σ(s), t) = [1 + µ(s)p(s)]ep(s, t) and ep(t, σ(s)) =
ep(s, t)

1 + µ(s)p(s)
;

(3) ep(s, t) =
1

ep(t, s)
= e⊖p(t, s);

(4) ep(s, t)ep(t, w) = ep(s, w);

(5) ep(s, t)eg(s, t) = ep⊕g(s, t);

(6)
ep(s, t)

eg(s, t)
= ep⊖g(s, t);

(7) (ep(., t))
△(s) = p(s)ep(s, t) and (ep(s, .))

△(s) = −p(s)ep(t, σ(s));

(8) (
1

ep(., t)
)△(s) = − p(s)

ep(σ(s), t)
.

If T = R then σ(s) = s, µ(s) = 0 and y△ = ý is usual derivative. Thus, in this case

p : T → C be any function and s, s0 ∈ T, then

ep(s, s0) = exp

{∫ s

s0

p(τ)dτ

}
.

In particular, α is any complex constant, then

eα(s, s0) = eα(s−s0).

Assume that supT = ∞ and fix s0 ∈ T. Suppose that z is complex constant which is

regressive, then ⊖z ∈ R is also regressive. Thus e⊖z is well defined on time scale T.

Definition 3.1.3. Assume x : [s0,∞)T → C is locally ∆-integrable function, that is, it is

∆-integrable over each compact subinterval of [s0,∞)T. Then Laplace transform of x

is defined as

L{x}(z) =
∫ ∞

s0

x(s)e⊖z(σ(s), s0)∆t for z ∈ D{x}, (3.1.2)

where D{x} consists of all those complex numbers z ∈ R for which the improper ∆-integral

exists.
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Definition 3.1.4. Assume f : [s0,∞)T → C is a function, its shift denoted by f̂(s, t) and

defined to be the solution of problem

f̂△s(s, σ(t)) = −f̂△t(s, t), t, s ∈ T, s0 ≤ t ≤ s,

f̂(s, s0) = f(s), s ∈ T, s0 ≤ s.
(3.1.3)

Definition 3.1.5. Assume two functions f, g : [s0,∞)T → C, then convolution of these

two functions f ∗ g is defined as

(f ∗ g)(s) =
∫ s

s0

f̂(s, σ(t))g(t)∆(t), s ∈ T, s0 ≤ s. (3.1.4)

3.2 The h-Laplace Transform in Time Scale

In this section, consider time scale T which is introduced in [16,17].

T = hZ = {hk : k ∈ Z},

where Z denotes integers set and h denotes fixed positive real number. Then

σ(s) = s+ h and µ(s) = h.

For a function g : hZ → C, we have

g△(s) =
g(s+ h)− g(s)

h
for all s ∈ hZ.

Therefore for any complex number z, the initial value problem

y△ = zy, s ∈ T, y(s0) = 1,

is transformed as

y(s+ h)− y(s)

h
= zy(s)

y(s+ h)− y(s) = hzy(s),

and the final initial value problem has the form

y(s+ h) = (1 + hz)y(s), s ∈ hZ, y(s0) = 1.

Next

ez(s, s0) =

s∏
k=s0

1 + (sk+1 − sk)z =

s∏
k=s0

(1 + hz)

= [1 + (s1 − s0)z][1 + (s2 − s1)z][1 + (s3 − s2)z]...

= (1 + hz)(1 + hz)(1 + hz)...
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Hence ez(s, s0) has (for z ̸= −1/h) the form

ez(s, s0) = (1 + hz)
s−s0

h for all s ∈ hZ.

Next

⊖z = − z

1 + µ(s)z
= − z

1 + hz
,

so the initial value problem

y△ = (⊖z)(s)y, s ∈ T, y(s0) = 1

is transformed as

y(s+ h)− y(s)

h
= − z

1 + hz
y(s)

y(s+ h)− y(s) = − hz

1 + hz
y(s)

y(s+ h) =

(
1− hz

1 + hz

)
y(s),

and the final initial value problem has the form

y(s+ h) =

(
1

1 + hz

)
y(s), s ∈ hZ, y(s0) = 1.

Since

ez = (1 + hz)
s−s0

h .

By using previous equation, we find the value of e⊖z

e⊖z = [1 + h(⊖z)]
s−s0

h

=

[
1 + h

(
−z

1 + µ(s)z

)] s−s0
h

=

(
1− hz

1 + hz

) s−s0
h

=

(
1

1 + hz

) s−s0
h

.

Hence e⊖z(s, s0) has (z ̸= − 1
h) the form

e⊖z = (1 + hz)−
s−s0

h .
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Any function x : [s0,∞)hZ → C, by using (4.2.14), its Laplace transform is

L{x}(z) = x(̃z) =
∑

s∈[s0,∞)hZ

µ(s) x(s) e⊖z(σ(s), s0)

=
∑

s∈[s0,∞)hZ

h x(s) e⊖z(s+ h, s0)

= h
∑

s∈[s0,∞)hZ

x(s) (1 + hz)

(
− s+h−s0

h

)

= h
∑

s∈[s0,∞)hZ

x(s+ s0) (1 + hz)(−
s+h
h )

= h

∞∑
k=0

x(kh+ k0h)

(1 + hz)k+1

=
h

1 + hz

∞∑
k=0

x(kh+ k0h)

(1 + hz)k
,

where we are using k0 = s0/h so k0 ∈ Z. The following definition is in the case when

s0 ̸= 0.

Definition 3.2.1. If a function x : hN0 → C, then h-Laplace transform of x is given

by

L{x}(z) = x(̃z) =
h

1 + hz

∞∑
k=0

x(kh)

(1 + hz)k
, (3.2.1)

for z ̸= − 1
h for which this series converges.

Setting

h∗ = −1

h
, (3.2.2)

then (3.2.1) takes the form

x(̃z) = L{x}(z) = h

1 + hz

∞∑
k=0

x(kh

(1 + hz)k

=
1

z + 1
h

∞∑
k=0

x(kh)

hk
(
1+hz
h

)k
=

1

z + 1
h

∞∑
k=0

x(kh)

hk
(
z + 1

h

)k .
Finally

L{x}(z) = x(̃z) =
1

z − h∗

∞∑
k=0

x(kh)

hk(z − h∗)k
. (3.2.3)

Theorem 3.2.2. [8] (Shifting Theorem) If

x̃(z) = L{x(kh)}(z) for |z − h∗| > A,

where A be any real number, then

L{x(kh+ h)}(z) = (1 + hz)x̃(z)− hx(0), (3.2.4)
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and

L{x(kh+ 2h)}(z) = (1 + hz)2x̃(z)− h(1 + hz)x(0)− hx(h). (3.2.5)

Proof.

L{x(kh+ h)}(z) = 1

z − h∗

∞∑
k=0

x(kh+ h)

hk(z − h∗)k

=
1

z − h∗

∞∑
k=0

x(kh)

hk−1(z − h∗)k−1

= h
∞∑
k=1

x(kh)

hk(z − h∗)k

= hx(0) + h
∞∑
k=1

x(kh)

hk(z − h∗)k
− hx(0)

= h

∞∑
k=0

x(kh)

hk(z − h∗)k
− hx(0)

= h(z − h∗)

[
1

z − h∗

∞∑
k=0

x(kh)

hk(z − h∗)k

]
− hx(0)

= h

(
z +

1

h

)
x̃(z)− hx(0),

Hence

L{x(kh+ h)}(z) = (1 + hz)x̃(z)− hx(0).

Now

L{x(kh+ 2h)}(z) = (1 + hz)L{x(kh+ h)}(z)− hx(h)

= (1 + hz)[(1 + hz)x̃(z)− hx(0)]− hx(h)

= (1 + hz)2x̃(z)− hx(h)− h(1 + hz)x(0).

Theorem 3.2.3. [8] (Initial and Final Value Theorem).

(a) If x̃(z) exists for |z − h∗| > A, then

x(0) = lim
z→∞

{zx̃(z)}.

(b) If x̃(z) exists for |z − h∗| > h−1 and zx̃(z) is analytic at z = 0, then

lim
k→∞

x(kh) = lim
z→0

{zx̃(z)}.
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Proof. By using (3.2.1)

zx̃(z) =
hz

1 + hz

∞∑
k=0

x(kh)

(1 + hz)k

=
1

1 + 1
hz

∞∑
k=0

x(kh)

(1 + hz)k

=
1

1 + 1
hz

x(0) +
1

1 + 1
hz

∞∑
k=1

x(kh)

(1 + hz)k
.

Applying limit at z → ∞
lim
z→∞

[zx̃(z)] = x(0).

For the proof of second part

L{x(kh+ h)− x(kh)}(z) = 1

z − h∗

∞∑
k=0

x(kh+ h)− x(kh)

hk(z − h∗)k
.

By using h∗ = − 1
h

L{x(kh+ h)− x(kh)}(z) = h

1 + hz

∞∑
k=0

x(kh+ h)− x(kh)

(1 + hz)k
. (3.2.6)

Now by using the previous shifting Theorem (3.2.2)

L{x(kh+ h)− x(kh)}(z) = L{x(kh+ h)}(z)− L{x(kh)}(z)

= (1 + hz)x̃(z)− hx(0)− x̃(z)

= hzx̃(z)− hx(0).

By using this value in (3.2.6)

hzx̃(z)− hx(0) =
h

1 + hz

∞∑
k=0

x(kh+ h)− x(kh)

(1 + hz)k

(1 + hz)zx̃(z)− (1 + hz)x(0) =

∞∑
k=0

x(kh+ h)− x(kh)

(1 + hz)k

(1 + hz)[zx̃(z)− x(0)] =
∞∑
k=0

x(kh+ h)− x(kh)

(1 + hz)k
.

Hence for any r ∈ N0

(1 + hz)[zx̃(z)− x(0)]−
r∑

k=0

x(kh+ h)− x(kh)

(1 + hz)k
=

∞∑
k=r+1

x(kh+ h)− x(kh)

(1 + hz)k
. (3.2.7)
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Consider
r∑

k=0

x(kh+ h)− x(kh)

(1 + hz)k
=

r∑
k=0

x(kh+ h)

(1 + hz)k
−

r∑
k=0

x(kh)

(1 + hz)k

= −x(0) +

r∑
k=0

x(kh+ h)

(1 + hz)k
−

r∑
k=1

x(kh)

(1 + hz)k

= −x(0) +

 r∑
j=1

x(jh)

(1 + hz)j−1
−

r∑
j=1

x(jh)

(1 + hz)j

+
x(rh+ h)

(1 + hz)r

= −x(0) +

r∑
j=1

x(jh)

[
1

(1 + hz)j−1
− 1

(1 + hz)j

]
+

x(rh+ h)

(1 + hz)r

=

r∑
k=0

x(kh+ h)− x(kh)

(1 + hz)k
= −x(0) + hz

r∑
j=1

x(jh)

(1 + hz)j
+

x(rh+ h)

(1 + hz)r
.

By using this value in (3.2.7)

∞∑
k=r+1

x(kh+ h)− x(kh)

(1 + hz)k
= (1 + hz)[zx̃(z)− x(0)] + x(0)

− x(rh+ h)

(1 + hz)r
− hz

r∑
j=1

x(jh)

(1 + hz)j
.

(3.2.8)

Now by choosing sufficiently large non-negative value of r ∈ N0, we can make the absolute

value of right-hand side of equation (3.2.8) less then for any value of ϵ > 0, uniformly with

respect to z in a small neighbourhood of z = 0. Then by passing the limit in (3.2.8) as

z → 0. These reasoning completes the proof of second part.

In case T = hZ, the shifting problem (3.1.3) has the form

f̂△s(s, t+ h) + f̂△t(s, t) = 0, t, s ∈ hZ, s0 ≤ t ≤ s,

f̂(s, s0) = f(s), s ∈ hZ, s0 ≤ s,

f̂(s+ h, t+ h)− f̂(s, t+ h)

h
+

f̂(s, t+ h)− f̂(s, t)

h
= 0, t, s ∈ hZ, s0 ≤ t ≤ s,

f̂(s, s0) = f(s), s ∈ hZ, s0 ≤ s,

f̂(s+ h, t+ h) = f̂(s, t), t, s ∈ hZ, s0 ≤ t ≤ s,

f̂(s, s0) = f(s), s ∈ hZ, s0 ≤ s.

where f : [s0,∞)hZ → C is a given function. Then unique solution of this problem is

f̂(s, t) = f̂(s− t+ s0).

therefore the convolution of f , g is denoted by f ∗ g, where f, g : hN0 → C, is defined by

using (3.1.4)

(f ∗ g)(s) = h
∑

t∈[s0,s)hZ

f(s− t− h+ s0)g(t), for s ∈ hZ, s0 ≤ s.

For s0 = 0, this formula convert in the following definition.
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Definition 3.2.4. The convolution of these two functions f, g : hN0 → C, is defined as

(f ∗ g)(s) = h
∑

t∈[0,s)hN0

f(s− t− h)g(t), for s ∈ hN0,

that is

(f ∗ g)(kh) = h

k−1∑
m=0

f(kh−mh− h)g(mh), for k ∈ N0,

where

(f ∗ g) = 0,

and N0 denotes the set of natural numbers includes zero.

Theorem 3.2.5. [8] (Convolution Theorem). If L{f}(z) exists for |z − h∗| > A and

L{g}(z) exists for |z − h∗| > B, then

L{f ∗ g}(z) = L{f}(z)L{g}(z) for |z − h∗| > max{A,B},

where A, B are any real numbers.

Proof. For |z − h∗| > max{A,B}, then

L{f}(z)L{g}(z) = 1

z − h∗

 ∞∑
j=0

f(jh)

hj(z − h∗)j

 1

z − h∗

[ ∞∑
m=0

g(mh)

hm(z − h∗)m

]

=
h

z − h∗

∞∑
j=0

∞∑
m=0

f(jh)g(mh)

hj+m+1(z − h∗)j+m+1
,

and if j +m+ 1 = k, then

L{f}(z)L{g}(z) = h

z − h∗

∞∑
j=0

∞∑
k=j+1

f(jh)g(kh− jh− h)

hk(z − h∗)k
.

Interchanging the order of summation

L{f}(z)L{g}(z) = 1

z − h∗

∞∑
k=1

h k−1∑
j=0

f(jh)g(kh− jh− h)

 1

hk(z − h∗)k

=
1

z − h∗

∞∑
k=1

[
h

k−1∑
m=0

f(kh−mh− h)g(mh)

]
1

hk(z − h∗)k

=
1

z − h∗

∞∑
k=0

[
h

k−1∑
m=0

f(kh−mh− h)g(mh)

]
1

hk(z − h∗)k

= L{f ∗ g}(z).
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Now consider the inverse problem, in which x̃(z) is given and find x(s). For existence

of well defined inverse transform, uniqueness property must hold, that is, if there are two

functions x and y for which x̃(z) = ỹ(z), then x(s) = y(s).

Suppose x : hN0 → C is a function and R is defined in (3.2.9) and h∗ is defined in

(3.2.2). Let R < ∞.

Lemma 3.2.6. [8] For each A > R/h, the series (3.2.3) converges uniformly in the region

|z − h∗| ≥ A.

Proof. From A > R/h, it follows that there exists ϵ > 0 such that

A >
R+ ϵ

h
.

Next, for this ϵ we are able to find an integer m > 0 by (3.2.9) such that

|x(kh)| ≤ (R+ ϵ)k for all k ≥ m.

Then for the value of |z − h∗| ≥ A,∣∣∣∣∣
∞∑

k=m

x(kh)

hk|z − h∗|k

∣∣∣∣∣ ≤
∞∑

k=m

|x(kh)|
hk|z − h∗|k

≤
∞∑

k=m

(R+ ϵ)k

hkAk

=

(
1− R+ ϵ

hA

)−1(R+ ϵ

hA

)m

→ 0 as m → ∞.

This shows that (3.2.3) in the region |z − h∗| ≥ A is uniformly convergent .

Theorem 3.2.7. [8] (Uniqueness Theorem). Consider x̃(z) which is defined in (3.2.3).

If x̃(z) = 0 for |z − h∗| > R/h, then x(s) = 0 for s ∈ hN0, where

R = lim
k→∞

sup(|x(kh)|)
1
k , (3.2.9)

where R may depend on h.

Proof.

x(0) +
x(h)

h(z − h∗)
+

x(2h)

h2(z − h∗)2
+ ... = 0 for |z − h∗| >

R

h
. (3.2.10)

Passing the limit in (3.2.10) as |z| → ∞ (due to uniform convergence which is proved in

previous lemma, we can apply the limit in (3.2.10)) term by term, by this process we get

x(0) = 0. Now multiplying the remaining part of (3.2.10) by z − h∗ and passing the limit

as |z| → ∞ to obtain x(h)=0. By repeating this process, we obtain x(0) = x(h) = x(2h) =

... = 0.
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Theorem 3.2.8. [8] Let x̃(z) is defined by (3.2.3) and A is any real number such that

A > R/h. Then

x(kh) =
hk

2πi

∫
Γ
(z − h∗)

kx̃(z)dz for k ∈ N0, (3.2.11)

where Γ is the positively oriented curve {z ∈ C : |z − h∗| = A}.

Proof. For any j ∈ N0, By using (3.2.3),

(z − h∗)
j x̃(z) =

∞∑
k=0

x(kh)

hk
(z − h∗)

j−k−1.

Integrating this equation both sides over the circle Γ , and integrate this term under the

sum sign by the uniform convergence of the series, then∫
Γ
(z − h∗)

j x̃(z)dz =

∞∑
k=0

x(kh)

hk

∫
Γ
(z − h∗)

j−k−1dz.

As, we know ∫
Γ
(z − h∗)

j−k−1dz =

2πi if k = j,

0 if k ̸= j,

then ∫
Γ
(z − h∗)

j x̃(z)dz = 2πi
x(jh)

hj

This theorem concludes that

L−1{x̃}(kh) = hk

2πi

∫
Γ
(z − h∗)

kx̃(z)dz for k ∈ N0.

3.3 The q-Laplace Transform in Time Scale

Consider the time scale in the whole section which is defined in [17,20].

T = qN0 = {qk : k ∈ N0} = {1, q, q2, q3, ...},

where q > 1 is a fixed number. In which,

σ(s) = qs and µ(s) = (q − 1)s.

Let a function g : qN0 → C, then its △-derivative is defined as

g△(s) =
g(qs)− g(s)

(q − 1)(s)
for all s ∈ qN0 . (3.3.1)

So, for any z ∈ C, the initial value problem is

y△(s) = zy(s), y(t) = 1, s, t ∈ T,
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then

y(qs)− y(s)

(q − 1)s
= zy(s)

y(qs) = z(q − 1)sy(s) + y(s)

y(qs) = y(s)(z(q − 1)s+ 1),

the initial value problem takes the form

y(qs) = (1 + q́zs)y(s) y(t) = 1, s, t ∈ qN0 , (3.3.2)

where q − 1 = q́.

By putting s = qr and t = qm with m, r ∈ N0, then ez(s, t)

ez(q
r, qm) =

r−1∏
k=m

[1 + ukz] if r ≥ m,

=

r−1∏
k=m

[1 + (qk+1 − qk)z],

=

r−1∏
k=m

[1 + qk(q − 1)z].

Hence

ez(q
r, qm) =

r−1∏
k=m

(1 + q́qkz) if r ≥ m, (3.3.3)

and similarly

ez(q
r, qm) =

1∏m−1
k=r (1 + q́qkz)

if r ≤ m, (3.3.4)

for m = r, the product are understood to be 1. Now assume that

z ̸= − 1

q́qk
for all k ∈ N0. (3.3.5)

Since

(⊖z)(s) = − z

1 + µ(s)z
= − 1

1 + (q − 1)sz
= − 1

1 + q́sz
,

the initial value problem is

y△(s) = (⊖z)sy(s), y(t) = 1, s, t ∈ T.

Now from equation (3.3.2)

y(qs) = y(s)(1 +⊖zq́s)

= y(s)

[
1− q́sz

1 + q́sz

]
= y(s)

[
1 + q́sz − q́sz

1 + q́sz

]
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So the initial value problem becomes

y(qs) =
1

1 + q́sz
y(s), y(t) = 1, s, t ∈ qN0 .

So e⊖z(q
r, qm), where m, r ∈ N0 and z satisfies (3.3.5), takes the form

e⊖z(q
r, qm) =

1∏r−1
k=m(1 + q́qkz)

if r ≥ m, (3.3.6)

and

e⊖z(q
r, qm) =

m−1∏
k=r

(1 + q́qkz) if r ≤ m.

By comparing (3.3.3), (3.3.4)

e⊖z(q
r, qm) =

1

ez(qr, qm)
.

Taking the general definition of Laplace transform (4.2.14) and (3.3.6), for any function

x : [s0,∞)qN0 → C with s0 ∈ qN0 , then Laplace transform of x is defined as

L{x}(z) = x(̃z) =
∑

s∈[s0,∞)
qN0

µ(s) x(s) e⊖z(qs, s0)x(s),

put t = qr

L{x}(z) = x(̃z) = (q − 1)

∞∑
r=r0

qre⊖z(q
r+1, qr0)x(qr),

now by using the value of e⊖z(q
r+1, qr0)

x(̃z) = L{x}(z) = q́

∞∑
r=r0

qrx(qr)∏r
k=r0

(1 + q́qkz)
.

The following definition is in the case when s0 ̸= 0.

Definition 3.3.1. If a function x : qN0 → C, then q-Laplace transform of x is defined

as

L{x}(z) = x(̃z) = q́

∞∑
r=0

qrx(qr)∏r
k=0(1 + q́qkz)

, (3.3.7)

for z ̸= − 1
q́qk

for which the series is convergent, where q́ = q − 1.

Setting

Pr(z) =

r∏
k=0

(1 + q́qkz), r ∈ N0, (3.3.8)

which is a polynomial in z whose degree is r + 1. Consider

Pr(z)− Pr−1(z) =
r∏

k=0

(1 + q́qkz)−
r−1∏
k=0

(1 + q́qkz)

=

r−1∏
k=0

(1 + q́qkz)(1 + q́qrz − 1).
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Hence

Pr(z)− Pr−1(z) = q́qrzPr−1(z), r ∈ N0, (3.3.9)

and similarly
1

Pr−1(z)
− 1

Pr(z)
= z

q́qr

Pr(z)
, r ∈ N0, (3.3.10)

also holds, where P−1(z) = 1.

The numbers αk = − 1
q́qk

, where q́ = q − 1 and k ∈ N0, are contained in [−(q − 1)−1, 0)

and approaching to zero as k → ∞. For any positive number δ > 0 and k ∈ N0, we set

Dk
δ = {z ∈ C : |z − αk| < δ}

and

ξδ = C\
∞∪
k=0

Dk
δ = {z ∈ C : |z − αk| ≥ δ}, for all k ∈ N0,

so that ξδ is a closed domain of the complex plane C and the distance of the points are

not less than δ from the set {αk : k ∈ N0}.

Lemma 3.3.2. [8] For any z ∈ ξδ, we have

|Pr(z)| ≥ (q́δ)r+1q
r(r+1)

2 , r ∈ N0

∪
{−1}. (3.3.11)

Therefore, for an arbitrary positive number R, a positive integer r0 = r0(R, δ, q) exists,

such that

|Pr(z)| ≥ Rr+1 for all r ≥ r0 and z ∈ ξδ. (3.3.12)

In particular,

lim
r→∞

Pr(z) = ∞ for all z ∈ ξδ. (3.3.13)

Proof. For any z ∈ ξδ, then

|Pr(z)| =

∣∣∣∣∣
r∏

k=0

(1 + q́qkz)

∣∣∣∣∣
=

∣∣∣∣∣
r∏

k=0

q́qk(z − αk)

∣∣∣∣∣
Since |z − αk| ≥ δ, then

|Pr(z)| ≥
r∏

k=0

q́qkδ

= (q́δ)r+1
r∏

k=0

qk

= (q́δ)r+1q
r(r+1)

2 .

39



Hence (3.3.11) holds. Now consider

|Pr(z)| ≥ (q́δq
r
2 )r+1

On the other hand, since q > 1, for any number R > 0, we can choose a positive integer

r0 = r0(R, δ, q) such that

q́δq
r
2 ≥ R, for all r ≥ r0

|Pr(z)| ≥ (q́δq
r
2 )r+1 ≥ Rr+1

|Pr(z)| ≥ Rr+1.

The proof of (3.3.12) is complete.

Example 3.3.3. Let us show that

L{1}(z) = 1

z
and L{eα(z) =

1

z − α
.

First find q-Laplace transform of x(s) = 1, by using (3.3.7), (3.3.8) (3.3.10) and (3.3.13)

L{1}(z) = q́

∞∑
r=0

qr

Pr(z)

=
1

z

∞∑
r=0

[
1

Pr−1(z)
− 1

Pr(z)

]
=

1

z
lim

m→∞

[
1− 1

Pm(z)

]
=

1

z
.

The q-Laplace transform of the second function, by using (3.3.3) and (3.3.8)

eα(q
r) =

r−1∏
k=0

(1 + qkα) = Pr−1(α) for all r ∈ N0.

It follows that

ẽα(z) = L{eα}(z) = q́

∞∑
r=0

qreα(q
r)

Pr(z)

= q́

∞∑
r=0

qrPr−1(α)

Pr(z)

= q́
∞∑
r=0

qr

1 + q́qrz

r−1∏
k=0

1 + q́qkα

1 + q́qkz

= q́

∞∑
r=0

qr

1 + q́qrz

r−1∏
k=0

1+q́qkα
q́qk

1+q́qkz
q́qk

= q́

∞∑
r=0

qr

1 + q́qrz

r−1∏
k=0

α+ 1
q́qk

z + 1
q́qk
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= q́
∞∑
r=0

qr

1 + q́qrz

r−1∏
k=0

α− αk

z − αk
. (3.3.14)

Since the positive numbers αk where k ∈ N0, are contained in [−(q − 1)−1, 0], there is a

sufficiently large positive number R0 > 0, such that∣∣∣∣α− αk

z − αk

∣∣∣∣ ≤ 1

2
for all |z| ≥ R0 and k ∈ N0. (3.3.15)

Therefore the series (3.3.14) converges for |z| ≥ R0, next the Laplace transform of this

function by using (3.3.10)

ẽα(z) = q́
∞∑
r=0

qrPr−1(α)

Pr(z)

=
q́

P0(z)
+ q́

∞∑
r=1

qrPr−1(α)

Pr(z)

=
q́

P0(z)
+

1

z

∞∑
r=1

[
Pr−1(α)

Pr−1(z)
− Pr−1(α)

Pr(z)

]

=
q́

P0(z)
+

1

z

∞∑
r=1

[
(1 + q́qr−1α)Pr−2(α)

Pr−1(z)
− Pr−1(α)

Pr(z)

]

=
q́

P0(z)
+

1

z

∞∑
r=1

[
Pr−2(α) + q́qr−1αPr−2(α)

Pr−1(z)
− Pr−1(α)

Pr(z)

]

=
q́

P0(z)
+

1

z

∞∑
r=1

[
Pr−2(α)

Pr−1(z)
− Pr−1(α)

Pr(z)
+

q́qr−1αPr−2(α)

Pr−1(z)

]

=
q́

P0(z)
+

1

z

∞∑
r=1

[
Pr−2(α)

Pr−1(z)
− Pr−1(α)

Pr(z)

]
+

αq́

z

∞∑
r=1

qr−1Pr−2(α)

Pr−1(z)

=
q́

P0(z)
+

1

z

[
1

P0(z)
− P0(α)

P1(z)
+

P0(α)

P1(z)
− P1(α)

P2(z)
+ ...− lim

m→∞

Pm−1(α)

Pm(z)

]
+

α

z

[
q́

∞∑
r=1

qr−1Pr−2(α)

Pr−1(z)

]

=
q́

P0(z)
+

1

zP0(z)
− 1

z
lim

m→∞

Pm−1(α)

Pm(z)
+

α

z
ẽα(z)

=
q́

P0(z)
+

1

zP0(z)
+

α

z
ẽα(z),

by using the fact that

lim
m→∞

Pm−1(α)

Pm(z)
= 0,

because

Pm−1(α)

Pm(z)
=

Pm−1(α)

(1 + q́qmz)Pm−1(z)

=
1

1 + q́qmz

m−1∏
k=0

α− αk

z − αk
,
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by using (3.3.14)
Pm−1(α)

Pm(z)
≤ 1

1 + q́qmz
(1/2)m.

Apply the limit as m → ∞, then (1/2)m → 0, hence

lim
m→∞

Pm−1(α)

Pm(z)
= 0.

Thus the q-Laplace of exponential function takes the form

ẽα(z) =
1 + q́z

zP0(z)
+

α

z
ẽα(z)

ẽα(z) =
P0(z)

zP0(z)
+

α

z
ẽα(z)

ẽα(z) =
1

z
+

α

z
ẽα(z)(

1− α

z

)
ẽα(z) =

1

z

ẽα(z) =
1

z − α
.

Theorem 3.3.4. [8] Suppose the function x : qN0 → C satisfies the condition

|x(qr)| ≤ CRr for all r ∈ N0, (3.3.16)

where R and C are constants which are positive then the series converges uniformly which

is in (3.3.7) with respect to z in region ξδ.

Proof. By Lemma (3.3.3), R is given in (3.3.16), then choose a natural number r0 ∈ N
such that

|Pr(z)| ≥ [q(1 +R)]r+1 for all r ≥ r0 and z ∈ ξδ.

The general term of the series in (3.3.7) is given by∣∣∣∣qrx(qr)Pr(z)

∣∣∣∣ ≤ C

q(1 +R)

(
R

1 +R

)r

for all r ≥ r0 and z ∈ ξδ.

The series
∞∑
r=0

(
R

1 +R

)r

,

converges if 1 +R > R. This completes the proof.

Aδ denotes a class of functions x : {qr : r ∈ N0} → C for which the q-Laplace transform

exists and it satisfying the following condition

∞∑
r=0

(δq́)−rq−
r(r−1)

2 |x(qr)| < ∞. (3.3.17)
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Theorem 3.3.5. [8] Let x : {qr : r ∈ N0} → C be a function and x△ denote the q-

derivative of x, which is defined in (3.3.1). Suppose that x ∈ Aδ, then

L{x△}(z) = zx̃(z)− x(1), (3.3.18)

and

L{x△△}(z) = z2x̃(z)− zx(1)− x△(1). (3.3.19)

Proof. Definition of q-Laplace transform (3.3.7) implies that

L{x△}(z) = q́
∞∑
r=0

qrx△(qr)

Pr(z)

= q́

∞∑
r=0

qr
(
x(qr+1)−x(qr)

qr+1−qr

)
Pr(z)

= q́

∞∑
r=0

qr
(
x(qr+1)−x(qr)

qr(q−1)

)
Pr(z)

=

∞∑
r=0

x(qr+1)− x(qr)

Pr(z)

=

∞∑
r=0

x(qr+1)

Pr(z)
−

∞∑
r=0

x(qr)

Pr(z)

=

∞∑
r=0

x(qr+1)

Pr+1(z)
(1 + q́qr+1z)−

∞∑
r=0

x(qr)

Pr(z)

=

∞∑
r=0

x(qr+1)

Pr+1(z)
−

∞∑
r=0

x(qr)

Pr(z)
+ q́z

∞∑
r=0

qr+1x(qr+1)

Pr+1(z)

= −x(q0)

P0(z)
−

∞∑
r=1

x(qr)

Pr(z)
+

∞∑
r=0

x(qr+1)

Pr+1(z)
+ q́z

∞∑
r=0

qr+1x(qr+1)

Pr+1(z)

= −x(q0)

P0(z)
+ q́z

∞∑
r=0

qr+1x(qr+1)

Pr+1(z)
+

zq́x(q0)

P0(z)
− zq́x(q0)

P0(z)

= −x(q0)

P0(z)
+ zq́

∞∑
r=0

qrx(qr)

Pr(z)
− zq́x(q0)

P0(z)

= zx̃(z)− zq́x(q0)

P0(z)
− x(q0)

P0(z)

= zx̃(z)−
[
x(q0)(1 + zq́)

P0(z)

]
= zx̃(z)− x(q0)P0(z)

P0(z)

= zx̃(z)− x(1).

The proof of the second statement (3.3.19) is obtained by applying the first statement
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(3.3.18).

L{x△△}(z) = zx̃△(z)− x△(1)

= z[zx̃(z)− x(1)]− x△(1)

= z2x̃(z)− zx(1)− x△(1).

Theorem 3.3.6. [8] (Initial and Final Value Theorem).

(a) If x ∈ Aδ for some positive real number δ > 0, then

x(1) = lim
z→∞

{zx̃(z)}. (3.3.20)

(b) If x ∈ Aδ for all positive real number δ > 0, then

lim
r→∞

x(qr) = lim
z→0

{zx̃(z)}. (3.3.21)

Proof. Let x ∈ Aδ for some positive real number δ > 0. This follows by definition of

q-Laplace transform

x̃(z) = q́
∞∑
r=0

qrx(qr)∏r
k=0(1 + q́qkz)

x̃(z) =
q́x(1)

1 + q́z
+

q́qx(q)

(1 + q́z)(1 + q́qz)
+ ...

and

(1 + q́z)x̃(z) = q́x(1) +
q́qx(q)

(1 + q́qz
) + ...

Hence

lim
z→∞

x̃(z) = 0 and lim
z→∞

{(1 + q́z)x̃(z)} = q́x(1)

lim
z→∞

{x̃(z) + q́zx̃(z)} = q́x(1)

lim
z→∞

x̃(z) + q́ lim
z→∞

{zx̃(z)} = q́x(1)

q́ lim
z→∞

{zx̃(z)} = q́x(1)

lim
z→∞

{zx̃(z)} = x(1).

By taking term-by-term limit because of uniform convergence of series in ξδ. This com-

pletes the proof of (3.3.20).

To show (3.3.21), let x ∈ Aδ for all δ > 0. By using the equality which was obtained

in proof of the Theorem (3.3.5)

∞∑
r=0

x(qr+1)− x(qr)

Pr(z)
= zx̃(z)− x(1).
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Further, by using the argument as in proof of the Theorem (3.2.3)(b) such that

lim
z→0

Pr(z) = 1 for any r ∈ N0.

To arrive at (3.3.21), applying limit at (3.3), then

∞∑
r=0

limz→0[x(q
r+1)− x(qr)]

limz→0 Pr(z)
= lim

z→0
[zx̃(z)− x(1)]

∞∑
r=0

[x(qr+1)− x(qr)] = lim
z→0

[zx̃(z)− x(1)]

− x(q0) + x(q1)− x(q1) + x(q2)− ...+ lim
r→∞

x(qr+1) = lim
z→0

[zx̃(z)− x(1)]

− x(q0) + lim
r→∞

x(qr) = lim
z→0

[zx̃(z)]− x(1)

− x(1) + lim
r→∞

x(qr) = lim
z→0

[zx̃(z)]− x(1)

lim
r→∞

x(qr) = lim
z→0

[zx̃(z)].

This completes the proof of second statement.

For the case when T = qN0 , then the shifting problem (3.1.3) with the value of t0 = 1

is defined below

f̂△s(s, qt) = −f̂△t(s, t), t, s ∈ qN0 , s0 ≤ t ≤ s,

f̂(s, 1) = f(s), s ∈ qN0 , s0 ≤ s.

f̂(qs, qt)− f̂(s, qt)

(q − 1)s
+

f̂(s, qt)− f̂(s, t)

(q − 1)t
= 0, t, s ∈ qN0 , s0 ≤ t ≤ s,

f̂(s, 1) = f(s), s ∈ qN0 , s0 ≤ s.

t[f̂(qs, qt)− f̂(s, qt)] + s[f̂(s, qt)− f̂(s, t)] = 0, t, s ∈ qN0 , s0 ≤ t ≤ s,

f̂(s, 1) = f(s), s ∈ qN0 , s0 ≤ s.
(3.3.22)

Definition 3.3.7. Let two functions f, g : qN0 → C, then convolution of these functions

is denoted by f ∗ g and is defined by

(f ∗ g)(qr) = (q − 1)

r−1∑
k=0

qkf̂(qr, qk+1)g(qk),

where (f ∗ g)(q0) = 0 with r ∈ N0.

Theorem 3.3.8. [8] (Convolution Theorem). Consider L{f}(z),L{g}(z) and L{f ∗
g}(z) exist for given complex number z ∈ C. Then at the point z

L{f ∗ g}(z) = L{f}(z)L{g}(z). (3.3.23)
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Proof. For our convenience, we set

er,m(z) = ez(q
r, qm) and f̂r,m = f̂(qr, qm).

By using (3.3.3)

er,r(z) = 1 for all r ∈ N0, (3.3.24)

er+1,m(z) = (1 + q́qrz)er,m(z) for r,m ∈ N0, r ≥ m, (3.3.25)

er,m+1(z) =
er,m(z)

1 + q́qmz
for r,m ∈ N0, r ≥ m+ 1, (3.3.26)

Put s = qr and t = qm with r ≥ m in equation (3.3.22), then

qm[f̂r+1,m+1 − f̂r,m+1] + qr[f̂r,m+1 − f̂r,m] = 0, r ≥ m ≥ 0,

f̂r,0 = f(qr), r ∈ N0.
(3.3.27)

By using two definitions (3.3.7) and (3.3.9), we obtained

L{f ∗ g}(z) = (q − 1)
∞∑
r=1

qr(f ∗ g)(qr)
er+1,0(z)

= (q − 1)2
∞∑
r=1

qr

er+1,0(z)

r−1∑
k=0

qkf̂r,k+1g(q
k)

= (q − 1)2
∞∑
k=0

qkg(qk)

∞∑
r=k+1

qrf̂r,k+1

er+1,0(z)
.

By substituting in the last equation

er+1,0(z) = er+1,k+1(z)ek+1,0(z),

then

L{f ∗ g}(z) = (q − 1)2
∞∑
k=0

qkg(qk)

ek+1,0(z)

∞∑
r=k+1

qrf̂r,k+1

er+1,k+1(z)

L{f ∗ g}(z) = (q − 1)L{g}(z)
∞∑

r=k+1

qrf̂r,k+1

er+1,k+1(z)
. (3.3.28)

For our convenience, let us set

Φm =
∞∑

r=m

qrf̂r,m
er+1,m(z)

, m ∈ N0. (3.3.29)

The target is to show that Φm is independent the value of m ∈ N0, then

(q − 1)

∞∑
r=k+1

qrf̂r,k+1

er+1,k+1(z)
= (q − 1)

∞∑
r=0

qrf̂r,0
er+1,0(z)

= (q − 1)

∞∑
r=0

qrf(qr)

er+1,0(z)
= L{f}(z),
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by using this value in (3.3.28), we get (3.3.23)

L{f ∗ g}(z) = L{f}(z)L{g}(z).

Now, for showing Φm does not depend on the value of m ∈ N0. Now putting er,m(z) = er,m

and by using (3.3.27) and (3.3.24), (3.3.25) and (3.3.26)

Φm+1 =

∞∑
r=m+1

qrf̂r,m+1

er+1,m+1
=

∞∑
r=m+1

qrf̂r,m + qmf̂r,m+1 − qmf̂r+1,m+1

er+1,m+1

Φm+1 =
∞∑

r=m+1

qrf̂r,m
er+1,m+1

+ qm
∞∑

r=m+1

[
f̂r,m+1 − f̂r+1,m+1

er+1,m+1

]

Φm+1 =
∞∑

r=m+1

qrf̂r,m
er+1,m+1

− qm
∞∑

r=m+1

[
f̂r+1,m+1

er+1,m+1
− f̂r,m+1

er,m+1
+

f̂r,m+1

er,m+1
− f̂r,m+1

er+1,m+1

]

Φm+1 =

∞∑
r=m+1

qrf̂r,m
er+1,m+1

− qm
∞∑

r=m+1

[
f̂r+1,m+1

er+1,m+1
− f̂r,m+1

er,m+1
+

f̂r,m+1(1 + q́qrz)

er+1,m+1
− f̂r,m+1

er+1,m+1

]

Φm+1 =

∞∑
r=m+1

qrf̂r,m
er+1,m+1

− qm
∞∑

r=m+1

[
f̂r+1,m+1

er+1,m+1
− f̂r,m+1

er,m+1
+

f̂r,m+1

er+1,m+1
+

(q́qrz)f̂r,m+1

er+1,m+1
− f̂r,m+1

er+1,m+1

]

Φm+1 =

∞∑
r=m+1

qrf̂r,m
er+1,m+1

− qm
∞∑

r=m+1

[
f̂r+1,m+1

er+1,m+1
− f̂r,m+1

er,m+1

]
− qm

∞∑
r=m+1

(q́qrz)f̂r,m+1

er+1,m+1

Φm+1 =

∞∑
r=m+1

qrf̂r,m
er+1,m+1

+ qm
f̂m+1,m+1

em+1,m+1
− qm

∞∑
r=m+1

f̂r,m+1

er+1,m+1
(q́qrz)

Φm+1 =

∞∑
r=m+1

qrf̂r,m
er+1,m

(1 + q́qmz) + qm
f̂m+1,m+1

em+1,m+1
− qm

∞∑
r=m+1

f̂r,m+1

er+1,m+1
(q́qrz)

Φm+1 =

∞∑
r=m+1

qrf̂r,m
er+1,m

(1 + q́qmz) + qm
f̂m,m

em+1,m
(1 + q́qrz)− qm

f̂m,m

em+1,m
(1 + q́qrz)

+ qm
f̂m+1,m+1

1
− q́qmz

∞∑
r=m+1

qmf̂m,m+1

er+1,m+1

Φm+1 =

∞∑
r=m

qrf̂r,m
er+1,m

(1 + q́qmz)− qmf̂m,m

em+1,m
(1 + q́qmz) + qmf̂m+1,m+1 − q́qmzΦm+1

Φm+1 = (1 + q́qmz)Φm − qm
f̂m,m

em,m
+ qmf̂m+1,m+1 − q́qmzΦm+1

(1 + q́qmz)Φm+1 = (1 + q́qmz)Φm − qmf̂m,m + qmf̂m+1,m+1

(1 + q́qmz)Φm+1 = (1 + q́qmz)Φm,

by using the fact that f̂r,r = f(1) for all r ∈ N0. Hence Φm+1 = Φm as 1+ q́qmz ̸= 0 under

condition (3.3.5).

Now discuss some result of inverse q-Laplace transform.
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Theorem 3.3.9. [8] (Uniqueness Theorem). Assume a function x : qN0 → C in

the space Aδ, that is x satisfies (3.3.17). Further, suppose x̃(z) denotes the q-Laplace

transform of x which is defined by (3.3.7) for z ∈ ξδ. If x̃(z) ≡ 0 for complex value of

z ∈ ξδ, then x(qr) = 0 for all non-negative integers r ∈ N0.

Proof. Definition of q-Laplace transform (3.3.7) implies that

x(q0)

1 + q́z
+

qx(q)

(1 + q́z)(1 + q́qz)
+

q2x(q)

(1 + q́z)(1 + q́qz)(1 + q́q2z)
+ ... ≡ 0, (3.3.30)

for z ∈ ξδ. Multiplying (3.3.30) by 1 + q́z and then passing to the limit as |z| → ∞, we

get x(q0) = 0. Use x(q0) = 0 in (3.3.30) and get

qx(q)

(1 + q́z)(1 + q́qz)
+

q2x(q)

(1 + q́z)(1 + q́qz)(1 + q́q2z)
+ ... ≡ 0.

Now multiplying this equation by (1+q0z)(1+q1z) and then passing the limit as |z| → ∞,

then we get x(q1) = 0. By repeating this technique, we find x(q0) = x(q1) = x(q2) = ... =

0.

Theorem (3.3.9) gives that inverse of Laplace transform exists. The next theorem gives

the integral formula for the inverse Laplace transform.

Theorem 3.3.10. [8] (Inverse Laplace Transform). Let x ∈ Aδ and x̃(z) denotes

its q-Laplace transform which is defined by (3.3.7). Then

x(qr) =
1

2Πi

∫
Γ
x̃(z)

r−1∏
k=0

(1 + q́qkz)dz for r ∈ N0, (3.3.31)

where Γ denotes any positive oriented closed curve in ξδ that have encloses all points

αk = −(q́qk)−1 for k ∈ N0.

Proof. For any j ∈ N0, by using (3.3.7)

x̃(z)

j−1∏
k=0

(1 + q́qkz) = q́

j−1∑
r=0

qrx(qr)

j−1∏
k=0
k ̸=r

(1 + q́qkz) +
q́qjx(qj)

1 + q́qjz
+ q́

∞∑
r=j+1

qrx(qr)∏r
k=j(1 + q́qkz)

(3.3.32)

Integrating the equality over the curve Γ with respect to z and then we can take term-by-

term integration and get that∫
Γ
x̃(z)

j−1∏
k=0

(1 + q́qkz)dz = q́

j−1∑
r=0

qrx(qr)

∫
Γ

j−1∏
k=0
k ̸=r

(1 + q́qkz)dz + q́qjx(qj)

∫
Γ

dz

1 + q́qjz

+ q́
∞∑

r=j+1

qrx(qr)

∫
Γ

dz∏r
k=j(1 + q́qkz)

.
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Since ∫
Γ

j−1∏
k=0
k ̸=r

(1 + q́qkz)dz = 0 for j ≥ 0,

∫
Γ

dz

1 + q́qjz
=

2πi

q́qj
for j ≥ 0,∫

Γ

dz∏r
k=j(1 + q́qkz)

= 0 for j ≥ 0, r ≥ j + 1,

By putting these values in the previous equation∫
Γ
x̃(z)

j−1∏
k=0

(1 + q́qkz)dz = 2πix(qj).

We have used these result from the theory of complex function: If P (z) is any polynomial

of degree greater then two and Γ denotes any positive contour that contains all roots of

the polynomial P (z), then ∫
Γ

dz

P (z)
= 0.

This completes the proof.
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Chapter 4

Laplace Transform on Time Scale

with Nabla Operator

4.1 Introduction

Remark 4.1.1. (a) Every continuous function is both ld-continuous and rd-continuous

but it is not necessary every ld or rd-continuous function is continuous.

(b) It is not necessary every ld-continuous function is rd-continuous and its vice versa.

Example: Consider the time scale

P1,1 =

∞∪
k=0

[2k, 2k + 1].

then

σ(s) =

s if
∪∞

k=0[2k, 2k + 1)

s+ 1 if
∪∞

k=0{2k + 1}

and

µ(s) =

0 if s ∈
∪∞

k=0[2k, 2k + 1)

1 if s ∈
∪∞

k=0{2k + 1}

and

ρ(s) = s if s ∈
∞∪
k=0

[2k, 2k + 1]

and

ν(s) = 0 if s ∈
∞∪
k=0

[2k, 2k + 1]

where

f(s) = σ(s) for all s ∈ T
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This function is continuous at right dense points and its limit exists at left dense points, so

it is rd-continuous function but not ld-continuous, since it is not continuous at left dense

points. This example is used for both parts of this remark.

Remark 4.1.2. Every nabla and delta integrable function are not given same result always.

Consider T = {1, 2, 3, 4, 5} and

f(s) = s for all s ∈ T,

Then ∫ 5

1
f(s)∇(s) =

∑
s∈(1,5]

f(s)ν(s)

=
∑

s∈(1,5]

(s)(1)

=
∑

s∈(1,5]

s

= 2 + 3 + 4 + 5 = 14.

and ∫ 5

1
f(s)∆(s) =

∑
s∈[1,5)

f(s)µ(s)

=
∑

s∈[1,5)

(s)(1)

=
∑

s∈[1,5)

s

= 1 + 2 + 3 + 4 = 10.

4.2 Exponential Function and Laplace Transform by using

Nabla Operator

In this section we define a generalized exponential function and Laplace transform for an

arbitrary time scale T by using nabla operator.

The set of all ld-continuous and regressive functions q : T → C denoted by S. Suppose
q ∈ S and fix s ∈ T. Then initial value problem is

y▽(s) = q(s)y(s), y(t) = 1 (4.2.1)

has a unique solution on T. This solution is said to be exponential function and denoted

by eq(s, t).

If q ∈ S, then the exponential function is defined by

eq(s, t) = exp

∫ s

t
log

1 + ν(τ)q(τ)

ν(τ)
▽ (τ) for s, t ∈ T.
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Throughout let us consider sr are real numbers for all r ∈ N such that

lim
r→∞

sr = ∞ and vr = sr − sr−1 > 0 for all r ∈ N (4.2.2)

while throughout assume that

lim
r→∞

sr = ∞ and v = inf
r∈N

vr > 0, where vr = sr − sr−1 for r ∈ N (4.2.3)

holds. For example, the numbers

sr = hr, r ∈ N and sr = qr, r ∈ N,

where h > 0 and q > 1, respectively satisfy the assumption (4.2.3), while

sm =
√
m, m ∈ N and sm = lnm, m ∈ N,

do not satisfy the assumption (4.2.3).

Suppose z be the complex number such that

z ̸= − 1

vr
for all r ∈ N. (4.2.4)

Then solution of the problem (4.2.1) is ez(sr, sm)

y(sr+1) = (1 + vrz)y(sr), y(sm) = 1, m, r ∈ N0,

satisfies

ez(sr, sm) =

r∏
k=m+1

(1 + vkz) if r ≥ m, (4.2.5)

and

ez(sr, sm) =
1∏r

k=m+1(1 + vkz)
if r ≤ m,

for m = r, the product are understood to be 1.

Assume that supT = ∞ and fix s0 ∈ T. Also assume that z denotes complex constant

that is regressive. Thus ez(., s0) is well defined on T. Assume x : [s0,∞)T → C is locally

∇-integrable function, that is, this function is ∇-integrable over each compact subinterval

of [s0,∞)T. Then Laplace transform of x is defined below

L{x}(z) =
∫ ∞

s0

x(s)

ez(ρ(sr+1), s0)
∇s for z ∈ E{x}, (4.2.6)

where E{x} consists of all those complex numbers z ∈ S for which improper integral exists.

After solving this improper integral by using the help of M. Bohner, G.Sh. Guseinov [5],

we are able to make more general form of Laplace transform which is given below.

Definition 4.2.1. Assume (4.2.2) holds. If x : {sr : r ∈ N} → C represents a function

and its Laplace transform is defined in this way

L{x}(z) = x̃(z) =

∞∑
r=1

vrx(sr)∏r
k=1(1 + vkz)

, (4.2.7)

for those complex values of z ∈ C satisfying (4.2.4) for which the series converges.
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Recall previous assumptions (4.2.3) and (4.2.4). Define

Qr(z) =

r∏
k=1

(1 + vkz), r ∈ N, (4.2.8)

represent a polynomial in z whose degree is r.

Qr(z)−Qr−1(z) =

r∏
k=1

(1 + vkz)−
r−1∏
k=1

(1 + vkz), r ∈ N,

Qr(z)−Qr−1(z) =

r−1∏
k=1

(1 + vkz)[1 + vrz − 1], r ∈ N,

Qr(z)−Qr−1(z) = zvrQr−1(z), r ∈ N. (4.2.9)

It is easily verified that

1

Qr−1(z)
− 1

Qr(z)
= z

vr
Qr(z)

, r ∈ N, (4.2.10)

hold, where Q0(z) = 1.

The numbers βr = −v−1
r , r ∈ N, are contained in the interval [−v−1, 0). For any positive

real number δ > 0 and r ∈ N, we set

Eδ = C\
∞∪
r=1

Er
δ where Er

δ = {z ∈ C : |z − βr| < δ}, r ∈ N, (4.2.11)

so that Eδ is closed domain of C, and the distance of the points of Eδ are not less than δ

from this set {βr : r ∈ N}.

Lemma 4.2.2. Assume (4.2.3), (4.2.4), (4.2.8) and (4.2.11) holds. For any z ∈ Eδ, we

have

|Qr(z)| ≥ (δv)r and |Qr(z)| ≥ δ(δv)r−1vr for all r ∈ N. (4.2.12)

Moreover,

lim
r→∞

Qr(z) = ∞ for all z ∈ Eδ provided δ > v−1. (4.2.13)

Proof. For any z ∈ Eδ and r ∈ N, we have

|Qr(z)| =

∣∣∣∣∣
r∏

k=1

(1 + vkz)

∣∣∣∣∣
=

∣∣∣∣∣
r∏

k=1

vk(v
−1
k + z)

∣∣∣∣∣
=

∣∣∣∣∣
r∏

k=1

(vk(z − βk))

∣∣∣∣∣
= vr

(
r−1∏
k=1

vk

)(
r∏

k=1

|z − βk|

)
≥ vrv

r−1δr

= δ(δv)r−1vr.
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The proof of second statement in (4.2.12) is complete. The proof of first statement in

(4.2.12) is as follows

|Qr(z)| =

(
r∏

k=1

vk

)(
r∏

k=1

|z − βk|

)
|Qr(z)| ≥ (vr)(δr)

|Qr(z)| ≥ (δv)r.

The proof of (4.2.13) follows from (4.2.12). By using (4.2.3), we have

lim
r→∞

sr = ∞ for all r ∈ N

implies that

lim
r→∞

sr−1 = ∞,

thus

lim
r→∞

(sr − sr−1) = ∞,

lim
r→∞

vr = ∞.

From this, we have

lim
r→∞

δ(δv)r−1vr = ∞

lim
r→∞

Qr(z) = ∞ for all z ∈ Eδ provided δ > v−1.

Example 4.2.3. If x(sr) = 1 then its Laplace transform

L{1}(z) = 1

z

For z ∈ Eδ, with δ > v−1, using (4.2.7), (4.2.8), (4.2.10) and (4.2.13),

L{1}(z) =
∞∑
r=1

vr
Qr(z)

=
1

z

∞∑
r=1

[
1

Qr−1(z)
− 1

Qr(z)

]

=
1

z

∞∑
r=1

[
1

Q0(z)
− 1

Q1(z)
+

1

Q1(z)
− 1

Q2(z)
+ ...

]
=

1

z
lim

m→∞

[
1− 1

Qm(z)

]
=

1

z
.

Theorem 4.2.4. Consider (4.2.3). If x : {sr : r ∈ N} → C is a function and satisfies this

condition

|x(sr)| ≤ CSr−1 for all r ∈ N, (4.2.14)

where S and C are constants which are positive, then the series converges uniformly which

is in (4.2.7), with respect to z in region Eδ with δ > Sv−1.
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Proof. By Lemma (4.2.2) and (4.2.14), the general term of the series in (4.2.7), we have∣∣∣∣vrx(sr)Qr(z)

∣∣∣∣ ≤ vrCSr−1

δ(δv)r−1vr
=

C

δ

(
S

δv

)r−1

for r ∈ N and z ∈ Eδ.

The series
∞∑
r=1

(
S

δv

)r−1

converges if δ > Sv−1. This completes the proof.

Gδ denotes a class of function x : {sr : r ∈ N} → C for which the Laplace transform

exists and it satisfying the following condition

∞∑
r=1

(δv)−r|x(sr)| < ∞. (4.2.15)

Theorem 4.2.5. Assume (4.2.3) holds. Then:

Assume x ∈ Gδ for some positive real number δ > 0, then

x(s1) = lim
z→∞

{zx̃(z)}. (4.2.16)

Proof. Let x ∈ Gδ for some positive real number δ > 0. It follows by definition of Laplace

transform (4.2.7)

x̃(z) =

∞∑
r=1

vrx(sr)

Qr(z)
=

∞∑
r=1

vrx(sr)∏r
k=1(1 + vkz)

x̃(z) =
v1x(s1)

1 + v1z
+

v2x(s2)

(1 + v1z)(1 + v2z)
+

v3x(s3)

(1 + v1z)(1 + v2z)(1 + v3z)
+ ...

and

(1 + v1z)x̃(z) = v1x(s1) +
v2x(s2)

(1 + v2z)
+

v3x(s3)

(1 + v2z)(1 + v3z)
+ ...

Hence

lim
z→∞

x̃(z) = 0 and lim
z→∞

{(1 + v1z)x̃(z)} = v1x(s1)

lim
z→∞

[x̃(z) + v1zx̃(z)] = v1x(s1)

v1 lim
z→∞

zx̃(z) = v1x(s1)

lim
z→∞

zx̃(z) = x(s1).

This completes the proof of (4.2.16).

4.3 The Convolution by using Nabla Operator

Assume a function f : (s0,∞)T → C, its shift denoted by f̂(s, t) and is defined as solution

of the problem

f̂▽s(s, ρ(t)) = −f̂▽t(s, t), t, s ∈ T, s1 ≤ t ≤ s,

f̂(s, s1) = f(s), s ∈ T, s1 ≤ s.
(4.3.1)
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For given function f, g : (s0,∞)T → C, then convolution of these two functions denoted

by f ∗ g and is defined by

(f ∗ g)(s) =
∫ s

s1

f̂(s, ρ(t))g(t)∇(t), s ∈ T, s1 ≤ s. (4.3.2)

Assume only (4.2.2) in this section. For given function f : {sr : r ∈ N} → C, consider the
shifting problem (4.3.1)

f̂▽s(sr, sm−1) = −f̂▽t(tr, tm) m, r ∈ N, r ≥ m,

f̂(sr, s1) = f(sr), r ∈ N.

vm

[
f̂(sr, sm−1)− f̂(sr−1, sm−1)

]
+ vr

[
f̂(sr, sm)− f̂(sr, sm−1)

]
= 0, m, r ∈ N, r ≥ m,

f̂(sr, s1) = f(sr), r ∈ N.

(4.3.3)

Definition 4.3.1. Assume (4.2.2) holds, let two functions f, g : {sr : r ∈ N} → C, and let

f̂ is the solution of the problem (4.3.3). Then convolution of these two functions f and

g is denoted by f ∗ g and is defined by

(f ∗ g)(sr) =
r∑

k=1

vkf̂(sr, sk−1)g(sk), r ∈ N.
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Chapter 5

Conclusion

This thesis is concerned with Laplace transform on time scale. The main objective of our

study is to define Laplace transform on time scale by using nabla operator.

In chapter 1, we give a brief introduction of time scale T. This chapter consists

of definitions, related examples and theorems which we have used in the next chapters.

Chapter 2 deals with Laplace transform on isolated time scale by using delta operator.

Similarly, chapter 3 deals with Laplace transform on two different time scales T = hZ =

{hk : k ∈ Z} where h > 0 and T = qN0 = {qk : k ∈ N0} where q > 1, by using delta

operator. Chapter 4 serves as essential and introductry material on nabla operator. After

this we give some definitions related to Laplace transform and prove some related results

on isolated time scale T by using nabla operator.

Martin Bohner and Gusein Sh. Guseinov has given the concept of Laplace transform

with different time scales by using delta operator. In our work, we have given the concept

of Laplace transform on isolated time scales T by using nabla operator. In future, this work

can be extended on Laplace transform with time scale T = hZ = {hk : k ∈ Z} where h > 0

and T = qN0 = {qk : k ∈ N0} where q > 1, by using nabla operator. If we consider that

all the problems of Laplace transform [7, 8] can be solved by using nabla operator then

this work can be extended in such a way that we use diamond operator instead of nabla

operator.
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