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Abstract

Graph spectra has its wide range applications in applied chemistry, applied
physics and applied mathematics. It is also used in modelling virus propagation
and error correcting codes in computer networks. It measures robustness of a net-
work against the spread of viruses. Most work done in graph spectra is related to
energy of graphs or nullity of graphs.

We study the nullity of different families of graphs and the structure of graphs
within those families which exhibit minimum or maximum nullity. We study nul-
lity of bipartite graphs in detail along with a new concept of expanded paths and
expanded cycles. We construct a new class of tripartite graphs by introducing some
constraints on the family of tripartite graphs. We obtain the nullity set for this
class. We characterize the structure of the graphs of this family with nullity n − 4

and n− 6.
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Introduction

Spectral graph theory studies properties of a graph in relation to its adjacency
matrix as well as other associated matrices. The spectral graph theory prompts
to make effective use of linear algebra particularly the well established theory of
matrices for the purposes of graph theory. The eigenvalues of a graph G are the
eigenvalues of adjacency matrix A(G) and the spectrum of G is the multiset of
eigenvalues of G. The nullity of graph G, denoted by η(G), is the multiplicity of the
eigenvalue zero in the spectrum of G. The graph G is singular if η(G) > 0 and is
non-singular if η(G) = 0. In Mathematics, nullity of a graph has its direct relevance
with singularity of graph.

Nullity has a noteworthy application in chemistry and leading to a new field of
research, nowadays referred to as Chemical Graph Theory. In order to explain the
role of the nullity of graphs in chemistry, we need to recall a few basic facts from
the quantum theory of molecules [21]. The behavior of the electrons in molecules is
considered to be responsible for the majority of properties of chemical compounds.
This behavior is governed by laws of quantum theory and is described by the so-called
Schrodinger equation. Finding the solutions of the Schrodinger equation is one of the
main tasks of quantum chemistry. In an early stage of quantum chemistry, during
the time when computers were not available, the German theoretical chemist Huckel
proposed an approximate method for solving the Schrodinger equation for a special
class of organic molecules, the so-called unsaturated conjugated hydrocarbons [11].
Nowadays, this method is known under the name Huckel molecular orbital (HMO)

theory. The (approximate) energies E1, E2, ...En that the electrons may possess are
related to the eigenvalues e1, e2, ..en of a so-called molecular graph as

Ej = α + βλj, j = 1, 2, ..., n

where α, β are certain constants and λj are eigenvalues of the molecular graph.
Because α < 0, if the graph eigenvalues are labelled in the usual non-increasing
manner as λ1 ≥ λ2 ≥ · · · ≥ λn then E1 is the lowest energy level, E2 is the second



lowest energy level. Each energy level in a molecule can be occupied by at most two
electrons. Usually, the total number of electrons to which HMO theory is applied
is equal to n, and n is most frequently an even number. Usually, En/2+1 < En/2

or it can be said that, λn/2 > λn/2+1. The results on this theory were obtained by
Pairing theorem [6]. According to it, for the majority of unsaturated conjugated
hydrocarbons, the eigenvalues of the molecular graph are paired, so that

λj = −λ−j+1 ∀j = 1, 2, .., n.

Such hydrocarbons to which the Pairing theorem applies are referred to as alternant.
By our latest knowledge it can be straightforwardly recognize that an unsaturated
conjugated hydrocarbon is alternant if and only if its molecular graph is bipartite.

Thus, the nullity of a molecular graph has a far reaching inference on the expected
stability of unsaturated conjugated hydrocarbons. This application of nullity of
bipartite graphs inspired us to study the nullity of tripartite graphs family. Nullity
of tripartite graphs holds its significance in graph theory as it has explicit relation
to singularity of its adjacency matrix. It is possible that nullity of tripartite graphs
also produce wide range of applications on chemical graph theory. As observed
the nullity problem in tripartite graphs does not follow as an extension to that of
the nullity of bipartite graphs, this makes the study of nullity in tripartite graphs
interesting. In this direction, we obtain the nullity set of a class of n-vertex tripartite
graphs and characterize these tripartite graphs with nullity n− 4 and n− 6.

Chapter 1 is devoted to basic definitions and terminologies. It contains prelim-
inaries on graph theory and also describes important graph families. Some prereq-
uisites of matrices required for further work along with the brief history of spectral
graph theory and the work presently done on its different aspects are given in this
chapter. In Chapter 2, we discuss nullity of different families of graphs like trees,
cycles, unicyclic, bipartite graphs, etc. Mainly we review the work on nullity of
bipartite graphs [9].

Our main work is presented in Chapter 3. Firstly, we define a new class of
tripartite graphs by introducing some constraints on tripartite graphs. Nullity set
for this family is obtained. We characterize this family of n−vertex tripartite graphs
by nullity n− 4 and n− 6.
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Chapter 1

Introduction and Prerequisite

This part is devoted for elaborating the essential features of graphs and some basic
definitions. It consists of different theoretical terms of graphs and their illustrations.
Focus is to explain basic properties of matrices, some common graphs with examples
that further describe these concepts in a concise way.

1.1 Graph Theory

Graph is a diagram showing the relation between variable quantities. A relationship
in which objects are represented in a very simple, convenient and natural way. Graph
theory is one of the prominent branch of discrete mathematics progressing at fast
pace. It includes combinatorics (dealing with combinations of objects belonging to
a finite set in accordance with certain constraints). It possesses numerous applica-
tions in operational research, genetics, physical/biological/social sciences, computer
science and network systems. Graph theory has become one of the most studied and
rapidly growing research area. Many problems in discrete mathematics are being
interpreted and solved using graph theory. Wide range of applications provided by
graph theory help other branches of science e.g X-ray, cryptography, circuit design,
data security and communication design.

Leonard Euler, a Swedish mathematician is considered as the originator of graph
theory as he presented the very first paper in graph theory which was published in
1936. The famous Konigsberg Bridge Problem was solved by Euler. He introduced
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the basic terminologies of graph theory which were very lucid and operational. Since
then graph theory has progressed in leaps and bounds. In short a graph prepared
with emphasis on precision depicts the economic events of centuries in a specific
field on one page sketch, easy to understand in a birds-eye view for everyone. In
our endeavour to conjure, we the mathematicians(collectively) will prove that the
graph theory has a challenging but promising future in presenting the work done in
different scientific fields over decades in a concise way just in a single diagram or
figure.

A graph G(V,E,Φ) is a triple consisting of a vertex set V (G) or VG an edge
set E(G) or EG and a relation Φ that associates each edge with two vertices (not
necessarily distinct). In a straight way, if a finite or infinite number of points are
connected by lines the resulting figure is a graph, the points or corners are called
vertices or nodes, and the lines are called edges or links. An edge set is a set of
unordered pairs of vertices, that is, e = uv or e = vu, denotes an edge with vertices
u and v. For any specified edge e = uv of graph u and v are end points of edge e.
The number of vertices (denoted by n) and the number of edges (denoted by m) in
a graph G determines the order and size of the graph, respectively.

In a graph G, a vertex v joined to itself by an edge is called a loop. If two or
more edges of G have same end vertices then these edges are called parallel edges.
A graph G is a simple graph if it does not contain any loop or parallel edge.

1.1.1 Basic Definitions

If distinct edges v and u are incident with a common vertex then they are called
adjacent edges. If e = uv is an edge of a graph G then u and v are termed as adjacent
in G, and it implies u and v are connected by the edge e. For any vertex v ∈ V (G),
the set of all vertices that are adjacent to v in G is called the neighbourhood of v
and is denoted by NG(v) or simply N(v).

A vertex v having no edge incident to it is called an isolated vertex. A vertex
whose neighbourhood contains only one vertex is called a pendent vertex and an
edge associated to it is pendent edge. A null graph or empty graph of order n is a
graph with n vertices and no edges. A graph whose edges and vertices are finite
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is a finite graph, otherwise it is an infinite graph. The number of edges incident
with a vertex, say v, is called the degree of the vertex v, denoted as dG(v) or d(v).
The maximum and minimum degree of a graph G is denoted by ∆(G) and δ(G),
respectively, and is presented as:

∆(G) = max{dG(v) : v ∈ V (G)},

δ(G) = min{dG(v) : v ∈ V (G)}.

A graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). A subgraph
H is a spanning subgraph if V (H) = V (G). A subgraph F is an induced subgraph
of G if whenever v, u ∈ V (F ) and e = uv is an edge of G, then e is an edge of
F as well. If X ⊆ V (G), then the subgraph of G induced by set X is the induced
subgraph with vertex set X. This induced subgraph is denoted as G[X].

Example 1.1.1. A graph G and its subgraph H, spanning subgraph F and the
subgraph S induced by {v9, v10, v11, v12, v13} are described in Figure 1.1.

1.1.2 Paths and Circuits

A walk is a finite sequence of vertices denoted as W = v0e1v1e2v2 . . . vn−1envn where
v0 is origin of the walk, vn is terminus of the walk and v1, . . . , vn−1 are internal
vertices of walk. In a walk W terms are arranged in such a way that vertices and
edges are alternate such that for 1 ≤ i ≤ n, the edge ei has ends vi−1 and vi.
The number of edges in the walk describe the length of the walk. If the edges
e1, e2, e3, . . . , en are distinct, that is, the edges are not repeated, then W is a called
a trail. A trivial walk/trail contains no edges. A walk or trail is closed if its initial
and terminus points are same. If the vertices v0, v1, v2, . . . , vn of the walk W are
distinct, then W is called a path and is denoted by Pn. In other words the path
Pn can be described as an alternate sequence of n vertices and n− 1 edges. A non
trivial closed trail in G is called a cycle if its origin and internal vertices are distinct.
A cycle of length n, that is, with n edges is called n−cycle and is denoted by Cn. If
n is even (odd) then Cn is known as even (odd) cycle. A 3-cycle is called a triangle.
A graph containing no cycle is acyclic graph.
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Figure 1.1: A graph G and its subgraph H, spanning subgraph F and induced
subgraph S.

Now the definitions of edge and vertex deleted sets are given and for this firstly
we describe how setminus works. If G = (V,E) is a graph, then G \ {e} denotes the
subgraph of G having vertex set V (G) and E(G) \ {e} as edge set, where e ∈ E(G),
and is called edge deleted subgraph. It is possible to delete multiple edges or vertices
from a graph G and it will still remain as the subgraph of G. So for an edge deleted
subgraph denoted by G\X, where X ⊆ E(G) the edge set is E(G)\X where vertex
set remains V (G). Here in edge deleted subgraph only selected edges are deleted
but that is not the case for vertex deleted subgraph. In a vertex deleted subgraph
not only the selected vertices are deleted but also the edges incident to them. So, a
vertex deleted subgraph G \X is defined as subgraph of G with vertex set V (G) \X,
where X ⊆ V (G) and whose edges are all those of G which are not incident with
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vertices contained in X.

Example 1.1.2. A graph G and its edge deleted and vertex deleted subgraphs are
shown in the Figure 1.2.

v

G \ {e}

e

v

G
e

G \ {v}

Figure 1.2: A graph G and its vertex and edge deleted subgraphs

For any two graphs G1 and G2, if V (G1) = V (G2) and E(G1) = E(G2) then
G1 and G2 are equal graphs. The graphs G1 = (V1, E1) and G2 = (V2, E2) are
isomorphic if there exists a 1− 1 correspondence between the edge sets E1 and E2

such a way that if e1 is an edge with vertices u1 and v1 in G1 then the corresponding
edge e2 in G2 has its end points the vertices u2 and v2 in G2 which correspond to
u1 and v1, respectively. Isomorphism is denoted by ∼= symbol. The compulsory
requirements for two graphs to be isomorphic are:

• Both must have the same number of vertices.

• Both must have same number of edges.

• Both must have the equal number of vertices with the same degree.

Example 1.1.3. In the Figure, 1.3, G ∼= H and G1
∼= H1.

If G1 and G2 are disjoint graphs then their union is denoted by G1 ∪G2 having
edge set E(G1)∪E(G2) and vertex set V (G1)∪V (G2). A join, denoted by G1 +G2
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Figure 1.3: Isomorphic graphs

consists of G1 ∪ G2 and all edges joining each vertex of G1 with each vertex of G2.
For instance the disjoint union of k copies of graph G is denoted by kG.

A vertex u ∈ V (G) is said to be connected to a vertex v ∈ G if there exists a
path from u to v, otherwise it is disconnected. A graph G is said to be connected if
any two of its vertices are connected. A connected subgraph of G such that it is not
a proper subgraph of any other connected subgraph of G is called a component of G.
It implies that a graph is connected if and only if it contains only one component.

1.2 Important Graph Classes

This section presents a brief introduction to some important classes of graphs such
as regular graphs, bipartite graphs and some of their properties.
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1.2.1 Directed Graphs

If the edges of a graph G are given some direction then these are called directed
edges or arcs and its edge set is denoted by A(G). A graph with directed edges is
called a directed graph or digraph. Each arc ′a′ joins an ordered pair of vertices u
and v of G and is denoted by a = (u, v). An arc a = (u, v) is represented by a
line (curve) with an arrow sign on it pointing from u to v and is said to be leaving
vertex u and entering the vertex v. The number of arcs leaving a vertex is called
out-degree of u and is denoted by d+(u). The number of arcs entering a vertex u is
its in-degree and is denoted by d−(u). It is obvious that in a directed graph G, the
sum of all in-degrees is equal to the sum of all out-degrees, that is,∑

v∈V (G)

d+(v) =
∑

v∈V (G)

d−(v).

A sequence v0, a1, v1, a2, v2, . . . , ak, vk alternating in vertices and arcs in a directed
graph G such that ai = (vi−1, vi) for each 1 ≤ i ≤ k is called a directed walk in G. A
directed walk from u to v is an alternating sequence of vertices and arcs beginning
from u and ending at v. A vertex v is said to be reachable from a vertex u if there
is a directed walk from u to v. If both the vertices u and v are reachable from each
other then they are called mutually reachable. Vertices and arcs may repeat in a
walk. A directed trail is defined as a directed walk with distinct arcs. A walk with
distinct arcs and vertices is a directed path. A closed directed trail with distinct
vertices (except origin and terminus) is called a directed cycle.

An underlying graph is a graph obtained by replacing arcs by the non-directed
edges of a directed graph. A digraph G is said to be weakly connected if its underlying
graph is connected. A digraph G is said to be strongly connected if every two vertices
in G are mutually reachable from each other. A digraph is acyclic if it contains no
directed cycle.

1.2.2 Regular Graphs

If degree of each vertex is same in a graph G, that is, d(v) = k, for every v ∈ V (G)

then G is called k-regular graph. A 3-regular graph is called a cubic graph. A simple
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graph in which every pair of vertices is adjacent is a complete graph. In other words,
a complete graph Kn of n vertices contains an edge between each pair of distinct
vertices. The complete graph Kn is n− 1 regular graph.

Example 1.2.1. A 4-regular and some cubic graphs are shown in the Figure 1.1

Figure 1.4: Some regular graphs

1.2.3 Bipartite Graphs

A graph G is bipartite if its vertex set can be partitioned into two non empty disjoint
subsets X and Y in such a manner that each edge of G has one end vertex in X and
other in Y . A bipartite graph is complete if each vertex of X is joined to a every
vertex in Y , denoted by Kn1,n2 where n1 = |X| and n2 = |Y |. A star is a complete
bipartite graph Kn1,n2 where n1 = 1 or n2 = 1. A graph G is r-partite if vertices
of G can be partitioned into r subsets Vi, where 1 ≤ i ≤ r and each Vi is a partite
set, such that e = uv is an edge of G if u and v belong to different partite sets.
A graph G is called complete r-partite if every two vertices belonging to different
partite sets are adjacent. The following theorem gives a strict characterization to
bipartite graphs.

Theorem 1.2.1 (Zhang [7]). A nontrivial graph G is bipartite if and only if it has
no odd cycle.

Example 1.2.2. The graphs S, F and H shown in the Figure 1.5 are bipartite
graphs. Clearly, S and H are complete bipartite where S is K1,8 and H is K2,2

graph.
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S F H

Figure 1.5: Some Bipartite graphs

1.3 Matrix Algebra

Sometimes the structure of graph being complicated requires much effort to obtain
information. Social networks can be represented by using matrices. Matrices are
used in order to understand such arduous arrangements.

1.3.1 Matrix Structure and Notation

A matrix is a rectangular array of quantities or expressions in rows and columns that
is treated as a single entity and is manipulated by mathematical operations. The
entry in n row and m column of matrix A is denoted by aij. The order of matrix A
having n rows and m columns is given by n×m. So, a matrix A consisting of n rows
andm columns is denoted by A = [aij]n×m. A matrix of order 1×m and n×1 is called
row and column matrix, respectively. A matrix having same number of rows and
columns is called square matrix. An equation of the form a1x1+a2x2+. . .+anxn = b

is called a linear equation in the linear variables x1, x2, . . . , xn, respectively. Here
a1, a2, . . . , an denote the coefficients and b is the constant term of the equation. A
finite collection of linear equations in the variables x1, x2, . . . , xn, is called a system
of linear equations in those variables. An ordered n-tuple z = (z1, z2, . . . , zn) is the
solution of the system of linear equations given above if, whenever substituted in
place of x1, x2, . . . , xn, respectively, the resulting statements are true. The linear
system of equations can be represented in matrix form as Ax = B. The space
spanned by the vectors z1, . . . , zn is the collection of all linear combinations of these
vectors, denoted as span(z1, . . . , zn). The space spanned by the column vectors of
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A is therefore span(A), which is also known as the column space of A. A vector z is
in span(A) if it can be expressed as Ac for some vector c 6= 0. Similarly, the space
spanned by the row vectors of A is span(A′) and known as the row space of A. The
column (row) rank of A is the dimension of the column (row) space of A. If A = [aij]

is anm×n matrix, then the elements aii constitutes principal diagonal. For a matrix
A of order n×m, its transpose AT is a matrix of order m×n whose rows are just the
columns of A in the same order. If A = AT , that is, [aij] = [aji] then matrix A is a
symmetric matrix. For a matrix A = [aij] of order n×n, if Ax = λx where x is a non
zero vector , then λ is the eigenvalue and x is the eigenvector of A corresponding
to λ. The rank of a matrix of order n ×m is the number of linearly independent
vectors (those forming either the rows or the columns) in a matrix. The rank of
a matrix A is denoted by using the notation rank(A). The matrix rank is defined
in terms of number of linearly independent either rows or column because they are
always same. These results are presented below in a proper form with theorems.

Theorem 1.3.1 (Spence [22]). The rank of any matrix is the maximum number of
its linearly independent columns, that is, the dimension of the subspace generated by
its columns.

Corollary 1.3.2 (Spence [22]). For a matrix A of an order m× n,

• rank(AT ) = rank(A)

• The rows and columns of any matrix generate subspaces of the same dimension,
numerically equal to the rank of the matrix.

Lemma 1.3.3 (Horn [13]). Let A be a matrix. Then, the matrices ATA and AAT

have the same nonzero eigenvalues.

1.3.2 Adjacency Matrix of Graph

Let V (G) = {v1, v2, v3, . . . , vn} be a vertex set of graph G. The adjacency matrix
of G is an n × n matrix M with entries mij = 1 when vivj ∈ E(G) and mij = 0

otherwise. The adjacency matrix of a graph G is denoted by A(G).For vertices v1,
v2, A(G)v1v2 = 1 shows that contain an edge between them. Observations extracted
from the the adjacency matrix of a graph G are stated below.
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• The principal diagonal of A(G) has zero entries if graph G does not contain
loops.

• The adjacency matrix of a disconnected graph with two components G1 and

G2 can be partitioned as A(G) =

(
A(G1) 0

0 A(G2)

)
where A(G1) is the

adjacency matrix of a component G1 and A(G2) is the adjacency matrix of a
component G2.

• The structure of adjacency matrix does not accomplish any recognisable defini-
tive relation to parallel edges.

Example 1.3.1. Consider the graph G depicted in Figure 1.6 below along with its
adjacency matrix A(G).

v1 v2

v3

v4

v5
v6

v7

v8 v12 v9

v11 v10

Figure 1.6: Graph G

11



A(G) =



0 1 0 0 0 0 0 1 0 0 0 1

1 0 1 0 0 0 0 0 1 0 0 0

0 1 0 1 0 0 0 0 1 0 0 0

0 0 1 0 1 0 0 0 0 1 0 0

0 0 0 1 0 1 0 0 0 1 0 0

0 0 0 0 1 0 0 0 1 1 0 0

0 0 0 0 0 1 0 1 0 0 1 0

1 0 0 0 0 0 1 0 0 0 0 1

0 1 1 0 0 0 0 0 0 1 0 1

0 0 0 1 1 0 0 0 1 0 1 0

0 0 0 0 0 1 1 0 1 0 1 0

1 0 0 0 0 0 0 1 1 0 1 0


1.4 Spectral Graph Theory

Spectral graph theory elaborates existing specified characteristics of implied an-
tecedent in comparison to other things. In concise it depicts or studies properties of
a graph in relation to its adjacency matrix as well as other associated matrices. The
spectral graph theory prompts to make effective use of linear algebra particularly
the well established theory of matrices for the purposes of graph theory. But the
theory of graph spectra is in no way restricted to the theory of matrices. Rather it is
proving its importance through its recognized feature and specific way of reasoning.
Its legitimacy is evident to distinguish it as complete theory in its own right.

Graph spectra came to forefront when it was put to practical use to fulfill par-
ticular purposes in applied chemistry, applied physics, applied mathematics and
computer science. Rather motivation for advancement in graph spectra came when
it was first incorporated in applied chemistry and physics generating astonishing
successful results. One major practical use of graph spectra in applied chemistry is
its application in the theory of unsaturated conjugated hydrocarbons. The motive
principle for creating first mathematical paper on graph spectra was initiated from
the occurrence of membrane vibration problem. The problem was solved through
approximation method. The corresponding partial differential equation lead to con-
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sider the eigenvalues of graph which represented a discrete model of the membrane.
In statistical physics there appear problems which are easily dealt with by spectra

of certain matrices closely related to adjacency matrices. During the last decade it
has also been admitted that graph spectra have several significant applications in
computer science. The recognition of graph spectra is being widely acknowledged
in internet and computer technology and also in so many other fields. Since 1970,
it is applied in terms of graph eigenvalues in computer science which is associated
with graphs specified as expanders. For further elaborating expanders we can say
that a graph possesses advantageous expanding characteristics if each subset of the
vertex set of small cardinality has a set of neighbours of large cardinality. Problems
such as communication network and error correction codes in computer technologies
are helped out and solved through the use of expanders and some related graphs.
Expanders can be constructed from graphs with small second largest eigenvalue
in modulus. The largest eigenvalue also reveals its vital role in modeling virus
propagation in computer networks. The robustness of a network against the spread
of viruses is inversely proportional to the largest eigenvalue. This result has been
proved in a paper by Wang [25]. The eigenvalues of the graph G are the eigenvalues
of A(G) and the spectrum of G is the multiset of eigenvalues of G. In spectrum more
focus is now on finding nullity of graphs and energy of graphs.

1.4.1 Energy of Graphs

Energy of a simple graph on n vertices with eigenvalues λ1, λ2, . . . , λn is defined as

E(G) =
n∑
i=1

| λi | .

The concept of energy of graphs was given by Ivan Gutman [14] in 1978. But
the motivation to work on this concept came earlier when Huckel Molecular orbital
theory was proposed [11]. Huckel method allows chemists to approximate energies
associated with Y electron orbitals in a special class of molecules called conjugated
hydrocarbons. As late as 1956, Gunthard and Primas [12] realized that the matrix
used in the Huckel method is a first-degree polynomial of the adjacency matrix of
a certain graph related to the molecule being studied. With certain assumptions
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about the molecule, it can be said that its total Y electron energy is the sum of the
absolute eigenvalues of this graph. In the last some years not only energy but its
different versions are being studied. Some results are presented below which give
information about the minimal energy graphs.

Theorem 1.4.1 (Gutman [16]). Let G be a graph with m edges, then energy of
graph E(G) can be given as inequality,

E(G) ≥ 2
√
m,

with the equality attained if and only if G is a complete bipartite graph with some
isolated vertices.

Theorem 1.4.2 (Gutman [16]). Let G be a graph of order n with no isolated vertices,
then

E(G) ≥ 2
√
n− 1.

The equality holds if and only if G is the star graph Sn.

Incidence matrix of a graph G of n vertices and m edges is n ×m vertex edge
matrix whose ij element is equal to 1 if the vertex vi is incident to the edge ej, and
is equal to 0 otherwise. It is denoted by I(G) or simply I. The singular values µ of
a real matrix I(G) (not necessarily square) are the square roots of the eigenvalues
of the matrix IIT , where IT denotes the transpose of I. Jooyandeh [18] introduced
incidence energy denoted by IE(G), is defined as the sum of the singular values of
the incidence matrix of G, that is,

IE(G) =
n∑
i=1

µi

Lemma 1.4.3 (Jooyandeh [18]). Let G be a graph with n vertices and m edges.
Then

• IE(G) ≥ 0 and equality holds if and only if m = 0

• if G1, G2, . . . , Gp are all components of G then

IE(G) =

p∑
i=1

IE(Gi).
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In 2006, Gutman and Zhou [15] defined the Laplacian energy of a graph as the
sum of the absolute deviations, that is, distance from the mean of the eigenvalues of
its Laplacian matrix. A degree matrix corresponding to a graph G is the diagonal
matrix formed from the vertex degrees in the diagonal. The laplacian matrix of a
simple graph G of order n, is an n× n symmetric matrix with one row and column
for each node defined by L = D − A, where D is the degree matrix and A is the
adjacency matrix. The element l(ij) of L is −1 if the vertex vi is adjacent to vj for
i 6= j and 0 otherwise where ij represents the position of entry in the matrix.

1.4.2 Rank of Graphs

The rank of a graph G, denoted by rank(G), is the rank of its adjacency matrix
A(G), that is, rank(G) = rank(A(G)). The nullity of graph G, denoted by η(G), is
the multiplicity of the eigenvalue zero in the spectrum of G. The graph G is singular
if η(G) > 0 and is non-singular if η(G) = 0. It is known that η(G) = n− rank(G).
The nullity set of a family of graphs F is a set S subset of {0, 1, 2, . . . , n} such that
for each k ∈ S there exists a graph G of order n in F with η(G) = k and conversely,
for each graph G of order n in F, η(G) ∈ S. Nullity of graphs is further discussed in
chapter 2 in detail.
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Chapter 2

Nullity of Graphs

This chapter includes the introduction to nullity of graphs and its some main prob-
lems. It also highlights the origin, background and applications of nullity of graphs.
It also provides nullity of bipartite graphs and its direct impact on other fields.

2.1 Introduction and History

The nullity of a graph has great importance in mathematics because it has relevance
to a singularity of adjacency matrix. For a bipartite graph G which is analogous
to a variant hydrocarbon, if η(G) > 0 it depicts that the corresponding molecule is
not stable. This problem is not fully resolved. Presently the researchers are mainly
concentrating on graphs with fewer edges for example, tree, unicyclic and bicyclic
graphs. Attention has not only paid to find nullity of graphs but also to categorize
graphs with maximum nullity within each family. It is the consequence of such
efforts that it is already a known fact that a graph G of order n with atleast one
edge has maximum nullity n− 2. A brief history of work done on nullity of graphs
is given below.

2.1.1 Nullity of Trees

Before proceeding towards the nullity of trees, some definitions are required to be
mentioned. An acyclic connected graph is called a tree and is denoted by T . The
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set consisting of all trees of order n is denoted by Tn. A link is an edge which is
not a loop. A matching of graph G is a subset of edge set of G where each edge is
a link and every two edges are mutually non adjacent edges of G. A matching in
which every vertex of the graph is incident to exactly one edge of the matching is
perfect matching. A maximum matching is a matching with the maximum possible
number of edges. Many maximum matchings for a graph can exist. The size of a
maximum matching, that is, the maximum number of mutually non adjacent edges
of G is called matching number and is denoted by m = m(G).

Theorem 2.1.1 (Cvetokovic [4]). For a tree T of order n with maximum matching
of size m, we have, η(T ) = n− 2m.

Corollary 2.1.2 (Jianxi [17]). Let T be a tree of order n. Then η(G) = 0 if and
only if T has a perfect matching.

By above results it can be easily deduced that nullity of tree can be described
explicitly in terms of its matching number. Furthermore, trees which are isomorphic
to stars give maximum nullity.

Theorem 2.1.3 (Ellingham [8]). For T ∈ Tn, η(T ) ≤ n − 2 and equality holds if
and only if T ∼= Sn.

2.1.2 Nullity of Uniyclic and Bicyclic Graphs

The way to obtain nullity of a cycle is rather simple and discrete.

Lemma 2.1.4 (Schwenk [23]). Nullity of a cycle C of length n is η(Cn) = 2 if
n ≡ 0(mod4) and η(Cn) = 0 otherwise.

A unicyclic graph is a simple connected graph whose number of vertices and
edges are same. The set consisting of all unicyclic graphs of order n is denoted by
Un. Firstly, Tan and Liu [20] published results on nullity of unicyclic graphs. They
found the nullity set for Un, n ≥ 5, that is, η(Un) = {0, 1, . . . , n − 4}. They also
characterized the unicyclic graphs with maximum nullity and left open problem of
characterizing the graphs with minimum nullity. Recently Guo et. al [10] have
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found a way to obtain the nullity of unicyclic graphs in terms of their maximum
matching numbers.

Theorem 2.1.5 (Guo [10]). For G ∈ Un with a size of matching number m, η(G) =

n− 2m− 1 or η(G) = n− 2m or η(G) = n− 2m+ 2.

It is a well established fact that unicylic graphs with pendent edges give maxi-
mum nullity among their family.

A bicyclic graph is a simple connected graph whose number of vertices is one
more than its number of edges. The set consisting of all bicyclic graphs of order n is
denoted by Bn. Jian et. al [17] divided bicyclic graphs into further three categories
and obtained the nullity separately for each category. A generalized result taking
all bicyclic graphs into account or consideration has not been formulated yet.

2.2 Preliminaries on Nullity

In this section we present theorems related to nullity of graphs and our focus is on
bipartite graphs. Most work on nullity of bipartite graphs is done by Fan and Qian
[9].

Theorem 2.2.1 (Torgasev [24]). A graph G is bipartite if and only if its eigenvalues
are symmetric with respect to 0, that is, if λ is an eigenvalue with multiplicity k then
−λ is also an eigenvalue with multiplicity k.

Theorem 2.2.2 (Cheng [2]). For a simple graph G on n vertices, n ≥ 2 and no
isolated vertices η(G) = n−2 if and only if G ∼= Kn1,n2 +kK1, where n1+n2+k = n,
n1, n2 > 0, and k ≥ 0.

Theorem 2.2.3 (Cheng [2]). For a simple graph G on n vertices where n ≥ 3,
η(G) = n − 3 if and only if G ∼= Kn1,n2,n3 + kK1, where n1 + n2 + n3 + k =

n, n1, n2, n3 > 0, and k ≥ 0.

Lemma 2.2.4 (Cheng [2]). Suppose G = ∪ki=1Gi, i = 1, 2, . . . , k where Gi are
connected components of graph G. Then the nullity of graph G is given by:

η(G) =
k∑
i=1

η(Gi) (2.2.1)
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Lemma 2.2.5 (Collatz [3]). Let G be a graph containing a vertex v whose degree
is 1. The nullity of induced subgraph H obtained by deleting v along with the vertex
adjacent to it will be same as nullity of G.

2.2.1 Expanded Paths and Cycles

Let G be a graph on vertices v1, v2, . . . , vn and let x ∈ Rn be a column vector. Then
x can be defined as a function on the vertices of G by mapping each vi to the value
xi, that is, x(vi) = xi. Using this function, the eigenvector equation A(G)x = λx

can be restated as

λx(u) =
∑
vεN(u)

x(v) for each u ∈ V (G). (2.2.2)

The graph G is said to be an expanded graph if its vertex set V (G) can be partitioned
into V1, V2 . . . , Vk, k ≥ 2, such that G[Vi] is an empty graph, for 1 ≤ i ≤ k and if
G[Vi ∪ Vj] is a nonempty graph, it is a complete bipartite graph for 1 ≤ i, j ≤ k,
i 6= j. If G is an expanded graph on V1, V2, . . . , Vk, each Vi, for 1 ≤ i ≤ k, is called
an expanded vertex of order |Vi|. We observe that each simple graph can be viewed
as an expanded graph.

The n-vertex graph G is said to be an expanded path of length k if its vertex set
V (G) can be partitioned into V1, . . . , Vk, k ≥ 2, such that

(i) G[Vi] is an empty graph for 1 ≤ i ≤ k,

(ii) G[Vi ∪ Vi+1] is a complete graph for 1 ≤ i ≤ k − 1,

(iii) G[Vi ∪ Vj] is an empty graph for 1 ≤ i, j ≤ k with j 6= i+ 1.

We use the notation Pk(V1, . . . , Vk) to denote an expanded path on V1, . . . , Vk of
length k. Similarly, an expanded cycle of length k, denoted by Ck(V1, . . . , Vk), is ob-
tained from the expanded path Pk(V1, . . . , Vk) by adding edges between each vertex
of V1 and each of Vk. When there is no ambiguity, we simply write Pn and Cn to
represent an expanded path and an expanded cycle of length n, respectively. An
expanded decomposition of the graph G is a list of expanded subgraphs such that
each edge of G appears in exactly one expanded subgraph in the list.

19



Theorem 2.2.6 (Cheng [2]). For a graph G of order n,

(i) η(G) = n− 2 if and only if G is an an expanded path of length 2 possibly with
some isolated vertices,

(ii) η(G) = n − 3 if and only if G is an expanded cycle of length 3 possibly with
some isolated vertices.

Proof. Firstly, consider an expanded path of length 2. Since such an expanded path
forms the structure of complete bipartite graph along with some isolated vertices.
So, G can be described as G ∼= Kn1,n2 + kK1. By Theorem 2.2.2 result follows.
Secondly, for an expanded cycle of length 3, clearly G ∼= Kn1,n2,n3 and its nullity can
be established by Theorem 2.2.3. Hence the result.

The next lemma provides a situation in which nullity of a graph and its subgraph
remains same.

Lemma 2.2.7 (Fan [9]). Let G be a simple graph, which contains two vertices u,w
such that φ 6= N(u) ⊆ N(w). Let H be a subgraph obtained from G by deleting those
edges of G which join w and vertices of N(u). Then η(G) = η(H).

Proof. Since N(u) ⊆ N(w), this assumption does not allow u and w to be adja-
cent. It also indicates that A(G)uw = 0. Suppose x is an eigenvector of A(G)

corresponding to a zero eigenvalue. By using the equation 2.2.2 we can say,∑
v∈N(u)

x(v) = 0 and
∑

v∈N(w)

x(v) = 0.

By using both equations in such a way that common part of their neighbourhood is
excluded to form the equality

∑
v∈N(w)\N(u)

x(v) = 0. Now we construct a vector x′ as

x′(u) = x(u) + x(w) and x′(v) = x(v) for v 6= u.

For the remaining vertices of G other than u and w, the behaviour of x′ is same by its
definition x′(v) = x(v) for v 6= u. It implies x′ is an eigenvector of H corresponding
to a zero eigenvalue. Conversely, suppose y is an eigenvector of H corresponding to
zero eigenvalue. Then define y′ vector as y′(u) = y(u)− y(w). Repeating the same
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line of actions in the reverse order as above, it leads to the conclusion that y′ is an
eigenvector of G corresponding to a zero eigenvalue. It implies nullity of graph G

and H is same. Hence the result.

Corollary 2.2.8 (Fan [9]). An expanded path P of length n ≥ 2 and order
∑n

i=1 |Vi|
has nullity η(P) =

∑n
i=1 |Vi| − n, if n is even and η(P) =

∑n
i=1 |Vi| − n + 1, if n is

odd.

Proof. Consider an expanded path P of length n and suppose n ≥ 2. We want to
find nullity of this expanded path P. This corollary is proved by using induction
method separately for even and odd length of paths. Clearly, the result holds for
n = 2, that is, η(G) = η(V1V2) = |V1|+ |V2| − 2 as by Theorem 3.2.1. Suppose that
the required result is true for all 2k, where k is any natural number, given as

η(G) = η(V1V2 · · ·V2k) = |V1|+ |V2|+ . . .+ |V2k| − 2k. (2.2.3)

Now we prove it for n = 2(k + 1). For G = V1V2 · · ·V2kV2k+1V2k+2, N(v2k) =

V2k−1 ∪ V2k+1 and N(v2k+2) = V2k+1 which means N(v2k+2) ⊆ N(v2k). By Lemma
2.2.7 deleting those edges joining v2k and V m2k+1 = N(v2k+2) the resulting graph
will preserve the nullity. By repeating the same operation on remaining vertices
vi ∈ V2k, we get a graph H = V1V2V3 · · ·V2k ∪ V2k+1V2k+2. It means a disjoint
component of a graph can be created. Now finding the nullity of graph H as

η(H) = η(V1V2 · · ·V2k ∪ V2k+1V2k+2),

with the help of Lemma 2.2.4 nullity of disjoint components can be added as given
below.

η(H) = η(V1V2 · · ·V2k) + η(V2k+1V2k+2),

= |V1|+ |V2|+ . . .+ |V2k| − 2k + |V2k+1|+ |V2k+2| − 2,

= |V1|+ |V2|+ . . .+ |V2k+1|+ |V2k+2| − 2(k + 1).

Therefore this result is true for all 2n ∈ N. Suppose that the result is true for all 2k−
1, where k is any natural number greater than 2, that is, η(G) = η(V1V2 · · ·V2k−1) =

|V1|+ |V2|+ . . .+ |V2k−1| − 2(k − 1) + 1. Now we prove it for n = 2k + 1. For G =
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V1V2 · · ·V2kV2k+1, N(v2k−1) = V2k−2 ∪ V2k and N(v2k+1) = V2k implying N(v2k+1) ⊆
N(v2k−1). On the same lines by using Lemma 2.2.7 deleting those edges joining v2k−1
and V m2k = N(v2k+1), a disjoint component of G is obtained, call it H. Adding
nullity of components of G below.

η(H) = η(V1V2 · · ·V2k−1) + η(V2kV2k+1),

= |V1|+ |V2|+ . . .+ |V2k−1| − 2(k − 1) + 1 + |V2k|+ |V2k+1| − 2,

= |V1|+ |V2|+ . . .+ |V2k+1| − (2k + 1) + 1.

Therefore this result is true for all 2(n− 1) ∈ N where n ≥ 2.

Lemma 2.2.9 (Fan [9]). Let G be a simple graph containing an expanded path
P = V1, V2, · · ·V6 where V1 and V6 are origin and terminus vertices of P, respectively,
and V2, V3, · · ·V5 are adjacent to no vertex other than in P. Then η(G) = η(H) +

|V2|+ |V3|+ |V4|+ |V5| − 4 where H is obtained by replacing V1, V2, · · ·V6 with V1V6.

Proof. Firstly, proving this theorem for specific values of |Vi|, that is, |Vi| = 1 for
i = 2, 3, . . . , 5 and call the resultant graph G1. Let x be an eigenvector of A(G1)

corresponding to the zero eigenvalue. Let∑
vεV1

x(v) =: α,
∑
vεVm1

x(v) =: β. (2.2.4)

For µ2 :
∑
vεV1

x(v) + x(µ3) = 0, α + x(µ3) = 0, x(µ3) = −α.

For µ4 : x(µ3) + x(µ5) = 0, x(µ5) = α.

For µ5 :
∑
vεV6

x(v) + x(µ4) = 0, β + x(µ4) = 0, x(µ4) = −β.

For µ3 : x(µ2) + x(µ4) = 0, x(µ2) = β.

Let x′ be a subvector of x obtained by eliminating the vertices µ2, µ3, µ3, µ4, µ5

alongwith their coressponding values. Then clearly x′ becomes an eigenvector of
A(H) corresponding to the zero eigenvalue where H = Vm1Vm6 .

Conversely, Suppose x′ is an eigenvector of A(H) corresponding to the zero
eigenvalue and holds equation 2.2.4. Then we can expand this vector to a vector
x by including µ2, µ3, µ4, µ5 vertices into its definition. Then x is an eigenvector of
A(G1) corresponding to the zero eigenvalue. So, nullity of H and G1 is same. This
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result can be proved for i = 2, 3, 4, 5 by using equation A(G)x = 0 as the vertices
within V mi correspond to it. It means η(G) = η(H) +m2 +m3 +m4 +m5− 4.

Corollary 2.2.10 (Fan [9]). An expanded cycle C of length n ≥ 3 and order∑n
i=1 |Vi| has nullity η(Cn) =

∑n
i=1 |Vi| − n + 2, if n ≡ 0 mod(4) and η(Cn) =∑n

i=1 |Vi| − n, if n 6= 0 mod(4).

2.3 Nullity of Bipartite Graphs

The family consisting of all bipartite graphs of order n is denoted by Bn. Firstly we
obtain nullity set for this family.

Theorem 2.3.1 (Fan [9]). The nullity set forBn is S = {n−2k : k = 0, 1, . . . , bn/2c}.

Proof. First we prove that for each nullity l ∈ S (say), there exists a graph G in
Bn. For η(G) = n − 2k where k = {0, 1, . . . , [n/2]} there exists an expanded path
of length 2k(0 ≤ k ≤ bn/2c), that is, P2k such that η(G) = n− 2k. Conversely, for

a graph G of order n in Bn A(G) =

(
0 B

BT 0

)
.

So η(G) = n − 2(rank(B)), where rank(B) = k (say). It proves S to be the
nullity set for Bn.

Theorem 2.3.2 (Fan [9]). Suppose G is a bipartite graph of order n ≥ 4. The
nullity of graph G is n − 4 if and only if G is a graph H possibly adding some
isolated vertices, where H is one of the following graphs:

• a union of two disjoint expanded paths of length 2,

• an expanded path of length 4,

• an expanded path of length 5.

Proof. First, we show the sufficiency of this theorem. If H ∼= Pm1,m2 ∪ Pn1,n2 where
mi and ni are order of expanded vertices of first and second path with i = 1, 2,
respectively. Then η(H) = η(P2) + η(P2) by Lemma 2.2.4. Since η(P2) = n − 2 so
η(H) = n− 4. If H ∼= P4 or H ∼= P5 then by the Corollary 2.2.8 η(H) = n− 4.
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Now, to prove the necessity we take A(G) =

(
0 B

BT 0

)
into consideration.

Here the vertices of bipartition sets X, Y of graph G are used to indicate row index
and column index of B submatrix. In other words, for u ∈ X and v ∈ Y , Buv =

A(G)uv. For a vertex u ∈ X, its corresponding row vector in B is denoted by
BuY . By our supposition η(G) = n − 4 and we know η(G) = n − rank(A(G))

and rank(A(G)) = 2 = rank(B). So rank(B) = 2, that is, B contains two linearly
independent rows, call them BuY and BvY . Obviously, BuY 6= 0 6= BvY which means
N(u) 6= 0 6= N(v). Then there exists q ∈ Y such that Buq 6= Bvq. Without loss
of generality, assume Buq = 1, Bvq = 0. To construct the graph G we consider the
following cases:

Case 1 : N(u) ∩ N(v) = φ. For any vertex w ∈ X, BwY = k1BvY + k2BuY .
Clearly (k1, k2) ⊆ {(0, 0), (0, 1), (1, 0), (1, 1)}. These values of k, provide following
pairs of vectors and resultant neighbourhoods of w as: 0 implies N(w) = φ or
isolated vertex, BuY implies N(w) = N(u), BvY implies N(w) = N(v), BuY + BvY

implies N(w) = N(u)∪N(v). Therefore, G is a graph shown in the Figure 2.1 where
U2 and or U5 may be empty.

U1 U2 U3

U5 U6U4

u v

Figure 2.1: Structure of graph for Case 1 of Theorem 2.3.2

Case 2 : N(u) ∩ N(v) 6= φ. For any vertex w ∈ X any dependent row in B

is denoted by BwY = k1BvY + k2BuY . Clearly (k1, k2) 6= (1, 1). Here (k1, k2) ⊆
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{(0, 0), (0, 1), (1, 0), (1,−1)}. These possible paired values of (k1, k2) leads to the
following vectors and neighbourhoods as 0 implies N(w) = φ or isolated vertex,
BuY implies N(w) = N(u), BvY implies N(w) = N(v), BuY − BvY implies N(w) =

N(u) \N(v) which means N(v) ⊂ N(u).

U1 U2 U3

U5 U6U4

u v

M N O

u v

M N O

L

U1
U2 U3

U4 U5
U6

Figure 2.2: Structure of graphs for Case 2 of Theorem 2.3.2

Now we consider both possibilities of neighbourhood of v, sharing only some part
or otherwise completely contained in the neighbourhood of u. If N(v) * N(u), then
Y can be partitioned into three disjoint subsets M,N,O such that N(u) = M ∪N
and N(u) = N ∪O and it means N(w) 6= N(u) \N(v). The reason behind it is that
both neighbourhoods share some common vertices instead of one neighbourhood
completely lying in the other A graph whose vertices exhibits such a behaviour is
shown in the in the left part of Figure 2.2 where U1 may or may not be empty. For
the latter case, suppose N(v) is completely contained in N(u). In such a case Y is
denoted by M ∪N where M and N are disjoint and the nature of these subsets can
be explained by N(u) = M ∪ N and N(v) = E. This structure of graph exhibits
all possible values of (k1, k2) even (1,−1) which was not possible in the former
case, since one neighbourhood can exclude the other from it and corresponds to the
expanded vertex L of the right graph Figure 2.2. Therefore G is the graph in the
right portion of the Figure 2.2 where U4 and or U1 may be empty.

2.3.1 Nullity of Bipartite Graphs of Order ≥ 6

In this section all the graphs whose order is more than 6 are taken into consideration.
Definite results are produced regarding their structures and corresponding nullities.
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Firstly all the bipartite graphs of order 6 with zero nullity are presented here.

Lemma 2.3.3 (Fan [9]). For a graph G of order 6, G is isomorphic to one of the
following graphs shown in the Figure 2.3 if and only if η(G) = 0.

Proof. First, we show that all graphs under consideration mentioned in the Figure
2.3 have nullity zero. Consider G4 and G5, as they contain isolated vertices by
applying Lemma 2.2.5 they can be reduced to expanded path and expanded cycle,
respectively. For expanded cycles G5, G6 and G7 their nullity is found to be zero by
Corollary 2.2.10. With the help of Corollary 2.2.8 the nullity of G1, G2, . . . , G5 can
be obtained. So, by doing these little calculations and applying corollaries, nullity
of all graphs under consideration is found to be zero as required.

v1 v2 v3

v1

v1

v1

v1

v1
v1

v2

v2v2

v2v2v2

v3

v3v3

v3
v3

v3

u1 u2 u3

u3u3u3

u3

u3
u3

u2

u2

u2
u2

u2

u2

u1

u1

u1

u1

u1u1

Figure 2.3: Graphs of order 6 with zero nullity of Theorem 2.3.3

Conversely, suppose nullity of graph G is zero, that is, A(G) is a full rank matrix
and so rank(B) = 3. Therefore, |X| = 3 = |Y |. To obtain required results for this
non singular graph, the discussion is further divided into cases depending upon the
graph containing a vertex of degree 1 or greater than 1.

Case 1 : For a graph G, if there exist v1 ∈ G such that d(v1) = 1 and N(v1) = u1,
(say). By using Lemma 2.2.5 delete v1 and its adjacent vertex u1. For the resultant
subgraph H of G, nullity remains zero. Since G is a bipartite graph so nullity of H
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can be written as n−4 so by Theorem 2.3.2 H is an expanded path of length 4 or two
disjoint expanded paths of length 2. Then G is isomorphic to one of G1, G2, . . . , G5.

Case 2 : Suppose G contains a vertex u such that |N(u)| = 2 and no isolated
vertex. If G also does not contain any vertex of degree three then it is a cycle of
length six. And now consider G which contains vertices such that for any vi ∈ V (G),
|N(vi)| = 2 or 3. Then G contains even number of vertices whose degree is three.
If G has only one vertex of degree three, then it will also contain a pendent vertex
and it becomes a graph of case 1. Other than that, by the definition of G, it cannot
contain three or five vertices of degree three. A partite set of G cannot have more
than one vertex of degree three because in this way all of those vertices will have the
same neighbourhood. It produces a graph with nullity more than zero as same rows
reduces rank which is a contradiction to our assumption. Another way to show that
such a graph will have some positive number as nullity is by applying Lemma 2.2.7
repeatedly on vertices of degree three. So, each partite set of G contains exactly one
vertex of degree 3. Therefore G ∼= G7 or G ∼= G8. Hence the result.

Theorem 2.3.4 (Fan [9]). For a regular graph G of order n ≥ 6, η(G) = n − 6 if
and only if G is one of the graphs mentioned below.

• a union of three disjoint expanded paths of length 2

• an expanded path of length 6

• an expanded path of length 8

where expanded vertex of each graph has same order.

Proof. (=⇒) If G is any of the above given graph then by Lemma 2.2.4 and Corol-
lary 2.2.8 its nullity can be easily calculated and given as η(G) = n− 6.

(⇐=) Suppose η(G) = n− 6 and A(G) =

(
0 B

BT 0

)
, where the partite sets X, Y

of graph are represented by the subsets of partition of matrix. By the given nul-
lity, rank(A(G)) = 6 implying rank(B) = 3. Let Bu1Y , Bu2Y , Bu3Y be the linearly
independent rows of B corresponding to u1, u2, u3 ∈ X, respectively. By Lemma
2.3.3 there exists a graph of order 6 with zero nullity. It can be observed that it
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is possible to construct such a subgraph of G and call it H. As both graphs H
and G contain same linearly independent rows so by using former graph the latter
can be constructed. Let X ′ ⊆ X and Y ′ ⊆ Y be the bipartite sets of H. Take
X ′ = {u1, u2, u3} and Y ′ = {v1, v2, v3}. Suppose the adjacency matrix for the graph

H is

(
0 D

DT 0

)
, where the row and column indices of matrix D to the vertices of

X ′ and Y ′, respectively. As H is possibly one of the graphs from Lemma 2.3.3 so
constructing their adjacency matrices in the same order as given in the Figure 2.3
as D would be one of the following:

A(G1) =


1 0 0

0 1 0

0 0 1

, A(G2) =


1 0 0

0 1 1

0 0 1

, A(G3) =


1 1 0

0 1 1

0 0 1

,

A(G4) =


1 1 1

0 1 0

0 0 1

, A(G5) =


1 1 1

0 1 1

0 0 1

, A(G6) =


1 1 0

0 1 1

1 0 1

,

A(G7) =


1 1 0

0 1 1

0 1 1

.

Any dependent vertex v′ ∈ X will correspond to a row of the form

Bu′Y = k1Bu1Y + k2Bu2Y + k3Bu3Y , (2.3.1)

where k1, k2, k3 are real numbers. Now left multiplying the equation with all-ones
vector on both sides.

Bu′y1 +Bu′y2 + . . .+Bu′yn = k1[Bu1′y1 +Bu
′
1y2

+ . . .+Bu
′
1yn

] +

k2[Bu
′
2y1

+Bu
′
2y2

+ . . .+Bu
′
2yn

] + k3[Bu
′
3y1

+Bu
′
3y2

+ . . .+Bu
′
3yn

]

Since G is m regular graph (say) so its sum of one’s in each row is same, that is,

m = mk1 +mk2 +mk3,

k1 + k2 + k3 = 1. (2.3.2)
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As the independent rows for both matrices B and D are same so from equation
2.3.2, it can be written as

Du′Y ′ = k1Du1Y
′ + k2Du2Y

′ + k3Du3Y
′ .

Define a set K as, K = {(k1, k2, k3)|Du′Y ′ = k1Du1Y
′ + k2Du2Y

′ + k3Du3Y
′ , u

′ ∈ X}
The set containing possible combinations for (k1, k2, k3) with partite sets (X, Y

′
)

can be calculated by equation (2.3.2) and stated as

K ⊆ {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1,−1, 1), (1, 1,−1)}. (2.3.3)

Now efforts are made to derive and figure out the structure of the graph possibly by
finding the nature of its vertices and their neighbourhoods by using the independent
rows of B. If N(u1), N(u2), N(u3) contain a common vertex, call it v′ . By equation
(2.3.3) every vertex of X is adjacent to v′ because Bu1v

′ = Bu2v
′ = Bu3v

′ = 1 so by
using any possible paired value from K will produce 1 as entry. Since degree of each
vertex of G is same so each vertex of Y has an edge with all vertices of X. Such
a structure corresponds to a complete bipartite graph which is not possible as by
Theorem 2.3.2 its nullity is n − 2. It indicates that D is not the fifth or seventh
matrix. If every dependent vertex u′ ∈ X has neighbourhood of the form that N(u

′
)

is exactly same as one of N(u1), N(u2), N(u3) then D will be the sixth matrix and
(k1, k2, k3) will take values (1, 0, 0), (0, 1, 0), (0, 0, 1). Here all the dependent vertices
with same neighbourhood will represent a same expanded vertex. Therefore, G is
an expanded cycle of length 6 and order of each expanded vertex is same as G is
regular. It can be seen that G represents one of our required structure of graph.
Now assume that D is one of the first four matrices. For such a possibility suppose
v1 ∈ N(u1) \ N(u2) ∪ N(u3). Now further making subcases under the assumption
that neighbourhoods of u1, u2, u3 are disjoint.

Case 1 : N(u1)∩N(u2) 6= φ. For such a case (1, 1,−1) combination is not possible
because it will produce 2 entry in the matrix. In the similar manner assumption
can be made if (1,−1, 1) ∈ K. It implies K ⊂ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. If x
contains a vertex q such that q and v1 has an edge, then BqY = Bv1Y . In other
words Bqp = Bv1p = 1 meaning that q and p also has edge between them. It also
indicates that u2 has an edge with p but not with v1, as v1 is not contained in N(u2).
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Hence d(v1) < d(p) which is a contradiction as G is regular. So, (1,−1, 1) ∈ K and
X must contain a vertex r given by

BrY = Bu1Y −Bu2Y +Bu3Y . (2.3.4)

This dependent row clearly shows that N(u2) ⊆ N(u1)∪N(u3) and also that N(r) =

N(u1) ∪ N(u3) \ N(u2). Since v1 is not contained in either of N(u2) or N(u3)

and by row BrY we can say v1 ∈ N(r) ∩ N(u1). Hence their intersection is not
empty. From equation 2.3.4 Brp = Bu1p − Bu2p + Bu3p = 1 − 1 + 1 = 0 where
for p ∈ N(u1) \ N(r). As it shows that there exist a vertex in N(u1) but not in
N(r) but d(r) = d(u1) so r must joins some vertex except of N(u1) and hence in
N(u3). It implies N(u3) ∩N(r) 6= 0. In a similar manner N(u2) ∩N(u3) 6= 0 since
v1 ∈ N(u1) \ N(u2) leading to N(u2) ⊂ N(u1) which will be contradicting the fact
that G is a regular graph. Therefore vertex set of such a graph can be partitioned
by carefully examining the independent rows, existing intersections of those rows
and the possible dependent rows as well the intersections of both dependent and
independent rows. V (G) = {U1, U2, . . . , U8} where U1 : contains v1, U2 : contains
v1 ∈ N(u1) ∩ N(r), U3 : contains r, U4 : contains N(u3) ∩ N(r), U5 : contains u3,
U6 : contains N(u2) ∩ N(u3), U7 : contains u2, U8 : containsN(u1) ∩ N(u2) such
that for each Ui and Uj their exists complete mapping for i − j ≡ 1(mod8) where
i, j = 1, 2, . . . , 8 as shown in the Figure 2.4.

U1

U2

U3U5

U6 U4

U7

U8

u2 u3u1

pv1

r

Figure 2.4: Graph for the Case 1 and Case 2 for Theorem 2.3.4

Case 2 : N(u1) ∩ N(u3) 6= φ. This case represents the same situation as Case
1 but the vertex u2 is interchanged with u3 where u1 remains same. Therefore the
graph representing this case will also be same as above graph in Figure 2.4.
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Case 3 : N(u1) ∩ (N(u2) ∪ N(u3)) = φ. Firstly, considering the possible values
of K which exist in this case. Assume (1,−1, 1) ∈ K, then X contains a vertex r
such that

BrY = Bu1Y −Bu2Y +Bu3Y . (2.3.5)

It implies that N(u2) ⊆ N(u3) and N(u3) ⊆ N(u2), that is, N(u2) = N(u3) and
obviously N(r) = N(u1). This is because of our supposition under consideration
thatN(u1)∩(N(u2)∪N(u3)) = φ which clearly indicates thatN(u1)∩N(u2) = φ and
N(u1)∩N(u3) = φ. The same relations hold between neighbourhoods of u1, u2, u3 if
(1, 1,−1) ∈ K. In both cases the resultant graph is a union of two disjoint expanded
paths of length 2. Such a graph has nullity n − 4 by Theorem 2.3.2 which is a
contradiction. Therefore the possible values for K are {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.
Hence for any vertex x ∈ X, N(x) = N(u1), N(u2) or N(u1). Furthermore if
N(u2) ∩N(u3) 6= φ then N(u2) = N(u3) and will produce a graph which is a union
of two disjoint expanded paths of length 2. It is the same graph obtained above
giving contradiction. So N(u1), N(u2), N(u3) are pairwise disjoint. Hence G is a
union of three disjoint expanded paths of length 2 with all expanded vertices of
same order. Such a graph falls in the category of required graphs. By considering
all possibilities for graphs with nullity n−6 every graph structure required for proof
is obtained. Hence the result.

2.4 Conclusion

We studied nullity of different types of graphs. We observed from those results that
nullity of each family of graphs has its own dependencies. Nullity of trees explicitly
depend upon their matching numbers. Nullity of cycles and paths depend on their
respective lengths. A lot of useful theorems have been formulated which ease the
process of calculations for obtaining nullity such as Lemma 2.2.4 and 2.2.5.

On the other hand, Fan and Qian [9] introduced a complete different approach
for finding the nullity of bipartite graphs. They gave a new concept of expanded
paths and cycles. Any structure of bipartite graph always fall in the category of
expanded path or cycle or their disjoint unions. In this way it becomes a lot easier
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to find pattern in bipartite graphs. After identifying the patterns and arranging
them in a specific order, calculations become less tedious. This is the reason that
not only the nullity set of bipartite graphs is obtained but also classes of graphs
having same nullity are formulated within the bipartite family.
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Chapter 3

Nullity of Tripartite Graphs

This chapter gives a brief introduction to tripartite graphs and work done on them.
A special class of tripartite graphs is defined and focus is to study its nullity and
obtain useful results on it.

3.1 Background

A lot of work has been done on decomposition of complete tripartite graphs. But
presently, no one has produced work regarding the nullity of tripartite graphs. A
graph G with m edges is said to be decomposable into the graph H if the edges of
G can be partitioned into subsets each of which induces a graph isomorphic to H.
Edwards [19] showed that for any tripartite graph G, there is an integer m such that
G decomposes Km,m,m. Also Cavenagh [5] gave necessary and sufficient conditions
for the decomposition of the complete tripartite graph Km,m,m into k-cycles, for any
k ≥ 3.

In the preceding chapter the importance of nullity is described in detail. It is
easier to obtain the nullity of graphs with fewer edges because finding some pattern in
such graphs is less time consuming. Nullity of bipartite graphs is already obtained.
Our focus is to extend the work of nullity to next step by finding the nullity of
tripartite graphs. In this chapter we we study nullity for a class of tripartite graphs.
As observed the nullity problem in tripartite graphs does not follow as an extension
to that of the nullity of bipartite graphs, this makes the study of nullity in tripartite
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graphs interesting. In this direction, we obtain the nullity set of a class of n-vertex
tripartite graphs and characterize these tripartite graphs with nullity n−4. We also
characterize some tripartite graphs with nullity n− 6 in this class.

The graph G is tripartite if its vertex set can be partitioned into three subsets
X, Y and Z such that G[X], G[Y ] and G[Z] are empty graphs; such a partition
(X, Y, Z) is called a tripartition. For any S ⊆ V (G), we denote by NX(S) the
neighbors of S in X. Analogously, we can define NY (S) and NZ(S). Tripartite
graphs seem to be an extension to bipartite graphs but that is not the case. As
studied in previous chapter, the adjacency matrix of bipartite graph contains only
one non zero submatrix. On the other hand the adjacency matrix of tripartite graph
contains three non zero submatrices. Such a structure refrains the adjacency matrix
of tripartite graph from giving obvious ranks. It is very tough to figure out a pattern
in tripartite graphs and that is the very reason that nullity of tripartite graphs is still
an unsolved problem. Therefore we tried to make a step which would take us closer
to the actual problem. We define a class within tripartite family by adding some
constraints so it becomes manageable and then find its nullity. We consider a special
class of tripartite graphs defined as follows. Let Tn be the family of those n-vertex
tripartite graphs G, n ≥ 5, whose tripartition (X, Y, Z) satisfies the following:

NX(Y ′) 6= X and NZ(Y ′) 6= Z ∀ Y ′ ⊆ Y, (3.1.1)

G[X ∪ Z] is complete bipartite. (3.1.2)

3.2 Nullity set for Tn
Let G ∈ Tn with tripartition (X, Y, Z). The adjacency matrix A(G) of G is defined
by

A(G) =


X Z Y

X 0 J C1

Z J t 0 C2

Y Ct
1 Ct

2 0

,
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where J and 0 respectively denote the matrices with all entries 1 and 0. Let C and
B denote the matrices defined as follows.

C =

[
C1

C2

]
and B =

[
0 J

J t 0

]
.

The matrix A(G) can be viewed as

A(G) =

[
B C

Ct 0

]
. (3.2.1)

Let
U = [B C], L = [Ct 0]. (3.2.2)

Then A(G) can be written as A(G) =

[
U

L

]
.

For each v ∈ X ∪ Z, we denote by Uv the row of A(G) corresponding to the
vertex v. Similarly, for each v ∈ Y , the row of A(G) corresponding to the vertex v
is denoted by Lv. Let S ⊆ X ∪ Z. Then from the matrix A(G), we see that∑

v∈S

kvUv = [b1 b2 c], (3.2.3)

where b1, b2 are constant row matrices respectively of dimension 1×|X| and 1×|Z|,
c is row vector of dimension 1× |Y |, and kv’s are real constants. Similarly, for any
Y ′ ⊆ Y , we can write ∑

v∈Y ′

k
′

vLv = [c1 c2 0], (3.2.4)

where c1, c2 and 0 are row vectors respectively of dimension 1 × |X|, 1 × |Z| and
1× |Y |, and k′

v’s are real constants.
The following result gives information about the rank of a tripartite graph in Tn.

Lemma 3.2.1. Let G ∈ Tn with tripartition (X, Y, Z) and adjacency matrix defined
by (3.2.1). Then

rank(G) = rank(U) + rank(L), (3.2.5)

where U and L are defined by (3.2.2).
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Proof. Let S and Y ′ be arbitrary subsets, respectively of X ∪ Z and Y . To prove
(3.2.5), it is enough to show that

∑
v∈S kvUv 6=

∑
v∈Y ′ k′vLv whenever

∑
v∈S kvUv 6= 0

and
∑

v∈Y ′ k′vLv 6= 0, and kv’s and k′v’s are real constants.
We can write

∑
v∈S kvUv = [b1 b2 c] and

∑
v∈Y ′ k′vLv = [c1 c2 0], where b1, b2,

c, c1, c2 and 0 are defined in (3.2.3) and (3.2.4). By condition (3.1.1), there exists
a vertex in X which is not adjacent to any vertex in Y . Similarly, there exists a
vertex in Z which is not adjacent to any vertex in Y . Thus there are at least two
zero columns in Ct corresponding to a vertex in X and to a vertex in Z. That is,
there are zero entries in vectors c1 and c2. Now, if

∑
v∈S kvUv =

∑
v∈Y ′ k′vLv then

[b1 b2 c] = [c1 c2 0]. As b1 and b2 are constant vectors, the vectors b1, b2, c, c1, c2
are all zero vectors. This completes the proof.

Corollary 3.2.2. Let G ∈ Tn with tripartition (X, Y, Z) and the adjacency matrix
A(G) defined by (3.2.1). Then rank(G) = 2(1 + rank(C)).

Proof. By the construction of the matrix A(G) and by the arguments used in
Lemma 3.2.1, we see that rank(U) = rank(B) + rank(C). Since rank(B) = 2

and rank(L) = rank(C) = rank(Ct), we get from (3.2.5) that rank(G) = 2(1 +

rank(C)).

The next result gives the nullity set of the graphs in Tn.

Theorem 3.2.3. Let m1,m2 and m3 be positive integers such that n = m1+m2+m3.
Then for each integer k ∈ {0, 1, . . . ,min{m1 +m3−2,m2}}, there is a graph G ∈ Tn
with tripartition (X, Y, Z) such that |X| = m1, |Y | = m2, |Z| = m3 and η(G) = n−
2(k+ 1). Conversely, if G ∈ Tn with tripartition (X, Y, Z) then η(G) = n−2(1 +k),
where k ∈ {0, 1, . . . ,min{|X|+ |Z| − 2, |Y |}}.

Proof. First, we prove that for each k ∈ {0, 1, . . . ,min{m1 +m3 − 2,m2}}, there is
a graph G ∈ Tn with tripartition (X, Y, Z) such that |X| = m1, |Y | = m2, |Z| = m3

and η(G) = n − 2(k + 1). We take three non-empty sets X = {x1, x2, . . . , xm1},
Y = {y1, y2, . . . , ym2} and Z = {z1, z2, . . . , zm3}. If k = 0, we construct a graph
G = P (X,Z) ∪m2K1. Clearly, G ∈ Tn. By using Lemma 2.2.2, η(G) = n − 2. If
k > 0, we consider following two cases.
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Case 1. When k ≤ m1 − 1. Since k ≤ m2, we construct a tripartite graph G with
tripartition (X, Y, Z) that satisfies the following.

(i) G[X ∪ Z] = P(X,Z),

(ii) |NX(yi)| = 1 and NZ(yi) = ∅ for 1 ≤ i ≤ k,

(iii) NX(yi) ∩NX(yj) = ∅ for i 6= j and 1 ≤ i, j ≤ k,

(iv) d(yi) = 0 for k + 1 ≤ i ≤ m2.

Then G ∈ Tn. Moreover, the adjacency matrix of G is given by (3.2.1), where

C =

 Ik×k 0k×(m2−k)

0(m1+m3−k)×k 0(m1+m3−k)×(m2−k)

 .
Then rank(C) = k. By Corollary 3.2.2, we get η(G) = n− 2(1 + k).
Case 2. When k > m1− 1. Since k ≤ m2 and k− (m1− 1) ≤ m3− 1, we construct
a tripartite graph G with tripartition (X, Y, Z) that satisfies the following.

(i) G[X ∪ Z] = P(X,Z),

(ii) |NX(yi)| = 1 for 1 ≤ i ≤ m1 − 1,

(iii) |NZ(yi)| = 1 for m1 ≤ i ≤ k,

(iv) NX(yi) ∩NX(yj) = ∅ for i 6= j and 1 ≤ i, j ≤ m1 − 1,

(v) NZ(yi) ∩NZ(yj) = ∅ for i 6= j and m1 ≤ i, j ≤ k,

(vi) d(yi) = 0 for k + 1 ≤ i ≤ m2.

Then G ∈ Tn. Moreover, the adjacency matrix of G is given by (3.2.1), where

C = 
I(m1−1)×(m1−1) 0(m1−1)×(k−m1+1) 0(m1−1)×(m2−k)

01×(m1−1) 01×(k−m1+1) 01×(m2−k)

0(k−m1+1)×(m1−1) I(k−m1+1)×(k−m1+1) 0(k−m1+1)×(m2−k)

0(m1+m2−1−k)×(m1−1) 0(m1+m2−1−k)×(k−m1+1) 0(m1+m2−1−k)×(m2−k)

 .
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Then rank(C) = k. Corollary 3.2.2 gives η(G) = n− 2(1 + k).
Conversely, we show that if G ∈ Tn with tripartition (X, Y, Z), then η(G) =

n − 2(1 + k) where k ∈ {0, 1, . . . ,min{|X| + |Z| − 2, |Y |}}. By Corollary 3.2.2,
rank(G) = 2(1 + rank(C)). By (3.1.1), there are at least two zero rows in C.
This implies that rank(C) ≤ min{|X| + |Z| − 2, |Y |}. The result is true by setting
rank(C) = k.

From Corollary 3.2.2, for each graph G ∈ Tn with A(G) defined by (3.2.1), we
can write

η(G) = n− 2(1 + rank(C)). (3.2.6)

Let Ck(e) denote an expanded cycle of length k with an expanded chord e joining two
non-adjacent expanded vertices of the cycle Ck. We have the following observation.

Lemma 3.2.4. If G = C5(e)∪kK1 is a graph of order n shown in Figure 3.1, k ≥ 0,
then G ∈ Tn and η(G) = n− 4.

Proof. Let X = X1 ∪ X ′, Z = Z1 ∪ Z ′ and Y = Y1 ∪ Y ′, where Y ′ is possibly
empty. Then we see that the graph G is a tripartite graph with tripartition (X, Y, Z).
Moreover, G satisfies (3.1.1) because NX′(Y ) = ∅ and NZ′(Y ) = ∅. Also, G[X∪Z] =

P(X,Z), that is, G satisfies (3.1.2). Thus G ∈ Tn. Let A(G) be the adjacency
matrix of G defined by (3.2.1). By the construction of G, we see that all rows of
Ct are identical and therefore rank(C) = 1. By Corollary 3.2.2, we conclude that
η(G) = n− 4.

X1 1

1

e

X

Z

Z

Y Y

' '

'

Figure 3.1: An expanded graph C5(e) ∪ kK1
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3.3 Characterization of Tn by Nullity

It is not sufficient to only find the nullity set for a family of graphs. Characterizing
some graphs with their nullity in a family give us an insight to the structure of its
family. This section is devoted to characterize some graph structures in Tn with
their nullities. The next result is a direct consequence of Lemma 3.2.3.

Theorem 3.3.1. For a graph G ∈ Tn with tripartition (X, Y, Z), η(G) = n − 2 if
and only if G = P(X,Z) ∪ |Y |K1.

Proof. Let G ∈ Tn with tripartition (X, Y, Z) and η(G) = n−2. Then from equation
(3.2.6), we have rank(C) = 0. That is, d(y) = 0 for all y ∈ Y . Thus G = P(X,Z) ∪
|Y |K1. Conversely, suppose that G = P(X,Z) ∪ |Y |K1. Using Lemma 2.2.8, we see
that η(G) = n− 2.

Theorem 3.3.2. Let G ∈ Tn with tripartition (X, Y, Z) and n ≥ 4. Then η(G) =

n− 4 if and only if G is a graph H possibly with some isolated vertices, where H is
an expanded path of length 4 or the expanded graph C5(e).

Proof. Let G ∈ Tn with tripartition (X, Y, Z) and η(G) = n − 4. Let A(G) be the
adjacency matrix of G defined by (3.2.1). Then by (3.2.6), we have rank(C) = 1,
that is, rank(L) = 1. This means that there is only one independent row, say, Ly0
in L, where y0 ∈ Y is the vertex corresponding to Ly0 . Then for each y ∈ Y , either
N(y) = N(y0) or N(y) = ∅. Let Y1 ⊆ Y is the set of all vertices of Y with non-zero
degree. We have the following three cases.
Case 1. When NZ(Y1) = ∅. In this case, N(Y1) ⊆ X. By condition (3.1.1),
N(Y1) 6= X. We partition X, Y and Z into Y1, N(Y1), Z and X \ N(Y1). Then G
can be drawn as an expanded path P(Y1, N(Y1), Z,X \ N(Y1)) possibly with some
isolated vertices in Y \ Y1.
Case 2. When NX(Y1) = ∅. In this case, N(Y1) ⊆ Z. By condition (3.1.1),
N(Y1) 6= Z. We partition X, Y and Z into Y1, N(Y1), X and Z \ N(Y1). Then G
can be drawn as an expanded path P(Y1, N(Y1), X, Z \ N(Y1)) possibly with some
isolated vertices in Y \ Y1.
Case 3. When NX(Y1) 6= ∅ and NZ(Y1) 6= ∅. We can partition X into X1 and X ′,

39



such that X1 = NX(Y1) and X ′ = X \ X1. Similarly, we can partition Z into Z1

and Z ′, such that Z1 = NZ(Y1) and Z ′ = Z \Z1. Then, using condition (3.1.2), one
can draw the graph G as an expanded graph C5(e) (shown in Figure 3.1). There
are possibly some isolated vertices in Y ′, where Y ′ = Y \ Y1.
Conversely, let G be drawn as an expanded path of length 4 possibly with some

Y Z X - N(Y ) N(Y )

Y X Z - N(Y ) N(Y )1 1

1

1

11

Figure 3.2: Two expanded paths P(Y1, N(Y1), Z,X \N(Y1)) and P(Y1, N(Y1), X, Z \
N(Y1)) of length 4

isolated vertices. Then Lemma 2.2.8 yields that η(G) = n − 4. Furthermore, if G
can be drawn as C5(e) with some isolated vertices, then using Lemma 3.2.4, we get
η(G) = n− 4.

3.4 Some graphs in Tn with nullity n− 6

In this section, we consider some graphs in Tn, n ≥ 6, with nullity n−6. Let G ∈ Tn
with tripartition (X, Y, Z) and let X ′ = X \ NX(Y ). Note that X ′ 6= ∅ by (3.1.1).
We assume that

G[NX(Y ) ∪ Y ] = P(NX(Y ), Y ). (3.4.1)

The following result gives a characterization of a graph G in Tn, n ≥ 6 satisfying
(3.4.1) and η(G) = n− 6.

Theorem 3.4.1. Let G ∈ Tn with tripartition (X, Y, Z), n ≥ 6. Assume that G
satisfies (3.4.1) and η(G) = n − 6. Then G has one of the following expanded
decomposition.

(1) C5(e), P2,

(2) C5(e), C3, P2,
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(3) 2C5(e), 2P2,

(4) C5(e), C3, 2P2.

Proof. Let G ∈ Tn with tripartition (X, Y, Z) satisfying (3.4.1) and η(G) = n − 6,
n ≥ 6. Let X ′ = X \NX(Y ) and Z ′ = Z \NZ(Y ). From (3.1.1), we see that X ′ and
Z ′ are nonempty. Let A(G) be the adjacency matrix of G defined by (3.2.1). Since
η(G) = n− 6, using Corollary 3.2.2, we have rank(L) = 2. This implies that L has
two independent rows, say, Ly1 and Ly2 , where y1, y2 ∈ Y . Using (3.1.1) and (3.4.1),
the columns of L corresponding to the vertices of X are constant. Then for each
y ∈ Y , either Ly = Ly1 or Ly = Ly2 . Thus we partition Y into Y1 and Y2, where

Y1 = {y ∈ Y | Ly = Ly1}, Y2 = {y ∈ Y | Ly = Ly2}.

Note that NZ(y) = NZ(Y1) for each y ∈ Y1, and NZ(y) = NZ(Y2) for each y ∈ Y2.
Since rank(L) = 2, either NZ(Y1) 6= ∅ or NZ(Y2) 6= ∅. Without loss of generality,
assume that NZ(Y1) 6= ∅ and NZ(Y1) 6⊆ NZ(Y2). The following three cases are
possible.

Case 1. When NZ(Y1) ∩NZ(Y2) = ∅.
If NZ(Y2) = ∅, then NZ(Y ) = NZ(Y1). We draw the graph G as an expanded graph
on six expanded vertices X1 = NX(Y ), X ′, Z1 = NZ(Y ), Z ′, Y1 and Y2. Here Y ′ is
possibly empty. The graph is shown in Figure 3.3 (i). In this case, we can decompose
the graph G into C5(e) and P2.

If NZ(Y2) 6= ∅, we partition NZ(Y ) into Z1 = NZ(Y1) and Z2 = NZ(Y2). We
draw the graph G as an expanded graph on seven expanded vertices X1 = NX(Y ),
X ′, Z1 = NZ(Y1), Z2 = NZ(Y2), Z ′, Y1 and Y2. The graph is shown in Figure 3.3
(ii). In this case, the graph can be decomposed into C5(e), C3 and P2.

Case 2. When NZ(Y1) ∩NZ(Y2) 6= ∅ and NZ(Y2) 6⊆ NZ(Y1).
Let Z1 = NZ(Y1)∩NZ(Y2), Z2 = NZ(Y1) \NZ(Y2) and Z3 = NZ(Y2) \NZ(Y1). Then
Z ′, Z1, Z2 and Z3 form a partition of Z. The graph can be drawn as an expanded
graph on eight expanded vertices X1 = NX(Y ), X ′, Z1, Z2, Z3, Z ′, Y1 and Y2. The
graph is shown in Figure 3.4 (i). In this case, the graph G can be decomposed into
2C5(e) and 2P2.

41



Case 3. When ∅ 6= NZ(Y1) ∩NZ(Y2) 6= ∅ and NZ(Y2) ⊆ NZ(Y1).
We draw the graph G as an expanded graph on seven expanded vertices X1 =

NX(Y ), X ′, Z1 = NZ(Y2), Z2 = NZ(Y1) \ NZ(Y2), Z ′, Y1 and Y2. The graph is
shown in Figure 3.4 (ii). The graph G can be decomposed into C5(e), C3 and
2P2.

X1 1

1

Z

Y 2Y

Z X' '

X1

1

1

Z

Y 2Y

Z X' '

2Z

(i) (ii)

Figure 3.3: Graphs drawn in Case 1 with NZ(Y1) ∩NZ(Y2) = ∅

X1
1

1

Z

Y 2Y

Z X' '

2Z
3Z

X1
1

1

Z

Y 2Y

Z X' '

2Z

(i) (ii)

Figure 3.4: Graphs drawn in Case 2 and Case 3 with NZ(Y1) ∩NZ(Y2) 6= ∅

3.5 Conclusion

We studied n-vertex tripartite graphs satisfying (3.1.1) and (3.1.2). We obtained
the nullity set of this class of n-vertex tripartite graphs and characterized them with
nullity n − 4. It will be interesting to consider a more general class of n-vertex
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tripartite graphs and to characterize them with their nullity. In Theorem 3.4.1, we
characterized those n-vertex tripartite graphs whose nullity is n− 6 and that satisfy
(3.1.1), (3.1.2) and (3.4.1). We are not sure about the converse of Theorem 3.4.1
and it is left as an open problem.
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