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Abstract

Geometric integrators are numerical methods for the approximate solution of differential

equations with invariants. The main aim of geometric integrators is to produce numerical

solutions with the correct qualitative behavior as possed by differential equations.

If the domain of the differential equation is Euclidean space, standard numerical methods

work, however if the domain is manifold or in particular a Lie group which is a differential

manifold then method of choice will be special geometric integrators known as Lie group

methods.

In this thesis, we shall look at some of the basic concepts behind the two main classes of

Lie group methods, Magnus series expansion and Runge–Kutta–Munthe–Kaas (RKMK)

methods. These Lie group methods are applied to solve differential equations on manifold.

The results of the Lie group integrators are then compared with the standard numerical

methods such as the classical Runge–Kutta methods. Results indicate that Lie group

methods are able to produce numerical solution which mimic the qualitative features of

exact solution of differential equation which we initially solve.
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Chapter 1

Introduction

Geometric integrators are those numerical methods which are used for computing the

solution of differential equations with invariants. The aim of a geometric integrator is

to produce numerical solutions with correct qualitative behavior as possessed by the flow

of differential equation. If the differential equation models a dynamical system then it

is important to preserve its phase space. A first aspect of a dynamical system that is

important to preserve is its phase space. If the phase space is ℜn, numerical solution

can easily be achieved by using any one-step numerical method, and the solution remains

in ℜn. If, on the other hand, phase space is a more complicated manifold, then more

sophisticated methods are called for. If, for example, the phase space is a Lie group,

traditional one step numerical methods for example Runge–Kutta methods generally do

not work, and one must use a Lie group integrator.

In this thesis we have employed Lie group methods to solve differential equations on

manifold. In this regard the main tool is to find associated Lie algebra of particular Lie

group G, then finding the solution in Lie algebra setting and map the solution back from

Lie algebra to its Lie group by appropriate map. This is because Lie group is a nonlinear

space, while Lie algebra is linear space.

The plan of thesis is as follows: Chapter 1 contains a review of the relevant background of

the work presented in this thesis. In Chapter 2, our main emphasis is on the study of some

of the Lie group methods such as Magnus series expansion and Runge–Kutta–Munthe–

Kaas methods. In Chapter 3, Lie group methods are used to solve differential equations

evolving on a manifold and numerical results are displayed. The last chapter of this thesis

is about the conclusion of our work.

1.1 Differential Manifold

• A manifold is a topological space which resembles Euclidean space locally. Thus

for an n-dimensional manifold M, every point p ∈ M has a neighborhood Q ⊆ M

that is homeomorphic to an open subset Q ⊆ ℜn, such that

φ : Q → Q,
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CHAPTER 1. INTRODUCTION 7

is a homeomorphism.

• A chart on a manifold M, is a pair (Qi, φi).

• An Atlas on a manifold M, is a collection of all charts on a manifold M.

• A differential manifold is a manifold such that, for any two charts (Qi, φi) and

(Qj , φj) such that the Qi ∩Qj is nonempty, the map,

φij = φj ◦ φ−1
i : φi(Ui ∩ Uj) → φi(Ui ∩ Uj),

is infinitely differentiable for all pairs of i, j.

1.1.1 Examples

• Any open subset O of ℜn is a manifold of dimension n.

• The unit circle S1 = {(x, y) ∈ ℜ2 | x2 + y2 = 1} is a manifold of dimension two.

• The set O(N) of all N ×N orthogonal matrices is a manifold.

1.2 Lie Group

• A Lie group is a group G which is a differentiable manifold, and for which the

product is a differentiable mapping G×G → G. Since a Lie group G is a group, then

there is a group operation, · : G×G → G, satisfying the following properties

1. g.(h.k) = (g.h).k ∀ g, k ∈ G, (Associativity)

2. e.g = g = g.e, ∀g ∈ G, (Identity element)

3. g−1.g = g.g−1 ∀ g ∈ G. (Inverse)

• Lie groups which are subgroups of general linear group GL(n), the group of invertible

n × n matrices with the usual matrix product as the group operation are called

matrix Lie Groups.

1.2.1 Examples of Matrix Lie Group

• The general linear group of all n× n matrices, given as

GL(n) = {Y |detY ̸= 0}.

• The special linear group of all n× n matrices, given as

SL(n) = {Y |detY = 1}.

• The orthogonal group of all n× n matrices, given as

O(n) = {Y |Y TY = I}.
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1.3 Lie Group Action

Let M be a differential manifold and G be the Lie group. A left Lie group action on M is

a smooth mapping ∧ : G×M → M such that [1],

1. ∧(e, p) = e.p = p, ∀p ∈ M and the identity element e ∈ G,

2. ∧(g1.g2, p) = ∧(g1,∧(g2, p)), ∀p ∈ M, and g1, g2 ∈ G.

∧ : G ×M → M is a local Lie group action. Moreover ∧ is a transitive action on M [2].

That is for every pair m1,m2 ∈ M , there exists at least one element g ∈ G such that

∧(g,m1) = m2.

1.4 Tangent Bundle

• Let M be a d-dimensional manifold and suppose that p(t) ∈ M is a smooth curve

such that p(0) = p. A tangent vector at p is defined as

a =
dp(t)

dt

∣∣∣∣
t=0

.

• The set of all tangents at p is called the tangent space at p and is denoted by TM
∣∣
p
.

It has the d-dimensional linear space structure, as if a, b ∈ TM
∣∣
p

then a + b ∈ TM
∣∣
p

and αa ∈ TM
∣∣
p

for any real number α.

• The collection of all tangent spaces at all points p ∈ M is called the tangent bundle

of M and is denoted by TM =
∪

p∈M TM
∣∣
p
.

1.5 Vector Field

• A vector field F is simply a map F : M → TM , such that for a point p ∈ M ,

F (p) ∈ TpM . The set of all vector field on M is denoted by χ(M).

1.6 Differential Equations on Manifold

• Matrix differential equations of the form

ẏ(t) = A(t, y)y, t ≥ O, y(0) = y0 ∈ O(n),

where A : R+ ×O(n) → so(n), are called orthogonal matrix flows.

• Matrix differential equations of the form

ẏ(t) = B(t, y)y − yB(t, y), t ≥ O, y(0) = y0 ∈ s(n),

where B : ℜ+ × s(n) → so(n), are called isospectral matrix flows.
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1.7 Left and Right Trivialization

Most of the definitions given in this thesis are based on the right trivialization, for example

differential equations on Lie group given by ẏ(t) = A(t)y0, where A(t) ∈ g and y ∈ G. One

important difference between the left and right trivialization is that the left trivialization

denotes calculations done in the space coordinates of a moving object, while the right

trivialization denotes that of the body coordinates of the object. The space coordinate is

a frame fixed in space, while the body coordinates is a frame fixed within the body, so

that this frame is moving with the body, observed with respect to the space coordinates.

Right trivialization can be calculated by

Ra(b) = b.a R : G×G → G.

R
′
a(b) = b.a R : G×G → G, R

′
: g → TpG.

1.8 Lie Algebra

• Given a particular Lie group G, it has an associated Lie algebra g = TeG, which

is the tangent space at the identity e of the Lie group G. In particular, if G is

finite-dimensional, then its Lie algebra g is a linear space of the same dimension.

• Lie algebra g is closed under the bilinear and skew-symmetric operation given by the

Lie Bracket, [., .] : g × g → g, defined as,

[u, v] = uv − vu ∀u, v ∈ g.

This Lie bracket must satisfy the following axioms for all u, v, w ∈ g, and α,β ∈ ℜ
as constants

1. [αu + βv,w] = α[u,w] + β[v, w],

2. [u, v] = −[v, u],

3. [u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0.

For a ∈ G, v ∈ g = TeG, using right trivialization we get the following

R′
a(v) = v.a, (1.1)

where ′ denotes derivative. Hence, the tangent space at any point a ∈ G can be

found with g ∈ TeG using R′
a, as follow for all a ∈ G [6]

TaG = R′
a(v) where v ∈ g.
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1.8.1 Example

Consider the following rotation matrix,

Y =

[
cos t − sin t

sin t cos t

]
,

differentiate Y with respect to t

Y
′

=

[
− sin t − cos t

cos t − sin t

]
,

at t = 0

Y
′ |t=0 =

[
0 −1

1 0

]
,

which is a skew symmetric matrix and is the associated Lie algebra so(2) of Lie group

SO(2).

1.9 Lie algebra action

The Lie algebra action on manifold M is denoted by a smooth function λ : g ×M → M .

Each fixed element v ∈ g generates a vector field on M , denoted by λ∗(v) : M → TM,

(λ∗v)(p) =
d

dt
λ(tv, p)

∣∣
t=0

, ∀p ∈ M. (1.2)

Where v ∈ g corresponds to the vector field λ∗(v), and vector field is known as the

infinitesimal generator, then the infinitesimal generator of the action corresponding to

v ∈ g is denoted by [3],

vm = (λ∗v).

Definition 1. If ∧ : G ×M → M is a left Lie group action, then the Lie algebra action

λ : g ×M → M is given by

λ(v, p) = ∧(exp(v), p), (1.3)

for v ∈ g close to identity, and p ∈ M .

This is a connection between Lie algebra action and Lie group action.

Corollary 1. Let ∧ : G × M → M be the Lie group action, with Lie algebra g on the

manifold M . Then the infinitesimal generator of the action corresponding to v ∈ G is

given by

vM (p) =
d

dt
∧ (exp(tv), p)

∣∣
t=0

, ∀p ∈ M. (1.4)

This infinitesimal generator is the vector field F (p) on M .
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1.10 Equivariant Map

Let M and N be two manifolds, and let G be a Lie group acting on a point x ∈ M, by the

Lie group action ∧1 : G×M → M, and also acting on a point y ∈ N by ∧2 : G×N → N.

A smooth map f : M → N is an equivariant map with respect to the actions ∧1 and ∧2

if, for all g ∈ G

f(∧1(g, x)) = ∧2(g, f(x)), where x ∈ M and y = f(x) ∈ N.

1.11 Exponential Map

One of the link between Lie group G and its associated Lie algebra g is the exponential

map exp. it is defined as the map exp : g → G, such that for all matrices v ∈ g

exp(v) =

∞∑
k=0

vk

k!
.

The exponential map is a local diffeomorphism (smooth map with inverse) in the neigh-

borhood of 0 ∈ g, by the inverse function theorem [4]. Also, given the nature of the

exponential map, it maps 0 ∈ g to the identity element e ∈ G.

1.12 Linear Adjoint operator

The Adjoint representation of the Lie group, Ada : g → G for all a ∈ G is defined as

Ada(v) = ava−1, for a ∈ G, and v ∈ g,

while the adjoint operator adu : g → g is the derivative of the adjoint representation Ada,

with respect to the element a ∈ G at the identity e ∈ G, in the direction of u ∈ g [5]. The

adjoint operator adu : g → g is the Lie bracket

adu(v) = [u, v] = uv − vu, ∀u, v ∈ g.

1.13 The Differential of the Exponential Map and its Inverse

For u ∈ G, the derivative of the exponential map is given by exp(u + t)′ : g → Texp(u)G,

such that when applied to v ∈ g

d

dt
exp(u + tv)

∣∣
t=0

= exp(u + tv)′
∣∣
t=0

= R′
exp(u) ◦ d expu(v). (1.5)

Where R′
exp(u) : g → Texp(u)G. The differential of the exponential map d expu : g → g is

the linear map, such that when applied to v ∈ g

d expu(v) =
exp(adu) − Id

adu
(v) =

∞∑
k=0

1

(k + 1)!
adku(v), (1.6)
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and the inverse of d expu is

d exp−1
u (v) =

adu
exp(adu) − Id

(v) =
∞∑
k=0

Bk

k!
adku(v), (1.7)

where Bk are the Bernoulli numbers.



Chapter 2

Lie Group Methods

2.1 Runge-Kutta-Munthe-Kaas Methods

Runge-Kutta-Munthe-Kaas Methods are important class of methods that allow to use the

classical Runge-Kutta (RK) methods to indirectly solve the differential equations evolving

on Lie groups. Runge-Kutta-Munthe-Kaas methods, were first developed by Munthe-Kaas

and Zanna [2]. On linear spaces, standard classical integrators will produce solutions that

reside thereon. In general, a Lie group is not such a space. Its Lie algebra, however, is

linear. We can exploit this fact by translating the differential equation on the Lie group,

which we want to solve, to a corresponding equation on its Lie algebra. On the Lie algebra,

we use classical integrators and translate the solution back to the original space, the Lie

group. By these means, we assure that the solution will reside in the Lie group. A good

candidate for the translation from a Lie algebra to a Lie group is the exponential map.

2.2 The RKMK Class

The main idea behind the RKMK class of integrators is to rewrite a differential equation

evolving on M , into one that evolves on g. This is because g has structure of a vector space,

and classical RK method can be applied to numerically solve this equivalent differential

equation on g. To do this, an equivariant map will be constructed

∧(Ψ(·), p) → M for p ∈ M,

where g is a Lie algebra associated with the Lie group G acting on M , and the Ψ : g → G,

is coordinate map, then elements of v ∈ g, can be found such that infinitesimal generater

can be constructed (Section 1.8), which describes the original differential equation in terms

of the Lie group action

∧ : G×M → M.

We want to solve the differential equation on M

ẏ = F (y), t ≥ 0, y(0) = y0 ∈ M,

13
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where at each point y(t) ∈ M for t ∈ R, the vector field F (y(t)) can be written in terms

of the infinitesimal generator vM

F (y) = vm(y) =
d

dt
∧ (exp(tv), y),

for some v ∈ g which relates to the differential equation on M . Once v is found, the

transformation to an equivalent system on g is done by solving the differential equation

given by

u̇ = dΨ−1
u (v), u(0) = u0.

Where Ψ : g → G is a coordinate map and u ∈ g with respect to the infinitesimal generator

vM .

Hence u(t), for t ∈ ℜ, is the solution of the equivalent differential equation evolving on

g. Once u(t) is approximated using the classical integrators like the RK methods, then

the corresponding solution y(t) ∈ M can be found by Lie group action with respect to the

known point say y0 ∈ M

y(t) = ∧(Ψ(u(t)), y0).

To relate the element v ∈ g to the original differential equation on M , v is defined as the

map f : R × M → g, with respect to point y(t) on M , given by the Lie group action

∧ : G×M → M [1]. That is

v(t) = f(t,∧(Ψ(u(t)), y(t))) for t ∈ R.

This differential equation evolves on the homogeneous space M and can be described in

terms of as an infinitesimal generator vm.

2.3 Canonical Coordinates of First kind

Consider the equation

Ẏ = A(t, Y )Y, Y (0) = Y0. (2.1)

The map

A ∈ g → expm(A)Y0 ∈ G, (2.2)

is called canonical coordinates of the first kind. This defines a smooth invertible map

between a neighborhood 0 ∈ g and Y0 ∈ G by the inverse function theorem generalized

for manifolds. If we identify the Lie algebra g with a subset of ℜn, the inverse of this map

gives us a chart that is centered about Y0 ∈ G.

In [6], it is given that for small t ≥ 0 the solution of eq (2.1) is given by

Y (t) = expm(Θ(t))Y0, (2.3)

where Θ(t) ∈ g satisfies the differential equation

˙Theta(t) = dexp−1
Θ(t)(A(t, Y )), Θ(0) = 0. (2.4)
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This can be seen as follows.

Y (t) = expm(Θ(t))Y0,

as a solution of eq (2.1). Now differentiate eq (2.3) to get

Ẏ (t) = d expΘ(t)(
˙Theta(t)) exp(Θ(t))Y0 = d expΘ(t)(

˙Theta(t))Y (t). (2.5)

Compare eq (2.5) and eq (2.1) we get

A(t, y) = d expΘ(t)(
˙Theta(t)),

⇒ ˙Theta(t) = dexp−1
Θ(t)(A(t, Y )).

The map dexp−1
u : g → g is expressed in terms of commutators through the infinite series

as follows

dexp−1
u (v) =

∞∑
k=0

Bk

k!
adku(v) = v − 1

2
[u, v] +

1

12
[u, [u, v]] + ...,

where ad0u(v) = v and adku(v) = [u, adk−1
u v] and Bk are Bernoulli numbers. The idea of

Munthe-Kass is to approximate the solution of eq (2.4) by means of classical RK methods,

and then transform the results back to M by setting

y(n + 1) = exp(Θ
′
(t))yn,

where yn and yn+1 ∈ G.

2.4 Magnus Series Expansions

Consider the matrix Lie group equation

ẏ(t) = A(t)y(t), y(0) = y0, (2.6)

where y(t) ∈ G, the Lie group and A(t) ∈ g, corresponding Lie algebra. In the general

non-commutative case, we want to search for a matrix function Ω(t) such that the solution

y(t) for eq (2.6) is described as

y(t) = exp(Ω(t))y0. (2.7)

To find the explicit expression for Ω(t), another differential equation will be solved

Ω̇(t) = d exp−1
Ω(t)(A(t)), Ω(0) = 0, (2.8)

where d exp−1 is differential of inverse of exp function as given in Section 1.13.

To derive eq (2.8), let us assume eq (2.7) holds and we differentiate it with respect to t.

d

dt
y(t) =

d

dt
(exp(Ω(t))y0),

ẏ(t) = R
′

exp(Ω(t) ◦ d expΩ(t)(
d

dt
Ω(t)).y0,
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= d expΩ(t)(Ω̇(t)). exp(Ω(t)).y0. (2.9)

Where R
′

is right trivialization. Comparing eq (2.6) with eq (2.7) and eq (2.9), it is found

that

A(t) = d expΩ(t)(Ω̇(t)).

Inverting the above yields the desired relationship in eq (2.7).

eq (2.8) can further be expanded by the definition given in (Section1.13)

Ω̇(t) = A(t) − 1

2
[Ω(t), A(t)] +

1

12
[Ω(t), [Ω(t), A(t)]] + ..., (2.10)

an explicit approximation to Ω(t) can be found by applying Picard iterations [11]. This

approximation is called the Magnus series expansion [7], and is derived according to

the steps below.

Let Ω0 be the initial estimate to the solution Ω(t), we can let our initial estimate be

Ω0 = 0. After substituting this into eq (2.10), we are left with

Ω̇(t) = A(t), Ω(0) = Ω0 = 0,

and integrate with respect to t ∫ t

0
Ω̇(ξ)dξ =

∫ t

0
A(ξ)dξ.

So, the first iteration, denoted by Ω1(t) yields the following approximation to Ω(t)

Ω1(t) − Ω(0) =

∫ t

0
A(ξ)dξ,

Ω1(t) =

∫ t

0
A(ξ)dξ + Ω(0) =

∫ t

0
A(ξ)dξ. (2.11)

Now, after substitution eq (2.11) into eq (2.10)

Ω̇(t) = A(t) − 1

2
[Ω1(t), A(t)] +

1

12
[Ω1(t), [Ω1(t), A(t)]] − ..., (2.12)

where [ ] denotes Lie brackets as given in Section1.8.

Integrate eq (2.12) to find the second iterate Ω2(t)

Ω2(t) =

∫ t

0
A(ξ)dξ − 1

2

∫ t

0
[Ω1(ξ), A(ξ)]dξ +

1

12

∫ t

0
[Ω1(ξ), [Ω1(ξ), A(ξ)]]dξ + ... (2.13)

Similarly, substitution of eq (2.13) in eq (2.10) will be required to find third iterate Ω3(t).

Hence, the Magnus series expansion can be rewritten as a summation of terms Hk(t),

where each Hk is a linear combination of terms that include exactly k + 1 integrals and k

commutators

Ω(t) =

∞∑
k=0

Hk(t), (2.14)
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where the first few terms in eq (2.14) are given by

H0(t) =

∫ t

0
A(ξ1)dξ1,

H1(t) = −1

2

∫ t

0

[ ∫ ξ1

0
A(ξ2)dξ2, A(ξ1)

]
dξ1,

H2(t) =
1

4

∫ t

0

[ ∫ ξ1

0

[ ∫ ξ2

0
A(ξ3)dξ3, A(ξ2)

]
dξ2, A(ξ1)

]
d(ξ1)

+
1

12

∫ t

0

[ ∫ ξ1

0
A(ξ2)

]
dξ2,

[ ∫ ξ1

0
A(ξ3)dξ3, A(ξ1)

]]
dξ1.

The terms in the Magnus series expansion are becoming increasingly complex for terms

involving high values of k and each term is made out of integrals and commutators on the

matrix function A(t). A shorthand notation using rooted binary trees has been extensively

developed by A. Iserles [6] to represent each term in the Magnus expansion. The idea is

similar to the idea of John Butcher for representing order conditions of an RK methods

by rooted trees as given in [6].

2.5 Rooted Trees

Some important terminologies of graph theory are,

• Graph: The pair G = ⟨V,E⟩, where V = v1, ..., vr are vertices and E ⊆ V × V are

the edges, represents a graph.

• A graph is connected if all vertices are connected by a path and it is a tree if such

path is unique.

• Rooted tree: The pair T = (G,w), where G is a tree and w (the root) is one of its

vertices.

• A rooted tree admits a natural partial ordering of ancestor/successor and par-

ent/child. Root has no parent. Vertices with no children are called leaves.

• A binary tree is a tree in which each vertex has at most two children. A strictly

binary tree is a binary tree, where each vertex has exactly two children or is a leaf.

Each term in Magnus series expansion can be grouped together by k commutators and

(k + 1) integrals. if we, for a moment, ignore the outer most integral from 0 to t in eq

(2.13) then each term in the expansion has equal number of commutators and integrals.

Such terms will be denoted as Cτ (ξ), their scalar constants as α(t), and the binary tree

as τ ∈ Tk, where set Tk includes all trees with the same number of k commutators and k

integrals. After splitting the expansion once more, functions will have exactly k integrals
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and k commutators. Hence, approximation in eq (2.14) can be rewritten as

Ω(t) =
∞∑
k=0

Hk(t) =
∞∑
k=0

∑
τϵTk

α(τ)

∫ t

0
Cτ (ξ)dξ. (2.15)

From the Picard iteration, it follows that every Cτ can be constructed by the following

composition rules.

1. T0 = τ0 and Cτ0(t) = A(t).

2. If τ1 ∈ Tm1 and τ2 ∈ Tm2 then there exists a τ ∈ Tm1+m2+1 such that

Cξ =

[∫ ξ

0
Cτ1(ξ1)dξ1,Cτ2(ξ)

]
. (2.16)

The index sets become sets of rooted binary trees. In general, Tk represent different terms.

Pictorially, vertical branch represents an integral and two branches joined by a common

root represents commutator.

1. We identify T0 with a rooted tree consisting of one vertex only, • , and

• −→ A(t)

2. If Tm1 ∋ τ1 and Tm2 ∋ τ2 → Cτ2 , then,

Tm1+m2+1 ∋→
[ ∫ t

0
Cτ1(ξ)dξ,Cτ2(t)

]
,

this construction will give all terms of the Magnus expansion. Also, the constant α(τ) can

be defined by the rooted tree theory. Generally, a binary rooted tree τ representing the

terms in the Magnus series expansion has the form, for µ ≥ 1,

.

.

τ =               τ1

τ2

τ3

τµ

with eq (2.16), the constant α(τ) is calculated by [6]

α(τ0) = α(.) = 1,

α(τ) =
Bs

s!

s∏
i=1

α(τi), s ∈ Z+,
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where Bs are the Bernoulli numbers. Hence, higher order terms in the Magnus series

expansion eq (2.15) can be derived with the help of rooted trees. Furthermore, for smooth

matrix function A(t), for t ∈ Z+∫ t

0
Cτ (ξ)dξ = O(tk+1) ⇒ τ ∈ Tk. (2.17)

In eq (2.15), Cτ (ξ) is integrated once more from 0 to t. Hence, to accurately represent the

terms in the Magnus series expansion, we need to add a vertical branch to the bottom root

of each tree. Now Magnus series expansion can be written in terms of the rooted trees, so

eq (2.15) is given by,

Ω(τ) = -1/2 +1/4

+1/12 -1/24   + ...
 

2.5.1 Power m of a Rooted Tree

We have the rooted tree theory for the construction of terms in the Magnus series expansion

up to any k number of commutators. Now we need to construct an approximation Ωp(t)

of a specific order p, such that

Ω(t) ≈ Ωp(t) + O(tp+1).

From eq (2.16),

Cτ (ξ) =

[ ∫ ξ

0
Cτ1(ξ1)dξ1, Cτ2(ξ)

]
.

If a tree τ ∈ Tk is of power m, where m ≥ 0 is the smallest integer such that for a smooth

matrix function A(t) then,

Cτ (t) = O(tm).
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If we denote Fm as the set of all rooted trees of power m, then the truncated Magnus

series expansion of order p is given by,

Ωp(t) =

p−1∑
m=0

∑
τ∈Fm

α(τ)

∫ t

0
Cτ (ξ)d(ξ). (2.18)

In the eq (2.18), the largest value of the power m is not equal to order p. This is because

power m represents the order of the rooted tree associated with Cτ (ξ), and not the integral

of Cτ (ξ). Another integration from 0 to t must be done in eq (2.18), so that the actual

order p of Ω(t) ≈ Ωp(t) is given by,

p = m + 1.

From eq (2.18), we know that τ ∈ Tk, then the same tree τ is in the set Fm for the power

m ≥ k. To find m for the tree τ , we need to find the relationship between the power m

for Cτ (t) and the powers m1 and m2 with respect to Cτ1(t) and Cτ2(t) in eq (2.16). This

can be done by writing Cτi(t) as a series in power O(tmi), such that

Cτi(t) = ait
mi + bit

mi+1 + cit
mi+2 + ... for i = 1, 2, ...,

and then substitute this series into eq (2.16). If Cτ1(t) is of power m1, such that Cτ1(t) =

O(tm1), then the integral inside the commutator in eq (2.16) becomes∫ t

0
Cτ1(ξ)dξ =

∫ t

0
(aiξ

mi + biξ
mi+1 + ciξ

mi+2 + ...)dξ

=
a1

m1 + 1
tm1+1 +

b1
m1 + 1

tm1+2 +
c1

m1 + 1
tm1+3....

(2.19)

In this way, we can find the expansion for eq (2.16), given that Cτ1(t) is of power m1 and

Cτ2(t) is of power m2

Cτ (t) =

[ ∫ t

0
Cτ1(ξ)dξ, Cτ2(t)

]
=

[
a1

m1 + 1
tm1+1 +

b1
m1 + 1

tm1+2 +
c1

m1 + 1
tm1+3...,

a2t
m2 + b2t

m2+1 + c2t
m2+2 + ...

]
= (

[a1, a2]

m1 + 1
)tm1+m2+1 + (

[a1, b2]

m1 + 1
+

[b1, a2]

m1 + 2
)tm1+m2+2

+ (
[a1, c2]

m1 + 1
+

[b1, b2]

m1 + 2
+

[c1, a2]

m1 + 3
)tm1+m2+3 + ... = O(tm1+m2+1).

That is, for τ1 ̸= τ2, power m of Cτ (t) is given by

m = m1 + m2 + 1, (2.20)
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when τ1 = τ2, the power m of Cτ (t) can be improved by performing a similar substitution

into eq (2.16)

Cτ (t) =

[ ∫ t

0
Cτ1(ξ)dξ, Cτ2(t)

]
=

[
a1

m1 + 1
tm1+1 +

b1
m1 + 1

tm1+2 +
c1

m1 + 1
tm1+3...,

a2t
m2 + b2t

m2+1 + c2t
m2+2 + ...

]
=

a21 − a21
m1 + 1

t2m1+1 +
a1b1 − b1a1

(m1 + 1)(m1 + 2)
t2m1+2 +

2(a1c1 − c1a1)

(m1 + 1)(m1 + 3)
t2m1+3 + ...

=
[a1, b1]

(m1 + 1)(m1 + 2)
t2m1+2 +

2[a1, c1]

(m1 + 1)(m1 + 3)
t2m1+3 + ... = O(t2m1+2).

That is, for τ1 = τ2 the power m of Cτ (t) is given by,

m = 2m1 + 2. (2.21)

The tree of a single vertex representing A(ξ) has power m = 0,

τ = • ∈ F0, where m = 0.

Starting with k = 1, we have the tree τ with subtree τ1 and τ2.

τ =

In this case, τ1 = τ2 and the powers m1 = m2 = 0. So by eq (2.21), the power m of Cτ (t)

when τ ∈ T1 is m = 2m1 + 2 = 2.

When k = 2, there are two trees in T2. The first one is given by,
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τ =

τ1 = τ2 = 

so that the power m of τ is τ is m = m1 + m2 + 1 = 2 + 0 + 1 = 3. Similarly, the second

tree in T2 is,

τ =

τ1 = τ2 = 

hence, for power m up to m = 4, the set Fm contains the following trees, which are of

order p = m + 1 in the Magnus series expansion,
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F4  = (p=5)

F3 = (p=4)

F2 =
(p=3)

F1 = { }F0 = {   }

2.6 Time Symmetry and Order of the Magnus Series Ex-

pansion

Rooted trees belonging to the set Fm+1 of power m+1 are also of order p = m+1. Hence,

all the terms associated with trees from all sets of power up to Fm+1 will be included to

construct a Magnus series expansion of order p. Number of terms can further be reduced

by considering time symmetry of the method [6].

Let y(t) = Ψt(y0) is a flow of differential equation of eq (2.6). The flow is time symmetric

if Ψ−t ◦Ψt = I, means that integrating from 0 to t and back to 0 yields the original initial

value.

If

Ψt(y0) = exp(Ωp(t))y0, for t ≥ 0,

then

Ψ−t ◦ Ψt = I.

Magnus series expansion that is truncated by order p also respects time symmetry [9].

Analytical time symmetric map St can be represented in the form St = exp(C(t)), where
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C(t) is an expansion in the odd powers of t only [6]. This fact will also reduce the number

of terms in the Magnus series expansion.

Theorem 1. The function Ωp(t) can be expanded in odd powers of t and

Ω(t) = Ω2q−1(t) + O(t2q+1), q ∈ Z+.

Theorem 1 implies that for a Magnus expansion of order 4, only the terms in the sets up to

F2 are needed. This is because the linear combination of trees from F3 is actually O(t5),

and hence does not affect an order 4 approximation of Ω(t). For q = 2 in the Theorem 1

Ω(t) = Ω3(t) + O(t5).

So Ω3(t) is in fact an order 4 approximation.

2.7 Multivariate Quadrature

To solve the multiple integrals in Magnus series expansion Ωp(t), some sort of quadrature

technique will be used.

2.7.1 Gauss-Legendre Quadrature

The Legendre polynomial of degree n, denoted by Pn(x), is usually defined on the symmet-

ric interval [−1, 1]. However, if we shift the interval to [0, 1], then the Legendre polynomial,

now denoted by P ∗
n(x) is shifted by 2x − 1, so that P ∗

n(x) = Pn(2x − 1). The first few

P ∗
n(x) are defined as

P ∗
0 (x) = 1,

P ∗
1 (x) = 2x− 1,

P ∗
2 (x) = 6x2 − 6x + 1,

P ∗
3 (x) = 20x3 − 30x2 + 12x− 1,

.

.

.

.

Lemma 1. There exist polynomials P ∗
n(x) : [0, 1] → ℜ, of degree n, for n = 0, 1, 2, ... with

the properties that, ∫ 1

0
P ∗
m(x)P ∗

n(x)dx = 0, m ̸= n.

P ∗
n(x) has n distinct real zeros in the open interval (0, 1) for n = 0, 1, 2, ...
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Theorem 1. Suppose that ci, for i = 1, 2, ..., s are the roots of an s-degree Legendre

polynomial P ∗
s (x), and that for each i = 1, 2, ..., s the weight bi are defined by,

bi =

∫ 1

0

s∏
j=1j ̸=i

x− cj
ci − cj

dx.

If ϕ(x) is any polynomial of degree less than 2s, then the Gauss-Legendre quadrature is

given by, ∫ 1

0
ϕ(x)dx =

s∑
i=1

biϕ(ci).

Methods having s stages and 2s order are called Gauss methods, an example of such Gauss

method where s = 2 (2 stages) and order is 4 is presented as

1
2 −

√
3
6

1
4

1
4 −

√
3
6

1
2 +

√
3
6

1
4 +

√
3
6

1
4

1
2

1
2

,

where ci are zeroes of shifted Legendre polynomial P ∗
2 (x) which are equals to 1

2 ±
√
3
6 . And

bi are the weight functions calculated by Langrange interpolating polynomials as follows,

bi =

∫ 1

0

s∏
j=1j ̸=i

x− cj
ci − cj

dx.

It can be seen that

b1 =

∫ 1

0

x− c1
c2 − c1

,

b2 =

∫ 1

0

x− c2
c1 − c2

.

After substituting the values of ci, from above, we have

b1 =
1

2
, b2 =

1

2
.

2.7.2 Multivariate Gauss-Legendre Quadrature

In most realistic cases, practical implementation of Magnus series requires the replacement

of integrals by quadrature. So the numerical values of the terms in the truncated Magnus

series expansion of order p can be found by applying multivariate quadrature. Similarly to

the one dimensional integration, the quadrature for the multiple dimensional integration

is given by the weighted sum of the multiple variable function evaluations. As a result,

the weight bi is also given by the multiple integration of the product of the Langrange

interpolation polynomials. Let that each integral in the Magnus series expansion is of the

form,

I(h) =

∫
S
L(A(ξ1), A(ξ2), ...., A(ξs))dξs...dξ1, (2.22)
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where L is a multiple variable function, s is the number of integrals in the expression, and

h is the stepsize. S is the integration region which is of the form polytope,

S = {(ξ1, ξ2, ...ξs) ∈ ℜ : ξ1 ∈ [0 h], ξl ∈ [0 ξml
], l = 2, 3, ..., s, }

where ml ∈ 1, 2, ..., l − 1, for l = 1, 2, ..s. For example,

I1 =

∫ h

0
A(ξ1)dξ1 : S1 = {0 ≤ ξ1 ≤ 1}, (Over a line)

I2 =

∫ h

0

∫ ξ1

0
[A(ξ1), Aξ(ξ2)]dξ2dξ1 : S2 = {0 ≤ ξ1 ≤ 1, 0 ≤ ξ2 ≤ ξ1}, (Over a triangle)

I3 =

∫ h

0

∫ ξ1

0

∫ ξ2

0
[[A(ξ1), A(ξ2)], A(ξ3)]dξ3dξ2dξ1 : S3 = {0 ≤ ξ1 ≤ 1, 0 ≤ ξ2, ξ3 ≤ ξ1}.(Over a sphere)

Moreover, the integrand is, in each case, a function of the form

 L(A(ξ1), A(ξ2), ...A(ξm)),

where L is multilinear. It has been proposed in [6] to use the quadrature formula∫
hS

 L(A(ξ1), A(ξ2), ...A(ξs))dξs...dξ1 ≈ hm
∑
l∈Cv

m

bl  L(A(hcl1), A(hcl2), ...A(hcls)), (2.23)

where c1, c2, ...cν , are distinct points in [0, 1] and Cν
s is the set of all the combinations of

s-tuples from the set {1, 2, ...ν}. The weights bl can be evaluated explicitly by the formula,

bl =

∫
S

s∏
i=1

λi(tli)dtm...dt1, l ∈ Cν
s ,

where λk ∈ Pν−1[t] is the kth cardinal polynomial of Lagrange interpolation at the nodes

c1, c2, ...cν . Suppose that ∫ 1

0
tk−1c(t)dt = 0, k = 1, 2, ...s,

where

c(t) =

ν∏
i=1

(t− ci).

Then the quadrature formula eq (2.23) is of order ν + s. In other words, the order of the

above multivariate quadrature is exactly the same as of the classical univariate quadrature

with the same nodes. In other words, choosing c1, c2, ...cν as Gauss Legendre quadrature

points in [0, 1] results in order 2ν in eq (2.23) for all integrals necessary for the evaluation

of truncated Magnus series. As an example, let

A(1) = A((
1

2
−

√
3

6
)h), A(2) = A((

1

2
+

√
3

6
)h).
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be the value of matrix A evaluated at the nodes of the fourth-order Gauss Legendre

quadrature in [0, 1], hence we obtain

I1 ≈
1

2
h(A1 + A2),

I2 ≈
√

3

6
h2[A2, A1],

I3 ≈ h3[[A2, A1], (
3

80
+

√
3

16
)A1 − (

3

80
−

√
3

16
)A2],

I4 ≈ −h3[(
3

80
−

√
3

16
)A1 − (

3

80
+

√
3

16
)A2, [A2, A1]].

Although the quadrature formula (2.23) leads to remarkable savings in the number of

function evaluations, it might result in considerable cost of linear algebra, since the number

of terms in the sum behaves like νm and the computation of each such term requires m−1

commutators. However, very considerable reduction in the expense of linear algebra takes

place when the special structure of the Lie algebra g is taken into account. To conclude

this section, we combine the Magnus expansion (2.14) with the multivariate quadrature

to present a fourth-order method for the solution of the differential equation,

A1 = A(tn + (
1

2
−

√
3

6
)h),

A2 = A(tn + (
1

2
+

√
3

6
)h),

Ω4 =
1

2
(A1 + A2) +

√
3

6
[A2, A1],

yn+1 = exp(Ω4)yn.

.



Chapter 3

Numerical Experiments

This chapter deals with the applications of the Lie group integrators namely Magnus series

expansion and the Runge-Kutta-Munthe-Kaas (RKMK) methods, to solve matrix differ-

ential equations on the manifold also known as Lie group equation. The result from the

Lie group integration are then compared with the results from explicit Runge-Kutta (RK)

methods, the Gauss methods, and the built in integrator ODE45 from MATLAB. All ex-

periments in this chapter are performed using a fixed stepsize h. All numerical methods

considered in this chapter are of order 4.

3.1 Differential Equation on the Sphere

Consider differential Equation on the sphere is given by,

dy

dt
=

 0 t −0.4 cos t

−t 0 0.1t

0.4 cos t −0.1t 0

 y(t) = A(t)y(t), y(0) =

0

0

1

 .

We solve this differential equation by the Magnus series expansions, Gauss, and explicit

RK method. The solution y(t) ∈ ℜ3 in eq (3.1) is a vector of unit length, evolving on

the unit sphere. That is the solution vector y(t) that rotates around the spherical surface

with respect to its origin, and naturally, the homogeneous manifold in this case is the unit

sphere. In this differential equation Lie algebra is defined by the matrix A(t), which in

this case is so(3).

We want to integrate eq (3.1) for numerical experiments with the given initial condition

y(0), over the time interval t = [0, 64] with a constant stepsize of h = 1/20 for the 3

integrators explicit RK, Gauss and Magnus. Then we will integrate the same problem

with MATLAB’s ODE45 for comparison.

The results are shown in Figures 3.1, 3.2, and 3.3,

28
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Figure 3.1: Solution of eq (3.1) from RK4 plotted on the surface of a unit sphere.
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Figure 3.2: Solution of eq (3.1) from Gauss plotted on the surface of a unit sphere.
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Figure 3.3: Solution of eq (3.1) from Magnus plotted on the surface of a unit sphere.
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Figure 3.4: Solution of eq (3.1) from ODE45 plotted on the surface of a unit sphere.

From the Figures 3.1, 3.2, and 3.3, it is clear that solutions from explicit RK integrator

drift away from the surface of the sphere, while solutions from the Gauss and Magnus stay

on the sphere.

One of the advantage of using the Lie group methods such as the Magnus series expansion,

for solving this type of differential equations on the sphere is that the Lie group action

∧ produces special orthogonal matrices, which, when multiplied to the vector y(t) ∈ ℜ3,

preserves its length in the rotation, so that solution y(t) will always remain on the sphere.



CHAPTER 3. NUMERICAL EXPERIMENTS 31

3.2 Lorenz Equation

The Lorenz equation describes a complex, 3 dimensional dynamical system with 3 param-

eters σ, ρ and β. This system has the form

ẋ = σ(y − x), (3.1)

ẏ = ρx− y − xz, (3.2)

ż = xy − βz. (3.3)

These equations are nonlinear with two quadratic terms xy and xz. Solutions in the Lorenz

equation are sensitive to initial conditions, and slight changes to the values of the solution

in any one of the 3 components can cause drastic difference in the solution at a later time.

For solving the Lorenz equations, when using the RKMK method, the manifold M is

defined as the domain of groups acting on themselves, the Lie Group G is simply ℜn, and

the Lie algebra is also ℜn and abelian. The Lie algebra action λ is given by the standard

vector addition, λ(v, y) = v + y for v and y ∈ ℜn, and so the mapping f : ℜn × M → g

is simply f : ℜn → ℜn for this setting,

ẏ(t) = F (y),

where F : ℜn → ℜn.

So the Lorenz equations can be solved by the RKMK method in its present form in eq

(3.1) to eq (3.3). Also, because the Lie algebra is abelian, the adjoint operator ad0u(v) = v

and adnu(v) = 0 for n ≥ 1. Then, the inverse of the differential of the exponential map

d exp−1
u (v) = v Hence, the entire RKMK reduces to the classical Runge-Kutta method.

Now, we will follow the approach of Lorenz [8] and will use particular case when σ =

10, β = 8
3 , and ρ = 28. With initial condition Y (t) as Y (0) = (17,−21, 54), and integrate

over the interval t = [0, 10] with a constant stepsize of h = 1/20. The integrators used

for solving this example are explicit RK method, Gauss method, the RKMK method, and

ODE45.

Famous Lorenz butterfly appears with all the four methods after plotting the results.
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Figure 3.5: 3 dimensional graph showing the Lorenz attractor from explicit RK4, when

solving eq (3.1) to (3.3).
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Figure 3.6: 3 dimensional graph showing the Lorenz attractor from Gauss, when solving

eq (3.1) to (3.3).
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Figure 3.7: 3 dimensional graph showing the Lorenz attractor from RKMK, when solving

eq (3.1) to (3.3).
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Figure 3.8: 3 dimensional graph showing the Lorenz attractor from ODE45, when solving

eq (3.1) to (3.3).

Although all four attractors have the same form in three dimensions, the behavior of

trajectories from different methods is not the same.

3.3 Harmonic Oscillators

Unforced harmonic oscillators can be modeled by the second order homogeneous differen-

tial equation,

m
d2y

dt2
+ b

dy

dt
+ ky = 0, (3.4)

where m, k ≥ 0, and b ≥ 0. If b = 0 then the system is undamped. However, if b > 0,

then different types of behavior are possible. For the harmonic oscillator equation, the

characteristic equation is
−b±

√
b2 − 4mk

2m
.

There are three different cases for the roots of the characteristic equation [8],

• if b2 − 4mk < 0, then there will be complex roots and the harmonic oscillator is

said to be under damped. In this case, the system oscillates about its equilibrium

position.

• if b2 − 4mk = 0, then there will be repeated roots and the oscillator is critically

damped.

• if b2 − 4mk > 0, then the roots are real and distinct, and the oscillator is said

to be over-damped and system will move to its equilibrium position without any

oscillations.

Consider the second order homogeneous differential equation as an initial value problem

given by,
d2y

dt2
+ 0.01t

dy

dt
+ y = 0 y(0) = −1, ẏ(0) = 2, (3.5)
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with m = 1, k = 1, b = 0.01t. To solve eq (3.5) with numerical integrators, this second

order differential equation as a system of first order differential equations can be solved

by using the substitution dy/dt = v, and a vector Y (t) = [y(t), v(t)]

Ẏ (t) = A(t)Y (t),

where the matrix A(t) and the initial condition Y (0) are given by,

A(t) =

[
0 1

−1 −0.01t

]
, Y (0) =

[
−1

2

]
.

This system will be solved with the explicit RK4, Gauss method and Lie group methods

like Magnus series expansion method, with fixed step size h = 1/20.
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Figure 3.9: Solution of underdamped system in eq (3.5) for the interval t ∈ [0, 40] using

RK4.
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Figure 3.10: Solution of underdamped system in eq (3.5) for the interval t ∈ [0, 40] using

Gauss.
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Figure 3.11: Solution of underdamped system in eq (3.5) for the interval t ∈ [0, 40] using

Magnus.

If we compare results from the 3 integrators and that of ODE45, the accuracy archived

from the Magnus method is higher than that of the Runge-Kutta or the Gauss methods

of same order.



Chapter 4

Conclusions

Chapter 1 introduces the basic concepts of manifolds, Lie groups and Lie algebra. It

also includes Lie group actions and exponential map. Chapter 2 presents a discussion of

the Magnus series expansion and Runge-Kutta-Munthe-Kaas (RKMK) method for solving

linear matrix differential equations. RKMK is an important class of methods, because it

allows to use the classical Runge-Kutta methods to solve differential equations on mani-

folds, while preserving the group structure of the manifold associated with the underlying

dynamical system.

Chapter 3 contains three numerical experiments using the Magnus series expansion and

RKMK method for solving Lie group equations. Observations were made regarding

their performance in comparison to the classical integrators such as explicit Runge-Kutta

method, and the implicit Gauss method.

In Chapter 2, the Magnus series expansion was introduced to solve the linear matrix dif-

ferential equation of the form ẏ(t) = A(t)y, where the matrix A is dependent on time t

only. However, when A = A(t, y), then the problem becomes nonlinear and collocation

methods must be used to solve such differential equations. It is something on which future

work can be done.
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