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Abstract

Graph theory plays a vital part in the world of natural as well as chemical and
biological sciences. One of the purposes of chemical graph theory is to highlight
the primary and foremost role of the graph theory in the study of physico-chemical
reactions, biological activities and in identifying structural properties of molecular
graphs etc. Polynomials and topological indices are used to achieve the desired
properties of molecular graphs.

In this dissertation, first we will discuss the topological properties of Triazine
based dendrimer. The study involved computation of various eccentricity based
indices and polynomials, specifically, eccentric-connectivity index, eccentricity based
Zagreb indices, augmented eccentric-connectivity index, total eccentric-connectivity
index, and others. Further calculations of counting polynomials and M-polynomial
will also be performed for the molecular graph of this dendrimer.

Considering Phosphorus based dendrimer, we will figure out the M-polynomial,
counting polynomials and eccentricity based indices i.e., modified eccentricity index
and its corresponding polynomial, second Zagreb eccentricity index and eccentric-
connectivity polynomials, etc. Likewise, a Porphyrin-cored dendrimer will also be
used and all the indices mentioned above and few polynomials of molecular graph
of this dendrimer will also be calculated.
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Introduction

Graph theory has diversified applications in different fields, such as Chemistry,
Computer technology, and Biochemistry, etc. Chemical structures are manipulated
by using chemical graph theory. Many chemical structural problems can be fixed by
the involvement of concepts of graph theory, where vertices corresponds to atoms
and edges to bonds.

The first chapter is an amalgam of background, introduction and some important
classes of graphs as well as it also includes introduction of chemical graph theory
and other basic concepts of graph theory.

In the second chapter, we will discuss some renowned topological indices includ-
ing counting polynomials, distance and degree based topological indices. We will
give brief introduction of distance based indices namely, Wiener index, eccentricity-
connectivity index, Balaban index, etc. Some degree based indices like, Randić
index, geometric arithmetic index and Zagreb indices, etc. We will also discuss
different types of polynomials, like counting polynomials and M-polynomial.

In last three chapters, we will calculate some eccentricity based indices and poly-
nomials. In chapter three of the thesis, we will consider triazine based dendrimer
and in chapter four we consider phosphorus containing dendrimer Cyclotriphosp-
hazene. In the last chapter, we will compute some invariants of molecular graph of
Porphyrin-cored dendrimer.
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Chapter 1

Basic definitions and terminologies

The graph theory is the mathematical theory of applications and properties of
graphs. This theory is widely used in different fields like Biochemistry, Computer
Sciences, Networking, Operations Research, etc.

1.1 Founder of graph theory

In 1736, a mathematician named Euler published his paper in terms of graph theory
which was based on the solution of the Königsberg Bridges. The Königsberg city
was located on the Pregel river. The city had seven bridges which connect the two
big islands with city. Initially, people were confused with the fact that ”Is there
any walk exists through which they can move all the bridges at once”? Later, Euler
considered this problem and he gave the proposal that such a path can exist if
there were only even number of bridges linked with the city. But the land area
was attached with odd number of bridges, so Euler proved that such path did not
exist. Later on, he considered the bridges as edges and landmasses as nodes, and he
introduced that there exists an Eulerian circuit and the problem was solved. The
Königsberg bridge problem graph is shown in the Figure 1.1.

1.2 Graphs

A graph G has a set of vertices V (G) = {v1, v2, . . . , vn} and a set of edges E(G) =
{e1, e2, ..., em}, where n represents the number of vertices in the graph also known
as order of graph and m represents the size of the graph. An edge of a graph G
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A

B

C
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Figure 1.1: Königsberg Bridges graphs.

whose end vertices are u and v is denoted as uv. An edge having same starting and
ending vertex is called a loop. Two or more edges that are incident to the same
two vertices are called multiple edges. In a graph G, the largest vertex degree is
called the maximum degree of G and it is denoted by ∆(G), and the smallest vertex
degree of graph is known as minimum degree and it is denoted by δ(G). A vertex
having only one edge adjacent to it, is called a pendent vertex. If no edge adjacent
to a vertex is called isolated vertex. The graph with no loop and multiple edges is
known as simple graph.

V2

V
3

V4V5

V6V7

V1 e1

e2

e3 e4

e5

e6

e7

e8

e9

Figure 1.2: Graph.

A graph S is said to be the subgraph of G if the vertex set V (S) of S is subset of
V (G) and edge set E(S) of S is a subset of E(G). If V (G) = V (S), then the graph
is called spanning subgraph. An induced subgraph F is formed from a subset of the
vertices of G and all of the edges connecting pairs of vertices in that subset.

In a graph G, a u-v walk is any route through a graph from vertices and con-
necting edges. A walk may have same or different start or end vertices. A u-v walk
is called a u-v trail when no edge is repeated. A walk u-v is called a u-v path when
no edge and vertex is repeated. The number of edges in a path is called the path
length. A u-v path is a cycle when there exist a uv edge between vertices u and v.

A graph G is connected if for every pair of vertices of G, there exists a path
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Figure 1.3: Simple graph.
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Figure 1.4: Subgraph, Spanning subgraph, Induced subgraph.

Figure 1.5: P3, P5, C4, C5, C6.

between them. If there is any pair of vertices for which path does not exist is called
disconnected graph.

Any edge uv in a graph, whose removal makes the graph disconnected, is called
bridge or cut edge. Similarly any vertex in a graph G, whose removal disconnect
the graph, is called cut vertex.

The distance between two vertices u and v is the shortest path between them
and it is denoted as d(u, v). The distance of a vertex u with any other vertex
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which is farthest from u is called the eccentricity of u and denoted as ε(u). The
minimum eccentricity of graph is known as radius and is denoted as rad(G) and
defined as rad(G) = min{ε(u) | u ∈ V (G)}. The diameter of the graph is the
maximum distance between any two pair of vertices and it is denoted as diam(G)
and represented as diam(G) = max{ε(u) | u ∈ V (G)}.

The degree of a vertex u is the number of edges incident with it and it is denoted
by du. We also define degree sum of a vertex by Su =

∑
v∈Nu

dv, where Nu = {u ∈
V (G) | uv ∈ E(G)}.

1.3 Some special types of Graphs

A graph having no cycle is called acyclic graph. A Tree T is a connected acyclic
graph. The wheel graph Wn contains a cycle of n− 1 order. In a wheel graph, every
vertex of a cycle is connected with another vertex called hub and edges incident with
hub are known as spokes. In a graph G, if there exists an edge between every two
distinct vertices is known as complete graph denoted as Kn, where n is the order of
graph and the number of edges in complete graph is given as |E(Kn)| = n(n−1)

2
.
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Figure 1.8: Tree, W4, K5.

A bipartite graph is a graph in which vertex set of G can be divided in two
disjoint sets in such a way that no two vertices within the same set are connected by
an edge. A bipartite graph is called complete bipartite if each vertex from one set
is adjacent to each vertex of the other set and denoted by Kr,s, where r is the order
of one vertex set and s is the order of other set of vertices. A complete bipartite
graph is said to be a star graph if the order of one of the vertex set is 1.

Figure 1.9: Bipartite Graph, K4,4 S7.

1.4 Chemical graph theory

Structures of chemical compounds in chemistry are very important to find boiling
point and other physical characteristics. These structures can be represented by
molecular graphs called chemical graph theory. The vertices of a graph reveal the
atoms, of which, the compound is composed of, whereas the edges counts the number
of bonds available within the structural formula.

Use of graph theory is gaining importance day by day in modeling the chemical
structures. Molecular topology find application of graph theory by giving molec-
ular graph representations of chemical structures. Physico-chemical property and
isomerism depend on the mass of hydro-carbons, and the number of hydrogen and
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carbon items present in them. Moreover the number of covalent bonds present
in the molecular structure require different energy consumption which lead to the
estimation of boiling point and other characteristics.

However by using graph theory, the chemical structures are module into such
form which do not involve hydrogen atoms and are termed as hydrogen depleted
molecular graph.

Consider the structure of polyethylene terephthalate (commonly termed as polyester).
In this compound, eight hydrogen atoms and four oxygen atoms are covalently
bonded with ten carbon atoms. The molecular graph by deleting the hydrogen
atoms(depleted molecular graph) is shown in Figure 1.4.

C

O O

OO CCH2CH2

Figure 1.10: C10H8O4

Figure 1.11: Depleted molecular graph
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Chapter 2

Some topological invariants

There are hundreds of topological indices and it is very difficult to describe all of
them. These are classified depending on graph parameters for example, degree and
distance etc. We will define here some topological indices which are distance based
and degree based. The degree based indices are those which are constructed by
using the degree or valency of a vertex and the distance based indices are defined on
the basis of distances of vertices in a graph. We discuss some types of degree based
and distance based indices as this is not possible to cover all of them here.

2.1 Distance based topological indices

Some important and well known distance based topological indices are as follow:
• Wiener index
• Eccentric connectivity index
• Total eccentricity index
• Eccentricity based Zagreb indices
• Augmented eccentric connectivity index

2.1.1 Wiener index

Harold Wiener [26] designed one of the oldest molecular description of simple con-
nected graph of sodden hydrocarbons (alkanes). Wiener named it path number. He
defined it as the sum of the number of bonds associating with all pairs of atoms.
This path number now known as Wiener index and is denoted as W . The compact-
ness of graph is more as the value of W is small. We define the Wiener index of
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graph G as:

M(G) =
∑
(u,v)

d(u, v), (2.1)

where (u, v) be any vertex pair from the set V (G) and the distance between them
is d(u, v).

Wiener index is very important not just because it was the first topological index
but also because it is very easy to calculate. Its major drawback is that the large
number of different graphs have same value of Wiener index.

2.1.2 Eccentric connectivity index

Eccentric connectivity index was introduced by Sharma et al. [22]. It has been
successfully used for the development of many mathematics models for the prediction
of biological activities of various kinds. We can define eccentric connectivity index
of G as:

ξ(G) =
∑

u∈V (G)

ε(u)du. (2.2)

The eccentric-connectivity polynomial for G is defined as:

ECP (G, y) =
∑

u∈V (G)

yε(u)du. (2.3)

If the degrees of vertices are not taken into account, then the total eccentric-
connectivity index is defined as:

ς(G) =
∑

u∈V (G)

ε(u). (2.4)

For a graph G, the total eccentricity-connectivity polynomial is

TECP (G, y) =
∑

u∈V (G)

yε(u). (2.5)

2.1.3 Eccentricity based Zagreb indices

For a molecular graph G, Ghorbani and Hosseinzadeh [11] introduce some new
versions of Zagreb indices which are expressed in terms of eccentricity. These indices
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are defined as:
M∗∗

1 (G) =
∑

u∈V (G)

(ε(u))2, (2.6)

M∗
2 (G) =

∑
uv∈E(G)

ε(u)ε(v). (2.7)

2.1.4 Augmented eccentric-connectivity index

The generalization of the eccentric-connectivity index of G introduced by Gupta et
al. [12], which is known as augmented eccentric-connectivity index and it is defined
as:

Aε(G) =
∑

u∈V (G)

M(u)

ε(u)
, (2.8)

whereM(u) denotes the product of degrees of all neighbors of vertex u. The modified
version of eccentric connectivity index is defined as:

Λ(G) =
∑

u∈V (G)

Suε(u). (2.9)

The edge version of eccentric-connectivity polynomial is defined as:

Λ(G) =
∑

u∈V (G)

Suy
ε(u). (2.10)

Xu et al. [27] introduced the edge version of eccentric-connectivity index of G
and is defined as:

εe(G) =
∑

g∈E(G)

dgε(g), (2.11)

where the largest distance between the edge g with any other edge h in G is defined
by ε(g).

2.1.5 Balaban index

About 30 years ago, the Balaban index was introduced in [5]. It is also known as
average distance sum connectivity index or distance connectivity index. This is also
known as J index. We define Balaban index for G as follow:

J(G) =
m

µ+ 1

∑
uv∈E(G)

1
√
σuσv

, (2.12)
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where σu =
∑

w∈V (G)

d(u,w) and µ = m− n+ 1 is known as cyclomatic number of G.

Balaban index has often used in different studies of QSAR and QSPR [4]. Bal-
aban index and Wiener index are two most important kinds of indices for distance
based topological indices.

2.2 Degree based topological indices

The topological indices which are based on degree of a vertex are known as degree
based topological indices. They have strong application in drug design and pharma-
ceutical chemistry that’s why they are very important. Resonance energy, boiling
point and strain energy are some physico-chemical properties which are associated
with degree based indices. Here we focuss on some very important degree based
topological indices which are as:
• Randić index
• Sum connectivity index
• Zagreb indices
• Atom Bond connectivity index
• Geometric Arithmetic index

2.2.1 Randić index

Chemist Randić [21] introduced a topological index known as branching index in
1975. After some time, branching index turns into molecular connectivity index and
afterwards it was referred as Randić index. The Randić index is defined as:

R− 1
2
(G) =

∑
uv∈E(G)

1√
dudv

. (2.13)

In 1998, the general Randić index was introduced by Bollobás et al. [6] and Amic
et al. [1]. Theoretical chemist and mathematicians both have been widely studied
it [18]. We define the general Randić index for G as follows:

Rα(G) =
∑

uv∈E(G)

(dudv)
α. (2.14)

Enthalpies of formation, boiling point, surface area, chromatographic retention
times, etc [20] are some physico-chemical properties of alkanes which have very good
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correlation with Randić index. A large number of applications related to Randić
index are reported in consequent years and mostly are related with medicinal and
pharmacological issues.

2.2.2 Zagreb index

The dependence of total π electron on molecular structure was examined by Gutman
et al. [15], more than 40 years ago. They conclude that two terms appear during
the approximation of energy for total π electron. These two indices are as follows:

M1(G) =
∑

u∈V (G)

(du)
2 =

∑
uv∈E(G)

(du + dv). (2.15)

M2(G) =
∑

uv∈E(G)

(dudv). (2.16)

Later on, Gutman and Trinajstić [14] continuously work on their ideas and ex-
pand their ideas about M1(G) and M2(G) and were finally named as first Zagreb
group index and second Zagreb group index, respectively [13, 23].

Many work has been done in field of theoretical chemistry and researchers have
been published large number of papers in this field.

2.2.3 Atom bond connectivity index

Atom bond connectivity (ABC) index is one of the famous connectivity topological
index which was proposed by Estrada et al. [9]. The ABC index for G is defined as
follows:

ABC(G) =
∑

uv∈E(G)

√
du + dv − 2

dudv
. (2.17)

Branched and cyclo-alkanes have some important physico-chemical properties like
stability and strain energy which are correlated with ABC index.

We define five different forms of ABC index here for G. The generalized form of
ABC index is:

ABCk(G) =
∑

uv∈E(G)

√
Qu +Qv − 2

QuQv

, (2.18)

where the quantity Qu is related to vertex u uniquely and k ∈ {1, 2, 3, 4, 5}.
• When k = 1 then Qv = dv and Qu = du

11



• If k = 2 then Qv = nv
• When k = 3 then Qv = mv where mv represents the set of all those edges of G
which are lying closer to vertex v than u of the edge e = uv.
• If k = 4 then Qv = Sv
• When k = 5 then Qv = ε(v)

2.2.4 Geometric Arithmetic index

Vukičević et al. [25] introduced another famous topological index named as Geo-
metric Arithmetic (GA) index. We define GA(G) as follows:

GA(G) =
∑

uv∈E(G)

2
√
dudv

du + dv
. (2.19)

Bioactivity is predicted by using the GA index of chemical compound. Entropy,
enthalpy of vaporization, standard enthalpy of vaporization, enthalpy of formation
and centric factor are some properties of physico-chemical for which GA index is
very important. GA index is more effective and give better result than Randić index.

We define some different forms of GA index. The generalized form of GA index
is defined as:

GAk(G) =
∑

uv∈E(G)

2
√
QuQv

Qu +Qv

, (2.20)

where the quantity Qu is related to vertex u uniquely and k ∈ {1, 2, 3, 4, 5}.
• If k = 1 then Qv = dv and Qu = du
• When k = 2 then Qv = nv
• When k = 3 then Qv = mv

• If k = 4 then Qv = ε(v)
• When k = 5 then Qv = Sv

2.3 Counting polynomials

A finite sequence of certain properties of a graph in graph theory can be applied
in different areas of chemistry. These sequences such as k-independent edge set se-
quence or the sequence of distance degree form polynomials. These polynomials are
known as counting polynomials. Hosaya [17] introduced the counting polynomials
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with independent edge set (Z-counting) and distance degree polynomials of G, which
were initially named as Wiener and later on by Hosaya polynomials.

Let G be a molecular connected graph. The co-distant edges in the edge set
E(G) are e = (x, y) and f = (x

′
, y

′
) shown by e co f , if for k = {0, 1, 2, ..., k}, where

d(x, x
′
) = d(y, y

′
) = k

and
d(x, y

′
) = d(x

′
, y) = k + 1

or vice versa. The relationship is satisfied for some edges of the connected graph as
demonstrated below:

1. e co e

2. e co f ⇔ f co e

3. e co f and f co j ⇒ e co j.

However, the relationship depicted in (3), is not always necessarily considered
valid. Consider

C(e) = {f ∈ E(G) : e co f},

if the relation satisfies the (3), then the above equation shows the set of all edges of
G which are co-distant to e. If all the elements validate the condition of relationship
from (1) − (3), C(e) is called an orthogonal cut ‘oc’ of the graph G. The graph is
said to be a co-graph if and only if the set of edge E(G) is the union of disjoint
orthogonal cuts C1 ∪ C2 ∪ C3 ∪ · · · ∪ Ck = E. and Ci ∩ Cj = ∅, for i 6= j and
i, j = {1, 2, 3, . . . , k}.
If from the cut edge sequence, any two of the edges are codistant and related to the
same face of the covering then such sequence is said to be a quasi-orthogonal cut
‘qoc’ strip. This means that transitive relation is not necessarily followed. There
are some counting polynomials
• Omega Polynomial
• Sadhana Polynomial
• PI Polynomial
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2.3.1 Omega polynomial

A counting polynomial Ω(G, x) is known as Omega polynomial of graph G which
was introduce by Diudea [8]. It is defined as:

Ω(G, x) =
∑
k

m(G, k)× xk, (2.21)

where the number of ‘qocs’ of length k is denoted by m(G, k) and the sum is extended
to the maximum length of ‘qocs’ in G.

2.3.2 Sadhana polynomial

In any graph, Sadhana polynomial is defined on the opposite edge strips. Ashrafi et.
al [2] introduced this polynomial. The Sadhana polynomial of graph G is denoted
by Sd(G, k) and it defined as:

Sd(G, x) =
∑
k

m(G, k)× xm−k, (2.22)

where the number of ‘qocs’ of length k is denoted by m(G, k) and m is the size of
G. The equidistant edges in G counted by this polynomial.

2.3.3 PI polynomial

The PI polynomial is used for counting opposite edge strips in any graph. This
polynomial of graph G is denoted by PI(G, x), was introduced by Khadikar [19]
and it is defined as:

PI(G, x) =
∑
k

m(G, k)× k × xm−k, (2.23)

where the number of ‘qocs’ of length k is denoted by m(G, k). This polynomial is
used for counting non-equidistant edges in G.

2.4 M-polynomial

Let G be a graph with vertex set V and edge set E. Let mij(G), where i, j ≥ 1
represents the number of edges e = uv such that du = i, dv = j, the mij(G) quantities

14



were first introduced and used in [7, 16]. The M-polynomial is defined as:

M(G;x, y) =
∑
i≤j

mij(G)xiyj. (2.24)
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Chapter 3

Topological indices and Polynomials of Tri-
azine based dendrimer

In this chapter, we compute the topological indices and polynomials of Triazine
based dendrimer. This dendrimer was synthesized by divergent method evading
protection/deprotection or functional group interconversion. The full generations of
this dendrimer were used as solubility enhancer of ketoprofen [10].

Let us denote the molecular graph of this dendrimer by D1(n), where the genera-
tions stage of D1(n) is represented by n. The number of vertices in the graph D1(n)
is 2

3
(5×22n+4+1) and number of edges is 7×22n+3+1. We now partition the molecu-

lar graph of D1(n) into two parts, one of them is the core C and other is the subgraph
MS(n) of D1(n) having four similar branches with vertex set V (D1(n))−V (C).The
dendrimer D1(n) with core and first generation are shown in Figure 3.1. It is enough
to compute the required information for a set of representatives while computing
the eccentricity based indices and polynomials of D1(n). First, we take one set of
representatives from a set of vertices of the core of D1(n), which have the same de-
gree, Su, M(u) and eccentricity for each u of the corresponding representative. For
the core, these representatives are labeled by αl, where 1 ≤ l ≤ 4 as shown in Figure
3.1. This set of representatives with their degrees, Su and M(u), eccentricities and
frequencies of occurrence are given in Table 3.1.

For the subgraph MS(n), these representatives are labeled by bi, ci, di, ei, fi,
gi and hi, where 1 ≤ i ≤ n and am, 2 ≤ m ≤ n and we fix a1 for D1(n) as
shown in Figure 3.1. This set of representatives with their degrees, Su, M(u),
eccentricities and frequencies are given in Table 3.2. For the sake of simplicity, we
assume γ = 7n+ 7i in this chapter.
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Figure 3.1: Core of D1(n) and first generation of D1(n).

3.1 The eccentricity-based indices and polynomi-

als for the molecular graph D1(n)

We compute the different eccentricity-based indices and their corresponding polyno-
mials of molecular graph D1(n) with the help of Tables 3.1 and 3.2. In the following
theorem, we determine the eccentric-connectivity index of the molecular graph.

Table 3.1: The set of representatives of core with their degrees, Su, M(u), eccen-
tricities and frequencies.

Representative Degree Su M(u) Eccentricity Frequency
α1 3 7 12 7n+ 5 2
α2 2 5 6 7n+ 6 4
α3 2 5 6 7n+ 7 4
α4 3 6 8 7n+ 8 2

Theorem 3.1.1. For the graph D1(n), the eccentric-connectivity index is given by

ξ(D1(n)) =
(22n+3 × 147n+ 42n+ 22n+1 × 163 + 274)

3
.

Proof. By using the values of Tables 3.1 and 3.2 in equation (2.2), the eccentric

17



connectivity index of D1(n) can be written as follows:

ξ(D1(n)) = ξ(C) + ξ(MS(n)) =
∑

u∈V (C)

ε(u)du +
∑

u∈V (MS(n))

ε(u)du

= (2× 3)(7n+ 5) + (2× 4)(7n+ 6) + (2× 4)(7n+ 7) + (2× 3)(7n+ 8)

+ (2× 2)(7n+ 9) + (22n+2)(14n+ 8) + (22n+1)(14n+ 9)

+
n∑
i=1

(
(22i−1 × 3)(γ + 3) + (22i × 2)(γ + 4) + (22i × 3)(γ + 5)

+ (22i−1 × 2)(γ + 6) + (22i × 3)(γ + 6) + (22i+1 × 2)(γ + 7)

)
+

n−1∑
i=1

(22i+1 × 2)(γ + 8) +
n∑
i=2

(22i−1 × 2)(γ + 2).

After some calculations, we get

ξ(D1(n)) =
(22n+3 × 147n+ 42n+ 22n+1 × 163 + 274)

3
,

which proves the theorem.

When the degrees of vertices are not taken into account, then by using the values
of Tables 3.1 and 3.2 in (2.4), we have the following result.

Corollary 3.1.1. For the graph D1(n), the total eccentric-connectivity index is given
by

ς(D1(n)) =
(22n+4 × 105n+ 22n+1 × 265− 294n+ 42n+ 334)

9
.

In the next theorem, the eccentric-connectivity polynomial for the molecular
graph D1(n) has been derived.

Theorem 3.1.2. For the graph D1(n), the eccentric-connectivity polynomial is given
by

ECP (D1(n), y) = 2y7n+5(2y4 + 3y3 + 4y2 + 4y + 3) + 22n+1y14n+9 + 22n+2y14n+8

+
4y7n+8(4y7n − 4y7) + 4ny7n+9(4ny7n − 4y7)

4y7 − 1

+
2y7n+10(6y2 + 4y + 3)(4ny7n − 1) + 16y7n+13(y + 1)(4ny7n − 1)

4y7 − 1
.
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Table 3.2: The set of representatives of subgraph MS(n) of D1(n) with degrees, Su,
M(u), eccentricities and frequencies.

Representative Degree Su M(u) Eccentricity Frequency

a1 2 6 9 7n+ 9 2
ai when 2 ≤ i ≤ n 2 4 4 7n+ 7i+ 2 = γ + 2 22i−1

bi 3 6 8 γ + 3 22i−1

ci 2 6 9 γ + 4 22i

di 3 7 12 γ + 5 22i

ei 2 6 9 γ + 6 22i−1

fi 3 7 12 γ + 6 22i

gi 2 5 6 γ + 7 22i+1

hi when i = n 2 3 2 14n+ 8 22n+1

hi when i 6= n 2 4 4 γ + 8 22i+1

an + 1 when i = n 1 2 2 14n+ 9 22n+1

Proof. By using the values of Tables 3.1 and 3.2 in equation (2.3), we have

ECP (D1(n), y) = ECP (C, y) + ECP (MS(n), y)

=
∑

u∈V (C)

duy
ε(u) +

∑
u∈V (MS(n))

duy
ε(u)

= (3× 2)y7n+5 + (2× 4)y7n+6 + (2× 4)y7n+7 + (3× 2)y7n+8

+ (2× 2)y7n+9 + (2× 22n+1)y14n+8 + (1× 22n+1)y14n+9

+
n∑
i=1

(
(3× 22i−1)yγ+3 + (2× 22i)yγ+4 + (3× 22i)yγ+5

+ (2× 22i−1)yγ+6 + (3× 22i)yγ+6 + (2× 22i+1)yγ+7

)
+

n−1∑
i=1

(2× 22i+1)yγ+8 +
n∑
i=2

(2× 22i−1)yγ+2.

After some calculation, we get the required result.

By using the values of Tables 3.1 and 3.2 in (2.5), we have the following result.
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Corollary 3.1.2. For D1(n), the total eccentric-connectivity polynomial is given by

TECP (D1(n), y) = 2y7n+5(y4 + y3 + 2y2 + 2y + 1) + 22n+1y14n+9 + 22n+1y14n+8

+
2y7n+8(4y7n − 4y7)(y + 1)

4y7 − 1

+
2y7n+10(4y4 + 3y3 + 2y2 + 2y + 1)(4ny7n − 1)

4y7 − 1
.

In the next theorem, we compute the closed formula for the second Zagreb ec-
centricity index of molecular graph.

Theorem 3.1.3. For the graph D1(n), the second Zagreb eccentricity index is given
by

M∗∗
1 (D1(n)) =

(22n+5 × 2205n2 + 22n+4 × 2499n+ 882n2 + 14028n
+ 22n+1 × 8005 + 2350)

27

Proof. By using the values of Tables 3.1 and 3.2 in equation (2.6), we compute the
second Zagreb eccentricity index of D1(n) as follows:

M∗∗
1 (D1(n)) = M∗∗

1 (C) +M∗∗
1 (MS(n)) =

∑
v∈V (C)

[ε(v)]2 +
∑

v∈V (MS(n))

[ε(v)]2

= 2(7n+ 5)2 + 4(7n+ 6)2 + 4(7n+ 7)2 + 2(7n+ 8)2 + 2(7n+ 9)2

+ 22n+1(14n+ 8)2 + 22n+1(14n+ 9)2 +
n∑
i=1

(
22i−1(γ + 3)2

+ 22i(γ + 4)2 + 22i(γ + 5)2 + 22i−1(γ + 6)2 + 22i(γ + 6)2

+ 22i+1(γ + 7)2
)

+
n−1∑
i=1

22i+1(γ + 8)2 +
n∑
i=2

22i−1(γ + 2)2.

After some calculations, we obtain

M∗∗
1 (D1(n)) =

(22n+5 × 2205n2 + 22n+4 × 2499n+ 882n2 + 14028n
+ 22n+1 × 8005 + 2350)

27
.

This proves our theorem.

Now, we compute the closed formula for the modified eccentric-connectivity index
of molecular graph .
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Theorem 3.1.4. For the graph D1(n), the modified eccentric connectivity index is
given by

Λ(D1(n)) =
2(22n+1 × 1995n+ 273n+ 22n+1 × 521 + 1127)

9
.

Proof. By using the values of Tables 3.1 and 3.2 in equation (2.9), we get

Λ(D1(n)) = Λ(C) + Λ(MS(n)) =
∑

u∈V (C)

Suε(u) +
∑

u∈V (MS(n))

Suε(u)

= (2× 7)(7n+ 5) + (4× 5)(7n+ 6) + (4× 5)(7n+ 7) + (2× 6)(7n+ 8)

+ (2× 6)(7n+ 9) + (3× 22n+1)(14n+ 8) + (2× 22n+1)(14n+ 9)

+
n∑
i=1

(
(22i−1 × 6)(γ + 3) + (22i × 6)(γ + 4) + (22i × 7)(γ + 5)

+ (22i−1 × 6)(γ + 6) + (22i × 7)(γ + 6) + (22i+1 × 5)(γ + 7)

)
+

n−1∑
i=1

(22i+1 × 4)(γ + 8) +
n∑
i=2

(22i−1 × 4)(γ + 2).

After some calculations, we obtain

Λ(D1(n)) =
2(22n+1 × 1995n+ 273n+ 22n+1 × 521 + 1127)

9
.

The proof is complete.

In the following theorem, we compute the closed formula for the modified eccentric-
connectivity polynomial of molecular graph.

Theorem 3.1.5. For the graph D1(n), the modified eccentric connectivity polyno-
mial is given by

MECP (D1(n), y) = 2y7n+5(12y3 + 10y2 + 10y + 7) + 22n+1y2(7n+4)(2y + 3)

+
8y7n+8(4ny7n − 4y7) + 8y7n+9(4ny7n − 4y7)

4y7 − 1

+
4(10y4 + 10y3 + 7y2 + 6y + 3)y7n+10(4ny7n − 1)

4y7 − 1
.
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Proof. By using the values of Tables 3.1 and 3.2 in equation (2.10), we compute the
modified eccentric connectivity polynomial of D1(n) as:

MECP (D1(n), y) = MECP (C, y) +MECP (MS(n), y)

=
∑

u∈V (C)

Suy
ε(u) +

∑
u∈V (MS(n))

Suy
ε(u)

= (2× 7)y7n+5 + (4× 5)y7n+6 + (4× 5)y7n+7 + (2× 6)y7n+8

+ (2× 6)y7n+9 + (3× 22n+1)y14n+8 + (2× 22n+1)y14n+9

+
n∑
i=1

(
(22i−1 × 6)yγ+3 + (22i × 6)yγ+4 + (22i × 7)yγ+5

+ (22i−1 × 6)yγ+6 + (22i × 7)yγ+6 + (22i+1 × 5)yγ+7

)
+

n−1∑
i=1

(22i+1 × 4)yγ+8 +
n∑
i=2

(22i−1 × 4)yγ+2.

After some calculations, we obtain the required result.

Now, we determine the augmented eccentric-connectivity index of molecular
graph in next theorem.

Theorem 3.1.6. For the graph D1(n), the augmented eccentric connectivity index
is given by

Aε(D1(n)) =
24

7n+ 5
+

24

7n+ 6
+

24

7n+ 7
+

16

7n+ 8
+

18

7n+ 9

+

(
16

7n+ 10
+ · · ·+ 22n+2

14n+ 3

)
+

(
36

7n+ 11
+ · · ·+ 9× 22n

14n+ 4

)
+

(
48

7n+ 12
+ · · ·+ 3× 22n+2

14n+ 5

)
+

(
18

7n+ 13
+ · · ·+ 9× 22n−1

14n+ 6

)
+

(
48

7n+ 13
+ · · ·+ 3× 22n+2

14n+ 6

)
+

(
48

7n+ 14
+ · · ·+ 3× 22n+2

14n+ 7

)
+

(
32

7n+ 15
+ · · ·+ 22n+1

14n+ 1

)
+

(
32

7n+ 16
+ · · ·+ 22n+1

14n+ 2

)
.
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Proof. By using the values of Tables 3.1 and 3.2 in equation (2.8), we compute the
augmented eccentric connectivity index of D1(n) as:

Aε(D1(n)) =A ε(C) +A ε(MS(n)) =
∑

u∈V (C)

M(u)

ε(u)
+

∑
u∈V (MS(n))

M(u)

ε(u)

=
2× 12

7n+ 5
+

4× 6

7n+ 6
+

4× 6

7n+ 7
+

2× 8

7n+ 8
+

2× 9

7n+ 9
+

2× 22n+1

14n+ 9

+
2× 22n+1

14n+ 8
+

n∑
i=1

(
8× 22n−1

γ + 3
+

9× 22n

γ + 4
+

12× 22n

γ + 5
+

9× 22n−1

γ + 6

+
12× 22n

γ + 6
+

6× 22n+1

γ + 7

)
+

n−1∑
i=1

(
4× 22i+1

γ + 8

)
+

n∑
i=2

(
4× 22i−1

γ + 2

)
.

After some calculations, we obtain the required result.

Table 3.3: The edge partition of core of D1(n) with respect to the representatives
of pairs of end vertices, eccentricity and degree of each edge and their frequencies.

Representative Eccentricity Frequency Eccentricity Degree of
of an edge an edge

[α1, α1] [7n+ 5, 7n+ 5] 1 7n+ 3 4
[α1, α2] [7n+ 5, 7n+ 6] 4 7n+ 4 3
[α2, α3] [7n+ 6, 7n+ 7] 4 7n+ 5 2
[α3, α4] [7n+ 7, 7n+ 8] 4 7n+ 6 3
[α4, a1] [7n+ 8, 7n+ 9] 2 7n+ 7 3

In the next theorem, we determine the closed formula for the third Zagreb ec-
centricity index of the molecular graph.

Theorem 3.1.7. For the graph D1(n), the third Zagreb eccentricity index is given
by

M∗
2 (D1(n)) =

(22n+3 × 3087n2 + 22n+2 × 3423n+ 22n+2 × 1249 + 441n2

+ 5754n+ 1133)

9
.
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Table 3.4: The edge partition of MS(n) with respect to the representatives of pairs
of end vertices, eccentricity and degree of each edge and their frequencices.

Representative Eccentricity Frequency Eccentricity Degree of
of an edge an edge

[ai, bi] [γ + 2, γ + 3] 22i−1 γ + 1 3
[bi, ci] [γ + 3, γ + 4] 22i γ + 2 3
[ci, di] [γ + 4, γ + 5] 22i γ + 3 3
[di, ei] [γ + 5, γ + 6] 22i γ + 4 3
[di, fi] [γ + 5, γ + 6] 22i γ + 4 4
[fi, gi] [γ + 6, γ + 7] 22i+1 γ + 5 3
[gi, hi] [γ + 7, γ + 8] 22i+1 γ + 6 2

[hi, ai+1] when i = n [14n+ 8, 14n+ 9] 22n+1 14n+ 7 1
[hi, ai+1] when i 6= n [γ + 8, γ + 9] 22i+1 γ + 7 2

Proof. By using the values of Tables 3.3 and 3.4 in equation (2.7), we compute the
third Zagreb eccentricity index of D1(n) as follows:

M∗
2 (D1(n)) = M∗

2 (C) +M∗
2 (MS(n)) =

∑
uv∈E(C)

[ε(u)ε(v)] +
∑

uv∈E(MS(n))

[ε(u)ε(v)]

= (7n+ 5)(7n+ 5) + 4(7n+ 5)(7n+ 6) + 4(7n+ 6)(7n+ 7)

+ 4(7n+ 7)(7n+ 8) + 2(7n+ 8)(7n+ 9) + 22n+1(14n+ 8)(14n+ 9)

+
n∑
i=1

(
22i−1(γ + 2)(γ + 3) + 22i(γ + 3)(γ + 4) + 22i(γ + 4)(γ + 5)

+ 22i(γ + 5)(γ + 6) + 22i(γ + 5)(γ + 6) + 22i+1(γ + 6)(γ + 7)

+ 22i+1(γ + 7)(γ + 8)

)
+

n−1∑
i=1

22i+1(γ + 8)(γ + 9).

After some calculations, we have

M∗
2 (D1(n)) =

(22n+3 × 3087n2 + 22n+2 × 3423n+ 22n+2 × 1249 + 441n2

+ 5754n+ 1133)

9
.

This proves our theorem.
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Finally, we now determine the explicit formula for the edge version of eccentric-
connectivity index for the molecular graph D1(n).

Theorem 3.1.8. For the graph D1(n), the edge version of eccentric connectivity
index is given by

εe(D1(n)) = 2(22n+2 × 63n+ 14n+ 22n × 33 + 67).

Proof. By using the values of Tables 3.3 and 3.4 in equation (2.11), the edge version
of eccentric connectivity index of D1(n) can be written as follows:

εe(D1(n)) = εe(C) + εe(MS(n)) =
∑

f∈E(C)

dfε(f) +
∑

f∈E(MS(n))

dfε(f)

= (4× 1)(7n+ 3) + (4× 3)(7n+ 4) + (2× 4)(7n+ 5) + (3× 4)(7n+ 6)

+ (3× 2)(7n+ 7) + (1× 22n+1)(14n+ 7) +
n∑
i=1

(
(3× 22i−1)(γ + 1)

+ (3× 22i)(γ + 2) + (3× 22i)(γ + 3) + (3× 22i)(γ + 4) + (4× 22i)(γ + 4)

+ (3× 22i+1)(γ + 5) + (2× 22i+1)(γ + 6)

)
+

n−1∑
i=1

(2× 22i+1)(γ + 7).

After some calculations, we get

εe(D1(n)) = 2(22n+2 × 63n+ 14n+ 22n × 33 + 67).

This gives the required result.

3.2 M-Polynomial

In this section, we will calculate the M-polynomial of D1(n). The partition set of
edges with their frequencies for D1(n) is given in Table 3.5.

Theorem 3.2.1. For the graph D1(n), the M-polynomial is given by

M(D1(n), x, y) = 22n+3xy2 +
2

3
(−2 + 5× 22n+2)x2y2 +

2

3
(4 + 11× 22n+2)x2y3

+
1

3
(−1 + 4n+2)x3y3.
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Table 3.5: The set of edge representatives with their frequencies of D1(n).

Representative Frequency
(1, 2) 22n+3

(2, 2) 2
3
(−2 + 5× 22n+2)

(2, 3) 2
3
(4 + 11× 22n+2)

(3, 3) 1
3
(−1 + 4n+2)

Proof. By using the values of Table 3.5 in equation (2.24), the M-polynomial of
D1(n) can be written as follows:

M(D1(n), x, y) =
∑
i≤j

mij(D1(n))xiyj

= 22n+3xy2 +
2

3
(−2 + 5× 22n+2)x2y2 +

2

3
(4 + 11× 22n+2)x2y3 +

1

3
(−1 + 4n+2)x3y3.

The proof is complete.

3.3 Counting polynomials

In this section of the chapter, we will calculate counting polynomials for D1(n), for
this we first find the qocs for D1(n). The strips are shown in Figure 3.3 and Table
3.6 represents the order and lengths of qocs.

Table 3.6: Lengths, Representations and Frequencies of qocs.

Representative length Frequency
C1 1 (−7 + 5× 22n+3)
C2 2 2(2 + 22n+2)

Theorem 3.3.1. For the graph D1(n), the Omega polynomial is given by

Ω(D1(n), x) = (−7 + 5× 22n+3)x+ 2(2 + 22n+2)x2.
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Figure 3.2: Core of D1(n)

Proof. We calculate the Omega polynomial by using the values of Table 3.6 in
equation (2.21) as follows:

Ω(D1(n), x) = (−7 + 5× 22n+3)x+ 2(2 + 22n+2)x2.

Which is the required result.

Theorem 3.3.2. For the graph D1(n), the Sadhana polynomial is given by

Sd(D1(n), x) = (−7 + 5× 22n+3)x7×2
2n+3

+ (4 + 22n+3)x7×2
2n+3−1.

Proof. Substitute the values of Table 3.6 into equation (2.22), then we have

Sd(D1(n), x) = (−7 + 5× 22n+3)x1+7×22n+3−1 + 2(2 + 22n+2)x1+7×22n+3−2

= (−7 + 5× 22n+3)x7×2
2n+3

+ (4 + 22n+3)x7×2
2n+3−1.

The proof is complete.

Theorem 3.3.3. For the graph D1(n), the PI polynomial is given by

PI(D1(n), x) = (−7 + 5× 22n+3)x7×2
2n+3

+ (8 + 22n+4)x7×2
2n+3−1.

Proof. By using Table 3.6, we substitute the values in equation (2.23) as follows:

PI(D1(n), x) = (−7 + 5× 22n+3)x1+7×22n+3−1 + 4(2 + 22n+2)x1+7×22n+3−2

= (−7 + 5× 22n+3)x7×2
2n+3

+ (8 + 22n+4)x7×2
2n+3−1.

After some calculations, we obtain the required result.
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Chapter 4

Topological indices and polynomials of Cy-
clotriphosphazene dendrimer

Dendrimers, that can be applied for the magnetic behavior study of species which are
paramagnetic, are micro molecules made for better specialized individual character-
istics. Here we are focussing phosphorus containing dendrimer Cyclotriphosphazene
(N3P3) which have stable end groups and these are studied by EPR temperature
spectrum [3]. Let the molecular graph of this dendrimer be D2(n), where the gen-
erations stage of D2(n) is represented by n. The core and first generation of D2(n)
are shown in Figure 4.1.
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Figure 4.1: Core of D2(n) and one branch of first generation of D2(n).

The size and order of the graph D2(n) are 6(9× 2n+2− 13) and 9(−8 + 11× 2n),
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respectively. We divide the molecular graph D2(n) into two parts, one is core and
other is the subgraph H(n) of D2(n). The degrees, Su, M(u) and eccentricity for
each u for the core and subgraph H(n) of D2(n) are shown in Table 4.1 and Table
4.2 respectively. For simplicity, we assume γ = 9n+ 9i.

4.1 The eccentricity-based indices and polynomi-

als for the molecular graph D2(n)

In this chapter, we will compute some eccentricity based indices and their corre-
sponding polynomials for molecular graph D2(n) by using the values of Table 4.1
and 4.2. In the following theorem, we determine the eccentric-connectivity index of
D2(n).

Table 4.1: The set of representatives of the core with their degrees, Su, M(u),
eccentricities and frequencies.

Representative Degree Su M(u) Eccentricity Frequency
α1 2 8 16 9n+ 15 3
α2 4 8 16 9n+ 14 3
α3 2 7 12 9n+ 15 3× 2n+1

α4 3 6 8 9n+ 16 3× 2n+1

α5 2 5 6 9n+ 17 3× 2n+2

α6 2 5 6 9n+ 18 3× 2n+2

α7 3 6 8 9n+ 19 3× 2n+1

α8 2 5 6 9n+ 20 3× 2n+1

α9 2 5 6 9n+ 21 3× 2n+1

α10 3 6 8 9n+ 22 3× 2n+1

α11 2 7 12 9n+ 23 3× 2n+2

α12 4 7 6 9n+ 24 3× 2n+2

α13 1 4 4 9n+ 25 3× 2n+3

α14 3 9 16 9n+ 25 3× 2n+1

α15 1 3 3 9n+ 26 3× 2n+1
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Table 4.2: The set of representatives of the subgraph H(n) of D2(n) with degrees,
Su, M(u), eccentricities and frequencies.

Representative Degree Su M(u) Eccentricity Frequency

ai 2 7 12 9n+ 9i+ 6 = γ + 6 3× 2i

bi 3 6 8 γ + 7 3× 2i

ci 2 5 6 γ + 8 3× 2i+1

di 2 5 6 γ + 9 3× 2i+1

ei 3 6 8 γ + 10 3× 2i

fi 2 5 6 γ + 11 3× 2i

gi 2 5 6 γ + 12 3× 2i

hi 3 7 8 γ + 13 3× 2i

ji 1 3 3 γ + 14 3× 2i

ki 4 8 12 γ + 14 3× 2i

li 1 4 4 γ + 15 3× 2i

Theorem 4.1.1. For the graph D2(n), the eccentric-connectivity index is given by

ξ(D2(n)) = 18(2n+2 × 79− 78n+ 2n × 303n+ 1).

Proof. By using the values of Tables 4.1 and 4.2 in equation (2.2), the eccentric
connectivity index of D2(n) can be written as follows:

ξ(D2(n)) = ξ(C) + ξ(H(n)) =
∑

u∈V (C)

ε(u)du +
∑

u∈V (H(n))

ε(u)du

= (2× 3)(9n+ 15) + (3× 4)(9n+ 14) + (3× 2n+1 × 2)(9n+ 15)

+ (3× 2n+1 × 3)(9n+ 16) + (2× 2n+2 × 3)(9n+ 17)

+ (2× 2n+2 × 3)(9n+ 18) + (3× 2n+1 × 3)(9n+ 19)

+ (2× 2n+1 × 3)(9n+ 20) + (2× 2n+1 × 3)(9n+ 21)

+ (3× 2n+1 × 3)(9n+ 22) + (2× 2n+2 × 3)(9n+ 23)

+ (4× 2n+2 × 3)(9n+ 24) + (1× 2n+3 × 3)(9n+ 25)

+ (3× 2n+1 × 3)(9n+ 25) + (1× 2n+1 × 3)(9n+ 26)

+
n∑
i=1

(
(2× 2i × 3)(γ + 6) + (3× 2i × 3)(γ + 7) + (2× 2i+1 × 3)(γ + 8)
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+ (2× 2i+1 × 3)(γ + 9) + (3× 2i × 3)(γ + 10) + (3× 2i × 2)(γ + 11)

+ (2× 2i × 3)(γ + 12) + (3× 2i × 3)(γ + 13) + (1× 2i × 3)(γ + 14)

+ (4× 2i × 3)(γ + 14) + (1× 2i × 3)(γ + 15)

)
.

After some calculations, we get

ξ(D2(n)) = 18(2n+2 × 79− 78n+ 2n × 303n+ 1),

which proves the theorem.

When the degrees of vertices are not taken into account, then by using the values
of Tables 4.1 and 4.2 in (2.4), we have the following result.

Corollary 4.1.1. For the graph D2(n), the total eccentric-connectivity index is given
by

ς(D2(n)) = 9(2n+2 × 69n+ 2n+1 × 149− 72n− 3).

In the next theorem, the eccentric-connectivity polynomial for the molecular
graph D2(n) has been derived.

Theorem 4.1.2. For the graph D2(n), the eccentric-connectivity polynomial is given
by

ECP (D2(n), y) = 6y9n+14(y + 2) + 3× 2n+1y9n+15(y11 + 7y10 + 8y9 + 4y8 + 3y7

+ 2y6 + 2y5 + 3y4 + 4y3 + 4y2 + 3y + 2)

+
6(2y5 + 3y4 + 4y3 + 4y2 + 3y + 2)× y9n+15(2ny9n − 1)

2y9 − 1

+
6(y3 + 5y2 + 3y + 2)× y9n+21(2ny9n − 1)

2y9 − 1
.

Proof. By using the values of Tables 4.1 and 4.2 in (2.3), we have

ECP (D2(n), y) = ECP (C, y) + ECP (H(n), y) =
∑

u∈V (C)

duy
ε(u) +

∑
u∈V (H(n))

duy
ε(u)

= (2× 3)y9n+15 + (4× 3)y9n+14 + (2× 3× 2n+1)y9n+15

+ (3× 3× 2n+1)y9n+16 + (2× 3× 2n+2)y9n+17 + (2× 3× 2n+2)y9n+18
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+ (3× 3× 2n+1)y9n+19 + (2× 3× 2n+1)y9n+20 + (2× 3× 2n+1)y9n+21

+ (3× 3× 2n+1)y9n+22 + (2× 3× 2n+2)y9n+23 + (4× 3× 2n+2)y9n+24

+ (1× 3× 2n+3)y9n+25 + (3× 3× 2n+1)y9n+25 + (1× 3× 2n+1)y9n+26

+
n∑
i=1

(
(2× 3× 2i)yγ+6 + (3× 3× 2i)yγ+7 + (2× 3× 2i+1)yγ+8

+ (2× 3× 2i+1)yγ+9 + (3× 3× 2i)yγ+10 + (2× 3× 2i)yγ+11

+ (2× 3× 2i)yγ+12 + (3× 3× 2i)yγ+13 + (1× 3× 2i)yγ+14

+ (4× 3× 2i)yγ+14 + (1× 3× 2i)yγ+15

)
.

After some calculations, we get the required result.

By using the values of Tables 4.1 and 4.2 in (2.5), we have the following result.

Corollary 4.1.2. For the graph D2(n), the total eccentric-connectivity polynomial
is given by

TECP (D2(n), y) = 3y9n+14(y + 1) + 3× 2n+1y9n+15(y11 + 5y10 + 2y9 + 2y8 + y7

+ y6 + y5 + y4 + 2y3 + 2y2 + y + 1)

+
6(y3 + 2y2 + y + 1)× y9n+21(2ny9n − 1)

2y9 − 1

+
6(y + 1)(y2 + 1)2 × y9n+15(2ny9n − 1)

2y9 − 1
.

In the next theorem, we compute the closed formula for the second Zagreb ec-
centricity index of molecular graph.

Theorem 4.1.3. For the graph D2(n), the second Zagreb eccentricity index is given
by

M∗∗
1 (D2(n)) = 3(2n+4×7295n2+2n+3×2097n−1944n2−162n+2n+1×11641−4053).

Proof. By using the values of Tables 4.1 and 4.2 in (2.6), we compute the second
Zagreb eccentricity index of D2(n) as follows:

M∗∗
1 (D2(n)) = M∗∗

1 (C) +M∗∗
1 (H(n)) =

∑
v∈V (C)

[ε(v)]2 +
∑

v∈V (H(n))

[ε(v)]2

= 3(9n+ 15)2 + 3(9n+ 14)2 + (3× 2n+1)(9n+ 15)2
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+ (3× 2n+1)(9n+ 16)2 + (3× 2n+2)(9n+ 17)2 + (3× 2n+2)(9n+ 18)2

+ (3× 2n+1)(9n+ 19)2 + (3× 2n+1)(9n+ 20)2 + (3× 2n+1)(9n+ 21)2

+ (3× 2n+1)(9n+ 22)2 + (3× 2n+2)(9n+ 23)2 + (3× 2n+2)(9n+ 24)2

+ (3× 2n+3)(9n+ 25)2 + (3× 2n+1)(9n+ 25)2 + (3× 2n+1)(9n+ 26)2

+
n∑
i=1

(
(3× 2i)(γ + 6)2 + (3× 2i)(γ + 7)2 + (3× 2i+1)(γ + 8)2

+ (3× 2i+1)(γ + 9)2 + (3× 2i)(γ + 10)2 + (3× 2i)(γ + 11)2

+ (3× 2i)(γ + 12)2 + (3× 2i)(γ + 13)2 + (3× 2i)(γ + 14)2

+ (3× 2i)(γ + 14)2 + (3× 2i)(γ + 15)2
)
.

After some calculations, we obtain

M∗∗
1 (D2(n)) = 3(2n+4×7295n2+2n+3×2097n−1944n2−162n+2n+1×11641−4053),

that proves our theorem.

Now, we compute the closed formula for the modified eccentric-connectivity index
of molecular graph.

Theorem 4.1.4. For the graph D2(n), the modified eccentric connectivity index is
given by

Λ(D2(n)) = 6(2n × 2277n− 567n+ 2n+1 × 1229 + 21).

Proof. By using the values of Tables 4.1 and 4.2 in (2.9), we compute the modified
eccentric connectivity index of D2(n) in the following way:

Λ(D2(n)) = Λ(C) + Λ(H(n)) =
∑

u∈V (C)

Suε(u) +
∑

u∈V (H(n))

Suε(u)

= (8× 3)(9n+ 15) + (8× 3)(9n+ 14) + (7× 3× 2n+1)(9n+ 15)

+ (6× 3× 2n+1)(9n+ 16) + (5× 3× 2n+2)(9n+ 17)

+ (5× 3× 2n+2)(9n+ 18) + (6× 3× 2n+1)(9n+ 19)

+ (5× 3× 2n+1)(9n+ 20) + (5× 3× 2n+1)(9n+ 21)

+ (6× 3× 2n+1)(9n+ 22) + (7× 3× 2n+2)(9n+ 23)

+ (7× 3× 2n+2)(9n+ 24) + (4× 3× 2n+3)(9n+ 25)

+ (9× 3× 2n+1)(9n+ 25) + (3× 3× 2n+1)(9n+ 26)
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+
n∑
i=1

(
(7× 3× 2i)(γ + 6) + (6× 3× 2i)(γ + 7) + (5× 3× 2i+1)(γ + 8)

+ (5× 3× 2i+1)(γ + 9) + (6× 3× 2i)(γ + 10) + (5× 3× 2i)(γ + 11)

+ (5× 3× 2i)(γ + 12) + (7× 3× 2i)(γ + 13) + (3× 3× 2i)(γ + 14)

+ (8× 3× 2i)(γ + 14) + (4× 3× 2i)(γ + 15)

)
.

After some calculations, we obtain

Λ(D2(n)) = 6(2n × 2277n− 567n+ 2n+1 × 1229 + 21).

The proof is complete.

In the following theorem, we compute the closed formula for the modified eccentric-
connectivity polynomial of molecular graph.

Theorem 4.1.5. For the graph D2(n), the modified eccentric connectivity polyno-
mial is given by

MECP (D2(n), y) = 24y9n+14(y + 1) + 2n+1 × y9n+15(9y11 + 75y10 + 42y9 + 42y8

+ 18y7 + 15y6 + 15y5 + 18y4 + 30y3 + 30y2 + 18y + 21)

+
6(5y5 + 6y4 + 10y3 + 10y2 + 6y + 7)y9n+15(2ny9n − 1)

2y9 − 1

+
6(4y3 + 11y2 + 7y + 5)y9n+21(2ny9n − 1)

2y9 − 1
.

Proof. By using the values of Tables 4.1 and 4.2 in (2.10), we compute the modified
eccentric connectivity polynomial of D2(n) in the following way:

MECP (D2(n), y) = MECP (C, y) +MECP (H(n), y)

=
∑

u∈V (C)

Suy
ε(u) +

∑
u∈V (H(n))

Suy
ε(u)

= (8× 3)y9n+15 + (8× 3)y9n+14 + (7× 3× 2n+1)y9n+15

+ (6× 3× 2n+1)y9n+16 + (5× 3× 2n+2)y9n+17

+ (5× 3× 2n+2)y9n+18 + (6× 3× 2n+1)y9n+19

+ (5× 3× 2n+1)y9n+20 + (5× 3× 2n+1)y9n+21
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+ (6× 3× 2n+1)y9n+22 + (7× 3× 2n+2)y9n+23 + (7× 3× 2n+2)y9n+24

+ (4× 3× 2n+3)y9n+25 + (9× 3× 2n+1)y9n+25 + (3× 3× 2n+1)y9n+26

+
n∑
i=1

(
(7× 3× 2i)(yγ+6) + (6× 3× 2i)(yγ+7) + (5× 3× 2i+1)(yγ+8)

+ (5× 3× 2i+1)(yγ+9) + (6× 3× 2i)(yγ+10) + (5× 3× 2i)(yγ+11)

+ (5× 3× 2i)(yγ+12) + (7× 3× 2i)(yγ+13) + (3× 3× 2i)(yγ+14)

+ (8× 3× 2i)(yγ+14) + (4× 3× 2i)(yγ+15)

)
.

After some calculations, we obtain the required result.

Now, we determine the augmented eccentric-connectivity index of molecular
graph in next theorem.

Theorem 4.1.6. For the graph D2(n), the augmented eccentric connectivity index
is given by

Aε(D2(n)) =
48

9n+ 15
+

48

9n+ 14
+

36× 2n+1

9n+ 15
+

24× 2n+1

9n+ 16
+

18× 2n+2

9n+ 17

+
18× 2n+2

9n+ 18
+

24× 2n+1

9n+ 19
+

18× 2n+1

9n+ 20
+

18× 2n+1

9n+ 21
+

24× 2n+1

9n+ 22

+
36× 2n+2

9n+ 23
+

18× 2n+2

9n+ 24
+

12× 2n+3

9n+ 25
+

48× 2n+1

9n+ 25
+

9× 2n+1

9n+ 26

+

(
72

9n+ 15
+ · · ·+ 36× 2n

18n+ 6

)
+

(
48

9n+ 16
+ · · ·+ 24× 2n

18n+ 7

)
+

(
72

9n+ 17
+ · · ·+ 18× 2n+1

18n+ 8

)
+

(
72

9n+ 18
+ · · ·+ 18× 2n+1

18n+ 9

)
+

(
48

9n+ 19
+ · · ·+ 24× 2n

18n+ 10

)
+

(
36

9n+ 20
+ · · ·+ 18× 2n

18n+ 11

)
+

(
36

9n+ 21
+ · · ·+ 18× 2n

18n+ 12

)
+

(
48

9n+ 22
+ · · ·+ 24× 2n

18n+ 13

)
+

(
18

9n+ 23
+ · · ·+ 9× 2n

18n+ 14

)
+

(
72

9n+ 23
+ · · ·+ 36× 2n

18n+ 14

)
+

(
24

9n+ 24
+ · · ·+ 12× 2n

18n+ 15

)
.
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Proof. By using the values of Tables 4.1 and 4.2 in (2.8), we compute the augumented
eccentric connectivity index of D2(n) in the following way:

Aε(D2(n)) =A ε(C) +A ε(H(n)) =
∑

u∈V (C)

M(u)

ε(u)
+

∑
u∈V (H(n))

M(u)

ε(u)

=
3× 16

9n+ 15
+

3× 16

9n+ 14
+

3× 2n+1 × 12

9n+ 15
+

3× 2n+1 × 8

9n+ 16
+

3× 2n+2 × 6

9n+ 17

+
3× 2n+2 × 6

9n+ 18
+

3× 2n+1 × 8

9n+ 19
+

3× 2n+1 × 6

9n+ 20
+

3× 2n+1 × 6

9n+ 21

+
3× 2n+1 × 8

9n+ 22
+

3× 2n+2 × 12

9n+ 23
+

3× 2n+2 × 6

9n+ 24
+

3× 2n+3 × 4

9n+ 25

+
3× 2n+1 × 16

9n+ 25
+

3× 2n+1 × 3

9n+ 26
+

n∑
i=1

(
3× 2i × 12

γ + 6
+

3× 2i × 8

γ + 7

+
3× 2i+1 × 6

γ + 8
+

3× 2i+1 × 6

γ + 9
+

3× 2i × 8

γ + 10
+

3× 2i × 6

γ + 11
+

3× 2i × 6

γ + 12

+
3× 2i × 8

γ + 13
+

3× 2i × 3

γ + 14
+

3× 2i × 12

γ + 14
+

3× 2i × 4

γ + 15
).

After some calculations, we obtain the required result.

4.2 Counting polynomials

To calculate these polynomials, we first find qocs for D2(n). The cuts of core are
represented in Figure 4.3. The qocs C1, C2, C3, C4 along with their lengths and
frequencies are given in Table 4.3. We will calculate the counting polynomials by
using the following theorems.

Theorem 4.2.1. For the graph D2(n), the Omega polynomial is given by

Ω(D2(n), x) = 12(−4 + 9× 2n)x+ 3(−5 + 9× 2n+1)x2.

Proof. For Omega polynomial, substitute the values of Table 4.3 in (2.21), then we
have

Ω(D2(n), x) = 12(−4 + 9× 2n)x+ (−5 + 9× 2n+1)x2 + (−5 + 9× 2n+1)x2

+ (−5 + 9× 2n+1x2)

= 12(−4 + 32 × 2n)x+ 3(−5 + 32 × 2n+1)x2.

36



C1

c2

c3

c4

c2

c1

c4

c3

Figure 4.2: Qocs for Core and qocs for first generation of D2(n).

Table 4.3: Lengths, Representations and Frequencies of qocs.

Representative length Frequency
C1 1 12(−4 + 9× 2n)
C2 2 (−5 + 9× 2n+1)
C3 2 (−5 + 9× 2n+1)
C4 2 (−5 + 9× 2n+1)

Which is the required result.

Theorem 4.2.2. For the graph D2(n), the Sadhana polynomial is given by

Sd(D2(n), x) = 12(−4 + 32 × 2n)x−79+33×2n+3

+ 3(−5 + 32 × 2n+1)x−80+33×2n+3

.

Proof. By using the values of Table 4.3 in (2.22), we get the following result

Sd(D2(n), x) = 12(−4 + 9× 2n)x6(−13+32×2n+2)−1 + 3(−5 + 9× 2n+1)x6(−13+32×2n+2)−2

= 12(−4 + 32 × 2n)x−79+33×2n+3

+ 3(−5 + 32 × 2n+1)x−80+33×2n+3

.

This proves our theorem.

Theorem 4.2.3. For the graph D2(n), the PI polynomial is given by

PI(D2(n), x) = 12(−4 + 32 × 2n)x−79+33×2n+3

+ 6(−5 + 32 × 2n+1)x−80+33×2n+3

.
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Proof. Using the values of Table 4.3 in (2.23), we have

PI(D2(n), x) = 12(−4 + 9× 2n)× 1× x6(−13+9×2n+2)−1 + 3(−5 + 9× 2n+1)

× 2× x6(−13+9×2n+2)−2

= 12(−4 + 32 × 2n)x−79+33×2n+3

+ 6(−5 + 32 × 2n+1)x−80+33×2n+3

.

The proof is complete.

4.3 M-Polynomial

To compute M-polynomial for D2(n), we use the partition set of edges and their
relevant frequencies provided in Table 4.4.

Table 4.4: Edge partition for D2(n).

Representative Frequency
(1, 3) 6(−1 + 2n+1)
(1, 4) 6(−1 + 5× 2n)
(2, 2) 18(−1 + 2n+1)
(2, 3) 6(−7 + 2n+4)
(2, 4) 3× 2n+3

(3, 4) 6(−1 + 3× 2n)

Theorem 4.3.1. For the graph D2(n), the M-Polynomial is

M(D2(n), x, y) = 6(−1 + 2n+1)xy3 + 6(−1 + 5× 2n)xy4 + 18(−1 + 2n+1)x2y2

+ 6(−7 + 2n+4)x2y3 + 3× 2n+3x2y4 + 6(−1 + 3× 2n)x3y4.

Proof. By using the values of Tables 4.4 in (2.24), then we have

M(D2(n), x, y) =
∑
i≤j

mij(D2(n))xiyj

= 6(−1 + 2n+1)xy3 + 6(−1 + 5× 2n)xy4 + 18(−1 + 2n+1)x2y2

+ 6(−7 + 2n+4)x2y3 + 3× 2n+3x2y4 + 6(−1 + 3× 2n)x3y4.

which proves the theorem.
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Chapter 5

Topological indices and Polynomials of
Porphyrin-cored 2, 2-Bis (methylol) Propi-
onic acid dendrimer

In this chapter, we will study different topological indices and polynomials of molec-
ular graph of Porphyrin-cored 2,2-Bis (methylol) Propionic acid dendrimers. The
synthesis and characterization of this dendrimer upto fifth generation are described
in [24].

Let the molecular graph of this dendrimer be D3(n), where the generations stage
of D3(n) is represented by n. The molecular graphs of D3(n) with core and first
generation are shown in Figure 5.1. It is enough to compute the required informa-
tion for a set of representatives while computing the eccentricity based indices and
polynomials of D3(n). The order of graph D3(n) is 4(9 + 2n+3) and number of edges
is 4(11+2n+3). We partition the molecular graph D3(n) into two parts, one of them
is core C and other is subgraph Z(n) of D3(n) having four similar branches with
vertex set V (D3(n))−V (C). The sets of representatives from a set of vertices of the
core and subgraph of D3(n), with their degrees, Su, M(u) and eccentricity for each
u are given in Table 5.1 and 5.2, respectively. In this chapter we fix γ = 4n+ 4i.

5.1 The eccentricity-based indices and polynomi-

als for the molecular graph D3(n)

By using the Tables 5.1 and 5.2, we calculate the different eccentricity-based indices
and their corresponding polynomials. In the following theorem, we determine the
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Figure 5.1: Core of D3(n) and first Generation of D3(n).

eccentric-connectivity index of D3(n).

Table 5.1: The set of representatives of the core with their degrees, Su, M(u),
eccentricities and frequencies.

Representative Degree Su M(u) Eccentricity Frequency
α1 2 6 9 4n+ 15 4
α2 3 7 12 4n+ 16 8
α3 2 5 6 4n+ 16 8
α4 3 9 27 4n+ 17 4
α5 3 7 12 4n+ 18 4
α6 2 5 6 4n+ 19 8
α7 2 5 6 4n+ 20 8
α8 3 6 8 4n+ 21 4
α9 2 5 6 4n+ 22 4
α10 2 4 4 4n+ 23 4
α11 2 4 4 4n+ 24 4
α12 2 3 2 4n+ 25 4

Theorem 5.1.1. For the graph D3(n), the eccentric-connectivity index is given by

ξ(D3(n)) = 16(2n+5 × n+ 22n+ 2n × 81 + 101).
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Table 5.2: The set of representatives of the subgraph Z(n) of D3(n) with degrees,
Su, M(u), eccentricities and frequencies.

Representative Degree Su M(u) Eccentricity Frequency

ai when i=n+1 1 2 2 8n+ 26 2n+2

ai when i 6= n+ 1 2 5 6 γ + 22 2i+1

bi 3 7 8 γ + 23 2i+1

ci 1 3 3 γ + 24 2i+1

di 4 8 12 γ + 24 2i+1

ei 1 4 4 γ + 25 2i+1

fi 2 5 4 γ + 25 2i+2

Proof. By using the values of Tables 5.1 and 5.2 in (2.2), the eccentric connectivity
index of D3(n) can be written as follows:

ξ(D3(n)) = ξ(C) + ξ(Z(n)) =
∑

u∈V (C)

ε(u)du +
∑

u∈V (Z(n))

ε(u)du

= (2× 4)(4n+ 15) + (3× 8)(4n+ 16) + (2× 8)(4n+ 16)

+ (3× 4)(4n+ 17) + (3× 4)(4n+ 18) + (2× 8)(4n+ 19)

+ (2× 8)(4n+ 20) + (3× 4)(4n+ 21) + (2× 4)(4n+ 22)

+ (2× 4)(4n+ 23) + (2× 4)(4n+ 24) + (2× 4)(4n+ 25)

+ (1× 2n+2)(8n+ 26) +
n∑
i=1

(
(2× 2i+1)(γ + 22) + (3× 2i+1)(γ + 23)

+ (1× 2i+1)(γ + 24) + (4× 2i+1)(γ + 24)

+ (1× 2i+1)(γ + 25) + (2× 2i+2)(γ + 25)

)
.

After some calculations, we get

ξ(D3(n)) = 16(2n+5 × n+ 22n+ 2n × 81 + 101),

which proves the theorem.

When the degrees of vertices are not taken into account, then by using the values
of Tables 5.1 and 5.2 in (2.4), we have the following result.
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Corollary 5.1.1. For the graph D3(n), the total eccentric-connectivity index is given
by

ς(D3(n)) = 4(2n+6 × n+ 2n+1 × 83 + 36n+ 167).

In the next theorem, the eccentric-connectivity polynomial for the molecular
graph D3(n) has been derived.

Theorem 5.1.2. For the graph D3(n), the eccentric-connectivity polynomial is given
by

ECP (D3(n), y) = 4y4n+15(2y10 + 2y9 + 2y8 + 2y7 + 3y6 + 4y5 + 4y4

+ 3y3 + 3y2 + 10y + 2) + 2n+2y2(4n+13)

+
4(5y3 + 5y2 + 3y + 2)× y4n+26(2ny4n − 1)

2y4 − 1
.

Proof. By using the values of Tables 5.1 and 5.2 in (2.3), we have

ECP (D3(n), y) = ECP (C, y) + ECP (Z(n), y) =
∑

u∈V (C)

duy
ε(u) +

∑
u∈V (Z(n))

duy
ε(u)

= (2× 4)y4n+15 + (8× 3)y4n+16 + (8× 2)y4n+16 + (4× 3)y4n+17

+ (4× 3)y4n+18 + (8× 2)y4n+19 + (8× 2)y4n+20 + (4× 3)y4n+21

+ (4× 2)y4n+22 + (4× 2)y4n+23 + (4× 2)y4n+24 + (4× 2)y4n+25

+ (1× 2n+2)y8n+26 +
n∑
i=1

(
(2× 2i+1)yγ+22 + (3× 2i+1)yγ+23

+ (1× 2i+1)yγ+24 + (4× 2i+1)yγ+24 + (1× 2i+1)yγ+25

+ (2× 2i+2)yγ+25

)
.

After some calculations, we get the required result.

Use the values of Tables 5.1 and 5.2 in (2.5), we have the following result.

Corollary 5.1.2. For the graph D3(n), the total eccentric-connectivity polynomial
is given by

TECP (D3(n), y) = 4y4n+15(y10 + y9 + y8 + y7 + y6 + 2y5 + 2y4 + y3 + y2 + 4y + 1)

+ 2n+2y2(4n+13) +
4(3y3 + 2y2 + y + 1)y4n+26(2ny4n − 1)

2y4 − 1
.
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In the next theorem, we compute the closed formula for the second Zagreb ec-
centricity index of molecular graph .

Theorem 5.1.3. For the graph D3(n), the second Zagreb eccentricity index is given
by

M∗∗
1 (D3(n)) = 4(2n+9 × n2 + 2n+5 × 83n+ 2n+2 × 927 + 144n2 + 1336n+ 3007).

Proof. By using the values of Tables 5.1 and 5.2 in (2.6), we compute the second
Zagreb eccentricity index of D3(n) as follows:

M∗∗
1 (D3(n)) = M∗∗

1 (C) +M∗∗
1 (Z(n)) =

∑
v∈V (C)

[ε(v)]2 +
∑

v∈V (Z(n))

[ε(v)]2

= 4(4n+ 15)2 + 8(4n+ 16)2 + 8(4n+ 16)2 + 4(4n+ 17)2 + 4(4n+ 18)2

+ 8(4n+ 19)2 + 8(4n+ 20)2 + 4(4n+ 21)2 + 4(4n+ 22)2 + 4(4n+ 23)2

+ 4(4n+ 24)2 + 4(4n+ 25)2 + 2n+2(8n+ 26)2 +
n∑
i=1

(
2i+1(γ + 22)2

+ 2i+1(γ + 23)2 + 2i+1(γ + 24)2 + 2i+1(γ + 24)2

+ 2i+1(γ + 25)2 + 2i+2(γ + 25)2
)
.

After some calculations, we obtain

M∗∗
1 (D3(n)) = 4(2n+9 × n2 + 2n+5 × 83n+ 2n+2 × 927 + 144n2 + 1336n+ 3007),

that proves our theorem.

Now, we compute the closed formula for the modified eccentric-connectivity index
of molecular graph.

Theorem 5.1.4. For the graph D3(n), the modified eccentric connectivity index is
given by

Λ(D3(n)) = 4(2n+3 × 39n+ 204n+ 2n × 789 + 905).

Proof. By using the values of Tables 5.1 and 5.2 in (2.9), we compute the modified
eccentric connectivity index of D3(n) in the following way:

Λ(D3(n)) = Λ(C) + Λ(Z(n)) =
∑

u∈V (C)

Suε(u) +
∑

u∈V (Z(n))

Suε(u)

= (6× 4)(4n+ 15) + (7× 8)(4n+ 16) + (5× 8)(4n+ 16)
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+ (9× 4)(4n+ 17) + (7× 4)(4n+ 18) + (5× 8)(4n+ 19) + (5× 8)(4n+ 20)

+ (36× 4)(4n+ 21) + (5× 4)(4n+ 22) + (4× 4)(4n+ 23) + (4× 4)(4n+ 24)

+ (3× 4)(4n+ 25) + (2× 2n+2)(8n+ 26) +
n∑
i=1

(
(5× 2i+1)(γ + 22)

+ (7× 2i+1)(γ + 23) + (3× 2i+1)(γ + 24) + (8× 2i+1)(γ + 24)

+ (4× 2i+1)(γ + 25) + (5× 2i+2)(γ + 25)

)
.

After some calculations, we obtain

Λ(D3(n)) = 4(2n+3 × 39n+ 204n+ 2n × 789 + 905),

The proof is complete.

In the following theorem, we compute the closed formula for the modified eccentric-
connectivity polynomial of molecular graph.

Theorem 5.1.5. For the graph D3(n), the modified eccentric connectivity polyno-
mial is given by

Λ(D3(n)) = 4y4n+15(3y10 + 4y9 + 4y8 + 5y7 + 6y6 + 10y5 + 10y4 + 7y3

+ 9y2 + 24y + 6) + 2n+3y2(4n+13)

+
4(14y3 + 11y2 + 7y + 5)y4n+26(2ny4n − 1)

2y4 − 1
.

Proof. By using the values of Tables 5.1 and 5.2 in (2.10), we compute the modified
eccentric connectivity polynomial of D3(n) in the following way:

MECP (D3(n), y) = MECP (C, y) +MECP (Z(n), y)

=
∑

u∈V (C)

Suy
ε(u) +

∑
u∈V (Z(n))

Suy
ε(u)

= (6× 4)y4n+15 + (8× 7)y4n+16 + (8× 5)y4n+16 + (4× 9)y4n+17

+ (4× 7)y4n+18 + (8× 5)y4n+19 + (8× 5)y4n+20 + (4× 6)y4n+21

+ (4× 5)y4n+22 + (4× 4)y4n+23 + (4× 4)y4n+24 + (4× 3)y4n+25

+ (2× 2n+2)y8n+26 +
n∑
i=1

(
(5× 2i+1)yγ+22 + (7× 2i+1)yγ+23
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+ (3× 2i+1)yγ+24 + (8× 2i+1)yγ+24 + (4× 2i+1)yγ+25 + (5× 2i+2)yγ+25

)
.

After some calculations, we obtain the required result.

Theorem 5.1.6. For the graph D3(n), the augmented eccentric connectivity index
is given by

Aε(D3(n)) =
36

4n+ 15
+

144

4n+ 16
+

108

4n+ 17
+

48

4n+ 18
+

48

4n+ 19
+

48

4n+ 20

+
32

4n+ 21
+

24

4n+ 22
+

16

4n+ 23
+

16

4n+ 24
+

8

4n+ 25
+

2n+3

8n+ 26

+

(
24

4n+ 26
+ · · ·+ 3× 2n+2

8n+ 22

)
+

(
32

4n+ 27
+ · · ·+ 2n+4

8n+ 23

)
+

(
12

4n+ 28
+ · · ·+ 3× 2n+1

8n+ 24

)
+

(
48

4n+ 28
+ · · ·+ 3× 2n+3

8n+ 24

)
+

(
16

4n+ 29
+ · · ·+ 2n+3

8n+ 25

)
+

(
32

4n+ 29
+ · · ·+ 2n+4

8n+ 25

)
.

Proof. By using the values of Tables 5.1 and 5.2 in (2.8), we compute the augmented
eccentric connectivity index of D3(n) in the following way:

Aε(D3(n)) =A ε(C) +A ε(Z(n)) =
∑

u∈V (C)

M(u)

ε(u)
+

∑
u∈V (Z(n))

M(u)

ε(u)

=
9× 4

4n+ 15
+

12× 8

4n+ 16
+

6× 8

4n+ 16
+

27× 4

4n+ 17
+

12× 4

4n+ 18
+

6× 8

4n+ 19

+
6× 8

4n+ 20
+

4× 8

4n+ 21
+

6× 4

4n+ 22
+

4× 4

4n+ 23
+

4× 4

4n+ 24
+

2× 4

4n+ 25

+
2× 2n+2

4n+ 26
+

n∑
i=1

(
6× 2i+1

γ + 22
+

8× 2i+1

γ + 23
+

3× 2i+1

γ + 24
+

12× 2i+1

γ + 24

+
4× 2i+1

γ + 25
+

4× 2i+2

γ + 25

)
.

After some calculations, we obtain the required result.

5.2 Counting polynomials

To compute the counting polynomials, we find the qocs for D3(n). The qocs along
with their lengths and frequencies are given in Table 5.3 and the cuts for core and
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subgraph are shown in Figure 5.3.
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Figure 5.2: Qocs for Core and qocs for First Generation of D3(n).

Table 5.3: Qocs with their lengths and frequencies.

qocs length Frequency
C1 1 8
C2 1 8(−1 + 2n+2)
C3 2 12
C4 2 10

Theorem 5.2.1. For the graph D3(n), the Omega polynomial is given by

Ω(D3(n), x) = 2n+5x+ 22x2.

Proof. The Figure 5.3 and Table 5.3 shows the qocs C1, C2, C3, C4 of the graph D3(n)
and their lengths. Substitute the values of Table 5.3 in (2.21) we get

Ω(D3(n), x) = 8x+ 8(−1 + 2n+2)x+ 12x2 + 10x2

= 2n+5x+ 22x2.

This gives the required result.
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Theorem 5.2.2. For the graph D3(n), the Sadhana polynomial is given by

Sd(D3(n), x) = 2n+5x43+2n+5

+ 22x42+2n+5

.

Proof. To compute Sadhana polynomial, we use the values of Table 5.3 in (2.22) as,

Sd(D3(n), x) = 8x4(11+2n+3)−1 + 8(−1 + 2n+2)x4(11+2n+3−1 + 12x4(11+2n+3)−2

+ 10x4(11+2n+3)−2

= 2n+5x43+2n+5

+ 22x42+2n+5

.

The proof is complete.

Theorem 5.2.3. For the graph D3(n), the PI polynomial is given by

PI(D3(n), x) = 2n+5x43+2n+5

+ 44x42+2n+5

.

Proof. To compute this polynomial, we substitutes the values in (2.23)

PI(D3(n), x) = 8x4(11+2n+3)−1 + 8(−1 + 2n+2)x4(11+2n+3−1 + 12× 2x4(11+2n+3)−2

+ 10× 2x4(11+2n+3)−2

= 2n+5x43+2n+5

+ 44x42+2n+5

.

After some calculations, we obtain the required result.

5.3 M-Polynomial

In this section, we will calculate the M-polynomial by using the values given in Table
5.4.

Theorem 5.3.1. For the graph D3(n), the M-Polynomial is

M(D3(n), x, y) = 2n+2xy2 + 4(−1 + 2n)xy3 + 4(−1 + 2n)xy4 + 4(5 + 2n)x2y2

+ 4(8 + 2n)x2y3 + 8(−1 + 2n)x2y4 + 12x3y3 + 4(−1 + 2n)x3y4.

Proof. By using the values of Tables 5.4 in (2.24), we get

M(D3(n), x, y) =
∑
i≤j

mij(D3(n))xiyj.

= 2n+2xy2 + 4(−1 + 2n)xy3 + 4(−1 + 2n)xy4 + 4(5 + 2n)x2y2

+ 4(8 + 2n)x2y3 + 8(−1 + 2n)x2y4 + 12x3y3 + 4(−1 + 2n)x3y4.

which is the required result.
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Table 5.4: Edge partition of First Generation.

Representative Frequency
(1, 3) 6(−1 + 2n+1)
(1, 4) 6(−1 + 5× 2n)
(2, 2) 18(−1 + 2n+1)
(2, 3) 6(−7 + 2n+4)
(2, 4) 3× 2n+3

(3, 4) 6(−1 + 3× 2n)
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[7] E. Deutsch, S. Klavžar, M-polynomial and degree-based topological indices,
Iran. J. Math. Chem., 6 (2015), 93-102.

[8] M. V. Diudea, Omega polynomial, Carpath. J. Math., 22 (2006), 43-47.
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Chem. Acta., 75 (2002), 357-369.

[17] H. Hosaya, The topological nature of structural isomers of saturated hydrocar-
bons, Bull. Chem. Soc. Japan, 44, (1971), 2332-2339.

[18] Y. Hu, X. Li,Y. Shi, T. Xu, I. Gutman, On molecular graphs with smallest and
greatest zeroth-order general Randić index, Match Commun. Math. Comput.
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