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Abstract

Fractional calculus has attracted much attention in recent research area due to its

use as a modeling tool for real world problems in many different areas of science

and technology. In this thesis some priliminary facts based on brief history and

definitions related to fractional calculus are discussed. Mainly used functions in

fractional calculus such as gamma and Mittag-Leffler functions with their properties

are also discussed.

We establish new existence and uniqueness results of the solutions for a coupled

system of impulsive fractional differential equations with boundary conditions and

also establish related applications in this thesis. These results are established by the

application of the Leray-Schauder alternative and the Banach’s fixed-point theorem.

We review some basic definitions and results of stability for linear and non-linear

ordinary differential equations. These results are mainly based on the linearization

method, the Liapunov stability method and the Routh-Hurwitz stability criterion.

Also we review few important concepts and results on stability of linear and per-

turbed fractional differential systems. We analyze these stability results with the

help of eigenvalues of the system matrix.

Finally, we review the stability of ordinary and fractional delay differential equa-

tions. We use linearization and Sturm sequences methods for analyzing the stability

of ordinary delay differential equations. To investigate the stability of the system of

fractional delay differential equations we use the concept based on the negative real

parts of the roots of the characteristic equation of the system and this characteristic

equation is obtained, by using the Laplace transform to the system.
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Chapter 1

Preliminaries

1.1 Introduction to Fractional Calculus

In seventieth century, modern calculus was discovered by Issac Newton (1642−1727)

and Gottfried Wi-helm Leibniz (1646− 1716). “...the calculus was the first achieve-

ment of modern mathematics and it is difficult to overestimate its importance.”

These words quoted by John Von Neumann’s (1903 − 1957) show the importance

of calculus. A repeated multiplication of a numerical value is always written in an

integer exponent form that provides an easy short notation to it. As in our early

education we have learnt y.y.y.y can be written in an easy form as y4 but we be-

come confused when thinking about the exponents of non integer value y4.3 or the

transcendental exponent yπ. Even one cannot take a step to multiply a quantity or

a number by itself 3.4 times, or π times, and yet a definite value exists for these

expressions, provable by infinite series expansion, or by calculator in more practical

way.

In a similar way we treat the integral and derivative. For any integer value of

n, n integration can be done as methodical as multiplication. What if n were not

taking an integer value?, a question that can be asked by a curious mind. Similarly,

one can easily encounter the differential operators d/dt, d3/dt3, d5/dt5,etc., but by

applying ordinary definition of derivative one cannot solve d
1
2/dt

1
2 , d

1
4/dt

1
4 ,etc. In

fact, these were the queries that gave a new dimension in the field of mathematics
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and also diverted the attentions of mathematicians to a new idea. They started

their interest on these queries in 1968, and later on discovered a new subject in

the field of mathematics. This new subject is called fractional calculus which flows

quit naturally from traditional definitions of elementary calculus. It is a natural

generalization of calculus.

Brief Historical Background

Fractional calculus is an ancient subject but studied little. Fractional calculus can

be sorted as an applicable mathematics. In the last decade, applied mathematician

and scientists found the fractional calculus valuable in various fields: quantitative

biology, scattering theory, elasticity, probability, transport theory, diffusion, poten-

tial theory and electro chemistry.

Fractional calculus in its origin has the query of the extension of meaning. Two well

known examples are, the extension of meaning of real numbers to complex num-

bers, and the extension of meaning of factorials of integers to factorials of complex

numbers. In generalized differentiation and integration we have the question of ex-

tension of meaning as: “...can the meaning of derivatives of integral order dnf/dtn be

extended to have meaning where n is any number irrational, fractional or complex?.”

Leibnitz discovered the symbolic notations. Leibniz (1646− 1716) first invented

the idea of symbolic method and for nth derivative used the symbol dnf
dtn

= Dnf ,

where n ≥ 0. The basic concept of fractional calculus was introduced in 1695. In a

letter L’Hospital asked Leibnitz “ What the order will be if n be 1/2? ” Leibnitz in

1695 replied, “ It will lead to a paradox and from this apparent paradox, one day

useful consequences will be drawn.” And this was the statement which gave birth

to fractional calculus. However, by most authors 30th September 1695 is the birth

date of fractional calculus.

For non-integer values of n Leibnitz gave the fractional order derivative as;

dnemt

dtn
= mnemt,

where m is a positive integer.
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L. Euler (1730) introduced the formula for nth derivative in the following form;

dntm

dtn
= m(m− 1) · · · (m− (n− 1))tm−n.

As

Γ(m+ 1) = m(m− 1) · · · (m− (n− 1))Γ(m− (n− 1)).

Thus
dntm

dtn
=

Γ(m+ 1)

Γ(m− (n− 1))
tm−n.

By taking m = 1 and n = 1/2, Euler obtained the following relation;

d1/2t

dt1/2
=

√
4t

π
=

2√
π
t1/2.

J. B. J. Fourier (1820 − 1822) took the first step in the generalization of notation

for the differentiation of arbitrary function by using the following relation

f(t) =
1

2π

∫ +∞

−∞
f(s)ds

∫ +∞

−∞
cos(pt− ps)dp.

He then gave a remark as

Dnf(t) =
1

2π

∫ +∞

−∞
f(s)ds

∫ +∞

−∞
cos
(
pt− ps+

nπ

2

)
dp,

where n is a non-integer.

N. H. Abel (1823− 1826) invented the integral as

ψ(t) =

∫ t

0

S ′(η)dη

(t− η)α
.

In fact, he solved this integral for an arbitrary α as follows

S(t) =
sin(πα)

π
tα
∫ 1

0

ψ(tτ)

(1− τ)1−αdτ.

J. Liouville (1832) started his approaches with known result made by Leibnitz for

integral order derivatives
dnemt

dtn
= mnemt
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and in a natural way Liouville extended this to derivatives of arbitrary order α;

dαemt

dtα
= mαemt.

He used the series expansion f(t) =
∞∑
n=0

cne
mnt to derive a relation as follows;

Dαf(t) =
∞∑
n=0

cnm
α
ne

mnt.

This is known as Liouville’s first definition. But it has a disadvantage so that α

must be restricted to such values for which the series converges.

Liouville’s second definition was applied to explicit functions with the form of

t−β, β > 0. He assumed the integral

I =

∫ ∞
0

uβ−1esudu.

Using the transformation su = t, then the result obtained was

t−β =
1

Γ(β)
I,

then operating Dα on both sides of the above equation, he obtained

Dα = (−1)α
Γ(β + α)

Γ(β)
t−β−α.

G.F.B. Riemann (1847) gave notation with the complementary function φ(t) as

follows

D−α =
1

Γ(α)

∫ t

c

(t− τ)α−1f(τ)dτ + φ(t).

A definition which fulfills some criteria given in [26], named in honour of both

Riemann and Liouville is

cD−αt f(t) =
1

Γ(α)

∫ t

c

(t− τ)α−1f(τ)dτ.

This definition is same as Riemann’s definition with no complementary function.

This definition gives Riemann’s definition when c = 0 and for c = ∞ it gives

Liouville’s definition.
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1.2 The Gamma Function

Indeed, the Euler’s gamma function Γ(z) is one of the basic functions of integral

calculus, which generalizes the factorial n!, where n is non-negative integer.

Definition 1.2.1. The function Γ : (0,∞)→ R, defined by the integral formula

Γ(z) :=

∫ ∞
0

tz−1 exp(−t)dt, (1.2.1)

is called the Euler’s gamma function. This improper integral is convergent for all

z ∈ C with Re(z) > 0.

Properties of Gamma Function:

Gamma function carries some basic properties as follows;

(i) (Functional Equation for Γ)

Γ(z + 1) := zΓ(z), ∀z > 0. (1.2.2)

(ii) In particular, for non-negative integer values

Γ(z + 1) := z!, z = 0, 1, 2 . . . .

So, gamma function is also known as a generalized factorial function.

(iii) (Reflection Formula for Γ)

Γ(z)Γ(1− z) =
π

sin πz
, 0 < z < 1.

(iv) For the gamma function of rational numbers, we substitute t = u2 in (1.2.1)

Γ(z) = 2

∫ ∞
0

u2z−1 exp(−u2)du, Re(z) > 0.

Taking z =
1

2
, we obtain

Γ
(1

2

)
= 2

∫ ∞
0

exp(−u2)du = 2

√
π

2
=
√
π.
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Using property (i), we obtain

Γ
(3

2

)
=

1

2
Γ
(1

2

)
=

√
π

2
.

In the same way we can get the values of Γ
(5

2

)
, Γ
(7

2

)
, · · · , Γ

(2n+ 1

2

)
.

(v) To extend the domain of the gamma function to negative values of z, we rewrite

(1.2.2) for n = 1, 2, 3 . . . n− 1, as

Γ(z) =
Γ(z + n)

z(z + 1)(z + 2) · · · (z + n− 1)
, for z 6= 0,−1,−2 . . . .

For some values of z

Γ
(
− 1

2

)
=

Γ
(1

2

)
−1

2

= −2Γ
(1

2

)
= −2

√
π.

1.3 Mittag-Leffler Function

Definition 1.3.1. The function Eα(z) in infinite series representation, defined by

Eα(z) =
∞∑
k=0

(z)k

Γ(αk + 1)
, α > 0, z ∈ C, (1.3.1)

is called the one-parameter Mittag-Leffler function of order α.

This function is convergent in the entire complex plane. The parameter α may be

a complex number, provided Re(α) > 0 for the convergence of the function (1.3.1).

The two-parameter Mittag-Leffler function for α > 0, β > 0 is defined by

Eα,β(z) =
∞∑
k=0

(z)k

Γ(αk + β)
, z ∈ C. (1.3.2)

Remark 1.3.1. It is obvious that for β = 1, the two-parameter Mittag-Leffler

function equals the one-parameter Mittag-Leffler function via the relation

Eα,1(z) =
∞∑
k=0

(z)k

Γ(αk + 1)
= Eα(z). (1.3.3)
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1.4 Fractional Integrals and Derivatives

Here in this section we study the Riemann-Liouville fractional integral and derivative

operators with their basic properties. We also, discuss the Caputo approach by

studying the Caputo derivative operator with its properties. A theorem based on

the relationship between the Riemann-Liouville fractional derivative and the Caputo

fractional derivative is also discussed here in this section.

1.4.1 Riemann-Liouville Fractional Integral

Let us consider a function f(t) ∈ L1[a, b] of real variable t, namely complex or real

valued functions, that are vanishing for t < a. The notion of Riemann-Liouville

fractional integral of order α (α > 0) for f(t), is a natural analogue of the renowned

formula (usually credited to Cauchy).

The Cauchy’s formula for t > a is defined as;

aI
n
t f(t) = fn(t) =

1

(n− 1)!

∫ t

a

(t− τ)n−1f(τ)dτ, n ∈ N,

here N is the set of natural numbers. The integral vanishes at t = a.

In a natural way we can extend this formula from positive integer values to

any positive real values by introducing the gamma function. Now, introducing the

arbitrary positive real number α and using (n− 1)! = Γ(n), we define for t > a, the

Riemann-Liouville fractional integral as follows;

Definition 1.4.1. For α ∈ R+, the operator aI
α
t defined on L1[a, b] by

aI
α
t f(t) =

1

Γ(α)

∫ t

a

(t− τ)α−1f(τ)dτ, a ≤ t ≤ b,

is called the Riemann-Liouville fractional integral of the function f ∈ L1[a, b] of

order α > 0.

Properties:

Some well-known properties of the Riemann-Liouville fractional integral operator

are as follows;

(i) For α = 0, we define aI
0
t := I as an identity operator.
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(ii) These fractional integral operators satisfy the semigroup property as;

aI
α
t aI

β
t f(t) = aI

α+β
t f(t), α, β ≥ 0,

which implies aI
α
t aI

β
t = aI

β
t aI

α
t (a commutative property).

(iii) The Riemann-Liouville fractional integral operator is linear as;

aI
α
t (af(t) + bg(t)) = a(aI

α
t f(t)) + b(aI

α
t g(t)).

(iv) The Riemann-Liouville fractional integral operator of f(t) = (t−a)γ (a power

function) gives the following formula

aI
α
t (t− a)γ =

Γ(γ + 1)

Γ(γ + 1 + α)
(t− a)γ, α ≥ 0, γ > −1, t > a.

1.4.2 Riemann-Liouville Fractional Derivative

Definition 1.4.2. The Riemann-Liouville fractional derivative of order α > 0 of f

is defined as

RL
a Dαt f(t) = Dmt ◦ aIm−αt f(t), m− 1 < α ≤ m, m ∈ N. (1.4.1)

More explicitly as

RL
a Dαt f(t) =


1

Γ(m− α)

dm

dtm

∫ t

a

f(τ)dτ

(t− τ)α+1−m , m− 1 < α < m,

dm

dtm
f(t), α = m.

(1.4.2)

Properties

(i) For α = 0, we obtain the identity operator

RL
a D0

t = DmaIm−0
t = DmaImt = I

(ii). Let m, n ∈ N, m− 1 ≤ α ≤ m, n− 1 ≤ β ≤ n, we write relations [23]

RL
a Dαt

(
RL
a D

β
t f(t)

)
= RL

a D
α+β
t f(t)−

n∑
j=1

[
RL
a D

β−j
t f(a)

] (t− a)−α−j

Γ(1− α− j)
. (1.4.3)
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And

RL
a D

β
t

(
RL
a Dαt f(t)

)
= RL

a D
α+β
t f(t)−

n∑
j=1

[
RL
a D

α−j
t f(a)

] (t− a)−β−j

Γ(1− β − j)
. (1.4.4)

In general the Riemann-Liouville fractional derivative operators RL
a Dαt and

RL
a D

β
t do not commute except for α = β. For α 6= β, the Riemann-Liouville

fractional derivative operators commute only if both sums in the right-hand

sides of (1.4.3) and (1.4.4) vanish and it possible only if

RL
a D

β−j
t f(a) = 0 for j = 1, 2, . . . ,m.

RL
a D

α−j
t f(a) = 0 for j = 1, 2, . . . , n.

(iii) Let a1, a2 ∈ R, then the Riemann-Liouville fractional derivative is a linear

operator as
RL
a Dαt (a1f1 + a2f2) = a1

RL
a Dαt f1 + a2

RL
a Dαt f2.

(iv) The Riemann-Liouville fractional derivative of f(t) = (t−a)γ (a power function

) is

RL
a Dαt (t− a)γ =

Γ(γ + 1)

Γ(γ + 1− α)
(t− a)γ, α ≥ 0, γ > −1, t > a.

(v) For constant function f(t) ≡ 1 and when (α 6∈ N), then

RL
a Dαt 1 =

(t− a)−α

Γ(1− α)
, α ≥ 0, γ = 0, t > a. (1.4.5)

1.4.3 Caputo Fractional Derivative

By interchanging in (1.4.1) the processes for differentiation and integration, the

Caputo fractional derivative of order α is obtained as follows

C
aDαt f(t) = aI

m−α
t Dmt f(t), m− 1 < α ≤ m, m ∈ N. (1.4.6)

More explicitly as

C
aDαt f(t) =


1

Γ(m− α)

∫ t

a

fm(τ)dτ

(t− τ)α+1−m , m− 1 < α < m,

dm

dtm
f(t), α = m.

(1.4.7)
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Properties

Some basic properties of the Caputo fractional derivative operators are as follows;

(i) The Caputo fractional operator is a linear operator as

C
aDαt (λf(t) + µg(t)) = λCaDαt f(t) + µCaDαt g(t).

(ii) Commutavity property does not satisfy by the Caputo fractional operators

C
aDαt CaD

β
t = C

aD
α+β
t 6= C

aD
β
t
C
aDαt .

(iii) The Caputo fractional derivative of the power function satisfies

C
aDαt tγ =


Γ(γ + 1)

Γ(γ − α + 1)
tγ−α, m− 1 < α < m, γ > m− 1, γ ∈ R,

0, m− 1 < α < m, γ ≤ m− 1, γ ∈ N.
(1.4.8)

(iv) Let α ∈ R, m − 1 < α < m, m ∈ N, λ ∈ C. Then the Caputo fractional

derivative of the exponential function has the form

C
aDαt eλt =

∞∑
k=0

λk+mtk+m−α

Γ(k + 1 +m− α)
= λmtm−αE1,m−α+1(λt). (1.4.9)

1.4.4 Relationship Between the Riemann-Liouville Fractional

Derivative and the Caputo Fractional Derivative

The following theorem relates the Riemann-Liouville fractional derivative and the

Caputo fractional derivative as follows;

Theorem 1.4.1. [14]. Let t > 0, α ∈ R, m− 1 < α < m ∈ N. Then the following

relation between the Riemann-Liouville and the Caputo operators holds

C
aDαt f(t) = RL

a Dαt f(t)−
m−1∑
k=0

tk−α

Γ(k + 1− α)
f (k)(0). (1.4.10)
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Proof. The expansion of Taylor series about the point 0 expresses

f(t) = f(0) + tf ′(0) +
t2

2!
f ′′(0) +

t3

3!
f ′′′(0) + · · ·+ tm−1

(m− 1)!
fm−1(0) +Rm−1

=
m−1∑
k=0

tk

Γ(k + 1)
f (k)(0) +Rm−1.

Now considering the Cauchy’s formula for repeated integration [23] as

Rm−1 =

∫ t

a

fm(τ)(t− τ)(m−1)

(m− 1)!
dτ =

1

Γ(m)

∫ t

a

fm(τ)(t− τ)(m−1)dτ = tI
m
a f

m(t)

(1.4.11)

RL
a Dαt f(t) = RL

a Dαt

(
m−1∑
k=0

tk

Γ(k + 1)
f (k)(0) +Rm−1

)

=
m−1∑
k=0

RL
a Dαt tk

Γ(k + 1)
f (k)(0) + RL

a Dαt Rm−1

(using property (ii) of the Riemann-Liouville fractional derivative)

=
m−1∑
k=0

tk−α

Γ(k − α + 1)
f (k)(0) + RL

a Dαt m−aImt fm(t)

(using property (iii) of the Riemann-Liouville derivative and (1.4.11))

=
m−1∑
k=0

tk−α

Γ(k − α + 1)
f (k)(0) + C

aDαt fm(t).

This completes the proof.

Lemma 1.4.2 (Gronwall Inequality). Suppose that g(t) and ϕ(t) are continuous

on [t0, t], g(t) ≥ 0, λ > 0 and r ≥ 0 are constants. If

ϕ(t) ≤ λ+

∫ t

t0

[g(τ)ϕ(τ) + r]dτ, (1.4.12)

then

ϕ(t) ≤ (λ+ r(t1 − t0)) exp

(∫ t

t0

g(τ)dτ

)
, t0 ≤ t ≤ t1. (1.4.13)

Proof. Since λ > 0, therefore

λ+

∫ t

t0

(g(τ)ϕ(τ) + r)dτ 6= 0. (1.4.14)

11



So, then from (1.4.12) we get the following inequality

ϕ(t)g(t)

λ+
∫ t
t0

(g(τ)ϕ(τ) + r)dτ
≤ g(t),

or
ϕ(t)g(t)

(λt− t0)r +
∫ t
t0
g(τ)ϕ(τ)dτ

≤ g(t).

Now integrating from t0 to t, we get∫ t

t0

{
ϕ(s)g(s)

λ+ (t− t0)r +
∫ τ
t0
g(s)ϕ(s)dτ

}
ds ≤

∫ t

t0

g(τ)dτ,

ln

[
λ+ (t− t0)r +

∫ τ

t0

g(s)ϕ(s)dτ

]t
t0

≤
∫ t

t0

g(τ)dτ,

ln

[
λ+ (t− t0)r +

∫ t

t0

g(τ)ϕ(τ)dτ

]
− ln

[
λ+ (t− t0)r

]
≤
∫ t

t0

g(τ)dτ,

ln

[
λ+ (t− t0)r +

∫ t
t0
g(τ)ϕ(τ)dτ

λ+ (t− t0)r

]
≤
∫ t

t0

g(τ)dτ,

λ+ (t− t0)r +
∫ t
t0
g(τ)ϕ(τ)dτ

λ+ (t− t0)r
≤ e

∫ t
t0
g(τ)dτ

,

or

λ+ (t− t0)r +

∫ t

t0

g(τ)ϕ(τ)dτ ≤ (λ+ r(t− t0))e
∫ t
t0
g(τ)dτ

.

So,

ϕ(t) ≤ λ+ (t− t0)r +

∫ t

t0

g(τ)ϕ(τ)dτ ≤ (λ+ r(t− t0))e
∫ t
t0
g(τ)dτ

.

This gives ϕ(t) ≤ (λ+ r(t− t0))e
∫ t
t0
g(τ)dτ

.

Hence, we have proved the lemma.

1.5 Initial and Final Value Theorems

We obtain the time representation of a Laplace function by taking the inverse

Laplace transform. Sometimes we are interested to find the value of the given
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function at its very star that is y(t = 0), or its very end that is as y(t→∞). Two

useful theorems of Laplace transform that can provide us this information are the

initial value theorem and the final value theorem. These two theorems help us to

find the initial and the final values of the function without taking the inverse Laplace

transform. The initial value theorem associate the ‘initial value’ y(0+) of a function

y(t) to the behaviour of the Laplace transform Y (s) for s→∞. Similarly, the final

value theorem associate the ‘final value’ lim
t→∞

y(t) of a function y(t) to the behaviour

of the Laplace transform Y (s) for s → 0. Here we will only prove the final value

theorem.

1.5.1 Final Value Theorem

If Y (s) is the Laplace transform of y(t), then the final value theorem states that

lim
t→∞

y(t) = lim
s→0

sY (s).

The roots of the denominators polynomial Y (s) that is the poles of Y (s) must have

negative or zero real parts. which is the only restriction of the final value theorem.

Proof. By the definition of the Laplace transform of the time derivative of y(t) as

Ldy(t)

dt
=

∫ ∞
0−

dy(t)

dt
e−stdt = sY (s)− y(0−). (1.5.1)

Consider that y(t) is continuous at t = 0, by taking limit as s→ 0 we get

lim
s→0

∫ ∞
0−

dy(t)

dt
e−stdt =

∫ ∞
0−

dy(t)

dt
(lim
s→0

e−st)dt = lim
s→0

sY (s)− y(0−),

or ∫ ∞
0−

dy(t)

dt
dt = lim

s→0
sY (s)− y(0−),

y(∞)− y(0−) = lim
s→0

sY (s)− y(0−),

or

y(∞) = lim
s→0

sY (s),
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or

lim
s→∞

y(t) = lim
s→0

sY (s).

Hence we have proved the final value theorem.

1.6 Some Results from Analysis

Some basic definitions and familier results are to be given here in this section, which

later on will be used to establish the existence and uniqueness of solutions for a

coupled system of fractional impulsive differential boundary value problem involving

the Caputo fractional derivative.

Definition 1.6.1. A set A ⊂ C([a, b]) is said to be equicontinuous if for given ε > 0,

there exists a δ > 0 such that

|Tn(y1)−Tn(y2)| < ε, for all y1, y2 ∈ [a, b] whenever |y1− y2| < δ for all Tn ∈ A, n =

1, 2, . . . .

Lemma 1.6.1 (Leray-Schauder alternative). [12] Let T : E → E be a completely

continuous operator (i.e., a map that restricted to any bounded set in E is compact).

Let

E(T ) = {y ∈ E : y = λT (y) for some 0 < λ < 1}.

Then either the set E(T ) is unbounded, or T has at least one fixed point.

Definition 1.6.2. Let T : Y → Y be a mapping, then y ∈ Y is fixed point of T

iff

T (y) = y.

In other words, the image Ty coincides with y.

Definition 1.6.3. Let Y be a Banach Space. A mapping T : Y → Y is called a

contraction, if there exists a nonnegative real number k < 1 such that for any

y1, y2 ∈ Y ,

||T (y1)− T (y2)|| ≤ k||y1 − y2||.

Theorem 1.6.2 (Banach Fixed Point Theorem). Let Y be a non-empty Banach

space. Let T : Y → Y be a contraction mapping on Y . Then T has exactly one fixed

point.
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Chapter 2

Existence and Uniqueness of

Solutions for Impulsive Fractional

Differential Equations

In recent years, existence theory for boundary value problems involving fractional

impulsive differential equations has been analyzed extensively by many researchers.

Among the previous research in the field of fractional calculus, little is concerned

with impulsive fractional differential equations. Very recently, many researchers

show their great interest in the field of impulsive problems for fractional differential

equations. Recently, Benchohra [1, 4] proved sufficient conditions for the existence

of solutions for impulsive fractional differential equations with initial condition in-

volving the Caputo fractional derivative of order α ∈ (0, 1] and α ∈ (1, 2]. Xiao-Bao

Shu [28] analyzed the existence of mild solutions for impulsive fractional differential

equations. Balachandran [2] proved the existence of solutions of nonlinear fractional

integro-differential equations with impulsive conditions by using the fixed point prin-

ciple.

Here in this chapter we will establish the existence and uniqueness of solutions for

coupled system of impulsive fractional differential boundary value problem involving

the Caputo fractional derivative by applying the Leray-Schauder alternative and the

Banach contraction principle. Before doing this we give the brief background of
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impulsive equations (impulsive ordinary and fractional differential equations).

2.1 Impulsive Equations

Dynamics of some evolutionary processes from many fields such as physics, biol-

ogy, population dynamics, control theory, and medicine go under abrupt changes

at some certain moments of time like harvesting, shock, earthquake and so forth.

These perturbations could be well estimated as instantaneous change of states or

impulses. All these processes are modeled via impulsive differential equations. In

1960, these impulsive differential equations were first introduced by Milman and

Myshkis in their paper [20]. Some authors have considered ‘impulsive differential

equations’ as ordinary differential equations coupled with impulsive effects. On the

other hand, also the impulsive fractional differential equations give a real framework

for mathematical modeling towards the real world problems.

In general, the impulsive equations have two parts. A differential equation part,

that describes the continuous part of the solution. It could be ordinary differential

equations, partial differential equations, functional differential equations, integro-

differential equations, etc. And an impulsive part, that describes the instantaneous

changes and the discontinuity of the solution. This part is called a jump condition.

The points, at which the impulses take place, are known as moments of impulses and

the functions, that give the amount of impulses, are named as impulsive functions.

Here the basic two types of impulsive differential equations are defined according

to the type of the moments of impulses as follows [13]:

• impulsive equations with fixed moments of impulses (i.e. the impulses occur

at initially given fixed points),

• impulsive equations with variable moments of impulses (i.e. the impulses occur

on initially given sets, i.e. the impulse occurs when the integral curve of the

solution hits a given set).

Here we describe only the first type of impulsive equations in detail. For detailed

description of the second type of the impulsive differential equations site [13].
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Type 1. Impulsive differential equations with fixed moments of impulses.

Let tk ∈ R be the fixed points such that tk+1 > tk, k = 0, 1, 2 . . . and also

lim
k→∞

tk =∞. Now consider the impulsive differential equation as:

differential equation (continuous part)

ẏ(t) = f(t, y(t)) for t ≥ t0 t 6= tk, (2.1.1)

impulsive part (jump condition)

y(t+k )− y(t−k ) = Ik((t
−
k )), for k = 0, 1, 2 . . . . (2.1.2)

where y ∈ Rn, f : R × Rn is the given function, Ik : Rn → Rn is the jump of state

at each tk and t0 < t1 < · · · < tk < tk+1 < · · · , k = 1, 2, 3 . . . .

The equations (2.1.1) and (2.1.2) and the initial condition

y(t0) = y0, (2.1.3)

define the initial value problem for the system of impulsive differential equations.

The solution of the system of equations (2.1.1), (2.1.2), (2.1.3) is denoted by y(t; t0, y0).

The point (t, y) of the integral curve of the solution y(t; t0, y0) starts its motion from

(t0, y0) of the set D ⊂ R × R. It continues its motion along the integral curve

(t, y(t)) of the solution of the ordinary differential equation (2.1.1) with initial con-

dition (2.1.3) up to moment t1 > t0. At this moment the point instantaneously

moves from (t1, y1) to (t1, y
+
1 ), where y1 = y1(t1), y+

1 = y1 + I1(y1). Then the point

keeps its motion along the integral curve of the solution of ordinary differential

equation (2.1.1) with initial condition y(t1) = y+
1 until moment t2 > t1 at which it

jumps. By the equality (2.1.2) the amount of jump is determined and so on.

The impulsive differential equations with non-integer(fractional) order are called

the “fractional impulsive differential equations”.

Example 2.1.1. Consider the following fractional impulsive differential equation

Dαy(t) = 1, t 6= k for k = 1, 2, 3 . . . and α ∈ (0, 1], (2.1.4)

y(t+k )− y(t−k ) = b, (2.1.5)
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y(0) = y0. (2.1.6)

The solution of the above ordinary differential equation (2.1.4) with initial condition

(2.1.6) is

IαDαy(t) = Iα1,

y(t) + c =
1

Γ(α + 1)

∫ t

0

(t− s)α−11ds

y(t) + c =
tα

Γ(α + 1)
.

Using y(0) = y0 to find the value of the constant c and then we get

y(t) = y0 +
tα

Γ(α + 1)
,

for t ≥ 0. Now the solution of the impulsive system (2.1.4), (2.1.5) with initial

condition (2.1.6) is:

y(t) = y0 +
tα

Γ(α + 1)
+ kb,

for t ∈ (k, k + 1], k = 1, 2, . . . . It is increasing for b > 0, decreasing for b < 0,

and for b = 0 the solution becomes constant and coincides with the solution of the

corresponding differential equation (2.1.4) with initial condition (2.1.6).

2.2 Coupled System of Impulsive Fractional Dif-

ferential Equations with Integral Boundary

Conditions

The study of a coupled system of fractional differential equations is also significant

because this system can often occur in various applications. Recently, Ntouyas and

Obaid [22] discussed boundary value problem for a coupled system of fractional dif-

ferential equations involving the Caputo fractional derivative. In their work they

proved two results for the existence and uniqueness of solutions by applying the

Leray-Schauder alternative and the Banach contraction principle. Motivated by

the work of Ntouyas and Obaid, here we are to prove the same two results for the
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existence and uniqueness of solutions for a coupled system of impulsive fractional dif-

ferential equations with integral boundary conditions by imposing some restrictions

with non-linear functions.

Consider a non-local boundary value problem for a coupled system of impulsive

fractional differential equations as follows

CDα0+y1(t) = f(t, y1(t), y2(t)), t 6= tk, t ∈ [0, 1],

CDβ0+y2(t) = g(t, y1(t), y2(t)), t 6= tk, t ∈ [0, 1],

y1(t+k )− y1(t−k ) = Ik(y1(tk)), k = 1, 2, · · ·m,

y2(t+k )− y2(t−k ) = Jk(y2(tk)), k = 1, 2, · · ·m,

y1(0) =
∫ 1

0
φ(s)y1(s)ds, y2(0) =

∫ 1

0
ψ(s)y2(s)ds,

(2.2.1)

where CDα0+,
CDβ0+ denote the Caputo fractional derivatives , 0 < α, β ≤ 1, f, g ∈

C([0, 1]× R2,R) and Ik, Jk : R→ R for k = 1, 2, · · ·m.
Let the space Y1 = {y1(t)|y1(t) ∈ C1([0, 1])} with the norm ||Y1|| = max{|y1(t)|, t ∈

[0, 1]}. (Y1, ||.||) is a Banach space. Also, (Y2, ||.||) is a Banach space defined by the

space Y2 = {y2(t)|y2(t) ∈ C1([0, 1])} with the norm ||Y2|| = max{|y2(t)|, t ∈ [0, 1]}.
The product space (Y1 × Y2, ||(y1, y2)||) with the norm ||(y1, y2)|| = ||y1|| + ||y2|| is

also a Banach space.

Lemma 2.2.1. [25]. Assume that h : R → R and Ik : R → R are continuous and

0 < α < 1. A function y is solution of impulsive problem
CDα0+y1(t) = h(t), t 6= tk, t ∈ [0, t],

y(t−k )− y(t+k ) = Ik(y(tk)), k = 1, 2, · · ·m,

y(0) =
∫ 1

0
φ(s)y(s)ds,

(2.2.2)

if and only if y is solution of the integral equation

y(t) =

∫ 1

0

φ(s)y(s)ds+

∫ t

0

(t− s)(α−1)

Γ(α)
h(s)ds+

∑
0<tk<t

Ik(y(tk)). (2.2.3)
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For simplicity we define m1 =
1

Γ(α + 1)
and m2 =

1

Γ(β + 1)
.

and define the operator T : Y1 × Y2 → Y1 × Y2 by

T (y1, y2) =

(
T1(y1, y2)

T2(y1, y2)

)

=


∫ 1

0
φ(s)y1(s)ds+

∫ t

0

(t− s)α−1

Γ(α)
f(s, y1, y2)ds+

∑
0<tk<t

Ik(y1(tk))

∫ 1

0
φ(s)y2(s)ds+

∫ t

0

(t− s)α−1

Γ(β)
g(s, y1, y2)ds+

∑
0<tk<t

Jk(y2(tk))

 .

The prove of the first result related to the existence of solutions for the system

(2.2.1) is mainly based on the Leray-Schauder alternative.

Theorem 2.2.2. Assume that there exist real constants γi, ζi, ηi, ξi ≥ 0 (i = 1, 2)

and γ0, ζ0, η0, ξ0 > 0 such that ∀yi ∈ R (i = 1, 2) and the following conditions are

satisfied:

|f(t, y1, y2)| ≤ γ0 + γ1|y1|+ γ2|y2|,

|g(t, y1, y2)| ≤ ζ0 + ζ1|y1|+ ζ2|y2|,

|Ik(y1(tk))| ≤ η0 + η1|y1|,

|Jk(y2(tk))| ≤ ξ0 + ξ1|y2|.

In addition, it is assumed that

m1γ1 +m2ζ1 +mη1 < 1 and m1γ2 +m2ζ2 +mξ1 < 1.

Then the boundary value impulsive problem (2.2.1) has at least one solution.

Proof. First, we show that T : Y1×Y2 → Y1×Y2 is a completely continuous operator.

Since f, g, Ik, Jk are continuous functions, therefore the operator T is continuous.

Let Ω ⊂ Y1×Y2 be bounded. Then for some positive constants M1, M2, L1, L2

and ∀ (y1, y2) ∈ Ω, we have

|f(t, y1(t), y2(t))| ≤M1, |g(t, y1(t), y2(t))| ≤M2, |Ik(y1)| ≤ L1 and |Jk(y2)| ≤ L2.
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Then for any (y1, y2) ∈ Ω, we have

|T1(y1, y2)(t)| ≤ |y1(0)|+
∫ t

0

(t− s)α−1

Γ(α)
|f(s, y1, y2)|ds+

∑
0<tk<t

|Ik(y1(tk))|

≤ |y1(0)|+ tαM1

Γ(α + 1)
+mL1

≤ |y1(0)|+m1M1 +mL1.

Similarly

||T1(y1, y2)(t)|| ≤ |y2(0)|+m2M2 +mL2.

Consequently

||T (y1, y2)(t)|| ≤ |y1(0) + |y2(0)||+m1M1 +m2M2 +m(L1 + L2) := R.

So, it follows that the operator T is uniformly bounded.

Now we show that T is equicontinuous. Let 0 ≤ t1 ≤ t2 ≤ 1. Then

|T1(y1(t2), y2(t2))− T1(y1(t1), y2(t1))|

=

∣∣∣∣ ∫ t2

0

(t2 − s)α−1

Γ(α)
f(s, y1(s), y2(s))ds−

∫ t1

0

(t1 − s)α−1

Γ(α)
f(s, y1(s), y2(s))ds

+
∑

0<tk<t2

Ik(y1(tk))−
∑

0<tk<t1

Ik(y1(tk))

∣∣∣∣
≤
∣∣∣∣ ∫ t1

0

(t2 − s)α−1

Γ(α)
f(s, y1(s), y2(s))ds+

∫ t2

t1

(t2 − s)α−1

Γ(α)
f(s, y1(s), y2(s))ds

−
∫ t1

0

(t1 − s)α−1

Γ(α)
f(s, y1(s), y2(s))

∣∣∣∣
≤ M1

Γ(α)

∣∣∣∣ ∫ t1

0

[
(t2 − s)α−1 − (t1 − s)α−1

]
ds+

∫ t2

t1

(t2 − s)α−1ds

∣∣∣∣
≤ M1

Γ(α)
(tα2 − tα1 ).

So |T1(y1(t2), y2(t2))− T1(y1(t1), y2(t1))| → 0 as t2 → t1.

Similarly

|T2(y1(t2), y2(t2))− T2(y1(t1), y2(t1))| ≤ M2

Γ(β)
(tβ2 − t

β
1 )
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Thus |T2(y1(t2), y2(t2))− T2(y1(t1), y2(t1))| → 0 as t2 → t1.

Consequently the operator T is equicontinuous, and hence T is completely con-

tinuous.

Finally it will be shown that E =
{

(y1, y2) ∈ Y1×Y2|(y1, y2) = λT (y1, y2)
}
, 0 ≤ λ ≤ 1

is a bounded set. Let (y1, y2) ∈ E , then (y1, y2) = λT (y1, y2). So for any t ∈ [0, 1]

y1(t) = λT1(y1, y2)(t), y2 = λT2(y1, y2)(t).

Now

|y1(t)| ≤ θ +
tα

Γ(α + 1)

(
γ0 + γ1|y1|+ γ2|y2|

)
+m(η0 + η1|y1|)

≤ 1

Γ(α + 1)

(
γ0 + γ1|y1|+ γ2|y2|

)
+m(η0 + η1|y1|).

Hence

||y1(t)|| ≤ m1(γ0 + γ1||y1||+ γ2||y2||) +m(η0 + η1||y1||).

Similarly

||y2(t)|| ≤ m2(ζ0 + ζ1||y1||+ ζ2||y2||) +m(ξ0 + ξ1||y2||),

Now

||y1(t)||+ ||y2(t)|| = m1γ0 +m2ζ0 +m(η0 + ξ0) + (m1γ1 +m2ζ1 +mη1)||y1||

+ (m1γ2 +m2ζ2 +mξ1)||y2||.

For simplicity, we define K1 = m1γ1 +m2ζ1 +mη1 and K2 = m1γ2 +m2ζ2 +mξ1.

Obviously

||y1(t)||+ ||y2(t)|| = m1γ0 +m2ζ0 +K1||y1||+K2||y2||.

Here two cases are to be discussed for K1, K2 as follows:

Case 1. If K1 ≤ K2, then

||y1(t)||+ ||y2(t)|| ≤ m1γ0 +m2ζ0 +K2||y1||+K2||y2||,
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or

(1−K2)(||y1(t)||+ ||y2(t)||) ≤ m1γ0 +m2ζ0.

This implies

||(y1, y2)|| ≤ m1γ0 +m2ζ0

(1−K2)
.

Case 2. If K2 ≤ K1, then

||y1(t)||+ ||y2(t)|| ≤ m1γ0 +m2ζ0 +K1||y1||+K1||y2||,

or

(1−K1)(||y1(t)||+ ||y2(t)||) ≤ m1γ0 +m2ζ0.

This implies

||(y1, y2)|| ≤ m1γ0 +m2ζ0

(1−K1)
.

Both cases are discussed for any t ∈ [0, 1], which shows that the set E is bounded.

By Lemma (1.6.1), the operator T has at least one fixed point. Hence, the given

impulsive problem (2.2.1) has at least one solution.

With the help of the Banach fixed-point theorem we prove the uniqueness of the

solution for the system (2.2.1).

Theorem 2.2.3. Let there exist constants µi, νi, µ, ν, i = 1, 2 such that for all t ∈
[0, 1] and y∗1, y

∗
2, y
∗∗
1 , y

∗∗
2 ∈ R and the following conditions are satisfied:

|f(t, y∗1, y
∗∗
1 )− f(t, y∗2, y

∗∗
2 )| ≤ µ1|y∗1 − y∗∗1 |+ µ2|y∗2 − y∗∗2 |,

|g(t, y∗1, y
∗∗
1 )− g(t, y∗2, y

∗∗
2 )| ≤ ν1|y∗1 − y∗∗1 |+ ν2|y∗2 − y∗∗2 |,

|Ik(y∗∗1 (tk))− Ik(y∗1(tk))| ≤ µ|y∗1 − y∗∗1 |,

|Jk(y∗∗2 (tk))− Jk(y∗2(tk))| ≤ ν|y∗2 − y∗∗2 |.

In addition, assume that

m1(µ1 + µ2) +m2(ν1 + ν2) +m(µ+ ν) < 1.
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Then the impulsive problem (2.2.1) has unique solution.

Proof. Since Ik, Jk are continuous functions, so let sup
tk∈[0,1]

|Ik| = θ1, sup
tk∈[0,1]

|Jk| = θ2.

Also we define sup
t∈[0,1]

|f(t, 0, 0)| = M1, sup
t∈[0,1]

|g(t, 0, 0)| = M2 and set |y1(0)| = θ,

|y2(0)| = θ∗. Then

r ≥ m1M1 +m2M2 +m(θ1 + θ2)

1−m1(µ1 + µ2)−m2(ν1 + ν2)
.

We show that T (Br) ⊂ Br, where Br = (y1, y2) ∈ Y1 × Y2 :‖ (y1, y2) ‖≤ r.

Now for (y1, y2) ∈ Br, we have

|T1(y1, y2)(t)|

≤ |y0|+ |Iαf(t, y1, y2)|+ |
∑

0<tk<t

Ik(y1(tk))|

≤ |y0|+
∫ t

0

(t− s)α−1

Γ(α)
|f(s, y1, y2)|ds+

∑
0<tk<t

|Ik(y1(tk))|

≤ |y0|+
∫ t

0

(t− s)α−1

Γ(α)
(|f(s, y1, y2)− f(s, 0, 0)|+ |f(s, 0, 0)|)ds+

∑
0<tk<t

|Iky1(tk)|

≤ |y0|+
∫ t

0

(t− s)α−1

Γ(α)
(µ1|y1|+ µ2|y2|)ds+

∫ t

0

(t− s)α−1

Γ(α)
|f(s, 0, 0)|ds

+
∑

0<tk<t

|Iky1(tk)|

≤ θ + (µ1|y1|+ µ2|y2|)
tα

Γ(α + 1)
+M1

tα

Γ(α + 1)
+mθ1

≤ θ + (µ1|y1|+ µ2|y2|)
tα

Γ(α + 1)
+M1

tα

Γ(α + 1)
+mθ1

≤ mθ1 +m1((µ1 + µ2)r +M1).

Hence

||T1(y1, y2)(t)|| ≤ mθ1 +m1((µ1 + µ2)r +M1).

Similarly

||T2(y1, y2)(t)|| ≤ mθ2 +m2((ν1 + ν2)r +M2).
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Consequently

||T (y1, y2)(t)|| = ||T1(y1, y2)(t)||+ ||T2(y1, y2)(t)||

≤ mθ1 +m1((µ1 + µ2)r +M1) +mθ2 +m2((ν1 + ν2)r +M2)

≤ m(θ1 + θ2) + (m1(µ1 + µ2) +m2(ν1 + ν2))r +m1M1 +m2M2

||T (y1, y2)(t)|| ≤ r.

Hence T (Br) ⊂ Br.

Now for (y∗1, y
∗
2), (y∗∗1 , y

∗∗
2 ) ∈ Y1 × Y2, and for any t ∈ [0, 1], we obtain

|T1(y∗∗1 , y
∗∗
2 )(t)− T1(y∗1, y

∗
2)(t)|

≤
∫ t

0

(t− s)α−1

Γ(α)
|f(s, y∗∗1 , y

∗∗
2 )− f(s, y∗1, y

∗
2)|ds+

∑
0<tk<t

|Ik(y∗∗1 (tk))− Ik(y∗1(tk))|

≤ tα

Γ(α + 1)
|f(s, y∗∗1 , y

∗∗
2 )− f(s, y∗1, y

∗
2)|+

m∑
k=1

|Ik(y∗∗1 (tk))− Ik(y∗1(tk))|

≤ tα

Γ(α + 1)

(
µ1|y∗∗1 − y∗1|+ µ2|y∗∗2 − y∗2|

)
+mµ|y∗∗1 − y∗1|

≤ (m1µ1 +mµ)|y∗∗1 − y∗1|+m1µ2|y∗∗2 − y∗2|

≤ (m1µ1 +mµ+m1µ2)(|y∗∗1 − y∗1|+ |y∗∗2 − y∗2|)

Hence

||T1(y∗∗1 , y
∗∗
2 )(t)− T1(y∗1, y

∗
2)(t)|| ≤ (m1(µ1 + µ2)) +mµ)(||y∗∗1 − y∗1||+ ||y∗∗2 − y∗2||),

Similarly

||T2(y∗∗1 , y
∗∗
2 )(t)− T2(y∗1, y

∗
2)(t)|| ≤ (m2(ν1 + ν2) +mν)(||y∗∗1 − y∗1||+ ||y∗∗2 − y∗2||).

Consequently

||T (y∗∗1 , y
∗∗
2 )(t)− T (y∗1, y

∗
2)(t)||

≤ (m1(µ1 + µ2) +m2(ν1 + ν2) +m(µ+ ν))(||y∗∗1 − y∗1||+ ||y∗∗2 − y∗2||).

Since m1(µ1 + µ2) + m2(ν1 + ν2) + m(µ + ν) < 1, therefore the operator T is a

contraction operator. Thus, by Banach’s fixed-point theorem, T has a unique fixed-

point, which we call the solution of the impulsive problem (2.2.1). Hence proved.
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Example 2.2.1. Consider the following coupled system of fractional impulsive

boundary value problem:

CD1/2
0+ y1(t) =

1

4
sin y1(t) +

|y2(t)|
5(t+ 1)(1 + |y2(t)|)

= f(t, y1, y2), t 6= tk, t ∈ [0, 1],

CD1/2
0+ y2(t) =

|y1(t)|
9(1 + |y1(t)|)

+
1

2et
sin2 y2(t) = g(t, y1, y2), t 6= tk, t ∈ [0, 1],

Ik(y1(tk))|t= 1
2

− =
|y1(1

2

−
)|

3 + |y1(1
2

−
)|
,

Jk(y2(tk))|t= 1
2

− =
|y2(1

2

−
)|

3 + |y2(1
2

−
)|
,

y1(0) =
∫ 1

0
φ(s)y1(s)ds, y2(0) =

∫ 1

0
ψ(s)y2(s)ds.

(2.2.4)

Here α = 1/2 = β,

|f(t, y1, y2)| ≤ γ0 +
1

4
|y1(t)|+ 1

5
|y2(t)|, |g(t, y1, y2)| ≤ ζ0 +

1

9
|y1(t)|+ 1

2
|y2(t)|,

|Ik(y1(tk))| ≤ η0 +
1

3
|y1(t)|, |Jk(y1(tk))| ≤ ξ0 +

1

3
|y2(t)|, where γ0, ζ0, η0, ξ0 > 0 are

some real constants. Also, γ1 =
1

4
, γ2 =

1

5
, ζ1 =

1

9
, ζ2 =

1

2
η1 =

1

3
= ξ1,

m1 =
1

Γ(α + 1)
= 1.571, m2 =

1

Γ(β + 1)
= 1.571.

Now m1γ1 +m2ζ1 +mη1 = 1.571(0.25) + 1.571(0.111) + 0.333 ≈ 0.9002 < 1

and

m1γ2 +m2ζ2 +mξ1 = 1.571(0.2) + 1.571(0.111) + 0.333 ≈ 0.8216 < 1.

Thus, all the conditions of Theorem (2.2.2) are satisfied. So, the boundary value

problem (2.2.4) has at least one solution.

Example 2.2.2. Consider the following coupled system of fractional impulsive

boundary value problem:
CD1/2

0+ y1(t) =
e−t|y1(t)|

(9 + et)(1 + |y1(t)|)
+

|y2(t)|
10et(1 + |y2(t)|)

= f(t, y1, y2), t 6= tk, t ∈ [0, 1],

CD1/2
0+ y2(t) =

|y1(t)|
4(t+ 2)2(1 + |y1(t)|)

+
|y2|

16(1 + |y2(t)|)
= g(t, y1, y2), t 6= tk, t ∈ [0, 1],
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Ik(y1(tk))|t= 1
2

− =
|y1(1

2

−
)|

9 + |y1(1
2

−
)|
,

Jk(y2(tk))|t= 1
2

− =
|y2(1

2

−
)|

9 + |y2(1
2

−
)|
,

y1(0) =
∫ 1

0
φ(s)y1(s)ds, y2(0) =

∫ 1

0
ψ(s)y2(s)ds.

(2.2.5)

Here α = 1/2 = β,

|f(t, y∗1, y
∗∗
1 )− f(t, y∗2, y

∗∗
2 )| ≤ 1

10
|y∗1 − y∗2|+

1

10
|y∗∗1 − y∗∗2 |,

|g(t, y∗1, y
∗∗
1 )− g(t, y∗2, y

∗∗
2 )| ≤ 1

16
|y∗1 − y∗2|+

1

16
|y∗∗1 − y∗∗2 |,

|Ik(y∗1(tk))− Ik(y∗∗1 (tk))| ≤
1

9
|y∗ − y∗∗1 |, |Jk(y∗1(tk))− Jk(y∗∗1 (tk))| ≤

1

9
|y∗1 − y∗∗1 |.

After doing some calculations, we have

µ1 =
1

10
= µ2, ν1 =

1

16
= ν2, µ =

1

9
= ν, m1 =

1

Γ(α + 1)
= 1.571 = m2 =

1

Γ(β + 1)
.

Also

m1(µ1 + µ2) +m2(ν1 + ν2) +m(µ+ ν) = 1.571(0.2) + 1.571(0.125) + 1.571(0.222)

≈ 0.732575 < 1.

Thus, all the conditions of Theorem (2.2.3) are satisfied. So, the boundary value

problem (2.2.5) has a unique solution.

27



Chapter 3

The Stability of Ordinary

Differential Equations

Theory of differential equations has been of great interest for many years. It plays a

prominent role in many other disciplines including engineering, physics, economics

and biology. In this chapter we will focus on the stability theory of the systems of

the ordinary differential equations, concentrating in particular on systems of first-

order linear and non-linear ordinary differential equations. For this we will review

some basic definitions, theorems and methods for the suitable stability concepts

of the equilibrium points of the systems. Also an alternative method for studying

stability, called Liapunove method, is explained here in this chapter.

The general form of the first order n-dimensional systems of differential equations

in n unknowns is

ẏ = f(t, y(t)), (3.0.1)

with f : [0,∞)×D → Rn is piecewise continuous in t and locally Lipschitz in y, D

is a domain containing the origin. Here

f =


f1

f2

...

fn

 , and the n-vector function y =


y1

y2

...

yn

 .
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The system (3.0.1) is called the non-autonomous system.

If t, the time variable, does not appear explicitly in the right hand side of (3.0.1),

then the system is called autonomous system having the general n-dimensional

form as

ẏ(t) = f(y). (3.0.2)

Definition 3.0.1. The point ȳ ∈ Rn is an equilibrium point for the autonomous

system (3.0.2), if f(ȳ) = 0 for all t. Similarly, if f(t, ȳ) = 0, then the point ȳ ∈ Rn

becomes the equilibrium point for the non-autonomous system (3.0.1) for all t.

Definition 3.0.2. An equilibrium point ȳ(t) of the system (3.0.2) is stable (or

Liapunov stable) if, given ε > 0, ∃ δ = δ(ε) > 0, such that for any other solution,

y(t), of (3.0.2) satisfying |ȳ(t0) − y(to)| < δ (where | . | is a norm on Rn) implies

|ȳ(t)− y(t)| < ε for all t > t0 and t0 ∈ R.

Definition 3.0.3. ȳ(t) is said to be asymptotically stable if it is Liapunov stable

and for any other solution y(t) of (3.0.2), there exist a constant b > 0 such that, if

|ȳ(t0)− y(t0)| < b then lim
t→∞
|ȳ(t)− y(t)| = 0.

The geometrical interpretation of the above two definitions is given in Figure 3.1

([29]).

Figure 3.1: Liapunov stability and Asymptotic stability.
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Example 3.0.3. Consider Newton’s law of cooling

dy

dt
= −k(y − ys), y(0) = y0 (3.0.3)

where y is temperature of the object at time t, ys is temperature of surroundings

and k is positive constant.

The equation (3.0.3) has y = ys as the only equilibrium point. y = ys+(y0−ys)e−kt

represents the equation of Newton’s law of cooling. For k > 0, lim
t→∞

e−kt = 0, so y =

ys. Thus our analysis suggest that the equilibrium y = ys is stable.
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Definition 3.0.4. Let ȳ(t, t0, ȳ0) denote the solution of the initial value problem

(ẏ = f(t, y), y(t0) = y0), (3.0.4)

indicating its dependence on t and also the initial point t0 and initial value y0. This

solution is said to be stable if for a given ε > 0, ∃ δ > 0 such that

||∆y0|| < δ implies ||ȳ(t, t0, ȳ0 + ∆y0)|| < ε.

3.1 Stability of Autonomous Non-Linear Systems

of Ordinary Differential Equations

Consider a two-dimensional system in the following form
dy1

dt
= f(y1, y2),

dy2

dt
= g(y1, y2).

(3.1.1)

Suppose that (ȳ1, ȳ2) is the equilibrium point, so that f(ȳ1, ȳ2) = 0 = g(ȳ1, ȳ2).

Now a question arises that either the equilibrium point is stable or not? From the

equilibrium point we consider a small perturbation by letting

y1 = ȳ1 + u,

y2 = ȳ2 + v.

Here it is understood that u and v both are to be small (u, v << 1). Either u and

v will grow or decay? u or v is growing if y1 and y2 both are moving away from the

equilibrium point and the equilibrium point is unstable. The equilibrium point is

stable, if y1 and y2 both move towards it (u and v are decaying).

Now we want to derive the differential equations for u and v, from which we will see

whether the perturbation grows or decays, as follows
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du

dt
=
dy1

dt

= f(y1, y2)

= f(ȳ1 + u, ȳ2 + v)

= f(ȳ1, ȳ2) +
∂f

∂y1

(ȳ1, ȳ2)u+
∂f

∂y
(ȳ1, ȳ2)v + h.o.t. (by expansion of Taylor series)

=
∂f

∂y1

(ȳ1, ȳ2)u+
∂f

∂y2

(ȳ1, ȳ2)v + h.o.t.

Similarly,
dv

dt
=

∂g

∂y1

(ȳ1, ȳ2)u+
∂g

∂y2

(ȳ1, ȳ2)v + h.o.t. (since g(ȳ1, ȳ2) = 0)

h.o.t represent higher order terms, as O(u2, v2, uv). Since we have assumed that u

and v both are small, so these h.o.t become extremely small.

So by neglecting the higher order terms, the following linear system of equations is

obtained, which governs the progression of the perturbations of both u and v :dudtdv
dt

 =


∂f

∂y1

(ȳ1, ȳ2)
∂f

∂y2

(ȳ1, ȳ2)

∂g

∂y1

(ȳ1, ȳ2)
∂g

∂y2

(ȳ1, ȳ2)

(u
v

)

= Je

(
u

v

)
,

where Je is the Jacobian matrix evaluated at the equilibrium point (ȳ1, ȳ2). As Je

is a constant matrix, so the above differential equation is linear. Then this linear

system has the trivial equilibrium point (u, v) = (0, 0), and by the eigenvalues of

the Je we determine the stability of (u, v) = (0, 0), as by the following theorem:

Theorem 3.1.1. Assume that

(1) The equilibrium point is stable, if all the eigenvalues of Je have the real negative

parts.

(2) The equilibrium point is unstable, if Je has at least one eigenvalue which has

real positive part.
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(3) No conclusion is obtained about the equilibrium point, if Je has at least one

eigenvalue which has a zero real part.

Sometimes the negative real parts of eigenvalues do not give stability of the

systems. For a general time dependent solution ȳ(t) it may be tempting to deduce

the stability properties of this solution from the eigenvalues of the Jacobian Je. This

can lead to wrong answers, as shown by the following example from Hale (1980) [29].

In the example we assumed a linear vector field having time periodic coefficients as

follows (
ẏ1

ẏ1

)
= A(t)

(
y1

y1

)
,

where

A(t) =

(
−1 + 3

2
cos2 t −1− 3

2
cos t sin t

−1− 3
2

cos t sin t −1 + 3
2

sin2 t

)
. (3.1.2)

The eigenvalues of A(t) determined to be independent of t are given by

λ1 =
−1 + i

√
7

4
, λ2 =

−1− i
√

7

4
.

In particular, these eigenvalues have real negative parts for all values of t. We have

determined the following two linearly independent solutions of the above systems as

follows

v1(t) =

(
− cos t

sin t

)
e
t
2 and v2(t) =

(
sin t

cos t

)
e−t.

Hence the solutions are unstable. A conclusion that does not obtained from the

eigenvalues of A(t).

3.1.1 Classification of Equilibrium Points

On the basis of signs of the real parts of the eigenvalues of the Je, we can classify

the equilibrium points of system (3.1.1) as follows:

1. The equilibrium point (ȳ1, ȳ2) is a stable node (or a sink), if λ1,2 < 0 for

λi ∈ R (i = 1, 2).
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2. The equilibrium point (ȳ1, ȳ2) is an unstable node (or a source), if λ1,2 > 0 for

λi ∈ R (i = 1, 2).

3. The equilibrium point (ȳ1, ȳ2) is a saddle point (or unstable), if λ1 < 0 < λ2

for λi ∈ R (i = 1, 2).

4. The equilibrium point (ȳ1, ȳ2) is astable spiral (or stable focus), if λi = α± iβ
for α < 0 and λi ∈ C (i = 1, 2).

5. The equilibrium point (ȳ1, ȳ2) is an unstable spiral (or unstable focus), if λi =

α± iβ for α > 0 and λi ∈ C (i = 1, 2).

6. The equilibrium point (ȳ1, ȳ2) is a center (or neutrally stable), if λi = α ± iβ
for α = 0 and λi ∈ C (i = 1, 2).

3.2 Stability of Linear Autonomous Systems

The following is the matrix-vector form of the n linear first order differential equa-

tions in n unknowns

ẏ = Ay + b.

Here the matrix function A = [aij], i = 1, 2, . . . n is the coefficient matrix and

b = [bi(t)], i = 1, 2, . . . n is the vector function.

If b is the zero vector then it is a homogeneous system and has the form

ẏ = Ay.

Theorem 3.2.1. [6] Let Φ(t) be a fundamental matrix solution of ẏ = A(t)y. Then

the system is stable for any t0 ∈ R if and only if there is a positive constant K =

K(t0) such that |Φ(t)| ≤ K for all t0 ≥ t.

Theorem 3.2.2. [6] Let Φ(t) be a fundamental matrix solution of ẏ = A(t)y. Then

the system is asymptotically stable for any t0 ∈ R if and only if |Φ(t)| → 0 as t→∞.
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3.3 Stability of Linear Non-Autonomous Systems

The system

ẏ = A(t)y,

can be written as

ẏ = {B + C(t)}y,

where B is an n× n constant matrix.

Theorem 3.3.1. [27]. Assume that

i. B is an n× n matrix and the eigenvalues of B have negative real parts;

ii. C(t) is continuous for t ≥ t0 and∫ t

t0

||C(t)||dt,

is bounded for t0 ≤ t ≤ ∞.

Then all solutions of the system ẏ = {B + C(t)}y are asymptotically stable.

Proof. ẏ = {A + B(t)}y = Ay + B(t)y, where h(t) = B(t)y, is an inhomogeneous

term. Let φ(t) be the solution of ODE with φ(t0) = y0. Then by using the variation

of constants formula:

φ(t) = eA(t−t0)y0 +

∫ t

t0

eA(t−s)B(s)φ(s)ds

|φ(t)| ≤ |eA(t−t0)||y0|+
∫ t

t0

|eA(t−s)||φ(s)||B(s)|ds

Re(λi) < 0⇒ ∃K, ρ > 0, such that

|A(t− t0)| ≤ Ke−ρ(t−t0), t0 ≤ t <∞

|A(t− s)| ≤ Ke−ρ(t−s), t0 ≤ s <∞,

35



|φ(t)| ≤ Ke−ρ(t−t0)|y0|+K

∫ t

t0

e−ρ(t−s)|φ(s)||B(s)|ds,

|φ(t)| ≤ Ke−ρteρt0|y0|+Ke−ρt
∫ t

t0

eρs|φ(s)||B(s)|ds,

eρt|φ(t)| ≤ Keρt0|y0|+K

∫ t

t0

eρs|φ(s)||B(s)|ds,

this inequality is a Gronwall Inequality of the form

u(t) = c1 + c2

∫ t

t0

u(s)v(s)ds.

So by this Gronwall Inequality

eρt|φ(t)| ≤ Keρt0|y0|eK
∫ t
t0
eρs|B(s)|ds

,

|φ(t)| ≤ Ke−ρ(t−t0)|y0|eK
∫ t
t0
|B(s)|ds

,

since K

∫ t

t0

|B(s)|ds < M0 <∞⇒ e
K

∫ t
t0
|B(s)|ds

< eM0 = M,

|φ(t)| ≤ KMe−ρ(t−t0)|y0| → 0 as t→∞.

Hence the 0-solution of the system ẏ = {B + C(t)}y is asymptotically stable.

Corollary 3.3.2. [27] If the solutions of ẏ = A(t)y are only bounded and C(t)

satisfies the conditions of Theorem (4.1.2), then all the solutions of ẏ = {B+C(t)}y
are bounded, hence stable.

Example 3.3.1. Consider the linear non-autonomous sytem

ẏ1 = −2t−2 y1 + y2 + t2,

ẏ2 = −y1 − 2 t−2 y2 + t.

In the matrix form the system is

ẏ = {B + C(t)}y,

where,

B =

[
−2 1

−1 −2

]
, C(t) =

[
t−2 0

0 t−2

]
, f(t) =

[
t2

t

]
.
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As we know that the system ẏ = {B + C(t)}y has the same stability properties as

a homogeneous equation ẏ = A(t)y, we have

|B − λI| =

∣∣∣∣∣−2− λ 1

−1 −2− λ

∣∣∣∣∣ = (−2− λ)2 + 1 = 0.

By solving, we find eigenvalues as

λ1 = −2 + i,

λ2 = −2− i.

So we conclude that both the eigenvalues have negative real parts. On the other

hand, C(t) is continuous for t > 0 and∫ ∞
t0

||C(s)||ds = lim
t→∞

∫ t

t0

|s−2|ds

= lim
t→∞

2| − s−1||21

= lim
t→∞

2

∣∣∣∣− (1

t
− 1

t0

)∣∣∣∣
=

2

t0
<∞, t0 > 0.

According to the Theorem (4.1.2), all solutions of ẏ = {B+C(t)}y are asymptotically

stable. Hence, the solutions of ẏ = {B+C(t)}y+f(t) are also asymptotically stable.

3.4 Stability of Linear Systems with Constant Co-

efficients

Assume an n × n constant matrix A in equation and consider the following linear

autonomous homogeneous system

ẏ = Ay, (3.4.1)
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ȳ = 0 is the only equilibrium solution of ẏ = Ay, and from the eigenvalues of A we

can find the stability of the given system.

Definition 3.4.1 (Liapunov Function). A continuously differentiable function V

defined on an open set U ∈ Rn with ȳ ∈ U(ȳ is an equilibrium of ẏ = f(y) is called

Liapunov function for ẏ = f(y) provided,

(i) V (ȳ) = 0

(ii) V (y) > 0 for y 6= ȳ, y ∈ U

(iii) dV
dt
≤ 0

Definition 3.4.2. [27]. Let f(y) be a scalar function such that f(0) = 0. If, y 6= 0,

(i) f(y) > 0 (or < 0), then it is called positive (or negative) definite.

(ii) f(y) ≥ 0 (or ≤ 0), then it is called positive (or negative) semidefinite.

Theorem 3.4.1 (Liapunov stability for autonomous systems). Suppose that there

is a continuously differentiable positive definite function V (y) : D ∈ Rn → R, where

D is an open set containing the origin, and V (y) is negative semi definite for y ∈ D.

Then the 0-solution of ẏ = f(y) is stable.

Theorem 3.4.2 (Liapunov asymptotic stability for autonomous systems). Suppose

that there is a continuously differentiable positive definite function V (y) : D ∈ Rn →
R , with D an open set containing the origin, and let V (y) be negative definite for

y ∈ D. Then the 0-solution ẏ = f(y) is asymptotically stable.

Example 3.4.1. For the autonomous non-linear system

ẏ1 = −y1 + y2(1− y2
1 − y2

2)

ẏ2 = −y2 − y1(1− y2
1 − y2

2).

Consider the Liapunov function

V (y1, y2) = y2
1 + y2

2.
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Now taking the time derivative of V (y1, y2) as follows

V̇ (y1, y2) = 2y1ẏ1 + 2y2ẏ2

= 2y1(−y1 + y2(1− y2
1 − y2

2)) + 2y2(−y2 − y1(1− y2
1 − y2

2))

= −2y2
1 − 2y2

2

= −2(y2
1 + y2

2) < 0.

Since V (y1, y2) is positive definite and V̇ (y1, y2) is negative everywhere except at the

origin, so the 0-solution of the system is asymptotically stable.

Theorem 3.4.3 (Liapunov stability for non autonomous systems). Suppose that

there is a continuously differentiable positive definite function V (t, y) : [0,∞)×D →
R such that V̇ (t, y) ≤ 0. Then the 0-solution of ẏ = f(t, y) is stable.

Example 3.4.2. For the non autonomous system

ẏ1 = y2,

ẏ2 = −y2 − e−t,
consider the Liapunov function

V (t, y1, y2) = y1 + ety2

Now taking the time derivative of the above Liapunov function as follows

V̇ (t, y1, y2) = 2y1ẏ1 + ety2
2 + 2y2ẏ2e

t

= 2y1y2 + ety2
2 + 2y2e

t(−y2 − e−ty1) = −ẏ2
2e
−t.

Since V (t, y1, y2) is positive definite and also V̇ (t, y1, y2) ≤ 0, so by the above

theorem the 0-solution of the non-autonomous system is stable.

3.5 Stability of Periodic Solutions: Floquet The-

ory

Differential equations comprising periodic functions play a significant role in various

applications. Let’s consider the n-dimensional first-order linear system

ẏ = A(t)y, (3.5.1)
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where A(t) is a continuous, periodic n× n matrix function with minimum positive

period ω; that is

A(t+ ω) = A(t), −∞ < t <∞.

(A(t), also has periods 2ω, 3ω, . . . ). Such type of systems are called Floquet systems

and its study is called Floquet theory.

Definition 3.5.1. (Fundamental Matrix). Let φ1(t), φ2(t), . . . , φn(t) be n solu-

tions of vector differential equation ẏ = A(t)y. Then an n× n matrix function Φ(t)

is a fundamental matrix for ẏ = A(t)y, where

Φ(t) = [φ1(t), φ2(t), . . . , φn(t)],

with columns φ1(t), φ2(t), . . . , φn(t), provided that Φ(t) is an n× n matrix solution

of the matrix equation Ẏ = A(t)Y on I and det Φ(t) 6= 0 on I.

Definition 3.5.2. (Floquet Multipliers). Let Φ(t) be a fundamental matrix for

the Floquet system (3.5.1), then the eigenvalues λ of

B := Φ−1(0)Φ(ω),

are called the Floquet multipliers of the Floquet system (2.6.1).

Theorem 3.5.1. [16]. Let λ1, λ2, . . . , λn be the Floquet multipliers of the Floquet

system (2.6.1). Then the trivial solution is

(i) globally asymptotically stable on [0,∞) iff |λi| < 1, 1 ≤ i ≤ n;

(ii) stable on [0,∞), provided |λi| ≤ 1, 1 ≤ i ≤ n and whenever |λi| = 1, λi is a

simple eigenvalue;

(iii) unstable on [0,∞), provided there is an i0, 1 ≤ i0 ≤ n, such that |λi0| > 1.

Example 3.5.1. Consider the Floquet system

y′ =

(
− sin(2t) cos(2t)− 1

cos(2t) + 1 sin(2t)

)
y, (3.5.2)
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and

Φ(t) =

(
et(cos t− sin t) e−t(cos t+ sin t)

et(cos t+ sin t) e−t(− cos t+ sin t)

)
, (3.5.3)

be a fundamental matrix for the Floquet system (3.5.2). The Floquet multipliers

are λ1 = −eπ2 , λ2 = −e−π. So by the Theorem 3.5.1 the trivial solution is unstable

on [0,∞).

3.6 The Routh-Hurwitz Stability Criterion

The Routh-Hurwitz stability criterion was independently published by A. Hur-

witz(1895) in Germany and E.J.Routh(1892) in United States. The Routh-Hurwitz

stability criterion provides a necessary and sufficient condition to accertain the sta-

bility of a linear control systems. Without solving for the poles of the closed loop

system the stability of a closed loop system can be judged by this criterion.

Consider a transfer function of a single-input, a single-output closed loop system

is given by

F (s) =
b0s

m + b1s
m−1 + · · ·+ bm−1s

m + bm
a0sn + a1sn−1 + · · ·+ an−1sn + an

=
p(s)

q(s)
. (3.6.1)

The method was originally introduced in terms of determinants, however here we

use the more suitable array formulation. The characteristic polynomial in (3.6.1) is

given by

q(s) = a0s
n + a1s

n−1 + · · ·+ an−1s
n + an. (3.6.2)

This criterion is based on arranging the coefficients of the characteristic polynomial

in (3.6.2) into a schedule or an array[8]:

sn an an−2 an−4 . . .

sn−1 an−1 an−3 an−5 . . .

sn−2 bn−1 bn−3 bn−5 . . .

sn−3 cn−1 cn−3 cn−5 . . .
...

...
...

...
...

s0 hn−1 hn−3 hn−5 . . .
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where

bn−1 =
(an−1)(an−2)− an(an−3)

an−1

,

bn−3 =
(an−1)(an−4)− an(an−5)

an−1

,

...

cn−1 =
(bn−1)(an−3)− (an−1)(bn−3)

bn−1

and so on.

The Routh-Hurwitz criterion states that the number of roots of characteristic

polynomial q(s) with positive real parts is equal to the number of changes of sign

in the first column of the array. So, the system is stable if and only if there are no

changes in sign in the first column of the Routh array.

Example 3.6.1. Let

q(s) = s4 + 4s3 + 16s2 + 32s+ 40.

The Routh table is obtained as follows

s4 1 16 40

s3 4 32

s2 8 40

s1 12

s0 40

Here we observe that in the first column no sign changes occur which indicates that

no root lies in the right half of the s-plane and so, the system is stable.

3.6.1 Special Cases

Case 1. No element(entry) in the first column in Routh table is zero.
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Example 3.6.2. Consider the characteristic equation

q(s) = a3s
3 + a2s

2 + a1s+ a0.

The Routh table will be as follows

s3 a3 a1

s2 a2 a0

s1 b1 0

s0 c1 0

For stable third-order system, the necessary and sufficient conditon is that the coef-

ficients of the characteristic polynomial must be positive and a2a1 − a0a3 > 0. The

condition a2a1 = a0a3 gives rise to a marginal stability case, and a pair of roots of

characteristic polynomial lies on the imaginary axis in the s-plane. Our case 3 is

based on this marginal stability because for a2a1 = a0a3 there is a zero in the first

column. Later on we will discuss it under case 3.

Case 2. If an element of the first column in the Routh table is zero, it might

be replaced by a small positive number,ε, to complete the table. The sign of the

elements in the first column is observerd as the ε approaches to zero.

Example 3.6.3. Let the characteristic equation be

q(s) = s4 + s3 + s2 + s+K.

Here the gain K is to be determined, that results in marginal stability. The Routh

table is as follows
s4 1 1 K

s3 1 1 0

s2 ε K 0

s1 c1 0 0

s0 K 0 0

where

c1 =
ε−K
ε

=
−K
ε

as ε→ 0.

So for K > 0 (ε > 0), the system is unstable. As the last element in the first column

is K, so for k < 0 the system is unstable. Thus for all values of gain K the system
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is unstable.

Case 3. When all the elements of a row in the Routh table is zero or when a row

comprises of a single zero element. This indicates the existence of some roots of

the characteristic polynomial that are located symmetrically about the origin in the

s-plane. In this case we should utilize an auxiliary polynomial from the row that

precedes the zero row of the Routh table. This auxiliary polynomial is always with

even order and shows the number of symmetrical root pairs.

Example 3.6.4.

q(s) = s3 + 2s2 + 4s+K,

s3 1 4

s2 2 K

s1 8−K
2

0

s0 K 0

For 0 < K < 8, the system is stable.

When K = 8, we find that two roots are on the imaginary axis and gives a marginal

stability case. And also for K = 8, case 3 arises that is a row of zero elements is

obtained. Therefore an auxiliary polynomial with even order is formed from the s2

row which preceds the row of zeros as follows

Q(s) = 2s2 +Ks0 = 2s2 + 8 = 2(s2 + 4) = 2(s+ j2)(s− j2). Now

∆(s) =
s3 + 2s2 + 4s+K

2s2 + 8
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Chapter 4

Stability of Fractional Differential

Equations

Stability analysis is a an essential task in the theory of fractional differential systems.

Many researchers contributed in the stability theory for fractional differential equa-

tions through their research papers. For instance, Matignon studied the stability of

linear fractional order systems with commensurate order [18] and with incommen-

surate order [19]. Here in this chapter we will deal with some stability properties

of linear fractional differential equations and also we will review some important

theorems related to stability of linear fractional differential equations and perturbed

fractional differential equations from the paper of Qian, Li, Agarwal and Wong [24].

The system of fractional differential equations with the Caputo derivative or the

Riemann-Liouville derivative have the following general form

t0Dᾱt y(t) = f(t, y), (4.0.1)

with appropriate initial values yk = [yk1, yk2, . . . , ykn]T ∈ Rn (k = 1, 2, . . . ,m − 1),

where y(t) = [y1(t), y2(t), . . . , yn(t)]T ∈ Rn, ᾱ = [α1, α2, . . . , αn]T , m − 1 < αi <

m ∈ Z+ (i = 1, 2, . . . , n), t0Dᾱt y(t) = [t0Dα1
t y1(t), t0Dα2

t y2(t), . . . , t0Dαnt yn(t)]T , f :

[t0,∞)× Rn → Rn, t0Dᾱt represents either C
t0
Dᾱt or RL

t0
Dᾱt .

Particularly, if α1 = α2 = · · · = αn = α, then equation (4.0.1) can be written as

t0Dαt y(t) = f(t, y). (4.0.2)
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Here we say that equation (4.0.2) is the same order fractional differential system,

while equation (4.0.1) is the multi-order fractional differential system.

Now we give some basic definitions which are mainly related to the stability

problems of the fractional differential systems.

Definition 4.0.1. The constant vector ȳ is an equilibrium point of fractional

differential system (4.0.1), if and only if f(t, ȳ) = t0Dᾱt y(t)|y(t)=ȳ for all t > t0.

Without loss of generality, let the equilibrium point of system (4.0.1) be ȳ = 0,

give the following definition

Definition 4.0.2. . The 0-solution of fractional differential system (4.0.1) is said to

be stable if, for any initial values yk = [yk1, yk2, . . . , ykn]T ∈ Rn (k = 0, 1, . . . ,m−1),

there exists ε > 0 such that any solution y(t) of (4.0.1) satisfies ||y(t)|| < ε for all

t > t0. The 0-solution is said to be asymptotically stable if, addition to being

stable, ||y(t)|| → 0 as t→ +∞.

Lemma 4.0.1. [23]. Let 0 < α < 2, β be an arbitrary complex number and µ be an

arbitrary real number such that πα
2
< µ < min{π, πα}. Then, for p ≥ 1, an arbitrary

integer, we have an expansion as follows:

Eα,β(z) = 1
α
z(1−β)/α exp(z1/α)−

p∑
k=1

z−k

Γ(β − αk)
+O(|z|−1−p). when | arg(z)| ≤ µ and

|z| → ∞; Eα,β(z) = −
p∑
1

z−k

Γ(β − αk)
+ O(|z|−1−p), when µ ≤ | arg(z)| ≤ π and

|z| → ∞.

Remark 4.0.1. [23] If β = α in Lemma (4.0.1), then

(i)

Eα,α(z) =
1

α
z(1−α)/α exp(z1/α)−

p∑
k=2

z−k

Γ(α− αk)
+O(|z|−1−p). (4.0.3)

when | arg(z)| ≤ µ and |z| → ∞;

(ii)

Eα,α(z) = −
p∑

k=2

z−k

Γ(α− αk)
+O(|z|−1−p), (4.0.4)

when µ ≤ | arg(z)| ≤ π and |z| → ∞.
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Lemma 4.0.2 (Jordan Decomposition [30]). Let A be a square complex matrix, then

there exists an invertible matrix such that

Q−1AQ = J1 ⊕ J2 ⊕ · · · ⊕ Jr, (4.0.5)

where Ji i = 1, 2 · · · r are the Jordan blocks of A with the eigenvalues of A on the

diagonal. The Jordan blocks are uniquely determined by A.

Here some results are to be given which are mainly used in the stability analysis

of the fractional differential equations. These results based on the Laplace transform

of the fractional derivatives and the Mittag-Leffler function [23].

• The Laplace transform of the Riemann-Liouville fractional derivative RL
a Dαt y(t)

is∫ ∞
0

e−stRLa Dαt y(t)dt = sαY (s)−
n−1∑
k=0

sα[Dα−k−1y(t)]t=a, (n− 1 ≤ α < n). (4.0.6)

• The Laplace transform of the Caputo fractional derivative C
aDαt y(t) is∫ ∞

0

e−stCaDαt y(t)dt = sαY (s)−
n−1∑
k=0

sα−k−1y(a)(k), (n− 1 ≤ α < n). (4.0.7)

• The Laplace transform of the Mittag-Leffler function is to be found as∫ ∞
0

e−sttαk−β−1E
(k)
α,β(±atα)dt =

k!sα−β

(sα ∓ a)k+1
, (Re(s) > |a|

1
α ) (4.0.8)

4.1 Stability of Linear Fractional Differential Equa-

tions

Here in this section we will analyze some important theorems and results on the sta-

bility of linear fractional differential equations and will give some related examples.

Consider the linear fractional differential equation of the form

t0Dᾱt y(t) = Ay(t), (4.1.1)
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where matrix A ∈ Rn×n, y(t) = [y1(t), y2(t), . . . , yn(t)]T ∈ Rn, ᾱ = [α1, α2, . . . , αn]T ,

t0Dᾱt0,ty(t) = [t0Dα1
t y1(t), t0Dα2

t y2(t), . . . , t0Dαnt yn(t)]T and t0D
αi
t is the Caputo deriva-

tive or Riemann-Liouville derivative of order αi, 0 < αi ≤ 2, for i = 1, 2, . . . , n.

Particularly if α1 = α2 = · · · = αn = α, then the system (4.1.1) can be the same

order linear system

t0Dαt y(t) = Ay(t). (4.1.2)

Theorem 4.1.1. The autonomous system (4.1.2) with Caputo derivative and initial

value y0 = y(0), α ∈ (0, 1], is

(i) asymptotically stable iff | arg(λ(A))| > απ

2
. In this case the components of the

state decay towards 0 like t−α, ( Here arg(λ(A)) denotes the arguments of the

eigenvalues of the square matrix A.)

(ii) stable iff either it is asymptotically stable or those critical eigenvalues which

satisfy | arg(λ(A))| = απ

2
have geometric multiplicity one.

Proof. (i) Taking the Laplace transform of (4.1.2) and 0 < α < 1

sαY (s)−
n−1∑
k=0

sα−k−1yk(0) = AY (s), (n− 1 ≤ α < n).

Using the initial condition yk(0) = y0 (k = 0) we get

sαY (s)− sα−1y0 = AY (s),

(sαI − A)Y (s) = sα−1y0,

Y (s) = sα−1[sαI − A]−1y0.

Now, taking inverse Laplace transform of the above equation we get the solution of

the given system by (4.0.8) as follows

y(t) = y0Eα,1(Atα). (4.1.3)

Suppose that the matrix A is similar to a Jordan canonical form, i.e., there is an

invertible matrix Q such that

A = Q−1JQ = diag(J1, J2, . . . , Jr). (4.1.4)
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Here Ji, 1 ≤ i ≤ r is the jordan block (by Lemma(4.0.2))

Ji =


λi 1

λi
. . .
. . . 1

λi


ni×ni

and
∑r

i=1 ni = n. Now

Eα,1(Atα) = Qdiag[Eα,1(J1t
α), Eα,1(J2t

α), . . . , Eα,1(Jnt
α)]Q−1.

Where for 1 ≤ i ≤ r,

Eα,1(Jit
α) =

∞∑
k=0

(Jit
α)k

Γ(kα + 1)
=
∞∑
k=0

(tα)k

Γ(kα + 1)
Jki

=
∞∑
k=0

(tα)k

Γ(kα + 1)


λi 1

λi
. . .
. . . 1

λi


k

=
∞∑
k=0

(tα)k

Γ(kα + 1)


λki Ck

1λ
k−1
i . . . Ck

ni−1λ
k−ni+1
i

λki
. . .

...
. . . Ck

1λ
k−1
i

λki



=



∞∑
k=0

(λit
α)k

Γ(kα + 1)

∞∑
k=0

(tα)k

Γ(kα + 1)
Ck

1λ
k−1
i . . .

∞∑
k=0

(tα)k

Γ(kα + 1)
Ck
ni−1λ

k−ni+1
i

∞∑
k=0

(λit
α)k

Γ(kα + 1)

. . .
...

. . .
∞∑
k=0

(tα)k

Γ(kα + 1)
Ck

1λ
k−1
i

∞∑
k=0

(λit
α)k

Γ(kα + 1)


( where Cj

k = k!
j!(k−j)! , 1 ≤ j ≤ ni − 1 are the binomial coefficients.)
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∞∑
k=0

(tα)k

Γ(kα + 1)
Ck

1λ
k−1
i =

∞∑
k=0

(tα)k

Γ(kα + 1)

k!

1!(k − 1)!
λk−1
i

=
∞∑
k=0

(tα)k

Γ(kα + 1)

k(k − 1)!

1!(k − 1)!
λk−1
i

=
∞∑
k=0

(tα)k

Γ(kα + 1)

k

1!
λk−1
i

=
∞∑
k=0

(tα)k

Γ(kα + 1)

1

1!

(
∂

∂λi

)
λki

=
1

1!

(
∂

∂λi

) ∞∑
k=0

(tαλi)
k

Γ(kα + 1)

=
1

1!

∂

∂λi
Eα,1(λit

α)

∞∑
k=0

(tα)k

Γ(kα + 1)
Ck
ni−1λ

k−ni+1
i =

∞∑
k=0

(tα)k

Γ(kα + 1)

k!

(ni − 1)!(k − ni + 1)!
λk−ni+1
i

=
∞∑
k=0

(tα)k

Γ(kα + 1)

k(k − 1) · · · (k − ni + 2)(k − ni + 1) · · · 3.2.1
(ni − 1)!(k − ni + 1)!

λk−ni+1
i

=
∞∑
k=0

(tα)k

Γ(kα + 1)

k(k − 1) · · · (k − ni + 2)(k − ni + 1)!

(ni − 1)!(k − ni + 1)!
λk−ni+1
i

=
∞∑
k=0

(tα)k

Γ(kα + 1)

1

(ni − 1)!

(
∂

∂λi

)ni−1

λki

=
1

(ni − 1)!

(
∂

∂λi

)ni−1 ∞∑
k=0

(tαλi)
k

Γ(kα + 1)
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=


Eα,1(λit

α) 1
1!

∂

∂λi
Eα,1(λit

α) . . . 1
(ni−1)!

(
∂

∂λi

)ni−1

Eα,1(λit
α)

Eα,1(λit
α)

. . .
...

. . . 1
1!

∂

∂λi
Eα,1(λit

α)

Eα,1(λit
α)


.

By Remark (4.0.1), if | arg(λi(A))| > απ
2
, 1 ≤ i ≤ r and t→∞, then

|Eα,1(λit
α)| → 0 and so

∣∣∣∣ 1
ji

(
∂

∂λi

)j
Eα,1(λit

α)

∣∣∣∣→ 0, 0 ≤ j ≤ ni − 1, 1 ≤ i ≤ r.

Since, Eα,1(λit
α) = −

p∑
k=2

(λit
α)−k

Γ(1− kα)
+O(|(λitα)−1−p|), which implies that

|Eα,1(λit
α)| → 0 as t→∞; and

1

j!

(
∂

∂λi

)j
Eα,1(λit

α) =
1

j!

(
∂

∂λi

)j {
−

p∑
k=2

(λit
α)−k

Γ(1− αk)
+ O(|λitα|−1−p)

}

=
1

j!

{
−

p∑
k=2

(tα)−k

Γ(1− αk)

(
∂

∂λi

)j
λ−ki + O

(
∂

∂λi

)j
(|λitα|−1−p)

}

= −
p∑

k=2

(−k − (j + 1)) · · · (−k − 1)(−k)λ−k−ji t−αk

j!Γ(1− αk)
+

O(|λi|−1−p−j|tα|−1−p)

= −
p∑

k=2

(−1)j(k + j − 1) · · · (k + 1)kλ−k−ji t−αk

j!Γ(1− αk)
+

O(|λi|−1−p−j|tα|−1−p).

Multiply and divide the first term on the right hand side of the above equation with

(k − 1)!, we get

= −
p∑

k=2

(−1)j(k + j − 1) · · · (k + 1)k(k − 1)!λ−k−ji t−αk

j!Γ(1− αk)(k − 1)!

+ O(|λi|−1−p−j|tα|−1−p)

= −
p∑

k=2

(−1)j(k + j − 1)!λ−k−ji t−αk

j!(k − 1)!Γ(1− αk)
+ O(|λi|−1−p−j|tα)|−1−p).
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As t→∞,
∣∣ 1
j!

( ∂
∂λi

)jEα,1(λit
α)
∣∣→ 0 for 1 ≤ j ≤ ni − 1. It follows that

||y(t)|| = ||y0Eα,α(Atα)|| → 0 as t→∞,
for any non-zero initial value y0. Hence proof (i) of Theorem (4.1.1) is complete.

(ii) Suppose λi be a critical eigenvalue satisfying | arg(λi)| =
απ

2
with same algebraic

and geometric multiplicity equal to one. Now, from (4.1.3) the solution of the given

system is

y(t) = y0Eα,1(Atα)

= y0Qdiag[Eα,1(J1t
α), Eα,1(J2t

α), . . . , Eα,1(Ji−1t
α), Eα,1(Jit

α), Eα,1(Ji+1t
α),

. . . , Eα,1(Jnt
α)]Q−1,

where Jk
′s represent Jordan block matrices of order k, | arg(λk(A))| > απ

2
, and∑i−1

k=1 nk +
∑r

k=i+1 nknk + 1 = n, k = 1, . . . , i− 1, i+ 1, . . . , r.

By using (4.0.3), we have

Eα,1(λit
α) =

1

α
(λit

α)(1−1)/α exp((λit
α)1/α)−

p∑
k=2

(λit
α)−k

Γ(1− αk)
+O(|(λitα)|−1−p).

Suppose λi = r
(
cos απ

2
+ j sin απ

2

)
, where r represents the modulus of λi, and

j2 = −1. Then,

Eα,1(λit
α) =

1

α
exp

{(
rtα
(

cos
απ

2
+ j sin

απ

2

))1/α
}
−

p∑
k=2

(rtα(cos απ
2

+ j sin απ
2

))−k

Γ(1− αk)

+O
(∣∣rtα (cos

απ

2
+ j sin

απ

2

) ∣∣−1−p
)

=
1

α
exp

{
r1/αt

(
cos

π

2
+ j sin

π

2

)}
−

p∑
k=2

(r−kt−αk(cos −αkπ
2

+ j sin −αkπ
2

))

Γ(1− αk)
+O

(
(rt)−1−p)

=
1

α
exp

{
jr1/αt

}
−

p∑
k=2

(r−kt−αk(cos αkπ
2
− j sin αkπ

2
))

Γ(1− αk)
+O

(
(rt)−1−p) ,

which leads to
∣∣Eα,1(λit

α)
∣∣→ 1

α
as t→∞, and also from the proof of the Theorem

(4.1.1)(i), Eα,α(Jkt
α)→ 0 as t→ +∞ for k = 1, . . . , i− 1, i+ 1, . . . , r, we find that

the 0-solution of the given system is stable but not asymptotically stable.
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Remark 4.1.1. In Theorem (4.1.1)(ii), if the critical eigenvalues have their alge-

braic multiplicities greater then their geometric multiplicities, and the other condi-

tions remain unchanged then its 0-solution is unstable.

Theorem 4.1.2. The 0-solution of the autonomous same order system (4.1.2) with

Riemann-Liouville derivative and initial value y0 = RL
0 Dα−1

t y(t)|t=0, where 0 < α < 1

and t0 = 0, is

(i) asymptotically stable iff all the non-zero eigenvalues of A satisfy | arg(λ(A))| >
απ

2
.

(ii) is stable but not asymptotically stable, if all the eigenvalues of A satisfying

| arg(λ(A))| ≥ απ

2
and the critical eigenvalues satisfying | arg(λ(A))| =

απ

2
have the same algebraic and geometric multiplicities.

Proof. Taking the Laplace transform of (4.1.2) with Riemann-Liouville derivative

and 0 < α < 1

sαY (s)−
n−1∑
k=0

sk[Dα−k−1y(t)]t=0 = AY (s), (n− 1 ≤ α < n).

Using the initial condition y0 = RL
0 Dα−1

t y(t)|t=0, we get

sαY (s)− y0 = AY (s),

(sαI − A)Y (s) = y0,

Y (s) = [sαI − A]−1y0.

Now, taking inverse Laplace transform of the above equation we get the solution of

the given system by using (4.0.8) as follows

y(t) = y0t
α−1Eα,α(Atα). (4.1.5)

First, suppose that A is diagonalizable, i.e., there exists an invertible matrix Q such

that

Λ = Q−1AQ = diag(λ1, λ2, . . . , λn).

Then,

Eα,α(Atα) = QEα,α(Λtα)Q−1 = Qdiag[Eα,α(λ1t
α), Eα,α(λ2t

α), . . . , Eα,α(λnt
α)]Q−1.
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Applying

Eα,α(λit
α) = −

p∑
k=2

(λit
α)−k

Γ(α− kα)
+O(|(λtα)−1−p|)→ 0 as t→ +∞, 1 ≤ i ≤ n.

Thus,

‖ Eα,α(Λtα) ‖=‖ diag[Eα,α(λ1t
α), Eα,α(λ2t

α), . . . , Eα,α(λnt
α)] ‖→ 0.

Hence, the conclusion holds.

Next, suppose that A is similar to a Jordan canonical form, i.e., there exists an

invertible matrix Q such that

J = Q−1AQ = diag(J1, J2, . . . , Jr).

Where Ji, 1 ≤ i ≤ r is in the following form
λ 1

λ
. . .
. . . 1

λi


ni×ni

and
∑r

i=1 ni = n.

Obviously, Eα,α(Atα) = Qdiag[Eα,α(J1t
α), Eα,α(J2t

α), . . . , Eα,α(Jnt
α)]Q−1.

Where for 1 ≤ i ≤ r,

Eα,α(Jit
α) =

∞∑
k=0

(Jit
α)k

Γ(kα + α)
=
∞∑
k=0

(tα)k

Γ(kα + α)
Jki

=


Eα,α(λit

α) 1
1!

∂
∂λi
Eα,α(λit

α) . . . 1
(ni−1)!

(
∂
∂λi

)ni−1

Eα,α(λit
α)

Eα,α(λit
α)

. . .
...

. . . 1
1!

∂
∂λi
Eα,α(λit

α)

Eα,α(λit
α)

 .

By Remark (4.0.1), if | arg(λi(A))| > απ
2
, 1 ≤ i ≤ r and t→∞, then

|Eα,α(λit
α)| → 0 and so

∣∣∣∣ 1
ji

(
∂
∂λi

)j
Eα,α(λit

α)

∣∣∣∣→ 0, 0 ≤ j ≤ ni − 1, 1 ≤ i ≤ r.
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Since, Eα,α(λit
α) = −

p∑
k=2

(λit
α)−k

Γ(α− kα)
+O(|(λitα)−1−p|), this implies that

|Eα,α(λit
α)| → 0 as t→∞.

Now by some calculations as we have done in Theorem (4.1.1), we obtain the fol-

lowing

1

j!

(
∂

∂λi

)j
Eα,α(λit

α) = −
p∑

k=2

(−1)j(k + j − 1)!λ−k−ji t−αk

j!(k − 1)!Γ(α− αk)
+ O(|λi|−1−p−j|tα)|−1−p).

As t→∞,

∣∣∣∣∣ 1
j!

(
∂
∂λi

)j
Eα,α(λit

α)

∣∣∣∣∣→ 0 for 1 ≤ j ≤ ni − 1. It follows that

||y(t)|| = ||y0t
α−1Eα,α(Atα)|| → 0 as t→∞,

for any non-zero initial value y0. Hence proof (i) is complete.

(ii) Suppose λi be a critical eigenvalue, satisfying | arg(λi)| =
απ

2
with same alge-

braic and geometric multiplicity equal to one. Now, from (4.1.5) the solution of the

given system is

y(t) = y0t
α−1Eα,α(Atα)

= y0t
α−1Qdiag[Eα,α(J1t

α), Eα,α(J2t
α), . . . , Eα,α(Ji−1t

α), Eα,α(Jit
α), Eα,α(Ji+1t

α),

. . . , Eα,α(Jnt
α)]Q−1,

where Jk
′s represent Jordan block matrices of order k, | arg(λk(A))| > απ

2
and∑i−1

k=1 nk +
∑r

k=i+1 nknk + 1 = n, k = 1, . . . , i − 1, i + 1, . . . , r. By using (4.0.3),

we have

Eα,α(λit
α) = 1

α
(λit

α)(1−α)/α exp((λit
α)1/α)−

p∑
k=2

(λit
α)−k

Γ(α− αk)
+O(|(λitα)|−1−p).

Suppose λi = r
(
cos απ

2
+ j sin απ

2

)
, where r represents the modulus of λi, and

j2 = −1. Now by some tedious calculations as we have done in Theorem(4.1.1),

we get

Eα,α(λit
α) =

1

α

(
r(1−α)/αt(1−α)

(
sin

απ

2
+ j cos

απ

2

))
exp

{
jr1/αt

}
−

p∑
k=2

(r−kt−αk(cos αkπ
2
− j sin αkπ

2
))

Γ(α− αk)
+O

(
(rt)−1−p) .
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Consequently

tα−1Eα,α(λit
α) = tα−1 1

α

(
r(1−α)/αt(1−α)

(
sin

απ

2
+ j cos

απ

2

))
exp

{
jr1/αt

}
− tα−1

p∑
k=2

(r−kt−αk(cos αkπ
2
− j sin αkπ

2
))

Γ(α− αk)
+ tα−1O

(
(rtα)−1−p)

=
1

α

(
r(1−α)/α

(
sin

απ

2
+ j cos

απ

2

))
exp

{
jr1/αt

}
−

tα−1

p∑
k=2

(r−kt−αk(cos αkπ
2
− j sin αkπ

2
))

Γ(α− αk)
+O

(
t−pα−1

)
,

which leads to
∣∣∣tα−1Eα,α(λit

α)
∣∣∣ → 1

α
r(1−α)/α, 1 ≥ ji ≥ ni − 1 as t → ∞. And

also from the proof of Theorem(4.1.2)(i), Eα,α(Jkt
α) → 0 as t → +∞ for k =

1, . . . , i− 1, i+ 1, . . . , r, we find that the 0-solution of the given system is stable but

not asymptotically stable.

Example 4.1.1.

0D
1
4
t


y1(t)

y2(t)

y3(t)

 =


−8 2 −3

−1 −2 0.5

0.2 −1 −2



y1(t)

y2(t)

y3(t)

 . (4.1.6)

Here y ∈ R3. The eigenvalues of matrix A are λ1,2 = −2.18378 ± 0.99799j, λ3 =

−7.63244. As it has found that | arg(λ1,2)| = 2.71293 and | arg(λ3)| = π such that

| arg(eig(A))| > 1
4
.π

2
, which satisfy the stability conditions given in Theorem 4.1.2.

Therefore the given system is stable.

Remark 4.1.2. The conclusion does not hold if the critical eigenvalues in Theorem

(4.1.2)(ii) are such that their algebraic multiplicities are greater then their geometric

multiplicities and the other conditions remain same.

Theorem 4.1.3. Suppose all the non-zero eigenvalues of A satisfy | arg(A(λ))| ≥
απ

2
, the critical eigenvalues having the same algebraic and geometric multiplicities,

satisfy | arg(A(λ))| =
displaystyleαπ

2
, and A has k-multiple zero eigenvalues corresponding to a Jordan

block matrix diag(J1, J2, . . . , Jni), where Jl is a Jordan canonical form with order nl,∑i
l=1 nl = k and nlα ≤ 1, 1 ≤ l ≤ i. Then, the 0-solution of the system (4.1.2) with

Riemann-Liouville derivative is stable but not asymptotically stable.
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Proof. If A has k-multiple simple zero eigenvalues, then

y(t) = y0t
α−1Qdiag

T. 1

Γ(α)
, . . . ,

1

Γ(α)︸ ︷︷ ︸
k

Q−1,

where T represents all the non-zero eigenvalues of matrix A and the expression

tα−1T is bounded as in part (ii) of (4.1.2) we have proved this. Thus in this case

the 0-solution is stable but not asymptotically stable.

Now we examine the Jordan canonical form relating to the k-multiple of zero

eigenvalues

1

j!

(
∂

∂λ

)j
Eα,α(λtα)|λ=0 =

1

j!

(
∂

∂λ

)j ∞∑
k=j

(λtα)k

Γ(αk + α)

∣∣∣∣
λ=0

=
1

j!

∞∑
k=j

tαk

Γ(αk + α)

(
∂

∂λ

)j
λk
∣∣∣∣
λ=0

=
∞∑
k=j

k(k − 1) · · · (k − j + 1)tαkλk−j

j!Γ(αk + α)

∣∣∣∣
λ=0

=
j(j − 1) · · · (j − j + 2)(j − j + 1)tαjλj−j

j!Γ(αj + α)

∣∣∣∣
λ=0

+

∞∑
k=j+1

k(k − 1) · · · (k − j + 1)tαkλk−j

j!Γ(αk + α)

∣∣∣∣
λ=0

=
j(j − 1) · · · 2.1tαjλ0

j!Γ(αj + α)

∣∣∣∣
λ=0

+
∞∑

k=j+1

k(k − 1) · · · (k − j + 1)tαk0k−j

j!Γ(αk + α)

=
j!tαj

j!Γ(αj + α)
=

tαj

Γ(αj + α)
.

The eigenvalue having multiplicity nl relates to the Jordan canonical block of order

nl × nl, 1 ≤ l ≤ i, in the following form

Jnl =


1

Γ(α)
tα

Γ(2α)
. . . t(nl−1)

Γ(nlα)

1
Γ(α)

. . .
...

. . . tα

Γ(2α)

1
Γ(α)


nl×nl

.
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Here t(α−1)Jnl for 1 ≤ l ≤ i, are bounded for t > t0 > 0 under the condition nlα ≤ 1.

So the 0-solution is stables but not asymptotically stable. Hence the proof of the

theorem is complete.

4.2 Stability Analysis of Perturbed Fractional Dif-

ferential System

The perturbed system of (4.1.2) with Riemann-Liouville derivative is given by

RL
0 Dαt y(t) = Ay(t) +B(t)y(t), (0 < α < 1). (4.2.1)

Here y(t) and A are the same as in system (4.1.2), the n × n matrix B(t) depends

on time t and has the initial condition as follows

RL
0 Dα−1

t y(t)|t=0 = y0. (4.2.2)

Theorem 4.2.1. (a) Suppose ||B(t)|| is bounded, i.e., ||B(t)|| ≤M for some M >

0, and all the eigenvalues of matrix A satisfy the inequality

| arg(λ(A))| > απ

2
. (4.2.3)

Then, the 0-solution of system (4.2.1) is asymptotically stable.

(b) Suppose matrix B(t) is bounded in [0, δ) for any small δ > 0, also B(t) ∈
L[0,+∞)n, all the eigenvalues of matrix A satisfy inequality

| arg(λ(A))| ≥ απ

2
(4.2.4)

and the critical eigenvalues having the same algebraic and geometric multiplic-

ities, satisfy | arg(λ(A))| = 0. Then the 0-solution of (4.2.1) is stable.

(c) Suppose all the non-zero eigenvalues of matrix A satisfy (4.2.3), the critical

eigenvalues satisfying | arg(λ(A))| = 0, have the same algebraic and geomet-

ric multiplicities, corresponding to a Jordan block matrix diag(J1, J2, . . . , Jni)

matrix A has k-multiple zero eigenvalues, where Jl is a Jordan canonical form
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with order nl,
∑i

l=1 nl = k and nlα ≤ 1, 1 ≤ l ≤ i, B(t) is bounded in [0, δ)

for any small δ > 0, and

||B(t)|| ≤ tω as t→ +∞, ω ≤ − min
1≤l≤nl

nlα, ω 6= −1,−2, . . . ,−m, . . .
Then the 0-solution of (4.2.1) is stable.

Proof. Taking Laplace transform of (4.2.1) as follows

sαY (s)−
n−1∑
k=0

sk[Dα−k−1y(t)]t=t0 = AY (s) +B(s)Y (s), (n− 1 ≤ α < n).

Using initial condition, we get

sαY (s)− y0 = AY (s) +B(s)Y (s)

(sα − A)Y (s) = y0 +B(s)Y (s)

Y (s) = (sα − A)−1y0 + (sα − A)−1B(s)Y (s)

Now, for solution of system taking inverse Laplace transform of the above equation

as follows

y(t) = y0t
α−1Eα,α(Atα) +

∫ t

0

(t− θ)α−1Eα,α(A(t− θ)α)B(θ)y(θ)dθ,

||y(t) = y0t
α−1Eα,α(Atα) +

∫ t

0

(t− θ)α−1Eα,α(A(t− θ)α)B(θ)y(θ)dθ||,

||y(t)|| ≤ ||y0t
α−1Eα,α(Atα)||+

∫ t

0

(t− θ)α−1||Eα,α(A(t− θ)α)|| · ||B(θ)|| · ||y(θ)||dθ.

(a) Since all the eigenvalues of A satisfy inequality (4.2.4). By using Gronwall

inequality we get

||y(t)|| ≤ ||y0t
α−1Eα,α(Atα)|| exp

{∫ t

0

||(t− θ)α−1Eα,α(A(t− θ)α)|| · ||B(θ)||dθ
}

= ||y0t
α−1Eα,α(Atα)|| exp

{∫ t

0

||θα−1Eα,α(Aθα)|| · ||B(t− θ)||dθ
}

≤ ||y0t
α−1Eα,α(Atα)|| exp

{∫ t

0

||θα−1Eα,α(Aθα)M ||dθ
}

≤ ||y0t
α−1Eα,α(Atα)|| exp

{
M

∫ t

0

||θα−1Eα,α(Aθα)||dθ
}

(since ||B(t)|| ≤M, so ||B(t− θ)|| ≤M.)

59



We first suppose that A is similar to Q which is a diagonal matrix, then∫ t

0

||θα−1Eα,α(Aθα)||dθ

=

∫ t

0

||Qdiag(θα−1Eα,α(λ1θ
α), θα−1Eα,α(λ2θ

α), . . . , θα−1Eα,α(λnθ
α))Q−1||dθ.

Now we shall show that ∃ a positive constant N such that∫ t

0

|θα−1Eα,α(λiθ
α)|dθ ≤ N, 1 ≤ i ≤ n.

For t > t0 > 0∫ t

0

|θα−1Eα,α(λiθ
α)|dθ

=

∫ t0

0

|θα−1Eα,α(λiθ
α)|dθ +

∫ t

t0

|θα−1Eα,α(λiθ
α)|dθ

=

∫ t0

0

|θα−1Eα,α(λiθ
α)|dθ +

∫ t

t0

∣∣∣∣θα−1

(
−

p∑
k=2

(λiθ
α)−k

Γ(α− αk)
+O(|(λiθα)|−1−p)

)∣∣∣∣dθ,(
using (4.0.4)

)
=

∫ t0

0

|θα−1Eα,α(λiθ
α)|dθ +

∫ t

t0

∣∣∣∣− p∑
k=2

λ−ki θ−kα+α−1

Γ(α− αk)
+O(|(λi|−1−pθ−α−αp+α−1)

∣∣∣∣dθ
≤
∫ t0

0

|θα−1||Eα,α(λiθ
α)|dθ +

∫ t

t0

{∣∣∣∣− p∑
k=2

λ−ki θ−kα+α−1

Γ(α− αk)

∣∣∣∣+ |O(|λi|−1−pθ−αp−1)|

}
dθ

=

∫ t0

0

|θα−1|Eα,α(|λi|θα)dθ +

∫ t

t0

p∑
k=2

|λi|−kθ−kα+α−1

|Γ(α− αk)|
dθ +

∫ t

t0

O(|λi|−1−pθ−αp−1)dθ

=
∞∑
k=0

|λi|k

Γ(αk + α)

∫ t0

0

θαk+α−1dθ +

p∑
k=2

|λi|−k

|Γ(α− αk)|

∫ t

t0

θ−kα+α−1dθ +O(|λi|−1−pt−αp)

=
∞∑
k=0

|λi|ktαk+α
0

(αk + α)Γ(αk + α)
+

p∑
k=2

|λi|−kt−kα+α

(−αk + α)|Γ(α− αk)|
−

p∑
k=2

|λi|−kt−kα+α
0

(−αk + α)|Γ(α− αk)|

+O(|λi|−1−pt−αp)

=
∞∑
k=0

|λi|ktαk+α
0

Γ(αk + α + 1)
+

p∑
k=2

|λi|−kt−kα+α

|Γ(α− αk + 1)|
−

p∑
k=2

|λi|−kt−kα+α
0

|Γ(α− αk + 1)|
+O(|λi|−1−pt−αp)

p∑
k=2

|λi|−kt−kα+α

|Γ(α− αk + 1)|
→ 0 and also O(|λi|−1−pt−αp)→ 0 as t→∞.
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Therefore

=
∞∑
k=0

|λi|ktαk+α
0

Γ(αk + α + 1)
−

p∑
k=2

|λi|−kt−kα+α
0

|Γ(α− αk + 1)|
≤ N as t→ +∞.

It directly follows that

∫ t

0

||θα−1Eα,α(Aθα)||dθ ≤ C1, for any t ≥ 0.

Next, we suppose that A is similar to Jordan form as in the proof of Theorem

(4.1.2)(i).

For t > t0 > 0, we have

∫ t

0

∣∣∣∣∣θα−1 1

j!

(
∂

∂λi

)j
Eα,α(λiθ

α)

∣∣∣∣∣dθ
=

∫ t0

0

∣∣∣∣∣θα−1 1

j!

(
∂

∂λi

)j
Eα,α(λiθ

α)

∣∣∣∣∣dθ +

∫ t

t0

∣∣∣∣∣θα−1 1

j!

(
∂

∂λi

)j
Eα,α(λiθ

α)

∣∣∣∣∣dθ
≤
∫ t0

0

∣∣∣∣∣θα−1 1

j!

(
∂

∂λi

)j ∞∑
k=0

(λiθ
α)k

Γ(αk + α)

∣∣∣∣∣dθ
+

∫ t

t0

∣∣∣∣∣θα−1 1

j!

(
∂

∂λi

)j {
−

p∑
k=2

(λiθ
α)−k

Γ(α− αk)
+O(|(λiθα)|−1−p)

}∣∣∣∣∣dθ
=

∫ t0

0

∞∑
k=0

k(k − 1) · · · (k − j + 1)|λi|k−jθαk+α−1

j!Γ(αk + α)
dθ

+

∫ t

t0

∣∣∣∣∣θα−1

{
−

p∑
k=2

(−k)(−k − 1) · · · (−k − j + 1)λ−k−ji θ−αk

j!Γ(α− αk)
+

O(|λi|−1−p−jθ−αp−α)

}∣∣∣∣∣dθ
≤

∞∑
k=0

k(k − 1) · · · (k − j + 1)|λi|k−j

j!Γ(αk + α)

∫ t0

0

θαk+α−1dθ

+

∫ t

t0

θα−1

{ p∑
k=2

|(−1)j|(k + j − 1) · · · (k)(k + 1)(k − 1)!|λi|−k−jθ−αk

j!(k − 1)!|Γ(α− αk)|

+O(|λi|−1−p−jθ−αp−α)

}
dθ
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=
∞∑
k=0

k(k − 1) · · · (k − j + 1)|λi|k−j

j!(αk + α)Γ(αk + α)
tαk+α
0

+

p∑
k=2

(k + j − 1)!|λi|−k−j

j!(k − 1)!|Γ(α− αk)|

∫ t

t0

θ−αk+α−1dθ +

∫ t

t0

O(|λi|−1−p−jθ−αp−1)dθ

=
∞∑
k=0

k(k − 1) · · · (k − j + 1)|λi|k−jtαk+α
0

j!Γ(αk + α + 1)

+

p∑
k=2

(k + j − 1)!|λi|−k−j

j!(k − 1)!(−αk + α)|Γ(α− αk)|
(
t−αk+α − t−αk+α

0

)
+O(|λi|−1−p−jθ−αp)dθ

= tα0
1

j!

(
∂

∂|λi|

)j
Eα,α+1(|λi|tα0 )

+

p∑
k=2

(k + j − 1)!|λi|−k−jt−αk+α

j!(k − 1)!|Γ(α− αk + 1)|
−

p∑
k=2

(k + j − 1)!|λi|−k−jt−αk+α
0

j!(k − 1)!|Γ(α− αk + 1)|

+O(|λi|−1−p−jθ−αp)dθ,

= tα0
1

j!

(
∂

∂|λi|

)j
Eα,α+1(|λi|tα0 )−

p∑
k=2

(k + j − 1)!|λi|−k−jt−αk+α
0

j!(k − 1)!|Γ(α− αk + 1)|
≤ C2 as t→ +∞,

where 1 ≤ j ≤ ni − 1. So exp
{
M
∫ t

0
||θα−1Eα,α(Aθα)||dθ

}
is bounded.

Also, we find that ||y0t
α−1Eα,α(Atα)|| → 0 as t → +∞. Thus, we have lim

t→+∞
= 0.

Thus part(a) of the Theorem (4.2.1) is completed.

(b) Without loss of generality we can assume the case when there exist one criti-

cal eigenvalue, say λi, satisfying | arg(λi)| = απ
2

with same algebraic and geometric

multiplicity both equal to one. We can see from the proof (ii) of Theorem(4.1.2),

that

|Eα,α(λit
α)| ≤ 1

α
|λi|(1−α)/αt1−α +O(t−2α) as t→ +∞,

which implies that

|tα−1Eα,α(λit
α)| ≤ 1

α
|λi|(1−α)/α +O(t−1−α) as t→ +∞.

So, it immediately follows that
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∫ t
0
|θα−1Eα,α(λiθ

α)| · ||B(t− θ)||dθ

=

∫ t

0

|θα−1Eα,α(λiθ
α)| · ||B(t− θ)||dθ +

∫ t

t0

|θα−1Eα,α(λiθ
α)| · ||B(t− θ)||dθ

≤
∫ t

0

|θα−1Eα,α(λiθ
α)| · ||B(t− θ)||dθ +

∫ t

t0

1

α
|λi|(α−1)/α · ||B(θ)||dθ

≤
∫ t

0

|θα−1Eα,α(λiθ
α)| · ||B(t− θ)||dθ +

1

α
|(λi|(α−1)/α

∫ t

t0

||B(θ)||dθ

So by the assumption on B(t), we get∫ t
0
|θα−1Eα,α(λiθ

α)| · ||B(t− θ)||dθ ≤ C3. By using Theorem (4.2.1)(a) and the proof

of Theorem (4.1.2)(ii), we obtain

||yt|| ≤ C4||y0||.
The proof of Theorem (4.2.1)(b) is complete.

(c) We shall discuss the case of only zero-eigenvalue, in view of (a) and (b) of

Theorem (4.2.1). Suppose that ∃ nl-multiple zero eigenvalues λl = 0. We find that∫ t
0
|θα−1Eα,α(λiθ

α)|λl=0 · ||B(t− θ)||dθ

=

∫ t0

0

|θα−1Eα,α(λiθ
α)|λl=0||B(t− θ)||dθ +

∫ t

t0

|θα−1Eα,α(λiθ
α)|λl=0||B(t− θ)||dθ

=

∫ t0

0

∣∣∣∣θα−1

∞∑
k=0

(λlθ
α)k

Γ(αk + α)

∣∣∣∣
λl=0

||B(t− θ)||dθ +

∫ t

t0

∣∣∣∣θα−1

∞∑
k=0

(λlθ
α)k

Γ(αk + α)

∣∣∣∣
λl=0

||B(t− θ)||dθ

=

∫ t0

0

θα−1

∞∑
k=0

|λl|kθαk

Γ(αk + α)

∣∣∣∣
λl=0

||B(t− θ)||dθ +

∫ t

t0

θα−1

∞∑
k=0

|λl|kθαk

Γ(αk + α)

∣∣∣∣
λl=0

||B(t− θ)||dθ

=

∫ t0

0

θα−1

{
1

Γ(α)
+
∞∑
k=1

|λl|kθαk

Γ(αk + α)

∣∣∣∣
λl=0

}
· ||B(t− θ)||dθ

+

∫ t

t0

θα−1

{
1

Γ(α)
+
∞∑
k=1

|λl|kθαk

Γ(αk + α)

}∣∣∣∣
λl=0

· ||B(t− θ)||dθ

=

∫ t0

0

1

Γ(α)
θα−1||B(t− θ)||dθ +

∫ t

t0

1

Γ(α)
θα−1||B(t− θ)||dθ

=
1

Γ(α)

(∫ t0

0

θα−1||B(t− θ)||dθ +

∫ t

t0

θα−1||B(t− θ)||

)
dθ

is bounded due to the assumptions on B(t). Also,
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∫ t

0

∣∣∣∣θα−1

j!

(
∂

∂λl

)j
Eα,α(λlθ

α)

∣∣∣∣
λl=0

||B(t− θ)||dθ

=

∫ t

0

∣∣∣∣θα−1

j!

(
∂

∂λl

)j ∞∑
k=0

λkl θ
αk

Γ(αk + α)

∣∣∣∣
λl=0

||B(t− θ)||dθ

=

∫ t

0

θα−1

j!

∞∑
k=0

(
∂

∂|λl|

)j |λl|kθαk
Γ(αk + α)

∣∣∣∣
λl=0

||B(t− θ)||dθ

=

∫ t

0

θα−1

j!

∞∑
k=0

k(k − 1) · · · (k − j + 1)|λl|k−jθαk

Γ(αk + α)

∣∣∣∣
λl=0

||B(t− θ)||dθ

=

∫ t

0

θα−1

j!

∞∑
k=0

k!|λl|k−jθαk

(k − j)!Γ(αk + α)

∣∣∣∣
λl=0

||B(t− θ)||dθ

=

∫ t

0

θα−1

j!

( j−1∑
k=0

k!|λl|k−jθαk

(k − j)!Γ(αk + α)
+

j!θαj

Γ(αj + α)

+
∞∑

k=j−1

k!|λl|k−jθαk

(k − j)!Γ(αk + α)

)∣∣∣∣
λl=0

· ||B(t− θ)||dθ.

For t > t0 > 0,∫ t

0

∣∣∣∣θα−1

j!

(
∂

∂λl

)j
Eα,α(λlθ

α)

∣∣∣∣
λl=0

||B(t− θ)||dθ

=
1

Γ(αj + α)

[ ∫ t0

0

θαj+α−1||B(t− θ)||dθ +

∫ t

t0

θαk+α−1||B(t− θ)||dθ
]

is also bounded due to the assumptions on B(t). Combining all these with the

proof of Theorem (4.1.3) and Theorem(4.2.1)(a)(b), we find that the zero solution

of (4.2.1) is stable. Thus, the proof is complete.
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Chapter 5

Stability of Ordinary and

Fractional Delay Differential

Equations

The earliest systematic study of delay differential equations was made by Myskis

[21] in Russia. An introductory concepts of the theory can be found in Elsgolts

and Norkin [9], and Bellman and Cooke [3]. Delay differential equations have their

applications in various fields of science such as physics, engineering economics, math-

ematical biology, statistics and social sciences. They also serve as modeling tools in

several different areas of applied mathematics that include the analyzes of age struc-

tured population growth, in the study of epidemics, traffic flow and also problems

based on the engineering of high-rise buildings for earthquake protection.

Here In this chapter we will discuss some basic concepts and definitions of delay

differential equations (ordinary and fractional). Also we will study the stability

behaviour of ordinary and fractional delay differential equations.

Definition 5.0.1. Functional differential equation

An equation is called a functional differential equation for an unknown function y,

if it involves the derivatives of the function y and also the function y, and possibly

its derivative(s) with various different arguments. Functional differential equations

are also known as differential equations with deviating arguments.
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A general first-order functional differential equation is as follows

ẏ(t) = f(t, y(t), y(u(t))). (5.0.1)

Delay differential equations, known as difference differential equations, are an

important class of differential equations called functional differential equations. In

the 18th century the delay differential equations were firstly introduced by Laplace

and Condorcet [11].

A general form of a delay differential equation for y(t) ∈ R is as follows

ẏ(t) = f(t, y(t), y(t− τ1), y(t− τ2), . . . , y(t− τk)); t ≥ t0, (5.0.2)

where the quantities τi, i = 1, 2, . . . , k, are known as delays(or time lags), they

may be constants, functions of time t i.e., τi(t), called ‘time-dependent delays’, or

functions that may depend on solution y(t) i.e., τi(t, y(t)), called ‘state-dependent

delay.’ The delay equations with delays of the derivatives are known as ‘neutral

delay differential equations’ (NDDEs).

5.1 Linearized Stability Analysis

An equilibrium point in the state space is a point for which y(t) = ȳ is a solution

for all t. Therefore for a DDE (5.0.2), the equilibrium point satisfy

f(ȳ, ȳ, ȳ, . . . , ȳ) = 0.

When we analyze the stability of the equilibrium point of ODDEs, we consider

that the system has been displaced through a small distance from the equilibrium.

For ODEs, the phase space is a finite dimensional coordinate space, so the concept

for the stability of the delay differential equations is same except the phase space,

in this case, is an infinite-dimensional function space. Therefore we assume the

displacements from equilibrium in infinite-dimensional function space such that our

displacements are time-dependent functions δy(t) continuing over an interval of at

least of the longest delay τmax.

Let ȳ be the equilibrium point of the delay equation (5.0.2), and consider that the

66



system has been disturbed from equilibrium by a small perturbation which lasts

from t = t0 − τmax to t0.
Let the displacement from equilibrium be δy(t), which we have assumed to be small,

taken at any time in open interval [t, τmax). So then

y = ȳ + δy,

and

ẏ = δẏ = f(ȳ + δy, ȳ + δy(t− τ1), ȳ + δy(t− τ2), . . . , , ȳ + δy(t− τk)).

Since the quantities δy, δy(t− τ1), δy(t− τ2, . . . , δy(t− τk) are small, so we can, by

using Taylor series method linearize the differential equation about the equilibrium

point as follows

δẏ ≈ J0δy(t)+J(t−τ1)δy(t−τ1)+J(t−τ2)δy(t−τ2)+· · ·+J(t−τk)δy(t−τk), (5.1.1)

where J0 is the Jacobian with respect to y calculated at the equilibrium point, while

the quantities J(t−τi) are the Jacobian matrices with respect to y(t−τi) calculated

at the equilibrium points y = y(t− τ1) = y(t− τ2) = · · · = y(t− τk) = ȳ.

For linear ordinary differential equations the exponential functions of time, in

which the exponents contain the eigenvalues of the Jacobian matrices, are the solu-

tions. Assume that the linear delay differential equation (5.1.1) also has solutions

as exponential functions, then we can write

δy(t) = Aeλt.

Using the above equation in (5.1.1), we get

λAeλt = J0Ae
λt + J(t− τ1)Aeλ(t−τ1) + J(t− τ2)Aeλ(t−τ2) + · · ·+ J(t− τk)Aeλ(t−τk)

= (J0 + J(t− τ1)e−λτ1 + J(t− τ2)e−λτ2 + · · ·+ J(t− τk)e−λτk)Aeλt

λAA−1 = J0 + J(t− τ1)e−λτ1 + J(t− τ2)e−λτ2 + · · ·+ J(t− τk)e−λτk ,

or

λI = J0 + J(t− τ1)e−λτ1 + J(t− τ2)e−λτ2 + · · ·+ J(t− τk)e−λτk .
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We know form linear algebra theory that this equation can only be satisfied by

non-zero amplitude A if,

|J0 + J(t− τ1)e−λτ1 + J(t− τ2)e−λτ2 + · · ·+ J(t− τk)e−λτk − λI| = 0, (5.1.2)

which is known as the characteristic equation of the equilibrium point. By expanding

the determinant, we will find the equations with polynomial parts which have some

terms in eλτi . These polynomials are called quasi-polynomials.

(a) The equilibrium point is stable, if all solutions of the characteristic equation

(5.1.2) have negative real parts.

(b) The equilibrium point is unstable, if any solution of the characteristic equation

(5.1.2) have positive real parts.

(c) No conclusion is obtained about the equilibrium point, if the leading values

are zero.

Example 5.1.1. Consider a delay differential equation as follows

ẏ = y(t− 1). (5.1.3)

As it is a single equation and also the matrices become scaler, so it would be fairly

simple. Here the delay τ = 1, the equilibrium point is clearly ȳ = 0 and, J0 = 0 and

J1 = −1 are the Jacobians.

As the determinant of a single number is that number itself, therefore we get the

characteristic equation (5.1.2) as

Y (λ) = e−λ + λ = 0. (5.1.4)

At λ = 0, Y (λ) has absolute minimum of 1, so no real solutions exist for the

characteristic equation (5.1.4).

Next to find the complex solutions, we write

λ = α + iβ, (5.1.5)
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where the real and imaginary parts of λ are, respectively, α and β. Substituting

(5.1.5) into (5.1.4), we get

e−(α+iβ) + (α + iβ) = 0,

or

e−αe−iβ + α + iβ = 0,

or

e−α(cos β − i sin β) + α + iβ = 0, (5.1.6)

α + e−α cos β + i(β + sin β) = 0.

Then

e−α cos β = −α, (5.1.7)

and

sin β = −β. (5.1.8)

Now we want to know that whether the equations (5.1.7) and (5.1.8) can have

solutions having positive values of the real part α. It is noted that the characteristic

values arise in complex-conjugate pairs. Therefore, if (α, β) is the solution of (5.1.6),

then so is (α,−β). Therefore we can restrict ourself only to positive values. Now

assume that there exist solutions with positive α. Then in (5.1.7) we must have

cos β < 0. So this means that β > π
2
, since cos β is positive for any other smaller,

positive values of β. On the other hand, if α > 0 then e−α < 1, and | sin β| < 1,

which implies that |β| < 1 from equation (5.1.8). This gives a contradiction, since β

cannot simultaneously be smaller in magnitude than 1 and larger than π
2
. Therefore

the equilibrium point is stable, as the characteristic value cannot have real part with

positive value.

5.2 Stability Analysis of Delay Differential Equa-

tion Using Sturm Sequences.

A stable equilibrium point can become unstable if, via increasing the length of delay,

the eigenvalues of the delay differential equation transform from having negative real
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parts to having positive real parts, and this happens only when they traverse the

imaginary axis.

5.2.1 Existence of Critical Delay

The characteristic equation of a delayed differential equation, at the equilibrium

point determine for τ = 0, has the following form

P (λ, τ) ≡ P1(λ) + P2(λ)e−λτ = 0, (5.2.1)

where τ is the time delay and P1 and P2 are the two polynomials in λ. Rewriting

(5.2.1) as
N∑
k=0

akλk + e−λτ
M∑
k=0

bkλk = 0.

And assume that in the absence of delay the equilibrium point is stable. Then for

τ = 0, all of the roots of the polynomial will have negative real part. These roots

will change if, τ varies. Here we are observing for any critical value of τ for which

a root of this equation changes from having negative real parts to having positive

real parts. If this is to happen, then at this critical value of τ , the characteristic

equation will have a purely imaginary root[9]. Now we are interested in determining

whether or not such a critical value of τ exist, by reducing the equation (5.2.1) to a

polynomial problem and then seeking for the particular types of roots.

We begin by considering a purely imaginary root iβ, β ∈ R, of equation (5.2.1),

P1(iβ) + e−iβτP2(iβ) = 0.

We can break the polynomial into real and imaginary parts and also write the

exponential in the form of trigonometric functions as follows

R1(β) + iQ1(β) + (R2(β) + iQ2(β))(cos(β)− i sin(β)) = 0. (5.2.2)

Since iβ is purely imaginary, so R1, R2 are even polynomials and Q1, Q2 are odd

polynomials. In order for equation (5.2.2) to hold, both the parts(real and imagi-

nary) must be zero such that

R1(β) +R2(β) cos(β) +Q2(β) sin(β) = 0,
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or

R2(β) cos(β) +Q2(β) sin(β) = −R1(β). (5.2.3)

And

Q1(β)−R2(β) sin(β) +Q2(β) cos(β) = 0,

or

R2(β) sin(β)−Q2(β) cos(β) = Q1(β). (5.2.4)

Squaring equations (5.2.3) and (5.2.4) and adding the results yields

R1(β)2 +Q1(β)2 = R2(β)2 +Q2(β)2, (5.2.5)

or

R1(β)2 +Q1(β)2 −R2(β)2 −Q2(β)2 = 0. (5.2.6)

This is a polynomial as there is no delay τ and no trigonometric terms. Also it

is an even polynomial because squaring an odd or an even function gives an even

function, i.e., f(−y)2 = (±f(y))2 = f(y)2.

A new variable is defined as γ = β2 ∈ R. Then equation (5.2.6) can becomes in

terms of γ as

S(γ) = 0, (5.2.7)

where S is a polynomial. Here we are interested in β ∈ R, and thus S has all of the

roots negative, we will have revealed that no simultaneous solution β∗ of equations.

(5.2.3) and (5.2.4) can be exist. Conversely, if polynomial S has a positive real root

γ∗, then there is a time delay τ corresponding to β∗ = ±
√
γ∗, which solve both the

equations (5.2.3) and (5.2.4).

Now we find the roots of the equation. (5.2.6). Taking λ = iβ, then we rewrite

(5.2.1) as

−P1(iβ)

P2(iβ)
= e−iβτ . (5.2.8)

As β varies, in the complex plane plotting the right-hand side traces out a unit circle

and the left-hand side yields a rational curve. By the intersection of these two curves

we obtain the critical delays for which we are looking. Thus finding the values of β,

for which the left-hand side of equation.(5.2.8) has modulus 1. This reproduces the

equation. (5.2.5) and the freely choose of τ ensures that for some τ ∗ the original

characteristic polynomial (5.2.1) is satisfied(see [10]).
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5.3 Positive Real Roots and Sturm Sequences

Once the polynomial (5.2.7) is obtain, we must determine whether any positive

real roots exist for this polynomial. To determine the root we might take many

different approaches, e.g., for a characteristic polynomial of degree two, a quadratic

formula is always used. There are also some explicit algorithms, for third and fourth

degree characteristic polynomials (see [15] or [17]). To determining the existence of

a positive real root, a simple method is “Descartes rule of signs is used. this method

gives “the number of sign changes in the coefficients is equal to the number of

positive real roots, modulo 2.” If odd time a sign changes, then the existence of a

solution is guaranteed. If a sign changes even time, then this rule is not helpful.

To this problem a more general approach is Sturm sequences. Suppose that p

is a polynomial with no repeated roots. Then the polynomial p and its derivative

Ṗ are relatively prime. Let p = p0 and p = p1, then by the division algorithm a

sequence of equations are obtained as follows

p0(y) = q0p1(y)− p2(y)

p1(y) = q1p2(y)− p3(y)

...

ps−2(y) = qs−2ps−1(y)−K.

Where K is some constants. The sequence p0, p1, p2, . . . , ps−1, ps(= K) of sturm

functions is called a sturm chain. In any interval, the number of real roots of p(y)

can be determined by putting each endpoint of that interval and in this way a

sequence of signs is obtained. In the sequence the difference between the number of

sign changes at each end point gives the number of real roots in the interval.

Example 5.3.1. Let p(y) = y2 − 2, then Ṗ = 2y. By division algorithm

y2 − 2 =
y

2
.2y − 2.

So y2 − 2, 2y, 2 is the sturm chain. We consider the interval [0,∞), then the sign

sequences will be

at 0 : −, 0,+, and
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at ∞ : +,+,+.

Since in the first sequence only one sign change occurs, while in the second sequence

there is no sign change, so the polynomial p(y) has one positive real root in [0,∞).

Similarly, if we take the interval [−3, 3], then the sign sequences will be

at − 3 : +,−,+, and

at 3 : +,+,+.

In the first sequence two sign changes and in the second no sign change are observed,

so we conclude that p(y) has two positive real roots in this interval.

5.4 Stability Analysis of Fractional Delay Differ-

ential Equations

The stability analysis of the time-delayed fractional differential is as important as

of fractional differential equations. Recently, Chen and Moore [7] analyzed the

stability of 1-dimensional fractional systems with retard time. Here in this section

we will review a result based on the stability of the following time-delayed fractional

differential system form the paper of Qian, Li, Agarwal and Wong [24].

Consider the following time-delayed fractional differential system involving mul-

tiple Riemann-Liouville derivative as follows

RL
0 D

α1
t y1(t) = a11y1(t− τ11) + a12y2(t− τ12) + · · ·+ a1nyn(t− τ1n),

RL
0 D

α2
t y2(t) = a21y1(t− τ21) + a22y2(t− τ22) + · · ·+ a2nyn(t− τ2n),

· · ·
RL
0 Dαnt yn(t) = an1y1(t− τn1) + an2y2(t− τn2) + · · ·+ annyn(t− τnn),

(5.4.1)

where αi ∈ (0, 1), i = 1, 2, · · ·n. The multiple fractional order of system (5.4.1) is

α = (α1, α2, · · ·αn). The initial condition is given by
Rl
0 D

αi−1
t yi(t) = φi(t) ∈ C0[−τmax, 0], 1 ≤ i ≤ n, where τmax = max

1≤ij≤n
τij.

But here we shall set

RL
t0
Dα−1
t y(t)|t=t0 = yi0, 1 ≤ i ≤ n.
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Laplace Transform of Time-Delayed Fractional Differential Equation

The Laplace transform of a time-delayed fractional differential equation is to be

taken in the same way as for the ordinary differential equation.

Consider the following equation

ẏ(t) = y(t− τ), t ≥ 0, (5.4.2)

with initial condition

y(t) = y0, t ∈ [−τ, 0]. (5.4.3)

Now taking the Laplace transform∫ ∞
0

e−stẏ(t)dt =

∫ ∞
0

e−sty(t− τ)dt, (5.4.4)

substituting t− τ = u i.e., t = u + τ , then dt = du, also when t→ 0, y → −τ and

when t→∞, y →∞ in the R.H.S of the above equation. Then

sY (s)− y0 =

∫ ∞
−τ

e−s(u+τ)y(u)du

= e−sτ
[ ∫ 0

−τ
e−suy(u)du+

∫ ∞
0

e−suy(u)du
]

= e−sτ
[
y0
e−su

−s

∣∣∣0
−τ

+ Y (s)
]

= e−sτ
[ y0

−s
(1− esτ ) + Y (s)

]
= y0

[1− e−sτ

s

]
+ s−sτY (s),

or

(s− s−sτ )Y (s)−
(1 + s− e−sτ

s

)
= 0.

Theorem 5.4.1. If all the roots of the characteristic equation det(∆(s)) = 0 have

negative real parts, then the 0-solution of the above system (5.4.1) is asymptotically

stable.

Proof. Taking Laplace transform of (5.4.1) and using initial condition, we get
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sα1Y1(s) + y10 = a11e
−sτ11

(
Y1(s) +

∫ 0

−τ11
e−sty1(t)dt

)
+ a12e

−sτ12
(
Y2(s)+∫ 0

−τ12
e−sty2(t)dt

)
+ · · ·+ a1ne

−sτ1n
(
Yn(s) +

∫ 0

−τ1n
e−styn(t)dt

)
,

sα2Y2(s) + y20 = a21e
−sτ21

(
Y1(s) +

∫ 0

−τ21
e−sty1(t)dt

)
+ a22e

−sτ12
(
Y2(s)+∫ 0

−τ22
e−sty2(t)dt

)
+ · · ·+ a2ne

−sτ2n
(
Yn(s) +

∫ 0

−τ2n
e−styn(t)dt

)
,

· · ·

sαnYn(s) + yn0 = an1e
−sτ1n

(
Y1(s) +

∫ 0

−τ1n
e−sty2(t)dt

)
+ a2ne

−sτ2n
(
Y2(s)∫ 0

−τ2n
e−sty2(t)dt

)
+ · · ·+ anne

−sτnn
(
Yn(s) +

∫ 0

−τnn
e−styn(t)dt

)
,

writing the above equations in the following form

∆(s)


Y1(s)

Y2(s)
...

Yn(s)

 =


b1(s)

b2(s)
...

bn(s)

 , (5.4.5)

where ∆(s) =


sα1 − a11e

−sτ11 −a12e
−sτ12 . . . −a1ne

−sτ1n

−a21e
−sτ21 sα2 − a22e

−sτ22 . . . −a2ne
−sτ2n

...
...

. . .
...

−an1e
−sτn1 −an2e

−sτn2 . . . sαn − anne−sτnn

 ,

and

b1(s) = a11e
−sτ11

∫ 0

−τ11
e−sty1(t)dt+ a12e

−sτ12
∫ 0

−τ12
e−sty2(t)dt

+ · · ·+ a1ne
−sτ1n

∫ 0

−τ1n
e−styn(t)dt+ y10
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b2(s) = a21e
−sτ21

∫ 0

−τ21
e−sty1(t)dt+ a22e

−sτ22
∫ 0

−τ22
e−sty2(t)dt

+ · · ·+ a2ne
−sτ2n

∫ 0

−τ2n
e−styn(t)dt+ y20

...

bn(s) = an1e
−sτn1

∫ 0

−τn1
e−sty1(t)dt+ an2e

−sτn2
∫ 0

−τn2
e−sty2(t)dt

+ · · ·+ anne
−sτnn

∫ 0

−τnn
e−styn(t)dt+ yn0.

Here ∆(s) is a characteristic matrix and det(∆(s)) is a characteristic polynomial of

system (5.4.1). From the distribution of the eigenvalues of det(∆(s)), we determine

the stability of system (5.4.1). Multiplying both sides of (5.4.5) with ’ s ’ gives

∆(s)


sY1(s)

sY2(s)
...

sYn(s)

 =


sb1(s)

sb2(s)
...

sbn(s)

 . (5.4.6)

We consider (5.4.6) in Re(s) ≥ 0, if the transcendental equation det(∆(s)) = 0 has

all roots lying in left half open complex plane, i.e, Re(s) < 0. In this limited area,

there exist a unique solution (sY1(s), sY2(s), . . . , sYn(s)) of (5.4.6). So, we then have

lim
s→0,Re≥0

sYi(s) = 0, i = 1, 2, . . . , n.

From the supposition of all roots of det(∆(s)) = 0 and the final-value theorem

of Laplace transform, we find lim
s→∞

yi(t) = lim
s→0,Re≥0

sYi(s) = 0, i = 1, 2, . . . , n. This

completes the proof of the theorem.

Remark 5.4.1. Suppose the Caputo derivative in place of the Riemann-Liouville

derivative in system (5.4.1) and all other assumed conditions remain the same, then

the conclusion of Theorem (5.4.1) still holds.
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