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Abstract

In this thesis we discuss the theory of delay differential equations. We have given

basic concepts and definition of delay differential equation. We have also pointed

out some major differences between delay and ordinary differential equations. The

elementary methods for solving delay differential equations i.e the method of steps

and the Laplace transform method have been discussed.

The oscillatory behavior of delay differential equation has been analyzed by con-

sidering the characteristic equation associated to the first order delay equation. Nec-

essary and sufficient conditions for the oscillation of all the solutions of the delay

differential equation have also been given in detail.

A brief account of the stability of delay differential equation is given, by which

stability of delay differential equation depends on the location of roots of the char-

acteristic function and the steady state is stable if and only if all the roots have

negative real parts. Then, we have also discussed the stability of delay differential

equation using Sturm sequences.
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Chapter 1

Introduction

In this chapter we have discussed some basic concepts and definition of delay

differential equation. We have also pointed out some major differences between delay

differential equations and ordinary differential equations. The elementary methods

for solving delay differential equations i.e the methods of steps and the Laplace

transform method has been illustrated. We have considered only first order delay

differential equation.

Definition 1.0.1. Functional differential equation

A functional differential equation (FDE) is an equation for an unknown function

which involves derivatives of the function and in which the function, and possi-

bly its derivative(s), occur with various different arguments. Functional differential

equations are also referred as differential equations with deviating arguments.

Example 1.0.2. The following are some examples of functional differential equa-

tions.

y′(t) = −y(t− π),

y′(t) = y(t)− y
( t

3

)
,

y′(t) = t3y(t)− y′(t− 1),

y′(t) = y(t)y(t− 1) + y(t+ 4),

y′(t) = −y′(t) + cos(y(t)) + y(t− 3) + y2(t− 5),

y′(t) = y2(t) +
( 5
π

)∫ ∞

0

e−s2y(t− s)ds.

Definition 1.0.3. Delay differential equation

A delay differential equation (DDE) is a functional differential equation where
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the highest order derivative only occurs with one value of the argument, and this

argument is not less than the arguments of the unknown function and its lower or-

der derivatives appearing in the equation. Such equations are also called retarded

functional differential equations (RFDE) or differential equations with retarded ar-

gument, or, in other words, an equation expressing some derivative of y at time t

in terms of y and its lower-order derivatives, if any, at t and at earlier instants, is

called a delay differential equation.

General form of delay differential equation is

y′(t) = f(t, y(t), y(t− τ1), y(t− τ2), ..., y(t− τk)),

where τi are known as delays or time lags, they might be constant functions τ(t)

of t called ‘time-dependent delays’, or functions τ(t, y(t)) called ‘state-dependent

delays’. Delay equations with delays of the derivatives are referred to as ‘neutral

delay differential equations’ (NDDEs). In this thesis, we have considered constant

delay. Some examples of DDEs are

y′(t) = −y(t− π),

y′(t) = −y′(t) + cos(y(t)) + y(t− 3) + y2(t− 5),

y′(t) = y2(t) +
( 5
π

)∫ ∞

0

e−s2y(t− s)ds.

Delay differential equations basically describe a physical process with an after

effect. Such equations appear when we consider a problem of force acting on a point

that depends on the velocity and position of the point not only at any given moment

but also at some moment proceeding the given moment. In the study of population

of species, it is more realistic to assume that the rate of change of the population at

time t is proportional not to the population at time t but to an earlier time t − τ .

For this purpose. delay models are becoming more common, and are appearing in

many branches of biological modeling.

Delay differential equations have their applications not only in physics, engi-

neering and mathematical biology but they also serve as useful tools in economics,

statistics and social sciences etc. They are often used as modeling tools in many

different areas of applied mathematics that include the study of age structured pop-

ulation growth, traffic flow, in the study of epidemics and also problems related to

the engineering of high-rise buildings for earthquake protection.

The first systematic study of delay differential equations was made in Russia by

Myskis [1]. An introductory account of the theory may be found in Elsgolts and
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Norkin [2], and Bellman and Cooke [3]. A comprehensive account of the oscillation

theory of the delay equations appears in Györi and Ladas [4].

When we discuss delay differential equations we adopt some of the terminologies

from ordinary differential equations, thus, the order of a delay differential equation

will mean the order of the highest derivative involved in the equation as in the case

for ordinary differential equation. Therefore

y′(t) = my(t) + ny(t− τ), (1.0.1)

and

y′(t) = −dy(t− 1) + [1− y(t)], (1.0.2)

are first order delay differential equation, and

ly′′(t) +my′(t) + ny′(t− τ) + py(t) = k(t), (1.0.3)

is second-order delay differential equation. Also the concept of linear and homoge-

neous equations is same in both ordinary and delay differential equation. Equations

(1.0.1) and (1.0.3) are linear whereas equation (1.0.2) is non-linear, and equation

(1.0.1) is homogeneous but equation (1.0.3) is nonhomogeneous. [5], [6].

1.1 Difference between ordinary and delay differ-

ential equation

The most obvious difference between ODE’s and DDE’s is the initial data, the

solution of an ODE is determined by its value at the initial point. For example if

we are given the slope of tangent at any point on a curve by

dy

dx
=

3

4
x2 + x− 3,

with initial point

y(0) = 2.

Using method of separation of variables, we have

y =
1

4
x3 +

x2

2
− 3x+ 2.

Thus, we can obtain a solution of an ODE with an initial condition. However to

solve a delay differential equation, one needs an initial history to obtain a solution.

Consider a delay differential equation of the form

y′(t) = f(t, y(t), y(t− τ1), y(t− τ2), ..., y(t− τk)),
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for t ∈ [a, b] with initial data y(0) = θ(t), t ≤ a.

A term y(t−τk) may represent values of the solution at points prior to the initial

point, for example to get a solution at t = a, we must have a solution at a− τj. We

can see that if, for example, T is the longest delay, the delay equation requires us

to provide the solution θ(t) for t ∈ [a − T, a]. Thus for the solution of DDEs one

must provide not just the initial point but also the “history” of the solution at the

time previous to the initial point. For further illustration consider an equation of

the form

y′(t) = f(t, y(t), y(t− τ1)).

For an ordinary differential system, a unique solution can be determined by an initial

point in Euclidean space at an initial time t0. But for a delay differential system, one

requires information on the whole interval [t0− τ, t0]. To know the rate of change at

t0, one needs y(t0) and y(t0− τ), and for y′(t0+ ϵ), one needs to know y(t0+ ϵ), and

y(t0 + ϵ − τ). So to solve a delay differential equation one needs to give an initial

history, the value y(t) for the interval [−τ, 0].

If we require that initial function to be continuous, then the space of solution

has the same dimensionality, and we can say that the delay differential equations

generates a system that is infinite dimensional. The characteristic equation of a

linear DDE with discrete delays of the form

y′(t) = A0y(t) + A1y(t− τ1) + ...+ Amy(t− τm),

is

det(−λI + A0 + A1e
−τ1λ + ...+ Ame

−τmλ) = 0.

Since the exponential is involved in the characteristic equation, the delay differential

equation has infinite number of eigen values, therefore an infinite dimensional system

is generated.

Consider an example

y′(t) = −y(t− 1),

the characteristic equation is

−λ+ e−λ = 0,
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there are infinite number of solutions to the equation for complex λ . Whereas for

a linear, homogenous, constant ordinary differential equations one has the solution

of the form

y(t) = eλt,

any root λ of the characteristic equation provides a solution. The above equation

has a finite number of roots. Thus an ODE generates a system that is finite dimen-

sional.

Delay differential equations also differ from ODEs in the manner that the deriva-

tive at any time depends on the solution at prior times which is not the case with

ODEs. In ODEs the effect of any change in the system is instantaneous, but in

DDEs the effect of any change is not instantaneous. A small delay can produce a

large effect in the solution when we are solving DDEs.

A first-order, linear, homogeneous delay differential equation with real coeffi-

cients can have a non-trivial oscillatory solution whereas for first-order ordinary

differential equation it may not be possible. Consider a scalar linear homogeneous

delay differential equation

y′(t) = c(t)y(t) + d(t)y(t− τ), (1.1.1)

where c and d are continuous real-valued functions on R and τ > 0 is a constant.

Equation (1.1.1) can have a non-trivial solution which is oscillatory , i.e. a solution

that can take both positive and negative values for arbitrarily large values of t. For

example, consider the equation

y′(t) = −y(t− π

2
), for t ≥ 0, (1.1.2)

with initial function

y(t) = sin(t), for
−π

2
≤ t < 0.

Simply y(t) = sin t is the solution of (1.1.2). Thus (1.1.2) has an oscillatory solution,

whereas for a first order initial value problem

y′(t) = −y(t),

with initial point

y(0) = 0,

we do not get an oscillatory solution. Its solution is

y(t) = e−t − 1. (1.1.3)
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Thus, the solution is obviously not oscillatory.

The solution of an initial value problem may not be unique whereas the presence

of a delay in a delay differential equation causes uniqueness of the solution. For

example, consider the first order differential equation

y′(t) = [y(t)]
3
4 , (1.1.4)

with initial point,

y(0) = 0.

Using method of separation of variables, we have

4[y(t)]
1
4 = t.

or

y(t) =
t4

256
,

is the solution of (1.1.4). Also, y(t) ≡ 0 is another solution of (1.1.4). Thus, the

solution is not unique.

Now, consider a first order delay differential equation,

y′(t) = [y(t− τ)]
3
4 , (1.1.5)

with initial function

y(t) = 1 + t, −τ ≤ t ≤ 0.

Integrating (1.1.5) w.r.t. t on the interval [0, 1], we have∫ t

0

y′(t)dt =

∫ t

0

[y(t− τ)]
3
4dt,

y(t) = y(0) +

∫ t

0

[y(t− τ)]
3
4dt,

= 1 +

∫ t

0

(1 + t− τ)
3
4dt,

= 1 +
4

7

[
(1 + t− τ)

7
4

] ∣∣∣t
0
,

y(t) = 1 +
4

7
t
7
4 . (1.1.6)
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Thus, we obtain a unique solution on the interval [0, 1]. Similarly, on the interval

[1, 2] by integrating (1.1.6) w.r.t. t, we have

y(t) = y(0) +

∫ t

1

[y(t− τ)]
3
4dt,

= 1 +

∫ t

1

[1 +
4

7
(t− τ)

7
4 ]dt,

= 1 + [ t ]
∣∣∣t
1
+

16

77

[
(t− τ)

11
4

] ∣∣∣t
1
,

= 1 + (t− 1) +
16

77
[(t− τ)

11
4 − (1− τ)

11
4 ],

y(t) = t+
16

77
(t− 1)

11
4 .

Thus, we again obtain a unique solution in the interval [1, 2]. Similarly for a

first order delay differential equation we obtain a unique solution in each interval.

Sometimes the solution of ordinary differential equation can have unpredictable

endings, for example consider an ordinary differential equation

y′(t) = 1 + y2(t), (1.1.7)

with initial point y(0) = 1.

Using the method of separation of variables, we obtain∫
dy

1 + y2(t)
=

∫
dt,

tan−1 y(t) = t+ c1,

as y(0) = 1 so, c1 =
π
4
. We have

tan−1 y(t) = t+
π

4
,

or

y(t) = tan(t+
π

4
).

This solution is unique on −3π
4

< t < π
4
. Further it cannot be continued beyond

t = π
4
and t = −3π

4
, this was completely unpredictable from the differential equa-

tion (1.1.7). This kind of unpredictable endings can be obtained from differential

equation whereas for a delay differential equation

y′(t) = 1 + y2(t− τ), t ≥ 0,

with initial function

y(t) = θ(t), −τ ≤ t ≤ 0,

the solution exists for [0,∞).
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1.2 Elementary methods for solving delay differ-

ential equations.

Some of the elementary methods for solving delay differential equations includes,

the method of steps, and the Laplace Transform.

1.2.1 The method of steps.

The most common method used to solve delay differential equations is known as the

method of steps. In this method any delay differential equation is converted to an

ordinary differential equation over a given interval by using the initial data and this

processes is repeated over the next interval where the previous solution serves as an

initial data. We will explain this process by considering the following example. [5]

Example 1.2.1. Consider a simple delay differential equation

y′(t) = −y(t− 1), (1.2.1)

with initial function

y(t) = 1, for t ∈ [−1, 0].

By integrating both sides of (1.2.1) from 0 to t w.r.t. t, on the interval [0, 1], we

have ∫ t

0

y′(t)dt = −
∫ t

0

y(t− 1)dt,

y(t)− y(0) = −
∫ t

0

y(t− 1)dt,

y(t) = y(0)−
∫ t

0

y(t− 1)dt, y(t) = 1−
∫ t

0

dt,

or

y(t) = 1− t.
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For the next step, y(t) = 1− t serves as initial data, for 1 ≤ t ≤ 2, we have

y(t) = −
∫ t

1

[1− (t− 1)]dt,

= −
∫ t

1

(2− t)dt,

= −
[
2t− 1

2
t2
] ∣∣∣t

1
,

= −
[
2t− 1

2
t2 − 3

2

]
,

y(t) =
1

2
t2 − 2t+

3

2
.

Next y(t) = 1
2
t2−2t+ 3

2
, serves as the initial function, so on the interval [2, 3], we have

y(t) =
[
− 2(2) +

1

2
(2)2 +

3

2

]
−
∫ t

2

[−2(t− 1) +
1

2
(t− 1)2 +

3

2
]dt,

=
[
− 4 +

4

2
+

3

2

]
−
∫ t

2

[
− 2(t− 1) +

1

2
(t− 1) +

3

2

]
dt,

= −1

2
−

[
− 2(t− 1)2

2
+

(t− 1)3

6
+

3

2
t
] ∣∣∣t

2
,

=
5

3
+ (t− 1)2 − 1

6
(t− 1)3 − 3

2
t,

y(t) =
17

6
− 4t+

3

2
t2 − t3

6
.

Similarly further using mathematica, we have

for 3 ≤ t ≤ 4,

y(t) =
149

24
− 17

2
t+

15

4
t2 − 2

3
t3 +

t4

24
,

for 4 ≤ t ≤ 5,

y(t) =
1769

120
− 115

6
t+

109

12
t2 − 2t3 +

5

24
t4 − t5

120
,

for 5 ≤ t ≤ 6,

y(t) =
26239

720
− 1085

24
t+

1061

48
t2 − 197

36
t3 +

35

48
t4 − t5

20
+

t6

720
,

for 6 ≤ t ≤ 7,

y(t) =
463609

5040
− 13201

120
t+

13081

240
t2 − 521

36
t3 +

107

48
t4 − t5

5
+

7

720
t6 − t7

5040
,
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for 7 ≤ t ≤ 8,

y(t) =
3157891

13440
− 39371

144
t+

39227

288
t2 − 27227

720
t3 +

3685

576
t4 − 487

720
t5 +

7

160
t6

− t7

630
+

t8

40320
,

for 8 ≤ t ≤ 9,

y(t) =
43896157

2576
− 1158379

1680
t+

1156699

3360
t2 − 212753

2160
t3 +

51193

2880
t4 − 1511

720
t5

+
701

4320
t6 − t7

126
+

t8

4480
− t9

362880
.

2 4 6 8
t

-0.4

-0.2

0.2

0.4

0.6

0.8

1.0

y

Figure 1.1: The graph of the solution of y′(t) = −y(t− 1), on the interval [0, 9].

1.2.2 The Laplace transform.

For Laplace the method of solution is same as for the ordinary differential equation.

That is, we first take the transform of the equation and also do some calculations

and then take the inverse transform. [7].

Example 1.2.2. Consider a delay differential equation

y′(t) = −y(t− 1), (1.2.2)

with initial data

y(t) = 1, for t ∈ [−1, 0].

Multiplying both sides of (1.2.2) with e−st and integrating from 0 to ∞ with respect

to t, we get ∫ ∞

0

e−sty′(t)dt = −
∫ ∞

0

e−sty(t− 1)dt,
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∫ ∞

0

e−sty′(t)dt+

∫ ∞

0

e−sty(t− 1)dt = 0. (1.2.3)

As for a function y(x) defined for t ≥ 0 the laplace transform is given by

L{y(x)} =

∫ ∞

0

e−sxy(x)dx = Y (s).

Also, the Laplace transform of a function y′(t) for t ≥ 0 is comes out as

L{y(t)} =

∫ ∞

0

e−sty′(t)dt = sY (s)− y0.

So, the Laplace transform of the first integral in equation (1.2.3) would be∫ ∞

0

e−sty′(t)dt = sY (s)− 1.

Now, consider the second integral in equation (1.2.3)∫ ∞

0

e−sty(t− 1)dt.

Let us substitute x = t− 1, i.e t = x + 1, then dt = dx when t → 0, x → −1 and

when t → ∞, x → ∞. Therefore, we have

∫ ∞

−1

e−s(x+1)y(x)dx =

∫ 0

−1

e−s(x+1)y(x)dx+

∫ ∞

0

e−s(x+1)y(x)dx,

= e−s

∫ 0

−1

e−sxy(x)dx+ e−s

∫ ∞

0

e−sxy(x)dx,

= e−s

∫ 0

−1

e−sxdx+ e−s

∫ ∞

0

e−sxy(x)dx,

= e−s
[e−sx

−s

] ∣∣∣0
−1

+ e−sY (s),

= e−s
[1− e−s

−s

]
+ e−sY (s),

=
[e−s − 1

−s

]
+ e−sY (s).

Therefore, we have∫ ∞

0

e−sty′(t)dt+

∫ ∞

0

e−sty(t− 1)dt = sY (s)− 1 +
[e−s − 1

−s

]
+ e−sY (s) = 0.

Solving it for Y(s)

sY (s)− 1 +
[e−s − 1

−s

]
+ e−sY (s) = 0,

(s+ e−s)Y (s)−
[s+ e−s − 1

s

]
= 0,

(s+ e−s)Y (s) =
s+ e−s − 1

s
,

11



or

Y (s) =
s+ e−s − 1

s(s+ e−s)
,

=
s+ e−s

s(s+ e−s)
− 1

s(s+ e−s)
,

Y (s) =
1

s
− 1

s(s+ e−s)
.

This Y (s) can be expanded as

Y (s) =
1

s
−

∞∑
k=0

(−1)k e−kss−k−2,

then taking inverse Laplace transform we get

y(t) =
∞∑
k=0

(−1)k
(t− k + 1)k

k!
.

Numerical methods are also used to solve delay differential equations. Mostly

the methods used for ordinary differential equations are extended to solve delay dif-

ferential equations. The most common method is “Explicit Runge Kutta method”,

and it uses the same idea as for the methods of steps, it reduces the DDE into an

ODE and then it can be easily solved. Matlab code “dde23” also uses the same

technique, it extends the Matlab ODE solver “ode223” to determine the solution of

the DDE.

Note: The work presented in this thesis is a review of some of the material

provided in Ordinary and Delay Differential Equations by R. D. Driver [5], Oscil-

lation Theory of Delay Differential Equations by I. Gyori and G. Ladas [10], and

Delay Differential Equation Models in Mathematical Biology by Jonathan Erwin

Forde [13].
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Chapter 2

Oscillation behavior of delay

differential equations

In this chapter, we will discuss the periodic and bounded solution of delay differ-

ential equation and also give the necessary and sufficient conditions for oscillation of

all solutions of delay differential equations. Firstly, we will look at the characteristic

equation for the delay differential equation.

Definition 2.0.3. (Characteristics equation) Consider a first order delay differ-

ential equation

y′(t) +
n∑

i=1

miy(t− τi) = 0, (2.0.1)

where mi and τi are constants.

Let

y(t) = eλt,

be a solution of (2.0.1). When we substitute y(t) = eλt in (2.0.1) we get

λeλt +
n∑

i=1

mie
λ(t−τi) = 0,

eλt
(
λ+

n∑
i=1

mie
−λτi

)
= 0.

As eλt ̸= 0 so

λ+
n∑

i=1

mie
−λτi = 0, (2.0.2)

which is said to be the characteristics equation associated with the delay differential

equation (2.0.1). The nature of solutions of (2.0.1) depends on the roots of the

characteristics equation (2.0.2).
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2.1 Periodic and bounded solutions of a delay dif-

ferential equation.

Consider a delay differential equation

y′(t) +my(t− τ) = 0, (2.1.1)

where m, τ ∈ R+. We will obtain conditions for the existence of a periodic solu-

tion and a condition for all solutions to be bounded. The characteristic equation

corresponding to (2.1.1) is

λ+me−λτ = 0. (2.1.2)

Let λ = α + iβ be a root, then from above equation, we have

α+ iβ +me−(α+iβ)τ = 0.

Equating the real and imaginary parts to zero gives

α +me−ατ cos βτ = 0,

β −me−ατ sin βτ = 0,

or

α = −me−ατ cos βτ, (2.1.3)

β = me−ατ sin βτ. (2.1.4)

Dividing (2.1.4) by (2.1.3), we get

β

α
= − tan βτ,

or

α = −β cot βτ. (2.1.5)

Substituting (2.1.5) in (2.1.4), we get

β = meβ cotβτ sin βτ.

Let b = βτ then above equation becomes

b

τ
= meb cot b sin b,

or

mτ =
b

sin b
e−b cot b. (2.1.6)
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A periodic solution corresponds to α = 0. If λ = iβ in (2.1.2), we get

iβ +meiβτ = 0,

or

iβ = −meiβτ .

On taking the absolute value, we get

|β| = m. (2.1.7)

We consider only positive β because the roots occur in conjugate pairs α± iβ. Also

m > 0 and τ > 0. Therefore, for a periodic solution

β = m. (2.1.8)

If α = 0 in (2.1.3), then it becomes

cos βτ = 0,

which gives

βτ =
π

2
,
3π

2
,
5π

2
, · · · .

From (2.1.4), we see that

mτ =
3π

2
,
7π

2
, · · · .

Will give β = −m, which is a contradiction to (2.1.8). Hence, such values are

excluded and

βτ =
π

2
,
5π

2
,
9π

2
, · · · ,

or

βτ = (4n+ 1)
π

2
, n = 0, 1, 2, · · · .

Thus, a periodic solution of (2.1.1) will exist if and only if

τ = (4n+ 1)
π

2β
= (4n+ 1)

π

2m
. (2.1.9)

This means the equation

y′(t) +my
(
t− (4n+ 1)π

2m

)
= 0, (2.1.10)

has a periodic solution cos(mt) or sin(mt). Thus, we have found that the condition

for the existence of a periodic solution of (2.1.1) is that (2.1.9) holds i.e.

τm =
(4n+ 1)π

2
.
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Now, we will find a condition for the solution of (2.1.1) to be bounded. For this,

let

f(b) =
b

sin b
e−b cot b.

We see that

f(0+) =
1

e
.

Also, when b > 0, f(b) increases such that f(π
2
) = (π

2
) and f(π−) → ∞. There

are infinite branches of the function

f(b) =
be−b cot b

sin b
.

Let c = mτ , (2.1.6) becomes

c = f(b). (2.1.11)

If mτ < 1
e
, then the line y = mτ will not intersect the first positive branch but

it will intersect all other positive branches. We see that there are always infinite

roots of the equation c = f(b) because, no matter what c is, the line y = c will

intersect infinite number of branches. This shows that the characteristic equation

has infinitely many complex roots.

Π

2
Π

3 Π

2
2 Π

5 Π

2
3 Π

7 Π

2
4 Π

9 Π

2
5 Π

11 Π

2
6 Π

13 Π

2
7 Π

b

-1

1

1

ã

2

-2

f

Figure 2.1: Graph of f(b) = be−bcotb

sinb

Let mτ < π
2
. The line y = mτ will intersect the branches in such a way that

for the first root 0 < b1 < π
2
, for the second root 2π < b2 < 5π

2
, for the third root

4π < b3 < 9π
2

and so on. From (2.1.3), we see that for all these values of b = βτ

we get a negative α. Thus we find that all roots of the characteristic equation will

have negative real part if and only if mτ < π
2
. This means all solutions of (2.1.1) are

bounded if and only if mτ < π
2
. Let mτ = π

2
, then a periodic solution exists. Let

π
2
< mτ < 5π

2
, label roots of (2.1.11) as b1, b2, · · · . Then, π

2
< b1 < π, 2π < b2 <

5π
2
,
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4π < b3 <
9π
2
and so on.

The real part of the first root will be positive and real part of all other roots will

be negative. The solution corresponding to the first root will be unbounded while

other solutions will be bounded. Since, a solution to a problem, where an arbitrary

initial function is specified will in general be a series containing all the solutions,

including the first one mentioned above, such a solution will be unbounded on [0,∞).

Thus, we can say that all solutions of (2.1.1) are bounded if and only if mτ ≤ π
2
. [8]

Definition 2.1.1. (Oscillatory solution) A nontrivial solution y is said to be

oscillatory if it has arbitrarily large zeros for t ≥ t0, that is there exists a sequence

of zeros {tn} (that is y(tn) = 0) of y such that limn→∞ tn = ∞. Otherwise, y is said

to be non oscillatory.

Definition 2.1.2. (Autonomous equation) Consider a scalar delay differential

equation

y′(t) +
n∑

i=1

miy(t− τi) = 0, (2.1.12)

where mi and τi are positive constants for i = 1, 2, · · · , n. The equation in which

the delays τi and the coefficients mi are constants is called autonomous equation as

in (2.1.12). Otherwise, it is called non-autonomous equations.

Definition 2.1.3. (Laplace transform) Let y : [0,∞) → R be a real-valued

function. The Laplace transform of y(t) denoted by Y (s) is given by the improper

integral

Y (s) =

∫ ∞

0

e−sty(t)dt. (2.1.13)

The Laplace transform of a function y′(t) for t ≥ 0 is

L{y(t)} =

∫ ∞

0

e−sty′(t)dt = sY (s)− y0. (2.1.14)

Similarly, the Laplace transform of y(t− τ) is given by

L{y(t− τ)} =

∫ ∞

0

e−sty(t− τ)dt = e−stY (s) + e−st

∫ 0

−τ

e−sty(t)dt. (2.1.15)

Definition 2.1.4. (Abscissa of convergence) For given function y(t), the integral

in (2.1.13) can behave in one of the following three ways,

(a) it converges for all complex numbers s;

(b) it diverges for all complex numbers s;

(c) there exists a real number such that the integral (2.1.13) converges for all s with

17



Re s > ξ0 and diverges for all s with Re s ≤ ξ0.

When (c) holds, the number ‘ξ0’ is known as the abscissa of convergence of Y (s).

When (a) holds, the abscissa of convergence of Y (s) is ξ0 = −∞, and if (b) holds

then the abscissa of convergence of Y (s) is ξ0 = +∞.

For example, the abscissa of convergence of Laplace transform of the functions

e−t2 , e3t and et
2
are −∞, 3 and +∞ respectively.

Definition 2.1.5. (Entire function) If a function g(z) has a representation of the

form

g(z) =
∞∑
k=0

akz
k, valid for |z| < ∞.

Then g(z) is called an entire function. An entire function g(z) is analytic on the

whole complex plane.

2.2 Necessary and sufficient conditions for oscil-

lation.

Our first aim is to establish a fundamental result concerning oscillation of all

solutions of the delay differential equation (2.0.1), for which we first state some

basic lemmas and theorems which will be useful to prove the fundamental result.

Lemma 2.2.1. Let y ∈ C [[0,∞),R] and suppose that there exist positive constant

N and µ such that

|y(t)| ≤ Neµt, for t ≥ 0.

Then the abscissa of convergence ξ0 of the Laplace transform Y (s) of y(t) satisfies,

ξ0 ≤ µ.

Furthermore, Y (s) exists and it is an analytic function of s for Re s > ξ0.

Proof. For proof see [9].

Theorem 2.2.2. Let y ∈ C [[0,∞),R+], and let us assume that abscissa of conver-

gence ξ0 of the Laplace transform Y (s) of y(t) is finite. Then, Y (s) has a singularity

at the point s = ξ0.

Proof. If ξ0 is the abscissa of convergence , then there must be a singularity on the

boundary of the region of convergence Re s < ξ0. Thus, there is a singularity on the

line Re s = ξ0.
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Suppose the singularity nearest to the origin is not (ξ0, 0) but some other point

(ξ0, η0), η0 ̸= 0 , then Y (s) will be analytic in the disk | z |<
√
ξ20 + η20 which implies

its analyticity at points to the left of the abscissa of convergence which is false.

Hence Y (s) must have a singularity at the point s = ξ0.

Now, we will establish the fundamental result concerning oscillation of all solu-

tions of the delay differential equation (2.0.1).

Theorem 2.2.3. Consider a linear autonomous delay differential equation

y′(t) +
n∑

i=1

miy(t− τi) = 0, (2.2.1)

where the coefficients mi are real numbers and τi are non-negative real numbers, for

i = 1, 2, 3, ..., n.

The characteristic equation corresponding to (2.2.1) is

λ+
n∑

i=1

mie
−λτi = 0. (2.2.2)

Then the following statements are equivalent,

(a) Every solution of (2.2.1) oscillates.

(b) Equation (2.2.2) has no real root.

Proof. (a) ⇒ (b) If the characteristic equation (2.2.2) has a real root λ0 then eλ0t

is non-oscillatory solution of (2.2.1).

(b) ⇒ (a) Let us assume a contradiction, that (b) holds and equation (2.2.1) has

an eventually positive solution y(t). As equation (2.2.1) is autonomous, we may

assume that,

y(t) > 0, for t ≥ −τ, where τ = max
1≤i≤n

τi.

Clearly τ > 0, or otherwise equation (2.2.2) has a real root. We know by Lemma

2.2.1 that there exist constants N and µ such that

|y(t)| ≤ Neµt, t ≥ −τ.

Thus, the Laplace transform

Y (s) =

∫ ∞

0

e−sty(t)dt, (2.2.3)
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exists forRe s > µ. Let ξ0 be the abscissa of convergence of Y (s), ξ0 = inf ξ ∈ R : Y (ξ)

exists. Then, for any i = 1, 2, ..., n, the Laplace transform of y(t− τ) exists and has

abscissa of convergence ξ0. As we know∫ ∞

0

e−sty′(t)dt = sY (s)− y(0), Re s > ξ0,

and for i = 1, 2, ..., n.∫ ∞

0

e−sty(t− τi)dt = e−sτiY (s) + e−sτi

∫ 0

−τi

e−sty(t)dt, Re s > ξ0.

Therefore by taking Laplace transform of both sides of equation (2.2.1), we have

y′(t) +
n∑

i=1

miy(t− τi) = 0,

∫ ∞

0

e−sty′(t)dt+
n∑

i=1

mi

∫ ∞

0

e−sty(t− τi)dt = 0,

sY (s)− y(0) +
n∑

i=1

mi

[
e−sτiY (s) + e−sτi

∫ 0

−τi

e−sty(t)dt
]
= 0,

Y (s)
[
s+

n∑
i=1

mie
−sτi

]
= y(0)−

n∑
i=1

mie
−sτi

∫ 0

−τi

e−sty(t)dt. (2.2.4)

Let

s+
n∑

i=1

mie
−sτi = G(s). (2.2.5)

y(0)−
n∑

i=1

mie
−sτi

∫ 0

−τi

e−sty(t)dt = H(s). (2.2.6)

whereG(s) andH(s) are clearly entire functions. Therefore equation (2.2.4) becomes

G(s)Y (s) = H(s), Re s > ξ0, (2.2.7)

also by (b), G(s) ̸= 0 for all real s. It follows from equation (2.2.7) that

Y (s) =
H(s)

G(s)
, Re s > ξ0. (2.2.8)

We now claim that ξ0 = −∞, otherwise ξ0 > −∞ and by Theorem 2.2.2 the

point s = ξ0 must be a singularity of the quotient H(s)
G(s)

. But this quotient has no

singularity on the real axis, since the numerator and denominator are entire functions

and by hypothesis the denominator has no real zeros. Thus ξ0 = −∞ and equation

(2.2.8) becomes

Y (s) =
H(s)

G(s)
, for all s ∈ R. (2.2.9)
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We now see that as s → −∞ through real values, equation (2.2.9) leads to

a contradiction because Y (s) and G(s) are always positive while H(s) becomes

eventually negative. The positivity of Y (s) follows from equation (2.2.3) and the

fact that y(t) > 0 for t > 0. The positivity of G(s) follows from equation (2.2.5) and

the fact that G(∞) = ∞ and the characteristic equation has no real roots. Without

loss of generality, we suppose that the delays in equation (2.2.1) are distinct and the

coefficients mi are not zero. Let τi0 be the maximum delay in equation (2.2.1), then

the corresponding coefficients mi0 > 0, for otherwise

lim
s→−∞

G(s) = −∞,

and the dominant term in equation (2.2.6) as s → −∞ , is mi0e
−sτi0 . We apply the

mean value theorem for integrals to∫ 0

−τi0

e−sty(t)dt.

Here e−st > 0 on [−τi, 0] and y(t) ∈ C[−τi, 0]. Therefore, for some c ∈ [−τi, 0)∫ 0

−τi0

e−sty(t)dt = y(c)

∫ 0

−τi0

e−stdt,

= −1

s
y(c)[1− esτi ].

Now, equation (2.2.6) becomes

H(s) = y(0)− y(c)

s

n∑
i=1

mi + y(c)
n∑

i=1

mis
−sτi

s
.

Clearly

lim
s→−∞

H(s) = −∞.

This completes the proof. [4]

Theorem 2.2.4. (A sufficient condition for oscillation)

Let

mi, τi ≥ 0, for i = 1, 2, ..., n.

Then
n∑

i=1

miτi >
1

e
, (2.2.10)

is sufficient for the oscillation of all the solutions of the delay equation

y′(t) +
n∑

i=1

miy(t− τi) = 0. (2.2.11)
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Proof. The characteristic equation corresponding to (2.2.11) is

λ+
n∑

i=1

mie
−λτi = 0. (2.2.12)

Consider the inequality,

ey ≥ ey, for y ≥ 0.

We will make use of above to prove the required result. We see that for λ < 0

λ+
n∑

i=1

mie
−λτi ≥ λ+

n∑
i=1

mi(−λτi)e = −λe
(
− 1

e
+

n∑
i=1

miτi

)
> 0

which shows that (2.2.12) has no negative roots. As equation (2.2.12) has no roots

in R+ either, by Theorem 2.2.3 all solutions of equation (2.2.11) oscillates. This

completes the proof. [10].

Theorem 2.2.5. (A necessary condition for oscillation)

Consider a delay differential equation

y′(t) +my(t− τ)− ny(t− σ) = 0, (2.2.13)

where m,n, τ, σ ∈ R+, τ ≥ σ and p > q. Then all solutions of (2.2.13) are oscillating

if

mτ − nσ >
1

e
.

Proof. The characteristic equation corresponding to (2.2.13) is

y +me−τy − ne−σy = 0.

Let

f(y) = y +me−τy − ne−σy = 0,

and assume that mτ − nσ = 1
e
. Since

f(0) = 0 +me0 − ne0,

or

f(0) = m− n > 0,

because m > n, and

f(−1

τ
) = −1

τ
+me−τ(− 1

τ
) − ne−σ(− 1

τ
),

= −1

τ
+me− ne

σ
τ ,
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f(−1

τ
) =

−1 +meτ

τ
− ne

σ
τ . (2.2.14)

As we assumed that

mτ − nσ =
1

e
,

or

mτe− nσe = 1,

or

mτe = 1− nσe.

Therefore (2.2.14) becomes

f(−1

τ
) =

−1 +meτ

τ
− ne

σ
τ ,

=
−1 + 1 + neσ

τ
− ne

σ
τ ,

f(−1

τ
) = n[

eσ

τ
− e

σ
τ ] ≤ 0,

because mτ − nσ = 1
e
and τ ≥ σ. Hence, f has a zero in [− 1

τ
, 0). Now assume that

mτ − nσ < 1
e
. If nσ = 0, then, n = 0 is trivial, since it is covered by Theorem 2.2.4.

If σ = 0,

f(0) = m− n > 0,

f(−1

τ
) =

−1 +meτ

τ
− ne

σ
τ ,

<
−1 + 1

τ
− n,

= −n,

because nσ = 0. Thus

f(−1

τ
) < 0.

Now, let nσ > 0 and let us define k = nσe then there exists an ε > 0 such that

mτ − nσ =
1− kε

e
<

1− ε

e
,

because of the assumption mτ −nσ < 1
e
without the loss of generality, we let ε < k.

Thus

mτ − nσ <
1− ε

e
,

mτ < nσ +
1− ε

e
,

mτ <
k

e
+

1− ε

e
,

=
k + 1− ε

e
(as nσe = k).
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Therefore

mτ < nσ +
1− ε

e
=

k + 1− ε

e
. (2.2.15)

Let us write

f(y) = y +me−τy − ne−σy.

As

f(y) = f1(y) + f2(y),

where

f1(y) = (k + 1− ε)y +me−τy,

and

f2(y) = −(k − ε)y − ne−σy.

Since an equation of the form y + ce−dy = 0 has a real root if and only if cd < 1
e
, it

follows from (2.2.15) that f1(y) has a real root , while

nσ =
k

e
>

k − ε

e
,

shows that f2(y) = 0 does not have any real root. Since

f2(0) = −(k − ε)(0)− ne0,

or

f2(0) = −n < 0 (as n ∈ R+),

it follows that f2(y0) < 0. Now

f(y0) = f1(y0) + f2(y0) < 0,

and also f(0) = m− n > 0. Hence, the characteristics equation possesses a root in

(0, y0). This proves the necessity of the condition mτ −nσ > 1
e
for the oscillation of

all solutions of (2.2.13). This completes the proof of the theorem. [11]

Example 2.2.6. Consider a simple delay differential equation

y′(t) + y(t− τ) = 0. (2.2.16)

If τ = 1.5, then (2.2.16) becomes

y′(t) + y(t− 1.5) = 0, (2.2.17)

then the necessary condition for oscillation holds true

mτ = 1.5 >
1

e
.

Therefor,e all solutions of (2.2.17) are oscillatory.
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Figure 2.2: The solutions of (2.2.16) with τ = 1.5

Example 2.2.7. Consider a delay differential equation

y′(t) + 2y(t− 9

4
π) = 0. (2.2.18)

Here m = 2 and τ = 9
4
π . So

mτ = 14.13 >
1

e
,

thus the necessary condition for oscillation is satisfied, therefore the (2.2.18) has an

oscillatory solution of the form y(t) = cos(2t).

Example 2.2.8. The delay differential equation

y′(t) + y(t− π

2
) = 0, (2.2.19)

has an oscillatory solution of the form y(t) = sin(2t), as the necessary condition for

oscillation holds true, i.e.

mτ =
π

2
>

1

e
.

Example 2.2.9. Consider a delay differential equation

y′(t) + 2y(t− 5

4
π)− y(t− 3

4
π) = 0. (2.2.20)

Here m = 2, n = 1 ,τ = 5
4
π and σ = 3

4
π. Also

m > n, τ ≥ σ.

Thus the necessary condition for oscillation

mτ − nσ >
1

e
,

is satisfied, therefore the (2.2.20) has an oscillatory solution of the form y(t) = cos(t).
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Chapter 3

Stability analysis of delay

differential equation

Definition 3.0.10. (Equilibrium point) For a system of differential equation,

y′(t) = f(t, y),

the point ỹ∈ Rn is known as the equilibrium point if f(t,ỹ)= 0 ∀ t.

Definition 3.0.11. (Bifurcation) The solution of an equation is said to undergo

a bifurcation if, at some critical value of a parameter, the number of solutions to

the equation changes. For instance, in a quadratic equation with real coefficients,

as the constant term changes the number of real solutions can change from 0 to 2.

Definition 3.0.12. (Descartes rule of sign) Let P be a polynomial function with

real coefficients and with the terms arranged in order of decreasing powers of x.

The number of positive real zeros of P is equal to the number of variations in sign

of P (x) or to the number decreased by an even integer.

The number of negative real zeros of P is equal to the number of variations in sign

of P (−x) or to the number decreased by an even integer.

Definition 3.0.13. (Quasi-polynomials) Let λ be a real number. A quasi-

polynomial with exponent λ is a product eλxp(x), where p is a polynomial. The

degree of the polynomial p is called the degree of the quasi-polynomial.

3.1 Stability of delay differential equation.

For ordinary differential equations, the stability of a steady state depends on

the location of roots of the characteristic function, which is polynomial in form.
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The steady state is stable if and only if all the roots have negative real parts. For

delay differential equations, stability is also determined by the same idea but in this

case the stability is determined by the form of quasi-polynomial, which usually have

infinitely many roots.

In a state space, equilibrium point is a point for which y∗ = y(t) is the solution

for all t. Therefore for a delay differential equation of the form

y′(t) = f(y(t), y(t− τ1), y(t− τ2), ..., y(t− τk)), (3.1.1)

equilibrium point must satisfy

f(y∗, y∗, y∗, ..., y∗) = 0.

When we discuss the stability for the point of equilibrium of an ordinary differ-

ential equation, we consider that the system has gone under small displacement in

phase space from the equilibrium. The phase space for ordinary differential equa-

tions is a finite dimensional coordinate space whereas, when we look for the stability

of the point of equilibrium of delay differential equations the concept is same except

the phase space, in this case, is infinite-dimensional function space. So we consider

the displacement from the equilibrium in the infinite-dimensional function space,

i.e the displacements in this case are time-dependent functions say δy(t), persisting

over the interval of at least of the longest delay say τmax.

Let the equilibrium point of the delay equation (3.1.1) be y∗ and we assume that

the system has been disturbed from the state of equilibrium by a small perturba-

tion which lasts from t to t0, where t = t0 − τmax. Let us assume that δy(t) is the

displacement from the state of equilibrium which we have assumed to be small, at

any time in the open interval [t0 − τmax,∞). Then accordingly

y = y∗ + δy(t),

and

y′(t) = δ ′y(t) = f(y∗(t) + δy∗(t), y∗(t) + δy(t− τ1), y
∗(t) + δy(t− τ2), ..., y

∗(t) + δy(t− τk)).

Since δy(t), δy(t−τ1), δy(t−τ2), δy(t−τ3), δy(t−τk) are small quantities, we can use

the Taylor series method to linearize the differential equation about the equilibrium

point

δ ′y(t) ≈ J0δy(t) + J(t− τ1)δy(t− τ1) + J(t− τ2)δy(t− τ2) + ...+ J(t− τk)δy(t− τk),

(3.1.2)
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where the quantity J0 is the Jacobian w.r.t. y which we have evaluated at the point

of equilibrium, and the matrices J(t − τi) are the Jacobian w.r.t. y(t − τi) again

evaluated at y = y(t− τ1) = y(t− τ2) = ... = y(t− τk) = y∗.

In the linear ordinary differential equations, exponential function of time are the

solutions, in which the exponents are given by the eigenvalues of Jacobian matrix.

Now, let us the assume that the linear delay differential equation given in (3.1.2)

also has the exponential solutions, then we write

δy(t) = Aeλt. (3.1.3)

Substituting (3.1.3) in equation (3.1.2), we have

λAeλt = (J0Ae
λt + J(t− τ1)Ae

λ(t−τ1) + J(t− τ2)Ae
λ(t−τ2) + ...+ J(t− τk)Ae

λ(t−τk)),

λAeλt = (J0 + J(t− τ1)e
−λτ1 + J(t− τ2)e

−λτ2 + ...+ J(t− τk)e
−λτk)Aeλt,

λAA−1 = (J0 + J(t− τ1)e
−λτ1 + J(t− τ2)e

−λτ2 + ...+ J(t− τk)e
−λτk),

or

λI = (J0 + J(t− τ1)e
−λτ1 + J(t− τ2)e

−λτ2 + ...+ J(t− τk)e
−λτk),

where I represents the identity matrix.

We know that from the linear algebra the above equation can be satisfied only

with non-zero displacement amplitudes A if

|J0 + J(t− τ1)e
−λτ1 + J(t− τ2)e

−λτ2 + ...+ J(t− τk)e
−λτk − λI| = 0. (3.1.4)

Equation (3.1.4) is known as the characteristic equation of the point of equilibrium,

equation (3.1.4) looks like the ordinary eigenvalue problem, except the exponential

terms appearance. If we try to expand out the equation (3.1.4) we will have parts

which are polynomials but it will also include some exponential terms eλτi which

are known as the quasi-polynomials. We basically have to concentrate on the fact

that if any solution of the equation (3.1.4) has positive real parts then the point of

equilibrium is unstable and if they have negative real parts , the point of equilibrium

is stable. If values of the equation (3.1.4) are zero, then further checking is required

about the stability of the equation.

When considering polynomials of degree n, we know that they have exactly n

complex roots, therefore we can easily investigate all roots to determine its stability

at the equilibrium state. But when we look at the quasi-polynomials, we cannot

find all the roots , so therefore it is not always that simple to work out the stability

of the equilibrium points of the delay differential equation. [12].
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Example 3.1.1. Let us discuss the stability of the following delay differential equa-

tion

y′(t) = −y(t− τ). (3.1.5)

It would be really simple, as it is a single equation and the matrices become scalars.

In equation (3.1.5) the delay τ is 1, y∗ = 0 is clearly the steady state and, J0 = 0

and J1 = −1 are the Jacobian.

As we know that the determinant of a single number is the number itself therefore

the characteristic equation (3.1.4) becomes

Y (λ) = e−λ + λ = 0. (3.1.6)

The absolute minimum of Y (λ) is 1 at λ=0. So there is no real root solutions for

the characteristic equation.

Now to find the complex solutions, let us write

λ = α + iβ, (3.1.7)

where α and β are real and imaginary parts of λ. We now substitute (3.1.7) in the

characteristic equation (3.1.6)

(α + iβ) + e−(α+iβ) = 0,

or

α + iβ + e−αe−iβ = 0,

or

α+ iβ + e−α(cos β − i sin β) = 0, (3.1.8)

α + e−α cos β + i(β − e−α sin β) = 0.

Comparing real and imaginary parts, we have

e−α cos β = −α, (3.1.9)

and

e−α sin β = β. (3.1.10)

Here we want to see whether equations (3.1.9) and (3.1.10) can have solutions

with positive values of the real part α. As we can note that, we have the complex

conjugate parts in the characteristic value, we can say that if (α, β) is the solution

of the equation (3.1.8), then (α,−β) is also a solution of equation (3.1.8).Here we
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restrict ourself to positive values. Now let us assume that there are solutions with

positive α. From the equation (3.1.9), we must have cos β < 0. This means that we

must have β > π
2
. Since cos β will be positive for any other smaller , positive values

of β, on the other hand, e−α < 1 if α > 0, and | sinα| < 1, so that equation (3.1.10)

gives |β| < 1, which is a contradiction. Since β cannot be smaller in magnitude than

1 and be larger than π
2
at the same time. Therefore we conclude that the point of

equilibrium is stable, as the real part of the characteristic value cannot be positive.

3.2 Stability analysis of delay differential equa-

tion using Sturm sequences.

The steady state can become unstable if by increasing the delay, a root of the

delay differential equation changes from having a negative real part to a positive real

part, and this occur only when the root of the characteristic equation transverses

the imaginary axis. Here we are interested in the existence of any such critical delay

at which the root of the equation changes from having a negative real part to a

positive real part.

Example 3.2.1. Consider a delay differential equation

y′(t) + ay(t− τ) = 0, a > 0. (3.2.1)

The steady state is stable if τ = 0. The characteristic equation corresponding to the

equation (3.2.1) is

λ+ ae−λτ = 0,

Assume that it has a pure imaginary root λ = iσ, then

iσ + ae−iστ = 0,

gives

iσ + a(cos(τσ)− i sin(τσ)) = 0,

or

a cos(τσ) = 0, a sin(τσ) = σ,

From above

τσ =
π

2
,

and

σ = a,

30



which together gives

τ =
π

2a
.

Hence the steady state y = 0 will be stable if τ < π
2a

and will become unstable if

τ > π
2a
. This is the same result which we have found in chapter 2.

Example 3.2.2. Consider a delay differential equation

y′′(t) + ay′(t) + by(t− τ) = 0, a > 0, b > 0. (3.2.2)

The steady state is stable if τ = 0. The characteristic equation corresponding to the

equation (3.2.2) is

λ2 + aλ+ be−λτ = 0,

Assume that it has a pure imaginary root λ = iσ, then

−σ2 + aiσ + be−iστ = 0,

gives

−σ2 + aiσ + b(cos(τσ)− i sin(τσ)) = 0,

or

−σ2 + b cos(τσ) = 0,

aσ − b sin(τσ) = 0,

or

b cos(τσ) = σ2, (3.2.3)

b sin(τσ) = aσ. (3.2.4)

Squaring both (3.2.3) and (3.2.4), then adding yields

b2 = a2σ2 + σ4

or

a2σ2 + σ4 − b2 = 0

then

σ2 =
−a2 ±

√
a4 + 4b2

2

A positive root exists,

σ =

√
−a2 +

√
a4 + 4b2

2
(3.2.5)

31



Also

tan(τσ) =
a

σ
. (3.2.6)

Both equations (3.2.5) and (3.2.6) will be satisfied simultaneously, for some discrete

values of τ . For these critical values the steady state solution will be unstable,

otherwise it will continue to be stable.

3.2.1 Critical delay existence

The characteristic equation of a delay differential equation at the steady state

has the form

L(λ, τ) ≡ L1(λ) + e−λτL2(λ) = 0, (3.2.7)

where τ is the delay and L1 and L2 are polynomials. We can write (3.2.7) as

n∑
k=0

akλ
k + e−λτ

m∑
k=0

bkλ
k = 0.

Let us assume that in the absence of delay the steady state is stable. Then for

τ = 0, all the roots of the polynomials will have negative real parts. If τ varies, these

roots will change. Here we are looking for any critical value of τ at which the roots

of this equation transitions from having negative real part to positive real part. At

this critical value of τ , we will have a purely imaginary root for the characteristic

equation. We will determine that whether this critical value of τ exists or not, by

reducing (3.2.7) to a polynomial problem and then finding the particular types of

roots.

We start by considering purely imaginary root, iη, where η ∈ R, of equation
(3.2.7).

L1(iη) + e−iητL2(iη) = 0

We break up the above polynomial into real and imaginary parts

N1(η) + iM1(η) + (N2(η) + iM2(η))(cos(ητ)− i sin(ητ)) = 0. (3.2.8)
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We can write N1(η),M1(η), N2(η) and M2(η) as,

N1(η) =
∑
k

(−1)k+1a2kη
2k,

M1(η) =
∑
k

(−1)ka2k+1η
2k+1,

N2(η) =
∑
k

(−1)k+1b2kη
2k,

M2(η) =
∑
k

(−1)kb2k+1η
2k+1.

Since iη is purely imaginary, so N1, N2 are even polynomials and M1, M2 are odd

polynomials. In order for equation (3.2.8) to be true, both the imaginary and real

parts must be equal to zero.

N1(η) +N2(η) cos(ητ) +M2(η) sin(ητ) = 0,

M1(η)−N2(η) sin(ητ) +M2(η) cos(ητ) = 0.

which can be written as

N2(η) cos(ητ) +M2(η) sin(ητ) = −N1(η), (3.2.9)

and

N2(η) sin(ητ)−M2(η) cos(ητ) = M1(η). (3.2.10)

Squaring (3.2.9) and (3.2.10), and then adding both equations gives

N1(η)
2 +M1(η)

2 = N2(η)
2 +M2(η)

2, (3.2.11)

or

N1(η)
2 +M1(η)

2 −N2(η)
2 −M2(η)

2 = 0. (3.2.12)

In the above equation we can see that the delay has been eliminated and trigono-

metric terms have also disappeared, and it is now a polynomial equation. Equation

(3.2.12) is an even polynomial as we know that squaring an odd or even function

gives an even function, i.e., g(−y)2 = (±g(y))2 = g(y)2.

Let us define ξ = η2 ∈ R. Then the equation (3.2.12) can be written in terms of

ξ as

P (ξ) = 0, (3.2.13)

where P is a polynomial. Here we are concerned in η ∈ R, and if all real roots of

P are negative, then there can be no solution η∗ simultaneously of equation (3.2.9)

and (3.2.10). Conversely, if P has a positive real root ξ∗, there is a delay τ , which is
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corresponding to the positive real root η∗ = ±
√
ξ∗ which solves both of the equations

(3.2.9) and (3.2.10). For this, suppose that there is a η∗ such that

N1(η
∗)2 +M1(η

∗)2 = N2(η
∗)2 +M2(η

∗)2 = 0.

Let

B =
√
N2(η∗)2 +M2(η∗)2.

From the above equation we can say that the point (−N1(η
∗),M1(η

∗)) lies on the

circle of radius B. Now equation (3.2.9) and (3.2.10) can be written as:

B(
N2(η

∗)

B
cos(η∗τ) +

M2(η
∗)

B
sin(η∗τ)) = −N1(η

∗),

and

B(
N2(η

∗)

B
sin(η∗τ)− M2(η

∗)

B
cos(η∗τ)) = M1(η

∗).

We write

N2(η
∗)

B
= cosα,

and

M2(η
∗)

B
= sinα,

then

B cos(η∗τ − α) = −N1(η
∗),

and

B sin(η∗τ − α) = M1(η
∗).

There must be a positive value of τ = τ ∗ which satisfies both the above equations

simultaneously, as (−N1(η
∗),M1(η

∗)) lies on the circle of radius B.

We now find the roots for the characteristic equation (3.2.7). Let λ = iη, we can

write (3.2.7) as

e−iητ = −L1(iη)

L2(iη)
. (3.2.14)

As the delay τ varies, plotting the left hand side of (3.2.14) in the complex plane

yields a rational curve, and the right hand side is a unit circle. The intersections of

these two curves represents the critical delays which we are looking for. Thus we

need to find the value of η for which the right hand side of (3.2.14) has 1 modulus.

This reproduces the equation (3.2.11), and thus for any τ the equation (3.2.7) which

is the original characteristic polynomial is satisfied for some τ ∗. [13].
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Sturm sequences and positive real roots

Once we obtain the polynomial (3.2.13), we have to determine if it has any

positive real roots. There are a lot of different approaches we might take to determine

the root, for example for a polynomial of degree two, one can use quadratic formula.

Similarly there are other ways of finding the root of a polynomial of degree three

and four. To determine the existence of a real root, a simple approach is “Descartes

rule of signs”. In this the number of sign in the coefficients is equal to the number

of positive real roots, modulo 2. There is a solution if the number of sign changes is

odd, and if it is even then this rule is not any help.

Sturm sequences are used to determine the existence of positive real root for

polynomial. Suppose that g(y) is a polynomial with no repeated roots. Then g(y)

and g′(y) have two common factors or they are relatively prime. Let g(y) = g0(y)

and g′(y) = g1(y). By the use of division algorithm we can have the following

sequence of equations.

g0(y) = r0g1(y)− g2(y),

g1(y) = r1g2(y)− g3(y),

...

gs−2(y) = rs−2 gs−1(y)− C.

where C is a constant. The sequence g0(y), g1(y), g2(y), ..., gs−1(y), gs(y)(= C) of

Sturm functions is known as the Sturm chain. In any interval , we can determine

the number of positive roots of polynomial g(y) by putting each of the endpoint of

the interval and get the sequence of signs. The number of real root in the interval is

the difference between the number of sign changes in the sequence at each endpoint.

Example 3.2.3. Let g(y) = y2 − 1. Then g′(y) = 2y, so by the division algorithm

we have

y2 − 1 =
y

2
(2y)− 1,

thus simply the Sturm chain is y2−1, (2y), 1. Now let us consider the interval [0,∞),

then the sequence of signs are

at 0 : −, 0,+ ,

at∞ : +,+,+.
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Since there is only one sign change in the first sequence and zero in the last, so

we conclude that g(y) has only one positive real root. Similarly if we consider the

interval [−4, 4], then the chain of signs are

at − 4 : +,−,+ ,

at + 4 : +,+,+.

In the first sequence there are two sign changes, and in the second sequence there is

no sign change thus this shows that g(y) has two positive real roots in [−4, 4].

If we have any specified parameter set, this method gives us a simple, applicable

algorithm by which we can determine whether the bifurcation occurs. [13]

3.2.2 Applications

Perelson and Nelson studied the Mathematical analysis of delay differential equa-

tion models of HIV-1 infection, in [14] they had encountered the following charac-

teristic equation

λ2 + (α + d)λ+ αd− βe−λτ ) = 0,

where α, β, d are positive constants. So we have

L1(λ) = λ2 + (α + d)λ+ αd,

and

L2(λ) = −β.

Therefore

N1(η) = −η2 + αd,

M1(η) = −(α + d)η,

N2(η) = −β,

M2(η) = 0.
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Using (3.2.12) we have

N2
1 (η) +M2

1 (η)−N2
2 (η)−M2

2 (η) = 0,

(−η2 + αd)2 + ((α+ d)η)2 − (−β)2 = 0,

(−η2 + αd)2 + (α + d)2η2 + β2 = 0,

β2 = (η2 − αd)2 + (α + d)2η2,

β2 = η4 − 2η2αd+ α2d2 + (α2 + 2α2d+ d2)η2,

β2 = η4 − 2η2αd+ α2d2 + α2η2 + 2α2dη2 + d2η2,

β2 = η4 + (α2 + d2)η2 + α2d2,

η4 + (α2 + d2)η2 + α2d2 − β2 = 0. (3.2.15)

At ξ = η2, the above becomes

P (ξ) ≡ ξ2 + (α2 + d2)ξ + α2d2 − β2 = 0,

where P is a polynomial. Since the P has positive linear coefficients, so by the

Descartes rule of signs, the positive real root will occur if and only if the constant

coefficient is negative. So there is a change in the stability if and only if

0 > (α2d2 − β2) = (αd− β)(αd+ β),

that is, if αd < β. At η = η∗ the equation (3.2.15) becomes

(η∗)4 + (α2 + d2)(η∗)2 + α2d2 − β2 = 0.

Taking the derivative of above w.r.t. η∗ to check the non-degeneracy

4(η∗)3 + 2η∗(α2 + d2) = 0,

2(η∗)3 + η∗(α2 + d2) = 0.

Again differentiating w.r.t. η∗ yields

(η∗)2 + (α2 + d2) = 0,

thus it does not have any root, which shows that a non-degenerate bifurcation occurs

for αd < β , which reproduces the result shown by Perelson and Nelson.

Perelson, and Nelson studied the models of HIV-1 infection [15] in which they

showed that intracellular delays are more accurate representations of the biology,
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they also changed the estimated values of kinetic parameters and compared them to

models without delays.

λ3 +Rλ2 + (Q− αde−λτ )λ+ αdδ − αd(δ − ϕ′)e−λτ = 0,

where

R ≡ α+ d+ δ,

Q ≡ αd+ (α + d)δ,

and

ϕ′ ≡ δ − hT > 0.

In [15], it is shown that there is no change in the stability for τ > 1 and τ < 1.

We will extend it for all τ > 0. Therefore using the same method we have,

N1(η) = −Rη2 + αdδ,

M1(η) = −η3 +Qη,

N2(η) = −αdhT ,

M2(η) = −αdη.

Using (3.2.12) we have

N2
1 (η) +M2

1 (η)−N2
2 (η)−M2

2 (η) = 0,

(−Rη2 + αdδ)2 + (−η3 +Qη)2 − (−αdhT )
2 − (−αdη)2 = 0,

R2η4 + (αd)2δ2 − 2Rη2αdδ +Q2η2 + η6 − 2η4Q− (αd)2h2
T − (αd)2η2 = 0,

η6 + (R2 − 2Q)η4 + (Q2 − (αd)2 − 2Rαdδ)η2 − (h2
T − δ2)(αd)2 = 0,

η6 + (R2 − 2Q)η4 + (Q2 − (αd)2 − 2Rαdδ)η2 − (ϕ′2 − 2δϕ′)(αd)2 = 0.

At ξ = η2,

ξ3 + (R2 − 2Q)ξ2 + (Q2 − (αd)2 − 2Rαdδ)ξ − (ϕ′2 − 2δϕ′)(αd)2 = 0. (3.2.16)

Comparing coefficients of ξ2,

R2 − 2Q = (α + d+ δ)2 − 2(αd+ (α + d)δ),

= α2 + d2 + δ2 + 2αd+ 2δd+ 2αδ − 2αd− 2δd− 2αδ,

= α2 + d2 + δ2.
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Comparing coefficients of ξ,

Q2 − (αd)2 − 2Rαdδ = (αd+ (α + d)δ)2 − (αd)2 − 2αdδ(α + d+ δ),

= ((αd)2 + (αδ)2 + (dδ)2 + 2α2dδ + 2αd2δ + 2αdδ2)

− (αd)2 − 2αdδ(α + d+ δ),

= (αd)2 + (αδ)2 + (dδ)2 + 2α2dδ + 2αd2δ + 2αdδ2

− (αd)2 − 2α2dδ − 2αd2δ − 2αdδ2,

= (αδ)2 + (dδ)2.

Now we have for constant term,

ϕ′2 − 2δϕ′ = (δ − hT )
2 − 2δ(δ − hT ),

= δ2 − 2δhT + h2
T − 2δ2 + 2δhT ,

= −δ2 + h2
T ,

= (hT − δ)(hT + δ),

= −ϕ′(hT + δ).

So (3.2.16) can be written as:

P (ξ) ≡ ξ3 + (α2 + d2 + δ2)ξ2 + ((αδ)2 + (dδ)2)ξ + ϕ′(hT + δ)(αd)2,

where P is a polynomial with positive coefficients, and thus cannot have any positive

real roots, therefore we can say that an introduction of a delay into the Perelson’s

and Nelson’s model presented in the paper [15] cannot lead to bifurcation.
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