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Abstract

The number of unordered pairs of vertices lying at distance 3 in a graph is known as its

Wiener polarity index. It has demonstrated quantitative structure-property relationships

in a series of acyclic and cycle-containing hydrocarbons and it is also related to the cluster

coefficient of networks. In this thesis, we consider three variants of the graph of titanium

dioxide TiO2; TiO2 nanotubes, their 2-dimensional lattices and nanotorus. For these

graph families, we compute the number of pairs of vertices lying at distance one, two and

three. We also calculate the values of mu,mv, nu and nv Using these computations, we

compute the Wiener polarity and leap Zagreb indices of these graphs.We also compute

several Szeged-type indices such as vertex-Szeged, edge-Szeged, edge-vertex Szeged, total

Szeged, Padmaker-Ivan, revised Szeged and revised-edge Szeged indices of 2-dimensional

lattices of titanium dioxide nanotubes. We also correct several results from the literature

about Szeged type indices of these nanotubes.
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Preface

Leonhard Euler (1707-1783) is considered to be the most prolific mathematician in history.

Euler revealed his aptitude in mathematics while attending the University of Basel. By

1726, the 19-year-old Euler had finished his work at Basel and published his first paper in

mathematics. Euler worked, wrote, and published at a furious rate throughout his lifetime.

So it is no surprise that when Euler decided to analyze the problem of the Königsberg

bridges, he not only found the answer, but also initiated the study of a brand new field in

mathematics. A seemingly trivial problem that lead to an entire branch of mathematics

is not unusual. Whereas, some areas of mathematics were developed to answer obviously

important questions (for instance, calculus was developed by Isaac Newton (1642-1727)

to help answer questions in physics and astronomy), others branches of mathematics had

their origins in much less noble causes (the origination of probability is traced to letters

exchanged by Pierre de Fermat (1601-1665) and Blaise Pascal (1623-1662) in which they

discussed questions in gambling). Although the branch of mathematics known today

as graph theory had its origins in a simpleminded puzzle that entertained the people

of Königsberg, its eventual usefulness to mathematics has completely overshadowed its

humble beginnings. For instance, chemists use graphical notation to represent chemical

compounds; and physicists and engineers use graphical notation to represent electrical

circuits. Graph theory is used in complex computer programs that control telephone

switching systems. Graph theory is a part of a larger field of mathematics called topology.

Topology is the study of the properties of geometric figures that are invariant (do not

change) when undergoing transformations such as stretching or compression. Imagine
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drawing a geometric figure, such as a square or a circle, on a sheet of flexible material

like rubber, and then stretching or compressing the rubber sheet. The properties of the

square and circle that do not change during this stretching or compression fall under the

study of topology. For this reason, topology is sometimes referred to as ”rubber-sheet

geometry.”

During the past two decades, there has been a considerable progress in the applications

of algebraic graph theory in chemistry. Graph theory is concerned with manipulations of

structures and structural informations. This involves classification of structures, that is,

their grouping into smaller lots, characterization of structures, which can be accomplished

by enumeration of selected structural invariants, and ordering of structure, which implies

a decision of which among two or more structures should be taken first in the sequence.

The first two chapters of this thesis are devoted to some basic definitions and terminologies

of graphs. In the first chapter, we discus the origins of Graph Theory. We also give the

basic definitions of graph theory.

In the second chapter we give a brief history of chemical graph theory and some well-

known topological indices mainly distance, degree and counting based topological indices.

In the class of distance based topological indices, we give a brief introduction of Wiener

index, Wiener polarity index and Szeged index. In the class of degree based of topological

indices, we discuss Zagreb indices. In the counting related polynomials and topological

indices, we give a brief introduction of counting polynomials and counting related index

called the Padmakar-Ivan (PI) index.

In the third chapter, we give a brief introduction on the properties of titania nano-

tubes, 2-D lattice and nanotori. We further show the calculations for Wiener Polarity

index of titania nano-tubes, 2-D lattice and nanotori.

In the fourth chapter, we initially discuss the cuts required to assist in the solution of

Szeged-type-Indices of titania 2-D lattice. The chapter comprises of detailed calculations

required to find the Szeged-type indices such as, edge-Szeged index, vertex-Szeged index,

edge-vertex-Szeged index, Total-Szeged index, and Padmaker-Ivan index.
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Chapter 1

Fundamentals of graph theory

This chapter discusses some of the basic concepts of graph theory. Some examples are

given for the familiarity of the reader.

1.1 History of graph theory

Most of branches of mathematics come from basic problems of calculations and measure-

ments, the ancestry of graph theory comes from mere puzzle like problems [53]. These

problems caught the attention of mathematicians, as a result of which graph theory came

into being. This subject has developed rapidly over the years. It has given many theoret-

ical results of large variety, ranging from chemical structures to many economic problems.

The Königsberg bridges problem is considered as one of the first problems of graph the-

ory. This problem has provided various basic concepts of the subject [53]. The first paper

written on this subject was by Leonhard Euler in 1736 with its focus on the Königsberg

bridge problem [16]. The Königsberg city was separated by a river into four land regions.

There were seven bridges in the city joining different land regions. People of the area

were not sure whether it was possible to figure out a way in which every bridge could be

crossed only once in a single tour. It is not known who brought this problem to Euler’s

attention initially, as he had not visited the city of Königsberg. Historians have found
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that in one of the letters written by Carl Leonhard Gottlieb Ehler to Leonhard Euler,

it was Ehler who asked Euler to produce a solution to the problem. After which Euler

studied the problem by eliminating the nonessential parts of the map as shown in the

Figure 1.1.

Figure 1.1: Königsberg bridge problem

In this process he exhausted all possibilities of existence of such path and also gave

reasons as to why it was so. It is noteworthy that Euler did not produce the type of

graphs we have today. It was one century later that such graphs made an appearance.

This kind of a solution in which a real life problem was converted into a mathematical

phenomenon opened the gates to the solution of many other practical problems. Graph

theory has solved many such problems by converting the elements of certain problems

into an abstract graphs containing vertices, edges and preserving the relationship between

vertices.

1.2 Basic Definitions

Some basic definitions and terminologies regarding graph theory are given in this section.

We start with the definition of a graph.
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A graph, usually represented by the letter G, is a set that comprises of a pair of sets

namely V (G) (or simply V ) and E(G) (or simply E). A graph G with vertex set V and

edge set E can also be denoted by G = (V,E). The set V represents the set of vertices

which is a collection of points. These points represent a variety of things depending

upon the requirement of the graph. For example the vertices may represent atoms in a

molecules, cities or people, depending upon the need of the problem. The set E represents

the set of edges which is a collection of lines or relationships between the vertices. These

lines may be curved or straight and may represent different things, such as bonds between

atoms, roads between cities or relationships between people, etc. An edge e between the

vertices u and v is commonly represented by uv. The vertices u and v in graph G are said

to be adjacent, if they are joined by some edge. The line segment joining the vertices u

and v represents the edge, denoted by uv, between them. The vertices u and v are the

end-vertices of that edge. An edge e is said to be incident on v, only if v is an end-vertex

of the edge e. The edge uv can also be denoted by the two-element subset {u, v} of V ,

hence uv and vu denotes the same edge.

The number of edges incident on a vertex v in G represents its degree in the graph,

denoted by dG(u). The edges that have a common end-vertex are called adjacent edges.

The edges with no mutual end-points are called distinct or independent edges. Two

edges with same end-vertices are called multiple edges. The edges that join a vertex with

itself are called loops or self-loops. Graphs containing multiple edges or loops are called

multigraphs. The graphs that neither contains multiple edges or loops are called simple

graphs. A graph that has only one vertex is called a trivial graph. A graph that has

no vertices is called a null graph. The total number of vertices in a graph G is termed

as the order of graph and represented as |V (G)| = n. The total number of edges in

G = (V (G), E(G) is called the size of graph and is denoted by |E(G)| = m. A vertex

with no adjacent vertices is called an isolated vertex and a vertex with only one adjacent

vertex is called a leaf.

Example 1.1. Let us consider three students and two teachers such that each teacher

3



must be assigned at-least one student. We label the students as a, b, c and teachers as x,

y. If student a and c are assigned to teacher x and student b is assigned to the teacher

y, then it is easier and convenient to represent the problem in the form of a graph, where

{a, b, c, x, y} is the set of vertices and the set {ax, cx, by} is the set of edges which represent

the allocation of the students to teachers. The order and size of the graph is 5 and 3,

respectively.

a

b

c

y

x

Figure 1.2: The graph of allocation of students to teachers.

A sequence of vertices v1, v2, . . . , vn such that the consecutive vertices are adjacent

represents a walk. The first vertex of the sequence is called initial vertex, whereas the

last vertex is termed as the terminal vertex. A walk with all distinct edges is called a

trail. If the vertices of walk are distinct, then it becomes a path. A walk whose initial

and terminal vertices are same and all the other vertices are distinct is called a cycle.

The order of a path or cycles is the number of vertices in it. The length of a path or

cycle is determined by its number of edges. A subgraph H of a graph G is a graph with

V (H) ⊆ V (G) and E(H) ⊆ E(G).

The length of a shortest path between two vertices u, v ∈ V in a graph G is called

distance between u and v represented by dG(u, v). The eccentricity, eG(v) of a vertex v

is defined as the maximum graph distance between a vertex v and all vertices u ∈ G in

4



the graph u, v ∈ V , such that eG(v) = maxu∈V dG(u, v) . The maximum of all the vertex

eccentricities in a graph G is called the diameter of G, denoted as diam(G). A graph is

said to be a connected graph if for every pair of vertices we can always find a path that

connects them. If there exist vertices u, v ∈ V such that there exists no path between

them, then G is called a disconnected graph. A component is a subgraph C of graph G

that is maximal connected subgraph of G, that is, there is no larger connected subgraph

of G having C as a subgraph. Disconnected graphs contain more than one components.

In a disconnected graph, the vertices have infinite eccentricity.

The neighbourhood of a vertex v in a graph G is denoted by NG(v) and defined as the

set of all vertices of G which are adjacent to v. A non-negative number which indicates

the number of graph edges in a graph G which are incident on a vertex v ∈ V is called

degree of v, denoted by dG(v). Mathematically, we can write dG(v) = |NG(V )|. The k-th

neighborhood NG(v | k) of a vertex v in G is the set of vertices lying at distance k from

v, that is, NG(v | k) = {w ∈ V (G) | dG(v, w) = k}. The k-th degree dG(v | k) of a vertex

v in G is the cardinality |NG(v | k)|. Note that for any v ∈ V (G), there can be at most

n − 2 (respectively, n − 3) vertices lying at distance 2 (respectively, 3) from v. Thus

dG(v | 2) ≤ n− 2 and dG(v | 3) ≤ n− 3. The maximum degree of a graph G is the highest

vertex degree in that graph, denoted as ∆(G), while the minimum degree is the smallest

vertex degree in the graph, denoted as δ(G). A graph G is called regular or k-regular if

it has the same highest and minimum degree, that is, ∆(G) = δ(G) = k. In this case, all

vertices of G have degree k.

Example 1.2. Consider the graph shown in Figure 1.3. There exists no multiple edges

or loops, hence it is a simple connected graph. In Figure 1.4, the edge set is given by

{i, j, k, l,m, o, p, q} and the vertex set is given by {a, b, c, d, e, f}. The edge i is a loop

as it is connecting the vertex a with itself a, b, c, d and b, e, f are cycles of length 4 and

3, respectively. The edges p and q have the same end-vertices e and f , hence they form

multiple edges.
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Figure 1.3: A simple graph.

a
b f

ed c

m

j

k

l

i

q

p

o

n

Figure 1.4: Graph representation of some basic definitions.

1.3 Basic operations

In this section we shall discuss some basic operations on graphs. These operations are

used to construct new graphs with certain properties.

LetG be a graph with vertex set V (G) and edge set E(G). When a vertex is added toG

such that u /∈ V (G) then the result produces a new graphG′ such that V (G′) = V (G)∪{u}

is the new vertex set. The edge set remains unchanged. This process is called vertex

addition or disjoint union of a graph and a vertex. Similarly, when a vertex v is deleted

from a graph G, then the vertex v along with its incident edges are deleted forming the new

graph, sayH. The vertex and edge set of the new graphH are given by V (H) = V (G)\{v}

and E(H) = E(G) \ {vw ∈ E(G) | w ∈ V (G)}. This process is called vertex deletion
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from a graph. For some ab /∈ E(G) and a, b ∈ V (G), when ab is introduced as a new edge

in G it formulates a new graph H ′ with edge set E(H ′) = E(G) ∪ {ab} and has no effect

on the vertex set. This process is called edge addition. The deletion of an edge ab from G

involves removal of the edge ab ∈ E(G) such that the edge set of the new graph is given

by E(G) \ {ab} and has no effect on the vertex set.

A cut-vertex is a vertex such that its removal increases the number of components of

the graph. A cut-edge is an edge such that its removal increases the number of components

of the graph.

The smallest possible set of edges required to keep the graph connected is called the

minimal edge set. There may exist more than one minimal edge sets.

Example 1.3. Consider the graph shown in Figure 1.5. The graph on the left consists of

V = {a, b, c, d, e} and E = {i, j, k, l,m}. After deletion of the bold edge l, the new graph

has vertex set {a, b, c, d, e} with edge set {i, j, k,m}. When the vertex c is deleted from

the graph, the new graph has vertex set {a, b, d, e} and edge set {i, j,m}.

1.4 Graph isomorphism

A graph may exists in various shapes and structures. Such graphs that retain the same

set of vertices and edges but vary in shape are said to be isomorphic to each other. These

graphs fulfill some conditions. Consider two simple graphs, namely G and H. There

exists a vertex bijection f : VG → VH such that the bijection preserves adjacency and

non-adjacency. Then for every pair of vertices in G, then of u and v are adjacent in G

then f(u) and f(v) are adjacent in H. For the isomorphism between these graphs, there

must exist bijection function.

In other words, both graphs must have same number of vertices, edges, components,

loops and parallel edges, etc. Along with this, the graphs must have same degree of

corresponding vertices. A quantity such that it has the same value for any graph belonging

to the same isomorphic class is called an invariant. Hence the invariants are independent

7
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Figure 1.5: Deletion of an edge and vertex.
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Figure 1.6: Edge-cut and vertex-cut.

of the vertex labeling and position. The isomorphic mapping of a graph onto itself such

that the adjacency relationship is preserved is called automorphism. Each graph has

atleast one automorphism, called the trivial automorphism or identity automorphism.

1.5 Special families of graphs

A graph that contains no cycles is called an acyclic graphs. An acyclic graph is called

a forest. A tree is a set of straight line segments connected at their ends containing no

closed loops, it is a simple, connected and acyclic graph. A forest is a graph such that

all of its components are trees. A complete graph of order n is a simple graph in which

8



Trivial Graph Plannar Graph

Tree Bipartite Graph Complete Bipartite Graph 

Figure 1.7: Basic families of graphs

any two vertices are connected by an edge. It is denoted by Kn. A bipartite graph G is a

graph whose vertex set can be partitioned into two sets A and B with cardinalities m and

n, respectively, such that every edge in G has one end vertex in A and other end-vertex

in B. These sets A and B are called partite sets of G. A bipartite graph with partite

sets A and B is called complete if for each vertex x ∈ A and y ∈ B, there is an edge

xy ∈ E(G). If |A| = r and |B| = s then a complete bipartite graph with partite sets A

and B is denoted by Kr,s. A star Sn is a graph that belongs to the family of trees. This

is a graph such that it has n vertices, the degree of one of the vertices is n− 1, where all

the other vertices have degree 1.
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Chapter 2

Chemical graph theory

In chemical graph theory, the graphs can represent a verity of chemical objects such as

molecules, reactions, crystals, polymers, clusters, etc. The presence of sites and connection

is common occurrence in such graphs. Sites which are usually called vertices may represent

atoms, electrons, molecules, molecular fragments, groups of atoms, intermediates, orbitals,

etc. The connections between these vertices represent bonds of any kind, which may range

from a simple chemical bond to the steps of elementary actions, etc. Chemical graphs

usually use a simple conversion rule: molecules or atoms as vertex and connection as edges.

A special class of chemical graphs are molecular graphs. Molecular graphs also known as

constitutional graphs are all structural formulas of covalently bounded compounds [1].

2.1 Graph invariants

Graph invariants have long been used in mathematical chemistry. These are the cal-

culation based values as the experimentation takes alot of time. These invariants pro-

vide the chemists and mathematicians with valuable information regarding structural,

physical, organic and medicinal chemistry [66]. Many of the old indicies, to this date,

which are conceptually simple and computationally straightforward offer satisfactory

structure-property-activity relations. They are very useful in QSARs and QSPRs stud-
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ies [15, 31, 61, 63], some of these are path numbers of Platt, the Wiener number W, the

path/walks shape indices of Randi and many others. The Wiener index is considered as

the first non trivial index to be used in structure-property-activity [66]. These invariants

continue to serve till this date and have produced some great work.

2.2 Zagreb and leap Zagreb indices

Another pair of important graph invariants are the Zagreb indices first introduced in [30]

where the authors examined the dependence of total π-electron energy of molecular struc-

tures. For a molecular graph G, the first Zagreb index M1(G) and the second Zagreb index

M2(G) are, respectively, defined as follows.

M1(G) =
∑

v∈V (G)

dG(v)2 =
∑

uv∈E(G)

(dG(u) + dG(v)), M2(G) =
∑

uv∈E(G)

dG(u)dG(v). (2.1)

The first and second Leap Zagreb indices are simply denoted by M1 and M2 respectively.

A modification of the Zagreb indices such that second degree of vertices is considered

was given in [7]. Leap Zagreb index is a degree based invariant. It is a fairly new index.

The linear regression analysis of first leap Zagreb index with entropy, acentric factor,

enthalpy of vaporization, standard enthalpy of vaporization and boiling point (BP) of

octane isomers on the degree based topological indices of the corresponding molecular

graphs was discussed in [11]. Some expressions regarding corona product, cartesian prod-

uct, composition, disjunction and symmetric difference of graphs are given in [8]. Let G

be a chemical graph then the first leap Zagreb index LM1(G), given by (2.2), is equal to

the sum of squares of the second degrees of the vertices of G. The second Leap Zagreb

index LM2(G), given by (2.3), is equal to the sum of the products of the second degrees

of pairs of adjacent vertices in G. The third leap Zagreb index LM3(G), given by (2.4),

is the sum of the products of the first degrees and second degrees of the vertices of G.
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Mathematically, LM1(G), LM2(G) and LM3(G) are defined as follows.

LM1(G) =
∑

v∈V (G)

(dG(v | 2))2 (2.2)

LM2(G) =
∑

v∈V (G)

dG(u)dG(v | 2) (2.3)

LM3(G) =
∑

uv∈E(G)

dG(u | 2)dG(v | 2). (2.4)

The leap Zagreb indices LM1(G), LM2(G) and LM3(G) are simply denoted as LM1, LM2

and LM3, respectively.

2.3 Wiener index

Wiener is a distance based invariant with vast applications in the field of chemistry. It

was introduced by Harold Wiener [20], in his study of effect of pure structural variation

upon the boiling point of the paraffin. He called it path number and it is currently known

as Wiener index W (G) of a graph G. Platt [34] used the term Wiener number for it and

the same has been exclusively used ever since. Wiener index is the most useful and one of

the very first indices to be used in chemistry [17]. The use of modern topological indices

in QSPR and QSAR was pioneered by the Wiener index. Mathematically, it is given by

(2.5). Some more recent work has been done on the edge-Wiener index which obtains the

distance between all pairs of the edge set. Explicit combinatorial expressions of these two

edge-Wiener indices of some familiar graphs are discussed in [5].

In his study, he also introduced the concept of Wiener polarity index [20] denoted

by Wp(G). Hosoya [22] found a physical-chemical interpretation of Wp(G). The Winer

polarity index [20] is defined as the number of unordered pair of vertices such that they

are at a distance 3 from each other.Mathematically Wp(G) is given by (2.6). Some of

the recent work on extremal Wiener polarity index of trees with different parameters is

given in [32, 33]. It has helped in calculating the robustness of the system and also been

used for lattice networks. Lukovits and Linert presented quantitative structure-property
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relationships in a series of acyclic and cycle-containing hydrocarbons by using Wiener

polarity index [26]. The Wiener polarity index of fullerenes and hexagonal systems was

studied in [6]. Recently, Arockiaraj et al. [51] studied the hyper-Wiener and Wiener

polarity indices of silicate and oxide networks. Let G be a chemical graph representing

the non-hydrogen atoms in the molecule. Then,

W (G) =
1

2

∑
l,m∈V

dG(l,m) (2.5)

Wp(G) =
∣∣{{u, v} ⊆ V (G) | dG(u, v) = 3}

∣∣ =
1

2

∑
v∈V (G)

dG(v | 3). (2.6)

Relation between Wiener polarity index and Zagreb indices was given by Liu and Liu [50].

They further discussed the second smallest Wiener polarity index among all trees of order

n as well as smallest and second smallest Wiener polarity indices among all unicyclic

graphs of order n. In 2018, Niko Tratnik [52] developed a method for computing the

Wiener polarity index for most studied families of molecular graphs, benzenoid systems

and carbon nanotubes. They further used the method to produce a formula for the

Wiener polarity index applicable to any benzenoid system as well for zig-zag and armchair

nanotubes.

2.4 Szeged index

A distance based graph invariant and some of its basic properties established in [23], till

then no name had been given to the index, which became a nuisance for the researchers.

In 1995 the index was named as Szeged index denoted by Sz(G) [54]. Szeged index has

been proved useful in the field of chemistry and biology. It has been useful in calculating

molecular weight, densities, boiling points, vapor pressure, molar volume, molar refraction

(MR), parachor, van der Waals volume, equalized electro-negativity, dipole moments,

etc [67]. It has also provided valuable information in the field of biological sciences, by

modeling various biological activities such as, anti-malarial, anti-tuberculotic, anti-HIV,

etc [58].
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We consider simple connected graphs such that e represents the edge between u, v ∈ V .

Let e = uv be an edge of G, connecting the vertices u and v. Then the sets Nu, Nv and

N0 are defined as the set of vertices of G lying closer to u than v, lying closer to v than

u, and the set such that distance from u is same as the distance from v respectively. The

cardinality of Nu, Nv and N0 is given by nu(e) , nv(e) and n0(e), respectively.

nu(e) = | {x ∈ V |d(x, u) < d(x, v)} | (2.7)

nv(e) = | {x ∈ V |d(x, u) > d(x, v)} | (2.8)

n0(e) = | {x ∈ V |d(x, u) = d(x, v)} |. (2.9)

For the edge e = uv ∈ E, we define the set Mu to be set of all edges f ∈ E(G) such that

the distance between f and the vertex u is less than the distance between f and v. The

set Mv is the set of all edges f ∈ E(G) such that the distance between f and the vertex

v is less than the distance between f and u. Let M0 denote the set of edges of G which

are equi-distant from both u and v. The cardinality of Mu, Mv and M0 is given by mu(e),

mv(e) and m0(e) respectively.

mu(e) = | {f ∈ E | d(f, u) < d(f, v)} | (2.10)

mv(e) = | {f ∈ E | d(f, u) > d(f, v)} | (2.11)

m0(e) = {f ∈ E | dG(f, u) = dG(f, v)}. (2.12)

A variety of indices were designed to capture different aspects of molecular structure.The

most popular is the Wiener index. The Wiener index of a connected graph G and its

equivalent form for a tree T (see [20, 29])is defined in (2.13):

W =
∑

e=uv∈E(T )

nu(e)nv(e) (2.13)

Equation (2.13) is only valid when the graph in question is a tree. An index was needed

for all the graphs. As a result the right hand-side of equation (2.13) was conceived as

the Szeged index [23]. Notice that the atoms at equal distance were originally ignored in

the definition. Szeged index attracted alot of attention but failed to produce satisfactory
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results in application to structure-property co-relations [66], as a result a modification

was offered for the improvement of its performance. In this modification the vertices at

equal distances were not ignored and given by (2.9). It was first proposed by Randić [39],

who named it as revised Wiener index which was later named revised Szeged index in

2010 [66].

Sz∗(G) =
∑
e∈E

(
n1(e) +

n0(e)

2

)(
n2(e) +

n0(e)

2

)
. (2.14)

Later, Gutman and Ashrafi [25] introduced the edge version of Szeged index .

Sz(G) =
∑
e∈E

m1(e)m2(e). (2.15)

The revised-edge Szeged index was defined in [21] as:

Sz∗(G) =
∑
e∈E

(
m1(e) +

m0(e)

2

)(
m2(e) +

m0(e)

2

)
. (2.16)

Khalifeh et al. [43] defined the edge-vertex-Szeged index Szev(G) of a graph G as follows.

Szev(G) =
1

2

∑
uv∈E(G)

(nu(e)mv(e) + nv(e)mu(e)). (2.17)

The total-Szeged index was defined by Mahmiani et al. [9] as product of number of vertices

and edges closer to one end-vertex of any edge and the other. That is,

Szt(G) = Sz(G) + Sze(G) + 2Szev(G). (2.18)

Some useful results in regards to the relationship between Szeged and Wiener index are

given in the following theorem.

Theorem 2.1. [24] Let G be a graph, then the Wiener index in general is smaller than

the Szeged index, that is, W (G) ≤ Sz(G), where equality holds for complete graphs.

Some of the more recent work in regards to the Szeged index on partial cubes and

bounds of collected molecular graphs can seen in [40] and [35].After the success of Wiener
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and Szeged index a new index closely related to the two was introduced by Khadikar [59]

called edge Padmakar-Ivan(PI) index. It has wide application in nano-technology.

PI(G) =
∑
e∈E

m1(e)m2(e). (2.19)
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Chapter 3

The leap Zagreb indices of TiO2

naotubes, 2-D lattices and nanotori

As a well-known semiconductor with numerous technological applications, titania nan-

otubes are comprehensively studied in materials science. Titania nanotubes were system-

atically synthesized during the last 10 to 15 years using different methods and carefully

studied as prospective technological materials. The TiO2 sheets with a thickness of a few

atomic layers were found to be remarkably stable [60]. The graph of titanium nanotubes

with m rows and n columns is denoted by T1(m,n) (see Figure 4.2). The 2-dimensional

lattice obtained from titanium nanotubes T1(m,n) is denoted by T2(m,n) and is shown

in Figure 4.2. In the same figure, we also present the titanium oxide nanotorus denoted

by T3(m,n) obtained from T1(m,n). When m and n are obvious from the context, we

denote the graphs T1(m,n), T2(m,n) and T3(m,n) by T1, T2 and T3, respectively. The

order and size of these graphs are given in Table 4.1.

First, we compute the Wiener polarity index of T1, T2 and T3. For this purpose, we

first define some notions related to the graphs Ti(m,n), i ∈ {1, 2}. Using these notions,

we will perform some necessary calculations which will then be summarized and presented

in tables. For an n-vertex graph G, let Wi = {v ∈ V (G) | dG(v | 3) = i} for 1 ≤ i ≤ n− 3.

Thus W1,W2, . . . ,Wk is a vertex partitions of G, for some k ∈ {1, 2, . . . , n − 3}. The
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Figure 3.1: The graph on the left represents titania nanotube T1(5, 3). The edges on

the right are to be identified by the same edges on the left. The graph in the middle

represents a 2-dimensional lattice denoted by T2(5, 3) of titania nanotube. The graph on

the right represents a nanotori T3(5, 3). The edges on the right (resp., on the bottom) of

nanotorus, are to be identified by the same edges on the left (resp., on the top)

The graph variant of TiO2 order size

T1(m,n) 12mn 4n(5m− 1)

T2(m,n) 2m(6n− 1) 20mn− 4(n+m)

T3(m,n) 12mn 16n when m = 1 and 20mn when m ≥ 2

Table 3.1: The order and size of the graphs T1(m,n), T2(m,n) and T3(m,n) for m ≥ 1

and n ≥ 1.

vertex partition (Wi’s) using third neighbors along with their cardinalities for the graphs

T1(m,n), T2(m,n) and T3(m,n) are given in Tables 3.2-3.4.
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i dT1(v | 3) |Wi|

1 2 8n when m = 1 and 0 when m ≥ 2

2 4 4n when m = 1, 12n when m = 2 and 8n when m ≥ 3

3 5 0 when m ≤ 2 and 4n when m ≥ 3

4 6 0 when m = 1, 4n when m = 2 and 8n when m ≥ 3

5 7 0 when m ≤ 2 and 4n(m− 3) when m ≥ 3

6 8 0 when m = 1 and 4n(m− 1) when m ≥ 2

7 10 0 when m ≤ 2, 4n when m ≥ 3, n = 1 and 0 when m ≥ 3, n ≥ 2

8 11 0 when m ≤ 2 and 4n when m ≥ 3

9 14 0 when m ≤ 2 and 4n when m ≥ 3

10 15 0 when m ≤ 2 and 4(m− 3) when m ≥ 3

Table 3.2: The cardinalities of the vertex partition Wi for the graph T1(m,n) with respect

to the third neighbors of each vertex.
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i dT3(v | 3) |Wi|

1 2 8n when m = 1 and 0 when m ≥ 2

2 4 4n when m = 1, 8n when m = 2 and 0 when m ≥ 3

3 6 0 when m = 1 and 4mn when m ≥ 2

4 8 0 when m ≤ 1 and 4mn when m ≥ 3

5 10 0 when m = 1, 8n when m = 2 and 0 when m ≥ 3

6 14 0 when m ≤ 1 and 4mn when m ≥ 3

Table 3.4: The cardinalities of the vertex partition Wi for the graph T3(m,n) with respect

to the third neighbors of each vertex.

In the following, we calculate the Wiener polarity index of graphs T1(m,n), T2(m,n)

and T3(m,n) using Tables 3.3-3.4.

Theorem 3.1. The Wiener polarity index for T1(m,n) is given by

Wp(T1(m,n)) =


16n m = 1 and n ≥ 1,

72n m = 2 and n ≥ 1,

60mn− 48n m ≥ 3 and n ≥ 1.

(3.1)

Proof. Using the vertex partition Wi shown in Table 3.2, we have

Wp(T1(m,n)) =
1

2

∑
w∈V (T1)

|dT1(w | 3)| = 1

2

10∑
i=1

|NT1(wi | 3)| · |Wi|.

We divide the proof in three cases.

Case 1: When m = 1 and n ≥ 1.

Wp(T1(m,n)) =
1

2
(2 · 8n+ 4 · 4n+ 5 · 0 + 6 · 0 + 7 · 0 + 8 · 0 + 10 · 0 + 11 · 0 + 14 · 0

+15 · 0 =
1

2
(32n) = 16n.
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Case 2: When m = 2 and n ≥ 1.

Wp(T1(m,n)) =
1

2
(2 · 0 + 4 · 12n+ 5 · 0 + 6 · 4n+ 7 · 0 + 8 · 4n+ 10 · 4n+ 11 · 0 + 14 · 0

+15 · 0

=
1

2
(144n) = 72n.

Case 3: When m ≥ 3 and n ≥ 1.

Wp(T1(m,n)) =
1

2
(2 · 0 + 4 · 8n+ 5 · 4n+ 6 · 8n+ 7 · 4n(m− 3) + 8 · 4n(m− 1) + 10

+11 · 4n+ 14 · 4n+ 15 · 4n(m− 3) =
1

2
(120mn− 96n) = 60mn− 48n.

Theorem 3.2. The Wiener polarity index for T2(m,n) is given by

Wp(T2(m,n)) =


16n− 8 m = 1 and n ≥ 1,

72n− 30 m = 2 and n ≥ 1,

60mn− 22m− 48n+ 14 m ≥ 3 and n ≥ 1,

(3.2)

Proof. Using the vertex partition Wi shown in Table 3.3, we get

Wp(T2) =
1

2

∑
w∈V (T2)

|dT2(w | 3)| = 1

2

12∑
i=1

|NT2(wi | 3)| · |Wi|.

The proof is divided into three cases.

Case 1: When m = 1 and n ≥ 1.

Wp(T2(m,n)) =
1

2
(1 · 4 + 2 · 2(4n− 1) + 3 · 0 + 4 · 4(n− 1) + 5 · 0 + 6 · 0 + 7 · 0 + 8 · 0

+10 · 0 + 11 · 0 + 14 · 0 + 15 · 0

=
1

2
(32n− 16) = 16n− 8.

Case 2: When m = 2 and n ≥ 1.

Wp(T2(m,n)) =
1

2
(1 · 0 + 2 · 2 + 3 · 6 + 4 · 4(3n− 2) + 5 · 2 + 6 · 4n+ 2 + 7 · 0

+8 · 4(n− 1) + 10 · 4(n− 1) + 11 · 0 + 14 · 0 + 15 · 0

=
1

2
(144n− 60) = 72n− 30.
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Case 3: When m ≥ 3 and n ≥ 1.

Wp(T2(m,n)) =
1

2
(1 · 0 + 2 · 0 + 3 · 6 + 4 · 8n+ 5 · (2m+ 4n− 8) + 6 · (2m+ 8n− 8)

+7 · (4mn− 12n− 4m+ 16) + 8 · (4mn− 4n− 6) + 10 · 2

+11 · (2m+ 4n− 10) + 14 · 4(n− 1) + 15 · (4mn−m− 3n+ 3)

=
1

2
(120mn+ 4m− 96n− 68) = 60mn+ 2m− 48n− 34.

Theorem 3.3. The Wiener polarity index for T3(m,n) is given by

Wp(T3(m,n)) =


16n m = 1 and n ≥ 1,

160n m = 2 and n ≥ 1,

112mn m ≥ 3 and n ≥ 1,

(3.3)

Proof. Consider the vertex partition Wi shown in Table 3.4. We have

Wp(T3(m,n)) =
1

2

∑
w∈V (T3)

|dT3(w, | 3)| = 1

2

6∑
i=1

|NT3(wi, | 3)| · |Vi|.

The proof is divided into three cases.

Case 1: When m = 1 and n ≥ 1.

Wp(T3(m,n)) =
1

2
(2 · 8n+ 4 · 4n+ 5 · 0 + 6 · 0 + 8 · 0 + 8 · 0 + 10 · 0 + 14 · 0

=
1

2
(32n) = 16n.

Case 2: When m = 2 and n ≥ 1.

Wp(T3(m,n)) =
1

2
(2 · 0 + 4 · 8n+ 6 · 8n · 0 + 8 · 0 + 10 · 8n+ 14 · 0

=
1

2
(160n) = 80n.

Case 3: When m ≥ 3 and n ≥ 1.

Wp(T3(m,n)) =
1

2
(2 · 0 + 4 · 0 + 6 · 4mn+ 8 · 4mn+ 10 · 0 + 14 · 4mn

=
1

2
(112mn) = 56mn.
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Next we compute the leap Zagreb index of first kind LM1 of the graphs T1(m,n),

T2(m,n) and T3(m,n). For an n-vertex graph G, let Vi = {v ∈ V (G) | dG(v | 2) = i}

for 1 ≤ i ≤ n − 2. Then V1, V2, . . . , Vk defines a vertex partitions of G, for some k ∈

{1, 2, . . . , n− 2}. This vertex partition along with the cardinalities of its partite sets for

the graphs T1(m,n), T2(m,n) and T3(m,n) is given in Tables 3.5-3.7.

i dT1(v | 2) |Vi|

1 2 4n when m = 1 and 0 when m ≥ 2

2 3 0 when m = 1 and 4n when m ≥ 2

3 4 0 when m = 1 and 4n when m ≥ 2

4 5 8n when m = 1 and 4n when m ≥ 2

5 6 0 when m = 1 and 4n when m ≥ 2

6 7 0 when m = 1 and 4n(m− 1) when m ≥ 2

7 9 0 when m = 1 and 4n when m ≥ 2

8 10 0 when m = 1 and 4n(m− 2) when m ≥ 2

Table 3.5: The cardinalities of the vertex partition Vi for the graph T1(m,n) with respect

to the second neighbors of each vertex, where 1 ≤ i ≤ 8.

In the following, we compute the first type of leap Zagreb index of graphs T1(m,n),

T2(m,n) and T3(m,n).

Theorem 3.4. The leap Zagreb index for T1(m,n) is given by

LM1(T1(m,n)) =


1664n2 m = 1 and n ≥ 1,

2384m2n2 − 7968mn2 + 9856n2 m ≥ 2 and n ≥ 1

(3.4)
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i dT2(v | 2) |Vi|

1 1 2 when m = 1 and 0 when m ≥ 2

2 2 2(4n− 1) when m = 1 and 2 when m ≥ 2

3 3 4 when m = 1 and 4n when m ≥ 2

4 4 0 when m = 1 and 4n+ 2m− 2 when m ≥ 2

5 5 8n− 6 when m = 1 and 4mn− 4n− 2m+ 4 when m ≥ 2

6 6 0 when m = 1 and 2m+ 4n− 8 when m ≥ 2

7 7 0 when m = 1 and 4mn− 2m− 4n+ 4 when m ≥ 2

8 8 0 when m = 1 and 2m− 4 when m ≥ 2

9 9 0 when m = 1 and 4n− 4 when m ≥ 2

10 10 0 when m = 1 and 4mn− 4m− 8n+ 8 when m ≥ 2

Table 3.6: The cardinalities of the vertex partition Vi for the graph T2(m,n) with respect

to the second neighbors of each vertex, where 1 ≤ i ≤ 10.

Proof. For the vertex partition Vi (1 ≤ i ≤ 8) shown in Table 3.5, we get

LM1(T1(m,n)) =
∑

v∈V (T1)

(dT1(v | 2))2 =
8∑

i=1

(|NT1(vi | 2)| · |Vi|)2.

There are two cases to be discussed.

Case 1: When m = 1 and n ≥ 1, we have

LM1(T1(m,n)) = (2 · 4n)2 + (3 · 0)2 + (4 · 0)2 + (5 · 8n)2 + (6 · 0)2 + (7 · 0)2 + (9 · 0)2

+(10 · 0)2

= 1664n2.
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i dT3(v | 2) |Vi|

1 2 4n when m = 1 and 0 when m ≥ 2

2 4 0 when m = 1, 8n when m = 2 and 0 when m ≥ 3

3 5 8n when m = 1, 4mn when m = 2 and 0 when m ≥ 3

4 7 0 when m = 1 and 4mn when m ≥ 2

5 9 0 when m = 1, 8n when m = 2 and 0 when m ≥ 3

6 10 0 when m ≤ 1 and 4n when m ≥ 3

Table 3.7: The cardinalities of the vertex partition Vi for the graph T3(m,n) with respect

to the second neighbors of each vertex, where 1 ≤ i ≤ 6.

Case 2: When m ≥ 2 and n ≥ 1, then

LM1(T1(m,n)) = (2 · 0)2 + (3 · 4n)2 + (4 · 4n)2 + (5 · 4n)2 + (6 · 4n)2 + (7 · 4n(m− 1))2

+(9 · 4n)2 + (10 · 4n(m− 2))2 = 2384m2n2 − 7968mn2 + 9856n2.

Theorem 3.5. The leap Zagreb index for T2(m,n) is given by

LM1(T2(m,n)) =


1856n2 − 2528n+ 1064, m = 1 and n ≥ 1

2360m2 − 4384m2n+ 8416mn+ 2784m2n2 − 8768mn2

+9856n2 − 9888m+ 8768mn− 20320n+ 12288, m ≥ 2 and n ≥ 1

(3.5)

Proof. Using the information given in Table 3.6, we get

LM1(T2(m,n)) =
∑

v∈V (T2)

(dT2(v | 2))2 =
10∑
i=1

(|NT2(vi | 2)| · |Vi|)2.

The proof is divided into two cases.
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Case 1: When m = 1 and n ≥ 1.

LM1(T2(m,n)) = (1 · 2)2 + (2 · 2(4n− 1))2 + (3 · 4)2 + (4 · 0)2 + (5 · 8n− 6)2 + (6 · 0)2

+(7 · 0)2 + (8 · 0)2 + (9 · 0)2 + (10 · 0)2 = 1856n2 − 2528n+ 1064.

Case 2: When m ≥ 2 and n ≥ 1.

LM1(T2(m,n)) = (1 · 0)2 + (2 · 2)2 + (3 · 4)2 + (4 · 4n+ 2(m− 1))2 + (5 · 4mn− 4n

−2m+ 4)2 + (6 · 2m+ 4n− 8)2 + (7 · 2(2m− 1) + 2(m− 1)(2n− 3)2

+(8 · 2(m− 2))2 + (9 · 4(n− 1))2 + (10 · 4(m− 2)(n− 1)2

= 2360m2 − 4384m2n+ 8416mn+ 2784m2n2 − 8768mn2 + 9856n2

−9888m+ 8768mn− 20320n+ 12288.

Theorem 3.6. The leap Zagreb index for T3(m,n) is given by

LM1(T3(m,n)) =


1664n2, m = 1 and n ≥ 1

9344n2 m = 2 and n ≥ 1

2784m2n2 m ≥ 3 and n ≥ 1

(3.6)

Proof. For the vertex partition Vi (1 ≤ i ≤ 6) given in Table 3.7, we get the following.

LM1(T3(m,n)) =
∑

v∈V (T3)

(dT3(v | 2))2 =
6∑

i=1

(|NT3(vi | 2)| · |Vi|)2.

We complete the proof by considering the following three cases.

Case 1: When m = 1 and n ≥ 1, then LM1(T3(m,n)) = (2 · 4n)2 + (5 · 8n)2 = 1664n2.

Case 2: When m = 2 and n ≥ 1, then LM1(T3(m,n)) = (4 · 8n)2 + (7 · 8n)2 + (9 · 8n)2 =

9920n2 .

Case 3: When m ≥ 3 and n ≥ 1, then LM1(T3(m,n)) = (5 · 4mn)2 + (7 · 4mn)2 + (10 ·

4mn)2 = 2784m2n2.

27



Now, we compute the leap Zagreb indices of second and third kind (LM2 and LM3) for

the graphs T1(m,n), T2(m,n) and T3(m,n). It can be seen from equation (2.2), (2.3) and

(2.4) that leap Zagreb index LM2(G) and LM3(G) of a graph G can be computed by using

an edge partition of G such that each edge uv ∈ E(G) is contained in a unique partite set

containing all edges whose end-vertices have second degrees |NG(u | 2)| and |NG(v | 2)|. Let

{V ′1 , V ′2 , . . . , V ′k} denotes such a partition for the graphs T1(m,n), T2(m,n) and T3(m,n).

The cardinalities of Vi’s are given in Tables 3.8-3.10.

i (dT1(u | 2), dT1(v | 2)) |V ′i |

1 (2, 5) 16n when m = 1 and 0 when m ≥ 2

2 (3, 5) 0 when m ≤ 2 and 8n when m ≥ 3

3 (3, 6) 0 when m = 1 and 4n when m ≥ 2

4 (3, 9) 0 when m = 1 and 4n when m ≥ 2

5 (4, 6) 0 when m = 1 and 4n when m ≥ 2

6 (4, 7) 0 when m = 1 and 8n when m ≥ 2

7 (4, 9) 0 when m = 1, 8n when m = 2 and 4n when m ≥ 3

8 (4, 10) 0 when m ≤ 2 and 4n when m ≥ 3

9 (5, 7) 0 when m = 1 and 8n(m− 2) when m ≥ 2

10 (5, 9) 0 when m ≤ 2 and 4n when m ≥ 3

11 (5, 10) 0 when m ≤ 2 and 4n(3m− 7) when m ≥ 3

Table 3.8: The cardinalities of the edge partition V ′i for the graph T1(m,n) with respect

to the second neighbors of each vertex, where 1 ≤ i ≤ 11.

In the following, we compute the leap Zagreb index of second and third kind (LM2

and LM3) of graphs T1(m,n), T2(m,n) and T3(m,n) by using Tables 3.8-3.10.
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i (dT2(u | 2), dT2(v | 2)) |V ′i |

1 (1, 3) 4 when m = 1 and 0 when m ≥ 2

2 (2, 3) 4 when m = 1 and 0 when m ≥ 2

3 (2, 4) 0 when m = 1 and 2 when m ≥ 2

4 (2, 5) 4(4n− 3) when m = 1 and 2 when m ≥ 2

5 (3, 4) 0 when m = 1 and 4 when m ≥ 2

6 (3, 5) 0 when m = 1, 2(4n− 1) when m = 2 and 4(2n− 1) when m ≥ 3

7 (3, 6) 0 when m ≤ 2, 4(n− 1) when m = 2 and 2(2n− 1) when m ≥ 3

8 (3, 7) 0 when m = 1 and 4 when m ≥ 2

9 (3, 9) 0 when m = 1 and 4(n− 1) when m ≥ 2

10 (4, 4) 0 when m = 1 and 2 when m ≥ 2

11 (4, 5) 2(m− 1) when m ≤ 2 and 4 when m ≥ 3

12 (4, 6) 0 when m = 1, 4(n− 1) when m = 2 and 4m− 8 + 4n− 6 when m ≥ 3

13 (4, 7) 0 when m = 1, 2(4n− 1) when m = 2 and 4(2n− 1) when m ≥ 3

14 (4, 8) 0 when m = 1 and 2(m− 1) when m ≥ 2

15 (4, 9) 0 when m = 1, 8(n− 1) when m = 2 and 4(n− 1) when m ≥ 3

16 (4, 10) 0 when m = 1 and 4(n− 1) when m ≥ 2

17 (5, 6) 0 when m = 1 and 2(m− 2) when m ≥ 2

18 (5, 7) 0 when m ≤ 2 and 8mn− 16n− 4m+ 10 when m ≥ 3

19 (5, 8) 0 when m ≤ 2 and 2(2m− 5) when m ≥ 3

20 (5, 9) 0 when m ≤ 2 and 4(n− 1) when m ≥ 3

21 (5, 10) 0 when m ≤ 2 and 4(3m− 7)(n− 1) when m ≥ 3

Table 3.9: The cardinalities of the edge partition V ′i for the graph T2(m,n) with respect

to the second neighbors of each vertex, where 1 ≤ i ≤ 21.

Theorem 3.7. The leap Zagreb index for T1(m,n) is given by

LM2(T1(m,n)) =


112n, m = 1 and n ≥ 1

276mn− 172n m ≥ 2 and n ≥ 1

(3.7)
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i (dT3(u | 2), dT3(v | 2)) |V ′i |

1 (2, 5) 16n when m = 1 and 0 when m ≥ 2

2 (5, 7) 0 when m = 1 and 8mn when m ≥ 2

3 (5, 9) 0 when m = 1, 24n when m = 2 and 0 when m ≥ 3

4 (5, 10) 0 when m ≤ 2 and 12mn when m ≥ 3

Table 3.10: The cardinalities of the edge partition V ′i for the graph T3(m,n) with respect

to the second neighbors of each vertex, where 1 ≤ i ≤ 4.

Proof. Let V ′i (1 ≤ i ≤ 11) be the edge partition given in Table 3.8. We compute the leap

Zagreb index of second kind as follows.

LM2(T1(m,n)) =
∑

v∈V (T1)

d(u)d(v | 2) =
∑

uv∈E(T1)

(d(u | 2) + d(v | 2)),

=
11∑
i=1

(|NT1(ui | 2)|+ |NT1(vi | 2)|) · |Wi|.

The proof is divided into two cases.

Case 1: When m = 1 and n ≥ 1, then LM2(T1(m,n)) = (2 + 5) · 16n = 112n.

Case 2: When m ≥ 2 and n ≥ 1, we get

LM2(T1(m,n)) = (3 + 5) · 8n+ (3 + 6) · 4n+ (3 + 9) · 4n+ (4 + 6) · 4n+ (4 + 7) · 8n

+(4 + 9) · 4n+ (4 + 10) · 4n+ (5 + 7) · 8n(m− 2) + (5 + 9) · 4n

+(5 + 10) · 4n(3m− 7)

= 276mn− 172n.

Theorem 3.8. The leap Zagreb index for T2(m,n) is given by

LM2(T2(m,n)) =


112n− 48, m = 1 and n ≥ 1

276mn− 90m− 172n+ 42 m ≥ 2 and n ≥ 1

(3.8)
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Proof. For the edge partition of the graph T2(m,n) given in Table 3.9. We get

LM2(T2(m,n)) =
∑

v∈V (T2)

d(u)d(v | 2) =
∑

uv∈E(T2)

(d(u | 2) + d2(v | 2)),

=
21∑
i=1

(|NT2(ui | 2)|+ |NT2(vi | 2)|) · |Wi|.

The rest of the proof is divided into two cases.

Case 1: When m = 1 and n ≥ 1, then

LM2(T2(m,n)) = ((1 + 3) · 4) + ((2 + 3) · 4) + ((2 + 5) · 4(4n− 3))

= 112n− 48.

Case 2: When m ≥ 3 and n ≥ 1, then

LM2(T2(m,n)) = (2 + 4) · 2 + (2 + 5) · 2 + (3 + 4) · 4 + (3 + 5) · 4(2n− 1)

+(3 + 6) · 2(2n− 1) + ((3 + 7) · 4n) + (3 + 9) · 4(n− 1) + (4 + 4) · 2

+(4 + 5) · 4 + (4 + 6) · 4(m− 2) + 2(2n− 3) + (4 + 7) · 4(2n− 1)

+(4 + 9) · 4(n− 1) + (4 + 10) · 4(n− 1) + (5 + 6) · 2(m− 2)

+(5 + 7) · (8n(m− 2)− 2(2m− 5)) + (5 + 8) · 2(2m− 5)

+(5 + 9) · 4(n− 1) + (5 + 10) · 4(3m− 7)(n− 1)

= 276mn− 90m− 172n+ 42.

Theorem 3.9. The leap Zagreb index for T3(m,n) is given by

LM2(T3(m,n)) =


112n, m = 1 and n ≥ 1

528n, m = 2 and n ≥ 1

276mn m ≥ 3 and n ≥ 1

(3.9)

Proof. For the edge partition V ′i (1 ≤ i ≤ 4) given in Table 3.10, we compute the leap

31



Zagreb index of the graph T3, as follows.

LM2(T3(m,n)) =
∑

v∈V (T3)

d(u)d(v | 2) =
∑

uv∈E(T3)

(d(u | 2) + d(v | 2)),

=
4∑

i=1

(|NT3(ui | 2)|+ |NT3(vi | 2)|) · |Wi|.

The proof is divided into three cases.

Case 1: When m = 1 and n ≥ 1, then LM2(T3(m,n)) = (5+7)·16n+(5+9)·24n = 528n.

Case 2: When m = 2 and n ≥ 1, then LM2(T3(m,n)) = (2 + 5) · 16n = 112n.

Case 3: when m ≥ 3 and n ≥ 1, then LM2(T3(m,n)) = (5+7)·8mn+(5+10)·12mn·4n) =

276mn.

Theorem 3.10. The leap Zagreb index for T1(m,n) is given by

LM3(T1(m,n)) =


160n, m = 1 and n ≥ 1

908n m = 2 and n ≥ 1

880mn− 856n m ≥ 3 and n ≥ 1

(3.10)

Proof. Consider the edge partition V ′i (1 ≤ i ≤ 11) given in Table 3.8. We compute LM2

for the graph T3(m,n) as follows.

LM3(T1(m,n)) =
∑

u,v∈E(T1)

d(u | 2)d(v | 2).

=
11∑
i=1

((|NT1(ui | 2)| · |NT1(vi | 2)|) · |Wi|).

There are three cases to be considered.

Case 1: When m = 1 and n ≥ 1, then LM3(T1(m,n)) = (2 · 5 · 16)n = 160n.

Case 2: When m = 2 and n ≥ 1, then

LM2(T1(m,n)) = (3 · 5 · 8n) + (3 · 6 · 4n) + (3 · 9 · 4n) + (4 · 6 · 4n) + (4 · 7 · 8n)

+(4 · 9 · 8n) = 908n.
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Case 3: When m ≥ 3 and n ≥ 1, then we have

LM2(T1(m,n)) = (3 · 5 · 8n) + (3 · 6 · 4n) + (3 · 9 · 4n) + (4 · 6 · 4n) + (4 · 7 · 8n)

+(4 · 9 · 4n) + (4 · 10 · 4n) + (5 · 7 · 8n(m− 2)) + (5 · 9 · 4n)

+(5 · 10 · 4n(3m− 7)) = 880mn− 856n.

Theorem 3.11. The leap Zagreb index for T2(m,n) is given by

LM3(T2(m,n)) =


4(40n− 21) m = 1 and n ≥ 1

908n− 410 m = 2 and n ≥ 1

880mn− 360m− 856n+ 310 m ≥ 3 and n ≥ 1.

(3.11)

Proof. For the edge partition V ′i (1 ≤ i ≤ 21) given in Table 3.9, we have

LM3(T2(m,n)) =
∑

u,v∈E(T2)

dT2(u | 2)dT2(v | 2).

=
21∑
i=1

((|NT2(ui | 2)| · |NT2(vi | 2)|) · |Wi|).

The proof is divided into three cases.

Case 1: When m = 1 and n ≥ 1, then

LM3(T2(m,n)) = (1 · 3 · 4) + (2 · 3 · 4) + (2 · 5 · 4(4n− 3)) = 4(40n− 21).

Case 2: When m = 2 and n ≥ 1, then we have

LM3(T2(m,n)) = (2 · 4 · 2) + (2 · 5 · 2) + (3 · 4 · 4) + (3 · 5 · 2(4n− 1))

+(3 · 6 · 4(n− 1)) + (3 · 7 · 4) + (3 · 9 · 4(n− 1)) + (4 · 4 · 2)

+(4 · 5 · 2) + (4 · 6 · 4(n− 1)) + (4 · 7 · 2(4n− 1)) + (4 · 9 · 8(n− 1))

= 908n− 410.
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Case 3: When m ≥ 3 and n ≥ 1, then

LM3(T2(m,n)) = (2 · 4 · 2) + (2 · 5 · 2) + (3 · 4 · 4) + (3 · 5 · 4(2n− 1))

+(3 · 6 · 2(2n− 1)) + (3 · 7 · 4) + (3 · 9 · 4(n− 1)) + (4 · 4 · 2)

+(4 · 5 · 4) + (4 · 6 · (4m− 8 + 4n− 6)) + (4 · 7 · 4(2n− 1))

+(4 · 8 · 2(m− 1)) + (4 · 9 · 4(n− 1)) + (4 · 10 · 4(n− 1))

+(5 · 6 · 2(m− 2)) + (5 · 7 · (8mn− 16n− 4m+ 10)) + (5 · 8 · 2(2m

−5)) + (5 · 9 · 4(n− 1)) + (5 · 10 · 4(3mn− 3m− 7n+ 7))

= 880mn− 360m− 856n+ 310.

Theorem 3.12. The leap Zagreb index for T3(m,n) is given by

LM3(T3(m,n)) =


160n, m = 1 and n ≥ 1

1640n m = 2 and n ≥ 1

880mn m ≥ 3 and n ≥ 1

(3.12)

Proof. Let V ′i (1 ≤ i ≤ 4) represents the edge partition of the graph T3 given in Table 3.10.

We compute the leap Zagreb index of third kind for the graph T3 as follows.

LM3(T3(m,n)) =
∑

u,v∈E(T3)

d(u | 2)d(v | 2).

=
4∑

i=1

((|NT3(ui | 2)| · |NT3(vi | 2)|) · |Wi|).

We have the following three cases.

Case 1: When m = 1 and n ≥ 1, then LM3(T3(m,n)) = (2 · 5 · 16) = 160n.

Case 2: When m = 2 and n ≥ 1, then LM3(T3(m,n)) = (5 ·7 ·16n)+(5 ·9 ·24n) = 1640n.

Case 3: When m ≥ 3 and n ≥ 1, then LM3(T3(m,n)) = (5 · 7 · 8mn) + (5 · 10 · 12mn) =

880mn.
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Chapter 4

Szeged-type indices of 2-dimensional

lattices of TiO2

4.1 Szeged-type indices of 2-dimensional lattices of

TiO2

In the next Section 4.1, we suggest such cuts which divides the graphs in two connected

components which gives the values of nu, nv, mu and mv. Using these values we study

several Szeged-type indices of 2-dimensional lattices of TiO2

v1 v2
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v14 v25 v26

v33

v37 v38

v40

v42

v44v43

v41

v39
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v15
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v11 v24

v23
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v3

v5

v7

s1

k

Figure 4.1: The graph represents the cuts suggested by Imran and Hafi [45].

In [45], the authors calculate the order and size of the titania nanotubes T1[m,n] to
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be 12mn and 20mn− 4n− 2m, respectively. By comparing the formulas of order and size

from Figure 4.2 and Table 4.1, it is clear that the formula for the size of titania nanotubes

is not true. We denote the graph studied in [45] by T ′2[m,n] (see Figure 4.2). Now consider

the Θ-class denoted by Sk
1 for titania nanotubes considered in [45] (see Figure 4.1). The

edges in S1
1 are v4v10, v9v15, v11v10 and v8v12. The values of mu and mv for these edges

are mv9 = mv4 = mv11 = mv8 = 13 and mv15 = mv10 = mv19 = mv12 = 51. Whereas, for

the graph of titania nanotubes considered in [45], the values of mu and mv obtained from

definition (2.10) and (2.11) are given as follows:

mv4 = 13, mv10 = 51,

mv9 = 11, mv15 = 53,

mv11 = 11, mv19 = 53,

mv8 = 13, mv12 = 51.

Then the contribution of S1
1 in computing the Szeged index of the graph T ′2[m,n] is

4(13× 51) whereas all four edges in S1
1 do not have the same values of m1 and m2. Thus

the Szeged index calculated from S1
1 is not correct in [45]. In this paper, we correct the

results of [45] by defining new cuts for mu and mv for all edges uv ∈ E(T2[m,n])

The graph variant of TiO2 order size

T1(m,n) 12mn 4n(5m− 1)

T2(m,n) 12mn− 2m 20mn− 4n− 4m

T ′2(m,n) 12mn 20mn− 4n− 2m

Table 4.1: The order and size of the graphs T1(m,n), T2(m,n) and T3(m,n) for m ≥ 1

and n ≥ 1.

For the cut to be an orthognal cut it must contain all the edges such that they are

equi-distant to each other. Let Ai, Bi, Ci, Yi and Zi be the types of edge-cuts of T2(m,n)

as shown in Figure 4.3 and 4.4 by bold lines with negative slopes.Let A′i, B
′
i, C

′
i, Y

′
i
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Top image

Across image

n = 1 n = 2 n = 3

1

2

4

3

5

1

2

3

5

4

n = 1 n = 2 n = 3

Figure 4.2: The graph on the left represents titania nanotube T1(5, 3). The edges on

the right, are to be identified by the same edges on the left. The graph in the middle

represents a 2-dimensional lattice denoted by T2(5, 3) of titania nanotube. The graph on

the right studied in [45] represents a 2-dimensional lattice T ′2(5, 3) of titania nanotube.

and Z ′i denote the edge-cuts of the graph T2(m,n) obtained by reflecting the cuts Ai,

Bi, Ci, Yi and Zi respectively. These cuts are denoted by thin dotted lines with positive

slopes as shown in Figure 4.3 and 4.4. It is important to note that Ai, Bi, Ci and Yi

satisfy the definition of orthogonal cuts but the edge-cut Zi is a simple cut such that the

cut it contains all edges that satisfy the definition (2.12) and divides the graph in two

components. The cardinality of the vertices and edges of these components provide the

values of mu,mv, nu, and nv. Using these cuts we can evaluate the general formulas of the

edges involved in each cut. It can be observed that there are 2n copies of a Yi-type cuts

and 2n− 1 copies of a Zi-type cuts in E(T2(m,n)), where the range of i can be obtained

by varying m and n in T2(m,n).Then all the cuts of type Ai, Bi, Ci, Yi and Zi define

a partition of E(T2(m,n)). The number and sizes of these cuts are summarized in the

following table 4.2.
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When m > n, let a1,e and a1,v respectively denote the number of edges and vertices

lying on one side of the cut A1. Similarly, let ai,e and ai,v, for 2 ≤ i ≤ n, respectively denote

the number of edges and vertices between the cuts Ai and Ai−1. Then ai,e = 4(4i− 2) + 1

and ai,v = 4(3i − 1) + 1, where 1 ≤ i ≤ n. In the next theorem, we compute the

Case cut-type number of cuts size of cuts

When m > n

Ai 1 ≤ i ≤ n 4i

Bi 1 ≤ i ≤ m− n− 1 4n

Ci 1 ≤ i ≤ n 2(2i− 1)

Yi 1 ≤ i ≤ n 2m

Zi 1 ≤ i ≤ 2n− 1 2m

When m ≤ n

Ai 1 ≤ i ≤ m− 1 4(4i− 2)

Bi 1 ≤ i ≤ n−m+ 1 4(m− 1) + 2

Ci 1 ≤ i ≤ m− 1 2(2i− 1)

Yi 1 ≤ i ≤ n 2m

Zi 1 ≤ i ≤ 2n− 1 2m

Table 4.2: All types of edge-cuts in T2(m,n) with their cardinalities.

edge-Szeged index of the graph T2(m,n).
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When m ≥ n When m < n

type range size type range size

ai,e 1 ≤ i ≤ n 4(4i− 2) + 1 ai,e 1 ≤ i ≤ m 4(4i− 2) + 1

ai,v 1 ≤ i ≤ n 4(3i− 1) ai,v 1 ≤ i ≤ m 4(3i− 1)

bi,e 1 ≤ i ≤ m− n− 1 4(4n− 1) bi,e 1 ≤ i ≤ n−m+ 1 16m− 2

bi,v 1 ≤ i ≤ m− n− 1 2(6n− 1) bi,v 1 ≤ i ≤ n−m+ 1 12m

ci,e 1 ≤ i ≤ n 4(4i− 4) + 1 ci,e 1 ≤ i ≤ m 4(4i− 4) + 1

ci,v 1 ≤ i ≤ n 2(6i− 5) ci,v 1 ≤ i ≤ m 2(6i− 5)

yi,e 1 ≤ i ≤ n 2m(5i− 4)− 2i+ 1 yi,e 1 ≤ i ≤ n 2m(5i− 4)− 2i+ 1

yi,v 1 ≤ i ≤ n 2m(3i− 2) yi,v 1 ≤ i ≤ n 2m(3i− 2)

zi,e 1 ≤ i ≤ 2n− 1 2m(5i− 2)− 2i zi,e 1 ≤ i ≤ 2n− 1 2m(5i− 2)− 2i

zi,v 1 ≤ i ≤ 2n− 1 2m(3i− 1) + 1 zi,v 1 ≤ i ≤ 2n− 1 2m(3i− 1) + 1

Table 4.3: The number of vertices and edges lying between consecutive cuts of all types

in the graph T2(m,n) with ranges and cardinalities.
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Figure 4.3: The edge-cuts of type Ai, Bi and Ci of the graph T2(m,n) for the case when

m ≤ n, where m = 5 and n = 3.

(a) (b) (c)

Z1 Z2 Y

Figure 4.4: For m = 3 and n = 2, The edge-cuts of type Z1, Z2 and Yi of the graph

T2(m,n).
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Theorem 4.1. The edge-Szeged index for 2-D lattice of TiO2 nanotubes T2(m,n) for

m > n is given by,

Sze(T2(m,n)) = −
(

2

3

)
n+ 4m−

(
112

3

)
n4 −

(
380

3

)
n3 +

(
208

3

)
n5 −

(
320

3

)
mn4

+448mn3 −
(

2800

3

)
n2m3 + 272n2m2 +

(
4000

3

)
n3m3 − 960n3m2

−32m3 +

(
784

3

)
m3n+ 8m2n−

(
92

3

)
mn− 8m2 +

(
34

3

)
n2.

Proof. Let T2(m,n) be the graph of 2-dimensional lattice of TiO2 nanotubes. Then for

m > n we calculate the edge-Szeged index by using Tables 4.2-4.4 as follows.

Sze(T2(m,n)) = 2(
n∑

.
i=1

((mu)(mv)(|Ai|)) +
m−n−1∑

.
i=1

((mu)(mv)(|Bi|)) +
n∑

.
i=1

((mu)(mv)(|Ci|))

+
n∑

.
i=1

((mu)(mv)(|Yi|)) +
2n−1∑
.
i=1

((mu)(mv)(|Zi|)))

Sze(T2(m,n)) = 2(
n∑

.
i=1

(10i2 − i)(−10i2 + 20mn− 3i− 4m− 4n)(4i)

+
m−n−1∑

.
i=1

(20in+ 10n2 − 4i− n)(−20in+ 20mn− 10n2 + 4i− 4m− 7n)

(4n) +
n∑

.
i=1

(10i2 − 11i+ 2)(−10i2 + 20mn+ 7i− 4m− 4n)(2(2i− 1))

+
n∑

.
i=1

(10im− 2i− 8m+ 1)(−10im+ 20mn+ 2i+ 2m− 4n− 1)(2m)

+
2n−1∑
.
i=1

(10im− 2i− 4m+ 1)(−10im+ 20mn+ 2i− 2m− 4n− 1)(2m))

Sze(T2(m,n)) = −
(

2

3

)
n+ 4m−

(
112

3

)
n4 −

(
380

3

)
n3 +

(
208

3

)
n5 −

(
320

3

)
mn4

+448mn3 −
(

2800

3

)
n2m3 + 272n2m2 +

(
4000

3

)
n3m3 − 960n3m2

−32m3 +

(
784

3

)
m3n+ 8m2n−

(
92

3

)
mn− 8m2 +

(
34

3

)
n2.

This completes the proof.
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Theorem 4.2. The edge-Szeged index for T2(m,n) when m ≤ n is given by,

Sze(T2(m,n)) = −
(

16

3

)
n−

(
32

3

)
n3 − 176n2m+

(
4000

3

)
n3m3 − 800n3m2

−1360n2m3 + 752n2m2 + 160n3m+ 16m4 − 64m5 +

(
232

3

)
m3

+16n2 +

(
880

3

)
m4n+ 16m3n−

(
124

3

)
m2n+

(
92

3

)
nm− 74m2

+

(
26

3

)
m.

Proof. Let T2(m,n) be the graph of 2-dimensional lattice of TiO2 nanotubes. Then for

m ≤ we calculate the edge-Szeged index by using Tables 4.2-4.4 as follows.

Sze(T2(m,n)) = 2(
m−1∑
.
i=1

((mu)(mv)(|Ai|)) +
n−m+1∑

.
i=1

((mu)(mv)(|Bi|)) +
m−1∑
.
i=1

((mu)(mv)(|Ci|))

+
n∑

.
i=1

((mu)(mv)(|Yi|)) +
2n−1∑
.
i=1

((mu)(mv)(|Zi|)))

Sze(T2(m,n)) = 2(
m−1∑
.
i=1

((10i2 − i)(−10i2 + 20mn− 3i− 4m− 4n)(4i) +
n−m+1∑

.
i=1

(20im

+10m2 − 4i− 21m+ 4)(−20im− 10m2 + 20mn+ 4i+ 13m− 4n

−2)(4(m− 1) + 2) +
m−1∑
.
i=1

(10i2 − 11i+ 2)(−10i2 + 20mn+ 7i− 4m

−4n)(2(2i− 1)) +
n∑

.
i=1

(10im− 2i− 8m+ 1)(−10im+ 20mn+ 2i+ 2m

−4n− 1)(2m) +
2n−1∑
.
i=1

(10im− 2i− 4m+ 1)(−10im+ 20mn+ 2i− 2m

−4n− 1)(2m))
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Sze(T2(m,n)) = −
(

16

3

)
n−

(
32

3

)
n3 − 176n2m+

(
4000

3

)
n3m3 − 800n3m2

−1360n2m3 + 752n2m2 + 160n3m+ 16m4 − 64m5 +

(
232

3

)
m3 + 16n2

+

(
880

3

)
m4n+ 16m3n−

(
124

3

)
m2n+

(
92

3

)
nm− 74m2 +

(
26

3

)
m.

This completes the proof.

Theorem 4.3. The vertex-Szeged index for T2(m,n) when m > n is given by

Szv(T2(m,n)) = 4 +

(
112

15

)
n− 160n4 −

(
1104

5

)
n5 − 96n6 − 1248m6 −

(
128

3

)
n3

−4144m4 − 352m2 + 1936m3 + 3792m5 − 4m−
(

116

3

)
mn− 8304m4n

+5792m3n− 1112m2n+ 4560m3n2 − 1536m2n2 + 3744m5n− 480m2n3

+288mn5 + 368mn4 + 1248m3n3 − 3456m4n2 − 88mn2 −
(

64

3

)
mn3.

Proof. Let T2(m,n) be the graph of 2-dimensional lattice of TiO2 nanotubes. Then for

m > n, we calculate the Szeged index by using Tables 4.2-4.5 as follows.

Szv(T2(m,n)) = 2(
n∑

.
i=1

((nu)(nv)(|Ai|)) +
m−n−1∑

.
i=1

((nu)(nv)(|Bi|)) +
n∑

.
i=1

((nu)(nv)(|Ci|))

+
n∑

.
i=1

((nu)(nv)(|Yi|)) +
2n−1∑
.
i=1

((nu)(nv)(|Zi|))

= 2(
n∑

.
i=1

(6i2 + 2i− 1)(−6i2 + 12mn− 2i− 2m− 1)(4i) +
m−n−1∑

.
i=1

(12in+ 6n2 − 2i

+2n− 1)(−12in+ 12mn− 6n2 + 2i− 2m− 2n− 1)(4n) +
n∑

.
i=1

(6i2 − 4i− 1)(−6i2

+12mn+ 4i− 2m− 1)(2(2i− 1)) +
n∑

.
i=1

(2m(3i− 2)− 1)(−6im+ 12mn+ 2m− 1)

(2m) +
2n−1∑
.
i=1

(6im− 2m)(−6im+ 12mn− 2)(2m)).
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= 4 +

(
112

15

)
n− 160n4 −

(
1104

5

)
n5 − 96n6 − 1248m6 −

(
128

3

)
n3 − 4144m4 − 352m2

+1936m3 + 3792m5 − 4m−
(

116

3

)
mn− 8304m4n+ 5792m3n− 1112m2n+ 4560m3n2

−1536m2n2 + 3744m5n− 480m2n3 + 288mn5 + 368mn4 + 1248m3n3 − 3456m4n2

−88mn2 −
(

64

3

)
mn3.

This completes the proof.

Theorem 4.4. The vertex-Szeged index for T2(m,n) when m ≤ n is given by,

Szv(T2(m,n)) = −4n+ 48mn2 − 96m2n3 + 480m3n3 − 240m3n2 − 192m2n2 − 48m3n

+

(
80

3

)
m4 −

(
144

5

)
m5 +

(
40

3

)
m3 + 80m4n+ 104m2n+ 4mn

−
(

80

3

)
m2 −

(
8

15

)
m.

Proof. Let T2(m,n) be the graph of 2-dimensional lattice of TiO2 nanotubes. Then for

m ≤ n, we calculate the Szeged index by using Tables 4.2-4.5 as follows.

Szv(T2(m,n)) = 2(
m−1∑
.
i=1

((nu)(nv)(|Ai|)) +
n−m+1∑

.
i=1

((nu)(nv)(|Bi|)) +
m−1∑
.
i=1

((nu)(nv)(|Ci|))

+
n∑

.
i=1

((nu)(nv)(|Yi|)) +
2n−1∑
.
i=1

((nu)(nv)(|Zi|)))

= 2(
m−1∑
.
i=1

(6i2 + 2i− 1)(−6i2 + 12mn− 2i− 2m− 1)(4i) +
n−m+1∑

.
i=1

(12im+ 6m2

−10m− 1)(−12im+ 12mn− 6m2 + 8m− 1)(4(m− 1) + 2) +
m−1∑
.
i=1

(6i2 − 4i− 1)

(−6i2 + 12mn+ 4i− 2m− 1)(2(2i− 1)) +
n∑

.
i=1

(2m(3i− 2)− 1)(−6im+ 12mn

+2m− 1)(2m) +
2n−1∑
.
i=1

(6im− 2m)(−6im+ 12mn− 2)(2m))
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= −4n+ 48mn2 − 96m2n3 + 480m3n3 − 240m3n2 − 192m2n2 − 48m3n+

(
80

3

)
m4

−
(

144

5

)
m5 +

(
40

3

)
m3 + 80m4n+ 104m2n+ 4mn−

(
80

3

)
m2 −

(
8

15

)
m.

This completes proof.

Theorem 4.5. The edge-vertex-Szeged index for T2(m,n) when m > n is given by,

Szev(T2(m,n)) =

(
8

15

)
n−

(
110

3

)
mn+ 4m+ 112m2n+

(
398

3

)
mn2 + 84mn3

−20m2 − 8m3 + 800m3n3 −
(

1360

3

)
m3n2 − 288m2n3 − 144m2n2

+

(
272

3

)
m3n−

(
376

3

)
mn4 +

(
752

15

)
n5 + 10n4 −

(
140

3

)
n3 − 18n2.

Proof. Let T2(m,n) be the graph of 2-dimensional lattice of TiO2 nanotubes. Then for

m > n, we calculate the Szeged index by using Tables 4.2-4.5 as follows.

Szev(T2(m,n)) =
n∑

.
i=1

((mu)(nv) + (mv)(nu))(|Ai|) +
m−n−1∑

.
i=1

((mu)(nv) + (mv)(nu))(|Bi|)

+
n∑

.
i=1

((mu)(nv) + (mv)(nu))(|Ci|) +
n∑

.
i=1

((mu)(nv) + (mv)(nu))(|Yi|)

+
2n−1∑
.
i=1

((mu)(nv) + (mv)(nu))(|Zi|)
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=
n∑

.
i=1

(−120i4 + 240i2mn− 52i3 − 44i2m− 24i2n+ 28imn− 4i2 − 6im− 8in− 20mn

+4i+ 4m+ 4n)(4i) +
m−n−1∑

.
i=1

(−480i2n2 + 480imn2 − 480in3 + 240mn3 − 120n4

+176i2n− 176imn− 64in2 − 16mn2 − 76n3 − 16i2 + 16im+ 28in− 26mn− 12n2

+4m+ 8n)(4n) +
n∑

.
i=1

(−120i4 + 240i2mn+ 188i3 − 44i2m− 24i2n− 212imn− 84i2

+38im+ 16in+ 4mn+ 12i+ 4n− 2)(2(2i− 1)) +
n∑

.
i=1

(−120i2m2 + 240im2n

+24i2m+ 120im2 − 48imn− 176m2n− 24im− 24m2 + 8mn+ 12m+ 4n)(2m)

+
2n−1∑
.
i=1

(−120i2m2 + 240im2n+ 24i2m+ 32im2 − 48imn− 88m2n− 36im+ 4m2

+20mn+ 4i+ 10m− 2)(2m)

=

(
8

15

)
n−

(
110

3

)
mn+ 4m+ 112m2n+

(
398

3

)
mn2 + 84mn3 − 20m2 − 8m3

+800m3n3 −
(

1360

3

)
m3n2 − 288m2n3 − 144m2n2 +

(
272

3

)
m3n−

(
376

3

)
mn4

+

(
752

15

)
n5 + 10n4 −

(
140

3

)
n3 − 18n2.

This completes the proof.

Theorem 4.6. The edge vertex-Szeged index for T2(m,n) when m ≤ n is given by,

Szev(T2(m,n)) = 992m3n2 − 952m2n2 + 104mn2 − 160m6 +

(
2744

5

)
m5 + 8n2

−
(

5776

3

)
m4n+ 640m5n+ 16n3 +

(
5924

3

)
m3n− 726m4 +

(
1406

3

)
m3

+

(
548

15

)
m− 16mn3 + 320m2n4 − 64mn4 −

(
1748

3

)
m2n+

(
160

3

)
mn

−188m2 + 480m3n3 − 368m2n3 − 480m4n2 − 4.

Proof. Let T2(m,n) be the graph of 2-dimensional lattice of TiO2 nanotubes. Then for

m ≤ n, we calculate the Szeged index by using Tables 4.2-4.5 as follows.
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Szev(T2(m,n)) =
m−1∑
.
i=1

((mu)(nv) + (mv)(nu))(|Ai|) +
n−m+1∑

.
i=1

((mu)(nv) + (mv)(nu))(|Bi|)

+
m−1∑
.
i=1

((mu)(nv) + (mv)(nu))(|Ci|) +
n∑

.
i=1

((mu)(nv) + (mv)(nu))(|Yi|)

+
2n−1∑
.
i=1

((mu)(nv) + (mv)(nu))(|Zi|)

=
m−1∑
.
i=1

(−120i4 + 240i2mn− 52i3 − 44i2m− 24i2n+ 28imn− 4i2 − 6im− 20mn+ 4i+ 4m

+4n− 8in)(4i) +
n−m+1∑

.
i=1

(−480i2m2 − 480im3 + 480im2n− 120m4 + 240m3n+ 96i2m

+816im2 − 96imn+ 384m3 − 476m2n− 144im− 334m2 + 68mn+ 60m+ 4n− 2)(4(m

−1) + 2) +
m−1∑
.
i=1

(−120i4 + 240i2mn+ 188i3 − 44i2m− 24i2n− 212imn− 84i2 + 38im

+16in+ 4mn+ 12i+ 4n− 2)(2(2i− 1)) +
n∑

.
i=1

(−120i2m2 + 240im2n+ 24i2m+ 120im2

−48imn− 176m2n− 24im− 24m2 + 8mn+ 12m+ 4n)(2m) +
2n−1∑
.
i=1

(−120i2m2

+240im2n+ 24i2m+ 32im2 − 48imn− 88m2n− 36im+ 4m2 + 20mn+ 4i+ 10m

−2)(2m)

= 992m3n2 − 952m2n2 + 104mn2 − 160m6 +

(
2744

5

)
m5 + 8n2 −

(
5776

3

)
m4n

+640m5n+ 16n3 +

(
5924

3

)
m3n− 726m4 +

(
1406

3

)
m3 +

(
548

15

)
m− 16mn3

+320m2n4 − 64mn4 −
(

1748

3

)
m2n+

(
160

3

)
mn− 188m2 + 480m3n3 − 368m2n3

−480m4n2 − 4.

This completes the proof.
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Theorem 4.7. The total Szeged index for T2(m,n) is given by,

Szt(T2(m,n)) = 4 +

(
118

15

)
n+ 3744m5n− 8304m4n+ 288mn5 − 3456m4n2 + 3792m5

−
(

428

3

)
mn− 880m2n+

(
532

3

)
mn2 +

(
1784

3

)
mn3 +

(
12544

3

)
m3n3

+2720m3n2 − 2016m2n3 − 1552m2n2 +

(
18704

3

)
m3n+

(
32

3

)
mn4

−4144m4 − 1248m6 − 96n6 −
(

532

3

)
n4 −

(
256

5

)
n5 + 1888m3 − 400m2

−
(

74

3

)
n2 −

(
788

3

)
n3 + 8m, if m > n.

Szt(T2(m,n)) = −8−
(

28

3

)
n+ 1280m5n−

(
10432

3

)
m4n− 960m4n2 +

(
5024

5

)
m5

+

(
424

3

)
mn−

(
3308

3

)
m2n+ 80mn2 + 128mn3 +

(
8320

3

)
m3n3

+384m3n2 − 1632m2n3 − 1344m2n2 +

(
11752

3

)
m3n− 128mn4

−
(

4228

3

)
m4 − 320m6 + 640m2n4 + 1028m3 −

(
1430

3

)
m2 + 32n2

+

(
64

3

)
n3 +

(
406

5

)
m, if m ≤ n.

Proof. To obtain the total Szeged index of T2(m,n) we divide the proof into following

cases depending on the values of m and n :

Case 1: Using Theorems 4.1, 4.3 and 4.5, we calculate the total Szeged index for m > n,
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as follows.

Szt(T2(m,n)) = −
(

2

3

)
n+ 4m−

(
112

3

)
n4 −

(
380

3

)
n3 +

(
208

3

)
n5 −

(
320

3

)
mn4

+448mn3 −
(

2800

3

)
n2m3 + 272n2m2 +

(
4000

3

)
n3m3 − 960n3m2

−32m3 +

(
784

3

)
m3n+ 8m2n−

(
92

3

)
mn− 8m2 +

(
34

3

)
n24 +

(
112

15

)
n

−160n4 −
(

1104

5

)
n5 − 96n6 − 1248m6 −

(
128

3

)
n3 − 4144m4 − 352m2

+1936m3 + 3792m5 − 4m−
(

116

3

)
mn− 8304m4n+ 5792m3n− 1112m2n

+4560m3n2 − 1536m2n2 + 3744m5n− 480m2n3 + 288mn5 + 368mn4

+1248m3n3 − 3456m4n2 − 88mn2 −
(

64

3

)
mn3 +

(
16

15

)
n−

(
220

3

)
mn

+8m+ 224m2n+

(
796

3

)
mn2 + 168mn3 − 40m2 − 16m3 + 1600m3n3

−
(

2720

3

)
m3n2 − 576m2n3 − 288m2n2 +

(
544

3

)
m3n−

(
752

3

)
mn4

+

(
1504

15

)
n5 + 20n4 −

(
280

3

)
n3 − 36n2

= 4 +

(
118

15

)
n+ 3744m5n− 8304m4n+ 288mn5 − 3456m4n2 + 3792m5 −

(
428

3

)
mn

−880m2n+

(
532

3

)
mn2 +

(
1784

3

)
mn3 +

(
12544

3

)
m3n3 + 2720m3n2 − 2016m2n3

−1552m2n2 +

(
18704

3

)
m3n+

(
32

3

)
mn4 − 4144m4 − 1248m6 − 96n6 −

(
532

3

)
n4

−
(

256

5

)
n5 + 1888m3 − 400m2 −

(
74

3

)
n2 −

(
788

3

)
n3 + 8m.

Case 2: Using Theorems 4.2, 4.4 and 4.6, we calculate the total Szeged index for m ≤ n,
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as follows.

= −
(

16

3

)
n−

(
32

3

)
n3 − 176n2m+

(
4000

3

)
n3m3 − 800n3m2 − 1360n2m3 + 752n2m2

+160n3m+ 16m4 − 64m5 +

(
232

3

)
m3 + 16n2 +

(
880

3

)
m4n+ 16m3n−

(
124

3

)
m2n

+

(
92

3

)
nm− 74m2 +

(
26

3

)
m− 4n+ 48mn2 − 96m2n3 + 480m3n3 − 240m3n2

−192m2n2 − 48m3n+

(
80

3

)
m4 −

(
144

5

)
m5 +

(
40

3

)
m3 + 80m4n+ 104m2n+ 4mn

−
(

80

3

)
m2 −

(
8

15

)
m− 8 + 1984m3n2 − 1904m2n2 + 208mn2 − 320m6 +

(
5488

5

)
m5

+16n2 −
(

11552

3

)
m4n+ 1280m5n+ 32n3 +

(
11848

3

)
m3n− 1452m4 +

(
2812

3

)
m3

+

(
1096

15

)
m− 32mn3 + 640m2n4 − 128mn4 −

(
3496

3

)
m2n+

(
320

3

)
mn− 376m2

+960m3n3 − 736m2n3 − 960m4n2

= −8−
(

28

3

)
n+ 1280m5n−

(
10432

3

)
m4n− 960m4n2 +

(
5024

5

)
m5 +

(
424

3

)
mn

−
(

3308

3

)
m2n+ 80mn2 + 128mn3 +

(
8320

3

)
m3n3 + 384m3n2 − 1632m2n3 − 1344m2n2

+

(
11752

3

)
m3n− 128mn4 −

(
4228

3

)
m4 − 320m6 + 640m2n4 + 1028m3 −

(
1430

3

)
m2

+32n2 +

(
64

3

)
n3 +

(
406

5

)
m.

This completes the proof.

Theorem 4.8. The Padmaker-Ivan index for T2(m,n) is given by,

PI(T2(m,n)) = −
(

8

3

)
n+ 32mn+

(
32

3

)
n3 + 400m2n2 + 24m2 − 184m2n− 192mn2

+32n2, if m > n

PI(T2(m,n)) = 16n2 + 400m2n2 − 160mn2 +

(
32

3

)
m3 + 8m2 − 216m2n+ 64mn

+

(
16

3

)
m− 8n, if m ≤ n.

52



Proof. Let T2 be the graph of 2-dimensional lattice of TiO2 nanotubes. Then for m > n

we calculate the Padmaker-Ivan index by using Tables 4.2-4.5 as follows.

PI(T2(m,n)) = 2(
n∑

.
i=1

((mu) + (mv))(|Ai|) +
m−n−1∑

.
i=1

((mu) + (mv))(|Bi|) +
n∑

.
i=1

((mu) + (mv))(|Ci|)

+
n∑

.
i=1

((mu) + (mv))(|Yi|) +
2n−1∑
.
i=1

((mu) + (mv))(|Zi|))

= 2(
n∑

.
i=1

(((10i2 − i) + (−10i2 + 20mn− 3i− 4m− 4n))(4i) +
m−n−1∑

.
i=1

((20in+ 10n2 − 4i

−n) + (−20in+ 20mn− 10n2 + 4i− 4m− 7n))(4n) +
n∑

.
i=1

((10i2 − 11i+ 2) + (−10i2

+20mn+ 7i− 4m− 4n))(2(2i− 1)) +
n∑

.
i=1

((10im− 2i− 8m+ 1) + (−10im+ 20mn

+2i+ 2m− 4n− 1))(2m) +
2n−1∑
.
i=1

((10im− 2i− 4m+ 1) + (−10im+ 20mn+ 2i− 2m

−4n− 1))(2m)

= 2(
n∑

.
i=1

(20mn− 4i− 4m− 4n)(4i) +
m−n−1∑

.
i=1

(20mn− 4m− 8n)(4n) +
n∑

.
i=1

(20mn− 4i

−4m− 4n+ 2)(2(2i− 1)) +
n∑

.
i=1

(20mn− 6m− 4n)(2m) +
2n−1∑
.
i=1

(20mn− 6m− 4n)(2m)

= −
(

8

3

)
n+ 32mn+

(
32

3

)
n3 + 400m2n2 + 24m2 − 184m2n− 192mn2 + 32n2.

Case 2: Let T2(m,n) be the graph of 2-D lattice of TiO2 nanotubes. Then for m ≤ n

we calculate the Padmaker-Ivan index by using Tables 4.2-4.5 as follows,

PI(T2(m,n)) = 2(
m−1∑
.
i=1

((mu) + (mv))(|Ai|) +
n−m+1∑

.
i=1

((mu) + (mv))(|Bi|)

+
m−1∑
.
i=1

((mu) + (mv))(|Ci|) +
n∑

.
i=1

((mu) + (mv))(|Yi|)

+
2n−1∑
.
i=1

((mu) + (mv))(|Zi|))
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= 2(
m−1∑
.
i=1

(((10i2 − i) + (−10i2 + 20mn− 3i− 4m− 4n))(4i) +
n−m+1∑

.
i=1

((20im+ 10m2

−4i− 21m+ 4) + (−20im− 10m2 + 20mn+ 4i+ 13m− 4n− 2))(4(m− 1) + 2)

+
m−1∑
.
i=1

((10i2 − 11i+ 2) + (−10i2 + 20mn+ 7i− 4m− 4n))(2(2i− 1)) +
n∑

.
i=1

((10im

−2i− 8m+ 1) + (−10im+ 20mn+ 2i+ 2m− 4n− 1))(2m) +
2n−1∑
.
i=1

((10im− 2i

−4m+ 1) + (−10im+ 20mn+ 2i− 2m− 4n− 1))(2m)

= 2(
m−1∑
.
i=1

(20mn− 4i− 4m− 4n)(4i) +
n−m+1∑

.
i=1

(20mn− 8m− 4n+ 2)(4(m− 1)2)

+
m−1∑
.
i=1

(20mn− 4i− 4m− 4n+ 2)(2(2i− 1)) +
n∑

.
i=1

(20mn− 6m− 4n)(2m)

+
2n−1∑
.
i=1

(20mn− 6m− 4n)(2m)

= 16n2 + 400m2n2 − 160mn2 +

(
32

3

)
m3 + 8m2 − 216m2n+ 64mn+

(
16

3

)
m− 8n.

This completes proof

Theorem 4.9. The revised edge-Szeged index for T2 when m > n is given by

Sz∗e(T2) = −
(

1

2

)
n+ 72m3n+

(
3200

3

)
n3m3 −

(
1600

3

)
n2m3 − 400n3m2 − 112n2m2

+134m2n− 16m2 −
(

220

3

)
n3 +

(
208

3

)
n5 −

(
640

3

)
mn4 +

(
448

3

)
mn3

+

(
380

3

)
mn2 − 52mn− 2n2 + 3m− 12m3

Proof. Let T2 be the graph of 2-dimensional lattice of TiO2 nanotubes. Then for m > n

we calculate the revised edge-Szeged index by using Tables 4.2-4.5 as follows is given by:
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Sz∗e(T2(m,n)) = 2(
n∑

.
i=1

(
mu +

m0

2

)(
mv +

m0

2

)
)(|Ai|) +

m−n−1∑
.
i=1

(
mu +

m0

2

)(
mv +

m0

2

)
(|Bi|)

+
n∑

.
i=1

(
mu +

m0

2

)(
mv +

m0

2

)
(|Ci|) +

n∑
.
i=1

(
mu +

m0

2

)(
mv +

m0

2

)
(|Yi|)

+
2n−1∑
.
i=1

(
mu +

m0

2

)(
mv +

m0

2

)
(|Zi|))

Sz∗e(T2(m,n)) = 2(
n∑

.
i=1

−1

4
(20i2 + 2i− 1)(20i2 − 40mn+ 2i+ 8m+ 8n+ 1)(4i)

+
m−n−1∑

.
i=1

−1

4
(40in+ 20n2 − 8i+ 2n− 1)(40in− 40mn+ 20n2 − 8i

+8m+ 10n+ 1)(4n) +
n∑

.
i=1

(
10i2 − 9i+

1

2

)
(−10i2 + 20mn+ 9i− 4m

−4n− 3

2
)(2(2i− 1)) +

n∑
.
i=1

−1

4
(20im− 40mn− 4i− 6m+ 8n+ 3)

(20im− 4i− 14m+ 1)(2m) +
2n−1∑
.
i=1

−1

4
(20im− 4i− 6m+ 1)(20im

−40mn− 4i+ 2m+ 8n+ 3)(2m)

Sz∗e(T2(m,n)) = −
(

1

2

)
n+ 72m3n+

(
3200

3

)
n3m3 −

(
1600

3

)
n2m3 − 400n3m2

−112n2m2 + 134m2n− 16m2 −
(

220

3

)
n3 +

(
208

3

)
n5 −

(
640

3

)
mn4

+

(
448

3

)
mn3 +

(
380

3

)
mn2 − 52mn− 2n2 + 3m− 12m3

This completes the proof.
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Theorem 4.10. The revised edge-Szeged index for T2 when m ≤ n is given by

Sz∗e(T2(m,n)) = −12−
(

1147

3

)
n−

(
49

3

)
m+

(
7283

3

)
mn+

(
5200

3

)
n5

+

(
8000

3

)
m4n2 −

(
26560

3

)
n2m3 − 8800n3m3 + 10400m2n4

−
(

10400

3

)
mn5 + 4900n3 +

(
15920

3

)
n4 + 24000m2n3 −

(
47440

3

)
mn4

+

(
27232

3

)
m2n2 − 19528mn3 −

(
14068

3

)
mn2 −

(
3976

3

)
m4 + 976m5

+

(
2008

3

)
m3 −

(
800

3

)
m6 + 6764m3n− 5848m2n− 3520m4n

+800m5n− 50m2 +

(
2884

3

)
n2.

Proof. Let T2(m,n) be the graph of 2-dimensional lattice of TiO2 nanotubes. Then for

m ≤ n we calculate the revised edge-Szeged index by using Tables 4.2-4.5 as follows,

Sz∗e(T2(m,n)) = 2(
m−1∑
.
i=1

(
mu +

m0

2

)(
mv +

m0

2

)
)(|Ai|) +

n−m+1∑
.
i=1

(
mu +

m0

2

)(
mv +

m0

2

)
(|Bi|)

+
m−1∑
.
i=1

(
mu +

m0

2

)(
mv +

m0

2

)
(|Ci|) +

n∑
.
i=1

(
mu +

m0

2

)(
mv +

m0

2

)
(|Yi|)

+
2n−1∑
.
i=1

(
mu +

m0

2

)(
mv +

m0

2

)
(|Zi|))
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Sz∗e(T2(m,n)) = 2(
m−1∑
.
i=1

−1

4
(20i2 + 2i− 1)(20i2 − 40mn+ 2i+ 8m+ 8n+ 1)(4i)

+
n−m+1∑

.
i=1

−1

4
(40in+ 20n2 − 8i+ 2n− 1)(40in− 40mn+ 20n2

−8i+ 8m+ 10n+ 9)(4m− 2) +
m−1∑
.
i=1

(
10i2 − 9i+

1

2

)
(
−10i2 + 20mn+ 9i− 4m− 4n− 3

2

)
(2(2i− 1)) +

n∑
.
i=1

−1

4
(20im

−4i− 14m+ 1)(20im− 40mn− 4i− 6m+ 8n+ 3)(2m) +
2n−1∑
.
i=1

−1

4

(20im− 4i− 6m+ 1)(20im− 40mn− 4i+ 2m+ 8n+ 3)(2m)

Sz∗e(T2(m,n)) = −12−
(

1147

3

)
n−

(
49

3

)
m+

(
7283

3

)
mn+

(
5200

3

)
n5

+

(
8000

3

)
m4n2 −

(
26560

3

)
n2m3 − 8800n3m3 + 10400m2n4

−
(

10400

3

)
mn5 + 4900n3 +

(
15920

3

)
n4 + 24000m2n3 −

(
47440

3

)
mn4

+

(
27232

3

)
m2n2 − 19528mn3 −

(
14068

3

)
mn2 −

(
3976

3

)
m4 + 976m5

+

(
2008

3

)
m3 −

(
800

3

)
m6 + 6764m3n− 5848m2n− 3520m4n

+800m5n− 50m2 +

(
2884

3

)
n2.

This completes proof.
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[30] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. III. Total π-electron

energy of alternant hydrocarbons, Chem. Phys. Lett., 17 (1972), 535−538.

[31] J. Devillers, A. T. Balaban, Topological indices and related descriptors in QSAR and

QSPR, Gordon & Breach, Amsterdam, 1999.

[32] J. Ma, Y. Shi, J. Yue, On the extremal Wiener polarity index of unicyclic graphs

with a given diameter, Topics in Chemical Graph Theory, 16a (2014), 177−192.

[33] J. Ma, Y. Shi, J. Yue, The Wiener polarity index of graph products, Ars Combin.,

116 (2014), 235−244.

60



[34] J. R. Platt, Prediction of isomeric differences in paraffin properties, J. Chem. Phys.,

56 (1952), 328−336.

[35] K. Ch.Das, I. Gutman, Estimating the Szeged index, Appl. Math. Lett., 22 (11)

(2009), 1680−1684.

[36] K. Balasubramanian, Applications of combinatorics and graph theory to spectrosocpy

and quantum chemistry, Chem. Rev., 85(6) (1985), 599−618.

[37] K. Balasubramanian, Characteristic polynomials of organic polymer sand periodic

structure, J. Comput. Chem., 6(6) (1985), 656−661.

[38] L. Chen, T. Li, J. Liu, Y. Shi, H. Wang, On the Wiener polarity index of lattice

networks, PLOS ONE, 11(12) (2016).
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