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Abstract

This thesis shows devotion towards the study of Caputo Hadamard-type fractional

derivatives and their Mellin transform analysis. The generalization of the Taylor’s

formula in sense of Caputo Hadamard-type derivatives is introduced. Also, few

related results are presented. Furthermore, Mellin transform of some generalized

fractional differential operators is evaluated. An example for Mellin transform of

generalized Caputo fractional derivative is also discussed.
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Chapter 1

Introduction

Fractional calculus is an important developing field in both pure and applied math-

ematics. Its applications are found in different areas of science and engineering, for

example, electrical circuits with fractance, tracer in fluid flows and model of neurons.

In fractional calculus, integrals and derivatives are of arbitrary or fractional order.

Calculus was discovered in 17th century by Newton and Leibniz independently. At

first Leibniz discovered the concept of a symbolic method, he found notation of nth

derivative, where n be a non-negative integer. A question was raised by L’Hospital

on Leibniz discovery that what happened about “n = 1
2
”, that question leads to

the concept of fractional calculus. Few mathematicians made contributions in 18th

century such as Euler, who found a ratio dnp (p is a function of x and n be a positive

integer) to dxn. In 1772, Lagrange introduced the law of exponents for differential

operators of integer order. In case of fractional calculus, mathematicians were ea-

ger to find such conditions for which this law holds, when m and n are arbitrary.

During 19th century, studies in the field were made by Laplace, Lacroix, Riemann

and Liouville and by some other mathematicians. In 1812, Laplace introduced a

fractional derivative by an integral. The formula for derivative of xβ where β is

fractional number, was introduced by Lacroix in his book [1]. Further more, the
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formula for fractional order derivative of a function k(x) was expanded by Liouville

[2] known as Liouville’s first formula. Later he introduced a second formula but

that was applicable for rational functions. None of his definition was applicable for

large number of classes of functions. According to his second definition, d
dt1
c = 0

where c is any constant, but according to [1], derivative of a constant is non-zero.

In 1822, Fourier [3] proposed the integral representation of function and its deriva-

tives. In 1823, Abel gave an application of fractional calculus. He solved isochrone

problem by using derivatives of arbitrary order. Peacock supported Lacroix formula

but several mathematicians acknowledged Liouville’s definition in 1833.

Riemann-Liouville fractional (RLF) integrals and derivatives were properly in-

troduced in Riemann and Liouville in 1847, where as in 1858, Greer [4] developed

fractional derivative for hyperbolic and trigonometric functions using first defini-

tion of Liouville. In 1892, Hadamard [5] introduced new formulas for frac-integrals

and derivatives by using kernel of logarithmic form and such formulas are known as

Hadamard frac-integrals and derivatives. Many mathematicians worked in the devel-

opment of fractional calculus during 20th century, Hardy, Weyl, Little wood, Fabian

and Erdelyi are few of them. In 1967, Caputo [6] introduced a new concept of frac-

derivative by interchanging the order of integral and derivative of RLF-derivative,

is known as Caputo frac-derivative (for more details see [7]).

In 1993, Samko [8] used Hadamard frac-operators to develop properties and

showed a link between R-L and Hadamard operators by using change of variables.

Some other properties of Hadamard operators were introduced in [9].

In the beginning of 21st century, Hilfer [10] introduced a new definition for frac-

derivatives which insets RL-derivative (Riemann-Liouville derivative) and Caputo

derivative known as Hilfer derivative. A simple modification in the definition of

Hadamard frac-operator leads to a new formula which is known as Hadamard-type

frac-operator (HTF-operator) introduced in [11]. At the same time Kilbas [9] found
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some properties of Hadamard-type frac-integrals and derivatives (HTF-integrals and

derivatives). In 2014, Gambo et al. [12] discussed several new results such as

semi-group property about Caputo Hadamard derivatives (CH-derivatives). Further

more, generalizations of R-L, Caputo and Hilfer frac-operators were introduced in

[13, 14, 15].

In this thesis, our main focus is to explore properties of Caputo Hadamard-type

frac-operators (CHTF-operators), Taylor’s formula for CHTF-derivatives following

[9, 12, 16, 17]. Furthermore, Mellin transform of generalized Caputo, Hilfer and

generalized Hilfer frac-derivatives is also evaluated.

Chapter 2 consists of the fundamental concepts such as definitions, properties

and examples of frac-calculus and Mellin transform. Mellin transform is an integral

transform which was introduced by Mellin in [18] . Many mathematicians worked

on Mellin transform in different aspects such as, Butzer [11, 19], Katugampola [13],

Carlo [20] and Podlubny [21].

Chapter 3 presents the review work of Hadamard, Caputo Hadamard and

Hadamard-type operators while some new results about CHT-derivatives are intro-

duced. Taylor and integration by parts formulas are also discussed in this chapter.

Chapter 4 contains work of Butzer [11, 19], Katugampola [13] and Carlo [20] about

Mellin transform of frac-operators whereas some new results about generalized frac-

derivatives are obtained.
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Chapter 2

Preliminaries of fractional calculus

and Mellin transform

In this chapter, some fundamental concepts of the frac-calculus and Mellin transform

are discussed. Many mathematicians worked for the growth of frac-calculus, for

example, Lacroix, Riemann, Liouville, Caputo, Hilfer, Katugampola and Oliveira,

to name a few. To move further, we need to discuss gamma function and beta

function.

2.1 Euler gamma function

Euler gamma function was introduced by Leonhard Euler to generalize the factorial

function to non integer values. It belongs to the group of unusual transcendental

functions and appears in various areas of mathematics such as integration, number

theory, hyper-geometric series etc (see [22]).

The gamma function, denoted by Γ(.) is defined as

Γ(α) =

∫ ∞
0

tα−1
1 exp(−t1)dt1, α > 0. (2.1.1)

4



where x is a dummy variable. Here are some properties of Gamma function such as

Γ(1) = 1,

Γ(1 + α) = αΓ(α). (2.1.2)

Relation between gamma function and factorial function is given as:

Γ(α) = (α− 1)!, α > 0, (2.1.3)

where ! denotes the factorial.

By using Eq. (2.1.2), gamma function for negative values of α is given by

Γ(α) =
Γ(α + 1)

α
, α > −1, α 6= 0. (2.1.4)

In general,

Γ(α) =
Γ(α + n)

α
, for α ∈ R− {...− 3,−2,−1, 0} (2.1.5)

2.2 Beta function

Now we discuss a useful function related to gamma function which occurs in com-

putation of many definite integrals. The Beta function B(τ1, τ2) is the name used

by Legendre, Whittaker and Watson 1990. It is also known as the Eulerian integral

of first kind, defined as

B(τ1, τ2) =

∫ 1

0

kτ1−1(1− k)τ2−1dk. (2.2.1)
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Relation of gamma function with Beta function for positive τ1 and τ2 is given as

B(τ1, τ2) =
Γ(τ1)Γ(τ2)

Γ(τ1 + τ2)
. (2.2.2)

2.3 Fractional calculus

In this section, basic definitions of some well known frac-operators are presented.

The following definition of integral and derivative in frac-calculus was defined by

Riemann and Liouville known as RLF-integrals and derivatives (see [7] for more

detail).

Definition 1. For x ∈ [a, b], the left/right-sided RLF-integrals of order α > 0 are

given as

Iαa+k(x1) =
1

Γ(α)

∫ x1

a

(x1 − t1)α−1k(t1)dt1, (2.3.1)

Iαb−k(x1) =
1

Γ(α)

∫ b

x1

(t1 − x1)α−1k(t1)dt1. (2.3.2)

Definition 2. For x ∈ [a, b], the left/right-sided RLF-derivatives of order α > 0 are

given as

RLDα
a+k(x) =

( d
dx

)m 1

Γ(m− α)

∫ x

a

(x− t1)m−α−1k(t1)dt1

=
( d
dx

)m
(Im−αa+ k)(x). (2.3.3)

RLDα
b−k(x) = (−1)m

( d
dx

)m 1

Γ(m− α)

∫ b

x

(t1 − x)m−α−1k(t1)dt1

=
(
− d

dx

)m
(Im−αb− k)(x). (2.3.4)

such that m = dαe, where d.e denotes the ceiling function.

Hadamard frac-operators were introduced in [5]. The definition follows:
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Definition 3. For x ∈ [a, b], the left/right-sided Hadamard frac-integrals of order

α > 0 are defined as

J α
a+k(x1) =

1

Γ(α)

∫ x1

a

(
ln
x1

t1

)α−1

k(t1)
dt1
t1
, (2.3.5)

J α
b−k(x1) =

1

Γ(α)

∫ b

x1

(
ln
t1
x1

)α−1

k(t1)
dt1
t1
. (2.3.6)

Definition 4. For x ∈ [a, b], the left/right-sided Hadamard frac-derivatives of order

α > 0 are defined as

Dαa+k(x1) =
1

Γ(m− α)

(
x1

d

dx1

)m ∫ x1

a

(
ln
x1

t1

)m−α−1

k(t1)
dt1
t1
,

= δm(Jm−α
a+ k)(x1). (2.3.7)

Dαb−k(x1) =
(−1)m

Γ(m− α)

(
x1

d

dx1

)m ∫ b

x1

(
ln
t1
x1

)m−α−1

k(t1)
dt1
t1
,

= (−δ)m(Jm−α
b− k)(x1). (2.3.8)

where m = dαe and δm =
(
x1

d
dx1

)m
.

Hadamard’s work was different in two ways from R-L (compare Definitions 1,2 with

3,4 in this section) as he used kernel of logarithmic form ln(t) instead of t and in

case of derivative, δ = x d
dx

instead of d
dx

.

There are some disadvantages of RLF-derivative (see chapter 2 and 3 of [7]), as

it is not consistent with initial and boundary value problems. Also, R-L derivative

of a constant is non zero. In order to overcome these shortcomings, refined concept

of frac-derivative was introduced by Caputo. The formal definition of Caputo frac-

derivatives is given below.

Definition 5. For x ∈ [a, b], the left/right-sided Caputo frac-derivatives of order
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α > 0 are defined as

∗Dαa+k(x) =
1

Γ(m− α)

∫ x

a

(x− t1)m−α−1k(m)(t1)dt1,

=
(
Im−αa+

( d

dt1

)m
k
)

(x). (2.3.9)

∗Dαb−k(x) =
(−1)m

Γ(m− α)

∫ b

x

(t1 − x)m−α−1k(m)(t1)dt1,

=
(
Im−αb−

(
− d

dt1

)m
k
)

(x), (2.3.10)

where m = dαe, k(m)(t1) =
(

d
dt1

)m
k(t1).

Hilfer derivative was introduced by Hilfer [10]. It is considered as an inset

between R-L and Caputo derivative. The formal definition of the Hilfer derivative

is given as:

Definition 6. For x ∈ [a, b], the left/right-sided Hilfer derivatives of order α > 0

and β = [0, 1] are defined as

Dα,βa+ k(x) = (I
β(1−α)
a+

d

dx
I

(1−α)(1−β)
a+ k)(x). (2.3.11)

Dα,βb− k(x) = −(I
β(1−α)
b−

d

dx
I

(1−α)(1−β)
b− k)(x). (2.3.12)

In special case, for β = 0, we get RLF-derivative (defined in Eqs. (2.3.3) and (2.3.4))

and for β = 1, the Caputo frac-derivative is obtained (defined in Eqs. (2.3.9) and

(2.3.10)).

Like R-L, Hadamard derivative of a constant is also non zero. To overcome

this shortcoming, CHF-derivative was introduced [16], the definition of which is as

follows:

Definition 7. For x ∈ [a, b], the left/right-sided CHF-derivatives of order α > 0 are

8



defined as

∗Dαa+k(x) =
1

Γ(m− α)

∫ x

a

(
ln
x

t1

)m−α−1(
t1
d

dt1

)m
k(t1)

dt1
t1
,

=
(
Jm−α
a+ δmk

)
(x). (2.3.13)

∗Dαb−k(x) =
(−1)m

Γ(m− α)

∫ b

x

(
ln
t1
x

)m−α−1(
t1
d

dt1

)m
k(t1)

dt1
t1
,

=
(
Jm−α
b− (−δ)mk

)
(x), (2.3.14)

where δm = (x d
dx

)m and m = dαe.

Butzer et al. added a simple modification in the definition of Hadamard oper-

ators, to introduce a new concept known as HTF-operators ([20]), defined below.

Definition 8. For x ∈ [a, b], left HTF-integral and derivative of order α > 0 is

defined as

J α
a+,ck(x) =

1

Γ(α)

∫ x

a

(t1
x

)c(
ln
x

t1

)α−1

k(t1)
dt1
t1

(2.3.15)

Dαa+,ck(x) =
1

Γ(m− α)
x−cδmxc

∫ x

a

(t1
x

)c(
ln
x

t1

)m−α−1

k(t1)
dt1
t1

= Dm
c (Jm−α

a+,c k)(x), (2.3.16)

respectively. Here Dm
c = x−cδmxc, m = dαe and δm = (x d

dx
)m. For α = 0 and c = 0,

we set J 0
a+,0 = I (identity operator) and also for α = 0 and c = 0, D0

a+,0 = I.

Definition 9. For x ∈ [a, b], right HTF-integral and derivative of order α > 0 is

defined as

J α
b−,ck(x) =

1

Γ(α)

∫ b

x

( x
t1

)c(
ln
t1
x

)α−1

k(t1)
dt1
t1

(2.3.17)

Dαb−,ck(x) =
(−1)m

Γ(m− α)
xcδmx−c

∫ b

x

( x
t1

)c(
ln
t1
x

)m−α−1

k(t1)
dt1
t1
,

= Dm
c (Jm−α

b−,c k)(x), (2.3.18)
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where Dm
c = xc(−δ)mx−c, m = dαe and (−δ)m = (−x d

dx
)m.

2.4 Spaces

In this section, definitions of spaces of p-integrable, absolutely continuous functions

and their weighted modifications are presented [8, 17].

Definition 10. Let Lp(a, b)(1 ≤ p ≤ ∞) be the set of those Lebesgue complex-

valued measurable functions k on [a, b] for which ‖k‖p <∞, where

‖k‖p =
(∫ b

a

|k(t)|pdt
) 1
p
, 1 ≤ p <∞, (2.4.1)

and

‖k‖∞ = ess sup
a≤ x<b

|k(x)|, (2.4.2)

where ess sup k(x) is the essential supremum of k(x).

Definition 11. Let X p
c (a, b) (c ∈ R; 1 ≤ p ≤ ∞), be the set of those Lebesgue

complex-valued measurable functions k on (a, b) for which ‖k‖Xp
c
<∞, with

‖k‖Xp
c

=
(∫ b

a

|tck(t)|pdt
t

) 1
p
, 1 ≤ p <∞, (2.4.3)

and

‖k‖X∞c = ess sup
a≤ x<b

|xck(x)|. (2.4.4)

In special case, when c = 1
p
, the space X p

c (a, b) coincides with the Lp(a, b) space

in Eq. (2.4.1).
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Definition 12. Let [a, b] be a finite interval and let AC[a, b] be the space of abso-

lutely continuous functions.

It is known that AC[a, b] coincides with the space of Lebesgue summable func-

tions:

k ∈ AC[a, b] =⇒ k(x) = c+

∫ x

a

f(t)dt. (2.4.5)

where f ∈ L(a, b), and therefore an absolutely continuous function k(x) has a

summable derivative k
′
(x) = f(x) almost everywhere on [a,b]. Thus

f(t) = k
′
(t), c = k(a). (2.4.6)

For n ∈ N, we denote by ACn[a, b] the space of complex-valued functions k(x) which

have continuous derivatives up to order (n−1) on [a, b] such that kn−1(x) ∈ AC[a, b]:

ACn[a, b] =
{
k : [a, b]→ C and (Dn−1k)(x) ∈ AC[a, b]

}
, (2.4.7)

C being the set of complex numbers. In particular, AC1[a, b] = AC[a, b]. Such

changes, which we represented by ACnδ,µ[a, b](n ∈ N, µ ∈ R), it includes functions h,

which are the complex-valued Lebesgue measurable on (a, b) such that xµ1h(x1) has

δ-derivatives order (n − 1) on [a, b] and δn−1[xµ1h(x1)] is absolutely continuous on

[a, b]. Therefore, a generalization of space in Eq (2.4.7) is

ACnδ,µ[a, b] =
{
h : [a, b]→ C : δn−1[xµ1h(x1)] ∈ AC[a, b], µ ∈ R, δ = x1

d

dx1

}
. (2.4.8)

As special case, when µ = 0,

ACnδ [a, b] =
{
h : [a, b]→ C : δn−1[h(x1)] ∈ AC[a, b], δ = x1

d

dx1

}
. (2.4.9)
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If µ = 0 and n = 1, the space AC1
δ [a, b] coincides with AC[a, b].

Definition 13. Let −∞ ≤ a < b ≤ ∞ and m ∈ N0. Then Cm[a, b] is given as:

‖k‖Cm =
m∑
q=0

‖k(q)‖C =
m∑
q=0

max
x∈[a,b]

|k(q)(x)|. (2.4.10)

For m = 0, C0[a, b] = C[a, b]

2.5 Generalized fractional operators

In this section, a new approach for frac-operators is presented which was introduced

by Katugampola in [23] and [24]. He has generalized R-L and Hadamard frac-

operators into single form which now are the generalized RLF-integrals and deriva-

tives, respectively. Furthermore, Oliveira [14] introduced a new operator which

generalizes Caputo and Hadamard frac-derivatives into single form known as gen-

eralized Caputo frac-derivatives. where as, generalized Hilfer frac-derivatives were

introduced in [15].

Definition 14. For x ∈ [a, b], the left/right sided generalized RLF-integrals of order

α > 0, ν > 0 and k ∈ X p
c are defined as

νIαa+k(x) =
ν1−α

Γ(α)

∫ x

a

(xν − τ ν1 )α−1τ ν−1
1 k(τ1)dτ1. (2.5.1)

νIαb−k(x) =
ν1−α

Γ(α)

∫ b

x

(τ ν1 − xν)α−1τ ν−1
1 k(τ1)dτ1. (2.5.2)

For x ∈ [a, b], the left/right sided generalized RLF-derivatives of order α > 0, ν > 0

and k ∈ X p
c are defined as

νDαa+k(x) =
ν1−m+α

Γ(m− α)

(
x1−ν d

dx

)m ∫ x

a

(xν − τ ν1 )m−α−1τ ν−1
1 k(τ1)dτ1,

= δmν (Im−αa+ k)(x). (2.5.3)
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νDαb−k(x) =
ν1−m+α

Γ(m− α)

(
− x1−ν d

dx

)m ∫ b

x

(τ ν1 − xν)m−α−1τ ν−1
1 k(τ1)dτ1,

= (−δ)mν (Im−αb− k)(x), (2.5.4)

where δmν =
(
x1−ν d

dx

)m
and m = dαe.

After that Oliveira et al. [14] introduced generalization of Caputo and Hadamard

derivative, defined below.

Definition 15. For x ∈ [a, b], the left/right sided generalized Caputo frac-derivatives

of order α > 0, ν > 0 and k ∈ X p
c are defined as

ν
∗Dαa+k(x) =

ν1−m+α

Γ(m− α)

∫ x

a

tν−1

(xν − tν)1−m+α

(
t1−ν

d

dt

)m
k(t)dt,

= (Im−αa+ δmν k)(t). (2.5.5)

ν
∗Dαb−k(x) = (−1)m

ν1−m+α

Γ(m− α)

∫ x

a

tν−1

(tν − xν)1−m+α

(
t1−ν

d

dt

)m
k(t)dt,

= (−1)m(Im−αb− δmν k)(t), (2.5.6)

where δmν =
(
x1−ν d

dx

)m
and m = dαe.

Oliveira [15] also introduced generalization of Hilfer and Hilfer-Hadamard frac-

derivatives as:

Definition 16. For x ∈ [a, b], the left & right-sided generalized Hilfer derivatives of

order m− 1 < α ≤ m and β = [0, 1] with m ∈ N, ν > 0 and k ∈ X p
c are defined as

νDα,βa+ k(t) = (νI
β(m−α)
a+ δmν I

(m−α)(1−β)
a+ k)(t). (2.5.7)

νDα,βb− k(t) = (−1)m(νI
β(m−α)
b− δmν I

(m−α)(1−β)
b− k)(t). (2.5.8)

where δmν =
(
x1−ν d

dx

)m
and m = dαe.

In special case, when ν = 1 and β = 0, we get the definition of RLF-derivatives

(defined in Eqs. (2.3.3), (2.3.4)) and for ν = 1 and β = 1, we get the definition of

Caputo frac-derivatives (defined in Eqs. (2.3.9), (2.3.10)).
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2.6 Mellin transform

Mellin transform occurs in many areas of engineering and applied mathematics. Its

utilization can be found in the study of classes of functions which are defined on the

positive real line. Riemann acknowledged Mellin transform in his study on prime

numbers. Further more Cahen worked on it but according to Flajolet et al. the

formula of Mellin transform and its inverse was derived by Mellin [18]. He derived

Mellin transform (M) and its inverse (M−1) from complex Fourier transform and

its inverse (see Chapter 8 of [25]).

Definition 17. The Mellin transform of a real valued function k(x) on (0,∞) is

defined by

M[k](s) =

∫ ∞
0

xs−1k(x)dx, (2.6.1)

where s is a complex number.

Definition 18. The inverse Mellin transform is defined by

M−1[k](x) =
1

2πi

∫ c+i∞

c−i∞
x−sk(s)ds. (2.6.2)

where c is a constant.

Mellin transform is closely related to the Laplace transform, Fourier transform,

theory of the gamma function and allied special functions. In case of many applica-

tions Mellin transform is more convenient to operate directly rather than the Laplace

and Fourier transform. The Mellin transform can simplify some of the frac-calculus

operations which makes it an interesting subject for research in frac-calculus.
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2.7 Some useful properties of Mellin transform

Various properties of Mellin transform are treated in different books on integral

transforms like in [25]. Following are some of them.

If M[k](x) = k̃(s) and M[h](x) = h̃(s), then the following properties hold:

i. M[k(ax)] = a−sk̃(s), a > 0.

ii. M[xak(x)] = k̃(s+ a).

iii. M[k(xa)] = 1
a
k̃( s

a
).

iv. M[xk
′
(x)] = −sk̃(s).

v. M[
∫ x

0
k(t)dt] = −1

s
k̃(s+ 1), s 6= 0

vi. M[k
′
(x)] = −(s− 1)k̃(s− 1).

vii. M[(xk
′
)n(x)] = (−1)nsnk̃(s).

viii. M[k(x) ∗ h(x)] = k̃(s)h̃(s).

Uniqueness theorem of Mellin transform

Theorem 2.7.1. [11] Let k, g ∈ Xc for some c ∈ R such that M[k](c + it1) =

M[h](c+ it1) for all t ∈ R. Then k = h on R+.

Existence of Mellin transform

Theorem 2.7.2. [26] The conditions k(t1)t1→0+ = O(tu11 ), k(t1)t1→+∞ = O(tu21 ).

when u1 > u2, guarantee that k̃(s) exists in the strip < −u1,−u2 > .
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Chapter 3

Hadamard-type frac-operators

In this chapter, basic properties such as semi-group property, composition of inte-

grals and derivatives are presented. Also relevant examples about Hadamard frac-

integrals and derivatives, CH-derivatives, HT-integrals and derivatives and CHT-

derivatives are discussed. Furthermore, Taylor’s formula and its relevant results

are given for CH and CHT-derivatives. Later, the integration by parts formula for

Hadamard and HT-derivatives is discussed. HTF-integrals and derivatives were in-

troduced by Butzer et al. in 1997 by using a simple modification in the definition

of Hadamard frac-operators.

3.1 Hadamard frac-integrals and derivatives

In this section, some results of Hadamard calculus are reviewed from [8], [9] and

[17].

Example 3.1.1. For α > 0 and β > −1

(a) Let k(x) =
(

ln x
a

)β
. Then

J α
a+k(x) =

Γ(β + 1)

Γ(β + α + 1)

(
ln
x

a

)β+α

. (3.1.1)
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and

Dαa+k(x) =
Γ(β + 1)

Γ(β − α + 1)

(
ln
x

a

)β−α
. (3.1.2)

(b) Let g(x) =
(

ln b
x

)β
. Then

J α
b−g(x) =

Γ(β + 1)

Γ(β + α + 1)

(
ln
b

x

)β+α

. (3.1.3)

and

Dαb−g(x) =
Γ(β + 1)

Γ(β − α + 1)

(
ln
b

x

)β−α
. (3.1.4)

3.1.1 Some properties of Hadamard operators

Some results/properties of Hadamard calculus are as follows.

Semi-group property:

Theorem 3.1.2. Let α > 0, β > 0 and 0 < a < b < ∞. Then for k ∈ Lp(a, b),

p ∈ [1,∞] the following equalities hold everywhere on open interval of a and b.

(a) J α
a+ J

β
a+k(t) = J α+β

a+ k(t).

(b) J α
b− J

β
b−k(t) = J α+β

b− k(t).

Now we discuss an interesting result.

Lemma 3.1.3. If n ∈ N and 0 < a < b <∞ then for every k ∈ Lp(a, b), 1 ≤ p ≤ ∞,

the following equalities hold almost everywhere on open interval of a and b. .

(a) δnJ n
a+k(x) = k(x), where δ = x d

dx
.

(b) δnJ n
b−k(x) = k(x), where δ = −x d

dx
.
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Lemma 3.1.4. If n ∈ N and 0 < a < b < ∞, then for every k ∈ ACnδ [a, b] the

following relations hold almost everywhere,

(a) J n
a+(δnk(x)) = k(x)−

n−1∑
q=0

δqk(a)
Γ(q+1)

(
ln x

a

)q
, where δ = x d

dx
.

(b) J n
b−(δnk(x)) = k(x)−

n−1∑
q=0

δqk(b)
Γ(q+1)

(
ln b

x

)q
, where δ = −x d

dx
.

Composition of Hadamard integrals and derivatives:

Compositions between Dα and J α are given by following Theorems.

Lemma 3.1.5. Let α > 0, 0 < a < b <∞ and 1 ≤ p ≤ ∞, then for k ∈ Lp(a, b),

(a) Dαa+

(
J α
a+k
)
(x) = k(x).

(b) Dαb−
(
J α
b−k
)
(x) = k(x).

Lemma 3.1.6. If α > 0 and 0 < a < b < ∞. Suppose that k ∈ Lp(a, b) is such

that J n−αk ∈ ACnδ [a, b]. Then

(a) J α
a+

(
Dαa+k

)
(x) = k(x)−

n−1∑
q=0

δn−q−1J n−αa+ k(a)

Γ(α−q)

(
ln x

a

)α−q−1

.

(b) J α
b−
(
Dαb−k

)
(x) = k(x)−

n−1∑
q=0

δn−q−1J n−αb− k(b)

Γ(α−q)

(
ln b

x

)α−q−1

.

In particular, for 0 < α ≤ 1

J α
a+

(
Dαa+k

)
(x) = k(x)− J

1−α
a+ k(a)

Γ(α)

(
ln
x

a

)α−1

.

When Hadamard derivatives and integrals are of different order, then the fol-

lowing results hold.

Lemma 3.1.7. If α > 0 and β > 0, where β > α, 0 < a < b < ∞ and p ∈ [0,∞],

then for k ∈ Lp(a, b), following relations hold

(a) Dαa+(J β
a+k)(x) = J β−α

a+ k(x).
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(b) Dαb−(J β
b−k)(x) = J β−α

b− k(x).

In particular, for α = r ∈ N

Dra+(J β
a+k)(x) = J β−r

a+ k(x).

Theorem 3.1.8. For β > α > 0, 0 < a < b < ∞, and 1 ≤ p ≤ ∞ then for

k ∈ Lp(a, b),

(a) J α
a+(Dβa+k(x)) = J α−β

a+ k(x)−
j−1∑
q=0

δj−q−1J j−βa+ k(a)

Γ(α−q)

(
ln x

a

)α−q−1

.

(b) J α
b−(Dβb−k(x)) = J α−β

b− k(x)−
j−1∑
q=0

δj−q−1J j−βb− k(b)

Γ(α−q)

(
ln b

x

)α−q−1

.

Semi-group property of Hadamard frac-derivatives is discussed below.

Theorem 3.1.9. Let α, β be positive such that m − 1 < α < m, n − 1 < β < n.

Then

(a) Dαa+(Dβa+k(x)) = Dα+β
a+ k(x).

(b) Dαb−(Dβb−k(x)) = Dα+β
b− k(x).

3.2 Caputo Hadamard frac-operators

In this section, results about CH-derivatives are reviewed from [12] and [16]. As

Hadamard derivative of a constant is non zero, so to overcome this shortcoming,

CH-derivatives were introduced. An example that is discussed below, plays a vital

role in proving some properties of CH-operator.

Example 3.2.1. For α > 0, β > −1 and 0 < a < b <∞,

(a) Let k(x) =
(

ln x
a

)β
, then

∗Dαa+k(x) =
Γ(β + 1)

Γ(β − α + 1)

(
ln
x

a

)β−α
. (3.2.1)
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(b) Let h(x) =
(

ln b
x

)β
, then

∗Dαb−h(x) =
Γ(β + 1)

Γ(β − α + 1)

(
ln
b

x

)β−α
. (3.2.2)

In particular,

∗Dαa+1 = 0 and ∗Dαb−1 = 0. (3.2.3)

Composition between CH-integrals and derivatives is discussed in following re-

sults.

Lemma 3.2.2. Let α > 0 then for k ∈ C[a, b],

(a) ∗Dαa+

(
J α
a+k
)
(x) = k(x).

(b) ∗Dαb−
(
J α
b−k
)
(x) = k(x).

Lemma 3.2.3. If α > 0 and k ∈ ACnδ [a, b] or Cn
δ [a, b] then the following relations

hold:

(a) J α
a+

(
∗Dαa+k

)
(x) = k(x)−

n−1∑
q=0

δqk(a)
Γ(q+1)

(
ln x

a

)q
.

(b) J α
b−
(
∗Dαb−k

)
(x) = k(x)−

n−1∑
q=0

δqk(b)
Γ(q+1)

(
ln b

x

)q
.

In particular, If 0 < α ≤ 1, then

J α
a+

(
∗Dαa+k

)
(x) = k(x)− k(a).

When CH-integrals and derivatives are of different order then following results

hold.

Lemma 3.2.4. If α > 0, β > 0 and β > α then for k ∈ Cn
δ [a, b] then the following

relations hold:
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(a) ∗Dαa+(J β
a+k)(x) = J β−α

a+ k(x).

(b) ∗Dαb−(J β
b−k)(x) = J β−α

b− k(x).

Theorem 3.2.5. If α > 0 and β > 0 then for k ∈ Cn
δ [a, b] the following relations

hold:

(a) J α
a+( ∗Dβa+k)(x) = J α−β

a+ k(x)−
n−1∑
q=0

δqk(a)
Γ(q+α−β+1)

(
ln x

a

)q+α−β
.

(b) J α
b−( ∗Dβb−k)(x) = J α−β

b− k(x)−
n−1∑
q=0

δqk(b)
Γ(q+α−β+1)

(
ln b

x

)q+α−β
.

Semi-group property for CH-derivatives is discussed below.

Theorem 3.2.6. If k ∈ Cm+n
δ [a, b]. Let α ≥ 0 and β ≥ 0 such that m−1 < α ≤ m

and n− 1 < β ≤ n. Then

(a) ∗Dαa+( ∗Dβa+k)(x) = ∗Dα+β
a+ k(x).

(b) ∗Dαb−( ∗Dβb−k)(x) = ∗Dα+β
b− k(x).

3.3 Hadamard-type frac-integrals and derivatives

In this section, some results about HTF-operators are presented.

Following example shows that HTF-integrals and derivatives (see Definitions 8

and 9) of logarithmic functions
(

ln x
a

)β
and

(
ln b

x

)β
yield logarithmic function of

the same form.

Example 3.3.1. For c ∈ R, α > 0 and β > −1

(a) Let k(x) = x−c
(

ln x
a

)β
. Then

J α
a+,ck(x) = J α

a+,cx
−c
(

ln
x

a

)β
=

1

Γ(α)

∫ x

a

t−c
( t
x

)c(
ln(x)− ln(t)

)α−1(
ln(t)− ln(a)

)β dt
t

=
x−c

Γ(α)

∫ x

a

(
ln(x)− ln(t)− ln(a) + ln(a)

)α−1(
ln(t)− ln(a)

)β dt
t

21



J α
a+,ck(x) =

x−c

Γ(α)

∫ x

a

(
ln(x)− ln(a)

)α−1
(

1− ln(t)− ln(a)

ln(x)− ln(a)

)α−1

×
(

ln(t)− ln(a)
)β dt

t
.

Let v = ln(t)−ln(a)
ln(x)−ln(a)

and dv = 1
ln(t)−ln(a)

dt
t
, then

J α
a+,ck(x) =

x−c

Γ(α)

(
ln(x)− ln(a)

)α+β
∫ 1

0

(1− v)α−1vβdv.

By using properties of Beta function defined in section 2.2, we get

J α
a+,ck(x) =

Γ(β + 1)

Γ(β + α + 1)
x−c
(

ln
x

a

)β+α

. (3.3.1)

Now to find HT-derivative of k(x), first prove for β = r, where r ∈ N

Dαa+,ck(x) = Dαa+,cx
−c
(

ln
x

a

)r
=

r!

(r − α)!
x−c
(

ln
x

a

)r−α
Replace r with β, we get

Dαa+,ck(x) =
Γ(β + 1)

Γ(β − α + 1)
x−c
(

ln
x

a

)β−α
. (3.3.2)

(b) Similarly, Let g(x) = xc
(

ln b
x

)β
. Then

J α
b−,cg(x) = xc

Γ(β + 1)

Γ(β + α + 1)

(
ln
b

x

)β+α

. (3.3.3)

and

Dαb−,cg(x) = xc
Γ(β + 1)

Γ(β − α + 1)

(
ln
b

x

)β−α
. (3.3.4)

Some results/properties of Hadamard calculus are formed as follows.
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Semi-group property:

Theorem 3.3.2. [17] Let α > 0, β > 0 and 0 < a < b <∞. Then for k ∈ X p
c (a, b),

1 ≤ p ≤ ∞ the following relations hold everywhere on (a, b).

(a) J α
a+,c J

β
a+,ck(t) = J α+β

a+,c k(t).

(b) J α
b−,c J

β
b−,ck(t) = J α+β

b−,c k(t).

Proof. (a) By using definition of J α
a+,ck(x) from Eq. (2.3.15), we have

J α
a+,c (J β

a+,ck)(t) =
1

Γ(α)

∫ t

a

(τ1

t

)c(
ln

t

τ1

)α−1

J β
a+,ck(τ1)

dτ1

τ1

=
1

Γ(α)

∫ t

a

(τ1

t

)c(
ln

t

τ1

)α−1

×
[ 1

Γ(β)

∫ τ1

a

( ξ
τ1

)c(
ln
τ1

ξ

)β−1

k(ξ)
dξ

ξ

]dτ1

τ1

.

By Dirichlet formula, we get

=
1

Γ(α)Γ(β)

∫ t

a

k(ξ)
(ξ
t

)c dξ
ξ

×
∫ t

ξ

(
ln(t)− ln(τ1)

)α−1(
ln(τ1)− ln(ξ)

)β−1dτ1

τ1

=
1

Γ(α)Γ(β)

∫ t

a

k(ξ)
(ξ
t

)c dξ
ξ

∫ t

ξ

(
ln(τ1)− ln(ξ)

)β−1

×
(

ln(t)− ln(τ1)− ln(ξ) + ln(ξ)
)α−1dτ1

τ1

=
1

Γ(α + β)

∫ t

a

k(ξ)
(ξ
t

)c dξ
ξ

∫ t

ξ

(
ln(t)− ln(ξ)

)α−1

×

(
1− ln(τ1)− ln(ξ)

ln(t)− ln(ξ)

)α−1(
ln(τ1)− ln(ξ)

)β−1dτ1

τ1

.
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Introduce v = ln(τ1)−ln(ξ)
ln(t)−ln(ξ)

and dv = 1
ln(t)−ln(ξ)

dτ1
τ1

, then it takes the form

J α
a+,c (J β

a+,ck)(t) =
1

Γ(α)Γ(β)

∫ t

a

k(ξ)
(ξ
t

)c (
ln(t)− ln(ξ)

)α+β−1dξ

ξ

×
∫ 1

0

(1− v)α−1vβ−1dv.

=
1

Γ(α + β)

∫ t

a

k(ξ)
(ξ
t

)c(
ln
t

ξ

)α+β−1dξ

ξ
.

By using properties of Beta function defined in section 2.2, we get the required

result (a).

(b) Follows similar procedure.

Lemma 3.3.3. If n ∈ N, c ∈ R and 0 < a < b < ∞ then for every k ∈ X p
c (a, b),

1 ≤ p ≤ ∞, then the following relations hold:

(a) Dn
c

(
J n
a+,ck(x)

)
= k(x).

(b) Dn
c

(
J n
b−,ck(x)

)
= k(x).

Proof. (a) By using induction method, we have

For n = 1

D1
cJ 1

a+,ck(x) = x−cx
d

dx
xcJ 1

a+,ck(x) = k(x). (3.3.5)

Now we suppose that the relation holds for n and prove that it also holds for

n+ 1.

Dn+1
c J n+1

a+,ck(x) = Dn
c (D1

cJ 1
a+,c)J n

a+,ck(x)

= Dn
cJ n

a+,ck(x) = k(x).

using Eq. (3.3.5) and so assertion (a) of Lemma follows.
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(b) Follows similar procedure.

Lemma 3.3.4. If n ∈ N, c ∈ R and 0 < a < b < ∞ then for every k ∈ ACnδ,µ[a, b],

then the following relations hold:

(a) J n
a+,c

(
Dn
c k
)
(x) = k(x)− acx−c

n−1∑
q=0

Dqck(a)
Γ(q+1)

(
ln x

a

)q
.

(b) J n
b−,c
(
Dn
c k
)

= k(x)− b−cxc
n−1∑
q=0

Dqck(b)
Γ(q+1)

(
ln b

x

)q
.

Proof. (a) By fundamental Theorem of calculus, we have

For n = 1

J 1
a+,cD

1
ck(x) = x−c

∫ x

a

tcD1
ck(t)

dt

t

= x−c
∫ x

a

d

dt
tck(t)dt

= x−c[xck(x)− ack(a)]

= k(x)− acx−ck(a). (3.3.6)

For n = 2 and by Eq. (3.3.6), we have

J 2
a+,cD

2
ck(x) = J 1

a+,cJ 1
a+,c(D

1
cD

1
ck)

= J 1
a+,c

[
D1
ck(x)− acx−cD1

ck(a)
]

= J 1
a+,cD

1
ck(x)− acJ 1

a+,cx
−cD1

ck(a)

J 2
a+,cD

2
ck(x) = k(x)− acx−ck(a)− acJ 1

a+,cx
−cD1

ck(a), (3.3.7)

where,

J 1
a+,cx

−c = x−c
∫ x

a

dt

t
= x−c

(
ln
x

a

)
. (3.3.8)
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Therefore,

J 2
a+,cD

2
ck(x) = k(x)− acx−ck(a)− x−cac

(
ln
x

a

)
D1
ck(a). (3.3.9)

For n = 3 and by Eq. (3.3.9), we have

J 3
a+,cD

3
ck(x) = J 1

a+,c

[
J 2
a+,cD

2
c (D

1
ck)
]

= J 1
a+,c

[
D1
ck(x)− acx−cD1

ck(a)− x−cac
(

ln
x

a

)
D2
ck(a)

]
= J 1

a+,cD
1
ck(x)− acx−cD1

cJ 1
a+,ck(a)

−x−cac
(

ln
x

a

)
D2
cJ 1

a+,ck(a). (3.3.10)

Here,

J 1
a+,c

(
x−c ln

x

a

)
= x−c

∫ x

a

ln
t

a

dt

t
. (3.3.11)

Let ln( t
a
) = v, then

J 1
a+,c

(
x−c ln

x

a

)
= x−c

∫ ln(x
a

)

0

vdv

=
x−c
(

ln x
a

)2

2
. (3.3.12)

Now using Eq. (3.3.11) and Eq. (3.3.12) in Eq. (3.3.10), we get

J 3
a+,cD

3
ck(x) = k(x)− acx−ck(a)−

(
acD1

ck(a)
)
x−c ln

(x
a

)
−

(
acD2

ck(a)
)
x−c
(

ln x
a

)2

2
. (3.3.13)

In general, we get the required result.

(b) Follows similar procedure.
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Composition of Hadamard-type integrals and derivatives

Lemma 3.3.5. If α > 0, c ∈ R and 0 < a < b < ∞ then for every k ∈ X p
c (a, b),

1 ≤ p ≤ ∞, then the following relations hold:

(a) Dα
c

(
J α
a+,ck(x)

)
= k(x).

(b) Dα
c

(
J α
b−,ck(x)

)
= k(x).

Lemma 3.3.6. [17] If α > 0, 0 < a < b <∞ and 1 ≤ p ≤ ∞, then for k ∈ X p
c (a, b),

the following relations hold

(a) J α
a+,c

(
Dαa+,ck

)
(x) = k(x)−

n−1∑
q=0

acx−cDn−q−1
c J n−αa+,c k(a)

Γ(α−q)

(
ln x

a

)α−q−1

.

(b) J α
b−,c

(
Dαb−,ck

)
(x) = k(x)−

n−1∑
q=0

b−cxcDn−q−1
c J n−αb−,c k(a)

Γ(α−q)

(
ln b

x

)α−q−1

.

In particular, for 0 < α ≤ 1

J α
a+,c

(
Dαa+,ck

)
(x) = k(x)−

x−cacJ 1−α
a+,c k(a)

Γ(α)

(
ln
x

a

)α−1

. (3.3.14)

Proof. (a) Note that

Dn
c

(
J α+n
a+,c k

)
(x) = Dn

c J n
a+,c

(
J α
a+,ck

)
= J α

a+,ck(x). (3.3.15)

Using Eq. (3.3.15) in left hand side of assertion (a) of this Lemma and by

definition of Dαa+,ck from Eq. (2.3.16), we get

J α
a+,c

(
Dαa+,ck

)
(x) = Dn

cJ α+n
a+,cDαa+,ck(x)

= Dn
c J α+n

a+,c

(
Dn
c J n−α

a+,c k
)
(x)

= Dn
c J α

a+,c

[
J n
a+,cD

n
c (J n−α

a+,c k)(x)
]
.
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By using Lemma 3.3.4(a) and Example 3.3.1(a)

J α
a+,c

(
Dαa+,ck

)
(x) = Dn

c J α
a+,c

[
J n−α
a+,c k(x)

−
n−1∑
q=0

acx−c Dn−q−1 J n−α
a+,c k(a)

Γ(n− q)

(
ln
x

a

)n−q−1]
= Dn

c

[
J n
a+,ck(x)

−
n−1∑
q=0

acx−cDn−q−1 J n−α
a+,c k(a)

Γ(n− q + α)

(
ln
x

a

)n−q−1+α]
= k(x)−

n−1∑
q=0

acx−cDn−k−1
c J n−α

a+,c k(a)

Γ(α− q)

(
ln
x

a

)(α−q−1)

.

for 0 < α < 1 and n = 1 we get the required result Eq. (3.3.14).

(b) Follows similar procedure.

Lemma 3.3.7. [9] If α > 0 and β > 0 where β > α, 0 < a < b <∞ and let c ∈ R,

1 ≤ p ≤ ∞ then for k ∈ X p
c (a, b), following relations hold

(a) Dαa+,c(J
β
a+,ck)(x) = J β−α

a+,c k(x).

(b) Dαb−,c(J
β
b−,ck)(x) = J β−α

b−,c k(x).

In particular, for α = r ∈ N

Dra+,c(J
β
a+,ck)(x) = J β−r

a+,ck(x). (3.3.16)

Proof. (a) If β > α ≥ 0, then by using Theorem 3.3.2(a), we get

Dαa+,c(J
β
a+,ck)(x) = Dαa+,c

(
J α
a+,c

(
J β−α
a+,c k(x)

))
= J β−α

a+,c k(x).
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In particular, for α = r ∈ N, then by using Theorem 3.3.2(a), we get

Dra+,c(J
β
a+,ck)(x) = Dra+,c(J

r+β−r
a+,c k)(x)

= Dra+,c

(
J r
a+,c

(
J β−r
a+,ck(x)

))
= J β−r

a+,ck(x).

(b) Follows similar procedure.

Lemma 3.3.8. If α > 0 and β > 0 where β > α, 0 < a < b < ∞ and 1 ≤ p ≤ ∞

then for k ∈ X p
c (a, b), following relations hold

(a) J α
a+,c(D

β
a+,ck)(x) = J α−β

a+,c k(x)− acx−c
j−1∑
q=0

Dj−q−1
c J j−βa+,ck(a)

Γ(α−q)

(
ln x

a

)α−q−1

.

(b) J α
b−,c(D

β
b−,ck)(x) = J α−β

b−,c k(x)− b−cxc
j−1∑
q=0

Dj−q−1
c J j−βb−,ck(a)

Γ(α−q)

(
ln b

x

)α−q−1

.

Proof. (a) By using Example 3.3.1(a), Lemma 3.3.3(a) and Lemma 3.3.6(a), we

get

J α
a+,c(D

β
a+,ck)(x) = J α−β

a+,c

(
J β
a+,cD

β
a+,ck(x)

)
= J α−β

a+,c

[
k(x)−

j−1∑
q=0

acx−cDj−q−1
c J j−β

a+,ck(a)

Γ(β − q)

(
ln
x

a

)β−q−1]
= J α−β

a+,c k(x)−
j−1∑
q=0

acx−cDj−k−1
c J j−β

a+,ck(a)

Γ(α− q)

(
ln
x

a

)α−k−1

.

(b) Follows similar procedure.

Semi-group property of HTF-derivatives is given below.

Theorem 3.3.9. Let α > 0, β > 0 such that m− 1 < α < m, n− 1 < β < n. Then
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(a) Dαa+,c(D
β
a+,ck)(x) = Dα+β

a+,ck(x).

(b) Dαb−,c(D
β
b−,ck)(x) = Dα+β

b−,ck(x).

Proof. By Lemma 3.3.3(a), Lemma 3.3.8(a) and Example 3.3.1, we have

Dαa+,c(D
β
a+,ck)(x) = Dm

c

(
Jm−α
a+,c D

β
a+,ck(x)

)
= Dm

c

[
Jm−α−β
a+,c k(x)− acx−c

j−1∑
q=0

Dj−q−1
c J j−β

a+,ck(a)

Γ(m− α− q)

(
ln
x

a

)m−α−q−1]
= Dα+β

a+,ck(x)− acx−c
j−1∑
q=0

Dj−q−1
c J j−β

a+,ck(a)

Γ(−α− q)

(
ln
x

a

)−α−q−1

. (3.3.17)

Interchanging α and β, we can write,

Dβa+,c(Dαa+,ck)(x) = Dn
c

(
J n−β
a+,cDαa+,ck(x)

)
= Dα+β

a+,ck(x)− acx−c
j−1∑
q=0

Dj−q−1J j−α
a+,ck(a)

Γ(−β − q)

(
ln
x

a

)−β−q−1

.(3.3.18)

The comparison of the relationships Eq. (3.3.17) and Eq. (3.3.18) says that in

general case the HTF-derivatives do not commute, with only one exception (α = β),

for (α 6= β) we have

Dαa+,c(D
β
a+,ck)(x) = Dβa+,c(Dαa+,ck)(x) = Dα+β

a+,ck(x).

only if both sums in the right hand sides of Eq. (3.3.17) and Eq. (3.3.18) vanish.

(b) Follows similar procedure.

For c = 0, HTF-operators and their results given in this section, coincide with

Hadamard frac-operators and their results given in section 3.1.
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3.4 Caputo Hadamard-type frac-operators

In this section, motivated from CHF-derivative, a new differential operator known

as CHTF-derivative is presented by interchanging integral and differential operators

of HTF-derivatives. Some results such as semi-group property for derivatives and

composition of integrals and derivatives are discussed.

Definition 19. For x ∈ [a, b], the left and right-sided CHTF-derivatives of order

α > 0 and m = dαe, are defined as

∗Dαa+,ck(x) =
1

Γ(m− α)

∫ x

a

( t
x

)c(
ln
x

t

)m−α−1

x−cδmxck(t)
dt

t
,

=
(
Jm−α
a+,c D

m
c k
)

(x), (3.4.1)

where Dm
c = x−cδmxc and δm = (x d

dx
)m.

∗Dαb−,ck(x) =
(−1)m

Γ(m− α)

∫ b

x

(x
t

)c(
ln
t

x

)m−α−1

xcδmx−ck(t)
dt

t
,

=
(
Jm−α
b−,c D

m
c k
)

(x), (3.4.2)

where Dm
c = xc(−δ)mx−c and (−δ)m = (−x d

dx
)m. For c = 0, we get the definition

of CHF-derivative (Definition 7).

Now we discuss an example about CHTF- derivative.

Example 3.4.1. For α > 0 and β > −1

(a) Let k(x) = x−c
(

ln x
a

)β
, to find CHTF-derivative of k(x), first prove for β =

r ∈ N

∗Dαa+,ck(x) = ∗Dαa+,cx
−c
(

ln
x

a

)r
=

Γ(r + 1)

Γ(r − α + 1)
x−c
(

ln
x

a

)r−α
.
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Replace r with β, we get

∗Dαa+,ck(x) =
Γ(β + 1)

Γ(β − α + 1)
x−c
(

ln
x

a

)β−α
. (3.4.3)

(b) Let h(x) = xc
(

ln b
x

)β

∗Dαb−,ch(x) =
Γ(β + 1)

Γ(β − α + 1)
xc
(

ln
b

x

)β−α
. (3.4.4)

The following assertions show relation between operators as:

Theorem 3.4.2. Let α > 0, 0 < a < b <∞ and c ∈ R. Then

(a) Hadamard and HT-integrals have the following relations

J α
a+,ck(x) = x−cJ α

a+x
ck(x), (3.4.5)

and

J α
b−,ck(x) = xcJ α

b−x
−ck(x). (3.4.6)

(b) Hadamard and HT-derivatives have the following relations

Dαa+,ck(x) = x−cDαa+x
ck(x), (3.4.7)

and

Dαb−,ck(x) = xcDαb−x−ck(x). (3.4.8)
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(c) CH and CHT-derivatives have the following relations

∗Dαa+,ck(x) = x−c ∗Dαa+x
ck(x), (3.4.9)

and

∗Dαb−,ck(x) = xc ∗Dαb−x−ck(x). (3.4.10)

Proof. (a) By Eq. (2.3.5) and Eq. (2.3.15), we have

J α
a+,ck(x) =

∫ x

a

( t
x

)c(
ln
x

t

)α−1

k(t)
dt

t

= x−c
∫ x

a

(
ln
x

t

)α−1

tck(t)
dt

t
= x−cJ α

a+x
ck(x).

Now by Eq. (2.3.6) and Eq. (2.3.17) , we have

J α
b−,ck(x) =

∫ b

x

(x
t

)c(
ln
t

x

)α−1

k(t)
dt

t

= xc
∫ b

x

(
ln
t

x

)α−1

t−ck(t)
dt

t
= xcJ α

b−x
−ck(x).

(b) By Eq. (2.3.7), Eq. (2.3.16) and Eq. (3.4.5), we have

Dαa+,ck(x) = x−cδmxcJm−α
a+,c k(x)

= x−cδmJm−α
a+ xck(x)

= x−cDαa+x
ck(x).
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Now by Eq. (2.3.8), Eq. (2.3.1) and Eq. (3.4.6), we have

Dαb−,ck(x) = (−1)mxcδmx−cJm−α
b−,c k(x)

= (−1)mxcδmx−c
(
xcJm−α

b− x−ck
)

(x)

= xcDαb−x−ck(x).

(c) By Eq. (3.4.1), Eq. (2.3.13) and Eq. (3.4.5), we have

∗Dαa+,ck(x) = Jm−α
a+,c x

−cδmxck(x)

= x−cJm−α
a+ δmxck(x)

= x−c ∗Dαa+x
ck(x).

Now by Eq. (3.4.2), Eq. (2.3.14) and Eq. (3.4.6), we have

∗Dαb−,ck(x) = (−1)mJm−α
b−,c x

−cδmxck(x)

= (−1)m
(
xcJm−α

b− x−cxcδmx−ck
)

(x)

= xc ∗Dαb−x−ck(x).

Composition of HT-integrals and CHT-derivatives is discussed below.

Lemma 3.4.3. Let α > 0 then for k ∈ X p
c (a, b), 1 ≤ p ≤ ∞,

(a) ∗Dαa+,c

(
J α
a+,ck

)
(x) = k(x).

(b) ∗Dαb−,c
(
J α
b−,ck

)
(x) = k(x).

Lemma 3.4.4. If n− 1 < α ≤ n and k ∈ X p
c (a, b), 1 ≤ p ≤ ∞, then the following

relation holds.

(a) J α
a+,c

(
∗Dαa+,ck

)
(x) = k(x)− acx−c

n−1∑
q=0

Dqck(a)
Γ(q+1)

(
ln x

a

)q
.
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(b) J α
b−,c

(
∗Dαb−,ck

)
(x) = k(x)− b−cxc

n−1∑
q=0

Dqck(b)
Γ(q+1)

(
ln b

x

)q
.

In particular, If 0 < α ≤ 1, then

J α
a+,c

(
∗Dαa+,ck

)
(x) = k(x)− acx−ck(a). (3.4.11)

Proof. (a) By Eq. (3.4.1) and Theorem 3.3.2, we have

J α
a+,c

(
∗Dαa+,ck

)
(x) = J α

a+,c(Jm−α
a+,c D

m
c k)(x)

= J α+m−α
a+,c Dm

c k(x)

= Jm
a+,cD

m
c k(x). (3.4.12)

Using Lemma 3.3.4(a), we have

J α
a+,c

(
∗Dαa+,ck

)
(x) = k(x)− acx−c

n−1∑
q=0

Dq
ck(a)

Γ(q + 1)

(
ln
x

a

)q
.

In particular, if n = 1 in Eq. (3.4.12)

J α
a+,c

(
∗Dαa+,ck

)
(x) = J 1

a+,cD
1
ck(x)

= k(x)− acx−ck(a).

(b) Follows similar procedure.

When HT-integrals and CHT-derivatives are of different order then the follow-

ing results hold.

Lemma 3.4.5. If α > 0 and β > 0 where β > α, 0 < a < b < ∞ and 1 ≤ p ≤ ∞

then for k ∈ Xp
c (a, b), following relations hold

(a) ∗Dαa+,c(J
β
a+,ck)(x) = J β−α

a+,c k(x).
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(b) ∗Dαb−,c(J
β
b−,ck)(x) = J β−α

b−,c k(x).

Proof. (a) If β > α ≥ 0, then by using Theorem 3.3.2 , we get

∗Dαa+,c(J
β
a+,ck)(x) = ∗Dαa+,c

(
J α
a+,c(J

β−α
a+,c k(x))

)
= J β−α

a+,c k(x).

(b) Follows similar procedure.

Theorem 3.4.6. If α > 0 and β > 0 where β > α, 0 < a < b <∞ and 1 ≤ p ≤ ∞,

then for k ∈ Xp
c (a, b), following relations hold

(a) J α
a+,c( ∗D

β
a+,ck)(x) = J α−β

a+,c k(x)− acx−c
n−1∑
q=0

Dqck(a)
Γ(q+α−β+1)

(
ln x

a

)q+α−β
.

(b) J α
b−,c( ∗D

β
b−,ck)(x) = J α−β

a+,c k(x)− b−cxc
n−1∑
q=0

Dqck(b)
Γ(q+α−β+1)

(
ln b

x

)q+α−β
.

Proof. (a) By using Example 3.3.1, Theorems 3.3.2(a) and Lemma 3.4.4(a), we

get

J α
a+,c( ∗D

β
a+,ck)(x) = J α−β

a+,c

(
J β
a+,c ∗D

β
a+,ck(x)

)
= J α−β

a+,c

[
k(x)−

n−1∑
q=0

acx−cDq
ck(a)

Γ(q + 1)

(
ln
x

a

)q ]
= J α−β

a+,c k(x)−
n−1∑
q=0

acx−cDq
ck(a)

Γ(q + α− β + 1)

(
ln
x

a

)q+α−β
.

(b) Follows similar procedure.

Semi-group property for CHT-derivatives is as follows.

Theorem 3.4.7. Let α ≥ 0 and β ≥ 0 such that m−1 < α ≤ m and n−1 < β ≤ n

and also let k ∈ Cm+n
δ,µ [a, b], 0 < a < b <∞. Then
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(a) ∗Dαa+,c( ∗D
β
a+,ck)(x) = ∗Dα+β

a+,ck(x).

(b) ∗Dαb−,c( ∗D
β
b−,ck)(x) = ∗Dα+β

b−,ck(x).

Proof. (a) Without the loss of generality, let n ≥ m. Thus n = m + q, q ∈

{0, 1, 2...}. Since α + β = m + n, then by definition of ∗Dαa+,c and Theorem

3.3.2, we have

∗Dαa+,c( ∗D
β
a+,ck)(x) = Jm−α

a+,c D
m
c ( ∗Dβa+,ck(x))

= Jm−α
a+,c D

m
c (J n−β

a+,cD
n
c k(x))

= Jm−α
a+,c D

m
c (Jm+q−β

a+,c Dm+q
c k(x))

= Jm−α
a+,c D

m
c J

m−β
a+,c J

q
a+,cD

m+q
c k(x)

= Jm−α
a+,c D

β
a+,cJ

q
a+,cD

m+q
c k(x)

= Jm−α−β
a+,c J β

a+,cD
β
a+,cJ

q
a+,cD

m+q
c k(x).

Using Lemma 3.3.6(a), we get

∗Dαa+,c( ∗D
β
a+,ck)(x) = Jm−α−β

a+,c

[
J q
a+,cD

m+q
c k(x)

−acx−c
m−1∑
j=0

Dm−j−1
c Jm−β

a+,c J
q
a+,cD

m+q
c k(a)

Γ(β − j)

(
ln
x

a

)β−j−1]
.

Let dβe = n = m+q, since Jm−β
a+,c J

q
a+,cD

m+q
c k(a) = J dβe−βa+,c D

dβe
c k(a) = ∗Dβa+,ck(a).

So

∗Dαa+,c( ∗D
β
a+,ck)(x) = Jm−(α+β)

a+,c

[
J q
a+,cD

m+q
c k(x)

−acx−c
m−1∑
j=0

Dm−j−1
c ∗Dβa+,ck(a)

Γ(β − j)

(
ln
x

a

)β−j−1]
.
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For β ≥ 0 we have ∗Dβa+,ck(a) = 0, so

∗Dαa+,c( ∗D
β
a+,ck)(x) = Jm−(α+β)

a+,c

(
J q
a+,cD

m+q
c k(x)

)
= Jm+q−(α+β)

a+,c Dm+q
c k(x)

= ∗Dα+β
a+,ck(x).

(b) Follows similar procedure.

For c = 0, CHTF-derivatives and their results given in this section, coincide

with CHF-derivatives and their results given in section 3.2.

3.5 Taylor’s formula

In this section, Taylor’s formula of CHTF-derivatives is presented. Taylor series for

frac-derivatives was introduced in 1971 by Osler in [28]. It had been developed also

for RLF-derivative by Trujillo et al. in his book [29]. Further more, Usero worked

on it in case of Caputo frac-derivative in 2007 [30]. Recently, Gambo et al. had

found Taylor’s formula for CHF-derivative in [12], reviewed below.

3.5.1 Taylor’s formula for Caputo Hadamard frac-derivatives

We first give an analogous theorem to the MVT.

Theorem 3.5.1. Let 0 < α ≤ 1. Then for all x ∈ [a, b] there exists ξ ∈ [a, x] such

that

k(x) = k(a) +
1

Γ(α + 1)

(
ln
x

a

)α
∗Dαa+k(ξ). (3.5.1)
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and

k(x) = k(b) +
1

Γ(α + 1)

(
ln
b

x

)α
∗Dαb−k(ξ). (3.5.2)

Proof. Since 0 < α ≤ 1 we have by Lemma 3.2.3(a) that

J α
a+

(
∗Dαa+k

)
(x) = k(x)− k(a).

Using definition of J α
a+ and by integral MVT, we obtain

J α
a+( ∗Dαa+k)(x) =

1

Γ(α)

∫ x

a

(
ln
x

t

)α−1

∗Dαa+k(t)
dt

t

=
1

Γ(α + 1)
∗Dαa+k(ξ)

(
ln
x

a

)α
=

1

Γ(α + 1)

(
ln
x

a

)α
∗Dαa+k(ξ). (3.5.3)

Hence, we get

k(x) = k(a) +
1

Γ(α + 1)

(
ln
x

a

)α
∗Dαa+k(ξ).

with ξ = [a, x].

Eq. (3.5.2) can be proved in similar way.

Theorem 3.5.2. Let 0 < α ≤ 1 and j ∈ N0, then

J jα
a+ ∗Djαa+k(x)− J (j+1)α

a+ ∗D(j+1)α
a+ k(x) =

1

Γ(jα + 1)

(
ln
x

a

)jα
∗Djαa+k(a). (3.5.4)

and

J jα
b− ∗D

jα
b−k(x)− J (j+1)α

b− ∗D(j+1)α
b− k(x) =

1

Γ(jα + 1)

(
ln
b

x

)jα
∗Djαb−k(b). (3.5.5)
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Proof. Consider Eq. (3.5.4) and using Lemma 3.2.3, we have

J jα
a+ ∗Djαa+k(x)− J (j+1)α

a+ ∗D(j+1)α
a+ k(x) = J jα

a+

(
∗Djαa+k − J α

a+ ∗D
(j+1)α
a+ k

)
= J jα

a+

(
∗Djαa+k −

(
J α
a+ ∗Dαa+k

)
∗Djαa+k

)
= J jα

a+

(
∗Djαa+k(a)

)
J jα
a+ ∗Djαa+k(x)− J (j+1)α

a+ ∗D(j+1)α
a+ k(x) =

1

Γ(jα + 1)

(
ln
x

a

)jα
∗Djαa+k(a).

Eq. (3.5.5) can be proved similarly.

Now we discuss the Taylor’s formula for CHF-derivative.

Theorem 3.5.3. Let 0 < a < b < ∞ and 0 < α ≤ 1. Let m be an arbitrary

non-negative integer. Then the Taylor’s formula involving CHF-derivatives is given

as:

k(x) =
m∑
j=0

1

Γ(jα + 1)

(
ln
x

a

)jα
∗Djαa+k(a)

+
1

Γ((m+ 1)α + 1)

(
ln
x

a

)(m+1)α

∗D(m+1)α
a+ k(ξ). (3.5.6)

and

k(x) =
m∑
j=0

1

Γ(jα + 1)

(
ln
b

x

)jα
∗Djαb−k(b)

+
1

Γ((m+ 1)α + 1)

(
ln
b

x

)(m+1)α

∗D(m+1)α
b− k(ξ), (3.5.7)

where ξ = [a, b].

Proof. Consider Eq. (3.5.6) and using Theorem 3.5.2, we have

m∑
j=0

J jα
a+ ∗Djαa+k(x)− J (j+1)α

a+ ∗D(j+1)α
a+ k(x) =

m∑
j=0

1

Γ(jα + 1)

(
ln
x

a

)jα
∗Djαa+k(a).
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It follows

J 0
a+ ∗D0

a+k(x)− J (m+1)α
a+,c ∗D(m+1)α

a+ k(x) =
m∑
j=0

1

Γ(jα + 1)

(
ln
x

a

)jα
∗Djαa+k(a).

As we know that J 0
a+ ∗D0

a+k(x) = k(x),

k(x) =
m∑
j=0

1

Γ(jα + 1)

(
ln
x

a

)jα
∗Djαa+k(a) + J (m+1)α

a+ ∗D(m+1)α
a+ k(x). (3.5.8)

Replacing α by (m+ 1)α in Eq. (3.5.3), we get

J (m+1)α
a+ ∗D(m+1)α

a+ k(x) =
1

Γ((m+ 1)α + 1)

(
ln
x

a

)(m+1)α

∗D(m+1)α
a+ k(ξ). (3.5.9)

So

k(x) =
m∑
j=0

1

Γ(jα + 1)

(
ln
x

a

)jα
∗Djαa+k(a)

+
1

Γ((m+ 1)α + 1)

(
ln
x

a

)(m+1)α

∗D(m+1)α
a+ k(ξ),

with ξ = [a, x].

3.5.2 Taylor’s formula for Caputo Hadamard-type f-derivatives

Firstly, we need to discuss analogous result to MVT.

Theorem 3.5.4. Let 0 < α ≤ 1 and k ∈ AC[a, b] such that ∗Dαa+,ck ∈ C[a, b]. Then

for all x ∈ [a, b] there exists ξ ∈ [a, b] such that

(a) For ξ ∈ [a, x]

k(x) = acx−ck(a) +
1

Γ(α + 1)

(
ln
x

a

)α( ξ
x

)c
∗Dαa+,ck(ξ). (3.5.10)
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(b) For ξ ∈ [x, b]

k(x) = b−cxck(b) +
1

Γ(α + 1)

(
ln
b

x

)α(x
ξ

)c
∗Dαb−,ck(ξ). (3.5.11)

Proof. (a) Since 0 < α ≤ 1 we have by Eq. (3.3.14) that

J α
a+,c

(
∗Dαa+,ck

)
(x) = k(x)− acx−ck(a).

Using definition of J α
a+,c and by integral MVT, we obtain

J α
a+,c(∗Dαa+,ck)(x) =

1

Γ(α)

∫ x

a

( t
x

)c(
ln
x

t

)α−1

∗Dαa+,ck(t)
dt

t

=
1

Γ(α + 1)

( ξ
x

)c(
ln
x

a

)α
∗Dαa+,ck(ξ). (3.5.12)

Hence, we get

k(x) = acx−ck(a) +
1

Γ(α + 1)

( ξ
x

)c(
ln
x

a

)α
∗Dαa+,ck(ξ).

with ξ = [a, x].

(b) Follows similar procedure.

Theorem 3.5.5. Let 0 < α ≤ 1 and j ∈ N0. Let k ∈ ACnδ [a, b], then

(a) J jα
a+,c ∗D

jα
a+,ck(x)− J (j+1)α

a+,c ∗D(j+1)α
a+,c k(x) = acx−c

Γ(jα+1)

(
ξ
x

)c(
ln x

a

)jα
∗Djαa+,ck(a).

(b) J jα
b−,c ∗D

jα
b−,ck(x)− J (j+1)α

b−,c ∗D(j+1)α
b−,c k(x) = b−cxc

Γ(jα+1)

(
x
ξ

)c(
ln b

x

)jα
∗Djαb−,ck(b).
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Proof. (a) Using the Theorem 3.3.2, Lemma 3.4.3 and Theorem 3.4.7, we have

J jα
a+,c ∗D

jα
a+,ck(x)− J (j+1)α

a+,c ∗D(j+1)α
a+,c k(x) = J jα

a+,c

(
∗Djαa+,ck(x)− J α

a+,c ∗D
(j+1)α
a+,c k(x)

)
= J jα

a+,c

(
∗Djαa+,ck(x)

−
(
J α
a+,c ∗Dαa+,ck(x)

)
∗Djαa+,ck(x)

)
By using Lemma 3.4.4

J jα
a+,c ∗D

jα
a+,ck(x)− J (j+1)α

a+,c ∗D(j+1)α
a+,c k(x) = J jα

a+,c

(
∗Djαa+,ck(x)− ∗Djαa+,ck(x)

+acx−c ∗Djαa+,ck(a)
)
.

= acx−cJ jα
a+,c

(
∗Djαa+,ck(a)

)
=

acx−c

Γ(jα + 1)

( ξ
x

)c(
ln
x

a

)jα
∗Djαa+,ck(a).

(b) Follows similar procedure.

Following are the Taylor’s formulas for CHTF-derivatives.

Theorem 3.5.6. Let 0 < a < b < ∞ and 0 < α ≤ 1. Let m be an arbitrary

non-negative integer. Let k ∈ ACnδ [a, b] and suppose ∗D(j+1)α
a,c k ∈ C[a, b]. Then the

Taylor’s formula involving CHTF-derivatives is given as:

(a) For ξ = [a, x].

k(x) =
m∑
j=0

acx−c

Γ(jα + 1)

( ξ
x

)c(
ln
x

a

)jα
∗Djαa+,ck(a)

+
1

Γ((m+ 1)α + 1)

( ξ
x

)c(
ln
x

a

)(m+1)α

∗D(m+1)α
a+,c k(ξ). (3.5.13)
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(b) For ξ = [x, b].

k(x) =
m∑
j=0

b−cxc

Γ(jα + 1)

(x
ξ

)c(
ln
b

x

)jα
∗Djαb−,ck(b)

+
1

Γ((m+ 1)α + 1)

(x
ξ

)c(
ln
b

x

)(m+1)α

∗D(m+1)α
b−,c k(ξ). (3.5.14)

Proof. (a) Using Theorem 3.5.5, we have

m∑
j=0

J jα
a+,c ∗D

jα
a+,ck(x)− J (j+1)α

a+,c ∗D(j+1)α
a+,c k(x) =

m∑
j=0

acx−c

Γ(jα + 1)

( ξ
x

)c
×
(

ln
x

a

)jα
∗Djαa+,ck(a).

It follows

J 0
a+,c ∗D0

a+,ck(x)− J (m+1)α
a+,c ∗D(m+1)α

a+,c k(x) =
m∑
j=0

acx−c

Γ(jα + 1)

( ξ
x

)c(
ln
x

a

)jα
∗Djαa+,ck(a).

As J 0
a+,c ∗D0

a+,ck(x) = k(x), we have

k(x) =
m∑
j=0

acx−c

Γ(jα + 1)

( ξ
x

)c(
ln
x

a

)jα
∗Djαa+,ck(a) + J (m+1)α

a+,c ∗D(m+1)α
a+,c k(x).

Replacing α by (m+ 1)α in Eq. (3.5.12), we get

J (m+1)α
a+,c ∗D(m+1)α

a+,c k(x) =
1

Γ((m+ 1)α + 1)

( ξ
x

)c(
ln
x

a

)(m+1)α

∗D(m+1)α
a+,c k(ξ). (3.5.15)

So

k(x) =
m∑
j=0

acx−c

Γ(jα + 1)

( ξ
x

)c(
ln
x

a

)jα
∗Djαa+,ck(a)

+
1

Γ((m+ 1)α + 1)

( ξ
x

)c(
ln
x

a

)(m+1)α

∗D(m+1)α
a+,c k(ξ).
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(b) Follows similar procedure.

Remark 3.5.7. Consider same assumptions of Theorem 3.5.6, the Taylor’s expan-

sion of k(x) can also be written by using the definition of HHTF-integrals of order

(m+ 1)α in Eq. (3.5.15).

3.6 Integration by parts formula

In this section, Integration by parts formula for HT-derivatives is discussed. It was

introduced in 2009 for RLF-integrals and derivatives by Almeida in [31] also see

Corollary 2 in [8] . Furthermore, it has been found for Caputo frac-derivatives in

2017 by Yufeng et al. in [32]. At first, integration by parts formula for Hadamard

frac-derivatives is reviewed.

To find it for Hadamard frac-derivatives, the following result is required.

Lemma 3.6.1. For 0 < α ≤ 1 and 0 < a < b <∞. Then

Dαa+k(x) =
1

Γ(1− α)

[(
ln
x

a

)−α
k(a) +

∫ x

a

(
ln
x

t

)−α
δ k(t)

dt

t

]
. (3.6.1)

and

Dαb−k(x) =
1

Γ(1− α)

[(
ln
b

x

)−α
k(b) +

∫ b

x

(
ln
t

x

)−α
δ k(t)

dt

t

]
. (3.6.2)

Proof. For 0 < α ≤ 1 and by definition of Dαa+, we have

Dαa+k = δJ 1−α
a+ k

=
δ

Γ(1− α)

∫ x

a

(
ln
x

t

)−α
k(t)

dt

t
.
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Let h =
∫ (

ln x
t

)−α
dt
t

and g = k(t) and following Appendix (A3) , we get

Dαa+k =
δ

Γ(2− α)

[(
ln
x

a

)1−α
k(a)

]∣∣∣x
a

+
δ

Γ(2− α)

[ ∫ x

a

(
ln
x

t

)1−α
δ k(t)

dt

t

]
=

(
ln x

a

)−α
k(a)

Γ(1− α)
+

1

Γ(1− α)

∫ x

a

(
ln
x

t

)−α
δ k(t)

dt

t

Dαa+k =
1

Γ(1− α)

[(
ln
x

a

)−α
k(a) +

∫ x

a

(
ln
x

t

)−α
δ k(t)

dt

t

]
.

Hence the proof follows Eq. (3.6.1). Similarly Eq. (3.6.2) can be proved.

Theorem 3.6.2. For 0 < α ≤ 1 and let the functions k and g have frac-derivatives,

then the following integration by parts formula holds

∫ b

a

k(x)Dαa+g(x)
dx

x
=

∫ b

a

g(x)Dαb−k(x)
dx

x
. (3.6.3)

Proof. By using definition of Dαa+ from Eq. (2.3.7), we have

∫ b

a

k(x)Dαa+g(x)
dx

x
=

∫ b

a

k(x)δJ 1−α
a+ g(x)

dx

x
. (3.6.4)

Integrating by parts, we get

∫ b

a

k(x)Dαa+g(x)
dx

x
= J 1−α

a+ g(x)k(x)
∣∣∣b
a
−
∫ b

a

J 1−α
a+ g(x)δ k(x)

dx

x

=
1

Γ(1− α)

∫ x

a

(
ln
x

t

)−α
g(t)

dt

t
k(x)

∣∣∣b
a
−
∫ b

a

J 1−α
a+ g(x)δ k(x)

dx

x

=
1

Γ(1− α)

[∫ b

a

(
ln
b

t

)−α
g(t)

dt

t
k(b)

−
∫ b

a

δ k(x)

∫ x

a

(
ln
x

t

)−α
g(t)

dt

t

dx

x

]
.
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By using Dirichlet formula on
∫ b
a
δ k(x)

∫ x
a

(
ln x

t

)−α
g(t)dt

t
dx
x

, then we get

∫ b

a

k(x)Dαa+g(x)
dx

x
=

1

Γ(1− α)

[∫ b

a

(
ln
b

t

)−α
g(t)k(b)−

∫ b

t

(
ln
x

t

)−α
δ k(x)

dx

x

]
dt

t
.

Using Eq. (3.6.2), we get the required result, that is

∫ b

a

k(x)Dαa+g(x)
dx

x
=

∫ b

a

g(x)Dαb−k(x)
dx

x
.

3.6.1 Integration by parts formula for Hadamard-type frac-

derivatives

Firstly, we discuss the following results.

Lemma 3.6.3. For 0 < α ≤ 1, c ∈ R and 0 < a < b <∞. Then

(a) Dαa+,c k(x) = x−c

Γ(1−α)

[
ac
(

ln x
a

)−α
k(a) +

∫ x
a

(
ln x

t

)−α
Dck(t)dt

t

]
.

(b) Dαb−,c k(x) = xc

Γ(1−α)

[
b−c
(

ln b
x

)−α
k(b) +

∫ b
x

(
ln t

x

)−α
Dck(t)dt

t

]
.

Proof. (a) From Eq. (2.3.16), and following Appendix (A4), we have

Dαa+,ck(x) = DcJ 1−α
a+,c k(t)

=
Dc

Γ(1− α)

∫ x

a

( t
x

)c(
ln
x

t

)−α
k(t)

dt

t

=
Dcx

−c

Γ(1− α)

∫ x

a

tc
(

ln
x

t

)−α
k(t)

dt

t

=
Dc

Γ(2− α)

[
x−cac

(
ln
x

a

)1−α
k(a)

]
+

Dc

Γ(2− α)
x−c
[ ∫ x

a

tc
(

ln
x

t

)1−α
Dck(t)

dt

t

]
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=
x−cac

(
ln x

a

)1−α
k(a)

Γ(1− α)
+

x−c

Γ(1− α)

∫ x

a

(
ln
x

t

)−α
Dck(t)

dt

t

Dαa+,ck(x) =
x−c

Γ(1− α)

[
ac
(

ln
x

a

)−α
k(a) +

∫ x

a

(
ln
x

t

)−α
Dck(t)

dt

t

]
.

(b) Follows similar procedure.

Now, we discuss the integration by parts formula for HTF-derivatives.

Theorem 3.6.4. For 0 < α ≤ 1 and let the functions k and g have f-derivatives,

then the following integration by parts formula holds

∫ b

a

k(x)Dαa+,cg(x)
dx

x
=

∫ b

a

g(x)Dαb−,ck(x)
dx

x
. (3.6.5)

Proof. By using Eq. (3.4.7), Eq. (3.4.8) and Eq. (3.6.3), we have

∫ b

a

k(x)Dαa+,cg(x)
dx

x
=

∫ b

a

k(x)x−cDαa+x
cg(x)

dx

x

=

∫ b

a

x−ck(x)Dαa+x
cg(x)

dx

x

=

∫ b

a

xcg(x)Dαb−x−ck(x)
dx

x

=

∫ b

a

g(x)xcDαb−x−ck(x)
dx

x

=

∫ b

a

g(x)Dαb−,ck(x)
dx

x
.
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Chapter 4

Mellin transform of frac-operators

In this chapter, Mellin transform and its various properties are applied to differ-

ent types of frac-integrals and derivatives e.g., R-L, Caputo and Hilfer derivative.

Also Mellin transform of Hadamard, HT-integrals and derivatives and CH, CHT-

derivatives is given.

Complex Fourier transform and its inverse provides the basics for Mellin trans-

form and its inverse and was introduced by Mellin [18]. Some properties and appli-

cations of Mellin transform are discussed in [25]. Podlubny, Katugampola, Butzer

and Kilbas are few of the mathematicians who worked on Mellin transform.

4.1 Mellin transform of frac-integrals and deriva-

tives

Following [13], the Mellin transforms of left and right sided R-L integrals and deriva-

tives that are given as under:
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Lemma 4.1.1. Let α ∈ C, Re(α) > 0. Then

M[Iαa+k](s) =
Γ(1− s− α)

Γ(1− s)
k̃(s+ α), Re(s+ α) < 1, x > a, (4.1.1)

M[Iαb−k](s) =
Γ(s)

Γ(s+ α)
k̃(s+ α), Re(s) > 0, x < b. (4.1.2)

for k ∈ X1
s+α(R+), if k̃(s+ α) exists for s ∈ C.

Theorem 4.1.2. Let α ∈ C, Re(α) > 0, s ∈ C and k ∈ X1
s−α(R+). Then

M[ RLDαa+k](s) =
Γ(1− s+ α)

Γ(1− s)
k̃(s− α), Re(s) < 1, x > a ≥ 0, (4.1.3)

M[ RLDαb−k](s) =
Γ(s)

Γ(s− α)
k̃(s− α), Re(s− α) > 0, x < b ≤ ∞. (4.1.4)

To find the Mellin transform of Caputo frac-derivative we need to use Mellin

transform of mth derivative
(
Dmk(t) =

(
d
dt

)m
k(t)

)
, given by following lemma.

Lemma 4.1.3. [17] Let k ∈ Cm(R+), k̃(s − m) and M[Dmk(t)](s) exist, and

lim
t→0

[ts−q−1k(m−q−1)(t)] and lim
t→∞

[ts−q−1k(m−q−1)(t)] are finite for q = 0, 1, ..., (m −

1),m ∈ N, then

M[Dmk(t)](s) =
Γ(1− s+m)

Γ(1− s)
k̃(s−m)

+
m−1∑
q=0

Γ(1− s+ q)

Γ(1− s)

[
xs−q−1k(m−q−1)(x)

]∞
0
. (4.1.5)

= (−1)m
Γ(s)

Γ(s−m)
k̃(s−m)

+
m−1∑
q=0

(−1)q
Γ(s)

Γ(s− q)

[
xs−q−1k(m−q−1)(x)

]∞
0
. (4.1.6)

Reader can see [17, 21] for the following lemma, which gives the Mellin transform

for Caputo frac-derivative.

Theorem 4.1.4. Let α > 0, m− 1 < α ≤ m, s ∈ C and k ∈ X1
s−α(R+). Then,
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(a) For Re(s) < 1, x > a ≥ 0,

M[ ∗Dαa+k(x)](s) = Γ(1−s+α)
Γ(1−s) k̃(s−α)+

m−1∑
q=0

Γ(1+q−s−m+α)
Γ(1−s−m+α)

[
xs+m−α−q−1k(m−q−1)(x)

]∞
0
.

(b) For Re(s− α) > 0, x < b ≤ ∞,

M[ ∗Dαb−k(x)](s) = Γ(s)
Γ(s−α)

k̃(s−α)+
m−1∑
q=0

(−1)q Γ(s+m−α)
Γ(s+m−α−q)

[
xs+m−α−q−1k(m−q−1)(x)

]∞
0
.

Proof. (a) By definition of ∗Dαa+ from Eq. (2.3.9) and Eq. (2.6.1), we have

M[ ∗Dαa+k(x)](s) = M
[ 1

Γ(m− α)

∫ x

a

(x− t)m−α−1k(m)(t)dt
]

= M
[
(Im−αa+ Dmk)(t)

]
.

By using Eqs. (4.1.1) and (4.1.5) in the above expression, we get

M[ ∗Dαa+k](s) =
Γ(1− s−m+ α)

Γ(1− s)
M[Dmk(t)](s+m− α)

=
Γ(1− s+ α)

Γ(1− s)
k̃(s− α)

+
m−1∑
q=0

Γ(1 + q − s−m+ α)

Γ(1− s−m+ α)

[
xs+m−α−q−1k(m−q−1)(x)

]∞
0
.

which is the required result (a).

(b) Follows similar procedure.

4.2 Mellin transform of generalized R-L frac-operators

In this section, Mellin transform of generalized RL-integrals and derivatives defined

by Katugampola [13] are reviewed. Afterwards, Mellin transforms of generalized

Caputo and Hilfer derivatives are evaluated.
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Lemma 4.2.1. Let α ∈ C, Re(α) > 0, s ∈ C, ν > 0 and k ∈ X1
s+αν(R+). Then

M[ νIαa+k(x)](s) =
Γ(1− s

ν
− α)

ναΓ
(

1− s
ν

) k̃(s+ αν), Re
( s
ν

+ α
)
< 1, x > a, (4.2.1)

M[ νIαb−k(x)](s) =
Γ( s

ν
)

ναΓ( s
ν

+ α)
k̃(s+ αν), Re

( s
ν

)
> 0, x < b. (4.2.2)

The next result is the Mellin transform of generalized RLF-derivatives. For

simplicity we consider the case 0 < α < 1.

Theorem 4.2.2. Let α ∈ C, Re(α) > 0, s ∈ C, ν > 0 and k ∈ X1
s+αν(R+). Then,

M[ νDαa+k(x)](s) =
ναΓ(1− s

ν
− α)

Γ(1− s
ν
)

k̃(s− αν), Re
( s
ν

)
< 1, x > a ≥ 0, (4.2.3)

M[ νDαb−k(x)](s) =
ναΓ( s

ν
)

Γ( s
ν
− α)

k̃(s− αν), Re
( s
ν
− α

)
> 0, x < b ≤ ∞. (4.2.4)

4.3 Mellin transform analysis of Hadamard frac-

integrals and derivatives

Mellin transform of Hadamard operators was evaluated by Kilbas et al. in [17].

The Mellin transforms of Hadamard frac-integrals defined in Eqs. (2.3.5) and (2.3.6)

are given in the following result.

Lemma 4.3.1. If Re(α) > 0 and let a function k(x) be such that its Mellin transform

M[k](s) exists for s ∈ C.

(a) If Re(s) < 0, then

M[J α
0+k](s) = (−s)−αM[k](s).

(b) If Re(s) > 0, then

M[J α
0−k](s) = (s)−αM[k](s).
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The Mellin transforms of Hadamard frac-derivatives defined in Eqs. (2.3.7) and

(2.3.8) are given by the following Theorem.

Theorem 4.3.2. If Re(α) > 0 and let a function k(x) be such that its Mellin

transform M[k](s) exists for s ∈ C.

(a) If Re(s) < 0, then

M[Dα0+k](s) = (−s)αM[k](s).

(b) If Re(s) > 0, then

M[Dα0−k](s) = (s)αM[k](s).

Mellin transforms of HTF-integrals by Eqs. (2.3.15) and (2.3.17) are presented

in the following lemma.

Lemma 4.3.3. If Re(α) > 0 and c ∈ C. Also let a function k(x) be such that its

Mellin transform M[k](s) exists for s ∈ C.

(a) If Re(c− s) > 0, then

M[J α
0+,ck](s) = (c− s)−αM[k](s).

(b) If Re(c+ s) > 0, then

M[J α
0−,ck](s) = (c+ s)−αM[k](s).

Mellin transforms of HTF-derivatives by Eqs. (2.3.16) and (2.3.1) is presented

in the following Theorem.

Theorem 4.3.4. If Re(α) > 0 and c ∈ C. Also let a function k(x) be such that its

Mellin transform M[k](s) exists for s ∈ C.

(a) If Re(c− s) > 0 and M[Dα0+,ck](s) exists, then

M[Dα0+,ck](s) = (c− s)αM[k](s).

(b) If Re(c+ s) > 0and M[Dα0−,ck](s) exists, then

M[Dα0−,ck](s) = (c+ s)αM[k](s).
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Following Theorem gives the Mellin transform of CH-derivative.

Theorem 4.3.5. [16] If Re(α) > 0 and let a function k(x) be such that its Mellin

transform M[k](s) exists for s ∈ C.

(a) If Re(s) < 0, then

M[ ∗Dα0+k](s) = (−s)αM[k](s).

(b) If Re(s) > 0, then

M[ ∗Dα0−k](s) = (s)αM[k](s).

Following definitions and results are about HT-integrals in the Mellin transform

setting taken from [11] and [20]. These are required to find few results of CHT-

derivatives, which come later in this section.

Definition 20. The domain of J α
0+,c, for α > 0 and c ∈ R, is the class of all functions

k : R+→ C such that

∫ t

0

vc
(

log
t

v

)α−1

|k(v)|dv
v
< +∞ (4.3.1)

for t ∈ R+. The domain of J α
0+,c is denoted by DomJ α

0+,c.

Xc,loc is the space of all functions such that k(t)tc−1 ∈ L1(0, a) for every a > 0.

For α = 1, we have DomJ 1
0+,c = Xc,loc. For 0 < α < 1, Xc,loc ⊂ DomJ α

0+,c.

The semi group property of HT-integrals in the domain of frac-integrals is given

in Theorem 2 of [20] stated as,

Theorem 4.3.6. Let α, β be positive, c ∈ R be fixed. If k(x) ∈ DomJ α+β
0+,c . Then

i. k(x) ∈ DomJ α
0+,c ∩DomJ β

0+,c.

ii. J α
0+,ck(x) ∈ DomJ β

0+,c and J β
0+,ck(x) ∈ DomJ α

0+,c.

iii. (J α+β
0+,c k)(x) = (J α

0+,c(J
β
0+,ck)), x ∈ R+.
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iv. If α < β then DomJ β
0+,c ⊂ DomJ α

0+,c.

Definition 21. Let k ∈ Xc, c ∈ R then the Mellin integral Jm
c of order m ∈ N,

t ∈ R+ is defined as

Jm
c k(x) = x−c

∫ x

0

dt1
t1

∫ t1

0

dt2
t2
...

∫ tm−1

0

tcmk(tm)
dtm
tm

. (4.3.2)

where we set, Jc = J 1
c and Jm = Jm

0 .

Definition 22. The Mellin translation operator τ ch for k(x) : R+→ C where c ∈ R

and h ∈ R+ is defined by

(τ chk)(t) = hck(ht), t ∈ R+ (4.3.3)

The concept of a derivative of a function say k is defined by the limit of the

difference quotient involving the Mellin translation , if k
′
(t) exists, is

lim
h→1

τ chk(t)− k(t)

h− 1
= lim

h→1

{
hct

k(ht)− k(t)

ht− t
+
hc − 1

h− 1
k(t)

}
= tk

′
(t) + ck(t).

This motivates the following:

Definition 23. The Mellin derivative θc of a function k : R+ → C and c ∈ R is

defined as

θck(t) = tk
′
(t) + c k(t), (4.3.4)

where t ∈ R+ and k
′
(t) exists on R+. θc of orderm ∈ N can be defined as θ1

c = θc and

θmc = θc(θ
m−1
c ). For m = 0, θ0

c = I, where I is the identity and for c = 0, θm = θm0 .

The following lemma is about the relation between Mellin and Stirling numbers.
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Lemma 4.3.7. The Mellin derivative θc of a function k(t) of order m ∈ N for c ∈ R

can be written as

θmc k(t) =
m∑
q=0

Sc(m, q)t
qk(q)(t), (4.3.5)

where Sc(m, q), 0 ≤ q ≤ m are the generalized Stirling numbers of second kind [27].

An important result is given below.

Proposition 4.3.8. Let m ∈ N and t is positive, then

δmtck(t) = tcθmc k(t). (4.3.6)

4.4 Some new results on generalized frac-derivatives

In this section, Mellin transform of the generalized Caputo and Hilfer frac-derivatives

is evaluated.

4.4.1 Mellin transform of generalized Caputo frac-derivative

To evaluate the Mellin transform of right and left sided generalized Caputo frac-

derivative, we need to use Mellin transform of
(
x1−ν d

dx

)m
k(t), given by following

lemma.

Lemma 4.4.1. Let k ∈ Cm(R+), k̃(s −mν) and M[
(
x1−ν d

dx

)m
k(t)](s) exist, and

lim
t→0

[xs−mν+(q−1)k(q−1)(t)] and lim
t→∞

[xs−mν+(q−1)k(q−1)(t)] are finite for q = 0, 1, ..., (m−
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1),m ∈ N, then

M
[(
x1−ν d

dx

)m
k(x)

]
=

Γ(1− s
ν

+m)

Γ(1− s
ν
)

k̃(s−mν)

+
m∑
q=1

[
xs−mν+(q−1)k(q−1)(x)

]∞
0
. (4.4.1)

= (−1)m
Γ( s

ν
)

Γ( s
ν
−m)

k̃(s−mν)

+
m∑
q=1

(−1)q
[
xs−mν+(q−1)k(q−1)(x)

]∞
0
. (4.4.2)

Proof. From Section 2.7 property (ii) and (vi), we have

For m = 1

M
[(
x1−ν d

dx

)
k(x)

]
(s) = −(s− ν)k̃(s− ν) +

∣∣∣ts−νk(t)
∣∣∣∞
0
. (4.4.3)

For m = 2

M
[(
x1−ν d

dx

)2

k(x)
]

= (−1)2(s− ν)(s− 2ν)k̃(s− 2ν) +
∣∣∣ts−2νk(t)

∣∣∣∞
0

+
∣∣∣ts−2ν+1 d

dt
k(t)

∣∣∣∞
0
. (4.4.4)

For m = 3

M
[(
x1−ν d

dx

)3

k(x)
]

= (−1)3(s− ν)(s− 2ν)(s− 3ν)k̃(s− 3ν) +
∣∣∣ts−3νk(t)

∣∣∣∞
0

+
∣∣∣ts−3ν+1 d

dt
k(t)

∣∣∣∞
0

+
∣∣∣ts−3ν+2

( d
dt

)2

k(t)
∣∣∣∞
0
. (4.4.5)
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Following similar procedure, in general we get

M
[(
x1−ν d

dx

)m
k(x)

]
=

Γ(1− s
ν

+m)

Γ(1− s
ν
)

k̃(s−mν)

+
m∑
q=1

[
xs−mν+(q−1)k(q−1)(x)

]∞
0
.

Similarly Eq. (4.4.2) can be proved.

The following result is about the Mellin transform of generalized Caputo frac-

derivatives.

Theorem 4.4.2. Let α > 0, m − 1 < α ≤ m, ν > 0, s ∈ C and k ∈ X1
s+αν(R+).

Then,

(a) For Re
(
s
ν

)
< 1 and x > a ≥ 0,

M[ ν∗Dαa+k](s) =
ναΓ(1− s

ν
+α)

Γ(1− s
ν

)
k̃(s−αν)+

m−1∑
q=0

Γ(1+q− s
ν
−m+α)

Γ(1− s
ν
−m+α)

[
xs+(m−α)ν−q−1k(m−q−1)(x)

]∞
0
.

(b) For Re
(
s
ν
− α

)
> 0 and x < b ≤ ∞,

M[ ν∗Dαb−k](s) =
ναΓ( s

ν
)

Γ( s
ν
−α)

k̃(s−αν)+
m−1∑
q=0

(−1)q
Γ( s
ν

+m−α)

Γ( s
ν

+m−α−q)

[
xs+(m−α)ν−q−1k(m−q−1)(x)

]∞
0
.

Proof. (a) By definition of ν∗Dαa+ from Eq. (2.5.5) and Eq. (2.6.1), we have

M[ ν∗Dαa+k(x)] = M
[ ν1−m+α

Γ(m− α)

∫ x

a

(xν − tν)m−α−1
(
x1−ν d

dx

)m
k(t)dt

]
= M

[
( νIm−αa+ δmν k)(t)

]
.

By using Eq. (4.2.1) and Eq. (4.4.1), we get

M[ ν∗Dαa+k](s) =
Γ(1− s

ν
−m+ α)

νm−αΓ(1− s
ν
)
M[δmν k(t)](s+ (m− α)ν)

=
ναΓ(1− s

ν
+ α)

Γ(1− s
ν
)

k̃(s− αν)

+
m−1∑
q=0

Γ(1 + q − s
ν
−m+ α)

Γ(1− s
ν
−m+ α)

[
xs+(m−α)ν−q−1k(m−q−1)(x)

]∞
0
.
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we get the required result (a).

(b) By definition of ν∗Dαb− from Eq. (2.5.6) and Eq. (2.6.1) we have

M
[
ν
∗Dαb−k(x)

]
= M[(−1)m(νIm−αb− δmν k)(t)].

By using Eq. (4.2.2) and Eq. (4.4.2), we get

M[ ν∗Dαb−k](s) = (−1)m
Γ( s

ν
)

Γ( s
ν

+m− α)
M[δmν k(t)](s+ (m− α)ν)

= (−1)2m ναΓ( s
ν
)

Γ( s
ν
− α)

k̃(s− αν)

+
m−1∑
q=0

(−1)q
Γ( s

ν
+m− α)

Γ( s
ν

+m− α− q)

[
xs+(m−α)ν−q−1k(m−q−1)(x)

]∞
0
.

we get the required result (b).

4.4.2 Mellin transform of Hilfer and generalized Hilfer frac-

derivative

In following Theorem, Mellin transform of right and left sided Hilfer derivative is

defined as

Theorem 4.4.3. Let α ∈ C, Re(α) > 0, s ∈ C and k ∈ X1
s−α(R+). Then

(a) For Re(s) < 1, x > a ≥ 0

M[Dα,βa+ k(t)] = Γ(1−s+α)
Γ(1−s) k̃(s− α) +

[
ts+β(1−α)−1I

(1−α)(1−β)
a+ k(t)

]∞
0
.

(b) For Re(s− α) > 0, x < b ≤ ∞

M[Dα,βb− k(t)] = Γ(s)
Γ(s−α)

k̃(s− α) +
[
ts+β(1−α)−1I

(1−α)(1−β)
b− k(t)

]∞
0
.
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Proof. (a) By definition of Dα,βa+ from Eq. (2.3.11) and Eq. (2.6.1), we have

M[Dα,βa+ k(t)](s) = M
(
I
β(1−α)
a+

d

dt
I

(1−α)(1−β)
a+ k(t)

)
(s)

= M
(
I
β(1−α)
a+

d

dt
g(t)

)
(s),

where g(t) = I
(1−α)(1−β)
a+ k(t).

Using Eq. (4.1.1) and Eq. (4.1.5), we get

M[Dα,βa+ k(t)](s) =
Γ(1− s− β(1− α))

Γ(1− s)
M
[ d
dt
g(t); s+ β(1− α)

]
=

Γ(2− s− β(1− α))

Γ(1− s)
M
[
g(t); s+ β(1− α)− 1

]
+
[
ts+β(1−α)−1g(t)

]∞
0

=
Γ(1− s− β(1− α) + 1− (1− α)(1− β))

Γ(1− s)
×M

[
k(t); s+ β(1− α)− 1 + (1− α)(1− β)

]
+
[
ts+β(1−α)−1I

(1−α)(1−β)
a+ k(t)

]∞
0
.

Therefore,

M[Dα,βa+ k(t)](s) =
Γ(1− s+ α)

Γ(1− s)
k̃(s− α) +

[
ts+β(1−α)−1I

(1−α)(1−β)
a+ k(t)

]∞
0
.

Hence, we get the required result. As special cases, for β = 0, we get Eq.

(4.1.3) and for β = 1, we get assertion (a) of Theorem 4.1.4.

(b) By definition of Dα,βb− from Eq. (2.3.12) and Eq. (2.6.1), we have

M[Dα,βb− k(t)] = M(I
β(1−α)
b−

d

dt
I

(1−α)(1−β)
b− k)(t)

= M
(
I
β(1−α)
b−

d

dt
g(t)

)
(s),

where g(t) = I
(1−α)(1−β)
b− k(t).
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Using Eq. (4.1.2) and Eq. (4.1.6), we get

M[Dα,βb− k(t)] = − Γ(s)

Γ(s+ β(1− α))
M
[ d
dt
g(t); s+ β(1− α)

]
=

Γ(s)

Γ(s+ β(1− α)− 1)
M
[
g(t); s+ β(1− α)− 1

]
+
[
ts+β(1−α)−1g(t)

]∞
0
.

Therefore,

M[Dα,βb− k(t)] =
Γ(s)

Γ(s− α)
k̃(s− α) +

[
ts+β(1−α)−1I

(1−α)(1−β)
b− k(t)

]∞
0
.

Hence, we get the required result.

As special cases, for β = 0, we get Eq. (4.1.4) and for β = 1, we get assertion (b) of

Theorem 4.1.4.

Mellin transform of generalized Hilfer derivative is presented below.

Theorem 4.4.4. Let α ∈ C, Re(α) > 0, ν > 0, s ∈ C and k ∈ X1
s+αν(R+). Then

(a) For Re
(
s
ν

)
< 1 and x > a ≥ 0.

νDα,βa+ k(t) =
ναΓ(1− s

ν
+α)

Γ(1− s
ν

)
k̃(s−αν)+

m∑
q=1

[
ts+β(m−α)ν−mν+(q−1)

(
d
dt

)q−1

I
(m−α)(1−β)
a+ k(t)

]∞
0
.

(b) For Re
(
s
ν
− α

)
> 0 and x < b ≤ ∞.

M[ νDα,βb− k(t)] =
Γ( s
ν

)

Γ( s
ν
−α)

k̃(s−αν)+
m∑
q=1

(−1)q
[
ts+β(m−α)ν−mν+(q−1)

(
d
dt

)q−1

I
(m−α)(1−β)
b− k(t)

]∞
0
.

Proof. (a) By definition of νDα,βa+ from Eq. (2.5.7) and Eq. (2.6.1), we have

M[ νDα,βa+ k](s) = M
(ν

I
β(m−α)
a+ δmν I

(m−α)(1−β)
a+ k

)
(s)

= M
(ν

I
β(m−α)
a+ δmν g(t)

)
(s),
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where

g(t) = I
(m−α)(1−β)
a+ k(t).

Using Eqs. (4.2.1) and (4.4.1), we get

M[ νDα,βa+ k](s) =
Γ(1− s

ν
− β(m− α))

νβ(m−α)Γ(1− s
ν
)
M
[
δmν g(t); s+ β(m− α)ν

]
=

Γ(1− s
ν
− β(m− α) +m)

νβ(m−α)−mΓ(1− s
ν
)
M
[
g(t); s+ β(m− α)ν −mν

]
+

m∑
q=1

[
ts+β(m−α)ν−mν+(q−1)

( d
dt

)q−1

g(t)
]∞

0

=
ναΓ(1− s

ν
− β(m− α) +m− (m− α)(1− β))

Γ(1− s
ν
)

×M
[
k(t); s+ β(m− α)ν −mν + (m− α)(1− β)ν

]
+

m∑
q=1

[
ts+β(m−α)ν−mν+(q−1)

( d
dt

)q−1

I
(m−α)(1−β)
a+ k(t)

]∞
0

=
ναΓ(1− s

ν
+ α)

Γ(1− s
ν
)

k̃(s− αν)

+
m∑
q=1

[
ts+β(m−α)ν−mν+(q−1)

( d
dt

)q−1

I
(m−α)(1−β)
a+ k(t)

]∞
0
.

Hence we get the required result.

As special case for β = 0, we get the Eq. (4.2.3) and for β = 1, we get assertion

(a) of Theorem 4.4.2.

(b) By definition of νDα,βb− from Eq. (2.5.8) and Eq. (2.6.1), we have

M[ νDα,βb− k(t)] = M(I
β(m−α)
b− δmν I

(m−α)(1−β)
b− k)(t)

= M
(
I
β(1−α)
b− δmν g(t)

)
(s),

where g(t) = I
(1−α)(1−β)
b− k(t).
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Using Eq. (4.2.2) and Eq. (4.4.2), we get

M[Dα,βb− k(t)] = −
Γ( s

ν
)

Γ( s
ν

+ β(m− α))
M
[
δmν g(t); s+ β(m− α)ν

]
=

Γ( s
ν
)

Γ( s
ν

+ β(m− α)−m)
M
[
g(t); s+ β(m− α)ν −mν

]
+

m∑
q=1

(−1)q
[
ts+β(m−α)ν−mν+(q−1)

( d
dt

)q−1

g(t)
]∞

0

=
Γ( s

ν
)

Γ( s
ν
− α)

f̃(s− αν)

+
m∑
q=1

(−1)q
[
ts+β(m−α)ν−mν ν

( d
dt

)q−1

I
(m−α)(1−β)
b− k(t)

]∞
0
.

Hence we get the required result.

As special cases, for β = 0, we get the Eq. (4.2.4) and for β = 1, we get

assertion (b) of Theorem 4.4.2.

4.4.3 Mellin transform of Caputo Hadamard-type frac-derivatives

Mellin transform of CHTF-derivative is obtained in following Theorem.

Theorem 4.4.5. If Re(α) > 0 and c ∈ C. Also let a function k(x) be such that its

Mellin transform M[k](s) exists for s ∈ C.

(a) If Re(c− s) > 0 and M[ ∗Dα0+,ck](s) exists, then

M[ ∗Dα0+,ck](s) = (c− s)αM[k](s).

(b) If Re(c+ s) > 0and M[ ∗Dα0−,ck](s) exists, then

M[ ∗Dα0−,ck](s) = (c+ s)αM[k](s).
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Proof. (a) By using Property (ii) and (vii) of Section 2.7, that is

M[δmk](s) = (−s)mM[k](s)

M[Dm
c k](s) = (c− s)mM[k](s). (4.4.6)

Now we can find Mellin transform of CHTF-derivatives as

M[ ∗Dα0+,ck](s) = M[Dm
c Jm−α

a+,c k](s)

= (c− s)m−α(c− s)mM[k](s)

= (c− s)αM[k](s).

(b) Follows similar procedure.

Now we discuss some results related to Mellin derivative and CHTF-derivative.

The following Proposition shows connection between Mellin derivative and or-

dinary derivative.

Proposition 4.4.6. If k ∈ Xc,loc then Mellin derivative θmc (m ∈ N) and CHTF-

derivative exists, and both are equivalent, that is

( ∗Dm0+,ck)(t) = θmc k(t). (4.4.7)

Proof. By induction, we have

For m = 1, n = m+ 1 = 2 and δ = w d
dw

,

( ∗D1
0+,ck)(t) =

1

Γ(1)

∫ t

0

(w
t

)c(
ln
t

w

)2−2
w−cδ2wck(w)

dw

w

= t−c
∫ t

0

w−1δ
(
w
d

dw

)
wck(w)dw

= t−c
[
c2

∫ t

0

wc−1k(w)dw + (2c+ 1)

∫ t

0

wck
′
(w)dw +

∫ t

0

wc+1k
′′
(w)dw

]
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( ∗D1
0+,ck)(t) = tk

′
(t) + ck(t)

= θck(t). (4.4.8)

Now we suppose that the relation holds for m and prove that it holds for m+ 1 by

Proposition 4.3.8 and Definitions 23 and 21, we have

( ∗Dm+1
0+,c k)(t) = J n−m

0+,c (t−cδ(n)tc)k(t) = J 1
0+,c(t

−cδ(m+2)tc)k(t)

= J 1
0+,ct

−cδm+1(δ tck)(t)

= J 1
0+,ct

−cδm+1(tc θck(t))

= J 1
0+,c θ

m+2
c k(t) = θm+1

c k(t).

and so the assertion follows.

By Lemma 4.3.7, we can also write it as

( ∗Dm0+,ck)(t) = θmc k(t) =
m∑
q=0

Sc(m, q)t
qk(q)(t). (4.4.9)

Fractional derivative of k(t) can also be written as,

( ∗Dα0+,ck)(t) = Jm−α
0+,c (θmc k)(t), α > 0. (4.4.10)

where m = dαe.

The following result shows the relation that how CHTF-derivative can be writ-

ten in form of Stirling numbers.

Proposition 4.4.7. Let α be positive and c be a real number. If k ∈ Xc,loc such

that k(m)(t) ∈ Xc,loc, then

( ∗Dα0+,ck)(t) = Jm−α
0+,c

( m∑
q=0

Sc(m, q)t
qk(q)

)
(t). (4.4.11)
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Proof. It can be directly proved by using Eqs. (4.4.9) and (4.4.10).

Now we discuss an interesting result.

Proposition 4.4.8. Let k ∈ Xc,loc such that θmc k(t) ∈ Xc,loc, where m = dαe. Then

( ∗Dα0+,ck)(t) = Jm−α
0+,c (θmc k)(t) = θmc (Jm−α

0+,c k)(t). (4.4.12)

Proof. Proposition 18 of [20] shows that

θmc (Jm−α
0+,c k)(t) = Jm−α

0+,c (θmc k)(t).

Hence we have,

( ∗Dα0+,ck)(t) = Jm−α
0+,c (θmc k)(t) = θmc (Jm−α

0+,c k)(t).

4.5 An application

Here is an applications of Mellin transform of frac-differential equations.

Example 4.5.1. Consider the equation

t(α+1)ν ν
∗Dα+1y(t) + tαν ν

∗Dαy(t) = k(t), for 2 < α ≤ 3. (4.5.1)

we suppose that

y(0) = y
′
(0) = 0, y(∞) = y

′
(∞) = 0. (4.5.2)

Now by applying Mellin transform on both sides of Eq. (4.5.1) and using Mellin

transform of generalized Caputo frac-derivative given in Theorem 4.4.2 and from
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Section 2.6 (property ii), we get

ỹ(s) = k̃(s)
Γ(1− s

ν
− α)

−να(s+ αν − 1)Γ(1− s
ν
)
.

ỹ(s) = k̃(s)h̃(s).

To find solution of Eq. (4.5.1), we need to know the inverse Mellin transform h(t)

of the function h̃(s) that is the Mellin convolution of the function k(t) and h(t),

y(t) =

∫ ∞
0

k(ts)h(s)ds.

Mellin transform of h(t) can be written as

h̃(s) = h̃1(s)h̃2(s),

where

h̃1(s) =
−1

(s+ αν − 1)
.

h̃2(s) =
Γ(1− s

ν
− α)

ναΓ(1− s
ν
)
.

The inverse Mellin transform of h̃1(s) and h̃2(s) can be found by using formulas

7.1(4) and 7.3(22) from tables [35]:

h1(t) =

 0 for 0 < t < 1,

tαν−1 for t > 1.

h2(t) =

 0 for 0 < t < 1,

−(t−1)α−1

ναΓ(α)
for 1 < t <∞.
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By convolution property the inverse transform of g̃(s) is,

h(t) =

∫ ∞
0

h1

( t
s

)
h2(s)

ds

s
. (4.5.3)

From Eq. (4.5.3), we know that g(t) = 0 for 0 < t < s < 1, so

h(t) =

∫ ∞
1

h1

( t
s

)
h2(s)

ds

s
.

Therefore,

y(t) =

∫ ∞
1

k(ts)h(s)ds,

where

h(s) = −s
(αν−1)Γ(αν − α)

ναΓ(αν)
.
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Chapter 5

Conclusions

In this thesis, a study is presented for Caputo Hadamard-type frac-derivative(fractional

derivative) (by changing the order of integral and differential operator of Hadamard-

type frac-derivative), motivated from Caputo Hadamard frac-derivative.

In [12, 16] semi group property and composition of operators for Caputo Hadamard

frac-derivatives were discussed and in [30] Taylor’s formula for Caputo Hadamard

frac-derivative was presented. This work is extended in this thesis on the same

lines for Caputo Hadamard-type frac-derivatives. Integration by parts formula for

Hadamard-type frac-derivatives is also discussed.

In the rest of the thesis, Mellin transform is discussed and evaluated for general-

ized Caputo, Hilfer and generalized Hilfer frac-derivatives. In [20], Mellin transform

analysis of Hadamard-type frac-derivatives was discussed. Here, a similar analysis is

presented for Caputo Hadamard-type frac-derivative. An example following [21] is

presented to study the Mellin transform of generalized Caputo frac-derivative used

to solve a boundary value problem with a frac differential equation.
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Appendix

A1

Let

Ja+k(x) =

∫ x

a

k(t1)
dt1
t1
.

Then

J 2
a+k(x) =

∫ x

a

1

s

∫ s

a

k(t1)

t1
dt1ds.

By Dirichlet formula,

=

∫ x

a

ln
( x
t1

)dt1
t1
.

In general,

J n
a+k(x) =

∫ x

a

dt1
t1

∫ t1

a

dt2
t2
...

∫ tn−1

a

k(tn)
dtn
tn

=
1

(n− 1)!

∫ x

a

(
ln
x

t1

)n−1

k(t1)
dt1
t1
.

Replace n with α

J α
a+k(x) =

1

(n− 1)!

∫ x

a

(
ln
x

t1

)α−1

k(t1)
dt1
t1
.

A2

Leibniz rule:

d

dt1

∫ g(t1)

k(t1)

h(t1, s)ds = h(t1, g(t1))g′(t1)− h(t1, k(t1))f ′(t1) +

∫ g(t1)

k(t1)

∂ h(t1, s)

∂ t1
ds.
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A3

Integration by parts for Hadamard frac-operator

δ(kh) = kδh+ δkh

J δ(kh) = J kδh+ J δkh

kh
∣∣∣x
a

=

∫ x

a

kδh
dt1
t1

+

∫ x

a

δkh
dt1
t1∫ x

a

δ kh
dt1
t1

= kh
∣∣∣x
a
−
∫ x

a

kδh
dt1
t1
.

A4

Integration by parts formula for HTF- operator

Dc[t
−c
1 k(t1)h(t1)] = [Dct

−c
1 k(t1)]h(t1) + k(t1)[Dct

−c
1 h(t1)]

JcDc[t
−c
1 k(t1)h(t1)] = Jc[Dct

−c
1 k(t1)]h(t1) + Jck(t1)[Dct

−c
1 h(t1)]∫ t1

a

( s
t1

)c
s−cδsck(s)h(s)

ds

s
=

∫ t1

a

( s
t1

)c
Dc

(
s−ck(s)

)
h(s)

ds

s

+

∫ t1

a

( s
t1

)c
k(s)Dc

(
s−ch(s)

)ds
s∫ t1

a

( s
t1

)c
Dc

(
s−ck(s)

)
h(s)

ds

s
= t−c1 k(s)h(s)

∣∣∣t1
a
−
∫ t1

a

( s
t1

)c
k(s)Dc

(
s−ch(s)

)ds
s
.
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