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Abstarct

The main motivation behind this work has been to observe the impact of variable

fluid properties on flow and heat transfer occuring due to non-linearly and exponen-

tially stretching surfaces. It can happen that the fluid properties change significantly

if the temperature difference rises. The result of this temperature difference on fluid

flow is that dynamical and thermodynamical properties cannot remain constant.

Therefore, thermal analysis with variable properties is required for correct interpre-

tation of results.

The governing physical model is very simple i.e. Navier-Stokes equations have been

the underlying model with 2D, laminar, viscous and incompressilbe flows. Boundary

layer assumption make-up the governing equation even further simpler.

Nonlinearity of the governing equation as well as coupling of the system make it dif-

ficult to find solutions. Due to this limitation we apply numerical methods to solve

coupled ODEs which have been obtained by applying similarity transformation to

the PDEs.

Post processing of the solutions has been completed by constructing tables and pre-

senting figures against different physical parameters.

We observe a significantly different behaviour of velocity and temperature profiles

when variable viscosity have been compared with constant fluid properties.
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Chapter 1

Introduction

Fluid mechanics is the branch of mechanics which deals with gases and liquids which

are either at rest or in motion. Applications of fluid mechanics are enormous e.g

breathing, swimming, blood flow, airplanes, missiles, pumps, fans, turbines, ships,

rivers, windmills, pipes and filters etc.

This chapter is classified as follows: Section 1.1, consist of literature review. Section

1.2, contains some important definitions. In Section 1.3, numerical methods are

explained in detail.

1.1 Literature Review

Blasius [1] was the first person who made formal attempt towards understanding

boundary-layer theory. He consider a 2D, steady boundary layer flow over a flate

plate. In 1961 Sakiadis [2, 3, 4] in a series of papers discussed the flow analysis for

axisymmetric, continuous flat surface and continuous cylindrical surface. Soundal-

gekar et. al [5] discussed the heat transfer analysis of the flow due to a continuous

moving plate while keeping the temperature as variable. Andersson and Aarsaeth [7]

revisited the problem of Sakiadis flow for variable fluid properties. The MHD heat
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transfer analysis in the case of non-isothermal sheet has been examined by Chiam

[10]. Mukhopadhyay et al. [11] in their work taken a heated surface while the flow

is MHD and the varying viscosity. In a series of papers Pop et al. [12] and Prasad

et al. [13] examined the effect of variable viscosity over a continuous surfaces. MHD

viscoelastic flow past a stretching sheet with transverse magnetic field presented in

Andersson [15]. Mabood et al. [33] developed an analytical solution for viscous

incompressible flow over a sheet that stretched exponentially.

1.2 Basic Definitions and Preliminaries

1.2.1 Fluid

Fluid is a subtance that deforms continuosly under the action of shearing forces.

The fluids are divided into two categories namely, liquids and the gases. Fluids do

not have definite shape.

1.2.2 Shear Stress

Shear stress is the tangential force per unit area. Mathematically we write

τ =
F

A
,

here τ denotes the shear stress, F is stands for applied force and A is area. The wall

shear stress is defined as

τw = µ

(
∂u

∂y

)

y=0

.

1.2.3 Newtons Law of Viscosity

Viscosity is a property of the fluid which opposes the relative motion between the

two layers of the fluid that are moving at different velocities. It is temperature
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dependent: In liquids it decreases with increase in temperature while for gases it

shows opposite behaviour. The relation between shear stress and shear strain rate

is defined by Newton’s law. Mathematically we write

τ = µ
du

dy
.

1.2.4 Density

The density is mass per unit volume. It is expressed mathematically as

ρ =
m

V
.

The unit of ρ is kg/m3.

1.2.5 Kinematic Viscosity

A parameter oftenly appear in equation of motionn is kinematic viscosity which is

obtained by dividing dynamic viscosity to density of the fluid. Mathematically we

write

ν =
µ

ρ
.

The unit of ν is m2/sec.

1.2.6 Heat Flux

The heat flux is related with temperature gradient by Fourier’s law which is written

as

q = −k∇T,

where q is heat flux, k is the thermal conductivity and T is the temperature.
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1.2.7 Specific Heat Capacity

Specific heat capacity of a substance is the amount of heat required to raise the

temperature of 1 gram of the substance by 1 kelvin ( or by 1 Co). It is the prop-

erty of material that measures how much heat energy is needed to warm the sub-

stance. Non-conductors have higher values of specific heat as compared to conduc-

tors. Mathematically

C =
q

m∆T
,

where q shows amount of heat energy gained or lost by a substance, m is mass, C

is heat capacity and ∆T is change in temperature. SI unit is J
kgK .

1.2.8 Prandtl Number

The Prandtl number Pr a is dimensionless number representing the ratio of kinematic

viscosity to the thermal diffusivity. It is given as

Pr =
Cpµ

k
,

Thermal diffusivity dominates for small values of Prandtl number whereas for large

values viscous diffusivity dominates.

1.2.9 Nusselt Number

The Nusselt number Nu, is the ratio of convective to conductive heat transfer in a

fluid over a given length. It is written as

Nu = h.L
k .

where h is the convective heat transfer coefficient of the flow, L is the characteristic

length, k denotes thermal conductivity of the fluid. The effect of conduction and

convection is same when Nusselt number is considered to be one.
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1.2.10 Skin Friction Coefficient

Skin friction is a resistance which occurs when an object moves in a fluid. The skin

friction coefficient Cf is defined as

Cf =
τw

1
2ρU

2
∞
.

1.2.11 Boundary Layer Flows

A boundary layer is a thin layer that form over a bounding surface when a low-

viscosity, fast-moving fluid flows over it. Within this layer, the shear stress changes

the fluid’s velocity profile such that it is zero near the surface and then asymptot-

ically approaches the free-stream velocity U of the flow for away from the surface.

In this thin region the effects of viscosity are important.

1.3 Governing Equations

The continuity equation, the conservation of momentum and the conservation of

energy are the fundamental equations in fluid mechanics. Most of the fluid flow and

heat transfer problems can be explained mathematically by these three equations.

1.3.1 Equation of Continuity

The mass conservation principle deals with the equation of continuity.

∂ρ

∂t
+∇.(ρV) = 0, (1.3.1)

which is the equation of continuity for a compressible fluid. For steady flow

∂ρ

∂t
= 0. (1.3.2)

Then the above Eq. (1.3.1) becomes

∇.(ρV) = 0.
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This is called a contiuity equation or conservation equation of mass. If density ρ is

also constant then we get

∇.V = 0.

1.3.2 Conservation of Momentum

The conservation of momentum is based on the law of conservation of linear mo-

mentum.

ρ

(
dV

dt

)
= −∇.π + ρg, (1.3.3)

the surface forces are due to the stresses which are summation of the viscous stresses

τij plus the hydrostatic pressure on the sides of control surface that comes from the

motion of the velocity gradients i.e.

πij = −pδij + τij ,

so,

∇.π = −∇p+∇.τ.

After substituting the above relation in Eq. (1.3.3), we get

ρ
dV

dt
= ρg −∇p+∇.τ (1.3.4)

1.3.3 Conservation of Energy

According to this law energy can neither be created nor destroyed.

Enery equation is given as:

Q−Wsur −Wvisc =
∂

∂t

(∫

CV

eρdV

)
+

∫

CS

(
e+

p

ρ

)
ρ(V.n)dA (1.3.5)

where Wsur = 0 because there can be no infinitesimal shaft protruding into the

control volume. The right-hand side for tiny element becomes,

Q−Wvisc =

(
∂

∂t
(ρe) +

∂

∂x
(ρuξ) +

∂

∂y
(ρvξ) +

∂

∂z
(ρwξ)

)
dxdydz (1.3.6)
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where ξ = e+ p
ρ . Using continuity equation the above Eq. (1.3.6) becomes

Q−Wvisc =

(
ρ
de

dt
+V.∇p+ p∇.V

)
dxdydz (1.3.7)

To evaluate Q we use Fourier’s law of conduction. Adding the inlet terms and

subtracting oulet terms, we get

Q = −
(
∂

∂x
(qx) +

∂

∂y
(qy) +

∂

∂z
(qz)

)
dxdydz = −∇.qdxdydz (1.3.8)

Introducing Fourier’s law, we have

Q = ∇.(k∇T )dxdydz (1.3.9)

The net viscous work rate after outlet terms are subtracted from inlet terms, becomes

Wvisc = −∇.(V.τij)dxdydz (1.3.10)

by substituting (1.3.9) and (1.3.10) into Eq. (1.3.7) and eliminate ∇.τij by using

linear momentum equation, we get the final differential form of energy equation:

ρ
du

dt
+ p(∇.v) = ∇.(k∇T ) + φ (1.3.11)

where φ = τij
∂ui
∂xj

.

1.4 Numerical Methods

Numerical techniques are used to find the numerical approximations to the solutions

of nonlinear PDEs. These nonlinear PDEs are first converted to nonlinear ODEs

by using similarity transformations. There are various methods for finding the nu-

merical solutions like finite difference method, spectral method, shooting method,

bvp4c. Here we discuss shooting and bvp4c(built-in MATLAB solver).
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1.4.1 Shooting Method

In numerical analysis, shooting technique is used for finding the solution of BVP by

reducing the problem into an IVP. Both linear and nonlinear ODEs can be solved

by shooting method. In shooting method the basic algorithm is the supposition of

trial value. The solution starts at one end of BVP and shoots to other end with an

initial guess until the BC at the other end reaches to its exact value.

Consider the following two point BVP with subject to the BCs that is written in

the following form as

y′′ = f(x, y, y′), y(a) = α, y(b) = β, (1.4.1)

where (α, β) are unknowns.

The Eq. (1.4.1) is converted into IVP by following procedure:

Consider the IVP

y′′ = f(x, y, y′), y(a) = α, y′(a) = λ. (1.4.2)

From Eq. (1.4.2) we have to find λ which gives the value of y(b) = β. The process

of solving the linear and nonlinear shooting method is similar except for few cases.

The solution to nonlinear problems is same as linear problem except that the base

solution cannot be expressed as a linear combination of each other. Moreover we

have an iterative procedure rather than a simple formula for combining the solutions

of two IVPs for nonlinear case. For a nonlinear BVP, we have to find the zero of

function which represents the error i.e. the amount by which the solution to IVP

fails to satisfy the boundary condition at x = b. In other words the amount by

which y(b,λ) misses the target value β. This error is denoted by F (λ). It is defined

as

F (λ) = y(b,λ)− β = 0. (1.4.3)

when y′(a) = λ has been found then the desired solution is y(x,λ). Now to find

the zero of the error function we can use two different approaches. One approach is
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Newton’s method and the other approach is secant method. Here we use Newton’s

method. First we have to calculate the derivative of the function F (λ). To choose

the value of λ such that Eq. (1.4.3) holds. Then

λ = y′(a) =
y(b)− y(a)

b− a
(1.4.4)

λ =
β − α

b− α
(1.4.5)

Newton’s method is used to approximate the solution of y(b,λ)− β = 0 and find a

next guess λk+1.

λk+1 = λk −
y′(b,λk)− β

y′(b,λk)
(1.4.6)

1.4.2 bvp4c

To find solution of BVP directly we use bvp4c. To solve BVP an estimate is required

while programming in MATLAB. The bvp4c is an efficient solver of BVPs. It is based

on collocation and solution starts with initial estimate provided initial mesh points.

While in shooting technique, the solution is approximated on the whole interval

and considering the BCs all the times. The number of mesh points are require to

represent the solution upto the specified accuracy.
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Chapter 2

Numerical Comparison of

Constant and Variable Fluid

Properties for MHD Flow Over a

Nonlinearly Stretching Sheet

This work is the review work of Chapter 2 of Shafaq [42]. This chapter focuses on flow

and heat transfer analysis over a nonlinearly stretched surface. Comparison has been

made between constant and variable viscosities. Three cases i.e constant viscosity,

viscosity dependence on inverse linear temperature and viscosity dependence on

exponential temperature have been studied. The current work deals with numerical

solutions for various values of governing parameters.

The present work is organized as follows. In Section 2.1 we present mathematical

model for flow and heat transfer analysis. The special cases for the constant and

variable viscosity have been discussed in Section 2.2. The computational procedure

is given in Section 2.3. In Section 2.4 we present the graphs and tables and their

discussion.
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2.1 Mathematical Formulation

Here we investigate a steady, 2D and laminar flow due to a nonlinearly stretching

surface. x-axis is taken along the sheet and y-axis is normal to it. B0 is the strength

of magnetic field which is applied in normal direction. The sheet moves with a non-

uniform velocity U(x) in positive x-direction. Velocity of the sheet is Uw(x) = axm,

where a is a constant and m is an exponent. Temperature of ambient fluid is

taken as constant and is denoted by To whereas temperature of sheet is of the form

Tw(x) = To+cxn, where c and n are positive constants. Reynolds number is taken as

small so that induced magnetic field becomes insignificant. The governing equations

using above assumptions are given as Andersson and Aarsaeth [7].

∂x(ρu) + ∂y(ρv) = 0, (2.1.1a)

ρ(uux + vuy) = ∂y(µuy)− σB2
0u, (2.1.1b)

ρCp(uTx + vTy) = ∂y(kTy), (2.1.1c)

and BCs are given by

u(x, 0) = Uw(x) = axm, v(x, 0) = 0, T (x, 0) = Tw(x) (2.1.2)

u → 0, T → T0, as y → ∞.

where u and v are the x and y-components of velocities repectively. The fluid density

is represented by ρ, B0 shows the strength of the applied magnetic field, dynamic

viscosity of the fluid is µ, specific heat is denoted by Cp, temperature of the fluid

is T and k denotes thermal conductivity. Uw represents the sheet’s velocity, wall

temperature is denoted by Tw.

Introducing the following similarity variables Ali [23], Andersson and Aarsaeth [7].

η =

√
(1 +m)U(x)

2ν0x

∫ y

0

ρ

ρ0
dy, ψ = ρ0

√
2ν0xU(x)

1 +m
f(η), θ(η) =

T − T0

Tw − T0
,

(2.1.3)
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stream function is denoted by ψ and given as

ρu =
∂ψ

∂y
, ρv = −∂ψ

∂x
. (2.1.4)

Using Eq. (2.1.4) the x and y components of velocity can be written as

u = axmf ′(η), v = −ρ0
√

2ν0a

1 +m
x

m−1
2 (

m+ 1

2
f(η) + η

m− 1

2
f ′(η)). (2.1.5)

Plug in Eqs. (2.1.3), (2.1.4) and (2.1.5) into (2.1.1a), (2.1.1b) and (2.1.1c) we get

the following nonlinear coupled ODEs

(
ρµ

ρ0µ0
f ′′)′ −Mf ′ − β(f ′)2 + ff ′′ = 0, (2.1.6a)

(
ρk

ρ0k0
θ′)′ +

Cp

Cp0
Pr0(θ

′f − 2n

1 +m
θf ′) = 0, (2.1.6b)

where Pr0, β, M shows Prandtl number at temperature T0, velocity ratio parameter

and magnetic parameter respectively. These parameters are defined as

Pr0 =
µ0Cp0

k0
, β = 2m

1+m , M= 2β2
0σ

ρa(1+m)xm−1 .

After transformation the boundary conditions (2.1.2) take the form

f(0) = 0, f ′(0) = 1, θ(0) = 1,

f ′ → 0, θ → 0 as η → ∞ (2.1.7)

where f ′ denotes dimensionless velocity and θ denotes dimensionless temperature.

The skin friction coeffcient Cf and local Nusselt number Nux are defined as follows

Mustafa [20]:

Cf =
τw
ρU2

w

, Nux =
xqw

Tw − T0
, (2.1.8)

where τw is the shear stress and qw regarded as the heat flux, and are defined as :

τw = µwx
3m−1

2

√
(1 +m)a3

2ν0
f ′′(0), qw = µwCp∆TPr−1

w

√
a(1 +m)

2ν0
[−θ′(0)],

(2.1.9)
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using equation (2.1.8) and (2.1.9) we get

CfRe
1/2 =

√
1 +m

2
f ′′(0), NuxRe

−1/2 = kw

√
1 +m

2
[−θ′(0)], (2.1.10)

where Re denotes the local Reynolds number.

It should be noted that all the fluid properties considered here are constant execpt

the viscosity which is temperature dependent. Following cases are discussed here as

mentioned in Andersson and Aarsaeth[7] .

2.2 Special Cases

Case A: Constant Fluid Properties

For this case we assume all the fluid properties as constant. The dimensionless

variables η and stream function ψ take the following form:

η =

√
a

ν0
y, ψ = ρ0

√
aν0xf(η). (2.2.1)

Under above similarity variables, Eqs. (2.1.6a) and (2.1.6b) take the form:

f ′′′ + ff ′′ − βf ′2 −Mf ′ = 0, (2.2.2a)

θ′′ + Pr0(fθ
′ − 2n

1 +m
f ′θ) = 0, (2.2.2b)

the boundary conditions given in Eq. (2.1.7) remains the same.

Case B: Variable Viscosity (Inverse Relation with Tempera-

ture)

For this case, we assume only viscosity as a variable that depends linearly on tem-

perature while treating the remaining fluid properties constant which is already

explored in Andersson and Aarseth [7], Bachok et al [9], Elbashbeshy and Bazid

13



[18].

For this case the momentum boundary layer Eq. (2.1.6a) becomes

(f ′′ µ

µ0
)′ + ff ′′ − βf ′2 −Mf ′ = 0. (2.2.3)

The inverse linear relation between viscosity and temperature is proposed by Lai and

Kulachi [8], Pop et al [12] and Ling and Dybbs [19]. The following is the relation

µ =
µ0

1− T−T0
θref (Tw−T0)

=
µ0

1− θ(η)
θref

, (2.2.4)

By inserting Eq. (2.2.4) into Eq. (2.2.3), the resultant equation takes the following

form

f ′′′ +
θ′

θref − θ
f ′′ + (

θref − θ

θref
)(ff ′′ −Mf ′ − βf ′2) = 0. (2.2.5)

Case C: Variable Viscosity (Exponential Relation with Tem-

perature)

Similar to Case B, viscosity is again taken as variable and its exponential relation

with temperature takes the following form White [36]:

ln(
µ

µref
) = −2.10− 4.45

Tref

T
+ 6.55(

Tref

T
)2. (2.2.6)

Substituting the above formula Eq. (2.2.6) in Eq. (2.2.3) we get the following

equation:

f ′′′ = −f ′′θ′∆T (4.45
Tref

T 2
− 13.1

T 2
ref

T 3
) +

µ0

µ
(βf ′2 − ff ′′ +Mf ′). (2.2.7)

2.3 Numerical Procedure

Here, we solved the nonlinear ordinary differential equations (ODEs) numerically

for each Cases A, B and C with the boundary conditions in Eq. (2.1.7). For this
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purpose we use shooting technique. The basic aim behind the shooting technique is

to transform the BVP (boundary value problem) into an IVP (initial value problem).

A fifth order Runge-Kutta method and root finding algorithm Newton-Raphson

method are used to obtain solution of the transformed problem. We verify the

results obtained from shooting technique with bvp4c [24] which is a built-in solver

in MATLAB. Let us define the variables

y1 = f (2.3.1a)

y2 = f ′ (2.3.1b)

y3 = f ′′ (2.3.1c)

y4 = θ (2.3.1d)

y5 = θ′ (2.3.1e)

(a) Case A: The system of first order momentum and energy equations for this case

becomes

y′1 = y2, y′2 = y3

y′3 = f ′′′ = −y1y3 + βy22 +My2 (2.3.2)

y′4 = y5

y′5 = θ′′ = Pr0

(
2n

m+ 1
y2y4 − y1y5

)
. (2.3.3)

(b) Case B: For this case the y′3 takes the form,

y′3 =
y3y5

0.25 + y4
+

0.25 + y4
0.25

(βy22 +My2 − y1y3), (2.3.4)

(c) Case C: For this case the y′3 takes the form ,

y′3 = −y3y5∆T (4.45
Tref

T 2
− 13.1

T 2
ref

T3
) +

µ0

µ
(βy22 − y1y3 +My2), (2.3.5)
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µ

µ0
=

µref

µ0
exp(−2.10 − 4.45(

Tref

T
) + 6.65(

Tref

T
)2). (2.3.6)

We use these values in our calculations i.e. µref = 0.001792kg/ms, µ0 = 0.001520kg/ms,

Tref = 273K and T0 = 278K. The energy equations for Cases B and C unaltered as

Eq. (2.3.3).

2.4 Results and Discussion

Numerical results for profiles of velocity and temperature are discussed in this part.

Results are displayed in tabular and graphical form. Numerical solutions for skin

friction−f ′′(0) and temperature gradient−θ′(0) for different physical parameters are

presented in different tables. From Tables 2.1, 2.4 and 2.5 one can observe that skin

friction enhances whereas there is reduction in wall temperature as we raise magnetic

parameter. The effect of Prandtl number and temperature index parameter is to

enhance wall temperature while skin friction changes slightly. Wall temperature

reduces while skin friction enhances with increase in stretching parameter. In Table

2.2 and 2.3, Nusselt number is calculated and compared with previously obtained

results by Mustafa [20] and Ali [23]. The effects of Prandtl number are shown in

Table 2.6. The skin friction coefficient increases for Case B while it changes slightly

for both Case A and C but wall temperature enhances for all cases.
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Table 2.1 – Values of −f ′′(0) and −θ′(0) for different parameters (Case A)..

bvp4c shooting method

Pr M β m n −f ′′(0) −θ′(0) −f ′′(0) −θ′(0)

0.7 0.5 1 1 1 1.2247449 0.73595707 1.2247449 0.73683412

1 - - - - 1.2247449 0.94089967 1.2247449 0.94099339

3 - - - - 1.2247449 1.8655031 1.2247449 1.865517

7 - - - - 1.2247449 3.0156599 1.2247449 3.0156921

10 - - - - 1.2247449 3.6645662 1.2247449 3.6646523

0.7 0.1 - - - 1.0488089 0.78093708 1.0488089 0.78096049

- 0.2 - - - 1.0954451 0.76886566 1.0954451 0.76886391

- 0.3 - - - 1.1401754 0.75737841 1.1401754 0.75737874

- 0.4 - - - 1.183216 0.74642739 1.183216 0.7464299

10 0.5 0 0 - 0.9294730 4.8059057 0.92947343 4.8060571

- - 1 1 - 1.2247449 3.6645669 1.2247449 3.6646523

- - 1.33 2 - 1.3090637 3.2282285 1.3090635 3.2282143

- - 1.6 4 - 1.3745053 2.8494207 1.3745033 2.8493841

- - 1.75 7 - 1.4096676 2.6226409 1.4096386 2.6223442

1 0.1 1 1 0 1.0488089 0.57191381 1.0488089 0.5719128

- - - - 1 1.0488089 0.98710811 1.0488089 0.98710798

- - - - 2 1.0488089 1.3196014 1.0488089 1.319591

Table 2.2 – Comparison of CfRex
1/2 and Rex

−1/2Nux for Pr=1 and M=0.

m Mustafa[20] Present results

Re1/2x Cf Re−1/2
x Nux Re1/2x Cf Re−1/2

x Nux

0 -0.44375 0.44375 -0.443749 0.443749

1 -1.00000 1.00000 -1.00000 1.00000

2 -1.34845 1.34845 -1.34727 1.34866
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Table 2.3 – Comparison of Re−1/2
x Nux when n=0, m=0, M=0 but for different values

of Prandtl number.

.

Pr Jacobi[21] Tsou et al [22] Ali[23] Present results

(1993) (1969) (1975)

0.7 0.3492 0.3492 0.3476 0.3492

1 0.4438 0.44378 0.4416 0.4437

10 1.6790 1.6804 1.6713 1.6803

Table 2.4 – Results for wall skin friction −f ′′(0) and wall temperature gradient

−θ′(0) with various values of M (Case B).

bvp4c shooting method

M Pr β n m −f ′′(0) −θ′(0) −f ′′(0) −θ′(0)

0.1 1 1 1 1 2.4530235 0.72122229 2.4530188 0.72122789

0.2 - - - - 2.5560358 0.69757654 2.5560372 0.69761235

0.3 - - - - 2.6543977 0.67648866 2.6545432 0.67718638

0.4 - - - - 2.7488177 0.6574893 2.7492952 0.65959234

0.5 - - - - 2.8397797 0.63998507 2.8406015 0.64360739
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Table 2.5 – Results for wall skin friction −f ′′(0) and wall temperature gradient

−θ′(0) with various values of M and Prandtl number Pr (Case C).

bvp4c shooting method

Pr M β m n −f ′′(0) −θ′(0) −f ′′(0) −θ′(0)

0.7 0.5 1 1 1 2.7086855 0.48648367 2.71058 0.493869

1 - - - - 2.7457538 0.66567042 2.74649 0.668392

3 - - - - 2.9504369 1.5479812 2.95042 1.54797

7 - - - - 3.2162104 2.6638754 3.21623 2.66385

10 - - - - 3.3541575 3.294594 3.35427 3.29451

0.7 0 - - - 2.2358724 0.57909873 2.23586 0.579088

- 0.2 - - - 2.4376711 0.53485144 2.43782 0.535475

- 0.4 - - - 2.6217411 0.500965 2.62341 0.507445

- 0.5 - - - 2.7086796 0.48648475 2.71058 0.493869

- 1 - - - 3.1053418 0.42979585 3.1211 0.490544
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Table 2.6 – Results for wall skin friction −f ′′(0) and wall temperature gradient

−θ′(0) with different values of Pr for n=1 and M=0.1 (Cases A, B and C).

bvp4c shooting method

Cases M Pr −f
′′
(0) −θ′

(0) −f
′′
(0) −θ′

(0)

0.1 0.7

CaseA 1.0488089 0.78093708 1.0488089 0.78093637

CaseB 2.4220867 0.53201823 2.4220857 0.532034

CaseC 2.3394334 0.55518512 2.33943 0..555191

0.1 1

CaseA 1.0488089 0.98710811 1.0488089 0.98710798

CaseB 2.4530225 0.72122065 2.4530162 0.72121671

CaseC 2.3782471 0.7485637 2.37824 0.748559

0.1 10

CaseA 1.0488088 3.7084043 1.0488088 3.7085551

CaseB 2.9649588 3.3619367 2.9649931 3.3619032

CaseC 2.9378748 3.3920765 2.93794 3.39204
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The effect of viscosity for all the three cases have been studied. Temperature of

ambient fluid is T0 = 278K while temperature of surface is taken as Tw = 358K.

In Figs 2.1 and 2.2, profiles for velocity and temperature are presented for all Cases

A, B and C. In comparison with Case A and C velocity profile for Case B have

been reduced adjacent to moving surface as shown in Fig 2.1. The viscosity of fluid

adjacent to the surface reduces because of heat transfer. Comparing with the Case

B temperature profile for both Cases A and C decreases close to moving surface

as shown in Fig 2.2. Impact of magnetic parameter M on profiles of temperature

and velocity have been shown in Figs (2.3-2.8). Temperature profile increases as we

increase M and there is decreasing effect on momentum boundary layer for all three

Cases A, B and C.

From Figs (2.9-2.14), the influence of β (stretching parameter) on velocity profile

have been depicted. It can be seen that increment in β parameter causes momentum

boundary layer to reduce, while there is an increment in thermal boundary layer for

all cases. Physically, β > 0 shows that the surface is accelerating. The effect of

temperature index parameter have been shown in Figs (2.15-2.20). For both Cases

B and C, the momentum in the boundary layer becomes thicker while in Case A it has

no effect. The thermal boundary layer shows a decreasing behaviour for all cases.

Figs (2.21-2.26) shows the effect of Prandtl number on momentum and thermal

boundary layer. For Case B and Case C, rise in Prandtl number causes increment

in the momentum boundary layer whereas thermal boundary layer reduces for all

cases by increasing Prandtl number but in Case A the velocity profile is not effected

by Prandtl number because the momentum equation is decoupled from the energy

equation due to which Prandtl number cannot influence velocity profile.
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Fig. 2.1 – Variation in dimensionless veloc-

ity profiles f ′(η) for each Case.
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Fig. 2.2 – Variation in dimensionless tem-

perature profiles θ(η) for each Case A, B and

C with n=1 and M=0.1.
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Fig. 2.3 – Variation in M and its impact

on the dimensionless velocity profiles f ′(η)

at β = 1, Pr=0.7 and n=1.
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Fig. 2.4 – Variation in M and its impact on

the dimensionless temperature profiles θ(η)

at n=1, Pr=0.7 and β = 1.
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Fig. 2.5 – Variation in M and its impact

on f ′(η) at n=1 and β=1.
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Fig. 2.6 – Variation in M and its impact on

the dimensionless temperature profiles θ(η)

at n=1 and β=1.
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Fig. 2.7 – Variation in M and its impact

on f ′(η) at n=1 and β=1.
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Fig. 2.8 – Variation in M and its impact on

the dimensionless temperature profiles θ(η)

at n=1 and β=1.
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Fig. 2.9 – Variation of velocity profiles

f ′(η) for different values of β at Pr=0.7.
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Fig. 2.10 – Variation of temperature pro-

files θ(η) for different values of β at Pr=0.7.
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Fig. 2.11 – Variation of velocity profiles

f ′(η) for different values of β at Pr=0.7.
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Fig. 2.12 – Variation of temperature pro-

files θ(η) for different values of β at Pr=0.7.
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Fig. 2.13 – Variation of velocity profiles

f ′(η) for different values of β at Pr=0.7.
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Fig. 2.14 – Variation of temperature pro-

files θ(η) for different values of β at Pr=0.7.
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Fig. 2.15 – Variation in n and its impact

on f ′(η) at m=1 and Pr=1.
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Fig. 2.16 – Variation in n and its impact

on temperature curves at m=1 and Pr=1.
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Fig. 2.17 – Variation in n and its impact

on the dimensionless velocity profiles f ′(η)

at m=1 and Pr=10.
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Fig. 2.18 – Variation in n and its impact on

the dimensionless temperature profiles θ(η)

at m=1 and Pr=10.
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Fig. 2.19 – Variation in n and its impact

on the dimensionless velocity profiles f ′(η)

at m=1 and Pr=0.7.
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Fig. 2.20 – Variation in n and its impact on

the dimensionless temperature profiles θ(η)

at m=1 and Pr=0.7.
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Fig. 2.21 – Variation of velocity profiles

f ′(η) for different Pr0 at M=0.1.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

d
e
(d

)

Case A

 

 

Pr=0.7
Pr=1
Pr=3
Pr=7
Pr=10

Fig. 2.22 – Variation of temperature pro-

files θ(η) for different Pr0 at M=0.1.
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Fig. 2.23 – Variation in Pr and its impact

on the dimensionless velocity profiles f ′(η)

at M=0.1.
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Fig. 2.24 – Variation in Pr and its im-

pact on the dimensionless temperature pro-

files θ(η) at M=0.5.
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Fig. 2.25 – Variation in Pr and its impact

on the dimensionless velocity profiles f ′(η)

at M=0.5.
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Fig. 2.26 – Variation in Pr and its im-

pact on the dimensionless temperature pro-

files θ(η) at M=0.5.

2.5 Concluding Remarks

Skin friction coefficient and thermal boundary layer both increases with increment in

magnetic parameter while velocity profile and wall temperature declines. Stretching

parameter reduces momentum boundary layer for all cases whereas thermal bound-

ary layer thickens. While results are opposite for skin friction and Nusselt number.

Prandtl number causes thermal boundary layer to reduce whereas enhances momen-

tum boundary layer. While it causes a slight change in skin friction and enhances

wall temperature. The velocity profile increases in variable viscosity case but tem-

perature profile decrease as we increase the temperature index parameter for all

cases.
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Chapter 3

Magnetohydrodynamics(MHD)

Boundary Layer Flow and Heat

Transfer Over an Exponentially

Strecthing Surface with Variable

Fluid Properties

In this chapter we explore the combined effects of variable viscosity and variable

thermal conductivity on MHD flow of an incompressible viscous fluid. The present

work is organized as follows. In Section 3.1 we present mathematical model for flow

and heat transfer analysis. The special cases for the constant and variable viscosity

and thermal conductivity have been discussed in Section 3.2. The computational

procedure is given in Section 3.3. In Section 3.4 we present the graphs and tables

and their discussion.
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3.1 Problem Formulation

Here we consider a steady, laminar, two-dimensional, incompressible flow of an elec-

trically conducting fluid. Bo is the strength of magnetic field which is applied normal

to the sheet. Temperature of the sheet is Tw whereas the fluid is kept at temperature

To. The flow-governing equations with these assumptions are given as Andersson

and Aarsaeth [7]

∂x(ρu) + ∂y(ρv) = 0, (3.1.1a)

ρ(uux + vuy) = ∂y(µuy)− σB2
0u, (3.1.1b)

ρCp(uTx + vTy) = ∂y(kTy), (3.1.1c)

with boundary conditions

u(x, 0) = Uw(x) = aex/l, v(x, 0) = 0, T = Tw(x) = T0 + cebx/2l (3.1.2)

u → 0, T → T0, as y → ∞

here [u, v]T are the velocities along and normal to the surface. Fluid density is repre-

sented by ρ, B0 shows applied magnetic field, µ is viscosity, specific heat is denoted

by Cp, fluid’s temperature is denoted by T and k represents thermal conductivity of

the fluid. Uw represents the sheet’s velocity, wall temperature is denoted by Tw(x).

Introducing the following similarity variables. Andersson and Aarsaeth [7]

η =

√
a

2ν0L
ex/2l

∫ y

0

ρ

ρ0
dy, ψ = ρ0

√
2aν0Le

x/2lf(η), θ(η) =
T − T0

Tw − T0

(3.1.3)

stream function is denoted by ψ . Using Eq. (2.1.4) and (3.1.3) the x and y

components of velocity can be written as

u = aex/lf ′(η), v = −ex/2l
√

aν0
2l

(ηf ′ + f) (3.1.4)
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By using Eqs. (3.1.3) and (3.1.4) into (3.1.1a),(3.1.1b) and (3.1.1c) we get the

following nonlinear (ODEs),

(
ρµ

ρ0µ0
f ′′)′ − 2Mf ′ − 2(f ′)2 + ff ′′ = 0, (3.1.5a)

(
ρk

ρ0k0
θ′)′ +

Cp

Cp0
Pr0(fθ

′ − bf ′θ) = 0, (3.1.5b)

where Pr, M shows Prandtl number and magnetic parameter respectively. These

parameters are defined as: Pr0=
µ0Cp0
k0

, M= σB2
0 l

ρ0aex/l

After transformation the boundary conditions (3.1.2) taken the form :

f(0) = 0, f ′(0) = 1, θ(0) = 1,

f ′(η) = 0, θ(η) = 0 as η → ∞ (3.1.6)

where f ′ denotes dimensionless velocity and θ denotes dimensionless temperature.

It is important to note that all the fluid properties considered here are constant

execpt the viscosity and thermal conductivity.

3.2 Special Cases

Case A: Constant Fluid Properties

For this case we assume all the fluid properties as constant. By using this assumption

the momentum Eq. (3.1.5a) and energy Eq. (3.1.5b) becomes

f ′′′ − 2f ′2 − 2Mf ′ + ff ′′ = 0, (3.2.1)

θ′′ − Pr0(bf
′θ − fθ′) = 0, (3.2.2)

The conditions shown in Eq. (3.1.6) remain the same.
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Case B: Variable Fluid Properties

For this case, we assume viscosity and thermal conductivity as variable that depend

on temperature while keeping the remaining properties as constant. For this case

the momentum boundary layer Eq. (3.1.5a) becomes

(f ′′ µ

µ0
)′ + ff ′′ − 2f ′2 − 2Mf ′ = 0. (3.2.3)

Energy equation (3.1.5b) becomes

(
k

k0
θ′)′ + Pr0(fθ

′ − bf ′θ) = 0. (3.2.4)

Lai and Kulachi [8], Ling and Dybbs [19] and Pop et al [12] suggested the following

relation between viscosity and temperature:

µ(T ) =
µref

[1 + γ(T − Tref)]
,

If Tref ≈ T0, the formula above becomes

µ =
µ0

1− T−T0
θref (Tw−T0)

=
µ0

1− θ(η)
θref

, (3.2.5)

here θref ≡ −1
(Tw−T0)γ

and ∆T = (Tw − T0).

Using Eq. (3.2.5) in Eq. (3.2.3):

f ′′′ −
(

θ′

θ − θref

)
f ′′ +

(
θref − θ

θref

(
(ff ′′ − 2f ′2 − 2Mf ′) = 0. (3.2.6)

The thermal conductivity is defined as Subhas et. al [35]

k(T ) = k0(1 + εθ),

k

k0
= 1 + εθ, (3.2.7)

using the above relation (3.2.7) in Eq. (3.2.4) we get the form.

(1 + εθ)θ′′ + εθ′2 + Pr0(fθ
′ − bf ′θ) = 0. (3.2.8)
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Case C: Exponential Temperature Dependency

Like Case B, viscosity is again taken as variable. The relation of viscosity with

temperature is taken from White [36] as explained in Chapter 2.

Substituting the Eq. (2.2.6) in Eq. (3.2.3) we get:

f ′′′ = −f ′′θ′∆T (4.45
Tref

T 2
− 13.1

T 2
ref

T 3
) +

µ0

µ
(2f ′2 − ff ′′ + 2Mf ′). (3.2.9)

while energy equation remains same as shown in Eq. (3.2.8).

3.3 Numerical Procedure

We apply shooting and bvp4c which has already been briefed in Chapter 1 and

Chapter 2. The different cases takes the following form for imprementation pur-

poses:

(a) Case A: Equations for momentum and energy becomes

y′3 = −y1y3 + 2y22 + 2My2, (3.3.1)

y′5 = Pr0(by2y4 − y1y5). (3.3.2)

(b) Case B: For this case momentum equation becomes,

y′3 =
y3y5

0.25 + y4
+

0.25 + y4
0.25

(2y22 + 2My2 − y1y3). (3.3.3)

Energy equation takes the form

y′5 = − 1

1 + εy4
(εy25 + Pr0(y1y5 − by2y4)). (3.3.4)

(c) Case C: Momentum equation becomes,

y′3 = −y3y5∆T (4.45
Tref

T 2
− 13.1

T 2
ref

T3
) +

µ0

µ
(2y22 − y1y3 + 2My2). (3.3.5)

here µref = 0.001792kg/ms, µ0 = 0.001520kg/ms , Tref = 273K and T0 = 278K

while energy equation remains same as shown in Eq. (3.3.4).
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3.4 Results and Discussions

In this part, results for velocity gradient and temperature gradient are discussed.

Numerical solutions has been shown from Table 3.1 to 3.4. From Tables 3.1-3.3 one

can observe that skin friction enhances whereas there is reduction in wall temper-

ature as we raise magnetic parameter. Prandtl number enhance wall temperature

for all the three cases while skin friction changes slightly. The parameter ε, reduces

both the skin friction and wall temperature for both the Cases B and C. In Table

3.4 numerical results for f ′(0) and θ′(0) are computed for all cases by increasing the

Prandtl number. Skin friction coefficient increases for Case B and C while for case

A it shows decreasing behaviour. Wall temperature enhances for all the three cases.

In Table 3.5 we compare our results with previous data.
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Table 3.1 – −f ′′(0) and −θ′(0) for different values of parameters for Case A.

bvp4c shooting method
Pr M f ′′(0) θ′(0) f ′′(0) θ′(0)
7 0 1.2818309 3.0131976 1.2818086 3.0132783
- 0.1 1.358984 2.29933966 1.3589569 2.993482
- 0.2 1.431606 2.9747289 1.4315737 2.2974817
- 0.3 1.5004709 2.9570449 1.5004643 2.9570699
- 0.4 1.5661991 2.9400727 1.5661916 2.9400974
3 0.1 1.3589814 1.8484702 1.3589571 1.8484698
5 - 1.3589801 2.4800045 1.3589569 2.480048
7 - 1.3589617 2.9934557 1.3589569 2.993482
10 - 1.3589615 3.6407616 1.3589569 3.6408323

Table 3.2 – −f ′′(0) and −θ′(0) for different parameters for Case B.

bvp4c shooting method

Pr M ε f ′′(0) θ′(0) f ′′(0) θ′(0)

7 0 0.1 3.3152541 2.4809717 3.3151441 2.4809382
- 0.1 - 3.4924239 2.4362617 3.492291 2.4362243
- 0.2 - 3.6546147 2.3955526 3.6544571 2.3955111
- 0.3 - 3.8056881 2.357806 3.8055048 2.3577602
- 0.4 - 3.9479607 2.3223623 3.9478457 2.322337

3 0.1 0.1 3.2777335 1.4022712 3.2776795 1.4022618
5 - - 3.3945291 1.9723036 3.3944618 1.9722896
7 - - 3.4923641 2.4362428 3.492291 2.4362243
10 - - 3.6155618 3.0220062 3.6154815 3.0219747

7 0.1 0 3.5182186 2.6126496 3.5181387 2.6126254
- - 0.1 3.4923641 2.4362428 3.492291 2.4362243
- - 0.2 3.4690909 2.2865945 3.4690201 2.2865794
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Table 3.3 – −f ′′(0) and −θ′(0) for different values of parameters for Case C.

bvp4c shooting method

Pr M ε f ′′(0) θ′(0) f ′′(0) θ′(0)

7 0 0.1 3.2681183 2.5090893 3.26809 2.50908
- 0.1 - 3.4411836 2.4668867 3.44115 2.46688
- 0.2 - 3.5993611 2.4282206 3.59932 2.42821
- 0.3 - 3.7462347 2.3922529 3.74619 2.39224
- 0.4 - 3.8841387 2.3584529 3.88408 2.35844

3 0.1 0.1 3.1992743 1.4325278 3.19924 1.43252
5 - - 3.3332549 2.0025356 3.33321 2.00253
7 - - 3.4411836 2.4668867 3.44115 2.46688
10 - - 3.572496 3.053781 3.57247 3.05377

7 0.1 0 3.4698635 2.644825 3.46983 2.64481
- - 0.1 3.4411836 2.4668867 3.44115 2.46688
- - 0.2 3.4152734 2.3159895 3.41523 2.31598

Table 3.4 – Results of wall skin friction−f ′′(0) and wall temperature gradient −θ′(0)

for various Pr0.

bvp4c shooting method

Cases M Pr0 −f
′′
(0) −θ

′
(0) −f

′′
(0) −θ

′
(0)

0.1 3
CaseA 1.3589814 1.8484702 1.3589571 1.8484698
CaseB 3.2777335 1.4022712 3.2776795 1.4022618
CaseC 3.1992743 1.4325278 3.19924 1.43252

0.1 5
CaseA 1.3589801 2.4800045 1.3589569 2.480048
CaseB 3.3945291 1.9723036 3.3944618 1.9722896
CaseC 3.3332549 2.0025356 3.33321 2.00253

0.1 7
CaseA 1.3589617 2.9934557 1.3589569 2.993482
CaseB 3.4923641 2.4362428 3.492291 2.4362243
CaseC 3.4411836 2.4668867 3.44115 2.46688
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Table 3.5 – Comparison of θ′(0) for M=0 and for various Prandtl numbers to previous

data.

b Pr Magyari and Kellar [30] Dulal Pal [37] Present result

0.0 0.5 0.330493 0.33049 0.33049678

- 1 0.549643 0.54964 0.54965044

- 3 1.122188 1.12209 1.1220915

- 5 1.521243 1.52124 1.521232

1.0 0.5 0.594338 0.59434 0.59434314

- 1 0.954782 0.95478 0.95478975

- 3 1.869075 1.86907 1.8690695

- 5 2.500135 2.50013 2.5000639

3.0 0.5 1.008405 1.00841 1.0084165

- 1 1.560294 1.56030 1.5603051

- 3 2.938535 2.93854 2.9385528

- 5 3.886555 3.88656 3.8865662
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The effect of viscosity and thermal conductivity for all the three cases have been

studied. Temperature of ambient fluid is T0= 278K while temperature of surface is

taken as Tw= 358K. In Figs (3.1-3.2) velocity and temperature profiles are presented

for all Cases A, B and C. In comparison with Case A and C velocity profile for

Case B have been reduced adjacent to moving surface as shown in Fig 3.1 which

shows same results for momentum boundary layer thickness. The viscosity of fluid

adjacent to the surface reduces because of heat transfer. Comparing with the Case

B temperature profile for both Cases A and C decreases close to moving surface

as shown in Fig 3.2. Effect of M parameter(magnetic parameter), on temperature

and velocity profile has been shown in Figs (3.3-3.8). Temperature profile increases

as we increase M and there is decreasing effect on momentum boundary layer for

all three Cases A, B and C. From Fig (3.9-3.12) the effect of Prandtl number has

been shown. Wall temperature reduces for all the Cases A, B and C. While the

velocity profile increases in Case B. In Fig (3.13-3.14) the effect of parameter ε

on temperature profile has been shown. For both the Cases B and C there is an

increment in temperature profile .
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Fig. 3.1 – Velocity curves for each Case at

Pr0=0.7.
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Fig. 3.2 – Dimensionless temperature pro-

file for each Case at Pr0=0.7.
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Fig. 3.3 – Values of f ′(η) for different M

with Pr=3.
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Fig. 3.4 – Values of θ′(η) for different M

with Pr=3.
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Fig. 3.5 – Values of f ′(η) for different M

with ε=0.1 and Pr=3.
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Fig. 3.6 – Values of θ′(η) for different M

with ε=0.1 and Pr=3.
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Fig. 3.7 – Velocity profiles for different val-

ues of M with ε=0.1 and Pr=3.
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Fig. 3.8 – Temperature profiles for different

values of M with ε=0.1 and Pr=3.
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Fig. 3.9 – Dimensionless velocity profiles

for different Pr0.
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Fig. 3.10 – Dimensionless temperature pro-

files for different Pr0.
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Fig. 3.11 – Temperature profiles for differ-

ent values of parameter ε with Pr=0.7 and

M=0.1.
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Fig. 3.12 – Temperature profiles for differ-

ent values of parameter ε with Pr=0.7 and

M=0.1.

3.5 Concluding Remarks

It is observed that skin friction and thermal boundary layer both increases with

increment in magnetic parameter while velocity profile and wall temperature de-

clines. Prandtl number causes a slight change in momentum boundary layer and

skin friction whereas it enhances wall temperature and momentum boundary layer

becomes thicker in case of variable viscosity. Thermal boundary layer reduces as

Prandtl number rises. The parameter ε reduces both the skin friction and Nusselt

number.
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Chapter 4

Numerical Comparison of

Constant and Variable Fluid

Properties for MHD Flow of

Nanofluid

4.1 Introduction

In this chapter we investigate the MHD flow of a nanofluid. Nanofluids have ef-

fective applications such as electronics, biomedical, transportation and much more.

Nanofluid consist of ultra-fine particles (diameter less than 50 nm). Experimen-

tal results show that the thermal conductivity is appreciably improved by adding

nanoparticles such as oxides, nitrides, carbides or nonmetals. The term nanofluid

was proposed by Choi [38]. He showed that the thermal conductivity increases twice

when nanoparticles are added to conventional base fluid.

We consider two case i.e. Constant (Case A) and Variable fluid properties (Case B).

In Case B we assume viscosity and thermal conductivity as constant while keeping
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remaining properties as constant. Different governing parameters and their impact

on temperature, velocity and concentration profiles are discussed in detail.

4.2 Mathematical Formulation

Here we investigate a steady, 2-D and laminar MHD flow of an electrically conducting

nanofluid over an exponentially stretching sheet. A magnetic field B(x) = B0ex/2l

is applied normal to sheet. Using Buongiorno model, the governing equations take

the following forms [41]:

∂x(ρu) + ∂y(ρv) = 0, (4.2.1)

ρ(uux + vuy) = ∂y(µuy)− σB2u, (4.2.2)

(uTx + vTy) =
1

ρCp
∂y(kTy) + τ [DB(CyTy) +

DT

T∞
(Ty)

2], (4.2.3)

uCx + vCy = DB(Cyy) +
DT

T∞
(Tyy), (4.2.4)

here µ and ρ are coefficient of viscosity and mass density of the fluid respec-

tively, σ is electrical conductivity, fluid’s temperature is T , C denotes concentra-

tion, τ = (ρC)p/(ρC)f here (ρC)p, (ρC)f are heat capacities of nanofluid and base

fluid respectively, Cp is the specific heat at constant pressure, DB is thermophoretic

diffusion coefficient and DT is Brownian coefficient. T∞ denotes the temperature of

ambient fluid and C∞ is the concentration of ambient fluid.

4.3 Boundary Conditions

The appropriate BCs are as follows:

u(x, 0) = Uw, v(x, 0) = 0, T (x, 0) = Tw, C(x, 0) = Cw (4.3.1)

u → 0, T → T∞, C → C∞ as y → ∞.
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Here Uw = U0ex/l is the stretching velocity, U0 is the reference velocity, Tw =

T∞ + T0ex/(2l) is the variable temperature at sheet with T0 being a constant which

measures the rate of temperature increase along the sheet and Cw = C∞ +C0ex/(2l)

is the variable concentration at the sheet with C0 being a constant which measures

the rate of concentration increase along the sheet.

4.4 Method of solution

The following similarity parameters are introduced to get nondimensionalized form

of the momentum, energy and concentration equations as well as the boundary

conditions.

η =

√
U0

2ν0L
ex/2ly, ψ(η) =

√
2U0ν0Le

x/(2l)f(η) (4.4.1)

θ(η) =
T − T∞

T0
e−x/(2l), φ(η) =

C − C∞

C0
e−x/(2l) (4.4.2)

Where η is the similarity variable ψ(η), θ(η) and φ(η) are dimensionless stream,

temperature and concentration functions respectively. Stream function is defined

as:

u =
∂ψ

∂y
, v =

−∂ψ
∂x

(4.4.3)

Now we use Eqs. (4.4.1), (4.4.2) and (4.4.3) to find u and v.

u = U0e
x/lf ′(η) v = −

√
2U0ν0L

ex/2l

2L
(ηf ′ + f) (4.4.4)

We convert Eqs. (4.2.2), (4.2.3) and (4.2.4) into differential equations

∂u

∂x
= U0

(

ex/lf ′′
√

U0

2ν0L

ex/2l

2L
y + f ′ e

x/l

L

)

∂u

∂y
= U0e

x/lf ′′
√

U0

2ν0L
ex/2l

∂2u

∂2y
= U0e

2x/l U0

2ν0L
f ′′′
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u
∂u

∂x
=
(
U0e

x/lf ′)
(
U0e

x/lf ′′
√

U0

2ν0L

ex/2l

2L
y +

U0f ′ex/l

L

)

v
∂u

∂y
=

(
−
√

2U0ν0L
ex/2l

2L
(ηf ′ + f)

)(
U0e

x/lf ′′
√

U0

2ν0L
ex/2l

)

ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
= ρ

(
U2
0

L
e2x/lf ′2 −

√
2U0ν0L

ex/2l

2L
U0e

x/l

√
U0

2ν0L
ex/2lff ′′

)

(4.4.5)

∂

∂y

(
µ
∂u

∂y

)
= U0e

2x/l U0

2ν0L
(µf ′′)′

∂

∂y

(
µ
∂u

∂y

)
− σB2u = U0e

2x/l U0

2ν0L
(µf ′′)′ − σB2u (4.4.6)

By using Eq. (4.4.5) and (4.4.6) into Eq. (4.2.2) we get

ρU02

L
(f ′)2 − ρ

√
2U0ν0L

e2x/l

2L
U0

√
U0

2ν0L
ff ′′ = U0e

2x/l U0

2ν0L
(µf ′′)′ − σB2u

(
µ

µ0
f ′′)′ −Mf ′ − 2(f ′)2 + ff ′′ = 0 (4.4.7)

Here M is the magnetic parameter and its value is given by M = 2LσB2
0

U0ρ

Now by using Eq. (4.4.2) we find T and C.

T = θ(η)T0e
x/2l + T∞

C = φ(η)C0e
x/2l + C∞

∂T

∂x
= T0

(
θex/2l

2L
+ θ′

√
U0

2ν0L

ex/l

2L
y

)

∂T

∂y
= T0e

x/lθ′
√

U0

2ν0L
∂2T

∂y2
= T0e

3x/2l U0

2ν0L
θ′′

∂C

∂y
= C0e

x/l

√
U0

2ν0L
φ′

u
∂T

∂x
= (U0f

′ex/l)

(
T0ex/2lθ

2L
+

T0ex/l

2L

√
U0

2ν0L
θ′y

)

v
∂T

∂y
=

(
−
√

U0ν0
2L

ex/2L(f ′η + f)

)(
T0e

x/lθ′
√

U0

2ν0L

)
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u
∂T

∂x
+ v

∂T

∂y
=

U0T0e3x/2l

2L
f ′θ − U0T0e3x/2l

2L
θ′f (4.4.8)

1

ρCp

∂

∂y

(
k
∂T

∂y

)
=

1

ρCp

∂

∂y

(

kT0e
x/lθ′

√
U0

2ν0L

)

(4.4.9)

=
T0e3x/2lU0

2ρCpν0L
(kθ′)′

τ

(

DB
∂C

∂y

∂T

∂y
+

DT

T∞

(
∂T

∂y

)2
)

= τ



DBC0e
2x/lT0

U0

2ν0L
φ′θ′ +

DT

T∞

(

T0e
x/lθ′

√
U0

2ν0L

)2




(4.4.10)

= τ

(
DBC0T0U0

2ν0L
e2x/lφ′θ′ +

DTT 2
0U0

2ν0LT∞
e2x/lθ′2

)

Adding Eqs. (4.4.9) and (4.4.10) we get

T0e3x/2lU0

2ρCpν0L
(kθ′)′ + τ

(
DBC0T0U0

2ν0L
e2x/lφ′θ′ +

DTT 2
0U0

2ν0LT∞
e2x/lθ′2

)
(4.4.11)

By using Eq. (4.4.8) and (4.4.11) in Eq. (4.2.3) we get

U0T0

2L
e3x/2l (f ′θ − θ′f) =

U0T0

2LρCpν0
e3x/2l (kθ′)′+

U0T0C0DB

2Lν0
e2x/lτφ′θ′+

U0T 2
0DT

2Lν0T∞
e2x/lθ′2

After solving above equation we get

(
k

k0
θ′
)′

+
Cp

Cp0

Pr0
(
Nbφ′θ′ +Ntθ′2 − f ′θ + θ′f

)
= 0 (4.4.12)

Here Pr0, Nt and Nb are Prandtl number, thermophoresis parameter and Brownian

parameter respectively. These parameters are defined as

Pr0 =
µ0Cp0

k0
, Nt =

τDT (Tw − T∞)

T∞ν0
, Nb =

τDB(Cw − C∞)

ν0

Now consider

C = φ(η)C0e
x/2l + C∞ (4.4.13)
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Differentiate (4.4.13) w.r.t ’x’ and ’y’

∂C

∂x
= C0

ex/2l

2L
φ+ C0

ex/l

2L

√
U0

2ν0L
yφ′

∂C

∂y
= C0e

x/l

√
U0

2ν0L
φ′

∂2C

∂y2
= C0

U0

2ν0L
e3x/2lφ′′

u
∂C

∂x
+ v

∂C

∂y
=

U0C0

2L
e3x/2lf ′φ− U0C0

2L
e3x/2lfφ′ (4.4.14)

DB

(
∂2C

∂y2

)
+

DT

T∞

(
∂2T

∂y2

)
= DB

(
C0U0

2ν0L
e3x/2lφ′′

)
+

DT

T∞

(
T0U0

2ν0L
e3x/2lθ′′

)
(4.4.15)

By inserting Eq. (4.4.14) and (4.4.15) into Eq. (4.2.4) we get

U0C0

2L
e3x/2lf ′φ− U0C0

2L
e3x/2lfφ′ =

U0C0

2ν0L
DBe

3x/2lφ′′ +
T0U0DT

2ν0LT∞
e3x/2lθ′′

φ′′ +
Nt

Nb
θ′′ + Le (fφ′ − f ′φ) = 0 (4.4.16)

After transformation the boundary conditions (4.3.1) takes the following form

f(η) = 0, f ′(η) = 1, θ(η) = 1, φ(η) = 1, as η → 0 (4.4.17)

f ′(η) → 0, θ(η) → 0, φ(η) → 0, as η → ∞ (4.4.18)

The skin friction coeffcient Cf is given by [42]

Cf =
ν

U2
w

(
∂u

∂y

)

y=0

(4.4.19)

the local Nusselt number Nux is given by [42]

Nux = − x

(Tw − T∞)

(
∂T

∂y

)

y=0

(4.4.20)

and the local Sherwood number Shx is given by [42]

Shx = − x

(Cw − C∞)

(
∂C

∂y

)

y=0

(4.4.21)
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After using the similarity transformations the equations (4.4.19), (4.4.20) and (4.4.21)

becomes: [42]

Cf =
1√
2Rex

f ′′(0)

Nux = −
√

xRex
2L

θ′(0)

Shx = −
√

xRex
2L

φ′(0)

Here Rex = Ux/ν is a local Reynold number .

4.5 Special Cases

Case A: Constant Fluid Properties

For this case we assume all the fluid properties as constant. Under this assumption

Eqs. (4.4.7), (4.4.12) and (4.4.16) take the form:

f ′′′ −Mf ′ − 2f ′2 + ff ′′ = 0 (4.5.1)

θ′′ + Pr0(Nbφ′θ′ +Ntθ′2 − f ′θ + θ′f) = 0 (4.5.2)

φ′′ +
Nt

Nb
θ′′ + Le(fφ′ − f ′φ) = 0 (4.5.3)

the boundary conditions in Eq. (4.4.17) remains the same.

Case B: Variable Fluid Properties

For this case, we assume viscosity and thermal conductivity as variable while treating

the remaining fluid properties constant. For this case the momentum Eq. (4.4.7)

becomes:

(
µ

µ0
f ′′)′ −Mf ′ − 2(f ′)2 + ff ′′ = 0, (4.5.4)
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The energy equation (4.4.12) becomes

(
k

k0
θ′)′ + Pr0(Nbφ′θ′ +Ntθ′2 − f ′θ + θ′f) = 0, (4.5.5)

The concentration equation (4.4.16) becomes

φ′′ +
Nt

Nb
θ′′ + Le(fφ′ − f ′φ) = 0, (4.5.6)

Makinde et. al [39] suggested the following relation

µ = µ0e
−β(T−T∞)

µ

µ0
= e−β(T−T∞) (4.5.7)

By using Eq. (4.5.7) in Eq. (4.5.4) we get

(
e−β(T−T∞)f ′′)′ −Mf ′ − 2f ′2 + ff ′′ = 0

e−β(T−T∞)f ′′′ + f ′′ ∂

∂η

(
e−β(T−T∞)

)
−Mf ′ − 2f ′2 + ff ′′ = 0

e−β(T−T∞)f ′′′ − βT0e
x/2lf ′′e−β(T−T∞)θ′ + (−Mf ′ − 2f ′2 + ff ′′) = 0

Divide by e−β(T−T∞) on both sides we get

f ′′′ − β(T − T∞)
θ′

θ
f ′′ + eβ(T−T∞)

(
−Mf ′ − 2f ′2 + ff ′′) = 0

f ′′′ − β(T − T∞)
Tw − T∞

Tw − T∞

θ′

θ
f ′′ + eβ(T−T∞)Tw−T∞

Tw−T∞
(
−Mf ′ − 2f ′2 + ff ′′) = 0

f ′′′ − β(Tw − T∞)θ
θ′

θ
f ′′ + eβ(Tw−T∞)θ

(
−Mf ′ − 2f ′2 + ff ′′) = 0

f ′′′ − β(Tw − T∞)θ′f ′′ + eβ(Tw−T∞)θ
(
−Mf ′ − 2f ′2 + ff ′′) = 0

f ′′′ − δθ′f ′′ + eδθ
(
−Mf ′ − 2f ′2 + ff ′′) = 0(4.5.8)

The thermal conductivity is defined as Hayat et. al [40]

k(T ) = k0(1 + εθ)

k

k0
= (1 + εθ) (4.5.9)
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By using the above relation (4.5.9) in Eq. (4.5.5) we get

((1 + εθ)θ′)′ +
Cp

Cp0

Pr0
(
Nbφ

′θ′ +Ntθ
′2 − f ′θ + θ′f

)
= 0

(1 + εθ)θ′′ + θ′(1 + εθ)′ + Pr0
(
Nbφ

′θ′ +Ntθ
′2 − f ′θ + θ′f

)
= 0

(1 + εθ)θ′′ + ε(θ′)2 + Pr0
(
Nbφ

′θ′ +Ntθ
′2 − f ′θ + θ′f

)
= 0 (4.5.10)

The concentration equation (4.5.6) remains the same.

4.6 Numerical Procedure

We apply shooting method and bvp4c for numerical solutions which are already

explained in previous chapters. The different cases takes the following form:

(a) Case A: The system of first order momentum, energy and concentration equations

for this case becomes

y′3 −My2 − 2y22 + y1y3 = 0 (4.6.1)

y′5 + Pr0(Nby7y5 +Nty25 − y2y4 + y5y1) = 0 (4.6.2)

y′7 +
Nt

Nb
y′5 + Le(y1y7 − y2y6) = 0 (4.6.3)

(b) Case B: The system of first order momentum, and energy equations for this case

becomes

y′3 − δy5y3 + eδθ(y1y3 − 2y22 −My2) = 0 (4.6.4)

(1 + εy4)y
′
5 + εy25 + Pr(Nby7y5 +Nty25 − y2y4 + y5y1) = 0 (4.6.5)

while the concentration equation remains the same.

4.7 Results and Discussion

Numerical results for profiles of velocity, temperature and concentration are dis-

cussed in this part. Results are displayed in tabular and graphical form. Numerical
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solutions for skin friction −f ′′(0) temperature gradient −θ′(0) and concentration

gradient −φ′(0) for different physical parameters which includes Prandtl number

Pr, Lewis number Le, magnetic parameter M, thermophoresis parameter Nt and

viscosity variation parameter δ are presented in different Tables. From Tables 4.1-

4.3, one can observe that skin friction enhances while there is reduction in both

wall temperature gradient and concentration gradient as we raise magnetic param-

eter. Prandtl number causes slight change in skin friction while wall temperature

enhances and concentartion gradient reduces. Thermophoresis parameter reduces

both wall temperature and concentartion gradient for both Case A and Case B.

There is no change in skin friction for Case A while for Case B it reduces as we

raise Nt parameter. The Brownian motion parameter and Lewis number reduces

wall temperature while the concentration gradient enhances for both Case A and B.

The skin friction changes slightly for Case A while for Case B it reduces as Nb pa-

rameter increases. Lewis number causes reduction in skin friction for Case B while

there is no change for Case A. Viscosity variation parameter causes increment in

skin friction while both the wall temperature and concentration gradient reduces.

The parameter ε reduces wall temperature and concentration gradient shows incre-

ment. It causes slight change in skin friction. In Table 4 results are compared with

previoulsy published papers.
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Table 4.1 – Results of −f ′′(0), temperature gradient −θ′(0) and concentration gra-

dient −φ′(0) for various parameters (Case A)..

bvp4c shooting method

M Pr Nt Nb Le −f ′′(0) −θ′(0) −φ′(0) −f ′′(0) −θ′(0) −φ′(0)

0 0.7 0.5 0.5 1 1.28183 0.60768 0.59384 1.28180 0.60768 0.59383

0.1 - - - - 1.32104 0.60004 0.58055 1.32101 0.60004 0.58054

0.2 - - - - 1.35895 0.59274 0.56809 1.35899 0.59275 0.56810

0.3 - - - - 1.39581 0.58574 0.55638 1.39577 0.58574 0.55640

0.1 0.5 - - - 1.32104 0.49424 0.64988 1.32101 0.49424 0.64988

- 1 - - - 1.32104 0.72007 0.49942 1.32101 0.72007 0.49942

- 1.5 - - - 1.32104 0.86054 0.40161 1.32101 0.86053 0.40161

- 2 - - - 1.32104 0.95831 0.33212 1.32101 0.95830 0.33212

0.1 0.7 0.1 0.5 1 1.32104 0.63342 0.86658 1.32101 0.63342 0.86658

- - 0.4 - - 1..32104 0.60802 0.64888 1.32101 0.60801 0.64887

- - 0.7 - - 1.32104 0.58480 0.44957 1.32101 0.58480 0.44956

- - 1 - - 1.32104 0.56358 0.26581 1.32101 0.56358 0.26580

0.1 0.7 0.5 0.5 1 1.32104 0.60004 0.58055 1.32101 0.60004 0.58054

- - - 1 - 1.32104 0.52241 0.79208 1.32101 0.52241 0.79208

- - - 2 - 1.32104 0.39949 0.89077 1.32101 0.39949 0.89077

- - - 4 - 1.32102 0.24791 0.93021 1.32101 0.24791 0.93020

0.1 0.7 0.5 0.5 0.5 1.32104 0.63448 0.11977 1.32101 0.63448 0.119776

- - - - 1 1.32104 0.60004 0.58055 1.32101 0.60004 0.58054

- - - - 2 1.32104 0.56952 1.19407 1.32101 0.56952 1.19407

- - - - 3 1.32104 0.55413 1.64332 1.32101 0.55413 1.64333
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Table 4.2 – Results of −f ′′(0), temperature gradient −θ′(0) and concentration gra-

dient −φ′(0) for different parameters (Case B).

.

bvp4c

M Pr Nt Nb Le δ ε −f ′′(0) −θ′(0) −φ′(0)

0 0.7 0.5 0.5 1 1 0.1 2.19690 0.47565 0.48136

0.1 - - - - - - 2.26080 0.46328 0.46189

0.2 - - - - - - 2.32242 0.45209 0.44513

0.3 - - - - - - 2.38208 0.44182 0.43032

0.1 0.5 0.5 0.5 1 1 0.1 2.24253 0.36398 0.52636

- 1 - - - - - 2.28294 0.58220 0.38379

- 1.5 - - - - - 2.31056 0.72884 0.28538

- 2 - - - - - 2.33086 0.83606 0.21169

0.1 0.7 0.1 0.5 1 1 0.1 2.26530 0.48502 0.72148

- - 0.4 - - - - 2.26188 0.46847 0.52483

- - 0.7 - - - - 2.25873 0.45335 0.33953

- - 1 - - - - 2.25585 0.43954 0.16392

0.1 0.7 0.5 0.5 1 1 0.1 2.26080 0.46328 0.46189

- - - 1 - - - 2.25149 0.40889 0.64336

- - - 2 - - - 2.23640 0.32313 0.72670

- - - 4 - - - 2.21681 0.21667 0.75850

0.1 0.7 0.5 0.5 0.5 - - 2.26472 0.48823 0.06519

- - - - 1 - - 2.26080 0.46328 0.46189

- - - - 2 - - 2.25802 0.44105 1.02863

- - - - 3 - - 2.25705 0.42992 1.45832

- - - - - 0 - 1.3210486 0.56410 0.60731

- - - - - 0.5 - 1.74097 0.51754 0.53831

- - - - - 1 - 2.26080 0.46328 0.46189

- - - - - 1.5 - 2.90518 0.40157 0.38119

- - - - - - 0 2.26650 0.49704 0.43776

- - - - - - 0.1 2.26080 0.46328 0.46189

- - - - - - 0.2 2.25579 0.43418 0.48230
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Table 4.3 – Results of −f ′′(0), temperature gradient −θ′(0) and concentartion gra-

dient −φ′(0) for different parameters (Case B).

.

shooting method

M Pr Nt Nb Le δ ε −f ′′(0) −θ′(0) −φ′(0)

0 0.7 0.5 0.5 1 1 0.1 2.19684 0.47565 0.48135

0.1 - - - - - - 2.26074 0.46327 0.46190

0.2 - - - - - - 2.32236 0.45212 0.44553

0.3 - - - - - - 2.38207 0.44198 0.43200

0.1 0.5 0.5 0.5 1 1 0.1 2.24248 0.36400 0.52642

- 1 - - - - - 2.28287 0.58219 0.38379

- 1.5 - - - - - 2.31047 0.72883 0.28537

- 2 - - - - - 2.33084 0.83606 0.21169

0.1 0.7 0.1 0.5 1 1 0.1 2.26524 0.48501 0.72147

- - 0.4 - - - - 2.26182 0.46846 0.52483

- - 0.7 - - - - 2.25868 0.45335 0.33955

- - 1 - - - - 2.25579 0.43954 0.16396

0.1 0.7 0.5 0.5 1 1 0.1 2.26074 0.46327 0.46189

- - - 1 - - - 2.25143 0.40889 0.64336

- - - 2 - - - 2.23635 0.32313 0.72670

- - - 4 - - - 2.21677 0.21667 0.75850

0.1 0.7 0.5 0.5 0.5 - - 2.26464 0.48813 0.06586

- - - - 1 - - 2.26074 0.46327 0.46190

- - - - 2 - - 2.25797 0.44105 1.02862

- - - - 3 - - 2.25699 0.42991 1.45831

- - - - - 0 - 1.32101 0.56410 0.60730

- - - - - 0.5 - 1.74095 0.51754 0.53830

- - - - - 1 - 2.26074 0.46327 0.46190

- - - - - 1.5 - 2.90515 0.40158 0.38135

- - - - - - 0 2.26643 0.49703 0.43775

- - - - - - 0.1 2.26074 0.46327 0.46190

- - - - - - 0.2 2.25574 0.43418 0.48231
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Table 4.4 – The wall-temperature gradient for M=0 and for various Prandtl numbers

to previous data.

a Pr Magyari and Kellar [13] Dulal Pal [37] Present result

1.0 0.5 0.594338 0.59434 0.59434314

- 1 0.954782 0.95478 0.95478975

- 3 1.869075 1.86907 1.8690695

- 5 2.500135 2.50013 2.5000639

In Fig 4.1 and 4.2 profiles for velocity and concentration are presented for both

Case A and B. In comparison with Case A the velocity profile for Case B have been

reduces while concentration profile have been increased. Impact of magnetic param-

eter M, on profiles of temperature, velocity and concentration has been shown in

Figs (4.3-4.8). Temperature and concentration profiles both increases as we increase

M and there is decreasing effect on momentum boundary layer for both Cases A

and B. Fig(4.9-4.12) depicts the influence of Prandtl number on temperature and

concentration profiles for both cases. Thermal boundary layer reduces and the con-

centration boundary layer exhibits overshoot near the sheet for higher values of Pr,

though the concentration boundary layer thickness reduces. A minor variation (ini-

tially increasing near the sheet and then decreasing away from the sheet) is observed

in the concentration boundary layer with the increase in the Prandtl number. The

influence of Thermophoresis parameter and brownian parameter has been shown in

Fig(4.13-4.20). The parameters Nt and Nb causes increment in thermal boundary

layer for both Cases (A and B). The concentration profile increases with increase

in parameter Nt while Nb parameter causes reduction for both Case A and Case

B. The effect of Lewis number Le has been shown in Fig(4.21-4.22). It reduces

the concentration profile for Case A and B. In Fig(4.23-4.25) the effect of viscosity

variation parameter has been shown. It reduces momentum boundary layer while

both the thermal and concentration layers becomes thick. The parameter ε causes
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increment in thermal boundary layer as shown in Fig(4.26).
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Fig. 4.1 – Variation in dimensionless veloc-

ity profiles f ′(η) for each Case A and B.
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Fig. 4.2 – Variation in concentration pro-

files φ(η) for each Case A and B.
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Fig. 4.3 – Variation in dimensionless veloc-

ity profiles f ′(η) for Case A.
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Fig. 4.4 – Variation in dimensionless veloc-

ity profiles f ′(η) for Case B.
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Fig. 4.5 – Variation in M and its impact on

the dimensionless temperature profiles θ(η)

for Case A.
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Fig. 4.6 – Variation in M and its impact on

the dimensionless temperature profiles θ(η)

for Case B.
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Fig. 4.7 – Variation in M and its impact

on the dimensionless concentration profiles

φ(η) for Case A.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

d

q
 (
d

)

Case B

 

 

M=1
M=5 
M=10
M=15

Fig. 4.8 – Variation in M and its impact

on the dimensionless concentration profiles

φ(η) for Case B.
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Fig. 4.9 – Variation in Pr and its impact

on dimensionless temperature profiles θ(η)

for Case A.
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Fig. 4.10 – Variation in Pr and its impact

on dimensionless temperature profiles θ(η)

for Case B.
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Fig. 4.11 – Variation in Pr and its impact

on concentration profiles φ(η) for Case A.
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Fig. 4.12 – Variation in Pr and its impact

on concentration profiles φ(η) for Case B.
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Fig. 4.13 – Temperature profiles θ(η) for

various valus of Nt parameter.
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Fig. 4.14 – Temperature profiles θ(η) for

various valus of Nt parameter.
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Fig. 4.15 – Variation in Nt and its impact

on concentration profiles φ(η) for Case A.
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Fig. 4.16 – Variation in Nt and its impact

on concentration profiles φ(η) for Case B.

59



0 5 10 15
0

0.2

0.4

0.6

0.8

1

d

e
(d

)

Case A

 

 

Nb=0.5
Nb=1
Nb=2
Nb=4

Fig. 4.17 – Variation in θ(η) for various

values of Nb parameter.
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Fig. 4.18 – Variation in θ(η) for various

values of Nb parameter.
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Fig. 4.19 – Variation in Nb and its impact

on concentration profiles φ(η) for Case A.
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Fig. 4.20 – Variation in Nb and its impact

on concentration profiles φ(η) for Case B.
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Fig. 4.21 – Variation in Le and its impact

on concentration profiles φ(η) for Case A.
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Fig. 4.22 – Variation in Le and its impact

on concentration profiles φ(η) for Case B.
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Fig. 4.23 – Variation in velocity profiles

f ′(η) for various valus of δ parameter.
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Fig. 4.24 – Variation in temperature pro-

files θ(η) for various valus of δ parameter
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Fig. 4.25 – Variation in δ and its impact

on the concentration profiles φ(η) Case B.
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Fig. 4.26 – Variation in ε and its impact

on temperature profiles θ(η) Case B.

4.8 Concluding Remarks

Skin friction coefficient and thermal boundary layer both increases with increment

in magnetic parameter while velocity profile and wall temperature declines for both

Case A and B. For both the cases Prandtl number causes thermal boundary layer to

reduce whereas enhances momentum boundary layer. While it causes a slight change

in skin friction and enhances wall temperature. Thermophoresis parameter causes

both thermal and concentration boundary layer to increase for both Case A and

B. It causes reduction in wall temperature. Skin friction reduces for Case B while

for Case A it remains same. Brownian parameter increases thermal boundary layer

while reduces concentration boundary layer and wall temperature for Case A and B.

Skin friction for Case B reduces while for Case A it remians unaltered. For both Case

A and Case B Lewis number reduces wall temperature and increases concentration

gradient. Skin friction remains unchanged for Case A while for Case B it reduces.
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Also it causes reduction in concentration boundary layer for both cases. Viscosity

variation parameter reduces both wall temperature and concentration gradient while

shows opposite behaviour for skin friction. Thermal and concentration boundary

layer both increases while momentum boundary layer reduces as we increase δ.

Parameter ε reduces both skin friction and wall temperature while concentration

gradient and thermal boundary layer increases.
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Chapter 5

Conclusion

In this chapter, we conclude all the results of previous chapters. In this dissertation,

we studied MHD flow and heat transfer analysis of a viscous fluid over a nonlinearly

and exponentially strecthing sheet. Comparison is made by taking constant and

variable fluid properties. We have mainly focused on variable viscosity and thermal

conductivity while keeping remaining properties as constant. Similarity transfor-

mation has been used to convert governing nonlinear PDEs into nonlinear ODEs.

Resulting equations are solved numerically. The effect of different governing pa-

rameters such as magnetic parameter M, velocity exponent m, temperature index

parameter n, stretching parameter β, brownian parameter Nb, viscosity parameter

δ and the ε parameter on MHD flow and heat transfer are investigated. Various nu-

merical results for skinn friction, local Nusselt number and local Sherwood number

are obtained and are presented in tables. Velocity, temperature and concentration

profiles are shown graphically. These computed results are also compared with pre-

vious literature.
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