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Abstract

The existence of periodic orbits in the solution of non-linear ordinary di�erential equations has

always been of special interest in the theory of non-linear ordinary di�erential equation. If a system

of non-linear ordinary di�erential equation contains periodic orbits then a lot can be predicted about

the nature of the solutions of that system. Such systems often appear in di�erent branches of science.

Hence it is in our interest to know if in a given system periodic orbits exist or not and if they do

how many are there?

The aim of our work involves the discussion of non-linear systems which exhibit periodic orbits.

However we shall only be concerned with second-order autonomous ordinary di�erential equations.

We start by de�ning plane autonomous systems and then obtain their representation on phase plane

to observe the solutions graphically. Then a result, Bendixson's negative criterion is used to check the

non-existence of periodic orbits of simply connected regions in plane. Poincaré Bendixson theorem

is used for closed and bounded regions to establish existence of periodic orbits along with some other

results that hold for particular systems. Finally, some approximate methods are presented related

to �nding the number of periodic solutions of Liénard equation along with their comparison on the

accuracy and fast convergence to the results.

Keywords: Periodic solutions, Limit cycles, Non-linear ordinary di�erential equation.
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Chapter 1

Introduction

A di�erential equation is linear if the unknown function and its derivatives appear to the power one.

An nth order linear ordinary di�erential equation, in the independent variable x and the dependent

variable y, is an equation that can be expressed in the form:

a0(x)yn(x) + a1(x)yn−1(x) + .........+ an−1(x)ý(x) + an(x)y(x) = b(x).

Equations that are not linear are called non-linear. Non-linear di�erential equations are accurate

models of most of the real life physical problems so these equations are of special interest. However,

due to their non-linearity, these equations are very complex to analyze. Instead of actually solving

them, it is easier to analyze their solutions graphically. In the theory of non-linear di�erential

equations the existence of periodic solutions of a system plays a very prominent role. It is a key to

determine the behavior of the solutions of the system.

Consider a plane autonomous system de�ned by two �rst order di�erential equations of the form:

ẋ = X(x, y); ẏ = Y (x, y). (1.0.1)

Here the overdots denote derivative with respect to time. This system has been extensively studied

and often appears in problems related to many branches of science, from technology to biology [1, 2].

In the study of the system (1.0.1), an important question about the existence and the number

of limit cycles arises. However, it is a delicate matter to determine the number of limit cycles of

a certain class of systems even under certain conditions. In 1928 Liénard developed a criterion for

the existence and uniqueness of periodic solutions for a general class of system, now referred to as

generalized Liénard equation
d2x

dt2
+ f(x)

dx

dt
+ g(x) = 0. (1.0.2)

Liénard transformed this equation to a �rst order system by placing

dx

dt
= h(y)− F (x),

dy

dt
= −g(x), (1.0.3)

1
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where F (x) =
∫ x

0 f(u)du. The system (1.0.3) is called Liénard system and is a particular case of

(1.0.1). The Liénard equation has been of interest of research for many scientists but most of the

research done so far is related to the uniqueness and existence of limit cycles of this system and less

on their exact location in the phase plane. Huang and Sun [3] proposed a theorem that guarantees

the uniqueness of limit cycles for the generalized Liénard system (1.0.3) under certain conditions.

But Kooji and Jianhua [4] further improved their result by showing with a counter example that the

theorem proposed by Huang and Sun was false and required extra conditions on F (x) to guarantee

uniqueness of limit cycle of (1.0.3). Leopold Herrmann [5] also studied Liénard equation of the type

ẍ+ f(x, ẋ)ẋ+ g(x) = 0,

for existence and uniqueness of solutions of the corresponding initial-value problem and studied their

oscillatory properties. Then conditions on the functions f(x, ẋ) and g(x) were imposed under which

the solution is oscillatory. Recently, Liu and Huang [6] discussed the existence and uniqueness of

periodic solutions for a Liénard equation with delay, of form

ẍ+ f(x)ẋ+ g(t, x(t− τ(t))) = p(t), (1.0.4)

where τ and p are periodic functions. Liu, Tang and Martin [7] improved their result concerning

the existence and uniqueness of periodic solutions for a Liénard equations with delay. Gutiérrez

and Torres [8] studied the existence and stability of periodic solutions of a second order di�erential

equation of Liénard type

ẍ+ f(x)ẋ+ g(x) = p(t),

where p is a periodic function under condition that f(x) is positive and g(x) has one or two weak

singularities.

Apart from existence and uniqueness of periodic solutions of Liénard equation, research has been

done on the number of periodic solutions of Liénard equation. Giacomini and Neukrich [9] presented

an approximate method for determining the number of limit cycles of Liénard system of the form

ẋ = y − F (x), ẏ = −x for an odd polynomial F (x). The proposed method gave a sequence of

polynomial that approximated to the equation of each limit cycle of the system hence giving an

idea about their number and location in phase plane. An improved nonperturbative method was

devised by Delamotte [10] for solving second order di�erential equation for �nding limit cycles and

is illustrated on anharmonic oscillator and Van der Pol equation. It gives amplitude, period and

equation of limit cycle. The most interesting feature of this method is it's simplicity and accuracy.

Maesschalck and Dumortier [11] studied the Liénard equation to generelize the number of limit

cycles. They conjectured that the Liénard equation of degree n ≥ 6 can have at least n−1
2 + 2 limit

cycles. In 1976 A. Lins, W. de Melo and C. Pugh [12] conjectured that the maximum number of

limit cycles for a classical Liénard equation of degree n would be equal to n−1
2 . In [12] the existence

of at least 4 limit cycles of classical Liénard equations of degree 7 has also been proved. Maesschalck
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and Dumortier [11] contradicted the conjecture from Lins, de Melo and Pugh and also improved the

counterexample from Dumortier, Panazzolo and Roussarie [13] by supplying one additional limit

cycle from degree 7 on, and by �nding a counterexample of degree 6.

This dissertation is divided into four chapters. In chapter 2 we have discussed one of the useful

technique in �nding the solution to non-linear di�erential equations through a graphical method i.e

through phase diagram. We start by devising a procedure for the representation of second-order (or

plane) autonomous ordinary di�erential equations on phase plane to study their solutions. The plane

autonomous ordinary di�erential equations can not directly be represented in phase plane, for that

we make linear approximation to those equations. The corresponding linear equations are solved

and a general solutions to those equations is provided. The solutions obtained, called the phase

paths, are then generally characterized. Later in this chapter an important geometrical aspect of

phase diagram, known as index, is discussed to better understand the phase paths obtained. Certain

results related to �nding the index of a plane autonomous system are also presented in this chapter.

Periodic solutions are one of the prominent features of a non-linear plane autonomous ordinary

di�erential equations. The aim of our work is the study of existence and non-existence of periodic

solutions in phase plane of a non-linear plane autonomous ordinary di�erential equations. In chapter

3 we start by establishing criterions for non-existence of periodic solutions of which Bendixson's

negative criterion holds importance. Another result called the critical point criterion has been

discussed for the same reason where both these results hold only for a simply connected region in

plane. Then we establish the existence of such paths for a closed and bounded region in Poincaré

Bendixson theorem. Some other prominent results on the existence of periodic solutions covering

certain types of di�erential equations under certain conditions have also been presented in this

chapter.

After dealing with the existence of limit cycles, question about the exact number of such periodic

orbits comes to mind and it has always intrigued the researchers to �nd out the number of periodic

orbits of a di�erential system. In the �nal chapter we deal with this questions by presenting two

methods to �nd the number of limit cycles. But the results are not general. The methods are

approximate and cover only special type of di�erential equations called the Liénard equation. The

comparison of the two methods based on accuracy and fast convergence to the results has also been

presented in this chapter.



Chapter 2

Preliminaries

In this chapter we introduce a qualitative technique for studying a di�erential equation: phase

diagram. Then we'll further look how to obtain general solution of plane autonomous system and

observe the nature of solutions obtained by representing them in the phase plane. Lastly we study

a certain geometrical aspect, called the index, of that system which is useful for establishing the

structure of phase diagram.

2.1 Phase Plane

One of the useful techniques in analyzing a di�erential equation is through its qualitative study.

The qualitative study of the di�erential equations involves studying the characteristics of solution

without solving it. The geometrical procedure introduced helps in studying many features of the

non-linear system, whose solutions are represented on the phase plane. Generally mechanical systems

are initial value problems governed by ordinary di�erential equations or partial di�erential equations

or di�erence equations. In this study we consider the non-linear systems that arise from ordinary

di�erential equation. The geometrical procedure introduced helps in studying many features of the

non-linear system, whose solutions are represented on the phase plane.

2.1.1 Introduction

Firstly the plane autonomous di�erential equation considered i.e.,

ẍ = f(x, ẋ), (2.1.1)

will be converted to its equivalent �rst-order system

ẋ = X(x, y); ẏ = Y (x, y), (2.1.2)

to acquire a representation on the phase plane. This approach is useful in the mechanical inter-

pretation of the original equation. Frequently, the �tting formulation of mechanical, biological, and

4
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geometrical problems is not through a second-order equation, but directly as a more general type of

�rst-order system of the form (2.1.2)[14]. We construct its phase plane which represents the solution

curves. Obtain the equilibrium points, make a linear approximation near them, solve the simpler

equations obtained, and so determine the local structure of the system.

2.1.2 Plane Autonomous System

A general form of system of �rst order ordinary di�erential equations is:

ẋ1 = X1(x1, .......;xn; t);

.

.

.

ẋn = Xn(x1, .......;xn; t).

If n = 2 then we have a plane system. It will be further called autonomous if Xi's are

independent of t. Hence we get a plane autonomous system, written as:

ẋ1 = X1(x1, x2); ẋ2 = X2(x1, x2). (2.1.3)

2.1.3 Plane Autonomous Systems in Phase Plane

Assume that we are given second order ordinary di�erential equation in two variables (2.1.1) and

write its equivalent autonomous system (2.1.2). Let (x(t), y(t)) be the solution of system (2.1.2),

which, when traced on the plane, gives a curve in R2 and that is the solution curve of the system

(2.1.2). The system (2.1.2) gives the tangent vector to the solution curve (X(x(t), y(t)), Y (x(t), y(t))).

Then as t increases the solution (x(t), y(t)) traces out a directed curve in that plane called phase

path. The plane R2 together with the solution curves is called phase plane of the di�erential

system and the diagram depicting the phase paths in the phase plane is called phase diagram. A

typical point (x, y) is called the state of the system. The state of the system at a particular time

t0 consists of the pair of values (x(t0), y(t0)), which can be regarded as a pair of initial conditions

for the original di�erential equation (2.1.2). To obtain a relation between x and y that de�nes the

phase paths, we eliminate the parameter t between (2.1.2) by using the identity

dy

dx
=
Y (x, y)

X(x, y)
. (2.1.4)

A point (x0, y0) is called a critical point of (2.1.2) if X(x0, y0) = Y (x0, y0) = 0 . The direction

to be assigned to a phase path is obtained from the relation (2.1.2). The signs of X and Y at any

particular point determine the direction through the point, and generally the directions of all other

paths follows from the requirement of continuity of direction of adjacent paths. For example when

X > 0 , then ẋ > 0, therefore x is increasing with time, and when X < 0 , x is decreasing with
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time. Therefore the direction of the solution curve is from left to right in the upper half-plane and

from right to left in the lower half-plane.

2.1.4 Linear Approximation at Equilibrium Points

Qualitative behavior of nonlinear systems is obtained locally by linearization around the equilibrium

points. Linearization is an important tool in phase plane analysis. We linearize the non-linear system

near it's equilibrium point to classify the equilibrium points after solving these equations. This does

not change the nature of local structure of the system.

Consider the system (2.1.2)

We assume that the equilibrium point to be studied has been shifted to the origin, by translation

of axes if necessary, so that

X(0, 0) = Y (0, 0) = 0. (2.1.5)

Therefore by Taylor expansion,

X(x, y) = ax+ by + P (x, y), Y (x, y) = cx+ dy +Q(x, y),

where

a =
∂X

∂x
(0, 0), b =

∂X

∂y
(0, 0), c =

∂Y

∂x
(0, 0), d =

∂Y

∂y
(0, 0),

and P (x, y), Q(x, y) are of lower order of magnitude than the linear terms as (x, y) approaches

the origin (0, 0). The linear approximation to (2.1.2) in the neighborhood of the origin is de�ned as

the system

ẋ = ax+ by, ẏ = cx+ dy. (2.1.6)

We expect that the solutions of (2.1.6) will be geometrically similar to those of (2.1.2) near the

origin, as the main idea was to preserve the local structure of the system. The purpose is to see how

the simple relations between coe�cients a, b, c, d enable the classi�cation of equilibrium points of

system (2.1.6) which helps in understanding local character of the system (2.1.2), which we will see

in the next section.

2.1.5 General Solution of Linear Plane Autonomous Systems

For solving the system of linear di�erential equations with constant coe�cients (2.1.6) for x(t) and

y(t), the general linear autonomous case is more manageable (especially for higher order systems)

when the system is expressed in matrix form.
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Following the procedure as in Non-linear di�erential equation by Jordan Smith[14]. The system

(2.1.6) can be written as

ẋ = A x, where A =

(
a b

c d

)
. (2.1.7)

De�ne the column vectors

x(t) =

(
x(t)

y(t)

)
, ẋ(t) =

(
ẋ(t)

ẏ(t)

)
.

We shall only consider the case where there is a single equilibrium point, at the origin, the condition

for this being

detA = ad− bc 6= 0. (2.1.8)

As for detA = 0 any non-trivial solution will be another equilibrium point.

We search for a fundamental solution consisting of two linearly independent solutions of (2.1.7),

having the form:

x1(t) = v1e
λ1t, x2(t) = v2e

λ2t, (2.1.9)

where λ1, λ2 are constants, and v1,v2 are constant vectors. The general solution is given by:

x(t) = Cx1(t) +Dx2(t), (2.1.10)

where C and D are arbitrary constants. To determine λ1, λ2, v1,v2 in (2.1.9) substitute

x(t) = veλt (2.1.11)

into the system (2.1.7). After canceling the common factor eλt , we obtain:

(A− λI)v = 0, (2.1.12)

where I is the identity matrix. Now we put

v =

(
r

s

)
, (2.1.13)

in (2.1.12), where r and s are constants, it represents the pair of scalar equations

(a− λ)r + bs = 0, cr + (d− λ)s = 0, (2.1.14)

for λ, r, s. We know from algebraic theory that eq. (2.1.12) has nonzero solutions for v only if

the determinant of the matrix of the coe�cients in eq's. (2.1.14) is zero. Therefore
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det

(
a− λ b

c d− λ

)
= 0, (2.1.15)

or

λ2 − (a+ d)λ+ (ad− bc) = 0. (2.1.16)

This is called the characteristic equation, and its solutions, λ1 and λ2 , the eigenvalues of

the matrix A, are the characteristic exponents for the problem. For classifying the solutions of

the characteristic equation (2.1.16) we use the following notations for the purpose of our convenience:

λ2 − pλ+ q = 0,

where,

p = a+ d, q = ad− bc. (2.1.17)

Also put

∆ = p2 − 4q. (2.1.18)

The eigenvalues λ = λ1 and λ = λ2 are given by

λ1, λ2 =
1

2
(p±

√
∆). (2.1.19)

These are to be substituted successively into (2.1.14) to obtain corresponding values for the constants

r and s.

Now we discuss two main cases classi�ed on the basis of the sign of the discriminant ∆. These

are (we shall not consider the special case when ∆ = 0):

Time solutions when ∆ > 0 , q 6= 0 ;

In this case λ1 and λ2 are real and distinct. When λ = λ1 eq. (2.1.14) for r and s becomes

(a− λ1)r + bs = 0, cr + (d− λ1)s = 0. (2.1.20)

Since the determinant (2.1.15) is zero, its rows are linearly dependent. Therefore one of these eqs.

(2.1.20) is simply a multiple of the other; e�ectively we have only one equation connecting r and s.

Let r = r1 , s = s1 be any (nonzero) solution of (2.1.20), and put:
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v1 =

(
r1

s1

)
.

This is called an eigenvector of A corresponding to the eigenvalue λ1 . We have now obtained

one of the two basic time solutions having form (2.1.9). This process is repeated for λ = λ2 , giving

rise to another eigenvector

v2 =

(
r2

s2

)
.

The general solution is then given by (2.1.10):

x(t) = Cv1e
λ1t +Dv2e

λ2t, (2.1.21)

in vector form, where C and D are arbitrary constants.

Time solutions when ∆ < 0 , q 6= 0 ;

In this case λ1 and λ2 , obtained from (2.1.19), are complex, given by

λ1 = 1
2p+ i(

√
(−∆)) = α+ iβ,

λ2 = 1
2p− i(

√
(−∆)) = α− iβ,

(2.1.22)

where α = 1
2p and β = 1

2(
√

(−∆)) are real numbers. Therefore λ1 and λ2 , are complex conjugates.

Obtain an eigenvector corresponding to λ1 from (2.1.14),

v = v1 =

(
r1

s1

)
, (2.1.23)

exactly as before, where r1 and s1 are now complex. Since a, b, c, d are all real numbers, a suitable

eigenvector corresponding to λ2(= (λ1)) is given by taking r2 = (r1), s2 = (s1) as solutions of

(2.1.14):

v2 = v1 =

(
r1

s1

)
,

Therefore, two basic complex time solutions following (2.1.9) are

ve(α+iβ)t, ve(α−iβ)t,
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where v is given by (2.1.23). The general complex solution of (2.1.7) is

x(t) = Cve(α+iβ)t +Dve(α−iβ)t, (2.1.24)

in vector form, where C and D are arbitrary constants which are, in general, complex.

Since we are interested only in real solutions, the expression (2.1.24) is real if and only if

D = C,

in which case the second term is the conjugate of the �rst term, and we obtain

x(t) = 2Re{Cve(α+iβ)t},

or

x(t) = Re{C1ve
(α+iβ)t}, (2.1.25)

where C1 is an arbitrary complex constant.

2.1.6 Phase Paths of Linear Plane Autonomous Systems

We now obtain the general character of the phase path of the time solutions obtained in (2.1.21)

and (2.1.25) for the system

ẋ = ax+ by, ẏ = cx+ dy. (2.1.26)

which is a linear approximation near the origin. As we said earlier the phase diagram of this

linearization will generally approximate to the phase diagrams of the non-linear system.

The main purpose of this section is to make complete classi�cation of the equilibrium points.

We classify the phase diagrams into three classes depending upon their eigenvalues which are the

solution to the characteristic equation. (2.1.16).

The three classes are de�ned as:

• λ1, λ2 are real, distinct having same signs;

• λ1, λ2 are real, distinct having opposite signs;

• λ1, λ2 are complex conjugates.
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• The eigenvalues are real, distinct and have same sign:

Node: Let λ1 be the larger eigenvalue than λ2 i.e., λ1 > λ2 The general solution (2.1.21) in it's

component form is

x(t) = Cr1e
λ1t +Dr2e

λ2t, y(t) = Cs1e
λ1t +Ds2e

λ2t, (2.1.27)

where r and s are determined by solving (2.1.20) by putting in values of λ′s. From (2.1.27) we

obtain

dy

dx
=
Cλ1s1e

λ1t +Dλ2s2e
λ2t

Cλ1r1eλ1t +Dλ2r2eλ2t
. (2.1.28)

Now suppose that 0 > λ1 > λ2. From this and (2.1.27) we have{
x and y → origin as t→∞ ;

x and y →∞ as t→ −∞ .
(2.1.29)

Also there are four radial phase paths, which lie along a pair of straight lines as if D = 0, y
x = s1

r1
;

if C = 0, y
x = s2

r2
, .

(2.1.30)

Therefore from (2.1.28) we obtain
dy
dx →

s1
r1

as t→∞ ;

dy
dx →

s2
r2

as t→ −∞ .
(2.1.31)

(2.1.29) along with (2.1.30) shows that every phase path is tangential to y = ( s1r1 )x at the origin, and

approaches the direction of y = ( s2r2 )x at in�nity. The radial solutions (2.1.30) are called asymptotes

of the family of phase paths.

Now if the eigenvalue are both positive i.e., λ1 > λ2 > 0 then the phase diagram has similar

characteristics but now all the phase paths are directed outward, moving away from the origin to

in�nity. These phase paths have a special name called node. The cases when all the phase paths are

directed inward to the origin i.e. when both eigenvalues are negative then we have a stable node

(see Fig. 2.1) and vice versa for unstable node (see Fig. 2.2). The condition on the coe�cient

from (2.1.17) for these cases is given as:

{
stable node ∆ = p2 − 4q > 0, q > 0, p < 0 ;

unstable node ∆ = p2 − 4q > 0, q > 0, p > 0 .
(2.1.32)
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Figure 2.1: Stable Node
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Figure 2.2: Unstable Node

• The eigenvalues are real, distinct and have opposite sign:

Saddle: In this case we have λ1 > 0 > λ2, the procedure and formula will be the same as in last

case i.e. (2.1.27) and (2.1.28) also apply here. Also we get four radial paths, two of them along each

of the lines
y

x
=

s1

r1
, and

y

x
=

s2

r2
.

However there are only two phase paths that approach the origin and those are which lie along

the line
y
x = s2

r2
. The rest of the paths go to in�nity as t → ∞. The �g.(2.3) is like a family
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of hyperbolas together with their asymptotes. In this case the equilibrium point is called saddle.

From (2.1.17) the conditions on the coe�cient becomes

saddle ∆ = p2 − 4q > 0, q < 0 (2.1.33)

A saddle is always unstable.

-6000 -4000 -2000 2000 4000 6000

-6000

-4000

-2000

2000

4000

6000

Figure 2.3: Saddle

• The eigenvalues are complex:

If a real matrix has complex eigenvalues then they always occur as complex conjugate pairs, so

we put

λ1 = α+ iβ, λ2 = α− iβ, (α, β are real) (2.1.34)

After separating real parts in (2.1.25), we get

x(t) = eαtRe{C1r1e
iβt}, y(t) = eαtRe{C1s1e

iβt}, (2.1.35)

where C1, r1, s1 are in general complex.

Center: Let α = 0. Put C1, r1, s1 in polar form

C1 = |C1|eiγ , r1 = |r1|eiσ, s1 = |s1|eiρ,

where γ, σ and ρ are real.

Then (2.1.35) implies
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x(t) = |C1||r1| cos(βt+ γ + ρ), y(t) = |C1||s1| cos(βt+ γ + σ). (2.1.36)

The motion of the representative point (x(t), y(t)) in the phase plane consists of two simple

harmonic components of equal circular frequency β, in the x and y directions, but they have di�erent

phase and amplitude. The phase paths therefore form a family of geometrically similar ellipses. The

geometrical �gure corresponding to this case is called center (see Fig. 2.4). The corresponding

conditions on coe�cients (2.1.17) becomes

center p = 0, q > 0. (2.1.37)

-5 5
x

-4

-2

2

4

6

Figure 2.4: Center

Spirals: Now suppose that α 6= 0. As t increases in eqns. (2.1.35), the elliptical paths above

are modi�ed by the factor eαt . This prevents them from closing, and each ellipse turns into a

spiral; a contracting spiral if α < 0, and an expanding spiral if α > 0 (see Fig. 2.5 & Fig.2.6

respectively). The equilibrium point is then called a spiral or focus, stable if α < 0, unstable if

α > 0. The directions may be clockwise or counterclockwise.

The conditions on coe�cient (2.1.17) are{
stable spiral ∆ = p2 − 4q < 0, q > 0, p < 0, ;

unstable spiral ∆ = p2 − 4q < 0, q > 0, p > 0, .
(2.1.38)

If there exists a neighborhood of an equilibrium point such that every phase path starting in

the neighborhood ultimately approaches the equilibrium point, the point is known as an attractor.

(The term is used both for linear and nonlinear systems.) The stable node and stable spiral are

attractors. An attractor with all path directions reversed is a repeller. Unstable nodes and unstable

spirals are repellers, but a saddle point is not.

If the eigenvalues of the linearized equation have nonzero real parts then the equilibrium point is

said to be hyperbolic. At hyperbolic points the phase diagrams of the nonlinear equations and the
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Figure 2.5: Stable Spiral
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Figure 2.6: Unstable Spiral

linearized equations are, locally, qualitatively the same. Spirals, nodes, and saddles are hyperbolic

but the center is not. We summarize all the cases in the following table:

∆ = p2 − 4q p = a+ d q = ad− bc
Saddle ∆ > 0 - q < 0

Stable node ∆ > 0 p < 0 q > 0

Stable spiral ∆ < 0 p < 0 q > 0

Unstable node ∆ > 0 p > 0 q > 0

Unstable spiral ∆ < 0 p > 0 q > 0

Center ∆ < 0 p = 0 q > 0

Example 2.1.1. Obtain the time solutions and sketch the phase diagram of the system

ẋ = x+ 2y, ẏ = 2x+ y.

Solution: The matrix of coe�cient of this system is

A =

(
1 2

2 1

)
.
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To locate the eigenvalues put

|A− λI| = 0.

i.e.,

det

(
1− λ 2

2 1− λ

)
= 0.

Solving the characteristic equation obtained for the values of λ, we get

λ1 = −1 & λ2 = 3.

We observe that the values of λ have opposite signs which satis�es for the condition of a saddle.

Hence origin is a saddle for this system. Now to search the time solution we locate the eigenvectors

from (2.1.12). We �rst solve for λ = λ1 = −1 and get

(1− λ)r + 2s = 0, 2r + (1− λ)s = 0.

Solving this eq. for r = r1 & s = s1, we get only one eigenvector

2r1 + 2s1 = 0.

or

s1 = −r1.

Similarly solving for λ = λ2 = 3, we get another eigenvector

r2 = s2.

Hence we arrive at two time solutions, from (2.1.27) we get

x(t) = Cr1e
−t +Dr2e

3t, y(t) = Cs1e
−t +Ds2e

3t.

Our general solution will be like

x(t) = Ce−t

(
−1

1

)
+De3t

(
1

1

)
.

From this we get
dy

dx
=
−Cs1e

−t + 3Ds2e
3t

−Cr1e−t + 3Dr2e3t
.

Now when

C = 0,
dy

dx
=
s2

r2
= −1,

and

D = 0,
dy

dx
=
s1

r1
= 1.

We will start by sketching lines that follow the direction of the two eigenvectors. If we have D = 0
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then the solution is an exponential times a vector. In other words, the trajectory in this case will be

a straight line that is parallel to the vector s1
r1
. Also notice that as t increases the exponential will

get smaller and smaller and hence the trajectory will be moving in towards the origin. If C > 0 the

trajectory will be in Quadrant II and if C < 0 the trajectory will be in Quadrant IV.

So in the Fig. (2.7) the trajectory that approach the origin as t increases is a sketch of the

trajectory corresponding to D = 0 .If we now look at the solution corresponding to C = 0 we will

have a trajectory that is parallel to s2
r2

. Also, since the exponential will increase as t increases and

so in this case the trajectory will now move away from the origin as t increases.

Eigenvalues that are negative will correspond to solutions that will move towards the origin as

t increases in a direction that is parallel to its eigenvector. Likewise, eigenvalues that are positive

move away from the origin as t increases in a direction that will be parallel to its eigenvector.

For large negative t the solution will be dominated by the portion that has the negative eigenvalue

since in these cases the exponent will be large and positive. Trajectories for large negative t will be

parallel to s1
r1

moving in the same direction.

Solutions for large positive t will be dominated by the portion with the positive eigenvalue.

Trajectories in this case will be parallel to s2
r2

and moving in the same direction.

In general, the trajectories will start near s1
r1

, move in towards the origin and as they approach

the origin they will start moving towards s2
r2

and then continue up along this vector. Sketching some

of these in will give the phase portrait of the system. Hence our phase diagram would be like Fig.

(2.7).
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Figure 2.7: Saddle

Example 2.1.2. Classify the equilibrium points of the system

ẋ = −6x+ 5y, ẏ = −5x+ 2y.
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Solution: We don't have to write the time solutions for this system so we will only check the

conditions on the coe�cients of this system.

Here we have a = −6, b = 5, c = −5, d = 2. Therefore

p = a+ d = −6 + 2 = 4 < 0,

q = ad− bc = −12 + 25 = 13 > 0,

so that

∆ = p2 − 4q = 16− 52 = −36 < 0,

which are the conditions for a stable spiral (2.1.38). Hence origin is the stable spiral for this system.

2.2 Index in a Phase Diagram

In this section we describe a very important geometrical aspect of plane autonomous system : index

of a point. It is helpful in establishing the phase diagram of autonomous systems. The index of an

equilibrium point provides information about that system on the nature and behavior of the phase

paths of the system which in turn helps in establishing the structure of the solution.

2.2.1 Index of a Point

For a given system (2.1.2), let Γ be any smooth, closed curve which does not pass through any

equilibrium points of the system. Then at each point on the loop, say P, there is only one phase

path through that point. The phase paths belong to the family described by the equation (2.1.4).

The vector tangent to the phase path is S = (X,Y ) through P and points in the direction of

increasing t and it's inclination can be measured by the angle φ measured from the x-axis in counter

clockwise direction to S by

tanφ =
Y

X
.

Now as you move around Γ in the counter-clockwise sense (call this the positive direction), the

vectors on Γ rotate, and when you get back to the point at which you started, they will have rotated

through an angle 2πkΓ, where kΓ is some integer. This integer, kΓ, is called the index of Γ. The

index of a closed curve containing no equilibrium points can be calculated by integrating dφ i.e

change in angle of vectors at each point on Γ around Γ. So

kΓ =
1

2π

∮
Γ
dφ

=
1

2π

∮
Γ
d
(

tan−1 Y

X

)
=

1

2π

∮
Γ

XY
′ − Y X ′

X2 + Y 2
(2.2.1)
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where X ′ denotes the derivative of X w.r.t some parameter s. The index of an equilibrium point is

de�ned to be the index of a closed curve which contains only this one equilibrium point, and where

no equilibrium points are on the closed curve.

Example 2.2.1. Find the index for the system ẋ = 2xy, ẏ = x2 − y2 where Γ is a unit circle

centered at the origin.

Solution: Here we have X(x, y) = 2xy & Y (x, y) = x2−y2. We de�ne Γ by x = cos θ & y = sin θ,

so (X,Y ) = (sin 2θ, cos 2θ),

k Γ =
1

2π

∫ 2π

0

XY
′ − Y X ′

X2 + Y 2
dθ,

k Γ =
1

2π

∫ 2π

0

−(sin2 2θ + cos2 2θ)

sin2 2θ + cos2 2θ
dθ,

k Γ =
1

2π

∫ 2π

0
−1 dθ,

k Γ = −1.

So the index of the given system is −1 of the origin.

We now present some useful theorems for computing index.

Theorem 2.2.2. Suppose that Γ lies in a simply connected region on which X, Y and their �rst

derivatives are continuous and X and Y are not simultaneously zero. In other words there is no

equilibrium point there. Then k Γ is zero.

Proof. Green's theorem in the plane states that if Γ is a closed, non-self-intersecting curve, lying in

a simply connected region on which the functions f(x, y) and g(x, y) have continuous �rst partial

derivatives, then ∮
Γ
(fdx+ gdy) =

∫ ∫
DΓ

(∂g
∂x
− ∂f

∂y

)
dx dy,

where DΓ is the region interior to Γ. (The �rst integral is a line integral round Γ, the second a

double integral taken over its interior). In (2.2.1) replace

X ′ = Xx
dx

ds
+Xy

dy

ds
, Y ′ = Yx

dx

ds
+ Yy

dy

ds
,

where Xx = ∂X
∂x and so on. Then (2.2.1) implies

k Γ =
1

2π

∮
Γ

(XYx − Y Xx

X2 + Y 2
dx+

XYy − Y Xy

X2 + Y 2
dy
)
.

The functions f = XYx−Y Xx

X2+Y 2 & g =
XYy−Y Xy

X2+Y 2 satisfy the condition for Greens' theorem since

X2 + Y 2 6= 0 on Γ and it's interior. So

k Γ =
1

2π

∫ ∫
DΓ

[ ∂
∂x

(XYy − Y Xy

X2 + Y 2

)
− ∂

∂y

(XYx − Y Xx

X2 + Y 2

)]
dx dy.

After solving the partial derivatives we get k Γ = 0.
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The immediate consequence of this theorem is the following corollary.

Corollary 2.2.3. Let Γ be a simple closed curve, and Γ′ a simple closed curve inside Γ. Then if,

on Γ, Γ′ and the region between them there is no equilibrium point, and if X, Y and their �rst

derivatives are continuous there, then k Γ = k Γ′ .

This theorem shows that the index of a surface is independent of its vector �eld and that any

loop Γ around that point has the same index.

Theorem 2.2.4. If Γ surrounds n equilibrium points P1, P2, ..., Pn then

k Γ =
n∑
i=1

k i

where k i is the index of Pi.

Another simple way to calculate the index is through the following result.

Theorem 2.2.5. Let p be the number of times Y(x, y) / X(x, y) changes from +∞ to −∞, and q

the number of times it changes from −∞ to +∞, on Γ. Then k Γ = 1
2(p− q).

If we know the nature of the equilibrium point beforehand then the index is found by simply

drawing a �gure and following the angle round. The indices of the types met in previous section are:

• A saddle point: The change in φ in a single circuit of the curve Γ surrounding the saddle point

is −2π, and the index is therefore −1.

• A center: Γ can be chosen to be a phase path, so that k Γ = +1 irrespective of the direction

of the paths.

• A spiral (stable or unstable): The index is +1.

• A node (stable or unstable): The index is +1.



Chapter 3

Periodic Solutions in Phase Plane

We have so far concentrated on �nding the critical points for investigating non-linear systems in

the xy-plane, and studied how the trajectories of the system look in the neighborhood of each

critical point. This gives us some feeling for how the other trajectories can behave, at least those

which pass near enough to critical points. But this much is true in study of local behavior of

such systems, for global behavior of these systems periodic solutions, sometimes also called periodic

orbits, are of special interest. Periodic orbits are the only type of orbits which can provide us

with the understanding of the solution through its period. For this reason it is very tempting and

advantageous to understand the features of non-linear systems in terms of periodic orbits. In this

chapter we will discuss a special type of periodic orbit in phase plane i.e. `Limit cycle'. Secondly

an important question arises about the existence and non-existence of such orbits, so some results

regarding this question will be presented in separate sections.

3.1 Limit Cycles

Periodic solutions are an important aspect of di�erential equations, since many physical phenomena

occur roughly periodically. In phase portrait a periodic solution is represented by a closed path. In

last chapter we have meet such paths in the case of pure imaginary eigenvalues. If a closed path

exists for a system then it gives a good analysis of the system since the nearby paths behave in

the same manner. For a given system on the plane if we know the number of critical points, the

structures near these points and further know the number of closed orbits with their direction then,

generally speaking, we have a good understanding of global behavior of the system. Here we are

interested in a more interesting and special type of a close path which holds two properties

1. closed, indicating periodicity.

2. isolated, indicating that nearby trajectories either converge to or diverge from it.

This special type of closed path is called "Limit cycle". The word `isolated' means there are

no other such paths in its immediate neighborhood. Limit cycle is a trajectory for which energy

21



22

of the system would be constant over a cycle i.e. on average there is no loss or gain of energy.

Limit cycle is an outcome of delicate energy balance due to presence of nonlinear term in the

equation of motion [15]. Many problems in di�erent branches of science, such as aerodynamics,

biology, mechanics, chemistry etc. are modeled by systems that produce limit cycles [16�20]. The

neighboring trajectories of the limit cycle either approach it from the either side or move away from

it from any side. The �rst refers to stable limit cycle and the later refers to unstable limit cycle,

out of which the most important one is the stable limit cycle. Periodic processes in nature can

often be modeled as stable limit cycles eg. breathing process. When we increase our breathing rate

arti�cially eventually we revert back to our original breathing rate similarly is the case when we

hold our breath. We see that when the system is disturbed from the original path the resulting new

paths are attracted back to the original path from the either side. Here our original breathing rate

is the original path, our faster breathing rate constitutes the path that approach that limit cycle

from outside and our slower breathing rate constitutes the path that approach the limit cycle from

the inside. Further examples include blinking of the eyes, movement of pendulum clock, pumping

of heart etc. Hence greater interest lies in �nding these trajectories if they exist. Therefore we are

interested in two aspects in the study of limit cycles: existence and non existence. We will present

some of the famous results in this regard.

3.2 Non-existence of Periodic Solutions

We will �rst deal with the non-existence theory of limit cycles. One can not actually solve the non-

linear system which contains the limit cycle, it is important to establish, by some results, if a limit

cycle is there in the system or not. In this section we give negative criterions on the non-existence

of such paths. However, the condition is valid for all closed paths whether isolated (limit cycle) or

not.

In the following section we introduce a result due to Bendixson and is called Bendixson's negative

criterion.

3.2.1 Bendixson's Negative Criterion

Theorem 3.2.1. (Bendixson's Negative Criterion): Suppose Ω is simply connected region of the

phase plane and in this region we de�ne ∇f = ∂X
∂x + ∂Y

∂y . If ∇f is not identically zero and

does not changes sign in Ω , then Ω contains no close path for the nonlinear system (2.1.2), where

(x, y) ε R2 and X & Y are at least C1.

Proof. This is a simple result of Green's theorem on the plane[14].

On the contrary we suppose that there exist a close path D in the region Ω, where ∇f is of one sign.
Then using divergence theorem∫ ∫

R

(∂X
∂x

+
∂Y

∂y

)
dxdy =

∫
D
f.n ds = 0,
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where R is interior of D, n is the unit outward normal and ds is the line element of D. Since on the

surface D, f is perpendicular to n so their dot product is zero so the right hand side of the integral

turns zero. But the integral on the left is zero only if ∇f = 0 in R or if it changes sign in R, which is

contrary to the assumption that ∇f is of one sign. Hence D can not be a close path implying there

are no close paths in Ω

Example 3.2.2. Find out if the system ẋ = x3 + y3, ẏ = 3x+ y3 + 2y has any limit cycles.

Solution: We`ll �rst calculate the divergence of this system.

∇f =
∂X

∂x
+
∂Y

∂y
= 3x2 + 3y2 + 2,

where

X = x3 + y3, Y = 3x+ y3 + 2y.

We observe that the divergence of this system is always positive in the xy-plane. Hence, using

Bendixon's criterion, this system can not have any close path implying that there can't be any limit

cycles either.

An extension of this theorem is called `Dulac's test' which states:

Theorem 3.2.3. (Dulac's Test): For the system ẋ = X(x, y), ẏ = Y (x, y), there are no closed paths

in a simply connected region in which ∂(ρX)
∂x + ∂(ρY )

∂y is of one sign, where ρ(x, y) is any function

having continuous �rst partial derivatives.

Proof. The proof is on the same lines as Bendixon's negative crieterion. The results obtained for ∇f
will be the same for ∇(ρ.f), since ρ(x, y) has continuous �rst partial derivatives.

Now we observe an interesting fact through the following example.

Example 3.2.4. Check if the system ẋ = x2 + y2 + 1, ẏ = x2 − y2 has any limit cycles.

Solution: Using Bendixon's criterion we`ll �rst calculate the divergence of this system.

∇f =
∂X

∂x
+
∂Y

∂y
= 2x− 2y,

where

X = x2 + y2 + 1, Y = x2 − y2.

We observe that the divergence of this system is zero along the line x = y in the xy-plane. Which

doesn't satisfy the Bendixon's criterion, so we can conclude that is there can be close paths in

xy-plane.

But if a close curve is to contain a portion of the line x = y drawn in such a way that it is in the

�rst quadrant not containing the origin, then the divergence won't be zero there nor it will change

signs. So it doesn't violates the Bendixon's criterion implying there can be no close paths. We could
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not have a limit cycle there. But in the same region we just concluded there is no assurity that

there are no close paths. So we don't arrive at any de�nite conclusion. The reason is that we are

using the wrong criterion. For this reason we introduce a new criterion, called the "critical point

criterion".

3.2.2 Critical Point Criterion

Stating it �rst in a positive sense, we say that a simply connected region D containing a close path

C of a system contains a critical point of that system. Since while studying index of close path

we inferred that a close path must have a critical point some where and also that the close path

(center) has index 1. So by using theorem (2.2.4) of the same section we conclude that if C is a

limit cycle then the sum of the indices of the equilibrium points enclosed by C is 1. To summarize

it in a contrapositive way we say:

Theorem 3.2.5. (Critical Point Criterion): If a simply connected region has no critical point then

it has no close path.

This result implies for any close path and it provides the negative criterion where such a path

can not exist and is the necessary condition. For example, a closed path cannot surround a region

containing no equilibrium points, nor one containing only a saddle (since it has an index of −1). If

the sum of the indices of a group of equilibrium points does equal unity, the result does not allow

us to infer the existence of a close path surrounding them.

So now solving the Example (3.2.4) using this criterion we see that the system has no equilibrium

point so there can't be any close path surrounding it.

We now turn to the opposite task : �nding methods to establish the existence of periodic orbits

of a certain system.

3.3 Existence of Periodic Solutions

Up till now we have been concerned with the cases showing negative results about the existence and

non-existence of limit cycles but we have no tests giving su�cient conditions for their existence. In

particular we lack theorems and methods for proving positively the existence or non-existence of

limit cycles. So in this section we provide some famous results proving the existence of such paths

for certain types of equation.

3.3.1 Poincaré Bendixson Theorem

The main tool which is used to show if a plane autonomous system (2.1.2) has a limit cycle is the

Poinca're Bendixson theorem, which describes the ultimate behavior on t → ∞ of a phase path

which enters and remains in a closed bounded region[14].
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Theorem 3.3.1. (Poincaré Bendixson theorem): Let D be a closed, bounded region consisting of

non-singular points of a plane system (2.1.2) such that some positive half-path H of the system lies

entirely within D. Then either:

1. H is itself a closed path on D,

2. H approaches a closed path on D,

3. H approaches an equilibrium point on D.

In particular, we consider two simple closed curves c1 & c2 and R is the region between these

curves where c2 is interior to c1. If the solution which enters R and can never leave R, the only thing

it can do, as t → ∞, is either approach a critical point, which are none by hypothesis, or spiral in

towards a closed trajectory. Thus there is a closed trajectory inside R. Also the closed path must

enclose the inner curve c2, for the index of a closed path is 1, and since R contains no equilibrium

points so there has to be some in the interior of c2. Hence the theorem implies that if D contains no

equilibrium points, and some half-path H remains in D, then D must contain at least one periodic

solution.

Example 3.3.2. Show that the system

ẋ = 2x+ 2y − x (2x2 + y2), ẏ = y − 2x− y (2x2 + y2) (3.3.1)

has a periodic solution.

Solution: The origin is the equilibrium point for this system. Using the Poincaré Bendixson

theorem we'll search for two circles centered at the origin satisfying the required properties.

Consider a circle of radius r centered at origin. Let P be any point on the circle and n = (x, y)

is a normal, pointing outward at P from the circle, and X = (X,Y ) is in the direction of the path

through P. We will calculate n.X. Also cosφ = n.X/|n||X|, therefore n.X is positive or negative

according to whether X is pointing away from, or towards, the interior of the circle. So when n.X

is positive it will indicate the paths are moving away from the circle and vice versa where n.X is

negative. We have

n.X = xX + yY

= 2x2 + y2 − (x2 + y2)(2x2 + y2).

= (2x2 + y2)(1− (x2 + y2)).

= r2(2 cos2 θ + sin2 θ)(1− r2).

=
r2

2
(cos 2θ + 3)(1− r2).

=
r2

2
(cos 2θ + 3)− r4

2
(cos 2θ + 3).
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We observe that when r = 1/2 then n.X is positive, so all the paths on this circle are directed

outwards. Similarly when we take r = 2 then n.X is negative, meaning all the paths on this circle

are directed inwards. So these are the two curves in which a periodic solution is said to exist

containing no equilibrium point according to Poinca're Bendixson theorem (see Fig. 3.1).
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Figure 3.1: Limit Cycle for system (3.3.1)

3.3.2 Theorems on Existence of Limit Cycles

Now we introduce another useful theorem on the existence of closed paths which cover certain types

of di�erential equation i.e., Liénard equation.

Theorem 3.3.3. The di�erential equation

ẍ+ f(x, ẋ)ẋ+ g(x) = 0, (3.3.2)

the Liénard equation, or the equivalent system

ẋ = y, ẏ = −f(x, y) y − g(x),

has a unique periodic solution if f and g are continuous, and:

1. ∃ r > 0 such that f(x, y) > 0 whenever x2 + y2 > r2;

2. f(0, 0) < 0 (hence f(x, y) < 0 in a neighborhood of the origin);

3. g(0) = 0, g(x) > 0 when x > 0, and g(x) < 0 when x < 0;

4. G(x) =
∫ x

0 g(u)du→∞ as x→∞.
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Proof. The idea to prove this theorem is to consider some closed contours in the region of our interest

and study the behavior of the paths on and between them and in the end use Poincaré Bendixson

theorem to deduce that there exists a periodic solution in the region bounded by these contours.

Consider the function

ε(x, y) =
1

2
y2 +G(x) (3.3.3)

Note that (by 4.) G(0) = 0, G(x) > 0 when x 6= 0 and G(x) is continuous and monotonically

increasing to in�nity. So ε(0, 0) = 0, and ε(x, y) > 0 for x 6= 0 and y 6= 0 which implies ε(x, y) is

positive de�nite. Our function ε(x, y) is continuous and is increasing (monotonically) from the origin

in every direction. Therefore ε(x, y) constitutes a family of contours increasing in every direction

from the origin. Let

ε(x, y) = c (3.3.4)

where c > 0 is a parameter and represents a family of simple closed curves encircling the origin. So

(by 4.) as c → 0 , these contours approach the origin and as c → ∞, these contours also approach

in�nity.

Now we choose c = c1 where c1 lies entirely in the neighborhood of the origin where condition 2 of

the theorem holds i.e f(x, y) < 0. We now examine a half-path D that starts at some point on c1.

Consider ε̇(x, y) on D:

ε̇(x, y) = y ẏ + g(x) ẋ,

= g(x) y + y (−f(x, y) y − g(x)),

= −y2 f(x, y). (3.3.5)

Since (by 2.) f(x, y) < 0 in this region so ε̇ is positive, except for the point y = 0, which means

all the half-paths on c1, will leave c1 in outward direction. We choose D to start on any point other

than y = 0 on c1. So D has to move in outward drection since if doesn't it will cross some contours

inside c1, which is not possible, as by (3.3.5) ε̇ is positive.

Consider now c = c2, where c2 is large enough so that by 1. f(x, y) > 0 on c2. By (3.3.5) for

f(x, y) > 0 we have ε̇ < 0, except for the point y = 0, so all half-paths on c2 will move in the

inward direction of c2. So no half-path, once inside c2, can escape. Hence D remains trapped in the

region between c1 and c2. Therefore by theorem (3.3.1) there exists a periodic solution in the region

bounded by c1 and c2.

Example 3.3.4. Show that the equation ẍ + β(x2 + ẋ2 − 1)ẋ + x3 = 0, (β > 0) has at least one

periodic solution.

Solution: The given equation is the special case of the Liénard equation so the theorem (3.3.3)

can be applied to check if it has a periodic solution or not. The equivalent system for this equation

is

ẋ = y, ẏ = β (x2 + y2 − 1) y − x3.
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So

f(x, y) = β (x2 + y2 − 1), g(x) = x3,

which are continuous. Now checking the condition for the theorem (3.3.3):

1. for r = 1, x2 + y2 > 1 then f(x, y) > 0 since given β > 0.

2. for f(x, y) = β (x2 + y2 − 1) , f(0, 0) = −1 < 0.

3. for g(x) = x3, g(0)=0,g(x) > 0 for x > 0 & g(x) < 0 for x < 0.

4. G(x) =
∫ x

0 g(u) du = x3

3 which →∞ as x→∞.

Hence all conditions of theorem (3.3.3) are satis�ed so the given system has at least one periodic

solution (see Fig. 3.2).
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Figure 3.2: Limit Cycle for the system (3.3.8)

We have another such theorem which provides us with the indication of presence of limit cycles

for the system

ẍ+ f(x)ẋ+ g(x) = 0, (3.3.6)

which is carried out on a di�erent phase plane than the last one:

ẋ = y − F (x), ẏ = −g(x), (3.3.7)

called the Liénard plane, where

F (x) =

∫ x

0
f(u) du.
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Now all the conditions rest on F rather than f.

Theorem 3.3.5. The equation (3.3.6) or it's equivalent system (3.3.7) has a unique periodic solution

if f and g are continuous, and

1. F(x) is an odd function;

2. F(x) is zero only at x = 0, x = r, x = −r, for some r > 0;

3. F (x)→∞ as x→∞ monotonically for x > r;

4. g(x) is an odd function, and g(x) > 0 for x > 0.

Example 3.3.6. Show that

ẍ+ β(x2 − 1)ẋ+ x3 = 0 (3.3.8)

has exactly one periodic solution.

Solution: Here we observe that the theorem (3.3.5) can be used to check if the given equation

has a periodic solution or not. The equivalent system for the given equation is

ẋ = y − β (
x3

3
− x), ẏ = −x3.

So f(x) = β(x2 − 1) and g(x) = x3 are continuous. Also

F (x) =

∫ x

0
β(u2 − 1) du

= β (
x3

3
− x).

Now checking the condition for the theorem (3.3.5):

1. F (−x) = −F (x) for F (x) = β (x
3

3 − x). Hence F (x) is odd.

2. F(0) = 0. Also for r =
√

3, F (
√

3) = 0 = F (−
√

3).

3. For r =
√

3 & x >
√

3 F (x)→∞ as x→∞.

4. g(x) = x3 is odd & g(x) > 0 for x > 0.

Since all the conditions of the theorem (3.3.5) are satis�ed hence the given equation has a periodic

solution.



Chapter 4

Approximate Methods for Finding Limit

Cycles

Here in this chapter we will present and discuss two results related to �nding limit cycles of the

Liénard equation. One result is due to Hector Giacomini & Sébastien Neukirch [9] and other is due

to B. Delamotte [10]. We will �rst separately discuss these methods and then we will compare the

results obtained to see which method gives better approximation and fast convergence to the results.

4.1 Number of Limit Cycles of Liénard Equation

In this section we will study a Liénard system of the form ẋ = y − F (x), ẏ = −x, where F(x)

is an odd polynomial. Hector Giacomini & Sébastien Neukirch introduced a method that gives a

sequence of algebraic approximations to the equation of each limit cycle of the system [9]. This

sequence approaches the exact equation of each limit cycle and also, a sequence of polynomials

Rn(x) is obtained whose roots of odd multiplicity are related to the number and location of the limit

cycles of the system.

We are interested in �nding number of limit cycles of a two-dimensional autonomous system of

the form:

ẋ = X(x, y), ẏ = Y (x, y). (4.1.1)

In 1928 Liénard presented a criterion for the uniqueness of periodic solutions for an equation [9]:

ẍ+ f(x)ẋ+ x = 0. (4.1.2)

He transformed this equation into a �rst-order system by replacing ẋ = z to get,

ẋ = z, ż = −x− f(x) z. (4.1.3)

30
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In his proof he used an equivalent form to (4.1.3) by changing variable as z = y − F (x), where

F (x) =
∫ x

0 f(u)du :

ẋ = y − F (x), ẏ = −x, (4.1.4)

which is a particular case of (4.1.1).(4.1.2) is called Liénard equation and both system (4.1.3) and

(4.1.4) are called Liénard systems.

We will deal with the question of the number of limit cycles for the system (4.1.4) and their

location in phase space for a given arbitrary odd polynomial F (x) of degree m. There are no general

results about the number of limit cycles of (4.1.4) however, for m = 3, i.e., for F (x) = a1x + a3x
3,

it has been shown in [12] that the system has a unique limit cycle if a1a3 < 0 and no limit cycle if

a1a3 > 0. For m = 5 i.e., for F (x) = a1x+a3x
3 +a5x

5, it has been shown in [21] that the maximum

number of limit cycles is 2.

We now explain the method through the case where,

F (x) = ε (
x3

3
− x) (4.1.5)

also known as the van der Pol equation.

We consider a function h2(x, y) = y2 + g1,2(x)y + g0,2(x), which is second degree polynomial in y.

Here g1,2(x) and g0,2(x) are arbitrary functions of x. Here, the second subindex of h2 refers to the

degree of the polynomial. Then we calculate ḣ2 i.e.,

ḣ2 = ẋ
∂h2

∂x
+ ẏ

∂h2

∂y
.

Putting the values from eq.(4.1.4) in ḣ2, we get:

ḣ2 =
(
y − F (x)

)∂h2

∂x
− x∂h2

∂y
.

ḣ2 =
(
y − F (x)

)(
y
∂g1,2

∂x
(x) +

∂g0,2

∂x
(x)− x(2y + g1,2(x))

)
,

which is a 2nd degree polynomial in y. By arranging ḣ2, we get

ḣ2 = y2∂g1,2

∂x
(x) +

(
− F (x)

∂g1,2

∂x
(x) +

∂g0,2

∂x
(x)− 2x

)
y

+
(
− xg1,2 − F (x)

∂g0,2

∂x
(x)
)
.

Now we are to choose g1,2(x) & g0,2(x) in such a way that the coe�cients of y2 and y in ḣ2 are zero

and we are only left with a function of x. From this we get g1,2(x) = k1 and g0,2(x) = x2 +k0, where

k0 and k1 are arbitrary constants. As F(x) is an odd polynomial & if (x, y) is a point of the limit cycle

of (4.1.4) then so will (−x,−y) be. We want that the function h2(x, y) should have this symmetry

as well. For this reason we put k1 = 0. We then have ḣ2 = R2(x) = −2xF (x) = −2xε (x
3

3 −x). The

polynomial R2(x) is even and it has exactly one positive root of odd multiplicity, i.e. x =
√

3. If we

integrate the function ḣ2 along the limit cycle, we have :
∫ T

0 ḣ2(x(t), y(t))dt =
∫ T

0 R2(x(t))dt, where
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T is the period; but
∫ T

0 ḣ2(x(t), y(t))dt = h2(x(T ), y(T )) − h2(x(0), y(0)) = 0 since the integral is

around a closed curve. Consequently, we �nd :
∫ T

0 R2(x(t))dt = 0. This last equality tells us that

there cannot be any limit cycle in a region of the phase plane where R2(x) is of one sign. For the

van der Pol equation, R2(x) has a root of odd multiplicity at x =
√

3 , hence the maximum value

of x for the limit cycle must be greater than
√

3. The curves de�ned by h2(x, y) = x2 + y2 + k0 = 0

are closed for k0 < 0. We will only consider the cases for polynomial of even degree. Since the

polynomials hn(x, y) with n odd do not give useful information since the level curves hn(x, y)) are

open and the polynomials Rn(x) have always a single root of odd multiplicity at x = 0

Next we consider a 4th degree polynomial in y for the function h4(x, y), i.e. h4(x, y) = y4+g3,4(x)y3+

g2,4(x)y2 + g1,4(x)y + g0,4(x). By imposing the condition on ḣ4 as we did for ḣ3 to be a function of

only x, we �nd

ḣ4 = y4∂g3,4

∂x
+ y3

(
− F (x)

∂g3,4

∂x
+
∂g2,4

∂x
− 4x

)
+ y2

(∂g1,4

∂x
− F (x)

∂g2,4

∂x
− 3xg3,4

)
+ y
(∂g0,4

∂x
− F (x)

∂g1,4

∂x
− 2x

)
+
(
− F (x)

∂g0,4

∂x
− xg1,4

)
.

Now we �nd all g′s in such a way that the coe�cients of y4, y3, y2 & y in ḣ2 are zero and get

R4(x) = − 4
27x

10− 4
9x

8− 24
15x

6 + 14
3 x

4 +2x2. After neglecting the odd powers of x wee see R4(x) is an

even polynomial of tenth degree. We will take ε = 1 for this case. R4(x) has only one positive root

of odd multiplicity, given by x ' 1.824,. This root is greater than the root of R2(x). Once again,

by the same reasoning as before, the maximum value of x for the limit cycle must be greater than

this value. The limit cycle for this system is given in (Fig. 4.1).

In this way a new lower bound for the maximum value of x on the limit cycle is obtained. It

is also observed that the number of positive roots of odd multiplicity is equal to the number of

limit cycles of the given system. Hence continuing in this way for larger even values of n the roots

obtained converge to the number of the limit cycles of the system. In all cases, the polynomials

Rn(x) have only one positive root of odd multiplicity implying the uniqueness of limit cycle for this

system. The level curves hn(x, y) = K are all closed for positive values of K. These K ′s represents

an algebraic approximation to the limit cycle. The numerical value of the maximum of x on the

limit cycle, with F (x) de�ned by (4.1.5), is xmax ' 2.01(ε = 1). It is clear that the roots of Rn(x)

seem to converge to xmax and the curves fn(x, y) seem to approximate the limit cycle.

We have also studied another case where:

F (x) = 0.8x− 4

3
x3 + 0.32x5. (4.1.6)

This system has two limit cycles[21]. We have calculated the polynomials hn(x, y) and Rn(x) up to

n = 4 (see table 4.1). The polynomials Rn(x) have exactly two positive roots of odd multiplicity

for both cases. For each n, we determine values of K, which will be two for this case. These closed
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Figure 4.1: Limit Cycle for the system (4.1.5) for ε = 1

curves hn(x, y) = K provide algebraic approximations to each cycle for each value of n even and

approach each one of the limit cycles of the system. The numerical values of the maximum of x

on each limit cycle are xmax,1 ' 1.0034 and xmax,2 ' 1.9992 respectively. The limit cycle for this

system is given in (Fig. 4.2).

n Root 1 Root 2 Exact Root 1 Exact Root 2

2 0.852 1.854 1.003 1.9992

4 0.905 1.885 - -

Table 4.1: For each value of n, we give the two roots of Rn(x) for F (x) de�ned by (4.1.6)

Hence it has been shown that the polynomials hn(x, y) = yn + gn−1,n(x)yn−1 + gn−2,n(x)yn−2 +

...+ g1,n(x)y+ g0,n(x) give a lot of information about the number and location of the limit cycles of

system of type (4.1.4), in the case where F (x) is an odd polynomial (for the case where F (x) is not

an odd polynomial, the limit cycles are not invariant under the transformation (x, y) → (−x,−y).

The curves hn(x, y) = Kn give algebraic approximations to each limit cycle. The number of positive

roots of odd multiplicity of the polynomials Rn(x) = ḣn(x, y) give information about the number

of limit cycles of (4.1.4) and they approximate each limit cycle. Hence all the relevant information

about the limit cycles of (4.1.4) seems to be contained in the proposed polynomials hn(x, y).
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Figure 4.2: Limit Cycle for the system (4.1.6)

4.2 Non-Perturbative Method for Finding Limit Cycles of Liénard

Equation

In this section we deal with same problem i.e. solving the di�erential equation for �nding the

limit cycles through another method. In a study B. Delamotte used a non-perturbative approach

for solving the second order di�erential equation for �nding the limit cycles [10]. We explain the

method and then compare it with the method proposed in previous section for accuracy and speed

of convergence to the solution.

We consider a particular class of di�erential equation through which we will explain the method

and then apply it on the same equations (4.1.5) & (4.1.6).

Consider a 2nd order di�erential equation:

f(x(t), x′(t), x′′(t)) = 0, (4.2.1)

with initial conditions

x(t0) = x0, x′(t0) = x′0, (4.2.2)

where x(t) is it's solution.

We are to replace eq.'s (4.2.1) & (4.2.2) by a linear di�erential equation with an explicit time-

dependent right-hand side i.e.,

x′′(t) + ω2x = F (t). (4.2.3)

Eq.'s (4.2.1) & (4.2.2) are completely equivalent to (4.2.2) & (4.2.3). F will depend on the di�erential

equation we are studying and on the initial conditions (4.2.2). Now we are to make an initial guess

more likely called ansatz i.e. Fans for F and �nd such Fans that best approximates the actual F .

Let us denote the solution of (4.2.3) by xans(t) with Fans,

x′′ans(t) + ω2xans = Fans(t). (4.2.4)
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Let δx be the di�erence between x(t) & xans(t) then:

x(t) = xans(t) + δx(t). (4.2.5)

Since x(t) is the solution to eq. (4.2.1):

f(xans(t) + δx(t), x′ans(t) + δx′(t), x′′ans(t) + δx′′(t)) = 0. (4.2.6)

Also, if for any t, x(t) is very close to xans(t) then:

f(xans(t), x
′
ans(t), x

′′
ans(t)) ∼ O(δx). (4.2.7)

We will expand xans(t) as a Fourier sum which is equivalent to choosing Fans:

xans(t) =

N∑
k=1

(
xk sin kωt+ yk cos kωt

)
. (4.2.8)

We now impose a condition that δx contains harmonics higher than N then all harmonics less than

or equal to N are contained in xans. Then eq. (4.2.8) determines the approximate solution xans(t).

Let us now apply this technique to a speci�c example. We consider the van der Pol equation:

x′′ + g(x2 − 1)x′ + x = 0, (4.2.9)

with initial conditions de�ned as

xans(0) = x0, x′ans(0) = 0. (4.2.10)

This equations has stable limit cycle in phase space. Here we replace (4.2.9) by (4.2.4). The functions

xans(t) & δx are expanded as Fourier sums:

xans(t) =

N∑
k=0

[
x(2k+1) sin(2k + 1)ωt+ y(2k+1) cos(2k + 1)ωt

]
. (4.2.11)

The set of x(2k+1) & ω are free parameters. δx is given by (4.2.5). Replacing x from (4.2.5) then

(4.2.9) becomes:(
xans(t) + δx(t)

)′′
+ g
[(

(xans(t) + δx(t))2 − 1
)(
xans(t) + δx(t)

)′]
+
(
xans(t) + δx(t)

)
= 0.

Further replace x′′ans from (4.2.4) in (4.2.9) then δx obeys the equation:

δx′′ = −g
(

(xans + δx)2 − 1
)

(x′ans + δx′)− (xans + δx)− [Fans − xansω2]. (4.2.12)

The even harmonics are small enough to be ignored hence they are not considered. For our �rst

approximation we consider k = 0 in (4.2.11) to get

xans = x1 sinωt+ y1 cosωt. (4.2.13)
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Then our initial conditions from (4.2.2) become:

xans(0) = x0 = y1, x′ans(0) = 0 = x1ω. (4.2.14)

Here we impose the condition that δx contains harmonics higher than 2N + 1, so leaving out those

harmonics in (4.2.12) we get:

−g(x2
ans − 1)x′ans + xans(ω

2 − 1)− Fans ∼ 0. (4.2.15)

Placing (4.2.13) in (4.2.15) and then equating the coe�cients of sinωt & cosωt we get two

equations. These equations along with initial conditions (4.2.14) will determine x, y & ω and

therefore the equation of limit cycle and it's amplitude (xmax) and period T. We present the value

of ansatz for g = 1 in Table 4.2 and compare with the exact obtained after numerical integration of

the equation [10]. The results obtained after only two iterations are excellent and show the accuracy

of this method.

k T xmax

k = 0 6.28 2

k = 1 6.68 1.925

Exact 6.66 2.01

Table 4.2: Period and amplitude of the limit cycle of the Van der Pol equation with g = 1

We now compare these results with one's obtained by the method presented in previous section

(call it method 1) in following table and observe that the results are strikingly better for this method.

The results obtained in previous method after 6 iterations this method gives in 2nd iteration. The

convergence to the result is also fast than the last method which shows this method is more accurate

than the last method.

Iteration xmax, Method 1 xmax, Method 2

1 1.732 2

2 1.824 1.925

Table 4.3: Comparison of results for Van der Pol equation (4.1.5) and (4.2.9), where Exact = 2.01

We have also studied this method for (4.1.6) with initial conditions given by (4.2.10) and this

method also showed good accuracy for this case. This system has two limit cycles [21]. Following

the same procedure as in last example the xans is given as (4.2.11). Solving this equation we arrive

at the equation

(1− ω2)xans + Fans + g(0.8− 4x2
ans + 1.6x4

ans)x
′
ans ∼ 0. (4.2.16)
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This equation along with the initial conditions obtained after iterating (4.2.11) help us get x, y and

period of the di�erential equation after equating the coe�cients of sinωt & cosωt obtained from

(4.2.16) for g = 1. The results for two iterations are presented in following table:

k T xmax,1 xmax,2

k = 0 6.28 0 1

k = 1 6.8 0.921 1.928

Exact 6.66 1.0034 1.9992

Table 4.4: Two roots of eq.(4.2.16)

Comparing these results with one obtained by the method presented in previous section for

(4.1.6) in following table and observe that the results are also more accurate for this method in this

case. The results obtained for previous method in 4th iteration this method gives in 2nd iteration.

Iteration xmax, Method 1 xmax, Method 2

1 xmax,1 = 0.852,xmax,2 = 1.854 xmax,1 = 0,xmax,2 = 1

2 xmax,1 = 0.905,xmax,2 = 1.885 xmax,1 = 0.921,xmax,2 = 1.928

Table 4.5: Comparison of results for (4.2.16)and (4.1.6) where exact values are:

xmax,1 = 1.0034,xmax,2 = 1.9992.

Hence we conclude that the method proposed by B.Delamotte[10] gives better approximation

and fast convergence to the actual results than the method proposed by H.Giacomini and S.Neukirch

[9]. This method is more simple and less time consuming and it's accuracy is higher than the other.



Chapter 5

Summary

In this study we discussed representation of plane autonomous ordinary di�erential equations in the

phase plane and how their solutions are obtained analytically. By doing so we learned about the

nature of di�erent types solutions and their behavior in phase plane. Out of those solutions periodic

orbits were of special interest to us since our aim was to look for such solutions of a problem. Then

we discussed in detail the periodic orbits and the question of their existence and non-existence in

a particular system. Di�erent results pertaining to existence and non-existence of such orbits were

also presented. Lastly the question about the number of periodic orbits present in a particular

system was dealt with by presenting some results containing approximate techniques to �nd the

number of periodic orbits of Liénard equation along with their comparison on the accuracy and fast

convergence to the results. The comparison leads us to �nd the limit cycles of the Liénard equation

in a way that help us arrive at the solution e�ciently and e�ectively.
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