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Abstract

Metric dimension is a parameter that has appeared in various applications of

graph theory as diverse as, pharmaceutical chemistry, robot navigation, combinato-

rial optimization, master mind games and sonar and coast guard Loran, to name a

few. The problem of finding the metric dimension of a graph is NP -complete.

We study the metric dimension of antiweb-wheels. We determine the exact value

of metric dimension for antiweb-wheels and prove that they have unbounded metric

dimension. We also study the metric dimension of quasi flower snarks, generalized

antiprism and cartesian product of square cycle and path. We prove that these

classes of graphs have constant or bounded metric dimension. Furthermore, we study

the metric dimension of the subdivision of Möbius ladders and use this construction

to study the metric dimension of generalized Petersen multigraphs P (2n, n). It is

natural to ask for characterization of graphs classes with respect to the nature of

their metric dimension. It is also shown that the exchange property of the bases

in a vector space does not hold for minimal resolving sets of antiweb-wheels, quasi

flower snarks, generalized prism, generalized antiprism, barycentric subdivision of

Möbius ladders and generalized Petersen multigraphs.
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Introduction

It is well known that the problem of determining whether β(G) < k is an NP -

complete problem. The aim of this thesis is to classify the several graph classes

with respect to the nature of their metric dimension. We also study the exchange

property for resolving sets of different families of graph. The exchange property

for resolving set of graphs is relatively a new notion in metric graph theory and it

helps us to determine that which methods (algorithmic or analytical) are feasible

for finding the metric dimension of graph. We are able to give some advancement

in metric dimension theory and exchange property for resolving sets in this thesis.

The first two chapters are devoted to some basic definitions and terminologies.

In the first chapter, we give a brief introduction of graph models and basic concepts

of graphs. The second chapter discusses about distance related parameters and their

association. It also contains the concept of metric dimension, a brief history and

known results regarding resolving sets.

In the third chapter, we study the metric dimension of different families of graphs.

The metric dimension of wheels Wn has been determined in [5] showing that wheels

have unbounded metric dimension. In this chapter, we extend this study to antiweb-

wheels. We determine the exact value of metric dimension for antiweb-wheels and

prove that they constitute a class of graphs with unbounded metric dimension. We

also study the metric dimension of some graphs that are rotationally-symmetric,

namely quasi flower snarks, generalized antiprism and cartesian product of square

cycle and path. We prove that these classes of graphs have constant or bounded

metric dimension. The metric dimension of generalized Petersen graphs for different

values of m (≥ 1) has been determined in [6, 16, 19, 20, 21]. We study the metric

dimension of the subdivision of Möbius ladders and use this construction to study

the metric dimension of generalized Petersen graphs P (2n, n). We prove that the

generalized Petersen graphs P (2n, n), which are multigraphs have metric dimension

equal to 3 when n is even and n ≡ 0, 2 (mod 4) and equal to 4 otherwise. It is



natural to ask for characterization of graphs classes with respect to the nature of

their metric dimension.

In the fourth chapter, we study the exchange property for minimal resolving sets

of antiweb-wheels, quasi flower snarks, generalized prism and generalized antiprism.

It is shown that the exchange property of the bases in a vector space does not hold

for minimal resolving sets of antiweb-wheels, quasi flower snarks, generalized prism

and generalized antiprism. We also study the exchange property for resolving sets

of barycentric subdivision of Möbius ladders and generalized Petersen multigraphs

P (2n, n) and prove that the exchange property of the bases in a vector space does

not hold for minimal resolving sets of barycentric subdivision of Möbius ladders and

also does not hold for minimal resolving sets of generalized Petersen multigraphs

P (2n, n) when n is even and n ≡ 0, 2 (mod 4). Some open problems are raised in

chapter 5 arising from this thesis.
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Chapter 1

Preliminaries and basic concepts

This chapter is devoted to a brief introduction of basic concepts of graphs. It

contains different graph theoretical terms and their illustration with examples. We

also discuss connectivity, planarity, some common graph classes and few examples

that explain these concepts.

1.1 Graphs

Many structures that involve physical situations can easily be depicted on paper by

the use of a diagram. A diagram consists of a set of points or dots and lines that join

all or some specific pairs of the given set of points. For instance, the points represent

people at a party, and a line joining two points if they shake hands. In many physical

problems like telephone networks, we are interested in finding the interruptions to

the regular flow of networks. For this, we require to identify those particular lines

a b

c d

e

f

ht1

t2

t3

t4

t5

t6

t7

t8

t9

Figure 1.1: A network of telephone lines
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and poles that should remain in the network service to avoid disconnecting it. The

nodes in the network shown in figure 1.1 indicate poles. The removal of any single

line will keep network connected. However, removing the two lines namely t5 and t6

will disconnect the network. The removal of the pole e also disconnects it. The set

{t1, t3, t5, t6, t7, t8} is the required minimum number of lines to avoid disconnecting

the network.

Another problem is to find a feasible way of allocating jobs to qualified persons.

Suppose that we have six people A,B,C,D,E and F and six jobs j1, j2, j3, j4, j5 and

j6. We represent this physical situation by a diagram having dots or points for each

A

B

C

D

E

F

j1

j2
j3
j4
j5
j6

a

b

c
d
e

u

v
w
x
y

G H

Figure 1.2: A job applications graph

person and for each job. We join people to jobs for which they are qualified with the

help of lines as shown in figure 1.2. The diagram G shows that there is a feasible

way for allocating one job to each people but in diagram H it is not possible. The

reason can be found by considering people a, d and e. These three people as a set

are collectively qualified only for two jobs v and x.

The job of a salesman requires to visit several cities each day and certain pairs

of these cities are connected with highways. What should be the visit schedule so

that he enables to visit each city exactly once so that the traveling time can be

minimized? The transportation system of the salesman can be represented by a

diagram shown in figure 1.3 whose nodes indicate cities and a line joins two cities

if and only if a highway connects them. The salesman can visit each city starting

2



a

b

c

d

t1

t2

t3

t4
t5

t6

Figure 1.3: Traveling salesman’s territory

from b and arrives back at b by taking the lines t3, t4, t2 and t6.

Suppose there are three houses. Each house have to be supplied with three

utilities, namely electricity, water and gas. We can represent the three utilities

problem by a diagram shown in figure 1.4, where the nodes h1, h2 and h3 indicate

houses and e, w and g represent utilities. Two vertices are joined by a line if one node

h1 h2 h3

g w e

Figure 1.4: The three utilities graph

represents a house and other one is a utility. Is it possible to make such connection

without intersection of lines? The diagram in figure 1.4 can not be drawn without

line crossing, so the answer to this problem is no.

Seven radio broadcasting companies R1, · · · , R7 have applied for frequency chan-

nels. To avoid interference, two companies can not be assigned the same channel if

their transmitters are within three hundred kilometers. The main task is to assign

a small number of different frequencies as possible. We illustrate this problem with

the help of a diagram shown in figure 1.5, where R1, · · · , R7 represent the nodes

and two nodes are joined by a line if their transmitters are less than three hundred

3



kilometers apart. Our task is to assign minimum number of different colors to the

nodes such that two nodes have different color if they are joined by a line. Then

the total number of colors represent the total number of frequencies. We can assign

one color to R1, R3 and R5. Nodes R2, R6 and R7 are represented by the same color

and we can assign a third color to R4, so there are three frequencies that can be

assigned to these broadcasting companies.

R1

R2

R3

R4

R5

R6

R7

Figure 1.5: Radio transmitters and their interference graph

We list few other problems here: How can we assign colors to different region

of a map by the use of four colors so that adjacent sections receive different colors?

What should be the route plan in order to get cheapest fares? How can we create a

fastest route structure from national to state capitals? All of the above mentioned

and several other real world problems involve graph theory.

Formally, a graph G comprises of a non empty vertex set V (G), and a collection

of unordered pair of vertices (not necessarily distinct) called the edge set E(G).

Symbolically, a graph is represented as G = (V (G), E(G)), where we write e = uv

for an edge with end points u and v. A graph is usually represented by a diagram

where the vertices are just points and edges are the lines or curves that serve as a

link between two distinct or possibly same points.

Now we represent some basic definitions and terminologies of graph theory.

Definition 1.1.1. The number of vertices in a graph G is called order of G while

4



the number of edges in a graph G is called size of G. These two parameters are

denoted by n and m, respectively.

Definition 1.1.2. The end points of an edge are said to be incident with the edge.

If distinct edges are incident with a common vertex then they are called adjacent

edges. If e = uv is an edge of a graph G then u and v are said to be adjacent in G

and we also say that u and v are joined by the edge e. The set of all vertices that

are adjacent to v in G is called the neighborhood of v and denoted as NG(v).

Definition 1.1.3. If two or more edges have same pair of end points, then these

edges are referred as parallel or multiple edges. If an edge e is permitted to join a

vertex to itself then e is called a loop. A graph G with no loop and multiple edges

is said to be a simple graph.

The number of edges incident with a vertex, say v, is called the degree of the

vertex v, denoted as dG(v). An isolated vertex and an end vertex (or a leaf ) in

a graph G are the vertices of degree 0 and 1, respectively. Each loop counts to

two edges. The maximum and minimum degree is denoted by ∆(G) and δ(G),

respectively and is defined as:

∆(G) = max{dG(v) : v ∈ V (G)};

δ(G) = min{dG(v) : v ∈ V (G)}.

Next, we present a well known handshaking lemma that provides a fundamental

relationship between the degree sum and size of a graph.

Theorem 1.1.1 ([10]). (Handshaking Lemma) If G is a graph, then∑
v∈V (G)

dG(v) = 2m,

where m is the size of G.

Definition 1.1.4. A graph having exactly one vertex is said to be a trivial graph.

All other graphs are nontrivial.

Definition 1.1.5. If the vertex and edge set of a graph G are finite then G is called

a finite graph, otherwise G will be an infinite graph.
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Example 1.1.1. Consider a non trivial finite graph G shown in figure 1.6 having

V (G) = {v1, v2, v3, v4, v5} and E(G) = {e1, e2, e3, e4, e5, e6, e7, e8, e9}.

aaa

v1 v2

v3 v4

v5

e1

e
2

e3

e4 e6

e
5 e7

e8

e9

Figure 1.6: A multigraph

Here ∆(G) = 4 and δ(G) = 3. Since the initial and terminal vertex of the edge

e9 is same, hence it is a loop. The edges e1 and e2 are parallel with end points v1

and v2. The vertices v1, v2, v3 and v4 are joined to v5 through edges e4, e6, e5 and e7,

respectively. Thus we have NG{v5} = {v1, v2, v3, v4}. The vertices v4, v1 and v4, v2

are not joined by an edge that is why they are non adjacent vertices. Moreover,

since G is having loop and parallel edges therefore G is a multigraph.

Definition 1.1.6. A graph F is a subgraph ofG, denoted by F ⊆ G, if V (F ) ⊆ V (G)

and E(F ) ⊆ E(G). If V (F ) = V (G) then F is called a spanning subgraph of G.

Definition 1.1.7. A subgraph F is an induced subgraph of G if whenever v, u ∈
V (F ) and e = uv is an edge of G, then e is an edge of F as well. If X ⊆ V (G),

then the subgraph of G induced by set X is the induced subgraph with vertex set

X. This induced subgraph is denoted as G[X].

Example 1.1.2. A graph G and its subgraph H, spanning subgraph F and the

subgraph S induced by {v9, v10, v11, v12, v13} are depicted in figure 1.7.

If e ∈ E(G), then we write G \ {e} for the subgraph of G where E(G \ {e}) =

E(G)\{e}. More generally, if S ⊆ E(G), then G\S is the subgraph of G with E(G\
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v1

v2

v3

v4

v5
v6

v
7

v8

H

v1

v2

v3

v4

v5
v6

v
7

v8

v9
v10

v11
v12

v13

G

v1

v2

v3

v4

v5
v6

v
7

v8

v9 v10

v11
v12

v13

F

v9 v10

v12

v13

s
v11

Figure 1.7: A graph G and its subgraph, spanning subgraph and induced subgraph

S) = E(G) \ S. If v is a vertex of a non trivial graph G, then the subgraph G \ {v}
has vertex set V (G) \ {v} and E(G \ {v}) = {e ∈ E(G) : e is not incident with v}.
More generally, if W ⊂ V (G), the subgraph G \ W consists of all vertices of G

that are not in W and its edge set consists of all edges of G joining two vertices in

V (G) \W .

Definition 1.1.8. A walk from vertex u to vertex v in a graph G is a finite alter-

nating sequence of vertices and edges

W : u = v0, e1, v1, e2, · · · , vl−1, el, vl = v,

where ei = vi−1vi such that 1 ≤ i ≤ l, where u and v are the initial and terminal

vertices of W , respectively. If u = v, then W is closed otherwise it is open. The

number of edges in a walk is called its length.
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Definition 1.1.9. A path P is a simple graph with |E(P )| = |V (P )| − 1 whose

vertices can be arranged in a linear sequence in such a way that two vertices are

adjacent if they occur consecutively in the sequence. A cycle of length n ≥ 3 denoted

by Cn is a simple graph with |V (Cn)| = |E(Cn)| whose vertices can be arranged in

a cyclic sequence. The number of edges encountered in a path or cycle is called its

length. A cycle of odd length is recognized as an odd cycle and a cycle of even length

is called an even cycle. A graph G is acyclic if it contains no cycle.

If the edges of a walk W are distinct, then W is called a trail. It is observed

that if there is no repetition of the vertices in a walk then that walk is called a path.

Thus,

walk
distinct edges−−−−−−−−−−→ trail

distinct vertices−−−−−−−−−−−−→ path.

So we can say that every path is a walk and every path is a trail as well. It is also

noted that every cycle is a closed trail but a closed trail is a cycle if all its vertices

are distinct except the initial and terminal vertices.

Definition 1.1.10. A graph G is said to be a regular graph if δ(G) = ∆(G), i.e.,

all the vertices have same degree in G. A graph G is k-regular if dG(v) = k for all

v ∈ V (G) where 0 ≤ k ≤ n− 1. A 3-regular graph is called a cubic graph.

Example 1.1.3. The graph H, in figure 1.7, is an even cycle of length 8 and

H \ {v1v8} is a path of length 7. Here in graph H, the degree of each vertex is 2,

therefore it is 2-regular. A 4-regular and some cubic graphs are depicted in figure

1.8.

Figure 1.8: Some regular graphs
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Definition 1.1.11. A cycle (path) that contains all vertices of a graph G is called

a spanning cycle (path).

G H F

Figure 1.9: Graph G that contains spanning cycle and path

Definition 1.1.12. Let G and H be two graphs such that V (G) = V (H) and

E(G) = E(H) then G and H are said to be equal. If G and H are the two graphs

having same structure, then G and H are isomorphic and written as G ∼= H. For-

mally, G and H are isomorphic if there is a mapping ψ : V (G) → V (H) such that

for each edge uv ∈ E(G) if and only if ψ(u)ψ(v) ∈ E(H). In this case, ψ is called

an isomorphism from G to H.

Example 1.1.4. The graphs G,H and G1, H1 in figure 1.10 are isomorphic.

Definition 1.1.13. A graph G is connected if any two vertices of G are connected

by a path, otherwise G is disconnected.

A component of G is its connected subgraph such that it is not a proper subgraph

of any other connected subgraph of G. The number of components in a graph G is

denoted by C(G). So, we can say a graph is connected if and only if C(G) = 1.

Definition 1.1.14. Let e be an edge of a connected graph G such that G \ {e} is

disconnected, then e is called a bridge. In other words, an edge e is called a bridge

if C(G \ {e}) > C(G).

Theorem 1.1.2 ([10]). An edge e of a graph G is a bridge if and only if e belongs

to no cycle of G.

9



v1 v2

v4

v3

v5
v6

H

v1 v2

v3 v4

v5 v6

G

v7 v8

u v

w x

y
z

u

v

w

x

y z

s r

G1 H1

Figure 1.10: Isomorphic graphs

Definition 1.1.15. Let G be a connected graph and v ∈ V (G), then v is referred

as a cut vertex of G if G \ {v} is disconnected.

Example 1.1.5. A graph G and the resulting graphs after deletion of the edge e

and vertex v are shown in figure 1.11. Here v is a cut vertex and e is a bridge.

The following theorems give a relation between a bridge and a cut vertex of a

connected graph.

Theorem 1.1.3 ([10]). Let G be a connected graph and v ∈ V (G) is incident with

a bridge, then v is a cut vertex of G if and only if dG(v) ≥ 2.

Theorem 1.1.4 ([10]). If a connected graph G of order three or more contains a

bridge then G contains a cut vertex.

Definition 1.1.16. For two disjoint graphs G and H, G∪H is a disconnected graph

10



v

G \ {e}

e

v

G
e

G \ {v}

Figure 1.11: A graph G and its vertex and edge deleted subgraphs

with vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H) and join G + H consists

of G ∪H and all edges joining each vertex of H with each vertex of G.

Example 1.1.6. Join of K3 and P3 is shown in the following figure 1.12.

K3 P3 K3+P3

Figure 1.12: Join of two graphs K3 and P3

Definition 1.1.17. The cartesian product of two graphs G and H denoted by G�H

whose vertex set is V (G × H) = V (G) × V (H), that is V (G�H) = {(g, h)|g ∈
V (G), h ∈ V (H)} and the edge set E(G�H) = {(g, h)(g′, h′) : h = h′, gg′ ∈ E(G)

or g = g′, hh′ ∈ E(H)}.

Example 1.1.7. The cartesian product of P4 with P3 and K3 with P3 are shown in

figure 1.13.
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P4:

P3

P4 P3

K3

K3 P3

Figure 1.13: The cartesian product of two graphs

1.2 Some common graph classes

This section contains some common graph classes, namely complete graphs, bipartite

graphs and trees.

Definition 1.2.1. A complete graph denoted by Kn, where n represents its order,

is a simple graph such that every two distinct vertices are adjacent.

Example 1.2.1. Complete graphs K8, K6 and K4 are shown in figure 1.14.

K6 K4K8

Figure 1.14: Complete graphs
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Definition 1.2.2. A graph G is bipartite if its vertex set can be partitioned into

two subsets X and Y recognized as partite sets, such that each edge has one end

in X and other in Y . A complete bipartite graph is a simple graph in which every

vertex of X is joined to every vertex in Y . It is denoted by Kr,s where r = |X| and

s = |Y |.

It can be seen that a star is a complete bipartite graph with |X| = 1 or |Y | = 1.

Now, we present a characterization of bipartite graphs by using the concept of a

cycle.

Theorem 1.2.1 ([10]). A nontrivial graph G is bipartite if and only if it has no odd

cycle.

Example 1.2.2. The graphs S and H in figure 1.15 are complete bipartite graphs

K1,8 and K2,2, respectively. The graph G shown in figure 1.10 is a complete bipartite

graph K3,3.

S F H

Figure 1.15: Bipartite graphs

Definition 1.2.3. An acyclic connected graph is called a tree. An acyclic graph is

called a forest.

Trees have many possible characterizations and each contributes to the structural

understanding of graphs in a different way. The following theorems establish some

of the useful characterizations.

Theorem 1.2.2 ([10]). A graph G is a tree if and only if any two vertices of G are

connected by a unique path.

13



Figure 1.16: Trees

Theorem 1.2.3 ([10]). If T is a tree then m = n− 1, where n is the order and m

is the size of T .

Theorem 1.2.4 ([10]). If a graph G satisfies any two of the following properties:

(i) G is connected.

(ii) G is acyclic.

(ii) m = n− 1.

Then G is a tree.

Definition 1.2.4. A spanning tree of a connected graph G is a spanning subgraph

H of G such that H is a tree.

G

Figure 1.17: A graph G and its spanning tree

An important property related to spanning trees is established in the following

theorem.

Theorem 1.2.5 ([10]). A graph G is connected if and only if it has a spanning tree.

Definition 1.2.5. A vertex v of a graph G is called pendant if |NG(v)| = 1. If an

end vertex of an edge e is pendant then e is said to be a pendant edge.

14



1.3 Connectivity and planarity

In this section we present vertex and edge connectivity that are useful in measuring

connectedness of graphs. It also contains some portion related to planarity.

Definition 1.3.1. Let G be a connected graph and X ⊆ V (G), if G \X is discon-

nected then X is referred to as a vertex cut of G.

Definition 1.3.2. A vertex cut of G with minimum cardinality is called a mini-

mum vertex cut and the cardinality of that minimum vertex cut is recognized as

connectivity number, denoted by κ(G).

For a complete graph G, connectivity number κ(G) is defined to be n− 1. Thus,

κ(G) = 0 if G is either trivial or disconnected. In a graph G, if κ(G) ≥ k then G is

said to be k-connected.

Example 1.3.1. A cycle Cn, where n ≥ 4 is 2-connected and a path of length two

or more is 1-connected. A 3-connected graph G and 1-connected graph H are shown

in figure 1.18.

G H

Figure 1.18: Graph

Definition 1.3.3. Let G be a connected graph and S ⊆ E(G), if G \ S is discon-

nected then S is referred as an edge cut of G.

Definition 1.3.4. An edge cut of minimum cardinality in G is called a minimum

edge cut and the cardinality of that minimum edge cut is referred as edge connectivity

number, denoted by κ′(G).
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Let G be a non trivial graph then κ′(G) = 0 if and only if G is disconnected.

The edge connectivity number of a trivial graph is also zero. For a connected graph

G, κ′(G) = 1 if and only if G contains a bridge. Furthermore, if G ∼= Kn then

κ′(G) = n− 1. A graph G is said to be k-edge-connected if κ′(G) ≥ k.

Example 1.3.2. Consider the graph G in figure 1.17, then we have κ(G) = 2 and

κ′(G) = 3. While the graph G of figure 1.18 has κ(G) = κ′(G) = 3.

The next theorem gives an upper bound for connectivity and edge connectivity as

well. In particular it also indicates that a high connectivity needs a large minimum

degree.

Theorem 1.3.1 ([10]). For a non trivial graph G, κ(G) ≤ κ′(G) ≤ δ(G).

Theorem 1.3.2 ([10]). If G is a cubic graph, then κ(G) = κ′(G).

To state Menger’s theorem, first we define seperating set. A set S ⊆ V (G) is said

to separate two vertices x and y of G if G \S is disconnected and x and y belong to

different components of G\S. Such a set S is called an x-y separating set and an x-y

separating set of minimum cardinality is said to be a minimum x-y separating set.

Moreover, a collection {P1, P2, . . . , Pl} of x-y paths is said to be internally disjoint

if no vertex other than x and y is common in any two paths Pi and Pj from the

collection.

Theorem 1.3.3 ([10]). (Menger’s Theorem) Let x and y be two non adjacent ver-

tices in a connected graph G. Then the maximum number of internally disjoint x-y

paths in G is equal to the minimum number of vertices in an x-y separating set.

Placing one or more vertices into the interior of an edge is known as subdivision.

Next we present the definition of subdivision of an edge, its inverse operation and

moreover introduce the concept of barycentric subdivision.

Definition 1.3.5. Let x, y ∈ V (G) and e = xy be an edge of G. Subdividing the edge

e means that a new vertex v is added to V (G), and that edge e = xy is replaced in

E(G) by an edge e′ = xv and an edge e′′ = vy. Geometrically, subdividing an edge

is an operation that inserts a new vertex into the interior that results in splitting
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that edge into two edges. By an inverse operation we mean, replacement of two

edges that meet at a vertex of degree two by a single edge that join their end points

and this inverse operation is called smoothing away a vertex.

x y
e

x yv
e' e''

Figure 1.19: Subdividing an edge

x y
e

x yv
e' e''

Figure 1.20: Smoothing away a vertex

Definition 1.3.6. Subdividing a graph G means performing a sequence of edge

subdivision operations. The resulting graph is known as subdivision of the graph G.

We can convert a general graph into a simple graph by the use of subdivision

operation.

Definition 1.3.7. The barycentric subdivision of a graph G is the subdivision in

which a new vertex of degree two is added in the interior of each edge.

It can be noted that the resulting graph after applying barycentric subdivision

is loopless and moreover a loopless graph can be converted into a simple graph by

performing barycentric subdivision operation.

Example 1.3.3. Consider the graphs of figure 1.21, where G is a graph having loop

and parallel edges but barycentric subdivision yields a loopless graph and further

becomes a simple graph when we again apply barycentric subdivision. H is a cycle

of length 5 but its barycentric subdivision yields a cycle of length 10.
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G:

H:

Figure 1.21: Barycentric subdivision of some graphs

Definition 1.3.8. A graph which can be drawn in a plane without edge crossing

called a planar graph. In other words we can say a planar graph is a graph which is

isomorphic to a plane graph.

G1 G2
G3

Figure 1.22: Some planar graphs

The following theorem establishes an association between the order and size of

a planar graph.

Theorem 1.3.4 ([10]). Let G be a planar graph of order three or more, then

m ≤ 3n− 6,

where m is the size of the graph.

Corollary 1.3.5 ([10]). The complete graph K5 is non planar.
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Theorem 1.3.6 ([10]). The bipartite graph K3,3 is non planar.

A plane graph partitions the plane into connected pieces called the regions. In

every plane graph, there is always one unbounded region called the exterior region.

The subgraph of a plane graph whose vertices and edges are incident with a region

of G is called the boundary of that region. It is also observed that if G is a connected

graph with edges three or more, then the boundary of every region of G has more

than two edges. For example, consider the graph G1 of figure 1.22, there are 10

regions and one exterior region. Here n = 9,m = 18 and total number of regions

are 11, we have n −m + r = 2 where r is the number of regions. Leonhard Euler

observed that this observation is always true and is referred as the Euler identity.

Theorem 1.3.7 ([10]). (The Euler identity) Let G be a connected plane graph of

order n, size m, and containing r regions, then

r + n−m = 2.

One of the milestone of graph theory is Kuratowski’s characterization of planarity

in terms of two forbidden subgraphs, K5 and K3,3.

Theorem 1.3.8 ([10]). (Kuratowski’s Theorem) A graph G is planar if and only if

G does not contains K3,3, K5 or a subdivision of K5 or K3,3 as a subgraph.

v1

v2

v3
v4

v5

u1

u2

u3u4

u5

Figure 1.23: The Petersen graph

It is noted that the Petersen graph shown in figure 1.23 is non planar because it

has subdivision of K3,3.
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Chapter 2

Resolvability in graphs

This chapter includes the discussion about distance related parameters and their

properties. It also describes that the vertices of a graph constitute a metric space

with the metric d on the vertices of G. Moreover, the concept of metric dimension

and a brief history regarding resolving sets is also discussed.

2.1 Distance related parameters in graphs

Radius, diameter, eccentricity, periphery to name a few parameter that are to be

discussed in this section.

Let G be a connected graph and x, y ∈ V (G), the distance d(x, y) from x to y is

the length of a shortest x-y path in G and such an x-y path is called a geodesic.

Example 2.1.1. Consider the graph G in figure 2.1. Here d(u, v) = 3 and the

geodesic between u to v is shown by dotted line.

v

u

Figure 2.1: Graph
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Definition 2.1.1. Let G be a connected graph. The distance function d is a metric

on vertices of G, if it satisfies the following properties.

• d(x, y) ≥ 0 for all x, y ∈ V (G).

• d(x, y) = 0 if and only if x = y.

• d(x, y) = d(y, x) for all x, y ∈ V (G). (the symmetric property)

• d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ V (G). (the triangle inequality)

The pair (V (G), d) is then called a metric space.

Theorem 2.1.1 ([10]). For every pair of adjacent vertices x and y in a connected

graph G,

|d(x, v)− d(y, v)| ≤ 1 ∀ v ∈ V (G).

Definition 2.1.2. Let G be a connected graph and v ∈ V (G). The eccentricity of

v in G, denoted by e(v), is defined as

e(v) = max{d(v, x) : x ∈ V (G)}.

In other words, the eccentricity of v is the distance from v to a vertex farthest from

v in G.

Definition 2.1.3. A vertex x in a connected graph G is referred as an eccentric

vertex of v if d(x, v) = e(v).

Example 2.1.2. Consider the graph G of figure 2.2. Here d(v, x) = 4, i.e., x is the

vertex that lies at maximum distance from v. So e(v) = 4 and x is the eccentric

vertex of v.

Definition 2.1.4. If a vertex x is an eccentric vertex of some vertex of G, then x

is called an eccentric vertex of G and a subgraph of G induced by eccentric vertices

of G is recognized as eccentric subgraph of G denoted by Ecc(G).

Example 2.1.3. The eccentric vertices of G shown in figure 2.2 are v and x and

the subgraph induced by {x, v} is a disconnected graph.
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v

u

w

x

y

s

t z

G

Figure 2.2: Graph

Definition 2.1.5. The radius denoted by rad(G) of a connected graph G is defined

as rad(G) = min{e(v) : v ∈ V (G)} (the minimum eccentricity among all vertices of

G).

Definition 2.1.6. Let G be a connected graph, the diameter diam(G) of G is

defined to be diam(G) = max{e(v) : v ∈ V (G)} (the maximum eccentricity among

all vertices of G).

Example 2.1.4. Consider the graph G of figure 2.2. Here e(x) = e(v) = 4, e(w) =

e(u) = e(s) = e(y) = 3 and e(t) = e(z) = 2, so we have rad(G) = 2 and diam(G) =

4. Furthermore, diam(Pn) = n− 1, diam(Kr,s) = 2 where 1 ≤ r ≤ s (s > 1) and for

every positive integer n ≥ 3,

diam(Cn)=

{
n
2
, if n is even;

n−1
2
, otherwise.

Definition 2.1.7. A vertex v in a connected graph G is referred to as a central

vertex if e(v) = rad(G) and the center Cen(G) of G is the subgraph of G induced

by the set of central vertices of G. If Cen(G) = G, then G is called self centered.

Example 2.1.5. The central vertices of G in figure 2.2 are t and z and the subgraph

induced by {t, z} is K2. For some positive integer n, if G ∼= Kn and G ∼= Cn then G

is self centered. Now, consider the graph of figure 2.3 where the central vertices are

s and t and the subgraph induced by these vertices is a disconnected graph.
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s

t

Figure 2.3: A connected graph whose center is disconnected

Figure 2.4: Self centered graphs

The center of a graph plays a key role in applications that involve emergency

facilities where responding time (distance) to every single location (vertex) within

a region (graph) is crucial. Rather than if we want to locate service facilities like

general post office, commercial center, bank or power plant. In this case, we have

to minimize the average distance such that a person serviced by these places must

travel and it is equivalent to minimize the total distance traveled by all people in a

territory. The concept of median is defined in those situations.

Definition 2.1.8. Let G be a connected graph. The status of a vertex v, denoted

by s(v), is the sum of the distances from v to every other vertex in G and median

M(G) is the set of vertices having minimum status. The minimum status of a graph

G is the value of the minimum status denoted by ms(G) and the total status ts(G)

of a graph G is the sum of all the status values. Harary introduced the concept of

status.

Example 2.1.6. Consider the graph G of figure 2.5. Here s(u) = 15, s(v) = s(w) =

12, s(x) = 9, s(y) = 10 and s(z) = s(r) = 14. So median of this graph is a singleton

set containing vertex x, i.e., M(G) = {x},ms(G) = 9 and ts(G) = 86.
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u v

w x

z

y r

Figure 2.5: Graph

The following theorem gives a relation between the radius and diameter of a

graph.

Theorem 2.1.2 ([10]). Let G be a non trivial connected graph. Then

rad(G) ≤ diam(G) ≤ 2rad(G).

Example 2.1.7. Consider the graph G of figure 2.6, here e(u) = e(w) = e(r) =

e(t) = 4, e(v) = e(x) = e(z) = e(s) = 3 and e(y) = 2. So 2rad(G) = diam(G).

In graph H, the eccentricity of each vertex is three. This implies that rad(G) =

diam(G).

u v w

x y z

r s t
G H

Figure 2.6: Graph

Theorem 2.1.3 ([10]). Let G be a connected graph, then for every pair of adjacent

vertices x and y

|e(x)− e(y)| ≤ 1.
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Definition 2.1.9. Let G be a connected graph and u ∈ V (G), the vertex u is said

to be a peripheral vertex if e(u) = diam(G) and the periphery Per(G) of G is the

subgraph of G induced by the set of peripheral vertices of G.

Example 2.1.8. For any positive integer n, if G ∼= Cn then Per(Cn) = Cn. Now

consider the graph G of figure 2.7. Since e(v2) = 1 = rad(G), therefore Cen(G) is a

trivial graph while e(v1) = e(v3) = e(v4) = e(v5) = 2 = diam(G). So {v1, v3, v4, v5}
are the peripheral vertices and Per(G) is a disconnected graph having two compo-

nents depicted in figure 2.7.

v1 v2 v3

v4 v5

v1

v4

v3

v5G

Per(G)

Figure 2.7: A graph G and its periphery graph Per(G)

Definition 2.1.10. Let G be a connected graph and x, y ∈ V (G). The vertex x is

a boundary vertex of y if

d(y, u) ≤ d(x, y) ∀u ∈ NG(x).

Example 2.1.9. Consider the graph G of figure 2.8. Here d(x, y) = 3 and d(u, y) =

d(v, y) = d(t, y) = 2 which implies that x is a boundary vertex of y.

w s t h y z

u x v

Figure 2.8: A graph and its boundary vertex

Definition 2.1.11. If a vertex x is a boundary vertex of some vertex of a graph G,

then x is called a boundary vertex of G.
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In a connected graph, there are some vertices that can not be boundary vertices.

Theorem 2.1.4 ([10]). If u is a cut vertex of a connected graph G, then u is not a

boundary vertex of G.

Remark 2.1.1. It is noted that

Peripheral vertex of G ⇒ eccentric vertex of G ⇒ boundary vertex of G

Suppose, v is a peripheral vertex of G, then by definition e(v) = d(u, v) = diam(G)

where u is supposed to be an eccentric vertex of v. It also implies that e(u) =

d(v, u) = diam(G), because d(u, y) ≤ diam(G) for all y ∈ V (G), which follows v is

the eccentric vertex of G. Thus every peripheral vertex of G is an eccentric vertex

but converse is not true. Now if we take v as an eccentric vertex of u, then by

definition e(u) = max{d(u, y) : y ∈ V (G)} = d(v, u). Equivalently, v is a boundary

vertex of u if d(u, v) = max{d(u, y) : y ∈ NG(v) ∪ {v}}. So it is obvious that every

eccentric vertex is a boundary vertex of G but converse is not true.

Every vertex of G is an eccentric vertex if all vertices of G have same eccen-

tricity. However it can be happen, every vertex is an eccentric vertex without all

eccentricities being same.

If u is a cut vertex, then u can not be a boundary vertex, eccentric vertex and

nor a peripheral vertex.

Example 2.1.10. Consider the graph G of figure 2.8, here x is a boundary vertex

of y but it is not an eccentric vertex. In the graph G shown in figure 2.9, x is an

x

y

G:
H

Figure 2.9: Graph
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eccentric vertex of y. Since e(x) = 3 and diam(G) = 4, thus x is not a peripheral

vertex. The graph H of figure 2.9 shows that every vertex is an eccentric vertex

without all eccentricities being same.

2.2 Resolving sets

Navigation problems can be examined in a graph structured framework where the

navigation agent considered as a point robot moves from node (vertex) to node

(vertex) of a graph space. With the help of distinctly labeled landmark nodes in the

graph space, the robot can locate itself. Visual detection of a distinctive landmark

in a Euclidean space gives information about the direction to the landmark that

helps robot to determine its location by triangulation. On the other hand, there is

neither the concept of visibility nor that of direction on a graph. Here, we consider

that a robot navigating can sense the distances to a set of landmarks. The location

of a robot on a graph is uniquely determined if it knows its distances to a sufficiently

large set of landmarks. This leads to the following problem: for a given graph, what

should be the minimum number of landmarks and their location, so that position of

the robot on the graph is uniquely determined by the distances to the landmarks?

This is a classical problem about metric spaces. A set of landmarks with minimum

cardinality that uniquely determines the position of a robot is said to be a metric

basis, and its cardinality is referred as the metric dimension of a graph. Slater

introduced the concept of metric dimension in [26] after getting motivation from

the problem of uniquely determining the position of an intruder in a network. This

concept was further studied independently by Harary and Melter in [12]. Slater

represented the metric dimension of a graph as its location number. He used this

concept to the placement of a smallest number of loran or sonar detecting devices in

a network in order to uniquely determine the location of each vertex in the network

in terms of its distances to the devices in the set.

Definition 2.2.1. Consider a connected graph G. Let W = {w1, w2, . . . , wk} where

1 ≤ k ≤ n be an ordered set of vertices of G. The representation of a vertex v with
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respect to W is the k tuple

r(v|W ) = (d(v, wi) : 1 ≤ i ≤ k).

W is called a resolving set or locating set if distinct vertices of G have distinct

representations with respect to the set W .

Example 2.2.1. Consider the graph G depicted in figure 2.10. If we take W =

{v1, v2}, then r(v8|W ) = r(v12|W ) = (1, 2) hence W is not a resolving set. Now if

we consider W ′ = {v1, v2, v12} then the representation of vertices of G with respect

to W ′ are

r(v3|W ′) = (2, 1, 2), r(v4|W ′) = (3, 2, 3), r(v5|W ′) = (4, 3, 3),

r(v6|W ′) = (3, 4, 2), r(v7|W ′) = (2, 3, 2), r(v8|W ′) = (1, 2, 1),

r(v9|W ′) = (2, 1, 1), r(v10|W ′) = (3, 2, 2), r(v11|W ′) = (2, 3, 1),

r(v1|W ′) = (0, 1, 1), r(v2|W ′) = (1, 0, 2), r(v12|W ′) = (1, 2, 0).

Since no two vertices of G have same representation, this mean W ′ is a resolving set

for the vertices of G.

v1 v2

v3

v4

v5
v6

v7

v8 v12 v9

v11 v10

Figure 2.10: Graph

Definition 2.2.2. A resolving set with minimum cardinality is called metric ba-

sis for G and the cardinality of that set is referred as location number or metric

dimension denoted by β(G) or dim(G).
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Example 2.2.2. Consider the graph G shown in figure 2.10, the resolving set W ′ in

example 2.2.1 in not minimum. If we choose W ∗ = {v1, v3}, then the representation

of vertices of G with respect to W ∗ are

r(v2|W ∗) = (1, 1), r(v4|W ∗) = (3, 1), r(v5|W ∗) = (4, 2), r(v6|W ∗) = (3, 3)

r(v7|W ∗) = (2, 4), r(v8|W ∗) = (1, 3), r(v9|W ∗) = (2, 1), r(v10|W ∗) = (3, 2)

r(v11|W ∗) = (2, 3), r(v12|W ∗) = (1, 2), r(v1|W ∗) = (0, 2), r(v3|W ∗) = (2, 0).

Since there is no resolving set consisting of a single vertex. So W ∗ is a minimum

resolving set and we have β(G) = 2.

Let G be a connected graph of order two or more, we can think a resolving set

of G as a set W ⊆ V (G) so that each vertex in G is uniquely determined by its

distances to the vertices of W . For every ordered set W ⊆ V (G), the only vertex

of G whose representation with respect to W is 0 in its ith coordinate is wi. So the

vertices of W necessarily have distinct representations, therefore we need to examine

the vertices of V (G) \W . This implies that the metric dimension of G is at most

n− 1. It follows,

1 ≤ β(G) ≤ n− 1.

The following theorems give a complete characterization of graphs having metric

dimension 1 and n− 1, respectively.

Theorem 2.2.1 ([10]). Let G be a connected graph of order n, β(G) = 1 if and only

if G ∼= Pn.

Theorem 2.2.2 ([10]). For a connected graph G of order two or more, β(G) = n−1

if and only if G ∼= Kn.

Furthermore we also know the diameter and maximum degree of G, thus bounds

for the metric dimension can be improved.

Theorem 2.2.3 ([10]). Let G be a nontrivial connected graph of order two or more,

then

dlog3(∆ + 1)e ≤ β(G) ≤ n− diam(G).
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Chapter 3

Metric dimension of graphs

In this chapter, we study the metric dimension of antiweb-wheels, barycentric subdi-

vision of Möbius ladders, generalized Petersen multigraphs P (2n, n) and some graphs

that are rotationally-symmetric, namely quasi flower snarks, generalized antiprism

and cartesian product of square cycles and paths.

Let F be a family of connected graphs Gn : F = (Gn)n≥1 depending on n as

follows: the order |V (G)| = ϕ(n) and lim
n→∞

ϕ(n) = ∞. If there exists a constant

C > 0 such that β(Gn) ≤ C for every n ≥ 1, then we shall say that F has bounded

metric dimension; otherwise F has unbounded metric dimension. If all graphs in F
have the same metric dimension (which does not depend on n), F is called a family

with constant metric dimension [20].

3.1 Metric dimension of antiweb-wheels

If we make a small change in the graph, then how the value of its parameter is

affected? This is a fundamental question that arises in graph theory. If G′ is a

graph obtained by adding a pendant edge to a nontrivial connected graph G, then

it is easy to verify that

β(G) ≤ β(G′) ≤ β(G) + 1.

However, if we add a vertex v to a connected graph G such that two or more edges

are incident with v, then the metric dimension of the resulting graph remain same,
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increase or decrease significantly.

Denoting by G + H, the join of two graphs G and H, a wheel is defined as

Wn
∼= Cn + K1. The metric dimension of wheels Wn has been determined by

Buczkowski et al. [5] showing that wheels have unbounded metric dimension. In

[20] Javaid et al. determined the metric dimension of square cycle C2
n and proved

that,

β(C2
n)=

{
3, when n ≡ 0, 2, 3 (mod 4) ;

≤ 4, otherwise.

Hence, square cycles constitute a family of graphs with bounded metric dimension.

However, if a new vertex v is added to the square cycle C2
n, the dimension of resulting

graph becomes unbounded as we prove it in this section.

An antiweb-wheel denoted by AWWn can be defined as AWWn
∼= C2

n+K1, where

we have V (AWWn) = V (Wn) and E(AWWn) = E(Wn) ∪ {vivi+2 : 1 ≤ i ≤ n},
where the indices are taken modulo n. Since |E(Wn)| = 2n, we get |V (AWWn)| =
|V (Wn)| = n + 1 and |E(AWWn)| = 3n. The antiweb-wheels AWW8 and AWW9

are depicted in figure 3.1. We denote the central vertex of AWWn by v and is

Figure 3.1: Antiweb-wheels AWW8 and AWW9

also called the hub vertex and all other vertices that induce cycle(s) are called the

rim vertices, denoted as v1, v2, . . . , vn. Next, we prove that antiweb-wheels have

unbounded metric dimension.

Consider the dimension of the antiweb-wheel AWWn
∼= C2

n + K1 for n≥3. We

have β(AWW3) = 3, β(AWW4) = 4, β(AWW5) = 5 and β(AWW6) = β(AWW7) =
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3. However, for n ≥ 8, the dimension of AWWn increases with number of vertices

n as we prove now in the sequel.

Suppose that AWWn
∼= C2

n + K1 for n ≥ 8, then the central vertex v, does

not belong to any metric basis. Since diam(AWWn) = 2, so if the central vertex

v belongs to any of the basis, say B, then there must exist two distinct vertices vi

and vj such that r(vi|B) = r(vj|B). Consequently, the basis belong to the only rim

vertices of the antiweb-wheels AWWn.

Let Cn be a cycle with n vertices and V (Cn) = {v1, v2, ..., vn}. Let k, t be positive

integers, 1 ≤ k < t ≤ n. Then {vk+1, vk+2, ..., vt−1} ⊂ V (Cn) are the vertices in the

gap denoted by Gα determined by the vertices vk and vt and the size of Gα is k−t−1.

We will say that the gaps Gr and Gs are neighboring gaps when |r − s| = 1 [27].

Now, let B be a basis of antiweb-wheels AWWn. We make the following claims.

Claim 1. Every gap of B contains at most five vertices. Otherwise, there is a

gap containing six consecutive vertices say vj, vj+1, vj+2, vj+3, vj+4 and vj+5, where

1 ≤ j ≤ n. But then we have r(vj+2|B) = r(vj+3|B) = (2, 2, . . . , 2), a contradiction.

Claim 2. There is at most one gap of either five or four vertices. We have two

subcases here.

subcase(i): Suppose on contrary that there exist two gaps containing four and five

vertices, respectively, say {vp, vp+1, vp+2, vp+3} and {vq, vq+1, vq+2, vq+3, vq+4} where

1 ≤ p 6= q ≤ n. But in this case, we get r(vp+3|B) = r(vq|B) = (2, 1, 1, 2, . . . , 2), a

contradiction.

subcase(ii): Without loss of generality, suppose that there exists two distinct gaps

containing four vertices each, say {vp, vp+1, vp+2, vp+3} and {vq, vq+1, vq+2, vq+3}
where 1 ≤ p 6= q ≤ n. However, then r(vp+3|B) = r(vq|B) = (2, 1, 1, 2, . . . , 2),

a contradiction.

Claim 3. If a gap contains either four or five vertices, then its both neigh-

boring gaps are empty. Otherwise, suppose that one neighboring gap of N =

{vp, vp+1, vp+2, vp+3} or N∗ = {vp, vp+1, vp+2, vp+3, vp+4} is empty and other one

contains only one vertex say vq where 1 ≤ p 6= q ≤ n. But then we receive

r(vp+2|B) = r(vp+3|B) = (2, 1, 2, . . . , 2) being neighboring gap of N or we have

r(vp+3|B) = r(vp+4|B) = (2, 1, 2, . . . , 2) being neighboring gap of N∗, a contradic-

tion.
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Claim 4. If a gap contains three vertices, then its neighboring gaps may contain

at most two vertices. Suppose, there is a gap having three vertices, say {vj, vj+1, vj+2}
and contrarily suppose that its one neighboring gap has three vertices, say {vp, vp+1,

vp+2} where 1 ≤ j 6= p ≤ n. But then r(vj+2|B) = r(vp|B) = (2, 1, 2, . . . , 2), a

contradiction.

Claim 5. If a gap of B contains two vertices, then one of its neighboring gap

contains at most three vertices and other one is empty. Suppose, there is a gap

having two vertices whose one neighboring gap contains at most three vertices and

suppose contrarily, its other neighboring gap has one vertex. Then there exist five

consecutive vertices vj, vj+1, vj+2, vj+3 and vj+4 such that vj and vj+3 are the ba-

sis vertices. However, then we have r(vj+1|B) = r(vj+2|B) = (2, 1, 1, 2, . . . , 2), a

contradiction.

Claim 6. If a gap contains exactly one vertex, then its neighboring gaps contain

at most three vertices. Suppose on contrary that its both neighboring gaps contain

more than three vertices, then by claim 3 we get a contradiction.

Claim 7. If one of the neighboring gap of an empty gap contains at most five

vertices then the other gap contains at most two vertices. Suppose that one of the

neighboring gap contains at most five vertices vj, vj+1, vj+2, vj+3 and vj+4 where

1 ≤ j ≤ n. On contrarily, suppose that the other neighboring gap contains at least

three vertices, without loss of generality we suppose it has three vertices vp, vp+1 and

vp+2 where 1 ≤ p 6= j ≤ n. But then we get r(vj+4|B) = r(vp|B) = (2, 1, 1, 2, . . . , 2),

a contradiction.

Claim 8. There is at least one empty gap for n = 2k+ 1, where k ≥ 4. Suppose

on contrary that there is no empty gap. But then there exists a gap {vp, vp+1}
where 1 ≤ p ≤ n whose both neighboring gaps are non empty. By claim 5, we get a

contradiction.

Now, we suppose that B is any resolving set consisting of rim vertices that satis-

fies claims (1)− (8) and let u ∈ V (AWWn)\B. There are following six possibilities.

• u belongs to a gap of size 5 of B. Let vj, vj+1, vj+2, vj+3, vj+4, vj+5, vj+6, vj+7

and vj+8 belong to the rim vertices, where vj, vj+1, vj+7 and vj+8 ∈ B. We have

three subcases here.

subcase(i): If u = vj+2, then it has distance 1 from vj and vj+1 and has distance 2
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from all other vertices of B. By claims (3) and (7) no other vertices of AWWn has

this property.

subcase(ii): If u = vj+3, then it is adjacent to only one vertex vj+1 of B and has

distance 2 from all vertices of B. By claim (3) only vj+3 has this representation.

subcase(iii): If u = vj+4, then r(vj+4|B) = (2, 2, . . . , 2) and by claim (3) no other

vertex has this representation.

• u belongs to a gap of size 4 of B. Then we may assume that vj, vj+1, vj+2,

vj+3, vj+4, vj+5, vj+6 and vj+7 are the rim vertices, where vj, vj+1, vj+6 and vj+7 ∈ B.

Assume first that u = vj+2, then it is adjacent to vj and vj+1 and at distance 2 from

all other vertices that belong to B. By claims (3) and (7) no other vertex of AWWn

has this representation. Next, we assume that u = vj+3, then it has distance 1 from

vj+1 and has distance 2 from all other vertices of B. By claim (3) only u has this

property.

• u belongs to a gap of size 3 of B. Then there exist rim vertices vj, vj+1, vj+2,

vj+3, vj+4, vj+5 and vj+6, where vj+1 and vj+5 ∈ B and it may also contain either

vj or vj+6 or both. Now, Assume first that u = vj+2, then it has distance 1 from

vj and vj+1 and at distance 2 from all other vertices of B. By claim (4) and (7),

there exists no other vertex in AWWn that satisfies this property. Next, assume

that u = vj+3, then it is adjacent to vj+1 and vj+5 and at distance 2 from all other

vertices that contained in B. By claim (4) only u has this representation.

• u belongs to a gap of size 2 of B. Now we may consider vj, vj+1, u = vj+2, vj+3,

vj+4 and vj+5 that belong to rim vertices, where vj or vj+5 or both, vj+1 and vj+4 ∈ B.

Then u has distance 1 from vj, vj+1 and vj+4 and at distance 2 from all other vertices

of B. By claim (5) and (7), there exist no other vertex that belongs to AWWn with

this property.

• u belongs to a gap of size 1 of B. Let vj and vj+1 ∈ B that determine this

gap. Then u is adjacent to vj and vj+1 and at distance 2 from all other vertices of

B. Since there is no other rim vertex which has at distance 1 from both vertices vj

and vj+1, so only u has this property.

• u = v, then r(u|B) = (1, 1, . . . , 1). There is no other vertex in AWWn that

has this representation.

So from above discussion, we have r(u|B) 6= (u′|B) for u 6= u′, where u, u′ ∈
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V (AWWn) \B.

Consequently, any set B having above properties is a resolving set of antiweb-

wheels AWWn. In the next theorem, we present a precise formula for the metric

dimension of antiweb-wheels AWWn.

Theorem 3.1.1. Let AWWn
∼= C2

n+K1 denotes the antiweb-wheels on n+1 vertices,

then we have

β(AWWn)=

{
dn+1

3
e, if n is odd;

dn
3
e, otherwise,

for every integer n ≥ 8.

Proof. We prove this theorem by double inequalities.

Let AWWn
∼= C2

n +K1 denotes the antiweb-wheels on n+ 1 vertices and v is the

central vertex of AWWn. First we show that

β(AWWn) ≤

{
dn+1

3
e, if n is odd;

dn
3
e, otherwise.

For this, we construct a resolving set with dn
3
e vertices for n even and having dn+1

3
e

vertices for n odd. We consider the following six cases according to the residue class

modulo 6 to which rim vertices belong.

Case (i). When n ≡ 0 (mod 6), then we can write n = 6k; k ≥ 2, and dn
3
e = 2k.

Since B = {v6i+1, v6i+3 : 0 ≤ i ≤ k − 1} contains 2k vertices and satisfies the claims

(1)− (8), therefore it is a resolving set for AWWn in this case.

Case (ii). When n ≡ 1 (mod 6), then we can write n = 6k + 1; k ≥ 2 and

dn+1
3
e = 2k + 1. Since B = {v1} ∪ {v6i+3, v6i+7 : 0 ≤ i ≤ k − 2} ∪ {v6k−2, v6k−1}

contains 2k + 1 vertices and satisfies (1)− (8), so it is a resolving set in this case.

Case (iii). When n ≡ 2 (mod 6), we can write n = 6k + 2; k ≥ 1 and dn
3
e =

2k + 1. Since B = {v1} ∪ {v6i+3, v6i+5 : 0 ≤ i ≤ k − 1} contains 2k + 1 vertices and

satisfies (1)− (8), it is a resolving set.

Case (iv). When n ≡ 3 (mod 6), we write n = 6k+3; k ≥ 1, and dn+1
3
e = 2k+2.

Since B = {v1, v3} ∪ {v6i+5, v6i+9 : 0 ≤ i ≤ k − 2} ∪ {v6k, v6k+1} contains 2k + 2

vertices and satisfies (1)− (8), it is a resolving set.
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Case (v). When n ≡ 4 (mod 6) we can write as n = 6k + 4; k ≥ 1 and

dn
3
e = 2k + 2. Since B = {v1, v3} ∪ {v6i+5, v6i+7 : 0 ≤ i ≤ k − 1} contains 2k + 2

vertices and satisfies (1)− (8), it is a resolving set.

Case (vi). When n ≡ 5 (mod 6), we write n = 6k+5; k ≥ 1 and dn+1
3
e = 2k+2.

Since B = {v6i+1, v6i+5 : 0 ≤ i ≤ k− 1} ∪ {v6k+2, v6k+3} contains 2k+ 2 vertices and

satisfies (1)− (8), it is a resolving set.

Next we have to show that

β(AWWn) ≥

{
dn+1

3
e, if n is odd;

dn
3
e, otherwise.

For this, suppose B be a metric basis of AWWn. We consider three cases.

• If |B| ≡ 0 (mod 3), then |B| = 3l where l ≥ 1. From claims (1) − (8), at

most one gap of B contains either four or five vertices. At most l + 1 gaps of B

contain three and at most l − 4 gaps of B will contain two vertices. At most l + 2

gaps contain at most one vertex out of which exactly two gaps are empty. Hence

the number of vertices belonging to the gaps of B is at most 6l or 6l− 1. Therefore,

we should have n − 3l ≤ 6l, which implies that |B| = 3l ≥ dn
3
e, or n − 3l ≤ 6l − 1

showing that |B| = 3l ≥ dn+1
3
e in this case.

• If |B| ≡ 1 (mod 3), then |B| = 3l+ 1, where l ≥ 1. From the claims (1)− (8),

at most one gap of B contains either four or five vertices. At most l + 1 gaps of B

contain three and at most l − 3 gaps of B will contain two vertices. At most l + 2

gaps contain at most one vertex out of which exactly two gaps are empty. So the

number of vertices belonging to the gaps of B is at most 6l+ 2 or 6l+ 1. Hence we

have n−3l−1 ≤ 6l+ 2, which implies that |B| = 3l+ 1 ≥ dn
3
e or n−3l−1 ≤ 6l+ 1

implying that |B| = 3l + 1 ≥ dn+1
3
e.

• If |B| ≡ 2 (mod 3), then |B| = 3l + 2 where l ≥ 1. From calims (1) − (8),

at most one gap of B contains either four or five vertices. At most l + 2 gaps of B

contain three and at most l − 4 gaps of B will contain two vertices. At most l + 3

gaps contain at most one vertex out of which exactly two gaps are empty. So the

number of vertices belonging to the gaps of B is at most 6l + 4 or 6l + 3. Hence

n − 3l − 2 ≤ 6l + 4 which implies that |B| = 3l + 2 ≥ dn
3
e or n − 3l − 2 ≤ 6l + 3

showing that |B| = 3l + 2 ≥ dn+1
3
e.
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3.2 Metric dimension of rotationally-symmetric

graphs

This section includes the discussion about quasi flower snarks, generalized antiprism

and cartesian product of square cycle and path. We prove that these classes of graphs

have constant or bounded metric dimension.

3.2.1 Metric dimension of quasi flower snarks

The quasi flower snark denoted by Gn is a nontrivial simple connected cubic graph,

where V (Gn) = {ai, bi, ci, di : 0 ≤ i ≤ n−1} and E(Gn) = {aiai+1, bibi+1, cici+1, aidi,

bidi, cidi : 0 ≤ i ≤ n− 1}, the indices are taken modulo n. The quasi flower snarks

G10 and G9 are depicted in figure 3.2. Imran et al. [13] studied the metric dimension
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Figure 3.2: Quasi flower snark G10 and G9

of flower snarks and proved that flower snakrs constitute a family of cubic graphs

with constant metric dimension 3. In the next theorem, we extend this study to the

metric dimension of quasi flower snarks.

Theorem 3.2.1. Let Gn be the quasi flower snark, then for every positive integer

n ≥ 4 we have

β(Gn)=

{
3, if n is odd;

≤ 4, otherwise.
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Proof. We consider the following cases.

Case (1). When n ≡ 0 (mod 2). Then we can write as n = 2k, where k ≥ 2.

Suppose W = {b0, c0, dn−1} is a resolving set. For this, we give the representations

of V (Gn) \W .

r(ai|W )=

{
(i+ 2, i+ 2, i+ 2), 0 ≤ i ≤ k − 1;

(2k − i+ 2, 2k − i+ 2, 2k − i), k ≤ i ≤ 2k − 1.

r(bi|W )=

{
(i, i+ 2, i+ 2), 0 ≤ i ≤ k − 1;

(2k − i, 2k − i+ 2, 2k − i), k ≤ i ≤ 2k − 1.

r(ci|W )=

{
(i+ 2, i, i+ 2), 0 ≤ i ≤ k − 1;

(2k − i+ 2, 2k − i, 2k − i), k ≤ i ≤ 2k − 1,

and

r(di|W )=

{
(i+ 1, i+ 1, i+ 3), 0 ≤ i ≤ k − 1;

(2k − i+ 1, 2k − i+ 1, 2k − i+ 1), k ≤ i ≤ 2k − 2.

It can be seen that for 1 ≤ i ≤ k − 1, r(ai|W )=r(d2k−i−1|W ) = (i + 2, i + 2, i + 2).

In order to have distinct representations, we add the vertex a0 to W . Then for

1 ≤ i ≤ k − 1, we have d(a0, ai) = i and d(a0, d2k−i−1) = i + 2. Then we have

W ′ = W ∪ {a0}, that resolves vertices of Gn when n ≡ 0 (mod 2). Thus β(Gn) ≤ 4

when n ≡ 0 (mod 2).

Case (2). When n ≡ 1 (mod 2). Then we have n = 2k+1; k ≥ 2. We will prove

this case by double inequality. First, we show that W = {b0, c0, ck} is a resolving

set for Gn. For this, first we give representations of V (Gn) \W .

r(ai|W )=


(i+ 2, i+ 2, k − i+ 2), 0 ≤ i ≤ k;

(k + 2, k + 2, 3), i = k + 1;

(2k − i+ 3, 2k − i+ 3, i− k + 2), k + 2 ≤ i ≤ 2k.
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r(bi|W )=


(i, i+ 2, k − i+ 2), 0 ≤ i ≤ k;

(k, k + 2, 3), i = k + 1;

(2k − i+ 1, 2k − i+ 3, i− k + 2), k + 2 ≤ i ≤ 2k.

r(ci|W )=


(i+ 2, i, k − i), 0 ≤ i ≤ k;

(k + 2, k, 1), i = k + 1;

(2k − i+ 3, 2k − i+ 1, i− k), k + 2 ≤ i ≤ 2k,

and

r(di|W )=


(i+ 1, i+ 1, k − i+ 1), 0 ≤ i ≤ k;

(k + 1, k + 1, 2), i = k + 1;

(2k − i+ 2, 2k − i+ 2, i− k + 1), k + 2 ≤ i ≤ 2k.

It can be seen that all vertices in Gn have distinct representations implying that

β(Gn) ≤ 3 when n ≡ 1 (mod 4).

On the other hand, we show that β(Gn) ≥ 3. Contrarily, suppose that β(Gn) = 2,

then there are following possibilities to be discussed.

• If both vertices belong to the set {a0, a1, . . . , an−1}, then we choose the resolving

set is W = {ap, aq}, where 0 ≤ p < q ≤ 2k. However, then we get

r(bp|W ) = r(cp|W )=

{
(2, q − p+ 2), 1 ≤ q − p ≤ k;

(2, 2k − q + p+ 3), k + 1 ≤ q − p ≤ 2k,
a contradiction.

• If both vertices belong to the set {d0, d1, . . . , dn−1}. We suppose that resolving

set is W = {dp, dq}, where 0 ≤ p < q ≤ 2k. However, then we have

r(bp|W ) = r(cp|W )=

{
(1, q − p+ 1), 1 ≤ q − p ≤ k;

(1, 2k − q + p+ 2), k + 1 ≤ q − p ≤ 2k,
a contradiction.

• If both vertices belong to either {b0, b1, . . . , bn−1} or {c0, c1, . . . , cn−1}. Without

loss of generality, we may assume that both vertices belong to the set {b0, b1, . . . , bn−1}.
Then we may choose the resolving set W = {bp, bq}, where 0 ≤ p < q ≤ 2k. Then
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r(ap|W ) = r(cp|W )=

{
(2, q − p+ 2), 1 ≤ q − p ≤ k;

(2, 2k − q + p+ 3), k + 1 ≤ q − p ≤ 2k,
a contradiction.

• If one vertex belongs to the set {b0, b1, . . . , bn−1} and other one is in the set

{c0, c1, . . . , cn−1}. Without loss of generality we suppose, resolving set is W =

{bp, cq}, where 0 ≤ p ≤ q ≤ 2k. However, then

r(ap+1|W ) = r(ap−1|W ) = (3, 3) when p = q;

r(ap|W ) = r(dp−1|W ) = (2, q − p+ 2) when 1 ≤ q − p ≤ k − 1;

r(cp+1|W ) = r(dp+2|W ) = (3, q − p− 1) when q − p = k, k + 1;

r(ap|W ) = r(dp+1|W ) = (2, 2k − q + p+ 3) when k + 2 ≤ q − p ≤ 2k.

The indices are taken modulo 2k + 1. We get a contradiction in each subcase.

• If one vertex belongs to the set {a0, a1, . . . , an−1} and the other vertex belongs

to the set {d0, d1, . . . , dn−1}. Without loss of generality we can take W = {dp, aq},
where 0 ≤ p ≤ q ≤ 2k. However, we have

r(bp|W ) = r(cp|W )=

{
(1, q − p+ 2), 0 ≤ q − p ≤ k;

(1, 2k − q + p+ 3), k + 1 ≤ q − p ≤ 2k,
a contradiction.

• If one vertex belongs to the set {a0, a1, . . . , an−1} and other vertex belongs to

either {b0, b1, . . . , bn−1} or {c0, c1, . . . , cn−1}. Without loss of generality we suppose

that the second vertex belongs to the set {b0, b1, . . . , bn−1}. Then we can choose

W = {ap, bq}, where 0 ≤ p ≤ q ≤ 2k. But then we get

r(ap−1|W ) = r(ap+1|W ) = (1, 3) when p = q;

r(ap+1|W ) = r(dp|W ) = (1, q − p+ 1) when 0 ≤ q − p ≤ k;

r(ap−1|W ) = r(dp|W ) = (1, 2k − q + p+ 2) when k + 1 ≤ q − p ≤ 2k.

The indices are taken modulo 2k + 1, a contradiction.

• If one vertex belongs to the set {d0, d1, . . . , dn−1} and other vertex belongs to

either {b0, b1, . . . , bn−1} or {c0, c1, . . . , cn−1}. Without loss of generality we suppose

the second vertex belongs to the set {b0, b1, . . . , bn−1}. We may suppose that the

resolving set is W = {bp, dq}, where 0 ≤ p ≤ q ≤ 2k. But then
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r(ap|W ) = r(cp|W )=

{
(2, q − p+ 1), 0 ≤ q − p ≤ k;

(2, 2k − q + p+ 2), k + 1 ≤ q − p ≤ 2k,
we get a contradiction.

This yield that β(Gn) ≥ 3. So from above, we conclude that there is no resolving

set with two vertices of Gn. Hence β(Gn) = 3 when n ≡ 1 (mod 2).

3.2.2 Metric dimension of cartesian product of square cycle

and path

The metric dimension of cartesian product of cycle and path has been investigated

by Caceres et al. [6] and proved that

β(Pm�Cn)=

{
2, if n is odd;

3, otherwise.

In this section, we extend this study to the cartesian product of square cycle and path

and prove that the cartesian product of square cycle and path have metric dimension

equal to 3 when n ≡ 0, 2, 3 (mod 4) and at most 4 otherwise. For t ≥ 2, we have

V (C2
n�Pt) = {uis : 1 ≤ s ≤ t and 1 ≤ i ≤ n} = {ui1, ui2, . . . , uit : 1 ≤ i ≤ n} =

{u11, u21, . . . , u1t , u2t . . . , unt }. In the next theorem, we determine the metric dimension

of square cycle and path. Note that the choice of appropriate basis vertices (also

called landmarks) is core of the problem.

Theorem 3.2.2. For every positive integer n ≥ 5,

β(C2
n�Pt)=

{
3, when n ≡ 0, 2, 3 (mod 4);

≤ 4, otherwise.

Proof. We prove this theorem by double inequality.

First we show that β(C2
n�Pt) ≤ 3 by showing that W = {u11, u31, u2t} resolves all

vertices of C2
n�Pt when n ≡ 0, 2, 3 (mod 4). For this, we give representations of

V (C2
n�Pt) \W in each case.

Case(1). When n ≡ 0 (mod 4). Then we can write as n = 4k, where k ≥ 2.

For s = 1,
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r(u2is |W )=


(1, 1, t− 1), i = 1;

(i, i− 1, t+ i− 2), 2 ≤ i ≤ k;

(k, k, t+ k − 1), i = k + 1;

(2k − i+ 1, 2k − i+ 2, 2k + t− i), k + 2 ≤ i ≤ 2k.

r(u2i+1
s |W )=

{
(i, i− 1, t+ i− 1), 2 ≤ i ≤ k;

(2k − i, 2k − i+ 1, 2k + t− i), k + 1 ≤ i ≤ 2k − 1,

for s = t,

r(u2is |W )=


(t+ i− 1, t+ i− 2, i− 1), 2 ≤ i ≤ k;

(k + t− 1, k + t− 1, k), i = k + 1;

(2k + t− i, 2k + t− i+ 1, 2k − i+ 1), k + 2 ≤ i ≤ 2k.

r(u2i+1
s |W )=


(t− 1, t, 1), i = 0;

(t+ i− 1, t+ i− 2, i), 1 ≤ i ≤ k;

(2k + t− i− 1, 2k + t− i, 2k − i+ 1), k + 1 ≤ i ≤ 2k − 1,

and for 2 ≤ s ≤ t− 1, we have

r(u2is |W )=


(s, s, t− s), i = 1;

(s+ i− 1, s+ i− 2, t− s+ i− 1), 2 ≤ i ≤ k;

(k + s− 1, k + s− 1, k + t− s), i = k + 1;

(2k + s− i, 2k + s− i+ 1, 2k + t− s− i+ 1), k + 2 ≤ i ≤ 2k.

r(u2i+1
s |W )=


(s− 1, s, t− s+ 1), i = 0;

(s+ i− 1, s+ i− 2, t− s+ i), 1 ≤ i ≤ k;

(2k + s− i− 1, 2k + s− i, 2k + t− s− i+ 1), k + 1 ≤ i ≤ 2k − 1.

Since all the vertices have distinct representations with respect to W . This yields

β(C2
n�Pt) ≤ 3 when n ≡ 0 (mod 4).

Case(2). When n ≡ 2 (mod 4). Then we can write as n = 4k+ 2, where k ≥ 1.

For s = 1,
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r(u2is |W )=


(1, 1, t− 1), i = 1;

(i, i− 1, t+ i− 2), 2 ≤ i ≤ k + 1;

(2k − i+ 2, 2k − i+ 3, 2k + t− i+ 1), k + 2 ≤ i ≤ 2k + 1.

r(u2i+1
s |W )=


(i, i− 1, t+ i− 1), 2 ≤ i ≤ k;

(k, k, t+ k), i = k + 1;

(2k − i+ 1, 2k − i+ 2, 2k + t− i+ 1), k + 2 ≤ i ≤ 2k,

for s = t,

r(u2is |W )=

{
(t+ i− 1, t+ i− 2, i− 1), 2 ≤ i ≤ k + 1;

(2k + t− i+ 1, 2k + t− i+ 2, 2k − i+ 2), k + 2 ≤ i ≤ 2k + 1.

r(u2i+1
s |W )=


(t− 1, t, 1), i = 0;

(t+ i− 1, t+ i− 2, i), 1 ≤ i ≤ k;

(k + t− 1, k + t− 1, k + 1), i = k + 1;

(2k + t− i, 2k + t− i+ 1, 2k − i+ 2), k + 2 ≤ i ≤ 2k,

and for 2 ≤ s ≤ t− 1, we have

r(u2is |W )=


(s, s, t− s), i = 1;

(s+ i− 1, s+ i− 2, t− s+ i− 1), 2 ≤ i ≤ k + 1;

(2k + s− i+ 1, 2k + s− i+ 2, 2k + t− s− i+ 2), k + 2 ≤ i ≤ 2k + 1.

r(u2i+1
s |W )=


(s− 1, s, t− s+ 1), i = 0;

(s+ i− 1, s+ i− 2, t− s+ i), 1 ≤ i ≤ k;

(k + s− 1, k + s− 1, k + t− s+ 1), i = k + 1;

(2k + s− i, 2k + s− i+ 1, 2k + t− s− i+ 2), k + 2 ≤ i ≤ 2k.

It can be verified that all vertices have distinct representations with respect to

W . This yields β(C2
n�Pt) ≤ 3 when n ≡ 2 (mod 4).

Case(3). When n ≡ 3 (mod 4). Then we can write as n = 4k+ 3, where k ≥ 1.

For s = 1,

43



r(u2is |W )=


(1, 1, t− 1), i = 1;

(i, i− 1, t+ i− 2), 2 ≤ i ≤ k + 1;

(2k − i+ 2, 2k − i+ 3, 2k + t− i+ 2), k + 2 ≤ i ≤ 2k + 1.

r(u2i+1
s |W )=

{
(i, i− 1, t+ i− 1), 2 ≤ i ≤ k + 1;

(2k − i+ 2, 2k − i+ 3, 2k + t− i+ 1), k + 2 ≤ i ≤ 2k + 1,

for s = t,

r(u2is |W )=

{
(t+ i− 1, t+ i− 2, i− 1), 2 ≤ i ≤ k + 1;

(2k + t− i+ 1, 2k + t− i+ 2, 2k − i+ 3), k + 2 ≤ i ≤ 2k + 1.

r(u2i+1
s |W )=


(t− 1, t, 1), i = 0;

(t+ i− 1, t+ i− 2, i), 1 ≤ i ≤ k;

(k + t, k + t− 1, k + 1), i = k + 1;

(2k + t− i+ 1, 2k + t− i+ 2, 2k − i+ 2), k + 2 ≤ i ≤ 2k + 1,

and for 2 ≤ s ≤ t− 1, we have

r(u2is |W )=


(s, s, t− s), i = 1;

(s+ i− 1, s+ i− 2, t− s+ i− 1), 2 ≤ i ≤ k + 1;

(2k + s− i+ 1, 2k + s− i+ 2, 2k + t− s− i+ 3), k + 2 ≤ i ≤ 2k + 1.

r(u2i+1
s |W )=


(s− 1, s, t− s+ 1), i = 0;

(s+ i− 1, s+ i− 2, t− s+ i), 1 ≤ i ≤ k;

(k + s, k + s− 1, k + t− s+ 1), i = k + 1;

(2k + s− i+ 1, 2k + s− i+ 2, 2k + t− s− i+ 2), k + 2 ≤ i ≤ 2k + 1.

Again, in this case all the vertices have distinct representations with respect to

W . This yields β(C2
n�Pt) ≤ 3 when n ≡ 3 (mod 4).

Conversely, we show that β(C2
n�Pt) ≥ 3 when n ≡ 0, 2, 3 (mod 4). Suppose on

contrarily, β(C2
n�Pt) = 2. Then by [22], we get a contradiction. Thus β(C2

n�Pt) ≥ 3

when n ≡ 0, 2, 3 (mod 4).
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Case(4). When n ≡ 1 (mod 4). Then we can write as n = 4k+ 1, where k ≥ 1.

First, we will give the representations of V (C2
n�Pt)\W with respect to W . For s = 1,

r(u2is |W )=


(1, 1, t− 1), i = 1;

(i, i− 1, t+ i− 2), 2 ≤ i ≤ k;

(k, k, k + t− 1), i = k + 1;

(2k − i+ 1, 2k − i+ 2, 2k + t− i+ 1), k + 2 ≤ i ≤ 2k.

r(u2i+1
s |W )=


(i, i− 1, t+ i− 1), 2 ≤ i ≤ k;

(k, k, k + t− 1), i = k + 1;

(2k − i+ 1, 2k − i+ 2, 2k + t− i), k + 2 ≤ i ≤ 2k,

for s = t,

r(u2is |W )=


(t+ i− 1, t+ i− 2, i− 1), 2 ≤ i ≤ k;

(k + t− 1, k + t− 1, k), i = k + 1;

(2k + t− i, 2k + t− i+ 1, 2k − i+ 2), k + 2 ≤ i ≤ 2k.

r(u2i+1
s |W )=


(t− 1, t, 1), i = 0;

(t+ i− 1, t+ i− 2, i), 1 ≤ i ≤ k;

(k + t− 1, k + t− 1, k), i = k + 1;

(2k + t− i, 2k + t− i+ 1, 2k − i+ 1), k + 2 ≤ i ≤ 2k,

and for 2 ≤ s ≤ t− 1, we have

r(u2is |W )=


(s, s, t− s), i = 1;

(s+ i− 1, s+ i− 2, t− s+ i− 1), 2 ≤ i ≤ k;

(k + s− 1, k + s− 1, k + t− s), i = k + 1;

(2k + s− i, 2k + s− i+ 1, 2k + t− s− i+ 2), k + 2 ≤ i ≤ 2k.
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r(u2i+1
s |W )=


(s− 1, s, t− s+ 1), i = 0;

(s+ i− 1, s+ i− 2, t− s+ i), 1 ≤ i ≤ k;

(k + s− 1, k + s− 1, k + t− s), i = k + 1;

(2k + s− i, 2k + s− i+ 1, 2k + t− s− i+ 1), k + 2 ≤ i ≤ 2k.

It can be seen that for 1 ≤ s ≤ t, we have r(u2k+2
s |W ) = r(u2k+3

s |W ) = (k+s−1, k+

s − 1, k + t − s). If we add the vertex u4t to W . Then d(u4t , u
2k+2
s ) = k + t − s − 1

and d(u4t , u
2k+3
s ) = k + t − s , where 1 ≤ s ≤ t. Thus W ′ = W ∪ {u4t} resolves

vertices of C2
n�Pt. This yields β(C2

n�Pt) ≤ 4 when n ≡ 1 (mod 4), which complete

the proof.

3.2.3 Metric dimension of generalized antiprism

A generalized antiprism Amn can be obtained by completing the generlized prism

Cm�Pn by edges {vi,j+1vi+1,j : 1 ≤ i ≤ m− 1, 1 ≤ j ≤ n− 1} ∪ {vm,j+1v1,j : 1 ≤ j ≤
n− 1}. Let V (Amn ) = V (Cm�Pn) and E(Amn ) = E(Cm�Pn) ∪ {vi,j+1vi+1,j : 1 ≤ i ≤
m − 1, 1 ≤ j ≤ n − 1} ∪ {vm,j+1v1,j : 1 ≤ j ≤ n − 1} be the edge set of Amn , where

i is taken modulo m. The metric dimension of antiprism denoted by A2
n has been

determined by Javaid et al. [20].

In the next theorem, we determine the metric dimension of generalized antiprism.

Theorem 3.2.3. Let Amn be the generalized antiprism. Then for every positive

integer n ≥ 6, we have

β(Amn )=

{
3, if 2 ≤ m ≤ 5;

≥ 4, if m ≥ 6.

Proof. We denote V (Amn ) = {v0,1, v1,1, . . . , vn,1, v0,2, v1,2, . . . , vn,l}, where n ∈ Z+ ∪
{0} and 1 ≤ l ≤ m.

When m = 2, A2
n
∼= An (antiprism), and it was proved in [20] that β(An) = 3.

Now, we prove that β(Amn ) = 3 for 3 ≤ m ≤ 5 and n ≥ 6 by double inequality.

We show that W = {v2,1, v0,bm−1
2
c, v0,m} resolves all vertices of Amn by giving the

representations of V (Amn ) \W .

Case (i). When n = 2k; k ≥ 3. First, we will give the representations of all ver-

tices of V (Amn )\W when 3 ≤ m ≤ 4. For l = 1, we have r(v1,l|W ) = (1, 1,m−1), and
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r(vi,l|W )=


(i− 2, i, i), 3 ≤ i ≤ k;

(k − 1, k − 1, k + 1), i = k + 1;

(2k − i+ 2, 2k − i, 2k +m− i− 1), k + 2 ≤ i ≤ 2k − 1,

for l = m, r(v1,l|W ) = (l − 1, l, 1), r(v2k−2,l|W ) = (4, l − 1, 2), r(v2k−1,l | W ) =

(3, l − 1, 1) and

r(vi,l|W )=


(i+ l − 3, i+ l − 1, i), 2 ≤ i ≤ k − 2;

(i+ l − 3, 2k − i, i), i = k − 1, k;

(2k − i+ 2, 2k − i, 2k − i), k + 1 ≤ i ≤ 2k − 3,

and for 2 ≤ l ≤ m−1, we have r(v0,l|W ) = (2, l−1,m−l), r(v1,l|W ) = (l−1, l,m−l),
r(v2k−1,l|W ) = (3, l − 1,m− l + 1) and

r(vi,l|W )=


(i+ l − 3, i+ l − 1, i), 2 ≤ i ≤ k − 1;

(k + l − 3, k, k), i = k;

(k + l − 2, k − 1, k +m− l − 1), i = k + 1;

(2k − i+ 2, 2k − i, 2k +m− i− l), k + 2 ≤ i ≤ 2k − 2.

Now we will give the representations when m = 5. For l = 1, r(v0,l|W ) = (2, 1, 4),

r(v1,l|W ) = (1, 1, 4), r(v3,l | W ) = (1, 3, 4) and

r(vi,l|W )=


(i− 2, i, i), 4 ≤ i ≤ k;

(k − 1, k, k + 1), i = k + 1;

(2k − i+ 2, 2k − i+ 1, 2k − i+ 4), k + 2 ≤ i ≤ 2k − 1,

for l = 2, r(v1,l|W ) = (1, 1, 3), r(v2,l|W ) = (1, 2, 3) and

r(vi,l|W )=


(i− 1, i, i), 3 ≤ i ≤ k;

(k, k − 1, k + 1), i = k + 1;

(2k − i+ 2, 2k − i, 2k − i+ 3), k + 2 ≤ i ≤ 2k − 1,

for l = m, r(v1,l|W ) = (4, 4, 1), r(v2k−2,l|W ) = (4, 3, 2), r(v2k−1,l|W ) = (4, 3, 1)

and
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r(vi,l|W )=


(i+ 2, i+ 3, i), 2 ≤ i ≤ k − 2;

(k + 1, k + 1, k − 1), i = k − 1;

(2k − i+ 2, 2k − i, 2k − i), k ≤ i ≤ 2k − 3,

and for 3 ≤ l ≤ m − 1, we have r(v0,l|W ) = (l − 1, l − 2,m − l), r(v1,l|W ) =

(l − 1, l − 1,m− l), r(v2k−1,l|W ) = (3, l − 2,m− l + 1) and

r(vi,l|W )=


(i+ l − 3, i+ l − 2, i), 2 ≤ i ≤ k − 1;

(k + l − 3, k, k), i = k;

(2k − i+ 2, 2k − i, 2k +m− i− l), k + 1 ≤ i ≤ 2k − 2.

Case (ii). When n = 2k + 1; k ≥ 3. For this, first we give the representations

when 3 ≤ m ≤ 4. For l = 1, r(v1,l|W ) = (1, 1,m− l), and

r(vi,l|W )=


(i− 2, i, i), 3 ≤ i ≤ k;

(k − 1, k, k + 1), i = k + 1;

(k, k − 1, k +m− 2), i = k + 2;

(2k − i+ 3, 2k − i+ 1, 2k +m− i), k + 3 ≤ i ≤ 2k,

for l = m, r(v1,l|W ) = (l−1, l, 1), r(v2k−1,l|W ) = (4, l−1, 2), r(v2k,l|W ) = (3,m−1, 1)

and

r(vi,l|W )=


(i+ l − 3, i+ l − 1, i), 2 ≤ i ≤ k − 1;

(k + l − 3, k + 1, k), i = k;

(k + l − 2, k, k), i = k + 1;

(2k − i+ 3, 2k − i+ 1, 2k − i+ 1), k + 2 ≤ i ≤ 2k − 2,

for 2 ≤ l ≤ m − 1, r(v0,l|W ) = (2, l − 1,m − l), r(v1,l|W ) = (l − 1, l,m − l),

r(v2k,l|W ) = (3, l − 1,m− l + 1) and

r(vi,l|W )=


(i+ l − 3, i+ l − 1, i), 2 ≤ i ≤ k − 1;

(i+ l − 3, 2k − i+ 1, i), i = k, k + 1;

(2k − i+ 3, 2k − i+ 1, 2k +m− i− l + 1), k + 2 ≤ i ≤ 2k − 1.

Now we will give the representations when m = 5. For l = 1, r(v0,l|W ) = (2, 1, 4),

r(v1,l|W ) = (1, 1, 4), r(v3,l|W ) = (1, 3, 4) and
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r(vi,l|W )=


(i− 2, i, i), 4 ≤ i ≤ k + 1;

(k, k, k + 2), i = k + 2;

(2k − i+ 3, 2k − i+ 2, 2k − i+ 5), k + 3 ≤ i ≤ 2k,

for l = 2, r(v1,l|W ) = (1, 1, 3), r(v2,l|W ) = (1, 2, 3) and

r(vi,l|W )=


(i− 1, i, i), 3 ≤ i ≤ k;

(k, k, k + 1), i = k + 1;

(2k − i+ 3, 2k − i+ 1, 2k − i+ 4), k + 2 ≤ i ≤ 2k,

for l = m, r(v1,l|W ) = (4, 4, 1), r(v2k−1,l|W ) = (4, 3, 2), r(v2k,l|W ) = (4, 3, 1) and

r(vi,l|W )=


(i+ 2, i+ 3, i), 2 ≤ i ≤ k − 1;

(k + 2, k + 1, k), i = k;

(2k − i+ 3, 2k − i+ 1, 2k − i+ 1), k + 1 ≤ i ≤ 2k − 2,

and for 3 ≤ l ≤ m − 1, we have r(v0,l|W ) = (l − 1, l − 2,m − l), r(v1,l|W ) =

(l − 1, l − 1,m− l), r(v2k,l|W ) = (3, l − 2,m− l + 1) and

r(vi,l|W )=


(i+ l − 3, i+ l − 2, i), 2 ≤ i ≤ k − 1;

(i+ l − 3, 2k − i+ 1, i), i = k, k + 1;

(2k − i+ 3, 2k − i+ 1, 2k +m− i− l + 1), k + 2 ≤ i ≤ 2k − 1.

It can be seen that all vertices of Amn have distinct representations with respect

to W . This shows that β(Amn ) ≤ 3 for 3 ≤ m ≤ 5 and n ≥ 6.

Conversely, suppose that β(Amn ) ≥ 3, where 3 ≤ m ≤ 5 and n ≥ 6. Suppose on

contrary that β(Amn ) = 2, but then by [22], we get a cotradiction. Hence β(Amn ) = 3,

when 2 ≤ m ≤ 5 and n ≥ 6.
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3.3 Metric dimension of generalized Petersen multi-

graphs

In this section, we study the metric dimension of the subdivision of Möbius ladders

and use this construction to study the metric dimension of generalized Petersen

multigraphs P (2n, n).

3.3.1 Metric dimension of barycentric subdivision of Möbius

ladders

The barycentric subdivision of Möbius ladders denoted by SMn is obtained by sub-

dividing the edges of Möbius ladders by putting a vertex of degree two on each edge.

It has 5n
2

vertices and 3n edges and has exactly n
2

8-cycles. There are n vertices of de-

gree 3 and 3n
2

vertices are of degree 2. Two different views of SM12 are shown in figure

3.3. For our convenience, we view the SMn as a barycentric subdivision of prism Dn

(the cartesain product of path on two vertices P2 with a cylce Cn on n vertices) with

one twisted edge. We denote vertices {v0, v1, . . . , v2n−1} ⊂ V (SMn) that are num-

Figure 3.3: Two views of SM12

bered clockwise and induce the cycle of length 2n. Moreover {v2i+1 : 0 ≤ i ≤ n− 1}
and {v2i : 0 ≤ i ≤ n − 1} are the vertices of degree 2 and 3, respectively. We

call the set of vertices {ui : 0 ≤ i ≤ n
2
− 1} ⊂ V (SMn) the internal vertices of

v2i − v2i+n paths, where 0 ≤ i ≤ n
2
− 1 and each ui is a vertex of degree 2. So we
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have V (SMn) = {vi : 0 ≤ i ≤ 2n−1}∪{ui : 0 ≤ i ≤ n
2
−1}. The metric dimension of

Möbius ladders has been studied by Imran et al. [1] and proved that Möbius ladders

constitute a family of cubic graphs with constant metric dimension 3 except when

n ≡ 2 (mod 8). In the next theorem, we extend this study to the metric dimension

of barycentric subdivision of Möbius ladders denoted by SMn. Note that the choice

of appropriate basis vertices is the core of the problem.

Theorem 3.3.1. Let SMn denotes the barycentric subdivision of Möbius ladder,

then β(SMn) = 3 for every positive even integer n ≥ 8.

We prove this theorem by proving the following five lemmas. In proofs of Lemmas

3.3.2 to 3.3.5 each entry in codes tables is the distance between the vertices of column

1 and the vertices of row 1. Each row represents the code of a vertex, with respect

to row 1, lying in column 1 of that row.

Lemma 3.3.2. Let SMn be the barycentric subdivision of Möbius ladder, then

β(SMn) ≤ 3 when n ≡ 0 (mod 8).

Proof. When n ≡ 0 (mod 8), we can write as n = 8k where k ≥ 1. We will prove

that for a chosen index i such that 0 ≤ i ≤ 2n− 1, the set W = {vi, vi+n−1, ui+2k−1}
is a resolving set for SMn where k = n

8
. The codes of the vertices in V (SMn) \W

with respect to W are the followings: cW (vi+n+4k−1) = (4k+ 1, 4k, 2), cW (vi+2n−1) =

(1, 4, 4k) and in tables 3.1 and 3.2.

d(., .) vi vi+n−1 ui+2k−1

vi+j+1 : 0 ≤ j ≤ 4k − 3 j + 1 j + 4 4k − j − 2

vi+4k+j−1 : 0 ≤ j ≤ 2 4k + j − 1 4k − j j + 2

vi+n−j−2 : 0 ≤ j ≤ 4k − 4 j + 4 j + 1 4k − j + 1

vi+n+j : 0 ≤ j ≤ 4k − 2 j + 2 j + 1 4k − j − 1

vi+2n−j−2 : 0 ≤ j ≤ 4k − 2 j + 2 j + 3 4k − j + 1

Table 3.1: Codes for the outer vertices of SMn

d(., .) vi vi+n−1 ui+2k−1

ui+j : 0 ≤ j ≤ 2k − 2 2j + 1 2j + 2 4k − 2j

ui+2k+j : 0 ≤ j ≤ 2k − 1 4k − 2j + 1 4k − 2j 2j + 4

Table 3.2: Codes for the inner vertices of SMn
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Since all the vertices lying in the first column of above two tables have distinct codes

with respect to W , it implies that β(SMn) ≤ 3 when n ≡ 0 (mod 8).

Lemma 3.3.3. Let SMn be the barycentric subdivision of Möbius ladder, then

β(SMn) ≤ 3 when n ≡ 2 (mod 8).

Proof. When n ≡ 2 (mod 8), we can write n = 8k + 2 where k ≥ 1. We will prove

that for a chosen index i such that 0 ≤ i ≤ 2n − 1, W = {vi, vi+n−1, ui+2k+1} is a

resolving set for V (SMn) where k = n−2
8

. The codes of the vertices in V (SMn) \W
with respect to W are: cW (vi+n) = (2, 1, 4k + 1), cW (vi+n+4k+1) = (4k + 1, 4k +

2, 2), cW (vi+2n−1) = (1, 4, 4k), cW (ui) = (1, 2, 4k + 2) and in tables 3.3 and 3.4.

d(., .) vi vi+n−1 ui+2k+1

vi+j+1 : 0 ≤ j ≤ 4k − 2 j + 1 j + 4 4k − j + 2

vi+4k+j : 0 ≤ j ≤ 2 4k + j 4k − j + 1 3− j

vi+n−j−2 : 0 ≤ j ≤ 4k − 3 j + 4 j + 1 4k − j − 1

vi+n+j+1 : 0 ≤ j ≤ 4k − 1 j + 3 j + 2 4k − j + 2

vi+2n−j−2 : 0 ≤ j ≤ 4k − 2 j + 2 j + 3 4k − j − 1

Table 3.3: Codes for the outer vertices of SMn

d(., .) vi vi+n−1 ui+2k+1

ui+j+1 : 0 ≤ j ≤ 2k − 1 2j + 3 2j + 4 4k − 2j + 2

ui+2k+j+2 : 0 ≤ j ≤ 2k − 2 4k − 2j − 1 4k − 2j − 2 2j + 4

Table 3.4: Codes for the inner vertices of SMn

It can be seen that all the vertices lying in the first column of tables 3.3 and 3.4

have distinct codes with respect to W implying that β(SMn) ≤ 3 when n ≡ 2

(mod 8).

Lemma 3.3.4. Let SMn be the barycentric subdivision of Möbius ladder, then

β(SMn) ≤ 3 when n ≡ 4 (mod 8).

Proof. When n ≡ 4 (mod 8), we can write n = 8k + 4 where k ≥ 1. We will show

that for a chosen index i such that 0 ≤ i ≤ 2n − 1, W = {vi, vi+n−1, ui+2k} is a re-

solving set for SMn, where k = n−4
8

. The codes of the vertices in V (SMn) \W with

respect to W are: cW (vi+n+4k+1) = (4k + 3, 4k + 2, 2), cW (vi+2n−1) = (1, 4, 4k + 2)
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and in tables 3.5 and 3.6.

d(., .) vi vi+n−1 ui+2k

vi+j+1 : 0 ≤ j ≤ 4k − 1 j + 1 j + 4 4k − j

vi+4k+j+1 : 0 ≤ j ≤ 2 4k + j + 1 4k − j + 2 j + 2

vi+n−j−2 : 0 ≤ j ≤ 4k − 2 j + 4 j + 1 4k − j + 3

vi+n+j : 0 ≤ j ≤ 4k j + 2 j + 1 4k − j + 1

vi+2n−j−2 : 0 ≤ j ≤ 4k j + 2 j + 3 4k − j + 3

Table 3.5: Codes for the outer vertices of SMn

d(., .) vi vi+n−1 ui+2k

ui+j : 0 ≤ j ≤ 2k − 1 2j + 1 2j + 2 4k − 2j + 2

ui+2k+j+1 : 0 ≤ j ≤ 2k 4k − 2j + 3 4k − 2j + 2 2j + 4

Table 3.6: Codes for the inner vertices of SMn

It can be seen that no two vertices of SMn lying in column 1 of tables 3.5 and

3.6 have the same code with respect to W , this yield that W is a resolving set for

V (SMn). Hence β(SMn) ≤ 3 when n ≡ 4 (mod 8).

Lemma 3.3.5. Let SMn be the barycentric subdivision of Möbius ladder, then

β(SMn) ≤ 3 when n ≡ 6 (mod 8).

Proof. When n ≡ 6 (mod 8), we can write n = 8k + 6 where k ≥ 1. We will show

that for a chosen index i such that 0 ≤ i ≤ 2n − 1, W = {vi, vi+n−1, ui+2k+2}
is a resolving set for V (SMn), where k = n−6

8
. The codes of the vertices in

V (SMn) \ W with respect to W are: cW (vi+n) = (2, 1, 4k + 3), cW (vi+n+4k+3) =

(4k + 3, 4k + 4, 2), cW (vi+2n−1) = (1, 4, 4k + 2), cW (ui) = (1, 2, 4k + 4) and in tables

3.7 and 3.8.

d(., .) vi vi+n−1 ui+2k+2

vi+j+1 : 0 ≤ j ≤ 4k j + 1 j + 4 4k − j + 4

vi+4k+j+2 : 0 ≤ j ≤ 2 4k + j + 2 4k − j + 3 3− j

vi+n−j−2 : 0 ≤ j ≤ 4k − 1 j + 4 j + 1 4k − j + 1

vi+n+j+1 : 0 ≤ j ≤ 4k + 1 j + 3 j + 2 4k − j + 4

vi+2n−j−2 : 0 ≤ j ≤ 4k j + 2 j + 3 4k − j + 1

Table 3.7: Codes for the outer vertices of SMn
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d(., .) vi vi+n−1 ui+2k+2

ui+j+1 : 0 ≤ j ≤ 2k 2j + 3 2j + 4 4k − 2j + 4

ui+2k+j+3 : 0 ≤ j ≤ 2k − 1 4k − 2j + 1 4k − 2j 2j + 4

Table 3.8: Codes for the inner vertices of SMn

It can be seen that all the vertices lying in the first column of tables 3.7 and 3.8

have distinct codes with respect to W implying that β(SMn) ≤ 3 when n ≡ 6

(mod 8).

Lemma 3.3.6. Let SMn be the barycentric subdivision of Möbius ladder, then

β(SMn) ≥ 3 when n ≡ 0, 2, 4, 6 (mod 8).

Proof. Conversely, we show that β(SMn) ≥ 3 if n ≡ 0, 2, 4, 6 (mod 8). Suppose on

contrary that β(SMn) = 2, then the following three possibilities arise.

(1). If both vertices belong to the set {vi : 0 ≤ i ≤ 2n − 1}. Without loss of

generality, we can suppose that W = {vi, vi+j} is a resolving set where 1 ≤ j ≤
2n− 1. But then we get

• If 1 ≤ j ≤ n
2
, then r(ui|W ) = r(vi+2n−1|W ) = (1, j + 1).

• If n
2

+ 1 ≤ j ≤ n− 2, then r(ui|W ) = r(vi+2n−1|W ) = (1, n− j + 1).

• If j = n− 1, then r(vi+1|W ) = r(vi+2n−1|W ) = (1, 4).

• If n ≤ j ≤ n+ 1, then r(vi+1|W ) = r(vi+2n−1|W ) = (1, j − n+ 3).

• If n+ 2 ≤ j ≤ 3n
2

, then r(vi+1|W ) = r(ui|W ) = (1, j − n+ 1).

• If 3n
2

+ 1 ≤ j ≤ 2n− 1, then r(vi+1|W ) = r(ui|W ) = (1, 2n− j + 1),

a contradiction.

(2). When both vertices belong to the set {ui : 0 ≤ i ≤ n
2
− 1}. Without loss of

generality, we can suppose that resolving set is W = {ui, ui+j} where 1 ≤ j ≤ n
2
−1.

However, we have in this case:

• If 1 ≤ j ≤ n
4

when n ≡ 0, 4 (mod 8) and 1 ≤ j ≤ n−2
4

when n ≡ 2, 6 (mod 8),

then r(vi|W ) = r(vi+n|W ) = (1, 2j + 1).
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• If n
4

+ 1 ≤ j ≤ n
2
− 1 when n ≡ 0, 4 (mod 8) and n+2

4
≤ j ≤ n

2
− 1 when

n ≡ 2, 6 (mod 8), then r(vi|W ) = r(vi+n|W ) = (1, n− 2j + 1),

a contradiction.

(3). When one vertex belongs to the set {vi : 0 ≤ i ≤ 2n − 1} and another

belongs to the set {ui : 0 ≤ i ≤ n
2
− 1}. Without loss of generality, we can choose

resolving set as W = {vi, ui+j} where 1 ≤ j ≤ n
2
− 1. But then, we receive:

• If j = 0, then r(vi+1|W ) = r(vi+2n−1|W ) = (1, 2).

• If 1 ≤ j ≤ n
4

when n ≡ 0, 4 (mod 8) and 1 ≤ j ≤ n−2
4

when n ≡ 2, 6 (mod 8),

then r(vi+2j+1|W ) = r(vi+n+2j−1|W ) = (2j + 1, 2).

• If n
4

+ 1 ≤ j ≤ n
2
− 1 when n ≡ 0, 4 (mod 8) and n+2

4
≤ j ≤ n

2
− 1 when

n ≡ 2, 6 (mod 8), then r(vi+2j+1|W ) = r(vi+n+2j−1|W ) = (n− 2j + 1, 2),

a contradiction again.

Hence in all possibilities we have β(SMn) = 3 when n ≡ 0, 2, 4, 6 (mod 8).

3.3.2 Metric dimension of generalized Petersen multigraphs

P (2n, n)

The generalized Petersen graphs P (n,m) form an important class of 3-regular graphs

with 2n vertices and 3n edges having vertex set

V (P (n,m)) = {u1, u2, ..., un, v1, v2, ..., vn}

and edge set

E(P (n,m)) = {uiui+1, uivi, vivi+m : 1 ≤ i ≤ n}.

For m = 1, the generalized Petersen graph P (n, 1) is called prism, denoted by Dn.

In [6], Caceres et al. shown that

β(Dn)=

{
2, if n is odd;

3, otherwise.
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So prisms constitute a family of cubic graphs with constant metric dimension. In

[20], Javaid et al. proved that the generalized Petersen graphs P (n, 2) is a family of

graphs with constant metric dimension 3 for every positive integer n ≥ 5.

Imran et al. [16] considered the generalized Petersen graphs P (n, 3) and deduced

the following results:

Theorem 3.3.7. [16] For generalized Petersen graphs P (n, 3), we have

(a) β(P (n, 3)) = 4 for n ≡ 0 (mod 6) and n ≥ 24.

(b) β(P (n, 3)) = 3 for n ≡ 1 (mod 6) and n ≥ 25.

(c) β(P (n, 3)) ≤ 5 for n ≡ 2 (mod 6) and n ≥ 8.

(d) β(P (n, 3)) ≤ 4 for n ≡ 3, 4, 5 (mod 6) and n ≥ 17.

Javaid et al. [19] proved that

β(P (2n+ 1, n))=

{
2, if n = 1;

3, otherwise.

It was proved by Javaid et al. [21], for all m ≥ 2, the generalized Petersen graphs

P (2n, n − 1) constitute a family of graphs with constant metric dimension 3 when

n(≥ 3) is odd, and metric dimension is 4 when n(≥ 4) is even.

The generalized Petersen graphs P (2n, n) are in fact the multigraphs. Here, we

study their metric dimension and prove that the metric dimension is 3 when n is

even and 4 otherwise.

The generalized Petersen multigraphs P (2n, n) have vertex set V (P (2n, n)) =

{vi, ui : 0 ≤ i ≤ 2n − 1} and the edge set E(P (2n, n)) = {vivi+1, viui, uiui+n : 0 ≤
i ≤ 2n−1}, where indices are taken modulo 2n. Here for our convenience, we call the

vertices v0, . . . , v2n−1, outer vertices that numbered clockwise and u0, . . . , u2n−1, the

inner vertices. Note that in the generalized Petersen graphs P (2n, n), the vertices

ui and ui+n are joined by parallel edges, but since we are interested in finding the

metric dimension of P (2n, n) so these parallel edges have no role in calculating the

metric dimension. So for this reason, we can view the vertices of the set {ui :

0 ≤ i ≤ 2n − 1} as a vertices of degree two. Now after this observation, we can
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obtain the simple generalized Petersen graph P (2n, n) from the graph of Möbius

ladder M2n by subdividing twice of its those edges that join the vertices vi and

vi+n, where 0 ≤ i ≤ 2n − 1 and indices are taken modulo 2n. Two different views

of P (12, 6) are shown in figure 3.4. For our convenience, we view the P (12, 6) as

Figure 3.4: Two views of P (12, 6)

particular subdivision (as mentioned above) of prism with one twisted edge. In the

next theorem, we extend the study to the metric dimension of generalized Petersen

graphs P (2n, n). Note that the choice of appropriate basis vertices is the core of the

problem.

In proofs of Lemmas 3.3.8 to 3.3.11 each entry in codes tables is the distance

between the vertices of column 1 and the vertices of row 1. Each row represents the

code of a vertex, with respect to row 1, lying in column 1 of that row.

Lemma 3.3.8. Let P (2n, n) be the generalized Petersen multigraph, then we have

β(P (2n, n)) ≤ 3 when n ≡ 0 (mod 4).

Proof. When n ≡ 0 (mod 4), then we can write n = 4k, where k ≥ 1. We will show

that for a chosen index i such that 0 ≤ i ≤ 2n − 1, W = {vi, vi+n−1, ui+n+2k} is a

resolving set for P (2n, n), where k = n
4
.

For n = 4, the codes of the vertices in P (2n, n) \ W with respect to W =

{v0, v3, u6} are in tables 3.9 and 3.10.
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d(., .) v0 v3 u6

v1 1 2 3

v2 2 1 2

v4 3 1 3

v5 3 2 2

v6 2 3 1

v7 1 3 2

Table 3.9: Codes for the outer vertices of P (8, 4)

d(., .) v0 v3 u6

u0 1 3 4

u1 2 3 4

u2 3 2 1

u3 3 1 4

u4 2 2 4

u5 3 3 3

u7 2 2 3

Table 3.10: Codes for the inner vertices of P (8, 4)

It can be seen that all the vertices in V (P (8, 4))\W have distinct codes with respect

to W .

Now the codes of the vertices of V (P (2n, n))\W when n > 4 are: cW (vi+2k+1) =

(2k+ 1, 2k− 2, 3), cW (ui) = (1, 3, 2k+ 2), cW (ui+2k−1) = (2k, 2k+ 1, 4), cW (ui+2k) =

(2k + 1, 2k, 1) and in tables 3.11 and 3.12.

d(., .) vi vi+n−1 ui+n+2k

vi+j+1 : 0 ≤ j ≤ 2k − 4 j + 1 j + 5 2k − j + 1

vi+2k+j−2 : 0 ≤ j ≤ 2 2k + j − 2 2k − j + 1 4− j

vi+n−j−2 : 0 ≤ j ≤ 2k − 4 j + 5 j + 1 2k − j

vi+n+j : 0 ≤ j ≤ 2k − 2 j + 3 j + 1 2k − j + 1

vi+n+2k+j−1 : 0 ≤ j ≤ 1 2k − j + 1 2k + j 2− j

vi+2n−j−1 : 0 ≤ j ≤ 2k − 2 j + 1 j + 3 2k − j

Table 3.11: Codes for the outer vertices of P (2n, n)
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d(., .) vi vi+n−1 ui+n+2k

ui+j+1 : 0 ≤ j ≤ 2k − 3 j + 2 j + 4 2k − j + 2

ui+n−j−1 : 0 ≤ j ≤ 2k − 2 j + 3 j + 1 2k − j + 2

ui+n+j : 0 ≤ j ≤ 2k − 1 j + 2 j + 2 2k − j + 2

ui+2n−j−1 : 0 ≤ j ≤ 2k − 2 j + 2 j + 2 2k − j + 1

Table 3.12: Codes for the inner vertices of P (2n, n)

It can be seen that no two vertices of P (2n, n) lying in column 1 of tables 3.11 and

3.12 have the same code with respect to W , this yields W is a resolving set for

P (2n, n). Hence β(P (2n, n)) ≤ 3 when n ≡ 0 (mod 4).

Lemma 3.3.9. Let P (2n, n) be the generalized Petersen multigraph, then we have

β(P (2n, n)) ≤ 3 when n ≡ 2 (mod 4).

Proof. When n ≡ 2 (mod 4), we can write n = 4k + 2, where k ≥ 1. We will show

that for a chosen index i such that 0 ≤ i ≤ 2n − 1, W = {vi, vi+n−1, ui+n+2k}
is a resolving set for P (2n, n), where k = n−2

4
. The codes of the vertices in

V (P (2n, n))\W with respect to W are: cW (ui+2k) = (2k+1, 2k+2, 1), cW (ui+2k+1) =

(2k + 2, 2k + 1, 4), cW (ui+n−1) = (3, 1, 2k + 3) and in tables 3.13 and 3.14.

d(., .) vi vi+n−1 ui+n+2k

vi+j+1 : 0 ≤ j ≤ 2k − 3 j + 1 j + 5 2k − j + 1

vi+2k+j−1 : 0 ≤ j ≤ 1 2k + j − 1 2k − j + 2 3− j

vi+2k+j+1 : 0 ≤ j ≤ 1 2k + j + 1 2k − j j + 3

vi+n−j−2 : 0 ≤ j ≤ 2k − 3 j + 5 j + 1 2k − j + 2

vi+n+j : 0 ≤ j ≤ 2k − 1 j + 3 j + 1 2k − j + 1

vi+n+2k+j : 0 ≤ j ≤ 1 2k − j + 2 2k + j + 1 j + 1

vi+2n−j−1 : 0 ≤ j ≤ 2k − 1 j + 1 j + 3 2k − j + 2

Table 3.13: Codes for the outer vertices of P (2n, n)

d(., .) vi vi+n−1 ui+n+2k

ui+j : 0 ≤ j ≤ 2k − 1 j + 1 j + 3 2k − j + 3

ui+n−j−2 : 0 ≤ j ≤ 2k − 2 j + 4 j + 2 2k − j + 3

ui+n+j : 0 ≤ j ≤ 2k − 1 j + 2 j + 2 2k − j + 2

ui+2n−j−1 : 0 ≤ j ≤ 2k j + 2 j + 2 2k − j + 3

Table 3.14: Codes for the inner vertices of P (2n, n)
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Since all the vertices lying in the first column of above two tables have distinct codes

with respect to W implying that β(P (2n, n)) ≤ 3 when n ≡ 2 (mod 4).

Lemma 3.3.10. Let P (2n, n) denotes the generalized Petersen multigraph for n ≡ 1

(mod 4), then we have β(P (2n, n)) ≤ 4.

Proof. When n ≡ 1 (mod 4), we can write as n = 4k+1, where k ≥ 1. For a chosen

index i such that 0 ≤ i ≤ 2n− 1, we show that W = {vi, vi+n, ui+n+2k−1, ui+n+2k+1}
is a resolving set for P (2n, n), where k = n−1

4
.

The codes of the vertices in V (P (2n, n))\W with respect to W are: cW (vi+n−1) =

(4, 1, 2k + 1, 2k + 1), cW (ui) = (1, 2, 2k + 2, 2k + 2), cW (ui+2k−1) = (2k, 2k + 1, 1, 5),

cW (ui+2k) = (2k+ 1, 2k+ 2, 4, 4), cW (ui+2k+1) = (2k+ 2, 2k+ 1, 5, 1), cW (ui+n+2k) =

(2k + 2, 2k + 1, 3, 3) and in tables 3.15 and 3.16.

d(., .) vi vi+n ui+n+2k−1 ui+n+2k+1

vi+j+1 : 0 ≤ j ≤ 2k − 2 j + 1 j + 4 2k − j 2k − j + 2

vi+2k+j : 0 ≤ j ≤ 1 2k + j 2k − j + 1 j + 3 3− j

vi+n−j−2 : 0 ≤ j ≤ 2k − 3 j + 5 j + 2 2k − j + 2 2k − j

vi+n+j+1 : 0 ≤ j ≤ 2k − 2 j + 4 j + 1 2k − j − 1 2k − j + 1

vi+n+2k+j : 0 ≤ j ≤ 1 2k − j + 1 2k + j j + 2 2− j

vi+2n−j−1 : 0 ≤ j ≤ 2k − 2 j + 1 j + 4 2k − j + 2 2k − j

Table 3.15: Codes for the outer vertices of P (2n, n)

d(., .) vi vi+n ui+n+2k−1 ui+n+2k+1

ui+j+1 : 0 ≤ j ≤ 2k − 3 j + 2 j + 3 2k − j + 1 2k − j + 3

ui+n−j−2 : 0 ≤ j ≤ 2k − 3 j + 4 j + 3 2k − j + 3 2k − j + 1

ui+n+j−1 : 0 ≤ j ≤ 1 3− j 2− j 2k − j + 2 2k + j + 2

ui+n+j+1 : 0 ≤ j ≤ 2k − 3 j + 3 j + 2 2k − j 2k − j + 2

ui+2n−j−1 : 0 ≤ j ≤ 2k − 2 j + 2 j + 3 2k − j + 3 2k − j + 1

Table 3.16: Codes for the inner vertices of P (2n, n)

It can be verified that all the vertices of V (P (2n, n)) \W that are lying in the first

column of tables mentioned above have distinct codes with respect to W . This yield

that β(P (2n, n)) ≤ 3 for n ≡ 1 (mod 4).
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Lemma 3.3.11. Let P (2n, n) be the generalized Petersen multigraph for n ≡ 3

(mod 4), then β(P (2n, n)) ≤ 4.

Proof. When n ≡ 3 (mod 4), we write as n = 4k + 3 where k ≥ 1. For a chosen

index i such that 0 ≤ i ≤ 2n − 1, we show that W = {vi, vi+n, ui+n+2k, ui+n+2k+2}
is a resolving set for P (2n, n) where k = n−3

4
.

The codes of the vertices in V (P (2n, n))\W with respect to W are: cW (vi+n−1) =

(4, 1, 2k+ 2, 2k+ 2), cW (ui) = (1, 2, 2k+ 3, 2k+ 3), cW (ui+2k) = (2k+ 1, 2k+ 2, 1, 5)

, cW (ui+2k+1) = (2k+2, 2k+3, 4, 4) , cW (ui+2k+2) = (2k+3, 2k+2, 5, 1), cW (ui+n+2k+1)

= (2k + 3, 2k + 2, 3, 3) and in tables 3.17 and 3.18.

d(., .) vi vi+n ui+n+2k ui+n+2k+2

vi+j+1 : 0 ≤ j ≤ 2k − 1 j + 1 j + 4 2k − j + 1 2k − j + 3

vi+2k+j+1 : 0 ≤ j ≤ 1 2k + j + 1 2k − j + 2 j + 3 3− j

vi+n−j−2 : 0 ≤ j ≤ 2k − 2 j + 5 j + 2 2k − j + 3 2k − j + 1

vi+n+j+1 : 0 ≤ j ≤ 2k − 1 j + 4 j + 1 2k − j 2k − j + 2

vi+n+2k+j+1 : 0 ≤ j ≤ 1 2k − j + 2 2k + j + 1 j + 2 2− j

vi+2n−j−1 : 0 ≤ j ≤ 2k − 1 j + 1 j + 4 2k − j + 3 2k − j + 1

Table 3.17: Codes for the outer vertices of P (2n, n)

d(., .) vi vi+n ui+n+2k ui+n+2k+2

ui+j+1 : 0 ≤ j ≤ 2k − 2 j + 2 j + 3 2k − j + 2 2k − j + 4

ui+n−j−2 : 0 ≤ j ≤ 2k − 2 j + 4 j + 3 2k − j + 4 2k − j + 2

ui+n+j−1 : 0 ≤ j ≤ 1 3− j 2− j 2k − j + 3 2k + j + 3

ui+n+j+1 : 0 ≤ j ≤ 2k − 2 j + 3 j + 2 2k − j + 1 2k − j + 3

ui+2n−j−1 : 0 ≤ j ≤ 2k − 1 j + 2 j + 3 2k − j + 4 2k − j + 2

Table 3.18: Codes for the inner vertices of P (2n, n)

Since no two distinct vertices of V (P (2n, n)) \W lying in table 3.17 and table 3.18

have the same code. Thus we get β(P (2n, n)) ≤ 4 when n ≡ 3 (mod 4).

Lemma 3.3.12. Let P (2n, n) be the generalized Petersen multigraph, then β(P (2n, n))

≥ 3 when n is even and n ≡ 0, 2 (mod 4).

Proof. Suppose on contrary that β(P (2n, n)) = 2, then following three possibilities

arise.
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Case 1. When both vertices belong to the set {vi : 0 ≤ i ≤ 2n − 1} ⊂
V (P (2n, n)). For fixed i, suppose that resolving set is W = {vi, vi+j}. However

then

• If 1 ≤ j ≤ n
2
, then cW (vi+2n−1) = cW (ui) = (1, j + 1).

• If n
2

+ 1 ≤ j ≤ n− 1, then cW (vi+2n−1) = cW (ui) = (1, n− j + 2).

• If j = n, then cW (vi+1) = cW (vi+2n−1) = (1, 4). And for k = 1 when n ≡ 0

(mod 4), we have cW (vi+1) = cW (vi+7) = (1, 3).

• If n+ 1 ≤ j ≤ 3n
2
− 1, then cW (vi+1) = cW (ui) = (1, j − n+ 2).

• If 3n
2
≤ j ≤ 2n− 1, then cW (vi+1) = cW (ui) = (1, 2n− j + 1).

Case 2. When both vertices belong to the set {ui : 0 ≤ i ≤ 2n − 1} ⊂
V (P (2n, n)). For fixed i, suppose the resolving set is W = {ui, ui+j}. However,

then

• If 1 ≤ j ≤ n
2
− 1, then cW (vi+n) = cW (vi+2n−1) = (2, j + 2).

• If n
2
≤ j ≤ n− 1, then cW (vi+n) = cW (vi+2n−1) = (2, n− j + 1).

• If j = n, then cW (vi+1) = cW (vi+2n−1) = (2, 3).

• If n+ 1 ≤ j ≤ 3n
2

, then cW (vi+1) = cW (vi+n) = (2, j − n+ 1).

• If 3n
2

+ 1 ≤ j ≤ 2n− 1, then cW (vi+1) = cW (vi+n) = (2, 2n− j + 2).

Case 3. When one vertex belongs to the set {vi : 0 ≤ i ≤ 2n − 1} ⊂ V (P (2n, n))

and another belongs to {ui : 0 ≤ i ≤ 2n − 1} ⊂ V (P (2n, n)), then two subcases

arise:

Subcase(i). For fixed i, suppose W = {vi, ui+j} is a resolving set. However, we

have

• If j = 0, then cW (vi+1) = cW (vi+2n−1) = (1, 2).

• If 1 ≤ j ≤ n
2
− 1, then cW (vi+2n−1) = cW (ui) = (1, j + 2).
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• If n
2
≤ j ≤ n− 2, then cW (ui+n) = cW (ui+2n−1) = (2, n− j + 2).

• If j = n − 1, then cW (vi+1) = cW (ui) = (1, 4). And for k = 1 when n ≡ 0

(mod 4), we have cW (vi+6) = cW (ui+4) = (2, 3).

• If j = n, then cW (vi+1) = cW (vi+2n−1) = (1, 3).

• If n+ 1 ≤ j ≤ 3n
2
− 2, then cW (vi+2n−1) = cW (ui) = (1, j − n+ 3).

• If 3n
2
−1 ≤ j ≤ 3n

2
, then cW (ui+1) = cW (ui+n) = (2, j−n+2). For k = 1 when

n ≡ 0 (mod 4), then for j = 3n
2
− 1 we have cW (vi+2) = cW (ui+4) = (2, 3) and

when j = 3n
2

, we get cW (ui+1) = cW (ui+4) = (2, 4) .

• If 3n
2

+ 1 ≤ j ≤ 2n− 1, then cW (ui+1) = cW (ui+n) = (2, 2n− j + 3).

Subcase(ii). For fixed i, suppose W = {ui, vi+j} is a resolving set. But then

we receive

• If 0 ≤ j ≤ n
2
− 2, then cW (vi+j+2) = cW (ui+j+1) = (j + 3, 2).

• If j = n
2
− 1, then cW (ui+n

2
) = cW (ui+ 3n

2
−1) = (n

2
+ 2, 2).

• If n
2
≤ j ≤ n− 2, then cW (ui+j+1) = cW (ui+j+n) = (n− j + 2, 2).

• If j = n− 1, then cW (vi+n+1) = cW (ui+2n−1) = (3, 2).

• If n ≤ j ≤ 3n
2
− 3, then cW (vi+j+2) = cW (ui+j+1) = (j − n+ 4, 2).

• If 3n
2
− 2 ≤ j ≤ 3n

2
, then cW (ui+j−1) = cW (ui+j−n) = (j − n+ 2, 2). For k = 1

when n ≡ 0 (mod 4), then for j = 3n
2
−2 we have cW (ui+3) = cW (ui+5) = (4, 2).

If j = 3n
2
− 1, then cW (vi+3) = cW (ui+1) = (3, 2) and when j = 3n

2
, we have

cW (ui+2) = cW (ui+5) = (4, 2).

• If 3n
2

+ 1 ≤ j ≤ 2n− 1, then cW (ui+j−1) = cW (ui+j−n) = (2n− j + 3, 2).

We get a contradiction in all above cases, which implies that no two vertices for

V (P (2n, n)) serve as basis vertices. Hence β(P (2n, n)) ≥ 3 when n ≡ 0, 2 (mod 4).
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Now we prove that β(P (2n, n)) ≥ 4 when n is odd and n ≡ 1, 3 (mod 4). For

this purpose, we need some more notions and definitions. Without loss of generality,

we can suppose that the vertices v0, v1, . . . , v2n−1 of the outer cycle in the clockwise

direction. For any two vertices vi and vj (i 6= j), the clockwise distance, d∗(vi, vj), is

the distance measured in clockwise direction from vi to vj in the subgraph induced

by the outer cycle. For example, d∗(v0, v2n−1) = 2n− 1 and d∗(v2n−1, v0) = 1. This

definition can be extended to any two vertices of P (2n, n). The indices will be taken

as modulo 2n.

Consider a vertex on the outer cycle, say v0. A vertex ui is called a good ver-

tex for v0 if d(v0, ui) = d, where d ∈ {d(v0, ui+n−1), d(v0, ui−n+1)}; otherwise, ui is

called a bad vertex for v0. And vi is called a good vertex for v0 if d(v0, vi) = d,

where d ∈ {d(v0, vi+n−3), d(v0, vi−n+3)}. This definition can be extended to any

two inner vertices belong to set {u0, . . . , u2n−1}. The vertex vi is a good vertex

for u0 if d(u0, vi) = d, where d ∈ {d(u0, vi+n−1), d(u0, vi−n+1)}; ui is a good ver-

tex for ul, say l = 0, if d(u0, ui) = d, where d ∈ {d(u0, ui+n−1), d(u0, ui−n+1),

d(u0, ui+2n−2), d(u0, ui−2n+2), d(ul, vl)} and bad otherwise.

It is important to note that the set of good vertices for u0 can be obtained from

the set of good vertices for v0 by adding vertices v1, v2, v2n−2 and v2n−1. Similarly a

vertex uj is good for the pair {v0, vi} if it satisfies the above definition for a vertex

uj to be good for the outer vertices. If vl is good for the pairs {v0, vi} and {v0, vj}
then vl is good for the triplet {v0, vi, vj}. Due to rotational symmetry of the graph

P (2n, n) we deduce the following result:

Lemma 3.3.13. For any two vertices xi and yj of P (2n, n) such that xi 6= xj, we

have d(xi, yj) = d(xi+r, yi+r) for any 1 ≤ r ≤ 2n− 1.

In order to find for pairs of good vertices belonging to the outer cycle, the

following lemmas will be useful.

Lemma 3.3.14. Let 0 ≤ j ≤ 2n− 3. If ui is good for v0 and ui−j−1 is also good for

v0, then ui is also good for the pair {v0, vj+1}.

Proof. By definition, d(v0, ui) = d(v0, ui+n−1) or d(v0, ui) = d(v0, ui−n+1) and d(v0,

ui−j−1) = d(v0, ui−j+n−2) or d(v0, ui−j−1) = d(v0, ui−j−n). By Lemma 3.3.13, the last
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two equalities imply that d(v1+j, ui) = d(v1+j, ui+n−1) or d(v1+j, ui) = d(v1+j, ui−n+1).

Lemma 3.3.15. Let 0 ≤ j ≤ 2n− 7. If vi is good for v0 and vi−j−1 is also good for

v0, then vi is also good for the pair {v0, vj+1}.

Clearly β(P (2n, n)) > 1 because paths are the only graph with metric dimension

1 [22].

Lemma 3.3.16. If n is odd and n ≡ 1, 3 (mod 4), then we have β(P (2n, n)) ≥ 3

for every positive integer n ≥ 7.

Proof. We show that there is no resolving set of V (P (2n, n)) consisting of two

vertices A and B. If both A and B belong to the outer cycle, we can suppose

that A = v0. Let d∗(v0, B) = j + 1. Since the vertices u1, u2, . . . , u2n−1 and

v3, v4, . . . , v2n−3 are good vertices for v0. By using Lemma 3.3.14, we find that

u2n−1 is a good vertex for all pairs {v0, B}, where B ∈ {vj+1 : 0 ≤ j ≤ 2n − 3}
and if B = v2n−1, then u1 is a good vertex for the pair {v0, B}. Similarly, by

Lemma 3.3.15 we can find that v2n−3 is a good vertex for every pair {v0, B} such

that B ∈ {vj+1 : 0 ≤ j ≤ 2n− 7} and if B ∈ {v2n−5, v2n−4, . . . , v2n−1}, then v2n−8 is

good for all pairs {v0, B}.
If A,B ∈ {ui : 0 ≤ i ≤ 2n − 1}, we can consider A = u0 and B = ui. This

case can be reduced to the case when A = v0 and B = vi because the set of good

vertices for ul also includes the set of good vertices for vl for any 0 ≤ l ≤ 2n− 1. If

A = vi and B = ui, then any good vertex for vi is also a good vertex for ui, hence

for the pair {A,B}. The remaining case when A = vi and B = uj (i 6= j) can also

be reduced to the case when A = vi and B = vj. It follows that there is no resolving

set containing two vertices in this case, which completes the proof.

Lemma 3.3.17. If n is odd and n ≡ 1, 3 (mod 4), then we have β(P (2n, n)) ≥ 4

for every positive integer n ≥ 7 .

Proof. Clearly, β(P (2n, n)) ≥ 3, by Lemma 3.3.16. Now we have to show that

there is no resolving set of V (P (2n, n)) consisting of three vertices A,B and C

when n ≡ 1, 3 (mod 4). By the same reasoning as in Lemma 3.3.16, it is enough
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to consider only the case when A,B and C belong to the outer cycle. Since the

set of good vertices for u0 can be obtained from the set of good vertices for v0 by

adding vertices v0, v2, v2n−2 and v2n−1. Without loss of generality we suppose that

d∗(A,B) < d∗(A,C) and let A = v0. Consider (d∗(v0, B), d∗(v0, C)) = (l + 1, j + 1)

such that B = vl+1 and C = vj+1. Since u1, . . . , u2n−1 and v3, . . . , v2n−3 are good

vertices for v0. By applying Lemma 3.3.14, we find that u2n−1 is a good vertex

for all the pairs {v0, B} and {v0, C}, where l, j = 0, 1, . . . , 2n − 3 and hence for

all the triplets {v0, B, C}. And if B = v2n−2 and C = v2n−1, then u1 is a good

vertex for the pairs {v0, B} and {v0, C} and hence for the triplet {v0, B, C}. Now

by Lemma 3.3.15, we find v2n−3 is a good vertex for all the pairs {v0, B} and {v0, C},
where l, j = 0, 1, . . . , 2n− 7 and hence for all the triplets {v0, B, C}. When B,C ∈
{v2n−5, . . . , v2n−1}, then v2n−8 is a good vertex for all pairs {v0, B} and {v0, C} and

hence for all triplets {v0, B, C}. It follows that there is no resolving set with three

vertices in this case, which completes the proof.

Theorem 3.3.18. Let P (2n, n) deontes the generalized Petersen multigraph, then

for every positive integer n ≥ 2 we have

β(P (2n, n))=

{
3, if n is even;

4, otherwise.

Proof. Case 1. When n is even and n ≡ 0, 2 (mod 4). By Lemmas 3.3.8, 3.3.9 and

3.3.12, β(P (2n, n)) = 3.

Case 2. When n is odd and n ≡ 1, 3 (mod 4). By Lemmas 3.3.10, 3.3.11, 3.3.16

and 3.3.17, β(P (2n, n)) = 4.
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Chapter 4

Exchange property for resolving

sets in graphs

We have seen that if each vertex in G is uniquely determined by its distances to

the vertices of W ⊆ V (G), then W is called a resolving set. Since every vertex in

the graph can be uniquely identified with respect to the vertices of resolving sets, so

they act like bases in a vector space. However, resolving sets do not always have the

exchange property from linear algebra because they share some of the properties of

bases in a vector space. Resolving sets are said to have the exchange property in G

if whenever R and T are minimal resolving sets for G and t ∈ T , then there exists

r ∈ R so that (R \ {r}) ∪ {t} is a minimal resolving set [4].

If the exchange property holds for a graph G, then the size of every minimal

resolving set for G is same and algorithmic methods for finding the metric dimension

of G are more feasible. So, if we have to show that in a given graph the exchange

property does not hold, it suffices to prove that there are two minimal resolving

sets having different size. The converse is not true. Thus, if we know that the

exchange property does not hold, then the existence of two distinct resolving sets

having different size is not guaranteed.

The following results concerning exchange property for resolving sets were de-

duced by Boutin [4].

Theorem 4.0.19. [4] The exchange property holds for resolving sets in trees.
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Theorem 4.0.20. [4] Resolving sets do not have the exchange property in wheels

Wn for every positive integer n ≥ 8.

In this chapter, we study the exchange property for resolving sets in antiweb-

wheels, some rotationally-symmetric graphs, barycentric subdivision of Möbius lad-

ders and generalized Petersen multigraphs P (2n, n).

4.1 Exchange property for resolving sets in antiweb-

wheels

The next theorem shows that the exchange property does not hold for resolving sets

of antiweb-wheels for n ≥ 10.

Theorem 4.1.1. For every positive integer n ≥ 10, resolving sets do not have the

exchange property in antiweb-wheels AWWn.

Proof. We consider the six cases according to the residue class modulo six. We show

that in each case, there are minimal resolving sets having different size.

(1). If n ≡ 0 (mod 6) then we write it as n = 6k, where k ≥ 2. Then B =

{v6i+1, v6i+3 : 0 ≤ i ≤ k − 1} is a metric basis [see Theorem 3.1.1] and hence a

minimal resolving set.

It can be seen that B′ = {v1} ∪ {v6i+5, v6i+7 : 0 ≤ i ≤ k − 2} ∪ {v6k−3, v6k−2}
is also a minimal resolving set. There is no b ∈ B′ such that B′\{b} is still a

resolving set. If b = v1, then removal of v1 would yield a gap having six vertices.

If b ∈ {v6i+5, v6i+7 : 0 ≤ i ≤ k − 2} \ {v6k−5}, then removal of b would yield

neighboring gaps, one containing five vertices and other one will have at least one

vertex. If b ∈ {v6k−5, v6k−2}, then there will be neighboring gaps containing three

vertices each. Also if b = v6k−3, then a gap containing two vertices will have both

neighboring gaps non empty, a contradiction in all cases. Therefore we have |B| = 2k

and |B′| = 2k + 1.

(2). If n ≡ 1 (mod 6), then we may write n = 6k + 1, where k ≥ 2. Then

B = {v1} ∪ {v6i+3, v6i+7 : 0 ≤ i ≤ k − 2} ∪ {v6k−2, v6k−1} is a metric basis [see

Theorem 3.1.1] and hence a minimal resolving set.
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Also B′ = {v1, v5} ∪ {v6i+6, v6i+8 : 0 ≤ i ≤ k − 2} ∪ {v6k−2, v6k−1} is a minimal

resolving set. There is no b ∈ B′ such that B′\{b} is a resolving set. If b = v1,

then removal of v1 would yield a gap having six vertices. If b = v5, then one

of the neighboring gap will contain four vertices and other will be non empty. If

b ∈ {v6, v6k−2}, then the gap containing two vertices will have both neighboring gaps

non empty. If b ∈ {v6i+6, v6i+8 : 0 ≤ i ≤ k− 2}\{v6, v6k−4}, then removal of b would

leave neighboring gaps, one having five vertices and other one will contain at least

one vertex. If b = v6k−4 for k = 2, then both neighboring gaps of an empty gap will

contain three vertices. If b = v6k−1 for k = 2 and b ∈ {v6k−4, v6k−1} where k ≥ 3,

then there will be neighboring gaps having three vertices each. Therefore we have

|B| = 2k + 1 and |B′| = 2k + 2.

(3). If n ≡ 2 (mod 6), then n = 6k + 2, where k ≥ 2. Then B = {v1} ∪
{v6i+3, v6i+5 : 0 ≤ i ≤ k − 1} is a metric basis [see Theorem 3.1.1] and hence a

minimal resolving set.

Moreover B′ = {v1, v5} ∪ {v6i+6, v6i+8 : 0 ≤ i ≤ k − 2} ∪ {v6k−1, v6k} is another

minimal resolving set. There is no b ∈ B′ such that B′\{b} is a resolving set. If

b = v1, then removal of v1 would yield a gap of six vertices. If b = v5 for k = 2

and b ∈ {v5, v6k−4} for k ≥ 3, then one of the neighboring gap will contain four

vertices and other gap will contain at least one vertex. If b = v6k−4 for k = 2, then

removal of b would leave one of the neighboring gap of an empty gap containing

three vertices and other one will contain four vertices. If b ∈ {v6i+6, v6i+8 : 0 ≤ i ≤
k− 2} \ {v6, v6k−4}, then removal of b would yield neighboring gaps, one having five

vertices and other one will contain at least one vertex. If b ∈ {v6, v6k−1}, then the

gap containing two vertices will have both neighboring gaps non empty. If b = v6k,

then removal of b would leave neighboring gaps having three vertices each. Therefore

we have |B| = 2k + 1 and |B′| = 2k + 2.

(4). If n ≡ 3 (mod 6), then we can write n = 6k + 3, where k ≥ 2. Then

B = {v1, v3} ∪ {v6i+5, v6i+9 : 0 ≤ i ≤ k − 2} ∪ {v6k, v6k+1} is a metric basis [see

Theorem 3.1.1] and hence a minimal resolving set.

Also B′ = {v1, v6, v7} ∪ {v6i+9, v6i+11 : 0 ≤ i ≤ k − 2} ∪ {v6k, v6k+3} is a minimal

resolving set. There is no b ∈ B′ such that B′\{b} is a resolving set. If b ∈
{v1, v6} ∪ {v6i+9, v6i+11 : 0 ≤ i ≤ k − 2} \ {v9, v6k−1}, then removal of b would
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leave neighboring gaps, one having five vertices and other one will contain at least

one vertex. If b ∈ {v7, v6k−1}, then the gap containing two vertices will have both

neighboring gaps non empty. If b ∈ {v9, v6k}, then removal of b would yield one

neighboring gap of an empty gap containing three vertices and other one will contain

more than three vertices. If b = v6k+3, then it would leave neighboring gaps one

having four vertices and other one will contain at least one vertex. Therefore we

have |B| = 2k + 2 and |B′| = 2k + 3.

(5). If n ≡ 4 (mod 6), then we may write n = 6k + 4, where k ≥ 1. Then

B = {v1, v3} ∪ {v6i+5, v6i+7 : 0 ≤ i ≤ k − 1} is a metric basis [see Theorem 3.1.1]

and hence a minimal resolving set.

Moreover B′ = {v1, v5} ∪ {v6i+6, v6i+8 : 0 ≤ i ≤ k − 1} ∪ {v6k+4} is a minimal

resolving set. There is no b ∈ B′ such that B′\{b} is a resolving set. If b ∈ {v1, v5},
then removal of b would leave neighboring gaps, one containing four vertices and

other one will have at least one vertex. If b ∈ {v6, v6k+4}, then the gap containing

two vertices will have both neighboring gaps non empty. If b ∈ {v6i+6, v6i+8 : 0 ≤ i ≤
k− 1} \ {v6, v6k+2}, then removal of b would yield neighboring gaps, one containing

five vertices and other one will contain at least one vertex. If b = v6k+2, then it would

leave both neighboring gaps of an empty gap containing three vertices. Therefore

|B| = 2k + 2 and |B′| = 2k + 3.

(6). If n ≡ 5 (mod 6), then we write n = 6k + 5, where k ≥ 1 . Then

B = {v6i+1, v6i+5 : 0 ≤ i ≤ k − 1} ∪ {v6k+2, v6k+3} is a metric basis [see Theorem

3.1.1] and hence a minimal resolving set.

Also B′ = {v1, v5}∪{v6i+6, v6i+8 : 0 ≤ i ≤ k−1}∪{v6k+5} is a minimal resolving

set too. There is no b ∈ B′ such that B′\{b} is a resolving set. If b ∈ {v1, v5}
for k = 1 and b ∈ {v1, v5, v6k+2}, where k ≥ 2, then removal of b would yield

neighboring gaps, one having four vertices and other one will contain at least one

vertex. If b = v6k+2 for k = 1, then it would yield one neighboring gap of an

empty gap containing three vertices and other one will have four vertices. If b = v6,

then the gap containing two vertices will have both neighboring gaps non empty.

If b ∈ {v6i+6, v6i+8 : 0 ≤ i ≤ k − 1} \ {v6, v6k+2}, then removal of b would leave

neighboring gaps, one having five vertices and other one will contain at least one

vertex. If b = v6k+5, then it would leave both neighboring gaps containing three
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vertices each. Therefore |B| = 2k + 2 and |B′| = 2k + 3.

4.2 Exchange property for resolving sets in

rotationally-symmetric graphs

In this section, we show that exchange property does not hold for resolving sets of

quasi flower snarks, generalized antiprism when 3 ≤ m ≤ 5 and generalized prism.

Theorem 4.2.1. The exchange property for minimal resolving sets does not hold in

quasi flower snarks for n ≥ 4.

Proof. We consider the following two cases.

Case (i). For n = 2k+1, where k ≥ 2. Since W = {b0, c0, dn−1} is a metric basis

[see Theorem 3.2.1] and hence a minimal resolving set. Also W ∗ = {a0, b0, c0, a1}
is a minimal resolving set. There is no w ∈ W ∗ such that S = W ∗ \ {w} is still a

resolving set.

If w = a0, then r(a2k|S) = r(d2|S) = (3, 3, 2). When w = b0, then r(d2|S) =

r(b1|S) = (3, 3, 2). If w = c0, then r(d2|S) = r(c1|S) = (3, 3, 2) and when w = a1,

then r(dk|S) = r(dk+1|S) = (k + 1, k + 1, k + 1). Therefore, we get |W | = 3 and

|W ∗| = 4.

Case (ii). For n = 2k, where k ≥ 2. Since W ′ = {a0, b0, c0, dn−1} is a

metric basis [see Theorem 3.2.1] and hence a minimal resolving set. Also W ∗ =

{a0, d0, a1, dk, ck} is a minimal resolving set. There is no w ∈ W ∗ such that S =

W ∗ \ {w} is still a resolving set.

If w = a0, then r(a2k−1|S) = r(b1|S) = (2, 2, k, k + 1). When w = d0, then we

get r(d2k−1|S) = r(c0|S) = (2, 3, k + 1, k). If w = a1, then r(d1|S) = r(d2k−1|S) =

(2, 3, k + 1, k). If w = dk, then r(a2|S) = r(d1|S) = (2, 3, 1, k) and when w = ck,

then r(b0|S) = r(c0|S) = (2, 1, 3, k + 1). Therefore, |W ′| = 4 and |W ∗| = 5.

There are minimal resolving sets of different size in both cases. Hence exchange

property for minimal resolving sets does not hold in quasi flower snarks for n ≥ 4.

Caceres et al. [6] determined the metric dimension of cartesian product of cycles

and paths by using the idea of doubly resolving sets. In the next theorem, first we
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find the metric basis of cartesian product of cycles and paths by using the appropriate

choice of basis vertices and then we use this result to explore the exchange property

for resolving sets of cartesian product of cycles and paths.

Theorem 4.2.2. For every positive integer n ≥ 3,

β(Cn�Pt)=

{
2, if n is odd;

3, otherwise.

Proof. We denote V (Cn�Pt) = {v0,1, v1,1, · · · , vn,1, v0,2, v1,2, · · · , vn,l}, where n ∈
Z+ ∪ {0} and 1 ≤ l ≤ t.

Case (i). When n = 2k+1, where k ≥ 1. We will show that W = {v0,1, vk,1} re-

solves all vertices of Cn�Pt by giving the representations of V (Cn�Pt)\W . For l = 1

r(vi,l|W )=

{
(i, k − i), 1 ≤ i ≤ k − 1;

(2k − i+ 1, i− k), k + 1 ≤ i ≤ 2k,

and for l ≥ 2, we have

r(vi,l|W )=

{
(i+ l − 1, k + l − i− 1), 0 ≤ i ≤ k;

(2k + l − i, i+ l − k − 1), k + 1 ≤ i ≤ 2k.

It can be seen that all vertices have distinct representations. It shows that β(Cn�Pt) ≤
2 when n = 2k + 1, where k ≥ 1.

Conversely, we show that β(Cn�Pt) ≥ 2. Suppose contrarily that β(Cn�Pt) = 1,

but then from [22], a contradiction. Hence showed β(Cn�Pt) = 2 when n = 2k + 1,

where k ≥ 1.

Case (ii). When n = 2k, where k ≥ 2. First, we will give the representations

of V (Cn�Pt) \W with respect to W . For l = 1

r(vi,l|W )=

{
(i, k − i), 1 ≤ i ≤ k − 1;

(2k − i, i− k), k + 1 ≤ i ≤ 2k − 1,

and for l ≥ 2, we have

r(vi,l|W )=

{
(i+ l − 1, k + l − i− 1), 0 ≤ i ≤ k;

(2k + l − i− 1, i+ l − k − 1), k + 1 ≤ i ≤ 2k − 1.
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It can be seen that for 1 ≤ i ≤ k−1, r(vi,l|W ) = r(v2k−i,l|W ) = (i+l−1, k+l−i−1).

In order to have distinct representations we add the vertex v1,1 to W . Then

d(v1,1, vi,l) = i + l − 2 and d(v1,1, v2k−i,l) = i + l, where 1 ≤ i ≤ k − 1. Thus

we have W ′ = W ∪ {v1,1} which resolves V (Cn�Pt). This mean that β(Cn�Pt) ≤ 3

for n = 2k, where k ≥ 2.

Conversely, we show that β(Cn�Pt) ≥ 3 for n = 2k, where k ≥ 2. Sup-

pose that the sets of vertices {v0,1, v1,1, · · · , vn,1} and {v0,t, v1,t, · · · , vn,t}, where

n ∈ Z+ ∪ {0}, induce the inner and outer cycles respectively. Suppose on contrary

that β(Cn�Pt) = 2, then the following possibilities arise.

(1). If we take any of the basis vertex from the set {v0,2, v1,2, · · · , v0,3, v1,3,
· · · , vn,t−1}, where n ∈ Z+ ∪ {0}. Then by [22], we get a contradiction.

(2). Without loss of generality, suppose that both basis vertices belong to the

inner cycle. Then we may fix v0,1 as a basis vertex. If we choose vi,1, where 1 ≤ i ≤
2k − 1, as a second basis vertex, then we get

• If i = 1, then r(v0,2|{v0,1, vi,1}) = r(v2k−1,1|{v0,1, vi,1}) = (1, 2)

• If 2 ≤ i ≤ k − 1, then r(vi+1,1|{v0,1, vi,1}) = r(vi,2|{v0,1, vi,1}) = (i+ 1, 1)

• If i = k, then r(v1,1|{v0,1, vi,1}) = r(v2k−1,1|{v0,1, vi,1}) = (1, k − 1)

• If k + 1 ≤ i ≤ 2k − 2, then r(vi−1,1|{v0,1, vi,1}) = r(vi,2|{v0,1, vi,1}) = (2k − i+

1, 1)

• If i = 2k − 1, then r(v2k−2,1|{v0,1, vi,1}) = r(v2k−1,2|{v0,1, vi,1}) = (2, 1)

(3). When one vertex is from inner cycle and other vertex is from outer cycle.

Now we may fix v0,1 from inner cycle, if the other vertex is vi,t where 0 ≤ i ≤ 2k−1.

• If i = 0, then r(v1,1|{v0,1, vi,t}) = r(v2k−1,1|{v0,1, vi,t}) = (1, t)

• If 1 ≤ i ≤ k, then r(vi,t−1|{v0,1, vi,t}) = r(vi−1,t|{v0,1, vi,t}) = (i+ t− 2, 1)

• If k + 1 ≤ i ≤ 2k − 1, then r(vi,t−1|{v0,1, vi,t}) = r(vi+1,t|{v0,1, vi,t}) = (2k +

t− i− 2, 1), where the indices are taken modulo n.
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A contradiction in all cases. Hence we have β(Cn�Pt) = 3 for n = 2k + 1, where

k ≥ 2.

In the next theorem, we study the exchange property for resolving sets in carte-

sian product of cycles and path (generalized prism).

Theorem 4.2.3. For every positive integer n ≥ 4, resolving sets do not have ex-

change property in Cn�Pt for n = 2k + 1 when t ≥ 2 and for n = 2k when t ≥ 3.

Proof. Case (i). For n = 2k + 1, where k ≥ 2 and t ≥ 2. Since W = {v0,1, vk,1} is

a metric basis [see Theorem 4.2.2] and hence a minimal resolving set. Also W ∗ =

{v0,1, v1,1, v0,t} is a minimal resolving set. There is no w ∈ W ∗ such that S =

W ∗ \ {w} is still a resolving set.

If w = v0,1, then r(v0,1|S) = r(v1,2|S) = (1, t − 1). When w = v1,1, we get

r(v1,1|S) = r(v2k,1|S) = (1, t) and if w = v0,t, then r(v0,t|S) = r(v2k,t−1|S) = (t−1, t).

Therefore, |W | = 2 and |W ∗| = 3.

Case (ii). For n = 2k, where k ≥ 2 and t ≥ 3. Since W ′ = {v0,1, vk,1, v1,1} is

a metric basis [see Theorem 4.2.2] and hence a minimal resolving set. Also W ∗ =

{v0,1, v1,2, vk,2, v2k−1,2} is a minimal resolving set. There is no w ∈ W ∗ such that

S = W ∗ \ {w} is still a resolving set.

If w = v0,1, then r(v1,1|S) = r(v1,3|S) = (1, k, 3). When w = v1,2, then we get

r(v0,2|S) = r(v2k−1,1|S) = (1, k, 1). If w = vk,2, then for n = 4 we have r(v2,1|S) =

r(v0,3|S) = (2, 2, 2) and for n ≥ 6 we have r(v2,2|S) = r(v1,3|S) = (3, 1, 3). And

when w = v2k−1,2, we get r(v1,1|S) = r(v0,2|S) = (1, 1, k). Therefore, |W ′| = 3 and

|W ∗| = 4.

In each case, there are minimal resolving sets of different size. Hence exchange

property does not hold in Cn�Pt for n = 2k + 1 when t ≥ 2 and for n = 2k when

t ≥ 3.

The exchange property for resolving sets of generalized antiprism Amn , where

3 ≤ m ≤ 5 has been discussed in the next theorem.

Theorem 4.2.4. For every positive integer n ≥ 6, resolving sets do not have ex-

change property in Amn when 3 ≤ m ≤ 5.
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Proof. Case (i). For n = 2k + 1, where k ≥ 3. Since W = {v2,1, v0,bm−1
2
c, v0,m} is

a metric basis [see Theorem 3.2.3] and hence a minimal resolving set. Also W ∗ =

{v0,2, v1,2, v0,m, vk,2} is a minimal resolving set. There is no w ∈ W ∗ such that

S = W ∗ \ {w} is still a resolving set.

If w = v0,2, then r(vk+1,1|S) = r(vk+1,2|S) = (k, k + 1, 1). When w = v1,2, we

get r(v1,1|S) = r(v2k,2|S) = (1,m − 1, k). If w = v0,m, then r(v1,1|S) = r(v0,3|S) =

(1, 1, k) and when w = vk,2, then r(v0,1|S) = r(v2k,2|S) = (1, 2,m − 1). Therefore,

we get |W | = 3 and |W ∗| = 4.

Case (ii). For n = 2k, where k ≥ 3. Since W = {v2,1, v0,bm−1
2
c, v0,m} is a

metric basis [see Theorem 3.2.3] and hence a minimal resolving set. Also W ∗ =

{v0,1, v1,2, vk−1,2, v2k−1,2} is a minimal resolving set. There is no w ∈ W ∗ such that

S = W ∗ \ {w} is still a resolving set.

If w = v0,1, then r(v1,1|S) = r(v0,3|S) = (1, k − 1, 2). When w = v1,2, then any

pair of vertices from {v2k−1,m, v2k−2,m, v2k−3,m} have the same representation (m−1, k

or k+1, m−2) with respect to S. If w = vk−1,2, then r(vk+1,2|S) = r(vk+1,3|S) = (k−
1, k, k − 2) and when w = v2k−1,2, then we have r(v1,1|S) = r(v0,2|S) = (1, 1, k − 1).

Therefore, |W | = 3 and |W ∗| = 4.

Since there are minimal resolving sets having different size, hence exchange prop-

erty does not hold in Amn for n ≥ 6 and when 3 ≤ m ≤ 5.

4.3 Exchange property for resolving sets in barycen-

tric subdivision of Möbius ladders

In this section, we show that exchange property does not hold for resolving sets of

Möbius ladders Mn when n ≡ 6 (mod 8) and also does not hold for barycentric

subdivision of Möbius ladders.

Theorem 4.3.1. The exchange property for minimal resolving sets does not hold in

Möbius ladders Mn when n ≡ 6 (mod 8), where n ≥ 14.

Proof. When n ≡ 6 (mod 8). Then we can write as n = 8k+ 6, where k ≥ 1. Since

W = {v1, v2, v4k+3} is a metric basis (see [1]) and hence a minimal resolving set.
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Also W ∗ = {v1, v2k+2, v4k+3, v4k+4} is a minimal resolving set. There is no w ∈ W ∗

such that S = W ∗ \ {w} is still a resolving set.

If w = v1, then r(v1|S) = r(v4k+5|S) = (2k + 1, 2, 1). When w = v2k+2, we get

r(v2k+2|S) = r(v6k+6|S) = (2k + 1, 2k + 1, 2k + 2). If w = v4k+3, then r(v4k+3|S) =

r(v4k+5|S) = (2, 2k + 1, 1) and when w = v4k+4, we get r(v4k+4|S) = r(v8k+6|S) =

(1, 2k + 2, 1). Therefore, |W | = 3 and |W ∗| = 4.

There are minimal resolving sets of different size. Hence exchange property does

not hold for resolving sets in Mn when n ≡ 6 (mod 8).

In the next theorem, we show that exchange property does not hold for resolving

sets of barycentric subdivision of Möbius ladders denoted by SMn for every positive

even integer n ≥ 8.

Theorem 4.3.2. For every positive even integer n ≥ 8, resolving sets do not have

exchange property in barycentric subdivision of Möbius ladders denoted by SMn.

Proof. Case (i). When n ≡ 0 (mod 8), we write as n = 8k, where k ≥ 1. Without

loss of generality we can choose i = 0, W = {v0, vn−1, u2k−1} is a metric basis [see

Lemma 3.3.2] and hence a minimal resolving set. Also W ∗ = {v0, v1, u0, u2k−1} is

a minimal resolving set. There is no w ∈ W ∗ such that S = W ∗ \ {w} is still a

resolving set.

If w = v0, then r(v4k+1|S) = r(v12k+1|S) = (4k, 4k, 4). When w = v1, we get

r(v4k|S) = r(v12k|S) = (4k, 4k + 1, 3). If w = u0, then r(v4k+1|S) = r(u2k|S) =

(4k + 1, 4k, 4) and when w = u2k−1, we get r(v8k−1|S) = r(v8k+1|S) = (3, 4, 2).

Therefore, |W | = 3 and |W ∗| = 4.

Case (ii). When n ≡ 2 (mod 8), we can write as n = 8k + 2, where k ≥
1. Without loss of generality we can choose i = 0, W = {v0, vn−1, u2k+1} is a

metric basis [see Lemma 3.3.3] and hence a minimal resolving set. Also W ∗ =

{v0, v1, u0, u2k+1} is a minimal resolving set. There is no w ∈ W ∗ such that S =

W ∗ \ {w} is still a resolving set.

If w = v0, then r(v8k+5|S) = r(u4k|S) = (4, 4, 4k). When w = v1, then we get

r(v3|S) = r(u4k|S) = (3, 4, 4k). If w = u0, then r(v8k+5|S) = r(u2|S) = (5, 4, 4k)

and when w = u2k+1, then r(v8k+1|S) = r(v8k+3|S) = (3, 4, 2). Therefore, |W | = 3

and |W ∗| = 4.
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Case (iii). When n ≡ 4 (mod 8), we can write as n = 8k + 4, where k ≥ 1.

Without loss of generality we choose i = 0, W = {v0, vn−1, u2k} is a metric basis

[see Lemma 3.3.4] and hence a minimal resolving set. Also W ∗ = {v0, v1, u0, u2k}
is a minimal resolving set. There is no w ∈ W ∗ such that S = W ∗ \ {w} is still a

resolving set.

If w = v0, then r(v4k+3|S) = r(v12k+7|S) = (4k+2, 4k+2, 4). When w = v1, then

we get r(v4k+2|S) = r(v12k+6|S) = (4k + 2, 4k + 3, 3). If w = u0, then r(v8k+1|S) =

r(u4k|S) = (5, 6, 4k + 2) and when w = u2k, we get r(v8k+3|S) = r(v8k+5|S) =

(3, 4, 2). Therefore, |W | = 3 and |W ∗| = 4.

Case (iv). When n ≡ 6 (mod 8). Then we can write as n = 8k+6 where k ≥ 1.

Without loss of generality we choose i = 0, W = {v0, vn−1, u2k+2} is a metric basis

[see Lemma 3.3.5] and hence a minimal resolving set. Also W ∗ = {v0, v1, u0, u2k+2}
is a minimal resolving set. There is no w ∈ W ∗ such that S = W ∗ \ {w} is still a

resolving set.

If w = v0, then we have r(v8k+11|S) = r(u4k+1|S) = (6, 6, 4k). When w =

v1, then r(v3|S) = r(u4k+2|S) = (3, 4, 4k + 2). If w = u0, then r(v8k+5|S) =

r(u4k+2|S) = (3, 4, 4k + 2) and when w = u2k+2, then r(v8k+5|S) = r(v8k+7|S) =

(3, 4, 2). Therefore, we have |W | = 3 and |W ∗| = 4.

In each case, there are minimal resolving sets of different size. Hence exchange

property does not hold in SMn for every positive even integer n ≥ 8.

4.4 Exchange property for resolving sets in gen-

eralized Petersen multigraphs P (2n, n)

The following theorem shows that exchange property does not hold for resolving sets

of generalized Petersen multigraphs P (2n, n) for every positive even integer n ≥ 4.

Theorem 4.4.1. For every positive even integer n ≥ 4 and n ≡ 0, 2 (mod 4),

resolving sets do not have exchange property in generalized Petersen multigraphs

P (2n, n).

Proof. When n ≡ 0, 2 (mod 4), we can write n = 4k, 4k + 2 where k ≥ 1. Without

loss of generality we choose i = 0, W = {v0, vn−1, un+2k} is a metric basis [see
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Lemma 3.3.8, 3.3.9] and hence a minimal resolving set. Also W ∗ = {v0, v1, u0, vn−1}
is a minimal resolving set. There is no w ∈ W ∗ such that S = W ∗ \ {w} is still a

resolving set.

If w = v0, then r(vn+1|S) = r(u2n−1|S) = (3, 3, 2). When w = v1, then

r(un+1|S) = r(u2n−2|S) = (3, 4, 3). If w = u0, then r(un|S) = r(u2n−1|S) = (2, 3, 2)

and when w = vn−1, then r(v2|S) = r(u1|S) = (2, 1, 3). Therefore, we get |W | = 3

and |W ∗| = 4.

There are minimal resolving sets of different size. Hence exchange property does

not hold in P (2n, n) for every positive even integer n ≥ 4.
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Chapter 5

Conclusion and open problems

In this thesis, we have studied the metric dimension of antiweb-wheels. We have de-

termined a precise formula for the metric dimension of antiweb-wheels and proved

that the antiweb-wheel constitute a family of graphs with unbounded metric di-

mension. We also studied the metric dimension of several classes of rotationally-

symmetric graphs namely quasi flower snarks, generalized antiprism and cartesian

product of square cycle and path. It can be seen that these graphs have bounded

or constant metric dimension, that is their metric dimensions do not depend upon

the number of vertices they have. For generalized antiprism we can find the exact

value of its metric dimension when 2 ≤ m ≤ 5. Moreover, we have studied the

metric dimension of the subdivision of Möbius ladders Mn and generalized Petersen

multigraphs P (2n, n). We proved that only three vertices are suffice to resolve all

the vertices of SMn. For the generalized Petersen graphs P (2n, n) which are multi-

graphs, we proved that their metric dimension is 3 when n is even and n ≡ 0, 2

(mod 4) and 4 otherwise. It has been shown that exchange property does not hold

for minimal resolving sets of antiweb-wheels, generalized antiprism when 3 ≤ m ≤ 5,

generalized prism and quasi flower snarks. We have also shown that the exchange

property of the bases in a vector space does not hold for minimal resolving sets of

barycentric subdivision of Möbius ladders and also does not hold for minimal resolv-

ing sets of generalized Petersen multigraphs P (2n, n) when n is even and n ≡ 0, 2

(mod 4). We close the discussion by raising questions that naturally arise from the

text.
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Open Problem 1: Determine the exact value for the metric dimension of general-

ized antiprism Amn when m ≥ 6.

Open Problem 2: Determine the exact value for the metric dimension of quasi

flower snarks Gn for n ≡ 0 (mod 2).

Open Problem 3: Determine the exact value for the metric dimension of C2
n�Pt

when n ≡ 1 (mod 4).

Open Problem 4: Let G be a non trivial connected graph and S(G) denotes its

barycentric subdivision. Whenever G and S(G) will have the same metric dimen-

sion?

Open Problem 5: Determine a precise formula for the metric dimension of gen-

eralized Petersen graph or some good bounds for metric dimension of P (n,m) in

terms of other graphical parameters.
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