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Abstract

In this dissertation, the problem of boundary layer flow and heat transfer of MHD power-

law fluid over a porous sheet in the presence of partial slip is investigated numerically. We

assume a temperature dependent thermal conductivity and slip conditions are employed

in terms of the shear stress. The suitable similarity transformations are used, to transform

the governing partial differential equations (PDEs) into a system of nonlinear ordinary

differential equations (ODEs). The resulting system of ODEs is solved numerically using

Matlab bvp4c solver. The numerical values obtained for the velocity and temperature

depend on power-law index, slip parameters, permeability, suction/injection parameter,

thermal conductivity parameter, radiation parameter, Prandlt number, Nusselt number,

Schmidt number and Soret number. The effects of various parameters on the flow and

heat transfer characteristics are presented through graphs and tables and discussed from

physical point of view.
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Chapter 1

Introduction

The layer of fluid that flows adjacent to its bounding surface is called the boundary layer.

The boundary layer flow plays vital role in many aspects of fluid mechanics and has been

studied extensively. The applications of boundary layer theory include; the calculation

of friction drag of a flat plate a ship, an airfoil, the body of an airplane or a turbine blade

cooling devices and food processing industry etc. Prandtl [1] first presented the concept

of boundary layer to identify the flow behavior of fluid near a solid boundary. Blasius [2]

solved the well-known boundary layer equation for a moving flat plate problem and

obtained a power series solution of the model. In the theory of non-newtonian fluid this

concept was introduced by Pascal [3]. A comprehensive literature survey on boundary

layer theory and associated topics can be found in the studies of [4–7].

In recent years, boundary layer models include the analysis of heat transfer, because

these type of procedures exist in nature and have industrial applications like heat ex-

changer, recovery of petroleum resources, fault zones, catalytic reactors, cooling devices,

chemical reactions in a reactor chamber comprising of rectangular ducts, deposition of
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chemical vapor on surfaces etc. A detailed literature on forced/natural convection of

viscous fluids past their bounding surface can be found in the books of [8–10]. Kumari

et. al [11] investigated the non-Darcian effects on forced convection heat transfer over a

flat plate in a highly porous medium. A computational analysis of heat transfer in case

of forced convection fluid flow on a heated flat plate embedded in a porous medium is

performed by Luna and Mndez [12]. Khaled and Vafai [13] deliberated the various flow

models in porous medium with applications in biological areas such as diffusion in brain

tissues, tissue generation process, blood flow in tumors, bio-heat transfer in tissues and

bio-convection. The interaction of free convection with thermal radiation of a fluid along

with moving plate was studied by Makinde [14]. In [15], Ibrahim et. al examined the

unsteady MHD, mixed convection micropolar fluids with viscous dissipation and radia-

tion. Recently, the effect of variable thermal conductivity on a flow of power-law fluids

over stretching sheet with heat transfer has been studied by [16].

There are number of studies available in which partial slip boundary conditions have

been employed to make the problems physically well-posed. In [17–19] authors employed

slip boundary conditions on a boundary layer forced convective flow with heat and mass

transfer of an incompressible fluid past a porous plate embedded in a porous medium.

Pal and Talukdar [20] studied an unsteady magnetohydrodynamic convective heat and

mass transfer past a vertical permeable plate using slip boundary conditions with thermal

radiation and chemical reaction. Recently, Khan et. al [21] examined the flow and heat

transfer of carbon nanotubes (CNTs) subjected to Navier slip and uniform heat flux

boundary conditions. There are many models proposed for non- Newtonian fluids. The

theory of boundary layer for every model is also available in the literature. It is away
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from this work to revisit the vast amount of literature on the boundary layers of different

non-Newtonian fluid models. A limited work can be referred as examples on the topic

in [22–28]. The efforts have been directed towards understanding the friction and heat

transfer characteristics of non-Newtonian fluids. The power-law viscosity model of non

Newtonian fluid is one in which the shear stress varies according to a power function

of the strain rate. A good representation found for pseudo-plastic behavior of fluid is

power-law model. . Acrivos et al. [29] studied the boundary layer flow of power-law

fluid past a horizontal flat plate including heat transfer. Schowalter [30] formulated

the two and three dimensional boundary layer equations and found some new solutions

for the equations. Lee and Ames [31] found the similarity solutions for power-law fluid

which is the extension of the above work. Andersson et al. [32] examined the electrically

conducting power-law fluid in the presence of transverse magnetic field in the boundary

layer flow. The problem of MHD flow and heat transfer of an electrically conducting, non-

Newtonian power-law fluid past a stretching sheet in the presence of transverse magnetic

field was studied by Chein [33]. Seddeek [34] presented an analysis to study the effect of

suction and injection on heat transfer for power-law non-Newtonian fluid. The flow in a

boundary layer includes the effects of radiation and a cooled surface temperature.

In a moving fluid when heat and mass transfer occur simultaneously the relations

between the fluxes and the driving potentials are of more complex nature. It has been

found that an energy flux can be generated not only by temperature gradients but by

composition gradients as well. Recent additions considering power-law fluid with heat

and mass transfer in various physical situations are given by [35, 36].

In all the above studies the thermophysical properties of the ambient fluid were as-
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sumed to be constant with constant thermal conductivity. However many processes in

engineering occur at high temperature and it is fully understood that these properties

may change with temperature. Moreover, a knowledge on radiation heat transfer becomes

very important for design of reliable equipment, nuclear plants, gas turbines and various

propulsion devices or aircraft, missiles, satellites and space vehicles. On the basis of these

applications, radiation effect on flow and heat transfer problems with variable thermo-

physical properties has become important industrially. Several publications are available

on the effect of radiation on flow and heat transfer flow (see, for example, [37–45]).

In this thesis we extended the work of Bhattacharya [18] to investigate the slip effects

on the heat and mass transfer of MHD boundary layer flow of power-law fluid over a

permeable plate embedded in a uniform porous medium with variable thermal conduc-

tivity and thermal radiation. The resulting governing equations are transformed into

a system of non-linear ordinary differential equations by applying a suitable similarity

transformation. These equations are then solved numerically using Matlab bvp4c code.

The numerical results are discussed for various physical parameters effecting the flow,

heat and mass transfer.

The thesis is arranged as follows: In chapter 2 we present some basic definitions

of fluid flow, power-law model of non-Newtonian fluid, magnetohydrodynamics, heat

transfer and mass transfer. These basic concepts are used further on describing the

flow, heat and mass transfer of power-law fluid. In chapter 3 we discuss the slip effects

on flow and heat transfer of electrically conducting power-law fluid over a porous plate

embedded in a porous medium with variable thermal conductivity and thermal radiation.

The governing equations are solved numerically and results are presented in the form of
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graphs and tables. Chapter 4 discusses both heat and mass transfer of MHD power-law

fluid under slip conditions. In chapter 3 and 4 the main findings of the investigation are

presented. Conclusion to the present work and some suggestions for the future work are

given in chapter 5.
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Chapter 2

Preliminaries

In this chapter an introduction to the basic ideas of fluid flow, types of fluid flows and

governing equations for the fluid flow are stated. In addition an introduction to heat

transfer, modes of heat transfer and mass transfer is also presented.

2.1 Fluid and Flow

The substance that continuously alter when a shear stress of any magnitude acts on it,

is called a fluid. Fluids are the phases of matter and include liquids, gases, plasmas and

to some extent plastic solids. If fluid constantly deforms under the action of any force

the phenomenon is called fluid flow.
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2.2 Steady and Unsteady Flows

A flow in which the fluid property at a specific point does not change with time is called

steady flow i.e.,

∂λ

∂t
= 0, (2.1)

where λ is any fluid property and ∂
∂t

is the partial derivative with respect to time t. A

flow in which fluid property changes with time is called unsteady flow i.e.,

∂λ

∂t
6= 0. (2.2)

2.3 Laminar and Turbulent Flow

The flow in which the particles of the fluid move in parallel layers is called laminar flow.

In such flow, the path lines of fluid particles do not intersect each other. The flow in

which significant mixing take place into fluid particles i.e. fluid particle change directions

continuously is called turbulent flow.

2.4 Compressible and Incompressible Flow

The flow type in which the density is constant within the fluid is called incompressible

flow. The mathematical equation for the incompressible flow is given by

Dρ

Dt
= 0, (2.3)

where ρ is the density of the fluid and D
Dt

is the material derivative given by

D

Dt
=

∂

∂t
+V · ∇. (2.4)
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In Eq. (2.4) V represents the velocity of the flow and ∇ is the differential operator. In

Cartesian coordinate system ∇ is given as

∇ =
∂

∂x
î+

∂

∂y
ĵ +

∂

∂z
k̂. (2.5)

In Eq. (2.5) (̂i, ĵ, k̂) are the unit vectors in their respective directions. The fluid flow in

which the density variation is not negligible are termed as compressible flow [46].

2.5 Viscosity

Viscosity is a measure of reluctance of fluid to produce shear when fluid is in motion [47].

In other words it is a measure of how much force is required to slip from one layer of

the fluid to another layer. Usually liquids and gasses have non-zero viscosity [48]. The

coefficient of viscosity is denoted by symbol µ.

2.6 Newtonian and non-Newtonian fluid

A fluid in which the stress arising from its flow at every point are linearly proportional to

the local strain rate is called Newtonian fluid [46]. Newtonian fluid behaviour is described

by the relation

τ = µ
du

dy
. (2.6)

In above equation τ is the stress tensor, µ is the viscosity and du/dy is the deformation

rate. Fluids in which the shear stress is not directly proportional to deformation rate are

known as non-Newtonian fluid.
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2.6.1 Power-Law Model

There are many proposed models of non-Newtonian fluids. The most common is the

power-law model proposed by [46]. The power-law model in one dimensional flow is

given as

τ = K

(

du

dy

)n

, (2.7)

where n is called the behaviour index and K is the coefficient of consistency index. The

power-law model can be rewritten in the form

τ = K

∣

∣

∣

∣

du

dy

∣

∣

∣

∣

n−1
du

dy
= η

du

dy
. (2.8)

Here η = K
∣

∣

∣

du
dy

∣

∣

∣

n−1

is referred as apparent viscosity. In the above equation n = 1

represents the Newtonian behaviour of fluid. For n < 1, behaviour of fluid is known as

shear-thinning which is categorized by an apparent viscosity which decreases with the

increase in shear rate (For details see [49]). However, when n > 1 it represents the shear-

thickening behavior of fluid characterized by an apparent viscosity which increases with

the increasing shear rate (see [49]). Therefore, a single parameter n describes the nature

of fluid behavior.

2.7 Generalized Continuity Equation

Continuity equation is constructed by law of conservation of mass which states that mass

can neither be created nor destroyed inside a control volume. If we consider a differential

control volume system enclosed by a surface fixed in space, then the mass inside the fixed
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control system will not change. Then the equation of continuity can be expressed as

∂ρ

∂t
+∇.(ρV) = 0. (2.9)

If the density is constant and spatially uniform, in that case Eq.(2.9) become

∇ ·V = 0. (2.10)

2.8 The Momentum Equation

The equation of linear momentum for fluid particle is obtained from the Newton’s second

law of motion which states that: “the net force acting on a fluid particle is equal to the

time rate of change of linear momentum.” Consider the mass in a system defined by

control surface of infinitesimally small dimensions dx, dy and dz. The mass of the system

is constant, therefore Newtons second law can be written as

m
DV

Dt
= F. (2.11)

The flow of the fluid is represented by the differential equation as

ρ
DV

Dt
= ∇.τ + ρb, (2.12)

where ρb is the body force per unit mass, ∇.τ is the surface forces and τ is the Cauchy

stress tensor.

2.8.1 Magnetohydrodynamics

Magnetohydrodynamics (MHD) is the branch of engineering in which the behaviour of

magnetic field in electrically conducting fields are studied. The word magnetohydro-

dynamics is derived from magneto meaning magnetic field, hydro meaning liquid and
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dynamics meaning movement. The set of equations which represents MHD are a com-

bination of the equations of motion in fluid dynamics and the Maxwell’s equation of

electromagnetism. The fluid dynamical attitude of MHD are managed by adding an

electromagnetic force term to the equation of motion. The momentum equation with

electromagnetic force term is

ρ
DV

Dt
= ∇.τ + (J×B). (2.13)

In the above equation J is the current density and B = B+B1 is the total magnetic field

whereB1 is induced magnetic field considered to be negligible in comparison with external

magnetic field which is justified for MHD flow at small magnetic Reynolds number. By

Ohm’s law [50], we have

J = σ(E+V ×B), (2.14)

where σ is the electrical conductivity, E is the electric field. The imposed and induced

electrical fields are assumed to be negligible. The electromagnetic force term J×B can

be simplified to

J×B = −σB2V. (2.15)

It is assumed that the electric field due to polarization of charges is also negligible. Thus

momentum equation (2.12) with MHD becomes

ρ
DV

Dt
= ∇.τ − ρσB2V. (2.16)

2.8.2 Porosity

The porosity is the ratio of volume of pores (empty space) to the bulk volume of a porous

medium. A porous medium is often identified by its porosity [47]. The momentum

11



equation (2.12) with porosity and MHD is as follows

ρ
DV

Dt
= ∇.τ − ρσB2V − ρkV. (2.17)

Here k is the porosity of the medium.

2.9 Heat Transfer

Heat transfer is the energy transfer due to temperature difference. When there is a

temperature difference in a medium or between media, heat transfer must take place.

Heat transfer can occur through three mechanism: conduction, convection and radiation.

2.9.1 Conduction

Conduction is the mode of energy transfer by the movement of particles that are inter-

acted with each other, typically in a solid or liquid. The word “conduction” is repeatedly

used to describe three different kinds of behavior: Heat Conduction (or Thermal Con-

duction) - The conduction of heat through direct interaction, such as when you touch the

handle of a hot metal skillet. Electrical Conduction - The conduction of electrical cur-

rent, like through the wires in your house. Sound Conduction (or Acoustic Conduction)

- The conduction of sound waves, for example feeling the vibrations of music through

a wall. Fourier determined that heat transfer per unit area is directly proportional to

temperature gradient and constant of proportionality is then called thermal conductivity.

i.e.

Q

A
= −κ

dT

dA
. (2.18)
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Here Q is the rate of heat transfer, A is the area, κ is the thermal conductivity and dT dA

is the temperature gradient. This is known as Fourier law.

2.9.2 Convection

Convection is the transfer of heat through fluids (gases or liquids) from a warmer place

to a cooler place. In fluid dynamics, convection is the energy transfer due to bulk fluid

motion. Convective heat transfer arises between a fluid in a motion and a bounding

surface. If there is a difference in the temperature of fluid and bounding surface then

thermal boundary layer is created. Fluid particles which interact with the surface attain

equilibrium at the surface temperature and transfer energy in the next layer and so on.

Through this mode, temperature gradients are produced in fluid. Therefore, the area

of fluid containing these temperature gradients are identified as thermal boundary layer.

Since the convective heat transfer is by both random molecular motion and the bulk

motion of fluid, the molecular motion is more adjacent to the surface where the fluid

velocity is less. Convective heat transfer depends upon the nature of the flow. Therefore

convection has three forms: Forced convection, Natural (free) convection, Mixed convec-

tion. Forced convection is a process, or kind of energy transfer in which fluid motion is

produced by an external source. It should be deliberated as one of the core techniques

of useful heat transfer as a weighted amount of heat energy can be transferred very effi-

ciently. Natural(free) convection is a heat transport process, in which the fluid motion is

not developed by any external source, but only by density differences in the fluid taking

place due to temperature gradients. Mixed convection is combined forced convection and
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natural convection, occurs when natural convection and forced convection act collectively

to transfer heat. This is also defined as the circumstances where both pressure forces

and buoyant forces act together. Irrespective of the specific nature of the convective heat

transfer mechanism is represented by the equation known as Newton’s law of cooling is:

Q

A
= h(Ts − Tf ), (2.19)

where h is the heat transfer coefficient, Ts is the temperature of the object’s surface and

interior, and Tf is the temperature of the environment i.e. the temperature suitably far

from the surface.

2.9.3 Radiation

Radiation is the energy transfer due to release/discharge of electromagnetic waves or

photons from a surface volume. Radiation doesn’t require any medium to transfer heat.

The energy produced by radiation is transformed by electromagnetic waves.

2.10 Energy Equation

The first law of thermodynamics expresses the energy equation according to which rate

of change of energy inside the fluid element is equals to the rate of workdone on the

element due to body or surface force and the sum of net heat flux of fluid element. The

generalized energy equation is ( [51])

ρCp

(

DT

Dt

)

= ∇ · (κ∇T ) + f ·V. (2.20)

Here Cp is the specific heat and f is the body or surface force.
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2.11 Mass Transfer

The subject of mass transfer studies the relative motion of some chemical species with

respect to others which are driven by concentration gradients. We can say that mass

transfer is mass in transport as the result of a species concentration difference in a

mixture. The driving potential is provided by species concentration gradient in a mixture

for transport of that species. Mass transfer by diffusion is same as heat transfer by

conduction [52]. Transfer of heat and mass are kinetic processes that may occur and

be studied separately or jointly. Studying them separately is simpler, but it is most

convenient to realise that both processes are modelled by similar mathematical equations

in the case of diffusion and convection, thus it is more efficient to consider them jointly.

2.11.1 Concentration Equation

Concentration is the ratio of mass of a substance to the total volume of a mixture.

The concentration equation can be derived by using Fick’s law and law of conservation

of species. In a moving fluid, when heat and mass transfer occur simultaneously the

relations between the fluxes and the driving potentials are of more complex nature. In

this case the concentration equation has a form

ρ
DC

Dt
= DM(∇2C) +DT (∇

2T ), (2.21)

where DM is the molecular diffusivity and DT is the thermal diffusivity.
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Chapter 3

Slip effects on flow and heat transfer

of MHD power-law fluid by a porous

sheet with variable thermal

conductivity and thermal radiation

3.1 Introduction

In this chapter we examine the slip effects on heat transfer of MHD boundary layer

flow of power-law fluid over a permeable plate embedded in a uniform porous medium

with variable thermal conductivity and thermal radiation. In next section we modeled

the flow equations and the resulting constitutive equations are then transformed into

a system of non-linear ordinary differential equations by applying a suitable similarity
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transformation. In section 3.3 the modeled ODEs are solved numerically by using Matlab

bvp4c code. Finally the numerical results are discussed at the end of the chapter for

various parameters affecting flow and heat transfer.

3.2 Mathematical Modeling

x

y

B(x)

vw Tw

TU ,

0

u

v

Temperature ProfileVelocity Profile

Power-law Fluid

Porous Flat Plate

Figure 3.1: Geometry of the problem

Consider the steady two-dimensional laminar flow with heat transfer of an incom-

pressible power-law fluid under the influence of magnetic field B and thermal radiation,

over a semi-infinite porous plate in a porous medium. The surface of the plate is insulated

and admits partial slip condition. The leading edge of the plate is at x = 0 and coincide

with the plane y = 0. The temperature of the plate is Tw and the flow far away from the

plate is uniform and in the direction parallel to the plate. The velocity and temperature

far away from the plate are U∞ and T∞ respectively. The geometry of the flow problem
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is given in figure (3.1) The governing equations for the flow model are given in Eqs. 2.10,

2.20 and 2.21, which under boundary layer approximation along with the slip boundary

conditions can be written as

∂u

∂x
+
∂v

∂y
= 0, (3.1)

u
∂u

∂x
+ v

∂u

∂y
=

1

ρ

∂τxy
∂y

−
1

ρA
(u− U∞)−

σB2

ρ
(u− U∞), (3.2)

u
∂T

∂x
+ v

∂T

∂y
=

1

ρCp

(

∂

∂y
(κ(T )

∂T

∂y
)−

∂qr
∂y

)

, (3.3)

u = L1

(

∂u

∂y

)

, v = vw; T = Tw +D1

(

∂T

∂y

)

; at y = 0, (3.4)

u→ U∞, T → T∞, as y → ∞. (3.5)

In the above equations u and v are the velocity components in x and y directions, ρ is

the fluids density, τxy is the component of shear stress tensor, A is the permeability, σ is

the electrical conductivity, B is the applied magnetic field, T is the temperature, Cp is

the specific heat, κ is the variable thermal conductivity, qr is the radiative heat flux, L1

is the velocity slip factor, D1 is the thermal slip factor and vw describe suction/blowing

through the porous plate. The shear stress component τxy for the power-law model as

derived by Bird et al. [49] is given as

τxy = K

∣

∣

∣

∣

∂u

∂y

∣

∣

∣

∣

n−1
∂u

∂y
. (3.6)

Here K is the consistency coefficient and n is the power-law index. Substitution of

Eq.(3.6) in Eq.(3.2) gives

u
∂u

∂x
+ v

∂u

∂y
=

1

ρ

∂

∂y

(

K

∣

∣

∣

∣

∂u

∂y

∣

∣

∣

∣

n−1
∂u

∂y

)

−
1

ρA
(u− U∞)−

σB2

ρ
(u− U∞). (3.7)
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Following [45], we consider the temperature-dependent thermal conductivity and ra-

diative heat flux of the form

κ = κ∞(1 + ǫ
T − T∞
∆T

), (3.8)

qr = −
4σ∗

3k∗
∂T 4

∂y
, (3.9)

where ǫ is the thermal conductivity parameter, κ∞ is the thermal conductivity at ambient

temperature and ∆T = Tw−T∞, σ∗ is the Stefan-Boltzmann constant and k∗ is the mean

absorption coefficient. It is assumed that the temperature differences within the flow is

such that T 4 can be represented as a linear combination of the temperature. Therefore

expanding T 4 in Taylor’s series about T∞ and considering only the linear terms gives us

T 4 ∼= 4T 3

∞
T − 3T 4

∞
. (3.10)

Eq. (3.9) together with Eq. (3.10) becomes

∂qr
∂y

= −
16T 3

∞
σ∗

3k∗
∂2T

∂y2
. (3.11)

Substitution of Eq. (3.8) and Eq. (3.11) into Eq.(3.3) gives

u
∂T

∂x
+ v

∂T

∂y
=

1

ρCp

(

∂

∂y

(

κ∞

(

1 + ǫ
T − T∞
Tw − T∞

)

∂T

∂y

)

+
16T 3

∞
σ∗

3k∗
∂2T

∂y2

)

. (3.12)

3.3 Method of Solution

In this section we transform the system of equations (3.1), (3.7) and (3.12) along with

the boundary conditions (3.4)-(3.5) into a dimensionless form. For this purpose, the

dimensionless stream function ψ(x, y) of the form

u =
∂ψ

∂y
, v = −

∂ψ

∂x
, (3.13)
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identically satisfies the continuity Eq. (3.1). Using Eq. (3.13), Eqs. (3.7) and (3.12)

becomes

∂ψ

∂y

∂2ψ

∂x∂y
−
∂ψ

∂x

∂2ψ

∂y2
=

1

ρ

(

∂

∂y

[

K

∣

∣

∣

∣

∂2ψ

∂y2

∣

∣

∣

∣

n−1
∂2ψ

∂y2

]

−

(

1

ρk
+
σB2

ρ

)(

∂ψ

∂y
− U∞

)

)

,

(3.14)

∂ψ

∂y

∂T

∂y
−
∂ψ

∂x

∂T

∂x
=

1

ρCp

(

∂

∂y

(

κ∞

(

1 + ǫ
T − T∞
Tw − T∞

)

∂T

∂y

)

+
16T 3

∞
σ∗

3k∗
∂2T

∂y2

)

. (3.15)

The boundary conditions are likewise transformed into

∂ψ

∂y
= L1

∂2ψ

∂y2
,

∂ψ

∂x
= −vw; T = Tw +D1

(

∂T

∂y

)

at y = 0, (3.16)

∂ψ

∂y
→ U∞, T → T∞ as y → ∞, (3.17)

where L1 = LU∞ρ
K

(

Kx
ρU2−n

∞

)
1

n+1

is the velocity slip factor and D1 = DU∞ρ
K

(

Kx
ρU2−n

∞

)
1

n+1

is

the thermal slip factor with L and D being initial values of velocity and thermal slip

parameters respectively.

We introduce of the dimensionless similarity variable

η =

(

Re

x/L

)
1

n+1 y

L
, (3.18)

where Re = ρU2−n
∞

Ln/K is the generalized Reynolds number, the dimensionless stream

function ψ(η) and dimensionless temperature θ(η) of the form

ψ(x, y) = LU∞

(

x/L

Re

)
1

n+1

f(η), θ(η) =
T − T∞
Tw − T∞

, (3.19)

The differential equations (3.14)-(3.15) together with the boundary conditions (3.16)-

(3.17) reduced to the form

n|f ′′|n−1f
′′′

+
1

n + 1
ff ′′ − (k +M)(f ′ − 1) = 0, (3.20)
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θ′′ +
Pr∞

(n + 1)(1 + ǫθ +Nr)
fθ′ +

ǫ

(1 + ǫθ +Nr)
θ′2 = 0, (3.21)

f(η) = S, f ′(η) = δf ′′(η), θ(η) = 1 + βθ′(η), at η = 0, (3.22)

f ′(η) → 1, θ(η) → 0, as η → ∞. (3.23)

In Eqs.(3.20)-(3.23), k is the permeability parameter, M is the magnetic parameter,

Pr∞ is the local Prandtl number, Nr is the thermal radiation parameter, S is the suc-

tion/blowing parameter corresponds to suction when S > 0 and corresponds to blowing

when S < 0. Here δ and β are the dimensionless velocity and thermal slip parameters

respectively. These parameters are given by

k =
x

ρAU∞

, (3.24)

M =
xσB2

ρU∞

, (3.25)

Pr∞ =
Cp

κ∞
K2/n+1

(

U3
∞
ρ

x

)
n−1

n+1

, (3.26)

Nr =
16T 3

∞
σ∗

3k∗κ∞
, (3.27)

S = −vw
x(n+ 1)

U∞

(

ρU2−n
∞

K

)
1

n+1

, (3.28)

δ = L
U∞ρ

K
, (3.29)

β = D
U∞ρ

K
. (3.30)

Eq.(3.26) can also be written as

Pr∞ = (1 + ǫθ)Pr, (3.31)

where Pr = Cp

κ

(

U3
∞
ρ

x

)
n−1

n+1

K2/n+1 is the Prandtl number. Using Eq.(3.31) the Eq.(3.21)

become

θ′′ +
(1 + ǫθ)

(1 + ǫθ +Nr)

Pr

n+ 1
fθ′ +

ǫ

(1 + ǫθ +Nr)
θ′2 = 0. (3.32)
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In order to solve the system of ordinary differential equations (3.20) and (3.32) with

boundary conditions (3.22)-(3.23) using Matlab bvp4c code, we have to first convert these

equations into a system of first order differential equations, i.e.,

f ′ = p, p′ = q, q′ =
k +M

n

p− 1

qn−1
−

fq2−n

n(n + 1)
, (3.33)

θ′ = z, z′ = −
Pr

n + 1

1 + ǫθ

(1 + ǫθ +Nr)
fz −

ǫ

(1 + ǫθ +Nr)
z2, (3.34)

along with the boundary conditions

f(η) = S, p(η) = δq(η), at η = 0; p(η) → 1 as η → ∞, (3.35)

θ(η) = 1 + βz(η), at η = 0; θ(η) → 0 as η → ∞. (3.36)

The bvp4c solver needs an initial guess for q(η) and z(η) at η = 0, and through collocation
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Figure 3.2: Velocity f ′(η) and shear stress f ′′(η) profiles for M = ǫ = Nr = 0 and n = 1.

method we vary each guess until we obtain an appropriate solution for our problem. We

verify the accuracy of these solutions by comparing them with those found using shooting

method. The result for the velocity profile with M = 0 and n = 1 (i.e in the absence of
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MHD and for the case of Newtonian fluids) are compared with the available published

results of [18]. The comparison is presented in figure (3.2).

3.4 Results and Discussion

In this section we discuss the numerical results presented in the form of graphs and

tables. The computations are performed for several values of power-law index n and the

effects of velocity slip parameter δ, thermal slip parameter β, permeability parameter k,

magnetic parameterM , Prandtl number Pr, variable thermal conductivity ǫ and thermal

radiation Nr, and hence the effect of these parameters on velocity and temperature profile

are discussed.
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Figure 3.3: Velocity f ′(η) profiles for different values of slip parameter δ and power-law

index n.

In figure (3.3) the effect of velocity slip parameter δ and power-law index n on the

velocity profile of Newtonian, shear thinning and shear thickening fluids is presented. The

comparison of curves with same power-law index shows that the increase in the velocity
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slip at the boundary, increases the fluid velocity within the boundary layer. This is due

to the positive value of the fluid velocity adjacent to the surface. Moreover, the increase

in magnitude of the slip parameter allow more fluid to slip past the plate and accordingly

the flow through the boundary layer will increase. Therefore the thickness of velocity

boundary layer to decrease.
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Figure 3.4: Temperature θ(η) profiles for different values of slip parameter δ and power-

law index n.

It is important to note that temperature is dependent on velocity in situations where

heat transfer is accomplished by convection, as this principle will also be important

for following discussions. In figure (3.4) the temperature profile θ(η) is plotted for two

different values of velocity slip parameter δ. It is observed that the increase in the

magnitude of velocity slip at boundary enhance the rate of heat transfer.

Figures (3.3)-(3.4) with slip parameter δ = 0.8 gives variation of velocity and thermal

profiles for both Newtonian and non-Newtonian fluids. It is evident from figure (3.3),

initially the velocity of shear-thinning fluid n < 1 rises fastest, followed by the shear-

thickening fluid n > 1 and then the Newtonian fluids n = 1. This is due to smallest
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effective viscosity of shear thinning fluids at that point. Therefore shear thinning fluids

achieve a higher strain rate and velocity. Whereas at later times the velocity of shear

thinning fluid, first decrease below the shear thickening fluid and then the Newtonian

fluids. This opposite trend is observed due the decrease in shear stress and increase in

the viscosity of the shear thinning fluids. Furthermore, figure (3.4) show the thickness

of thermal boundary layer is relatively thin for shear thinning fluid n < 1 (f approaches

zero quickly). However, if n > 1 the boundary layer is relatively thick.
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Figure 3.5: Temperature θ(η) profiles for different values of thermal slip parameter β and

power-law index n.

The effect of thermal slip parameter β on temperature profile is presented in figure

(3.5). The increase in thermal slip parameter decreases the fluid temperature for a given

distance from the plate. This is due to the fluid adjacent to the surface of the plate

having temperature lower than that of the plate.
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Figure 3.6: Velocity f ′(η) profiles for different values of permeability parameter k and

power-law index n.

In figure (3.6) effect of variation in permeability on fluid velocity with slip parameter

is shown. It is noticed that the velocity of the fluid across the boundary layer increase

with increase in the permeability of the porous medium. In other words, the increase

in the porosity of the medium decreases the magnitude of the Darcian body force which

enhances the motion of the fluid in the boundary layer. Figure (3.6) with permeability

k = 0.3 and different values of the power-law index give variation of velocity profile

for Newtonian and non-Newtonian fluids. It is evident from figure (3.6), initially the

shear-thinning fluid rises faster when compared with the shear-thickening fluid. This is

due to smallest effective viscosity of shear thinning fluids. Whereas the opposite trend

is observed at the later times as viscosity of the shear thickening fluid will decrease.

Moreover, the slip parameter at the boundary allow more fluid flow past the plate and

causes thinning of boundary layer.
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Figure 3.7: Temperature θ(η) profiles for different values of permeability parameter k

and power-law index n.

The partial slip and the effect of variation in permeability on temperature profile

is presented in figure (3.7). It is observed that the increase in permeability causes to

decrease the temperature of the fluid which in turn enhanced the rate of heat transfer

and thinning of thermal boundary layer.
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Figure 3.8: Velocity f ′(η) profiles for different values of magnetic parameter M and

power-law index n.
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Figure 3.9: Temperature θ(η) profiles for different values of magnetic parameter M and

power-law index n.

The effects of MHD parameter M on fluid velocity and temperature under slip con-

dition is shown in figures (3.8)-(3.9). It is clear that the variation in MHD parameter

M show the similar effect as variation in permeability parameter k, i.e., the increase in

magnetic field caused an increase in velocity of the fluid and the rate of heat transfer.
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Figure 3.10: Velocity f ′(η) profile for different values of suction/injection parameter S

and power-law index n.
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Figure 3.11: Temperature θ(η) profiles for different values of suction/injection parameter

S and power-law index n.

Figures (3.10)-(3.11) depicted the effect of suction/injection parameter S on velocity

and temperature profile in the presence of slip condition and magnetic field for porous

plate in a porous medium. It is clear from the figure that suction S > 0 caused an increase

in fluid velocity as more fluid is sucked through the porous wall. Opposite behaviour is

observed for S < 0. In case of temperature distribution through the boundary layer,

increasing values of S > 0 causes the thinning of thermal boundary layer. This will

increase the rate of heat transfer through the boundary layer.
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Figure 3.12: Temperature θ(η) profiles for different values of Prandtl number Pr and

power-law index n.

Prandtl number is defined as the ratio of momentum diffusivity to thermal diffusivity.

Variation in Prandtl number and its effects on the temperature profile is shown in figure

(3.12). It is observed that the temperature of the power-law fluid decrease with increasing

values of the Prandtl number under slip condition. This trend is consistent with the fact

that increase in Prandtl number will increase the fluid viscosity. This will cause a decrease

in the velocity flow and the decrease in temperature.
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Figure 3.13: Temperature θ(η) profiles for different values of thermal conductivity pa-

rameter ǫ and power-law index n.

The temperature profile for various values of thermal conductivity parameter ǫ is

shown in figure (3.13). It is noticed that an increase in thermal conductivity parame-

ter, increases the fluid temperature. It would also increase the thermal boundary layer

thickness.
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Figure 3.14: Temperature θ(η) profiles for different values of thermal radiation parameter

Nr and power-law index n.
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Figure (3.14) illustrates the effect of thermal radiation parameter Nr on temperature

profile. We see that an increase in thermal radiation parameter increases the temperature

of the power-law fluid. From figure (3.14) it is also noticed, the thickness of thermal

boundary layer increase with increase in power-law index n.

Table 3.1: Values of skin friction coefficient f ′′(0)

n k M δ f ′′(0)

0.4 0.3 0.6 0.3 1.036

1.0 0.8114

1.4 0.7861

1.4 0.3 0.6 0.3 0.7861

0.6 0.8629

0.8 0.9001

1.4 0.3 0.2 0.3 0.6718

0.6 0.7861

1.0 0.8712

1.4 0.3 0.6 0.0 0.9667

0.3 0.7861

0.6 0.656

Table 3.1 presents the nature of skin friction coefficient for different physical param-

eters. It is observed, the shear thinning fluids have the highest value of skin friction

coefficient followed by the Newtonian fluid and then the shear thickening fluids. This
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is because the fact that the rate of increase in velocity at the surface of porous plate

is highest for shear thinning fluids. Moreover, the skin friction coefficient decrease with

increase in slip parameter δ and increase with increase in magnetic parameter M . The

increasing values of skin friction coefficient corresponds to thinning of velocity bound-

ary layer. Whereas the decreasing values of skin friction coefficient corresponds to fluid

velocity at the surface approaching to free stream velocity.

Nusselt number is the ratio of convective to conductive heat transfer at the surface

of the plate. In table 3.2 different values of Nusselt number are presented when all

other parameters are kept constant. It is observed that the Nusselt number decrease

with increase in power-law index n. This observation is consistent with the fact that the

decrease in surface temperature is slowest for shear thickening fluids. It can be noticed

from the table that an increase in the permeability parameter k, magnetic parameter M

and Prandtl number Pr results in an increase in Nusselt number. Increase in the slip

parameters δ and β has the effect of lowering the Nusselt number. The thermal radiation

parameter Nr gives the same effect as found for slip parameters. The effect of increase in

Nusselt number is analogous to an increase in heat transfer rate and thinning of thermal

boundary layer.
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Table 3.2: Values of Nusselt number −θ′(0)

n k M δ β Pr Nr −θ′(0)

0.4 0.3 0.2 0.3 0.3 0.7 0.2 0.3879

1.0 0.3231

1.4 0.3006

1.4 0.6 0.2 0.3 0.3 0.7 0.2 0.307

0.8 0.3102

1.4 0.3 0.4 0.3 0.3 0.7 0.2 0.3052

0.8 0.3116

1.4 0.3 0.2 0.6 0.3 0.7 0.2 0.3127

0.8 0.3186

1.4 0.3 0.2 0.3 0.6 0.7 0.2 0.2768

0.8 0.2629

1.4 0.3 0.2 0.3 0.3 3.0 0.2 0.5659

7.0 0.8234

1.4 0.3 0.2 0.3 0.3 0.7 0.4 0.2846

0.8 0.2603
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Chapter 4

Slip effects on flow, heat and mass

transfer of MHD power-law fluid by

a porous sheet with variable thermal

conductivity and thermal radiation

4.1 Introduction

In this chapter we extend the model presented in previous chapter by including the mass

transfer to the problem. We will examine the slip effects on mass transfer of MHD

boundary layer flow of power-law fluid over the porous plate embedded in a porous

medium with variable thermal conductivity and thermal radiation.
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4.2 Mathematical Modeling

In addition to Eqs. (3.1)-(3.5), the present model include boundary layer concentration

equation with slip conditions. Equation (2.21) under boundary layer approximation can

be written as

u
∂C

∂x
+ v

∂C

∂y
= DM

∂2C

∂y2
+DT

∂2T

∂y2
, (4.1)

where C is the ambient concentration of the fluid, DM is the molecular diffusivity and

DT is the thermal diffusivity. The slip boundary conditions are

C = Cw +N1

(

∂C

∂y

)

at y = 0, (4.2)

C → C∞ as y → ∞. (4.3)

Here Cw is the concentration of the plate, C∞ is the concentration far away from the

plate and N1 is the mass slip factor.

4.3 Method of Solution

In this section we transform the Eq. (4.1) along with boundary conditions (4.2)-(4.3)

into a dimensionless form. Introduction of dimensionless stream function ψ(x, y) given

in Eq. (3.13) into Eq. (4.1) gives

∂ψ

∂y

∂C

∂x
−
∂ψ

∂x

∂C

∂y
= DM

∂2C

∂y2
+DT

∂2T

∂y2
. (4.4)

Similarly the boundary conditions are transformed into

C = Cw +N1

(

∂C

∂y

)

at y = 0, (4.5)
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C → C∞ as y → ∞. (4.6)

Here N1 = N U∞ρ
K

(

Kx
ρU2−n

∞

)
1

n+1

is the mass slip factor with N being initial values of mass

slip parameter.

The dimensionless concentration φ(η), defined as

φ(η) =
C − C∞

Cw − C∞

, (4.7)

transformed Eq. (4.4) into the form

φ′′ +
Sc∞

n+ 1
φ′f + Sc∞Sr∞θ

′′ = 0, (4.8)

where Sc∞ = 1

DM

(

K
ρ

)
2

n+1
(

U3
∞

x

)
n−1

n+1

is the Schmidt number and

Sr∞ = DT

(

ρ
K

)
2

n+1

(

x
U3
∞

)
n−1

n+1 Tw−T∞

Cw−C∞

is the Sorrent number. The boundary conditions

(4.2)-(4.3) are likewise transformed into

φ(η) = 1 + γφ′(η), at η = 0, (4.9)

φ(η) → 0 as η → ∞. (4.10)

Here γ = N U∞ρ
K

is the mass slip parameter. The governing partial differential equation for

the present model are (3.20), (3.32) and (4.8) along with the boundary conditions (3.22),

(3.23), (4.9) and (4.10). In order to solve the system of equations with Matlab bvp4c

code, we convert these equations into the system of first order differential equations:

f ′ = p, p′ = q, q′ =
k +M

n

p− 1

qn−1
−

fq2−n

n(n + 1)
, (4.11)

θ′ = z, z′ = −
Pr

n + 1

1 + ǫθ

(1 + ǫθ −Nr)
fz −

ǫ

(1 + ǫθ −Nr)
z2,

φ′ = t, t′ = −
Sc∞

n + 1
tf + Sc∞Sr∞z

′,
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f(η) = S, p(η) = δq(η), at η = 0; p(η) → 1 as η → ∞, (4.12)

θ(η) = 1 + βz(η), at η = 0; θ(η) → 0 as η → ∞, (4.13)

φ(η) = 1 + γt(η), at η = 0; φ(η) → 0 as η → ∞. (4.14)

4.4 Results and Discussion

In this section we discuss the numerical results presented in the form of graphs. The

calculations are performed for different values of power-law index n and effects of ve-

locity slip parameter δ, thermal slip parameter β, mass slip parameter γ, permeability

parameter k, magnetic parameter M , Prandtl number Pr, variable thermal conductiv-

ity ǫ, thermal radiation Nr, Schmidt number Sc∞ and Soret number Sr∞ on velocity,

temperature and concentration profiles are discussed.

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

η

φ(
η)

Dashed  line:   n=0.4
Solid line:         n=1.0
Dotted line:      n=1.4

δ= 0.4, 0.8

M= ε= Sc= Sr= 0.2, k= S= Nr= 0.3, 
β= γ=0.4, Pr=0.7

Figure 4.1: Concentration φ(η) profiles for different values of velocity slip parameter δ

and power-law index n.

In figure (4.1) the effect of velocity slip parameter δ on concentration profiles of
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Newtonian, shear thinning and shear thickening fluids is presented. It can be noticed

that an increase in the magnitude of velocity slip at boundary enhances the rate of mass

transfer. Figure (4.1) also shows that the boundary layer thickness for shear thinning

fluid (n < 1) is relatively thin. as compared to shear thickening fluids (n > 1).
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Figure 4.2: Concentration φ(η) profiles for different values of velocity slip parameter γ

and power-law index n.

The effect of mass slip parameter γ on concentration profiles with different values

of power-law index n is depicted in figure (4.2). The increase in mass slip shows the

decrease in concentration profile. This is due to an increase in the mass transfer from

the fluid to the porous plate.
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Figure 4.3: Concentration φ(η) profiles for different values of suction parameter S and

power-law index n.

The variation in suction parameter with various values of power law index n is shown

in figure (4.3) for concentration profiles. The concentration boundary layer decreases

with an increase in suction S > 0. This will enhance the rate of mass transfer through

boundary layer. An opposite behaviour can be seen for blowing S < 0.
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Figure 4.4: Concentration φ(η) profiles for different values of permeability parameter k

and power-law index n.
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In figure (4.4) the concentration profiles are presented for different values of perme-

ability parameter k. The effects of permeability on velocity and temperature are same

as depicted in previous chapter (see figures (3.6)-(3.7)). Here we observed that the con-

centration of the power-law fluid decreases for an increase in permeability. When the

permeability of the porous medium increases the porous medium become more porous

which causes the decrease in Darcian body force and the rate of mass transfer is increased

in the porous medium.
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Figure 4.5: Concentration φ(η) profiles for different values of magnetic parameterM and

power-law index n.

In figure (4.5) variation of MHD parameter for different values of power-law index

n are depicted. It is clear from the figure that the effect of MHD parameter shows the

same results as observed for variation in permeability k, i.e., the increase in magnetic

field enhances the rate of mass transfer. This is due to the transverse magnetic field a

drag force is developed that opposes flow.
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Figure 4.6: Concentration φ(η) profiles for different values of Schmidt number Sc and

power-law index n.
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Figure 4.7: Concentration φ(η) profiles for different values of Soret number Sr and power-

law index n.

Figure (4.6) illustrate the effect of Schmidt number for various values of power-law

index n on concentration profiles. The Schmidt number is the important parameter

in the mass transfer process as it describes the ratio of thickness of the viscous and

concentration boundary layers. Its effects on species concentration boundary layer is
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analogs to the effect of Prandtl number on thermal boundary layer thickness. That is,

increase in Schmidt number causes the decrease in concentration profiles and in turn

decreases the species concentration boundary layer thickness. We observe the similar

behaviour due to the change in Soret number. The decrease in concentration causes an

increase in the mass transfer from the fluid to the porous medium as seen in figure (4.7).
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Figure 4.8: Concentration φ(η) profiles for different values of Prandtl number Pr and

power-law index n.

In figure (4.8) the effect of Prandtl number on concentration profile is depicted. It is

clear from the figure that the increase in Prandtl number caused an increase in concen-

tration and decreases the specie concentration boundary layer.
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Chapter 5

Conclusion

In this thesis, we studied the MHD slip flow with heat and mass transfer of power-law

fluid over a porous flat plate with variable thermal conductivity and thermal radiation.

The velocity, thermal and mass slip conditions are employed and thermal conductivity

is considered as linear function of temperature. The governing boundary layer equations

along with the boundary conditions were transformed into a coupled system of nonlinear

ordinary differential equations using similarity transformation. The resulting system of

differential equations was solved numerically using Matlab bvp4c code and results are

presented in the form of graphs and tables.

In general, the increase in velocity slip at the boundary, increase the fluid velocity

and enhanced the heat and mass transfer rate across the boundary layer. The increase in

thermal and mass slip parameter decrease the fluid temperature and concentration for a

given distance from the plate. The increase in permeability and MHD parameter resulted

an increase in velocity and enhances the rate of heat and mass transfer. Finally, the suc-

tion S > 0 caused an increase in fluid velocity as more fluid is sucked through the porous
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wall and reduce the thickness of momentum and species concentration boundary layer.

Opposite behaviour is observed for S < 0. In case of temperature and concentration dis-

tribution the thermal and species concentration boundary layer thickness decreases with

increasing values of S > 0. It is observed, the velocity and temperature of power-law

fluid decrease with the increasing values of the Prandtl number. Whereas the species

concentration of the power-law fluid increase with increasing values of Prandtl number.

The increase in thermal radiation parameter resulted in increase in the thickness of ther-

mal boundary layer. The fluid velocity and concentration is unaffected by variations in

thermal conductivity and radiation.

The present model has exploited a number of simplifications in order to focus on

the principal effects of slip parameter and power-law index and temperature dependent

thermal conductivity. An interesting area to explore in future investigations would be

the use of temperature dependent viscosity, variable porosity and multidimensional MHD

slip flow and heat transfer of non-Newtonian fluids. Clearly there is an opportunity for

experimental work on these systems.
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