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Abstract

Symmetry method is a very useful tool to solve a variety of linear and nonlinear

differential equations. This method implies to obtain invarient transformations,

and by using these transformations one can reduce a partial differential equations

(PDEs) into an ordinary differential equations (ODEs). If the reduced ODE is

solved analytically, then one uses the inverse transformations to get the solution

of the original PDE. In case, the reduced ODE can not be solved analytically, one

generally finds numerical solution. In such cases, a procedure was developed that

uses the numerical solution of the reduced ODE to find an approximate closed-form

solution of the original PDE [1]. However, it was not evident that the procedure

works well. In this thesis, we validate the procedure developed in reference [1].

We solve the diffusion equation numerically and compare the approximate closed-

form solution with it. It is found that the procedure works well and gives good

approximation at least for the diffusion equation considered.
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Symbols

v Velocity ( ms−1 ).

a Acceleration ( ms−2 ).

x Distance ( m ).

t Time ( sec ).

p Pressure ( Pa ).

∇ Divergence.

ρ Density ( kgm−3 ).

k Permeability ( m2 ).
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Chapter 1

Introduction

Mathematical problems can be solved with arithmetic and logical operations by

using numerical methods, also known as computer mathematics. We study numer-

ical methods for solving large systems of equations, non-linearities and complicated

geometries that are often impossible to solve analytically with standard calculus.

Moreover, it provides an efficient way of solving the problems on a computer. By

implementing the numerical methods on a computer, we can access the computers

powers and limitations as well as control the errors of approximations of large cal-

culation [2]. By using numerical methods and computer programming techniques

we can design programs to solve problems which cannot be solved using canned

programs.

Mathematical modeling explains more theoretical aspects of the scientific approach,

and is a fundamental part of applied mathematics. A mathematical model usually

takes the relationship between variables and configures problems and laws of na-

ture. The purpose of modeling is to gain new knowledge, but it should also be in

agreement with the known facts. A model is a simple idealization [3] of complex

reality. It is created with the aim characterized by the investigation to obtain new

knowledge about the real world and the implications of the model. Figure 1.1

shows a flowchart of the modeling process [4].
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Figure 1.1: Flow chart of the modeling process.

The top arrow in the diagram shows the initial part of the modeling process.

Tools such as keen observation, communication skills and human senses are used

to solve a problem. It replaces the real world phenomena for employment by an

abstract model of mathematical analysis. Right-hand arrow represents the math-

ematical problem. It is usually a result of the solution. The resulting solution is

in mathematical form and it must be reinterpreted back in the original real-world

setting. The bottom arrow is deductive part of modeling process. It is mainly

8



concerned with the mathematical solution and it must be related back into the

original real world problem. Finally, in the left-hand arrow, interpretation must

be checked against reality. It represents the validation part of modeling. Here we

check whether the model is appropriate and it agrees with the known aspects of

original problem. If this process does not result in the desired knowledge, then

repeat the full cycle again to improve the model with alternate assumptions and

tools until the satisfactory solution of the problem is obtained.

1.1 Mathematical Modeling of ODEs

In mathematics, a body falling vertically under the gravity leads to a second-

order differential equation. The solution of this equation is used to determine the

position of body relative to ground. The acceleration of a freely falling body, called

gravitational acceleration, is generally denoted by g. On the surface of the earth,

its value is approximately 10 ms−2. For bodies falling down freely g is positive

and is negative for bodies moving up. Acceleration is the derivative of velocity and

velocity is the derivative of distance. Suppose a rock which is tossed from the roof

of the building in the upward direction. We assume that the upward direction is

positive, so v0 > 0 and then this equation explains the vertical distance which is

covered by the body. The negative sign indicates the force which acts on the weight

of the body and is directed opposite to the upward acting positive directional force.

The mathematical statement is given below as

d2s

dt2
= −g. (1.1)

If we assume the height of the building is s0 and initial velocity of the rock is v0,

then the equation (1.1) satisfies the initial conditions s(0) = s0 and s′(0) = v0.

Here, t = 0 indicates the initial time when the rock leaves the building and t = t1

is the elapsed time when the rock hits the ground.
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1.2 Mathematical Modeling of PDEs

In 1855, Adolf Fick explained the physical phenomena of the diffusion process. The

word diffusion is derived from Latin which means “spreading out”. In diffusion

process, the molecules are moved from an area of high concentration to an area

of lower concentration. Consider the following example of diffusion in which some

particles are dissolved in a glass of water. It is observed that at the start, all the

particles are present at one corner of the glass. After some time particles diffuse

randomly and all the particles are uniformly distributed throughout the glass of

water as shown in Figure 1.2. A simple example of diffusion process is to place

Figure 1.2: Diffusion process.

a drop of dark blue ink into a glass of water. We can observe that at the first,

ink is present in a localized region of space. After sometimes, ink diffuses into

the water molecules and the water gets bluer throughout the glass. The color of

water shows the concentration of ink molecules. Concentration of ink molecules

can be represented by using the function c of space and time. When c = 0, water

contains no ink molecules. When c(x, y, z, t) = 1 ink molecules having a small

volume surrounds the (x, y, z) spatial points at time t. Initially (i.e., when t = 0,

c = 1) indicates that the droplet of ink is present in a small region. The significant

jump from c = 0 in the water to c = 1 in the ink is smoothed out in time. After

some time, we observe the blue color which is evenly distributed throughout the
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glass of water. This indicates that c has some value between 0 and 1, throughout

the glass. This phenomenon is referred as diffusive transport of a substance.

1.3 Derivation of Diffusion Equation

In this section we derive the general form of diffusion equation. We begin with the

continuity equation

ρt +∇.(ρv) = 0, (1.2)

where

• ρ is fluid density,

• v is the velocity,

• ∇ represents the divergence.

The principle that explains the underground movement of fluid mechanism is called

Darcy’s law. This law was proposed by the French engineer Henri Darcy in 1856.

The ability of fluid to flow through a porous media such as rock is defined by

Darcy’s law equation. The amount of flow between two points is directly related

to the difference in pressure, distance, and interconnectivity of flow pathways be-

tween the points.

The mathematical form of Darcy’s law is:

v =
−k

µ
∇p, (1.3)

where
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• k is permeability,

• µ is viscosity,

• p is pressure.

Using equation (1.3) in equation (1.2), we get

ρt = −∇
(
ρ
−k
µ
∇p
)
. (1.4)

In equation (1.3) we see that velocity is related to pressure and negative sign shows

that the flow is moving from higher to the lower pressure. In equation (1.2) we see

that density is related to velocity. To close the system in a single equation, we use

the equation of state as

ρ = ρ0p
γ, (1.5)

where ρ0 and γ are constants with 0 < γ ≤ 1.

Using equation (1.5) in equation (1.4), we get

ρt = ∇
[
ρ(
k

µ
)∇(

ρ

ρ0
)

1
γ
]
, (1.6)

or

ρt =
k

µ

1

ρ
1
γ

0

1

γ
∇(ρ

1
γ∇ρ). (1.7)

Notice that, (ρ
1
γ∇ρ) can be written as:

ρ
1
γ∇ρ =

∇(ρ
1
γ
+1)

( 1
γ

+ 1)
, (1.8)

equation (1.7) becomes

ρt =
k

µ

1

ρ
1
γ

0

1

γ + 1
∇2(ρ

1
γ
+1). (1.9)

Equation (1.9) is the general diffusion equation.
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1.4 Application of Diffusion Equation

In this section we present several applications of diffusion equation. Many authors

have considered this equation for solving the problems in various fields of science.

Some of the applications are:

• There are many industrial reactions in which we use catalysts containing

small amount of noble metals dispersed in a porous inert material like silica,

to speed up the reaction [5]. We can describe the diffusion process and the

reaction in the pores in the catalyst by using the diffusion coefficients.

• A carrier is a mobile and reactive species that reacts with diffusing solutes,

present in membranes to facilitate the transport of substances across the

membrane. Such membranes are used to separate the copper ions from in-

dustrial waste and carbon dioxide from coal gas. The diffusion process across

these membranes is highly selective and does not change linearly with the

concentration difference across them. Fundamental models of diffusion coeffi-

cients can be used to describe the facilitated transport across the membranes.

• When food products are spray-dried, the flavor of the food is lost. Spray-

drying is a complex industrial-scale process. By using this process, we can

inhibit the diffusion of the flavor compounds by forming a tight gel like skin

on the surface of drying food. We can describe the flavor retention in food

products by seizing the sizes of the pores in the flavor compounds using mass

transfer coefficients.
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Chapter 2

MATLAB Tools: bvp4c and PDE
Toolbox

Ordinary differential equations (ODEs) play major role in applications of science

and engineering. They arise in wide variety of engineering applications for example

electromagnetic theory, computational fluid dynamics, etc. These equations can be

typically solved using either analytical or numerical methods. Many of the ODEs

arising in real life application can not be solved analytically or we can say that

their analytic solution does not exist. For such types of problems certain numerical

methods exists.

Partial differential equations (PDEs) occur in many disciplines like Physics, Chem-

istry, Biology and Mathematics. In PDEs the distinction between linear and non-

linear equations is extremely important. Linear partial differential equations can

be solved easily by using particular methods such as Fourier series, separation of

variable, Laplace transform etc. However, obtaining exact solutions of nonlinear

PDEs is generally difficult and often not possible. To find the exact solution of

nonlinear PDEs there is no organized theory. Therefore, one generally looks for

the numerical solutions.
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There is a lot of work on finding numerical solution of PDEs and a number of meth-

ods have been developed to obtain numerical solution of PDEs, for example finite

difference method (FDM), finite element method (FEM), finite volume method

(FVM). Based on different numerical techniques a number of computer packages

have been developed, for example MATLAB, MATHEMATICA, MAPLE etc.

There are a lot of tools in these packages, for different types of numerical calcula-

tions, including tools for solving ODEs and PDEs. In the following subsections of

this chapter we discuss the MATLAB tools bvp4c and PDE Toolbox, which have

been used in our work to solve ODEs and PDEs.

2.1 Solving Boundary Value Problems in MAT-

LAB with bvp4c

The boundary value problems (BVPs) for ODEs can be solved using MATLAB

built-in-function bvp4c. Following are the steps to solve BVP on bvp4c.

• Convert the higher order ODE into a system of first order ODE in the form

dz

dx
= z′ = h(x, z). (2.1)

• Assume that the given BVP is defined on the interval [a, b], then write the

boundary conditions as:

z(a) = za, z(b) = zb.

• Choose an initial guess for the solution.

• bvp4c starts finding solution with an initial guess supplied at initial mesh

points. For more detail see reference [6].
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2.2 PDE Toolbox

The PDE Toolbox is used as a powerful tool for the study and solution of PDEs

in two dimensions, one space and one time. The Finite Element Method (FEM) is

used to discretize the equations. The main objectives of the PDE Toolbox are:

• Define a PDE problem with a 2-D regions, PDE coefficients and boundary

conditions.

• Solve the PDE problem numerically by discretizing the equations, generating

un-structured meshes, and approximating the solution.

• Interpreting the results.

Using PDE Toolbox, one can solve the problem in following steps:

2.2.1 Defining a PDE in PDE Toolbox

After defining a PDE problem by using the general form of the PDE equation, we

solve the problem. We must also know the geometry of the problem that needs

to be solved. For simple geometries that can be drawn manually in the Graphical

User Interface (GUI) include any intersection, union or difference of shapes that

include squares, rectangle, ellipses and irregular shaped polygons. Next, boundary

conditions need to be specified for edges of the object and the edges of the subdo-

mains. The boundary conditions are:

Dirichlet Boundary Condition

It is defined on the boundary of the domain by specifying the value of the solution.

Neumann Boundary Condition

It is defined on the boundary of the domain by specifying the value of the derivative

of the solution.
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2.2.2 Solution of PDE

We can solve the PDE using PDE MATLAB Toolbox in order to solve the prob-

lem, a triangular mesh must be initialized and refined carefully. If the mesh is

initialized but not refined or improved, some areas of the geometry may have less

accurate estimations of the solution than desired. Computational effort will in-

crease if the mesh is heavily refined. Once the triangular mesh is generated in

the correct orientation, then MATLAB solves the PDE instantly and we get the

accurate solution of the problem.

2.2.3 Visualizing the Result on a Graph

The solution of PDE can be interpreted in different ways. If there is any default

option, then we see a color grid with a colorbar axis. We can also interpret the

results by the use of contour lines, animation mode and a 3D plot of the given

problem.

2.2.4 pdepe

In this subsection, we discuss the MATLAB command pdepe, which is used to

solve PDEs.

Syntax

sol = pdepe
(
m, pdex1pde, pdex1ic, pdex1bc, xmesh, tspan

)
. (2.2)

Here,

m : It represents a parameter that correspond to the co-ordinate system of the

given problem.

• value of m in Cartesian = 0.
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• value of m in Cylindrical = 1.

• value of m in Spherical = 2.

pdex1pde : It represents a function which defines the components of the PDE.

pdex1ic : It represents a function which defines the initial conditions.

pdex1bc : It represents a function which defines the boundary conditions.

xmesh : It represents a set of vectors [x0, x1, ..., xn] which specifies the points

upon which numerical solution is calculated for every value in tspan. The ele-

ments of xmesh should meet the condition as x0 < x1 < ... < xn, and its length

should be greater than equal to 3.

tspan : It represents a set of vectors [t0, t1, ..., tf ] which specifies the points upon

which numerical solution is calculated for every value in xmesh. The elements of

tspan should specify the following condition such as t0 < t1 < ... < tf , and its

length should be greater than equal to 3.

In PDE Toolbox the following general form is used:

c

(
x, t, u,

∂u

∂x

)
∂u

∂t
= x−m

∂

∂x

(
xmf

(
x, t, u,

∂u

∂x

))
+ s

(
x, t, u,

∂u

∂x

)
. (2.3)

In the PDE Toolbox the PDE holds for t0 ≤ t ≤ tf and a ≤ x ≤ b. The interval of

a and b should be finite. In equation (2.3) m > 0, then a ≥ 0.
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The coupling of the partial derivatives with respect to time is restricted to multipli-

cation by a diagonal matrix c

(
x, t, u,

∂u

∂x

)
. The diagonal elements of this matrix

are either identically zero or positive [7].

The solution components must satisfy the initial condition of the form

u(x, t0) = u0(x), (2.4)

for all x and t = t0 and the solution components must satisfy a boundary condition

of the form

p(x, t, u) + q(x, t)f

(
x, t, u,

∂u

∂x

)
= 0, (2.5)

for all t and x = a or b.

Elements of q are either identically zero or never zero. The boundary conditions

must be expressed in terms of f rather than
∂u

∂x
. Although, two coefficients are

available, but p depends only on u .

When we call the equation (2.2) then MATLAB read the script as follows

• m corresponds to 0, 1 or 2.

• xmesh(1) and xmesh(end) corresponds to a and b, respectively.

• tspan(1) and tspan(end) corresponds to t0 and tf , respectively.

• pdex1pde computes the terms c, f , and s in equation (2.3). It has the form

[c,f ,s] = pdex1pde(x, t, u, dudx).

By the use of scalars x and t, vectors u and dudx as an input arguments, we can

approximate the solution u as well as its partial derivative with respect to x. The
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column vectors are c, f and s. The diagonal elements of the matrix c are stored

by c as shown in equation (2.3).

• pdex1ic calculates the initial conditions. It has the form

u= pdex1ic(x).

pdex1ic can evaluate and return to the initial values of the solution components of

x by the use of argument x in the column vector u.

• pdex1bc calculates the terms p and q of the boundary conditions in equation

(2.5). It has the form

[pl, ql, pr, qr] = pdex1bc(xl, ul, xr, ur, t), (2.6)

where ul represents the approximate solution at the left boundary xl = a and

ur represents the approximate solution at the right boundary xr = b. pl and ql

are column vectors corresponding to p and q evaluated at xl; similarly pr and qr

correspond to xr. pdepe imposes this boundary condition automatically and it

ignores values returned in pl and ql.
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Chapter 3

Approximate Closed-Form
Solution of the Reduced ODE

Mathematical modeling of the physical processes in most fields like diffusion, chem-

ical kinetics, fluid mechanics, wave mechanics and general transport problems is

governed by nonlinear PDEs whose exact solutions are difficult to find. So the

approach of reduction of PDEs to ODEs is quite important and helps us in the

study of various physical processes [8]. A powerful technique for analyzing such

nonlinear PDEs and their reduction to ODEs is given by Lie symmetry method.

In this method, depending upon the available symmetries of the PDEs under con-

sideration one can:

• reduce the number of independent variables of a PDE.

• reduce the order of an ODE.

• even find the exact solution.

There are very important contributions in the application of symmetry method to

initial boundary value problems (IBVPs) [9, 10]. In many cases, a PDE is con-

verted to an ODE by using symmetry method. However, the exact solution of the

reduced ODE is not possible to obtain in all cases. In such cases, one solves
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the reduced ODE numerically. A method to utilize the numerical solution of the

reduced ODE to obtain approximate solution of the original PDE is developed in

[1], which is discussed in the following section.

3.1 A Method for Generating Approximate So-

lution of PDEs

In reference [1], a method is presented to obtain approximate solution of an IBVP,

using the following steps:

Step 1: Reduce IBVP of PDE to BVP of ODE by applying symmetry trans-

formations.

Step 2: Find numerical solution, vnum, of BVP of resulting ODE.

Step 3: Obtain an initial guess, vinitial, for the approximate solution, vapprox(z),

of BVP of ODE.

Step 4: Improve the initial approximation, vinitial, to get the approximate solu-

tion, vapprox(z), up to the desired level of accuracy.

Step 5: Use the inverse symmetry transformations on vapprox(z) to get the ap-

proximate solution, u(x, t), of the original PDE.

3.1.1 Example

Consider a transient flow of gas through semi-infinite porous medium [11, 12, 13, 14]

initially filled with gas at a uniform pressure u0 > 0, at time t = 0, the outflow

pressure is suddenly reduced from u0 to u1 > 0 (u1 = 0 is the case diffusion in to a

vacuum) and is then maintained at the lower pressure. The unsteady transient flow

of gas is described by a nonlinear partial differential equation. The mathemati-

cal equation [15] of the unsteady transient flow of gas through a semi-infinite porous

22



medium can be written as:

∇2(u2) = 2c
∂u

∂t
. (3.1)

Here ∇ is divergence, u is pressure, and c = φµ
k

, where φ is porosity, µ is viscosity,

and k is permeability. Consider one dimensional case, for x = 0 to x→ ∞, then

the above equation (3.1) takes the form

∂

∂x

(
u
∂u

∂x

)
= c

∂u

∂t
, (3.2)

subject to the following boundary conditions

u(x, 0) = u0, (3.3)

u(0, t) = u1(< u0), (3.4)

u(∞, t) = u0. (3.5)

In equations (3.3)-(3.5) we assume u0 = 1, then we have

u(x, 0) = 1, 0 < x <∞, (3.6)

u(0, t) = u1(< 1), 0 ≤ t <∞, (3.7)

u(∞, t) = 1, 0 < t <∞. (3.8)

Introducing the following symmetry transformations [11, 12]

z =
x√
t

( c
4

) 1
2
, (3.9)
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and

v = α−1(1− u2), (3.10)

with α = 1− u21.

Equation (3.10) can be written as

u =
√

1− αv. (3.11)

Taking partial derivatives of equation (3.9) with respect to x and t respectively,

we get

∂z

∂x
=

1√
t

( c
4

)1/2
. (3.12)

and

∂z

∂t
=
−x

2t3/2

( c
4

)1/2
, (3.13)

Again differentiating equation (3.11) with respect to t, we have

∂u

∂t
=

1

2
√

1− αv
∂v

∂t
,

or

∂u

∂t
=

1

2
√

1− αv
dv

dz

∂z

∂t
. (3.14)

Substituting equation (3.13) in equation (3.14), we get

∂u

∂t
=

1

2
√

1− αv

(
−x

2t2/3

( c
2

)1/2) dv

dz
. (3.15)

24



Taking partial derivative of equation (3.11) with respect to x, we get

∂u

∂x
=

1

2
(1− αv)−1/2

∂v

∂x
,

or

∂u

∂x
=

1

2
√

1− αv
dv

dz

∂z

∂x
. (3.16)

By multiplying equations (3.11) and (3.16), we obtain

u
∂u

∂x
=

1

2

dv

dz

∂z

∂x
. (3.17)

Substituting equation (3.12) in equation (3.17), we get

u
∂u

∂x
=

1

2
√
t

( c
4

)1/2 dv
dz
. (3.18)

Partially differentiating equation (3.18) with respect to x, we obtain

∂

∂x

(
u
∂u

∂x

)
=

1

2
√
t

( c
4

)1/2 ∂

∂x

(
dv

dz

)
,

or

∂

∂x

(
u
∂u

∂x

)
=

1

2
√
t

√
c

4

d2v

dz2
∂z

∂x
. (3.19)

Using equation (3.12) in equation (3.19), we have

∂

∂x

(
u
∂u

∂x

)
=

1

2
√
t

√
c

4

d2v

dz2

(
1√
t

( c
4

)1/2)
,

25



or

∂

∂x

(
u
∂u

∂x

)
=

c

8t

(
d2v

dz2

)
. (3.20)

Substituting equations (3.15) and (3.20) in equation (3.2), we obtain

d2v

dz2
=

−8ctx

4c
√

1− αvt3/2

√
c

4

dv

dz
,

or

d2v

dz2
=

−2√
1− αv

(
x√
t

√
c

4

)
dv

dz
,

or

v′′ +
2z√

1− αv
v′ = 0. (3.21)

The transformed boundary conditions are as follows:

v(z = 0) = 1, (3.22)

and

v(z →∞) = 0. (3.23)

3.1.2 Numerical Solution of the Reduced ODE

The equation (3.21) is a nonlinear ODE and its exact solution is difficult to find.

Now we find the numerical solution of reduced ODE (3.21) by using MATLAB

built-in solver bvp4c. To apply bvp4c, we convert the ODE (3.21) into a system of

first order ODEs.
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First we define the variables w1 = v, and w2 = v′, then the equation (3.21),

in new variables w1 and w2, becomes the system of first order ODEs as

w′1 = w2,

and

w′2 +
2z√

1− αw1

w2 = 0.

The relevant boundary conditions in equations (3.22) and (3.23), now take the

form

w1(z = 0) = 1, (3.24)

and

w1(z →∞) = 0. (3.25)

The graph of the numerical solution of the reduced ODE is shown in Figure 3.1.
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Figure 3.1: Numerical solution of the ODE.

3.1.3 Obtaining Initial Approximation for the Approximate
Solution

To obtain an initial guess, vapprox, the lower solution [12] of equation (3.21) is used

as an initial guess. Lower solution leads to an accurate approximate solution in
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few iterations, because it provides a good initial guess. For approximate solution

of equation (3.21), the initial guess for all the cases is considered as

initial approximation = vlower = 1− erf
( z
√
u1

)
, (3.26)

where erf denotes the error function.

3.1.4 Refining the Initial Approximation

To get vapprox, we improve the initial approximation to the desired level of accuracy.

In order to improve the initial approximation following strategy is adopted. Assume

the lower solution as

1− erf(hz), (3.27)

with h = h0 = 1/
√
u1 gives an initial approximation vh0 that is, the lower solution.

Numerical simulations suggest that as the value of h decrease from h0 by a small

decrement, the lower solution moves uniformly towards the numerical solution.

Given a function N(x) and a number ε > 0, we say that f(x) lies within ε-band of

N(x) on an interval I if

| f(x)−N(x) |< ε, ∀x ∈ I. (3.28)

For a suitable value n and numbers ε > 0, δi > 0, using the sequences of values

h = hi = h0 − δi, (i = 1, 2, ..., n). (3.29)

The equation (3.27) generates a sequence of curves vhi that uniformly approaches

the numerical solution, finally resulting in the curve

vapprox = vhn ,

which lies in an ε-band around the graph of numerical solution vnum. The number

ε is chosen according to the desired level of accuracy and the value of hn is ap-

proximated by numerical simulations.
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Using the transformations given in equations (3.9) and (3.10), one gets the approx-

imate solution, u(x, t), of the IBVP in equation (3.2). In the following subsection

we describe the implementations of the above procedure and calculate approximate

solutions for some cases of the values of u1.

3.1.5 Approximate Closed-Form Solution for u1 = 0.9

To find approximate solution of ODE in equation (3.21) we first solve the ODE

numerically, with the help of MATLAB function bvp4c. We call numerical solu-

tion as vnum. For u1 = 0.9, h0 = 1/
√

0.9, and the lower solution of the reduced

ODE becomes

vlower = 1− erf
( z√

0.9

)
,

or

vlower ≈ 1− erf(1.05409z). (3.30)

The graph of vnum and vlower is given in Figure 3.2.
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Figure 3.2: Comparisons of vnum and vlower for u1 = 0.9.

The maximum absolute difference between numerical solution, vnum, and lower

solution, vlower, is

Max | vnum − vlower |= 0.0195. (3.31)
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To plot the difference at each point of the solutions, we define

Error(z) = vnum(z)− vlower(z), (3.32)

whose plot is given in Figure 3.3.

Figure 3.3: Difference between vnum and vlower.

The procedure explained in subsection (3.1.4) with decreasing value of h0 = 1.05409

to hn= 1.0111, we get vapprox as

vapprox = 1− erf(1.0111z). (3.33)
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From Figure 3.4 it is seen that the graph of vapprox is more closer to vnum than

vlower. Here we have

Max | vnum − vapprox |= 0.0011. (3.34)

Figure 3.4: Comparisons of vlower, vnum, and vapprox.
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To compare pointwise error between vnum and vapprox, we define

Error(z) = vnum(z)− vapprox(z).

The graph of error between vnum, vlower and vnum, vapprox is given in Figure 3.5.

Figure 3.5: Errors in initial and in final approximation.
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3.1.6 Approximate Closed-Form Solution for u1 = 0.3

For u1 = 0.3, h0 = 1/
√

0.3, and the lower solution of the reduced ODE becomes

vlower ≈ 1− erf(1.82574z). (3.35)

The graph of vnum and vlower is shown in Figure 3.6.

Figure 3.6: Comparsions of the vnum and vlower for u1 = 0.3.
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The maximum absolute difference between numerical solution, vnum, and lower

solution, vlower, is

Max | vnum − vlower |= 0.2435. (3.36)

Plot of the difference between vnum and vlower is given in Figure 3.7.

Figure 3.7: Difference between vnum and vlower.
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By the procedure explained in subsection (3.1.4), decreasing value of h0 = 1.82574

to hn= 1.0657, we get vapprox as

vapprox = 1− erf(1.0657z). (3.37)

Figure 3.8: The solutions of vlower, vnum, vapprox and intermediate curves.

From Figure 3.8 it is seen that the graph of vapprox is more closer to vnum than

vlower. The dotted curve is taken from a sequence of curves vhi approaching uni-
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formly towards the numerical solution. Here we have

Max | vnum − vapprox |= 0.0066. (3.38)

Plot of the difference between vnum and vapprox is given in Figure 3.9.

Figure 3.9: Errors in initial and in final approximation.
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3.1.7 Approximate Closed-Form Solution for u1 = 0.1

For u1 = 0.1, h0 = 1/
√

0.1, and the lower solution of the reduced ODE becomes

vlower ≈ 1− erf(3.162277z). (3.39)

The graph of vnum and vlower is given in Figure 3.10.

Figure 3.10: Plots of the vnum and vlower for u1 = 0.1.
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The maximum absolute difference between numerical solution, vnum, and lower

solution, vlower, is

Max | vnum − vlower |= 0.4598. (3.40)

In Figure 3.11 we plot the difference between vnum and vlower.

Figure 3.11: Difference between vnum and vlower.
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By the procedure explained in subsection (3.1.4), decreasing value of h0 = 3.162277

to hn= 1.0823, we get vapprox as

vapprox = 1− erf(1.0823z). (3.41)

Figure 3.12: Solutions of vlower, vnum, vapprox, intermediate curves.
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From Figure 3.12 it is seen that the graph of vapprox is more closer to vnum than

vlower. The intermediate curves are ploted by taking values between h0 and hn.

Here we have

Max | vnum − vapprox |= 0.0096. (3.42)

In Figure 3.13 we plot the difference between vnum and vlower.

Figure 3.13: Errors in initial and in final approximation.
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Chapter 4

Approximate Closed-Form
Solution of Diffusion Equation

In chapter 3, the diffusion equation is reduced to an ODE by applying symmetry

transformations. The solution of the reduced ODE is found numerically by using

MATLAB. Then using the numerical solution, an approximate closed-form solu-

tion of the reduced ODE is obtained. In this chapter we obtain an approximate

closed-form solution of the diffusion equation by applying the inverse symmetry

transformations to the approximate solution of the reduced ODE. After that nu-

merical solution of the diffusion equation is obtained using MATLAB. At the

end a comparison between numerical and approximate closed-form solutions of the

diffusion equation is presented.

4.1 Approximate Solution of Diffusion Equation

for u1 = 0.9

Using the approximate solution given by equation (3.33) and the transformations

given by equations (3.9) and (3.10), we get the approximate closed-form solution

of the IBVP (3.2) - (3.5), given by
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u(x, t) =

√
0.81 + 0.19erf

(
1.0111

x√
t

( c
4

)1/2)
. (4.1)

Note that u(x, t) is undetermined at (x, t) = (0, 0). However, taking the limit as

(x, t) → (0, 0), we have

lim
(x,t)→(0,0)

u(x, t) = lim
(x,t)→(0,0)

√
0.81 + 0.19erf

(
1.0111

x√
t

( c
4

)1/2)
= 0.9, (4.2)

which agrees with the boundary condition. The approximate solution u(x, t) given

by equation (4.1) is shown in Figure 4.1.

Figure 4.1: Approximate solution of the diffusion equation for u1 = 0.9.
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4.1.1 Numerical solution of Diffusion Equation for
u1 = 0.9

In this subsection, we solve the diffusion equation by applying MATLAB func-

tion PDE Toolbox described in section (2.2). The 3D plot of numerical solution of

diffusion equation is presented in Figure 4.2.

Figure 4.2: Numerical solution of the diffusion equation for u1 = 0.9.
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4.1.2 Comparison between Numerical and Approximate So-
lution for u1 = 0.9

In this subsection, we compare both the numerical and the approximate solutions

of the diffusion equation. The Figure 4.3 shows the difference between the numer-

ical and approximate solutions. The maximum absolute difference between the

numerical solution and the closed-form solution given by equation (4.1) is 0.03.

Figure 4.3: The error of the diffusion equation for u1 = 0.9.
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4.2 Approximate Solution of Diffusion Equation

for u1 = 0.3

Using the approximate solution given by equation (3.37) and the transformations

given by equations (3.9) and (3.10), we get the approximate closed-form solution

of the IBVP (3.2) - (3.5), given by

u(x, t) =

√
0.09 + 0.91erf

(
1.0657

x√
t

( c
4

)1/2)
. (4.3)

Note that u(x, t) is undetermined at (x, t) = (0, 0). However, taking the limit as

(x, t) → (0, 0), we have

lim
(x,t)→(0,0)

u(x, t) = lim
(x,t)→(0,0)

√
0.09 + 0.91erf

(
1.0657

x√
t

( c
4

)1/2)
= 0.3, (4.4)

which agrees with the boundary condition. The approximate solution u(x, t) given

by equation (4.3) is shown in Figure 4.4.
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Figure 4.4: Approximate solution of diffusion equation for u1 = 0.3.
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4.2.1 Numerical Solution of Diffusion Equation for
u1 = 0.3

In this subsection, we solve the diffusion equation by applying MATLAB func-

tion PDE Toolbox decribed in section (2.2). The 3D plot of numerical solution of

diffusion equation is presented in Figure 4.5.

Figure 4.5: Numerical solution of the diffusion equation for u1 = 0.3.
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4.2.2 Comparison between Numerical and Approximate So-
lution for u1 = 0.3

In this subsection, we compare both the numerical and the approximate solutions

of the diffusion equation. The Figure 4.6 shows the difference between the numer-

ical and approximate solutions.

Figure 4.6: The error of the diffusion equation for u1 = 0.3.
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The maximum absolute difference between the numerical solution and the closed-

form solution given by equation (4.3) is 0.14.

4.3 Approximate Solution of Diffusion Equation

for u1 = 0.1

Using the approximate solution given by equation (3.41) and the transformations

given by equations (3.9) and (3.10), we get the approximate closed-form solution

of the IBVP (3.2) - (3.5), given by

u(x, t) =

√
0.01 + 0.99erf

(
1.0823

x√
t

( c
4

)1/2)
. (4.5)

Note that u(x, t) is undetermined at (x, t) = (0, 0). However, taking the limit as

(x, t) → (0, 0), we have

lim
(x,t)→(0,0)

u(x, t) = lim
(x,t)→(0,0)

√
0.01 + 0.99erf

(
1.0823

x√
t

( c
4

)1/2)
= 0.1. (4.6)

which agrees with the boundary condition. The approximate solution u(x, t) given

by equation (4.5) is shown in Figure 4.7.
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Figure 4.7: Approximate solution of the diffusion equation for u1 = 0.1
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4.3.1 Numerical Solution of the Diffusion Equation for
u1 = 0.1

In this subsection, we solve the diffusion equation by applying MATLAB func-

tion PDE Toolbox described in section (2.2). The 3D plot of numerical solution of

diffusion equation is presented in Figure 4.8.

Figure 4.8: Numerical solution of the diffusion equation for u1 = 0.1.
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4.3.2 Comparison between Numerical and Approximate So-
lution for u1 = 0.1

In this subsection, we compare both the numerical and the approximate solutions of

diffusion equation. The Figure 4.9 shows the difference between the numerical and

approximate solutions. The maximum absolute difference between the numerical

solution and the closed-form solution given by equation (4.5) is 0.15.

Figure 4.9: The error of the diffusion equation for u1 = 0.1.
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Chapter 5

Conclusions

In the application of symmetry method to solve a PDE, one often ends up in a

situation, where the PDE is reduced to an ODE whose analytical solution is not

possible or difficult to find, and one obtains numerical solution. A method to use

the numerical solution of the reduced ODE to get an approximate closed-form so-

lution of the original PDE was developed in reference [1]. As the transformations,

used to write the approximate solution of PDE from the approximate solution of

the reduced ODE are generally nonlinear, therefore, it is not clear whether the

approximate solution of the PDE obtained remains reasonable in the sense that

the errors involved in the approximation of the reduced ODE are not increased

significantly by the use of transformations to obtain approximate solution of PDE.

For this purpose, in this thesis numerical solutions of the original IBVP of PDE are

obtained and the approximate solutions are compared with these numerical solu-

tions. The comparison is made for three different values of parameter u1 involved

in the boundary conditions, which are u1 = 0.9, 0.3, and 0.1. It is observed that

approximate solution is reasonably closed to the numerical solution. In all cases,

the maximum absolute error between the approximate and numerical solution of

PDE for u1 = 0.9 is 0.03, for u1 = 0.3 is 0.14 and for u1 = 0.1 is 0.15. Notice that
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the maximum error increases with the decrease in the values of u1. This is ex-

pected as the error in the approximation of the reduced ODE also has the similar

behaviour.
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