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Abstract

In this dissertation, a review is presented on the propagation of Rayleigh waves

in anisotropic elastic materials. The main focus is to discuss the propagation of

Rayleigh waves in anisotropic materials. In crystals, Rayleigh wave propagation

is carried out in the cases when Christoffel equations split into two parts resulting

Rayleigh wave to polarize in x1x2-plane and a shear horizontal wave in x3 direction.

The boundary conditions are also simplified when some elastic constants vanish by

applying conditions and symmetries. The conditions and equations are satisfied by

different structures of crystals. Secular equation for surface waves propagating on

a monoclinic half-space is derived using the method of first integrals. By using

Stroh formalism, a system of two second order differential equations for traction

components is developed. Secular equation for monoclinic material is re-derived as

quartic for squared wave speed. The secular equation for surface waves propagating

on orthotropic incompressible half-space is also re-derived in a direct manner, again

by using the method of first integrals.
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Chapter 1

Introduction

Waves are the disturbance in space which bring energy in space. In today’s world, it

is well known and much explored that waves are the main source of communication

whether it is sound, radar system, electronic system or signal processing. Different

types of waves exist in space and they are being used according to their properties

in the field of science and technology. Mainly there are two types of waves. Waves

that need medium like air for their propagation and can not transmit energy in

vacuum, are named as mechanical waves. The other type of waves do not need

medium for propagation, called the electromagnetic waves. As we know the role of

waves is important in the atmosphere for different purposes. Likewise waves have

much more significance inside the layers of earth. Further in the deep down study of

mechanical waves, we come across too many types of waves which were discovered

by different physicist with the passage of time. For example, a physicist named Lord

Rayleigh [1] discovered the waves that travels over the surface especially associated

with earthquake. This type of wave travels and vanishes when the distance from

surface increases. The particle movement of the wave was also discovered that was

in elliptic form. Such waves are named after him and are called the Rayleigh waves.

After the Rayleigh waves discovery, Stoneley analyzed the wave propagation theo-
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retically.

The focus in this dissertation is reviewing the work of [2], [3] and [4] for finding

secular equations using different methods.

The study of [2] investigates that how the Rayleigh waves are propagated. On one

hand, the Christoffel equations split in two parts giving a Rayleigh wave polarized

in x1x2- plane and a shear horizontal wave polarized along x3. On the other hand,

we attain simplified boundary conditions when some elastic constants become zero.

The study is on four materials and their configurations of crystals. Rayleigh wave

velocity and displacement is calculated in this problem. After that, some suitable

configurations are discussed for monoclinic, orthorhombic, tetragonal, hexagonal

and cubic crystals which are later justified mathematically.

Destrade [3] worked on finding the expression of secular equation for Rayleigh waves

in a half space that is an elastic monoclinic material. The author worked on the

system of equations with traction components as variables and followed the method

of [5].

Destrade [4] worked on the surface waves which are propagating on the surface of in-

compressible orthotropic half space. In this paper, the author evaluated the secular

equation of surface waves by using the method of first integral followed by Mozhaev

[5]. The method is applied on the system of two second order differential equations

for traction components on surfaces which are parallel to free surface. The summary

of dissertation is given as:

Chapter 2 comprises of the basic definitions and concepts of theory of elasticity.

Some derivations of basic equations are also discussed. Apart from definitions, clas-

sification of crystals and their types are also defined by showing their matrices.

Different types of waves are introduced and it is discussed how they differ from one

another. Chapter 3 is the review of [2]. Velocity equation and displacement com-

ponents are calculated. Some configurations for monoclinic, orthorhombic, tetrago-
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nal,hexagonal and cubic are discussed and justified.

Chapter 4 is the review work of [3] in which the purpose is to find the secular

equation for surface waves in monoclinic materials by using method of first integral.

Later, the equation is reduced for orthotropic material by using certain conditions.

Chapter 5 is about calculating the secular equation in an incompressible half space

made of orthotropic material by using the method suggested in [5].

Chapter 6 is the conclusion of this dissertation.
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Chapter 2

Basics of Elasticity Theory

This chapter is about the basic concepts and definitions in elasticity theory like

stress, strain and the relation between them. Other than this, waves and their

types, crystal classes are mentioned which are extensively used in this dissertation.

2.1 Elasticity Theory

The study is about the effect of deformation on a body. Deformation is caused due

to the applied stress resulting in the change of shape of a body. The branch of

mechanics which deals with the kinematics and mechanical properties of material

considered as continuous and homogeneous rather than discrete particles. This

branch of mechanics is called Continuum mechanics.

2.2 Tensors

Tensors are the mathematical geometric objects that are used to determine the

physical properties of materials. We define tensor as a real valued function.
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Formally the components of rank n tensor T ′ijkl... transform as

T ′ijkl... = ....qliq
m
j q

n
k q

o
l ...T...lmno, where i, j, k, l... = {1, 2, 3, ..., n}. (2.2.1)

where qli denotes the n × n transformation matrix from primed to the unprimed

coordinates. Tensors can be generalized as both scalar and vector quantities as

zero, first, second, third and the fourth order tensor. A scalar quantity is a zero

order tensor. When the direction is involved along with magnitude we call it a

vector and a vector is a first order tensor. To represent a physical quantity in a

plane, we use a second order tensor. Tensors with higher order can be written as a

combination of lower order tensors.

2.3 Stress-Strain Relationship

Here, we define stress and strain so that we are able to understand the relationship

between them.

2.3.1 Stress

Stress is defined as a physical quantity which in simple words, is the internal force

that is exerted on and by the neighboring particles and molecules that in turn tends

to disturb the shape of body. Let ∆F be the force that is applied and ∆sk be the

surface where the force is applied then the components of the stress tensor Tik can

be denoted as

Tik = lim∆sk→0
∆Fi
∆sk

. k = {1, 2, 3} (2.3.1)

In Figure 2.1, Tik denotes the stress tensor components. First index in Tik estab-

lishes the direction where the stress is applied and second index tells us about the

direction of normal to which the stress is applied and ∆Fi is the i th component of

force ∆F
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Figure 2.1: Stress Tensor Components

2.3.2 Strain

In continuum mechanics, strain is defined as the mathematical approach to measure

the deformation produced in solid bodies due to applied force. This change may be

in length, volume or in a shape. Strain has no unit because it is ratio between same

quantities. Strain can be longitudinal, shear or volumetric. Symbolically, strain is

written as Sand mathematically strain component is defined as

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, i, j = {1, 2, 3}, (2.3.2)

where Sij represents the components of linear elastic strain tensor and ui are the

displacement components. Note that strain tensor is symmetric, that is, Sij= Sji.

2.3.3 Relation between stress and strain

When stress is applied on a body, strain is produced which means change can oc-

cur in the body. For example, when a rubber band is stretched by applying stress,
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strain is produced and is shown in the extended rubber band. When the stress is

removed, the rubber band tends to come to its original shape. This is the rela-

tion between stress and strain which is generally called Hook’s Law named after

Robert Hooks(1660). The law was generalized by Cauchy for materials that are lin-

early elastic. He described that the stress components are linear functions of strain

components. Stress and strain are second rank tensors. It is formulated as

Tij = CijklSkl, (2.3.3)

where i, j, k, l = {1, 2, 3}. Here, Cijkl are components of elastic stiffness matrix

tensor C which contains 81 independent components in a 3 dimensional space. The

entries of Cijkl are called elastic constants which reduce in number when material

symmetries are applied. The stiffness matrix tensor has the same SI unit as that of

stress that is Pascal P where P = N/m2 where N represents Newton and m is for

meter.

2.4 Symmetries of elasticity tensor components

Symmetries in structure of materials exist through which we can determine material

anisotropy of several types. In general, a fourth order tenor consists of 81 indepen-

dent components. However, since Tij is symmetric, that is Tij = Tji so elastic

stiffness tensor has symmetry in its first two indices.

Cijkl = Cjikl (2.4.1)

This symmetry reduces the components from 81 to 54. This is called left minor

symmetry. The symmetry in strain tensor Skl shows symmetry for the last two

indices as Skl = Slk which shows Cijkl symmetric as

Cijkl = Cijlk. (2.4.2)
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This symmetry which is right minor symmetry reduces the components from 54

to 36. Symmetries in Eq. (2.4.1) and Eq. (2.4.2) hold simultaneously. Further

reduction is done by strain energy function that is defined as the work that is done

internally in deforming the shape of the body by activity of external forces. The

expression for strain energy function is

W =
1

2
CijklSijSkl =

1

2
CklijSklSij =

1

2
CklijSijSkl. (2.4.3)

The right side of Eq. (2.4.3) involves those combinations of elasticity tensor that

are pairwise symmetric thats is (ij)↔ (kl). This shows elastic tensor as

1

2
[Cklij − Cijkl]SijSkl = 0,

Cklij = Cijkl. (2.4.4)

2.5 Tensors in Voigt notation

Here, we use the well known Voigt notation for the components of the elasticity

tensor. In this notation, a pair of indices is represented by a single number varying

from 1 to 6 and the notations are fixed for each pair. This classical notation is given

by

(11) −→ (1), (22) −→ (2), (33) −→ (3),

(23) −→ (4), (13) −→ (5), (12) −→ (6). (2.5.1)

More precisely, let α = [ij] and β = [kl], we have the matrix Cαβ as

[Cαβ] =



C11 C12 C13 C14 C15 C16

∗ C22 C23 C24 C25 C26

∗ ∗ C33 C34 C35 C36

∗ ∗ ∗ C44 C45 C46

∗ ∗ ∗ ∗ C55 C56

∗ ∗ ∗ ∗ ∗ C66


, α, β = {1, 2, ..., 6.} (2.5.2)
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Here in this matrix ∗ represents linearly dependent elastic tensor components Cαβ.

2.6 Crystal structures and their symmetries

A crystal structure is defined as the pattern in which atoms, ions and molecules

are arranged and their repetition form crystals. The basic structure that repeats to

form the crystal is called a unit cell of the crystal. Crystal structures are divided

into several systems that are triclinic, monoclinic, orthorhombic, cubic, tetragonal,

trigonal and hexagonal, differentiated with respect to the crystal symmetry. One

needs to know about the rotation and the axis of rotation for better understanding

of crystal classes. An axis of rotation is the axis or we can say a line about which

rotation occurs. The angle of rotation is 2π/n where n shows the n-folds. An n-fold

An is the proper rotation which represents counter-clockwise rotation of (360/n)o

around an axis. If an n-fold rotation operation is repeated n times, then the object

returns to its original position. We also define isotropic and anisotropic materials in

this section. Isotropic are those materials which are not direction dependent. Their

properties do not change with the change in direction or we can say orientation. On

the other hand, anisotropic materials differ with respect to the change in orientation

that a material posses.

2.6.1 Monoclinic crystal system

The monoclinic crystals is expressed by three sides where all three are of unequal

lengths and two among three are perpendicular and the third side has acute angle

with other two sides. See Figure 2.2.

where a,b,c are lengths of monoclinic crystal unit and α, β, γ are the angles between

each of the two sides such that

a 6= b 6= c and α = γ = 90o 6= β. (2.6.1)
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Figure 2.2: Monoclinic crystal unit

As monoclinic crystals has one dyad axis that rotates the object by 180o. The

general matrix of rotation, for example for x3− axis as dyad axis is

Q =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 . (2.6.2)

A fourth order elastic tensor transforms through this rotation as follows:

C ′ijkl = QpiQqjQrkQslCpqrs, (2.6.3)

Using Eq. (2.6.2) in Eq. (2.6.3), we can evaluate the independent components for a

monoclinic material, given by

[Cαβ] =



C11 C12 C13 0 0 C16

C12 C22 C23 0 0 C26

C13 C23 C33 0 0 C36

0 0 0 C44 C45 0

0 0 0 C45 C55 0

C16 C26 C36 0 0 C66


(2.6.4)

2.6.2 Orthotropic crystal system

It is also one of the seven crystal systems having mutually perpendicular axis that

are two fold which means after rotation of 90o the material remains invariant. Or-
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thorhombic crystal has three unequal sides but are perpendicular to each other that

is given in Eq.(2.6.5). See Figure 2.3.

Figure 2.3: Orthorhombic crystal unit

where a,b,c are the lengths of the sides of orthotropic crystals unit and α, β, γ are

the angles between each of the two sides such that

a 6= b 6= c, and α = β = γ = 90o. (2.6.5)

There is more symmetry in orthotropic crystal than the monoclinic crystal has.

When we calculate all the transformed stiffness constants, we see that we get twelve

non zero components out of which nine are independent and 3 are dependent. Stiff-

ness component matrix for an orthrotropic material is

[Cαβ] =



C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66


. (2.6.6)
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2.6.3 Tetragonal crystal system

The tetragonal crystals are represented by three lengths of the sides such that a =

b 6= c and each side is perpendicular to each other as shown in Figure 2.4

Figure 2.4: Tetragonal crystal unit

where the sides and angles between them are clearly shown. The stiffness matrix

for tetragonal crystal system is more simplified than that of orthorhombic which is

Cαβ =



C11 C12 C13 0 0 C16

C21 C11 C13 0 0 −C16

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

C16 −C16 0 0 0 C66


(2.6.7)

2.6.4 Hexagonal crystal system

The hexagonal crystals are represented by three lengths of the sides such that a =

b 6= c as that of tetragonal crystal but it differs in angles. See Figure 2.5.
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Figure 2.5: Hexagonal crystal unit

As hexagonal crystals posses more symmetries than the orthorhombic crystals

which are discussed, the stiffness matrix is also more simplified given by Eq. (2.6.8).

C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C11−C22

2


(2.6.8)

2.6.5 Cubic crystal system

The crystal with simplest shape and with a lot of symmetries is cubic. In cubic

crystal, all three sides are of equal length that is a = b = c and all the three angles

are equal and perpendicular to each other. Figure 2.6 is shown below.
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Figure 2.6: Cubic crystal unit

The stiffness matrix for cubic is

C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44


(2.6.9)

in which only three independents components exist.

2.7 Wave motion and their types

Wave is defined as disturbance that transfers energy from one place to another

without transferring of matter. Different types of waves exist and they are being

used according to their properties in the field of science and technology. For example,

waves are used for oil exploration in bore hole engineering. Velocity with which

waves reflect, refract help us predict what kind of minerals are there inside the

earth. Seismologist who study earthquakes and volcanic eruption also study the

wave motion for understanding the geological changes occurring inside earth.
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2.7.1 Types of wave

Mainly there are two types of waves.

Mechanical waves

Waves that need medium like air for their propagation and can not transmit energy

are named as mechanical waves.

Electromagnetic waves

Waves which do not need medium for their propagation and can travel in vacuum,

are called electromagnetic waves.

Body waves

In the thorough study of mechanical waves, scientist came across too many types

of interior waves which were discovered by different physicist and seismologist with

the passage of time. These waves can be classified by the type of motion in particles

namely longitudinal waves and transverse waves.

Longitudinal Waves

A longitudinal wave is a wave where the particle displacement direction is parallel

to direction of propagation of wave. Sound wave is an example of longitudinal wave.

Transverse Waves

A transverse wave is a type of wave in which the direction of motion is perpendicular

to the direction of wave propagation. Such waves classified into shear horizontal and

shear vertical waves depending on the direction of motion of the particle.

Surface Waves

Surface waves are waves that travel along the boundary surface of a material body.

Surface waves travel slower than the body waves and have comparatively lower fre-

quency than body waves. Though they are of low frequency but they are highly

responsible for the the destruction during an earthquake. There are two types of

surface waves, namely, Rayleigh and Love waves.

Rayleigh waves
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In this thesis, the main emphasis is on Rayleigh waves in different materials. Rayleigh

waves are the waves which travel along the surface of material mainly solids. Wave

particles have elliptic motion and the amplitude decreases exponentially as their dis-

tance decrease from the surface of earth. Rayleigh waves were discovered by Lord

Rayleigh [1] in 1885. A schematic diagram in Figure 2.7 shows the particle motion

and Rayleigh surface wave propagation in an elastic material.

Figure 2.7: The figure showing Rayleigh wave direction and motion is taken from

the web page of University of California, Berkeley, (1996).

2.7.2 Wave equation

If a disturbance travels through a medium, there will be local movements. In this

case the equation of motion can be obtained using Newton’s second law. As recorded
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before, the net of all forces acting on the volume V by using Green’s Theorem can

be put into the form

Fi =

∫
s

TikLkds+

∫
V

BidV =

∫
V

(
∂

∂xk
Tik +Bi

)
dV, (2.7.1)

where s stands for surface, Bi are any other body forces here and V is the volume.

Using second law of motion

F = ma, (2.7.2)

where F is force, m is mass of a body and a is the acceleration. Since m = ρv,

where ρ denotes the density and m is the mass of the body, we get

F = ρva. (2.7.3)

Putting Eq. (2.7.3) in Eq. (2.7.1), we get the form

∂

∂xk
Tik +Bi = ρ

∂2ui
∂t2

(2.7.4)

where Bi are the body forces. From Hook’s Law in Eq. (2.3.3), we have

Tij = Cijkl
∂uk
∂xl

. (2.7.5)

Ignoring the body forces in Eq. (2.7.4) and substituting Eq. (2.7.5) in (2.7.4) we

get

ρ
∂2ui
∂t2

= Cijkl
∂2uk
∂xj∂xl

, i, j, k = {1, 2, 3.} (2.7.6)

These three equations are the partial differential equations of second order repre-

senting the wave motion.

2.7.3 Inner product

Inner product is defined as

(f, φ) =

∫
(fφ+ fφ)dx2, (2.7.7)

where f and φ are two second order tensor. and bar shows the conjugate of the

tensor.

23



Chapter 3

Rayleigh wave propagation in

monoclinic, orthorhombic,

tetragonal and cubic materials

In this chapter, analysis on propagation of Rayleigh is presented. In this paper[2],

velocity of Rayleigh wave in different materials is determined. The cases are ana-

lyzed for different elastic materials for propagation of Rayleigh wave. On one side,

Christoffel equations split into two parts resulting Rayleigh wave to polarize in the

x1x2-plane and a shear horizontal wave in the direction of x3. On other side, the

boundary conditions are also simplified, when some of the elastic constants van-

ish by applying conditions. The conditions and equations are satisfied by different

structures that crystals posses, which belong to tetragonal, hexagonal, cubic and or-

thorhombic crystal systems. The equation of velocity and mechanical displacements

are derived.
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3.1 Velocity equation for Rayleigh wave

The components of stress tensor Tij of elastic solids are defined in terms of compo-

nents of particle displacement ui and stiffness tensor components Cijkl given in Eq.

(2.7.5). The elastic stiffness components transform from CR
ijkl (where R represents

reference configuration ) to Cijkl which are obtained by using transformation from

XY Z to x1x2x3 frame. An elastic surface wave traveling in semi-infinite medium un-

bounded in directions x1 and x3, satisfies the equation of motion that is Eq. (2.7.6).

On the free surface x2 = 0, the mechanical boundary conditions are

Ti2 = Ci2kl
∂ul
∂xk

= 0, for i = {1, 2}. (3.1.1)

A component of particle displacement ui is expressed as

ui = 0di exp(−iqkx2) expi(ωt−kx1) with Im[q] < 0. (3.1.2)

The above equation defines a wave that propagates with phase velocity V = ω/k

along direction x1 and where k is wave number. Its amplitude decreases when move

deep down to the surface. Substituting Eq. (3.1.2) into equation of motion Eq.

(2.7.6) gives the following Christoffel equation.

(Γil − ξδil) 0dl = 0, with ξ = ρV 2, (3.1.3)

By varying i, l = {1, 2, 3} in Eq. (3.1.3), we get a matrix of Christoffel symbol

components and general formula for finding out each component is

Γil = Ci11l + (Ci12l + Ci21l) q + Ci22lq
2 (3.1.4)

The system of equation will split into two parts if Γ13 and Γ23 vanish, resulting

the Rayleigh wave to polarize into x1x2-plane and a shear horizontal wave that is

polarized along x3. This is the situation when the elastic constants with a single

index of that number are zero which can be shown by solving in detail.
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Figure 3.1: Half space with x2 > 0

For example if x3 is parallel to the axis Z as shown in Figure 3.1, the 6 constants

of elasticity having a single index of 3 will vanish to zero.

C1123 (C14) = 0, C2223 (C24) = 0, C1113 (C15) = 0,

C2213 (C25) = 0, C1223 (C64) = 0, C1213 (C65) = 0. (3.1.5)

Particularly, this case is when x3 is parallel to direct or inverse dyad axis of symme-

try. In this case, Eq. (3.1.1) at x2 = 0, gives

Ci211
∂u1

∂x1

+ Ci212

(
∂u1

∂x2

+
∂u2

∂x1

)
+ Ci222

∂u2

∂x2

= 0, for x2 = 0 (3.1.6)

It is identically satisfied when i = 3. The other two equations that is for i = 1, 2

can also be simplified if we assume

C1211 (C61) = 0 and C1222(C62) = 0. (3.1.7)

Particularly, this case occurs when x1 or x2 are parallel to inverse or the direct

symmetry axis. If we suppose that the condition(3.1.6) and (3.1.7) are satisfied,

then we attain the characteristic equation of system Eq. (3.1.3). For finding the

non trivial solution of Eq. (3.1.3), det[Γil − ξδil] = 0. Substituting the values of Γil

from Eq. (3.1.4) in Eq. (3.1.3).

(C11 − ξ)(C66 − ξ) + C22(C11 − ξ)q2 + C66(C66 − ξ)q2 + C66C22q
4 = 0. (3.1.8)
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Rearranging Eq. (3.1.8), we have

C22C66q
4 +

[
C22(C11 − ξ) + C66(C66 − ξ)− (C12 + C66)2

]
q2

+(C11 − ξ)(C66 − ξ) = 0. (3.1.9)

As this equation is bi-quadratic in q, we get the roots of this quadratic equation in

q2. We further discuss the cases of roots being real and imaginary. If roots of Eq.

(3.1.9) turn out to be real, they should be negative such that imaginary part of two

solutions qr is negative where r=1, 2. We may choose qr = −iχr where χr > 0.

If roots are complex, then are conjugate of each other, so the solutions are q2 = −q∗1
where q2 is the solution of one root and q∗1 is one solution of other root. Product of

q1q2 is negative and real in above cases and

P = q2
1q

2
2 =

(C11 − ξ)(C66 − ξ)
C22C66

, (3.1.10)

is positive, and ξ should not be between C66 and C11:

q1q2 = −
(

(C11 − ξ)(C66 − ξ)
C22C66

) 1
2

. (3.1.11)

with ξ /∈ [C66, C11]. The component 0drl of eigenvector relating to qr are shown and

given in Eq. (3.1.3) 0dr1 = 1 , 0dr2 = pr , 0dr3 = 0 with

pr = −C11 − ξ + C66q
2
r

(C12 + C66)qr
, r = 1, 2. (3.1.12)

Let the two components of displacement u1 and u2 are assumed as

u1 = Aur1 expiqkx2 expik(ωt−x1), (3.1.13)

u2 = Bur2 expiqkx2 expik(ωt−x1) . (3.1.14)

where 0dr1 = 1 and 0dr2 = pr. Using Eq. (3.1.13) and Eq. (3.1.14) in following

equations given as

µ

(
∂2u1

∂x2
1

+
∂2u1

∂x2
2

)
+ (λ+ µ)

∂

∂x1

(
∂u1

∂x1

+
∂u2

∂x2

)
= ρ

∂2u1

∂t2
, (3.1.15)

µ

(
∂2u2

∂x2
1

+
∂2u2

∂x2
2

)
+ (λ+ µ)

∂

∂x2

(
∂u1

∂x1

+
∂u2

∂x2

)
= ρ

∂2u2

∂t2
. (3.1.16)
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we get

A
[
c2
L − c2

T q
2 − v2

]
+ qBp

[
c2
L − c2

T

]
= 0. (3.1.17)

Aq(c2
L − c2

T )−Bp[c2
Lq

2 − c2
T + v2] = 0. (3.1.18)

where cL is longitudinal wave velocity, cT denotes transverse wave velocity and v is

the velocity of plane waves. From Eq. (3.1.17) and (3.1.18), for non trivia solution

of the system, we require∣∣∣∣∣∣(c
2
L − c2

T q
2 − v2) pq(c2

L − c2
T )

(c2
L − c2

T )q −p[c2
Lq

2 + c2
T − v2]

∣∣∣∣∣∣ = 0, (3.1.19)

which simplifies to

q4 + q2(
v2

c2
L

+
v2

c2
T

− 2) + (1− v2

c2
L

)(1− v2

c2
T

) = 0. (3.1.20)

In bi-quadratic equation Eq. (3.1.20), we can evaluate product and sum of roots as

Product of roots = (1− v2

c2
T

)(1− v2

c2
L

). (3.1.21)

Sum of roots = 2− v2

c2
L

− v2

c2
T

. (3.1.22)

Say

q2
1 = 1− v2

c2
L

, q2
2 = 1− v2

c2
T

, (3.1.23)

which implies

q1 =

√
1− v2

c2
L

, q2 =

√
1− v2

c2
T

. (3.1.24)

The linear combination of two displacements is here in the form of general solution

that were propagating at same velocity V = ω/k:

u1 =
[
A1e

−iq1kx2 + A2e
−iq2kx2

]
ei(ωt−kx1), (3.1.25)

u2 =
[
A1p1e

−iq1kx2 + A2p2e
−iq2kx2

]
ei(ωt−kx1), (3.1.26)
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where A1, A2 are weighing factors. The boundary condition (3.1.6) at x2 = 0 for

i = 1 is

C1211
∂u1

∂x1

+ C1212

(
∂u1

∂x2

+
∂u2

∂x1

)
+ C1222

∂u2

∂x2

= 0, (3.1.27)

From Eq. (3.1.7), we set C16 and C26 equal to zero. so we get,

C66

(
∂u1

∂x2

+
∂u2

∂x1

)
= 0. (3.1.28)

As C66 6= 0 so we take
∂u1

∂x2

+
∂u2

∂x1

= 0. (3.1.29)

Differentiating Eqs. (3.1.25) and (3.1.26) with respect to x2 and x1 respectively and

substitute them in Eq. (3.1.29), gives

(q1 + p1)A1 + (q2 + p2)A2 = 0. (3.1.30)

Putting i = 2 in boundary condition (3.1.6), we have

C21
∂u1

∂x1

+ C22
∂u2

∂x2

= 0 (3.1.31)

Using Eq. (3.1.25) and (3.1.26) in Eq. (3.1.31), we get

(C21 + p1q1C22)A1 + (C21 + p2q2C22)A2 = 0. (3.1.32)

Taking determinant of Eq. (3.1.30) and (3.1.32) equal to zero for a non trivial

solution, we get

(p1 − p2)(C12 − C22q1q2) + (q1 − q2)(C12 − C22p1p2) = 0. (3.1.33)

Substituting the values of p1 and p2 from Eq. (3.1.12) to deduce the expression of

p1 − p2 from Eq. (3.1.33), which is

p1 − p2 =
(q1 − q2)[C11 − ξ + C66q1q2]

(C12 + C66)q1q2

. (3.1.34)
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Now using the expression of p1 − p2 given in Eq. (3.1.34) in Eq. (3.1.33) yields

(C11 − ξ − C66q1q2)(C12 − C22q1q2) +

(C12 + C66)(C12q1q2 − C22p1p2q1q2) = 0. (3.1.35)

Expressing the factor C22p1p2q1q2 of Eq. (3.1.35) as a function of sum which is

S = q2
1 + q2

2 =
[C2

11 + 2C12C66 + C66ξ − C22(C11 − ξ)]
C22C66

, (3.1.36)

and the product

C22p1p2q1q2 = C22
(C11 − ξ + C66q

2
1)(C11 − ξ + C66q

2
2)

(C12 + C66)2q1q2

× q1q2,

= C11
(C12 + C66)2 − ξ(C12 + C66)2

(C12 + C66)2
,

= C11 − ξ. (3.1.37)

As shown in Eq. (3.1.11) that the product is negative so Eq. (3.1.35) will reduce as

follows

C66q
2
1q

2
2 −

(
C11 − ξ −

C2
12

C22

)
q1q2 +

C66

C22

= 0, (3.1.38)

Putting the value of q2
1q

2
2 from Eq. (3.1.10) in Eq. (3.1.38), we get

q1q2 = −ξ(ξ − C11)

C22(c− ξ)
. (3.1.39)

Using Eq. (3.1.37) for finding the value of p1p2, we have

p1p2 = 1− c

ξ
. (3.1.40)

where

c ≡ C11 −
C2

12

C22

>ξ. (3.1.41)

Equating both expressions of q1q2 from Eq. (3.1.39) and Eq. (3.1.11), we get

−

√
(C11 − ξ)(C66 − ξ)

C22C66

= −ξ(C11 − ξ)
C22(c− ξ)

, (3.1.42)
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Squaring Eq. (3.1.42) and after simplification, we define the expression as a function

of ξ that is f(ξ) as

f(ξ) ≡ ξ −
(
C22

C66

C66 − ξ
C11 − ξ

) 1
2

(c− ξ) = 0. (3.1.43)

It is noted that when we set ξ = 0, f(ξ) is negative since C11C22>C
2
12 . When

ξ = ξm ≡ min[C66, c], f(ξ) = ξm is positive. There will always be a root ξR such

that

0<ξR = ρV 2
R<ξm = min[C66, c]. (3.1.44)

where VR is the velocity of Rayleigh wave and this is only solution when ξ is greater

than C66 and C11, f(ξ) is always positive. The conditions shown in Eq. (3.1.44) for

ξR are satisfied, the velocity equation of Rayleigh wave can be written as

2C22C66ξ(C11 − ξ) = (C66 − ξ)[C22(C11 − ξ)− C2
12]2. (3.1.45)

For cubic material, when we set C11 = C22, it include two cases which are satisfied

by [7]. It is worthy to look for different configurations.

3.2 Configurations and compositions satisfying re-

quired conditions

Inclination and disposition of direction of propagation x1 and of normal x3 to sagittal

plane regarding crystallographic axes X,Y,Z for which the preceding analysis is valid

which is now to be decided and concluded. These configurations must satisfy the

conditions (3.1.5) and (3.1.7) that are imposed on elastic constants. The crystals

that belong to triclinic system do not satisfy these configurations because of the

availability of three Eulerian angles only that are not enough. The solid must possess

at least monoclinic symmetry, so that if one of the axis xj is parallel to inverse or
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direct binary axis of symmetry, for example if it is Z axis, six elastic constants with

odd number of indices j will be identically zero whatever the disposition of other

two axis is. We examine the cases one by one where we start from x3 then x1or (x2)

is parallel to Z.

3.2.1 The x3 axis is parallel to crystallographic Z-axis

As Z is the binary (direct or inverse) axis of symmetry that can be seen in Figure 3.2,

the equations in (3.1.5) are satisfied whatever angle φ is taken. Here φ is describing

the direction of propagation of wave x1 in XY-plane.

Figure 3.2: Disposition of propagation direction x1and of normal x3 to the sagittal

plane with respect to crystallographic axes X, Y, Z.
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The matrix of rotation for Figure 3.2 when x3 is parallel to Z is denoted as

α =


cosφ sinφ 0

− sinφ cosφ 0

0 0 1

 . (3.2.1)

Now the six elastic constants with single index of 3 will be zero and the other two

elastic constants in condition (3.1.5) that are C16 and C26 should be zero that are

further shown in detail.

C16 = αp1α
q
1α

r
1α

s
2C

R
pqrs = 0, (3.2.2)

C26 = αp2α
q
2α

r
1α

s
2C

R
pqrs = 0. (3.2.3)

As we know that α3
1 and α

3
2 are zero and the constants CR

pqrs without index 3 will

appear in expansion. Expanding p, q, r, s from 1 to 3 for Eq. (3.2.2) and Eq. (3.2.3),

we get following expressions.

(−CR
11 cos2 φ+ CR

22 sin2 φ)
sin 2φ

2
+ (CR

66 +
CR

12

2
)
sin 4φ

2
+ (CR

16 cos2 φ+ CR
26 sin2 φ)

cos 2φ− CR
16 − CR

26

2
sin 2φ = 0, (3.2.4)

(−CR
11 sin2 φ+ CR

22 cos2 φ)
sin 2φ

2
− (CR

66 +
CR

12

2
)
sin 4φ

2
+ (CR

16 sin2 φ+ CR
26 cos2 φ)

cos 2φ− CR
16 − CR

26

2
sin2 2φ = 0. (3.2.5)

The difference and the sum of these two equations shows that we can simultaneously

satisfy them only in following cases:

(i) CR
16 = CR

26 = 0, then the angle φ is 0 or π
2
.

(ii) CR
22 = CR

11 and CR
26 = −CR

16, then the equations Eq. (3.2.4) and Eq. (3.2.5)

reduce to single equation. Subtracting Eq. (3.2.4) and (3.2.5) , we get

(
−CR

11 sin2 φ+ CR
22 cos2 φ

) sin 2φ

2
−
(
CR

66 +
CR

12

2

)
sin 4φ

2
+ (CR

16 sin2 φ+

CR
26 cos2 φ) cos 2φ− CR

16 − CR
26

2
sin2 2φ = 0, (3.2.6)
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Simplifying Eq. (3.2.6), we get

γ sin 4φ+ 2 cos2 4φ = 0, (3.2.7)

where

γ = CR
66 −

(CR
11 − CR

12)

2
. (3.2.8)

The case (i) relates to crystals that belong to orthorhombic system which consists

of three perpendicular binary axis. The direction of wave x1 is either parallel to X

or Y. The general stiffness tensor matrix of orthorhombic system is shown in Eq.

(2.6.6).

The case (ii) relates to the crystals that belongs to tetragonal, hexagonal and cubic

system. A single matrix is built by taking into account the symmetries of all three

crystal systems. Final Matrix of above 3 is

CR
αβ =



CR
11 CR

12 CR
13 0 0 CR

16

CR
12 CR

11 CR
13 0 0 −CR

16

CR
13 CR

13 CR
33 0 0 0

0 0 0 CR
44 0 0

0 0 0 0 CR
44 0

CR
16 −CR

16 0 0 0 CR
66


. (3.2.9)

3.2.2 The x1 or x2 axis is parallel to crystallographic Z- axis

When xj for (j= 1 or 2) is either direct or inverse symmetry axis, the constants

possessing odd number of indices for j are zero. Denoting the third index with k

which is different from 3 and j that is k = 2 if j = 1 and k = 1 if j = 2, the result

applies to Cjjjk and Cjkkk, that is to the constants without any index 3 and to the

constants having single index of 3 in condition (3.1.5) that are

Cjkk3, Ckkj3 and Cjjj3 = 0. (3.2.10)
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Thus the condition reduces to cancellation of two constants with index 3 and

with two indices of j i.e. Cjjk3 and Cjkj3 and the constant without any single index

of j which is Ckkk3. Figure 3.3 and 3.4 shows the x1 and x2 axis when parallel to Z

axis.

Figure 3.3: Disposition of propagation direction x1and of normal x3 to the sagittal

plane with respect to crystallographic axes X, Y, Z.

Figure 3.4: [2] Disposition of propagation direction x1and of normal x3 to the sagittal

plane with respect to crystallographic axes X, Y, Z.
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Expressing a matrix β of rotation φ around xj ‖ Z.

β =


β1
j = 0 β2

j = 0 β3
j = (−1)j+1

β1
k = cosφ β2

k = sinφ β3
k = 0

β1
3 = − sinφ β2

3 = 0 β3
3 = 0

 . (3.2.11)

Cjjk3 = β1
kβ

1
3C

R
31 + β2

kβ
3
3C

R
32 + (β1

kβ
2
3 + β2

kβ
1
3)CR

36,

which gives [
(CR

32 − CR
31)/2

]
sin 2φ+ CR

36 cos 2φ = 0, (3.2.12)

Cjkj3 = β1
kβ

1
3C

R
55 + β2

kβ
2
3C

R
44 + (β1

kβ
2
3 + β2

kβ
1
3)CR

54,

which gives [
CR

44 − CR
55

2

]
sin 2φ+ CR

54 cos 2φ = 0. (3.2.13)

Conditions (3.2.12) and (3.2.13) are compatible in the following two cases only

(i) CR
36 = CR

54 = 0, the angle is then 0 or π/2. It is case of crystals from

orthorhombic system.

(ii) CR
32 = CR

31 = 0 and CR
55 = CR

44 = 0. This is case of crystals belonging

to tetragonal, hexagonal and cubic systems, then CR
36 and CR

54 are also zero so that

equalities (3.2.12) and (3.2.13) are met whatever φ is. As βpk = αp1 and βs3 = αs2

whatever p and s, the last condition

Ckkk3 = βpkβ
q
kβ

r
kβ

s
3C

R
pqrs = 0. (3.2.14)

This condition is identical to Eq. (3.2.2) which is expanded and shown in Eq. (3.2.4).

Thus, for the configuration (3.3) and (3.4), there is a single equation for φ that is Eq.

(3.2.4). The crystals that belong to orthorhombic system that is CR
26 = CR

16 = 0, the

only two possible angles are φ = 0 or π/2. The solutions for the tetragonal crystals
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system evaluated by Eq.(3.2.7)

φo = −1

4
arctan

(
2CR

16

γ

)
(3.2.15)

and (3.2.16)

φ1 = φo +
π

4
.

For crystals of hexagonal system that is CR
16 = 0 and CR

16 =
(CR

11−CR
12)

2
so the Eq.

(3.2.7) is verified whatever the φ is.
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Chapter 4

Explicit secular equation of

Rayleigh waves in monoclinic

elastic crystals

In this chapter, the work is on monoclinic elastic crystals. The stiffness matrix for

monoclinic is already defined in Chapter 2. The notations for axis that are going to

be used are x1, x2 and x3 and the plane of material symmetry is supposed to be at

x3 = 0. The system of equations in terms of stress αij, strain Sij and elastic stiffness

components Cij are given

T11 = C11S11 + C12S22 + C13S33 + 2C16S12,

T22 = C12S11 + C22S22 + C23S33 + 2C26S12,

T33 = C13S11 + C22S22 + C36S33 + 2C36S12,

T23 = 2C44S23 + 2C45S31, (4.0.1)

T31 = 2C45S23 + 2C55S31,

T12 = C16S11 + C26S22 + C36S33 + 2C66S12,
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Here, Sij’s are the strain components which are defined in Eq. (2.3.2). The equation

of motion is given by Eq. (2.7.4) with the body forces Bi which are absent here.

4.1 Surface waves

In this section, we consider the surface wave propagation in a monoclinic elastic

half space. The amplitude of displacement that is associated is supposed to vary

sinusoidally with time ”t” in propagation direction x1, but variation in x2 is not

defined explicitly. Thus we write the equation of displacement components as

uj(x1, x2, x3, t) = Uj(x2)eik(x1−vt), j = {1, 2, 3}. (4.1.1)

Here U ’s are the amplitudes that depend on x2 and v is the speed and k is wave

number. By examining these waves, it is seen that the constant phase planes are

perpendicular to x1 -axis. The planes having constant amplitude are perpendicular

to x2 - axis. The relation between stress and strain in Eq. (4.0.1) is reduced by

using Eq. (4.1.1) as

t11 = C12U
′
2 + iC11U1 + C16(U ′1 + iU2),

t22 = C22U
′
2 + iC12U1 + C26(U ′1 + iU2),

t33 = C23U
′
2 + iC13U1 + C36(U ′1 + iU2), (4.1.2)

t32 = C44U
′
3 + iC45U3, t13 = C45U

′
3 + iC55U3,

t12 = C26U
′
2 + iC16U1 + C66(U ′1 + iU2),

where tij’s are defined as

Tij(x1, x2, x3, t) = ktij(x2)eik(x1−vt), i, j = {1, 2, 3}. (4.1.3)

and prime is the differentiation of displacement components with kx2. At x2 = 0,

we consider a free surface that is free of tractions and also displacement vanishes as
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x2 moves to infinity. The boundary conditions of problem are modeled as

ti2(0) = 0, Ui(∞) = 0, i = {1, 2, 3}. (4.1.4)

The equation of motion (2.7.6) reduced in terms of Ui and tij as below

it11 + t′12 = −ρv2U1, (4.1.5)

t′22 + it12 = −ρv2, (4.1.6)

t′32 + it13 = −ρv2U3. (4.1.7)

A sextic formalism can be developed at this moment for displacement components

U1, U2, U3 and traction components t12, t22, t32. However, it turns out that one of

these traction components is identically zero, as is now proved.

4.2 Plane stress

It is very well known from [10] and [11] that for the two dimensional deformation

of monoclinic crystal with the axis of symmetry at x3 = 0, u1 and u2 are decoupled

from displacement component u3. Putting u3 = 0, the stress strain relation in Eq.

(4.1.2) follows that t13 = t32 = 0. The alternate way to prove this result is also given

below.

The two differential equations of first order for U3 and t32 are obtained by using Eq.

(4.1.2)4, (4.1.2)5 and (4.1.7)

t32 = iC45U3 + C44U
′
3, t′32 = (C55 − ρv2)U3 − iC45U

′
3. (4.2.1)

The above equations (4.2.1) may be inverted to give U3 and U ′3 as

(C44C55 − C2
45 − C44ρv

2)U ′3 = (C55 − ρv2)t32 − iC45t
′
32. (4.2.2)

(C44C55 − C2
45 − C44ρv

2)U3 = iC45t32 + C44t
′
32. (4.2.3)
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Differentiating Eq. (4.2.3) with respect to kx2 and then subtracting the new expres-

sion from Eq. (4.2.2) gives a second order differential equation in t32 that is

C44t
′′
32 + 2iC45t

′
32 − (C55 − ρv2)t32 = 0. (4.2.4)

Equation (4.1.2)5 and the boundary conditions (4.1.4) imply that the stress tensor

component t32 satisfies the conditions, that are, t32(0) = t32(∞) = 0. Equation

(4.2.4) is the boundary value problem with these conditions and the solution of this

boundary value problem is trivial. Consequently

t32(x2) = 0, for all x2. (4.2.5)

And now it is clear that in monoclinic crystals, as far as the surface wave propa-

gation is concerned with plane of symmetry at x3 = 0, the generalized plain strain

transforms to plane stress.

4.3 Equations of motion

Equations of motion will be derived here in terms of U1, U2, t1 and t2. First,

equations of motion are written as a system of four differential equations of first order

and then these equations are written as a system of two second order differential

equations for the tractions.

Using the stress-strain relation (4.1.2) and equations of motion (4.1.5)-(4.1.7) for

displacement and traction components defined as

t1 = t12, t2 = t22, (4.3.1)

The system is as followsu′

t′

 =

 iN1 N2

−(N3 +X1) iNT
1

u

t

 , (4.3.2)
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where, in this system u = [U1, U2]T , t = [t1, t2]Tand X = ρv2. Here, N1, N2 and

N3 are 2× 2 matrices. These matrices are the submatrices of elasticity fundamental

matrixN which in introduced by Ingebrigtsen and Tonning [12]. These 2×2 matrices

are represented as

−N1 =

r6 1

r2 0

 , N2 =

 s22 −s26

−s26 s66

 = NT
2 ,

−N3 =

η 0

0 0

 = −NT
3 , N3 +X1 =

−η +X 0

0 X

 , (4.3.3)

The quantities r2, r6, s22, s66, s26 and η are expressed in the from of elastic stiffness

constants as

∆ =

∣∣∣∣∣∣C22 C26

C26 C66

∣∣∣∣∣∣ = C22C66 − C2
26,

r2 =
1

∆
(C12C66 − C16C26), r6 =

1

∆
(C22C16 − C12C26),

sij =
1

∆
Cij (i, j = 2, 6), (4.3.4)

η =
1

∆

∣∣∣∣∣∣∣∣∣
C11 C12 C16

C12 C22 C26

C16 C26 C66

∣∣∣∣∣∣∣∣∣ ,
= C11 −

C66C
2
12 + C22C

2
16 − 2C12C16C26

C22C66 − C2
26

.

Throughout this problem, it is supposed that matrix (N3 + X1) is not singular,

which depicts that surface wave travels at the speed different from that is given by

ρv2 = η. If this is so, the matrix becomes singular, so for this reason, it is assumed

to be non singular. From this supposition, the vector line of the system Eq. (4.3.2

) that is second in number yields an expression that is

u = i(N3 +X1)−1NT
1 t− (N3 +X1)−1t′. (4.3.5)
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Now, differentiating the first vector line of Eq. (4.3.2), we get

u′′ = iN1u
′ +N2t

′, (4.3.6)

Putting the value of u′ and t′ from Eq. (4.3.2) in Eq. (4.3.6), we get

u′′ = [−N1N1 −N2(N3 +X1)]u + i[N1N2 +NT
1 N2]t. (4.3.7)

Now taking the second derivative of Eq. (4.3.2)2 gives

t′′ = −i[N1(N3 +X1) +NT
1 (N3 +X1)]u + [−(N3 +X1)N2 −NT

1 N
T
1 ]t. (4.3.8)

The two equations (4.3.7) and (4.3.8) can be written in matrix form asu′′

t′′

 =

 −N1N1 −N2(N3 +X1) i[N1N2 +NT
1 N2]

−i[N1(N3 +X1) +NT
1 (N3 +X1)] − (N3 +X1)N2 −NT

1 N
T
1

u

t

 .
(4.3.9)

Using Eq. (4.3.5) in the second vector line of Eq. (4.3.9) yields an expression

t′′ = iN1t
′ +N1N

T
1 t + iNT

1 t′ −N2(N3 +X1)t, (4.3.10)

Diving the whole expression with −(N3 +X1), we get

−(N3 +X1)−1t′′ = i[−N1(N3 +X1)−1 −NT
1 (N3 +X1)−1]t′ +

[N2 −N1(N3 +X1)−1NT
1 ]t, (4.3.11)

Naming the coefficients of t′′, t′, t as α, β and γ respectively which are 2 × 2

symmetric matrices, given by

α = −(N3 +X1)−1,

β = −N1(N3 +X1)−1 − (N3 +X1)−1NT
1 , (4.3.12)

γ = N2 −N1(N3 +X1)−1NT
1 .

Equation (4.3.11) in terms of α,β,γ is written as

αikt
′′
k − iβikt′k − γiktk = 0. (4.3.13)
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Showing the values of α,β,γ components, we Equations (4.3.3) and (refp316 ) which

gives

α =

 1
η−X 0

0 −1
X

 , β =

 −2r6
η−X

1
X
− r2

η−X
1
X
− r2

η−X 0

 ,
γ =

s22 +
γ26
η−X −

1
X

r2r6
η−X − s26

r2r6
η−X − s26 s66 +

r22
η−X

 . (4.3.14)

It is favorable to work with differential equation for traction components rather

than displacement components due to the simple and easily calculated boundary

conditions from Eqs. (4.1.2), (4.1.4) and (4.3.1) as

ti(0) = ti(∞) = 0, {i = 1, 2.} (4.3.15)

4.4 Secular equation for Rayleigh wave in mono-

clinic elastic half space

For finding the secular equation in monoclinic elastic half space, we use method of

first integral [5] on Eq. (4.3.13). Applying the definition of inner product using Eq.

(2.7.7). Multiplying Eq. (4.3.13) by itj and applying the definition of inner product

yields the form

αik(t
′′
k, itj)− iβik(t′k, itj)− γik(tk, itj) = 0. (4.4.1)

From Eq. (2.7.7), it can be shown that inner product satisfies

(u, cw) = c̄(u,w), (4.4.2)

where c is the constant which comes out of integral with a conjugate as c̄. Using

Eq. (4.4.2) in Eq. (4.4.1), we get

αik(t
′′
k, itj)− i(̄i)βik(t′k, tj)− γik(tk, itj) = 0. (4.4.3)
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Applying the definition of inner product suggested by [5]

αik

[∫ ∞
0

(−it′′ktj + tjit′′k)dx2

]
+ βik

[∫ ∞
0

−(t′ktj + tj t′k)dx2

]
+ γik

[∫ ∞
0

(+tkitj − itj tk)dx2

]
= 0. (4.4.4)

It gives

αikDkj + βikEkj + γikFkj = 0, (4.4.5)

where the 2×2 matrices D, E, F. and the components Dkj, Ekj and Fkj are defined

as

Dkj = (it′′k, tj), Ekj = (t′k, tj), Fkj = (tk, itj). (4.4.6)

It is convenient to check the property of antisymmetry of matrix D when we write

Dkj +Djk with integration by parts.

Dkj +Djk = (it′′k, tj) + (it′′j , tk), (4.4.7)

Using the definition of inner product and by putting the values of boundary condi-

tions from Eq. (4.3.15) yields

Dkj +Djk = −i
∫ ∞

0

t′jt
′
kdx2 + i

∫ ∞
0

t′jt
′
kdx2 − i

∫ ∞
0

t′kt
′
jdx2

+i

∫ ∞
0

t′kt
′
jdx2, (4.4.8)

Dkj +Djk = 0. (4.4.9)

From Eq. (4.4.8), it can be seen that the terms cancel out and the property of

antisymmetry is satisfied. Similarly

Ekj + Ejk = 0, (4.4.10)

whic shows that E is also antisymmetric.

Likewise to check the antisymmetric property for the components of F, we again

apply the property of inner product on its components, and get

Fkj + Fjk = (tk, itj) + (tj, itk) = 0, (4.4.11)
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So, now D,E,F can be written in form of

D =

 0 D

−D 0

 , E =

 0 E

−E 0

 , F =

 0 F

−F 0

 . (4.4.12)

Now, Eq. (4.4.5) gives the system that consists of three linearly independent equa-

tions having three unknowns that are D,E, F which re yet to be determined. The

system is as follows

α11D + β11E + γ11F = 0,

α12D + β12E + γ12F = 0, (4.4.13)

α22D + β22E + γ22F = 0.

The system is homogeneous and linear algebraic that gives nontrivial solutions for

D,E, F only in the case when determinant is zero which happens when α12 = β22 =

0,

α11(β12γ22 − γ12β22)− β11(α12γ22 − γ12α22) + γ11(α12β22 − α22β12) = 0, (4.4.14)

Simplifying Eq. (4.4.14), we get

β12(α11γ22 − α22γ11) = −α22β11γ12. (4.4.15)

Equivalently, if the expressions written in Eq.(4.3.14) are used in Eq. (4.4.15) and

further multiply it by X3(η −X)3, the expression for secular equation is calculated

[η − (1 + r2)X] (η −X)
[
(η −X)(s22X − 1) + r2

6X
]

+X2
[
(η −X)s66 + r2

2

]
= 2r6X

2(η −X) [(η −X)s26 − r2r6] . (4.4.16)

This is the secular equation that is derived explicitly as quartic in X = ρv2 having

coefficients expressed in terms of elastic stiffness constants from Eq. (4.3.4).

Particularly, considering orthorhombic case for which we take C16 = C26 = C45 = 0.
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The coefficients in Eq. (4.3.4) reduce to

r6 = 0, r2 =
C12

C22

, s22 =
1

C66

,

s26 = 0, s66 =
1

C22

, η = C11 −
C2

12

C22

. (4.4.17)

The right hand-side of Eq. (4.4.16) becomes zero while the left side is transformed

and the secular equation for orthorhombic is as follows

[η − (1 + r2)X]
{

(η −X)2(s22X − 1) +X2
[
(η −X)s66 + r2

2

]}
= 0. (4.4.18)

In Eq. (4.4.18), the nullity of first factor corresponds to β12 = 0 that is

η − (1 + r2)X = 0, (4.4.19)

which implies

β12 =
1

X
− r2

η − x
= 0, (4.4.20)

As now we are dealing with orthorhombic case so some of the entities in Eq. (4.3.4)

reduce to zero. These are α12 = γ12 = β11 = β22 = 0 and then equations of motion

(4.3.13) decouple into

α11t
′′
1 + γ11t1 = 0, α22t

′′
2 + γ22t2 = 0. (4.4.21)

and its solutions satisfying the boundary conditions (4.3.15) are the trivial ones. The

nullity of later factor in Eq. (4.4.18) gives us the secular equation of orthorhombic

crystals that is as(
C11 −

C2
12

C22

− ρv2

)2(
ρv2

C66

− 1

)
+ (ρv2)2

[(
C11 −

C2
12

C22

− ρv2

)(
1

C22

)
+
C2

12

C2
22

]
= 0,

Dividing Eq. (4.4.22) by C2
66 on both sides, we get(

C22

C11

)(
1− ρv2

C66

)(
C11C22 − C2

12

C22C66

− ρv2

C66

)2

−
(
ρv2

C66

)2(
1− ρv2

C11

)
= 0. (4.4.22)

47



Eq. (4.4.22) corresponds to a well-studied secular equation for the surface waves in

orthorhombic crystals. Concrete examples are given in Table (4.1). Eq. (4.4.16)

has either 2 or 4 positive real roots, out of which there is only one that corresponds

to subsonic wave, while other roots are compared with homogeneous body wave

that is propagating in x1 direction of material axis. For this body wave, functions

Ui(x2), ti(x2), (i = 1, 2), are constant, and it implies that determinant of 4 × 4

matrix in Eq. (4.3.2) is zero, which is the condition from which the body wave

speed can be found. For instance, η is of order 3 × 107 for tin fluoride, the secular

equation (4.4.16) has roots 1339, 2350, 2513, and 3403. The slowest body wave in x1

direction travels at 1504 ms−1; hence a subsonic surface wave travels in tin fluoride

at 1339 ms−1.

Table 4.1: Values of relevant density (kgm−3), elastic stiffnesses (GPa) and surface

wave speed (ms−1) for 12 monoclinic crystals.

Material Density C11 C22 C12 C16 C26 C66 v

aegirite-augite 216 156 66 19 25 46.5 3420 3382

augite 218 182 72 25 20 51.1 3320 3615

diallage 211 154 37 12 15 62.2 3300 4000

diopside 238 204 88 -34 -19 58.8 3310 3799

diphenyl 14.6 5.95 2.88 2.02 0.40 2.26 1114 1276

epidote 202 212 45 -14.3 0 43.2 3400 3409

gypsum 50.2 94.5 28.2 -7.5 -11.0 32.4 2310 3011

hornblende 192 116 61 10 4 31.8 3120 3049

microcline 122 66 26 -13 -3 23.8 2561 2816

oligoclase 124 81 54 -7 16 27.4 2638 2413

tartaric acid 46.5 93 36.7 -0.4 -12.0 8.20 1760 1756

tin fluoride 33.6 47.9 5.3 6.5 -5.1 12.9 4875 1339
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Velocities for 12 monoclinic material are re-calculated through MATHEMATICA

using equation (4.4.16).

4.5 Mathematica script to calculate Rayleigh wave

speed in monoclinic materials

From Table 4.1. the values of elastic stiffness constants and ρ are taken and recalcu-

lated in detail using Mathematica for tartaric acid. As discussed in section 4.4, we

get 4 positive roots and here the smallest root is considered as a Rayleigh velocity.

The four positive roots for tartaric acid are 1755, 3657, 4282 and 4282. A subsonic

surface wave in tartaric acid travels at 1755m/s. On next page, a Mathematica file

4.5 can be seen where first of all, the coefficients and expressions r2, r6, s22, s26, s66, η

and χ = ρv2 in Eq. (4.3.4) are calculated and then put in Eq. (4.4.16) to find the

possible roots.
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In[31]:= c[11] = 46.5 * 10^9

c[22] = 93 * 10^9

c[12] = 36.7 * 10^9

c[16] = -0.4 * 10^9

c[26] = -12.0 * 10^9

c[66] = 8.20 * 10^9

p = 1760

g = c[22] c[66] - c[26]^2

Out[31]= 4.65 × 1010

Out[32]= 93000000 000

Out[33]= 3.67 × 1010

Out[34]= -4. × 108

Out[35]= -1.2 × 1010

Out[36]= 8.2 × 109

Out[37]= 1760

Out[38]= 6.186 × 1020

In[39]:= r[6] = c[22] c[16] - c[12] c[26]  g

Out[39]= 0.651794

In[40]:= r[2] = c[12] c[66] - c[16] c[26]  g

Out[40]= 0.478726

In[43]:= s[26] = c[26]  g

Out[43]= -1.93986 × 10-11

In[44]:= s[22] = c[22]  g

Out[44]= 1.50339 × 10-10

In[45]:= s[66] = c[66]  g

Out[45]= 1.32557 × 10-11

In[46]:= n = c[11] c[22] c[66] - c[11] c[26]^2 -

c[66] c[12]^2 - c[22] c[16]^2 + 2 c[12] c[16] c[26]  g

Out[46]= 2.91915 × 1010

In[47]:= Rootsn - 1 + r[2] p v^2 n - p v^2 n - p v^2 s[22] p v^2 - 1 + r[6]^2 p v^2 +

p v^2^2 n - p v^2 s[66] + r[2]^2 ⩵

2 r[6] p v^2^2 n - p v^2 n - p v^2 s[26] - r[2] r[6], v

Out[47]= v ⩵ 1755.77 || v ⩵ -1755.77 || v ⩵ 3657.42 || v ⩵ -3657.42 || v ⩵ 4282.75 - 694.332 ⅈ ||

v ⩵ -4282.75 + 694.332 ⅈ || v ⩵ 4282.75 + 694.332 ⅈ || v ⩵ -4282.75 - 694.332 ⅈ



Chapter 5

Surface waves in orthotropic

materials

In this chapter, the focus and aim is to derive the secular equation for surface wave

propagating in orthotropic materials by the method of first integral. The motivation

is to find the velocity equation primarily using the method suggested in [5] having

traction components as variable.

5.1 Basic equations for orthotropic material

Some basic equations are recalled here. In Chaper 2, the stiffness matrix for or-

thotropic material is given in Eq. (2.6.6). The system of equations consisting of

stress tensor Tij, strain tensors Sij and also the additional term of (isotropic) pres-

sure p are as follows

T11 = −p+ C11S11 + C12S22 + C13S33,

T22 = −p+ C12S11 + C22S22 + C23S33, (5.1.1)

T33 = −p+ C13S11 + C23S22 + C33S33,

T32 = 2C44S32, T13 = 2C55S31, T12 = 2C66S12,
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where Cijkl are the elastic components. The strain components Sij are expressed

in terms of displacement components defined in Eq. (2.3.2). The incompressibility

constraints are expressed as

u1,1 + u2,2 + u3,3 = 0. (5.1.2)

Th author also noted that for plane strain, the strain energy function density is

positive definite when the following inequalities are satisfied.

C66 ≥ 0, C11 + C22 − 2C12 ≥ 0. (5.1.3)

For a semi-infinite body that is made up of incompressible orthotropic material, we

establish equations of motion. The modeling of surface wave follows that of [5].

Surface waves propagating with speed v, wave number k, and the pressure p and

displacement components are of the form

[uj(x1, x2, x3), p(x1, x2, x3)] = [Uj(x2), kP (x2)] expik(x1−vt), j = {1, 2, 3}. (5.1.4)

for here U ′s and P are the unknown functions of x2 alone. The waves posses the

constant phase planes that are orthogonal to x1− axis and constant amplitude planes

that are orthogonal to x2−axis. We use Eq. (4.1.3) and Eq. (5.1.4) in Eq. (5.1.1)

to reduce it into the following system of equations.

t11 = −P + iC11U1 + C12U
′
2,

t22 = −P + iC12U1 + C22U
′
2,

t33 = −P + iC13U1 + C23U
′
2, (5.1.5)

t32 = C44U
′
3, t13 = C55U3, t12 = C66 (U ′1 + iU2) ,

where tij’s are stress tensors. Surface x2 = 0 is supposed to be free of tractions

and also the pressure and mechanical displacement components vanish as x2 goes

to infinity. This condition leads to the following boundary conditions.

ti = ti2(0) = 0, Ui(∞) = 0 (i = 1, 2, 3), P (∞) = 0. (5.1.6)
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Incompressibility constraints in Eq. (5.1.2) and equations of motion (2.7.4) in terms

of t′s and U ′s is expressed as

it11 + t′12 = −ρv2U1, it12 + t′22 = −ρv2U2, (5.1.7)

it13 + t′32 = −ρv2U3, iU1 + U ′2 = 0. (5.1.8)

A classical approach can be used by substituting in last equations that is, the ex-

pressions that are obtained earlier in Eq. (5.1.5) for stress tensor components, leads

to a system of four differential equations of second order for U1, U2, U3, P , which

are to be determined. Here, instead, Stroh formalism [10] is used for deriving the

six first order differential equations by assuming the traction on surface x2 = 0.

Further, the notation for traction components is used that was suggested for earlier

problem which is mentioned in Eq. (4.3.1). Using Eqs. (5.1.5) - (5.1.8), the system

is

U ′1 = −iU2 + (
1

C66

)t1, −iU1 = U ′2, U ′3 = (
1

C44

)t3,

t′1 = (C11 + C22 − 2C12 − ρv2)U1 − it2, (5.1.9)

t′2 = −ρv2U2 − it1, t′3 = (C55 − ρv2)U3.

Now Eqs. (5.1.9)4−6 are differentiated with respect to kx2 which give

t′′1 = −i(C11 + C22 − 2C12 − ρv2)U ′1 − it′2,

t′′2 = −ρv2U ′2 − it′1, (5.1.10)

t′′3 = (C55 − ρv2)U ′3.

Substitute U ′1, U ′2 and U ′3 from Eq. (5.1.9)1−3 to convert Eq. (5.1.10) in terms of

tj’s and its derivatives, we have

(ρv2)t′′1 − i(C11 + C22 − 2C12 − 2ρv2)t′2 + (C11 + C22 − 2C12 − ρv2)

(
1− ρv2

C66

)
t1 = 0, (5.1.11)

(C11 + C22 − 2C12 − ρv2)t′′2 + i(C11 + C22 − 2C12 − 2ρv2)t′1 + ρv2t2 = 0, (5.1.12)

C44t
′′
3 − (C55 − ρv2)t3 = 0, (5.1.13)
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subject to the boundary conditions

tj(0) = tj(∞) = 0, j = {1, 2, 3}. (5.1.14)

It can be seen that Eq. (5.1.13) is already decoupled so it can easily be solved.

Using the boundary condition (5.1.14) for j = 3 with Eq. (5.1.13), it is concluded

that

t3(x2) = 0, for all x2. (5.1.15)

Now we are left with two second order coupled differential equations. To solve these

equations we use method of first integral as suggested by [5].

5.2 Secular equation for Rayleigh wave in orthotropic

incompressible material

Mozhaev [5] used the method of first integral on a system of two second order

differential equations on two non zero components of mechanical displacement but

here, the method is used non zero traction components t1, t2. The coefficients of

Eqs. (5.1.11, 5.1.12) are reduced to

ξt′′1 − i(δ − 2ξ)t′2 + (δ − ξ)(1− ξ)t1 = 0,

(δ − ξ)t′′2 + i(δ − 2ξ)t′1 + ξt2 = 0, (5.2.1)

where δ and ξ are defined as

δ =
(C11 + C22 − 2C12)

C66

, ξ =
(ρv2)

C66

. (5.2.2)

Now multiply Eq. (5.2.1)1 by t′1 and Eq. (5.2.1)2 by t′2 and then integrate from

x2 = 0 to x2 =∞, we get

ξ

∫ ∞
0

t′1t
′′
1dx2 − i(δ − 2ξ)

∫ ∞
0

t′1t
′
2dx2 + (δ − ξ)(1− ξ)

∫ ∞
0

t′1t1dx2 = 0,

(δ − ξ)
∫ ∞

0

t′2t
′′
2dx2 + i(δ − 2ξ)

∫ ∞
0

t′2t
′
1 + ξ

∫ ∞
0

t′2t2dx2 = 0, (5.2.3)
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Applying the boundary conditions while solving yields

ξ[t′1(0)]2 + 2i(δ − 2ξ)

∫
t′1t
′
2 = 0,

(δ − ξ)[t′2(0)]2 − 2i(δ − 2ξ)

∫
t′1t
′
2 = 0. (5.2.4)

Adding the above equations (5.2.4)1 and (5.2.4)2 gives

ξt′1(0)2 + (δ − ξ)t′2(0)2 = 0. (5.2.5)

Similarly, multiply Eq. (5.2.1)1 by ξt′1 + i(δ − 2ξ)t2 and Eq. (5.2.1)2 by (δ − ξ)t′2 −

i(δ − 2ξ)t1 and then integrate from x2 = 0 to x2 =∞, we get

ξ2[t′1(0)]2 + 2i(δ − 2ξ)(δ − ξ)(1− ξ)
∫
t1t2 = 0,

(δ − ξ)2[t′2(0)]2 − 2i(δ − 2ξ)ξ

∫
t1t2 = 0. (5.2.6)

so that

ξ3[t′1(0)]2 + (δ − ξ)3(1− ξ)[t′2(0)]2 = 0. (5.2.7)

Now Eq. (5.2.5) and Eq. (5.2.7) provide homogeneous system for unknowns t′1(0)2

and t′2(0)2 and for non trivial solution, its determinant must be zero

ξ(δ − ξ)[(δ − ξ)2(1− ξ)− ξ2] = 0. (5.2.8)

The factor ξ(δ−ξ) is equal to zero and gives the trivial answer so the secular equation

from the second factor is evaluated which is

(δ − ξ)2(1− ξ) = ξ2. (5.2.9)

Substituting back the values of ξ and δ, the secular equation becomes

(C11 + C22 − 2C12 − ρv2)2(C66 − ρv2) = C66(ρv2)2. (5.2.10)

Equation (5.2.10) represents the explicit derivation of a secular equation for the

subsonic surface wave that is propagating in semi-infinite body which is composed
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of orthotropic incompressible elastic material. It is significant to mention that this

result can also be used for many other types of anisotropy: Royer and Dieulesaint

[2] has indeed showed that results drawn from orthotropic case can be applied for

16 different configurations of cubic, tetragonal and hexagonal anisotropy.

In order to justify existence of real wave speed, the above equation (5.2.10) is written

as

f(ξ) = 0, where f(ξ) = ξ2 − (δ − ξ)2(1− ξ). (5.2.11)

For the traveling subsonic waves, the above secular equation (5.2.10) is subject to

0 ≤ ξ ≤ 1. (5.2.12)

Between this range, it is convenient to show that f is function of ξ and it is increasing

monotonically as it can be seen

f(0) = −δ2, f(1) = 1. (5.2.13)

For the purpose of consistency, the major result that is drawn in the problem is

linked with previous studies. Like, if we draw the attention to isotropic limits, when

C11 = C22 = λ + 2µ, C12 = λ, C66 = µ, where µ and λ are Lame constants. By

using these values in Eq. (5.2.9), the secular equation can be written as

(4− ξ)2(1− ξ) = ξ2, or ξ3 − 8ξ2 + 24ξ − 16 = 0, (5.2.14)

which is well-known secular equation that was derived in [1].
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Chapter 6

Conclusion

The analysis is done on propagation of Rayleigh wave in anisotropic material which

is based on fact that equation of propagation and boundary conditions are simpli-

fied under the condition that some of the elastic constants vanish. Rayleigh wave

displacement has only two components left. The equation for wave velocity is also

established. The configuration of crystals fulfilling the conditions of simplification

have been sought for the number of crystals that belongs to orthorhombic, tetrago-

nal, hexagonal, and cubic systems. In [3], the motion of surface wave in monoclinic

material with symmetry at x3 = 0 shows very close similarity to plane stress and

plain strain motion. We attain a system of two differential equations for traction

components from the equation of motion. Once we apply the method of first inte-

gral, we get a system of three equations that are linearly independent having three

unknowns. If the variables in equations are displacement components then the sys-

tem that we get is of 18 equations and 18 unknowns but instead of this we used the

traction components as variable which helped us reduce the number of equations

to 9 having 9 unknowns. However, Eq. (4.4.13) are not linearly independent. It

is stressed again that this method can not be called a general method to calcu-

late the secular equation. For triclinic or monoclinic materials, the method of first
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integrals can not be used in case of three dimensional displacement. It is only appli-

cable when the wave is propagating in x1 direction with the plane of symmetry at

x3 = 0 of monoclinic crystals whereas in [4], due to the orthotropic properties and

symmetries, the secular equation is calculated directly through the method of first

integral. This method proved to be a powerful method by [5], by using constraint

of incompressibility into account.
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