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Abstract 

The skin depth has been calculated using the surface impedance for the transverse waves 

in bi-kappa distributed plasma. The effects of temperature anisotropy on the surface 

impedance and the skin depth have been studied using the kinetic model for an 

electromagnetic wave striking on a plasma surface. It is noted that the real part of the 

surface impedance has direct relation with temperature anisotropy and kappa parameter, 

while changes inversely with the wave frequency.  On the other hand the imaginary part, 

however, is not affected by kappa parameter and temperature anisotropy significantly but 

changes directly with the frequency. It also been calculated that the skin depth is inversely 

related to the frequency in both resonant and non-resonant case. It has been found that 

in low frequency regime (resonant case) the skin depth first increases with increasing 

temperature anisotropy and then remains constant, while in high frequency regime (non-

resonant) the skin depth increases linearly by increasing the temperature anisotropy. It 

has been calculated that the skin depth in both high and low frequency regime increases 

by increasing the kappa parameter. The comparison between the skin depth at high and 

low frequency shows that skin depth is greater in low frequency regime/resonant case. 
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1 INTRODUCTION

1.1 What is Plasma?

A plasma is a quasineutral gas of charged particles that shows collective behav-
ior. Plasma is neutral enough that electron density is almost equal to density
of ions but not so neutral that all the electromagnetic forces vanishes. Collec-
tive behavior means that plasma behavior depends on each individual particles.
Plasma is the most abundant form of matter in the known universe. Everything
in the early universe was made up of plasma. Stars, nebulae, and even interstel-
lar space are all currently �lled with plasma. Plasma is also propagated across
the solar system in the form of the solar wind, the Earth is entirely wrapped
by plasma, trapped within its magnetic �eld. There are also lots of terrestrial
plasmas to be observed. They appear in scienti�c experiments of many kinds,
lightning, �uorescent bulbs, and more [1].

Fig. 1.1. States of matter [2].

1.2 Debye shielding

Debye shielding is the characteristic behavior of plasma that describe the screen-
ing of electric �eld by plasma particles. Assume we intended to create an electric
�eld within plasma by introducing two charged balls connected to a battery. The
balls would attract particles of opposite charge, resulting in a cloud of ions sur-
rounding the negative ball and a cloud of electrons surrounding the positive
ball. If the plasma was cold and there were no thermal motions, there would be
the same number of charges in the cloud as there were in the ball; the shield-
ing would be perfect, and there would be no electric �eld in the plasma�s body
beyond the clouds. If the temperature is �nite, however, the particles at the
cloud�s edge, where the electric �eld is weak, have enough thermal energy to
escape the electrostatic potential well. The cloud�s "edge" then appears at the
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radius where the potential energy is approximately equal to the thermal energy
KT of the particles, indicating that the shielding is not complete. Potentials of
the order of KT/e can leak into the plasma, creating inadequate electric �elds.
The approximate thickness of such a charge clouds is given by,

�D =

r
�oKTe
ne2

(1.1)

Where, �D is called Debye length and it�s the measure of length over which
the electric �eld is screening out by plasma [3]

Fig. 1.2. The Debye shielding.

From here we can de�ned quasi-neutrality. If the debye length is much
shorter than dimension L, then whenever the potential introduced to the plasma,
it will shielded out in a short distance as compared to L, which will left the bulk
of plasma free of potentials.

1.3 Criteria for plasma

Every ionized gas is not plasma, there is certain conditions that must satisfy for
an ionized gas to be called a plasma.

1.3.1 Quasineutrality

If the dimension L of a system is larger than Debye length, then potential will
be shielded out at a short distance, leaving the bulk of plasma free of �elds.

�D << L
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1.3.2 Numbers of particles

Debye shielding is possible only if there are large numbers of particles. If there
are few particles then debye shielding will not be a valid concept.

ND >> 1

1.3.3 Collision time

If collision between the particles are large, then the motion of particles is con-
trolled by hydrodynamic forces rather than electromagnetic forces. If ! is the
frequency of plasma oscillation and � is the mean time between the collision
with neutral atoms. then following condition is need to be satis�ed for gas to
behave like plasma [3].

!� >> 1

1.4 Plasma models

There are di¤erent plasma mathematical models that are used to examine the
plasma, its properties and phenomenon associated with it e.g. particle orbit
model, �uid model and kinetic model. We will discuss it one by one.

1.4.1 Particle orbit model

It is a simple approach in which we study the motion of individual particle of
plasma i.e. its interaction with the electric and magnetic �eld. This gives us an
understanding that how charged particle behave in the presence of electromag-
netic �eld. It is applicable in low density plasma.
The basic equation of this model is Newton�s equation;

~F = m~a = m
d~v

dt
(1.2)

Where F is the Lorentz force de�ned as;

~F = q( ~E + ~v � ~B) (1.3)

Thus;

m
d~v

dt
= q( ~E + ~v � ~B) (1.4)

But it failed in the case of collisional plasma, because of collisions it�s very
di¢ cult to observe the particles trajectories and orbits [4].
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1.4.2 Fluid Model

The presence of numerous �uid-like features in plasma, such as coherent motion
has been observed. Plasma can be treated as a �uid since it has a wide range
of velocities and particle collisions, which helps to maintain the local equilib-
rium distribution of particles. Thus, the dynamics of plasma can be explained
by macroscopic quantities that are directly related to average values, such as
temperature, densities, and velocities [1].

1.3.2.1 Equations of �uid model The equations that are use in a �uid
model are,
1) Maxwell�s equations
2) Equation of continuity
3) Equation for momentum transport

Maxwell�s equations Maxwell equation are given as:

r: ~E = �

��
(1.5)

r: ~B = 0 (1.6)

r� ~E = �@
~B

@t
(1.7)

r� ~B = �� ~J + ����
@ ~E

@t
(1.8)

Here ~E and ~B are the electric and magnetic �eld respectively, ~J is the
current density and � is the charge density. These quantities indicate the e¤ect
of particle position and mobility on electromagnetic �elds.
Equation [1.5] is the Gauss law for electrostatic which tells us that the electric

�ux across any closed surface is proportional to the electric charge enclosed by
the surface.
Equation [1.6] is the Gauss law for electromagnetism which says that mag-

netic monopole does not exist.
Equation [1.7] is the Faraday law of electromagnetic induction which states

that "An emf will be induced in a coil by changing the magnetic �ux".
Equation [1.8] is the Maxwell-Ampere�s law, it states that by changing the

electric �elds or currents will generates circulating magnetic �elds [5].

Equation of continuity It tells us that �ow rate is constant which means
that mass in a given volume of space changes only if there is a net mass �ux
into or out of that volume.

@n

@t
= r:(n~u) (1.9)
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In term of charge and current density, we can write it as,

@�

@t
= r: ~J (1.10)

Equation for momentum transfer As the velocity in �uid model is a
function of both space and time, so the time derivative of velocity is,

du

dt
=
@u

@t
+
@ux
@x

dx

dt
x̂+

@uy
@y

dy

dt
ŷ +

@uz
@z

dy

dt
ẑ (1.11)

or

d~u

dt
=
@~u

@t
+ (~u:r)~u (1.12)

The equation of motion for n number of particles can be written as,

mn
@~u

@t
+ (~u:r)~u = nq( ~E + ~v � ~B) (1.13)

The above equation is for collisionless plasma, if we consider collision and
thermal e¤ects than we add the pressure gradient term i.e. -r~P to the right
side of the equation.
i.e.

mn
@~u

@t
+ (~u:r)~u = nq( ~E + ~v � ~B)�r~P (1.14)

The above equation is called momentum transport equation. All these equa-
tions are used to describe the plasma dynamics.

1.4.3 Kinetic model

The �uid model which is the microscopic description of plasma has some lim-
itation that makes it unable to fully describe some phenomenon. For example
we cannot study the wave-particles interactions, temperature anisotropic and
non-thermal plasma. Kinetic theory is the microscopic description of plasma,
it gives us more accurate and clear picture of the plasma as compared to �uid
model.
In the kinetic model, the distribution function of the particles is depending

upon position, velocity and time given as;

f(r; v; t) = f(x; y; z; vx; vy; vz; t) (1.15)

There are seven variables, three spatial, three velocity vectors and one tem-
poral [3].

5



1.3.3.1 Equation of kinetic model As the distribution function is a func-
tion of position, velocity and time i.e. f(r; v; t). So, the time derivative of
distribution function can be written as;

df

dt
=
@f

@t
+
@f

@x

@x

@t
+
@f

@y

@y

@t
+
@f

@z

@z

@t
+
@f

@vx

@vx
@t

+
@f

@vy

@vy
@t

+
@f

@vz

@vz
@t

(1.16)

df

dt
=
@f

@t
+ ~v:rf + ~a:rf (1.17)

As,

~F = m
d~v

dt

also,

~F = q( ~E + ~v � ~B) (1.18)

So, it can be written as;

dfc
dt
=
@f

@t
+ ~v:rf + q

m
( ~E + ~v � ~B) (1.19)

In case of collisionless plasma dfc
dt = 0

) @f

@t
+ ~v:rf + q

m
( ~E + ~v � ~B) = 0 (1.20)

The above equation is called Vlasov-Equation [6].

1.5 Classi�cation of distribution functions

There are di¤erent types of distributions functions which are used to study the
di¤erent plasma environments e.g. maxwellian distribution, kappa distribution
etc.

1.5.1 Maxwellian distribution

The Maxwellian distribution is also known as Maxwell-Boltzmann distribution.
A gas in thermal equilibrium contains particles of all velocities, and the most
probable distribution for all these velocities is Maxwellian distribution.
which is given by;

f(u) = A exp(�
1
2mjuj

2

KT
) (1.21)

Here A is normalization constant given by;

A = n(
m

2�KT
)1=2 (1.22)
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Here f(u)du shows the numbers of particles per m3 with velocities between
u and u+du. 1

2mu
2 is the kinetic energy while K is the Boltzmann�s constant

K=1.32�10�23J/K.
The width of the distribution tells us about temperature T [4].

Fig. 1.3. Maxwell distribution at di¤erent temperatures.

Bi-Maxwellian distribution When temperature anisotropy is taken into
account, then we have two di¤erent thermal velocities of charged particles i.e.
parallel and perpendicular in the direction of the magnetic �eld. Mathemati-
cally,

f(v) =
n

�3=2
1

�k�
2
?
exp

 
�v

2
?
�2?

+
v2k

�2k

!
(1.23)

1.5.2 Non-Maxwellian distributions

It is observed experimentally that natural occurring plasma is not in thermody-
namic equilibrium. So non-maxwellian distribution is required to deal with such
type of plasma. These type of distributions are common in space and laboratory
plasmas.

Kappa distribution Nonthermal particle distributions occur frequently in
the solar wind and many space plasmas, their presence has been generally de-
termined through spacecraft data. Such variations from Maxwellian distribu-
tions are likely to exist in every low-density plasma in the universe where binary
charge collisions are rare. These suprathermal population are well described by
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kappa velocity distribution functions. These distribution have high energy tails
that deviated from maxwellian distribution. It is de�ned as;

f(r; v) =
n

2�(��2)3=2
�(�+ 1)

�(�� 1
2 )�(

3
2 )

�
1 +

v2

��2

����1
(1.24)

Where � is the thermal velocity,

� =

r
2�� 3
�

kBT

m

Here � is the spectral index. It must take the values from � > 3
2 because at

3
2 the thermal velocity is not de�ned and the distribution function collapses. As
�!1; the distribution function reduces to Maxwellian as shown in the �gure
[7].

Fig. 1.4. The kappa velocity distribution function for the di¤erent values of
kappa parameters.

Bi-kappa distribution In temperature anisotropic plasmas like non-thermal
emission in astrophysical sources and the magnetic �eld �uctuations in space
plasma, where the plasma have di¤erent temperatures in di¤erent directions,
then we bi-kappa distribution function, which is given by,

f(v?; vk) =
n

�3=2
1

�2?�k

�(�+ 1)

�3=2�(�� 1
2 )

 
1 +

v2k

��2k
+
v2?
��2?

!�(�+1)
(1.25)

It is very useful for studying the instabilities that arises from temperature
anisotropy [8].
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1.6 Waves in plasma

There are many types of waves depending on the direction of wave vector ~k to the
electric �eld ~E and magnetic �eld ~B. The waves exist in plasma are perpendicu-
lar propagating (~k ? ~Bo), parallel propagating (~k k ~Bo), transverse propagating
(~k ? ~E1), longitudinal propagating (~k k ~E1), electrostatic propagating ( ~B1 = 0)
and electromagnetic propagating waves. Some of the electromagnetic propagat-
ing waves are, Ordinary-mode (O-mode), Extra Ordinary-mode (X-mode), R-L
waves, etc., are produced when there is a magnetic �eld perturbation [9].

1.7 Surface impedance

It characterizes the interaction of electromagnetic waves with plasma boundary.
It is de�ned as the ratio of tangential electric �eld to that of tangential magnetic
�eld at the plasma surface. Surface impedance is a complex quantity whose real
part shows the power absorption inside the plasma while the imaginary part
give us the phase of the re�ected wave [10].
It is given as;

Zs =
4�

c

~Ey(0)

~Bx(0)
(1.26)

1.8 Skin depth

When the frequency of the electromagnetic (EM) wave is less than the frequency
of the plasma, it attenuates when it interacts with the plasma. This phenom-
enon is called skin depth. It is the measure of how much an electromagnetic
wave travels inside the plasma. It depends on electrons thermal motion, if the
thermal motion of an electron is weak, then it is called normal skin depth and
if the electron thermal motion is taken into account the skin depth is called
anomalous skin depth. The penetration of an electromagnetic wave depends
on plasma frequency. if ! > !p then plasma is called underdense plasma and
electromagnetic wave can pass through the plasma and if ! < !p then plasma
is called overdense plasma and electromagnetic waves cannot pass through the
plasma [11].
Let consider the dispersion relation of an O-mode,

c2k2 = !2 � !2p
As in overdense plasma !p > !, so the above equation will reduce to,

ki =
!p
c

As, skin depth is related with ki as � = 1
ki

) � =
c

!p
(1.27)
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where c is the speed of light and !p is the plasma frequency given as,

!p =

s
noe2

me�o

1.9 Application of surface impedance and skin depth

Surface impedance and skin depth have numerous applications in plasma physics.
Some of the applications are;

1.9.1 Designing plasma antennas

A plasma antenna is a new type of radio antenna in which plasma replaces the
metal parts of a typical antenna. A type of plasma antenna " gas plasma an-
tenna" uses a discharge tube instead of metal elements. A gas plasma antenna,
as compared to metal elements, is a form of plasma antenna. As current trav-
els into the tube, the gas partially or completely ionizes to plasma, becomes
conductive, and behaves as a mirror, eventually transmitting and receiving sig-
nals. Plasma antennas are nearly transparent to a wide range of electromagnetic
waves above the plasma frequency and becomes invisible when the apparatus
is turned o¤ and the gas de-ionizes. Plasma antennas have several advantage
over metallic antennas like, plasma has extremely high electrical conductivity,
which aids in the receiving direction, and transmission of various radio signals.
Plasma antennas may be electronically modi�ed, which implies that their fre-
quency, bandwidth, and directivity can be changed without physically modifying
the antenna. As a result, they are extremely �exible and responsive to a wide
range of applications. The surface impedance of a plasma antenna is critical
to the antenna�s design and functioning. It determines the antenna�s e¢ ciency,
bandwidth, and directivity. The surface impedance in�uences how the antenna
interacts with the plasma. The skin depth of an antenna controls how much of
its surface is e¢ ciently employed to emit or receive electromagnetic waves [12].
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Fig. 1.5. Structure of plasma antenna.

1.9.2 Plasma wall interaction

The plasma core is well separated from the �rst wall materials in magnetically
con�ned fusion plasmas. Highly energetic particles, on the other hand, can
escape the contained plasma and incident with the surrounding walls. These
collisions result in transfer of energy to the walls causing localizing heat. Sur-
face impedance plays an important role in plasma wall interaction like, it can
in�uence the e¢ ciency of energy transfer from the plasma to the wall and hence
the heat load on the material. Surface impedance can a¤ects the magnetic �elds
that con�ne plasma as well as the behavior of instabilities caused by plasma-
wall interactions. Surface impedance a¤ects the re�ection and absorptions of
particles which causes sputtering, impurities and stability of plasma. The skin
depth is signi�cant in plasma wall interaction because it controls how far the
plasma�s electromagnetic �elds can penetrate inside the wall [13].
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Fig. 1.6. Plasma wall interaction.

1.9.3 Plasma heating

The process of raising the temperature of a plasma is known as plasma heating.
It needs to achieve high-temperature fusion processes. This is done by several
methods like Ohmic heating, neutral beam injection, radio frequency heating
and magnetic compression. Surface impedance is an important factor in plasma
heating because it determines how e¤ectively the plasma can be heated. The
skin depth a¤ects how far the radio waves can penetrate into the plasma [14].

Fig. 1.7. Plasma heating
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2 PLASMA KINETIC MODEL

The �uid model has some limitation that makes it unable to fully describe some
phenomenon. For example, we can�t use �uid model to study wave particle
interaction, it fails in non-thermal equilibrium plasma. The instabilities arises
in plasma due to di¤erent causes cannot be studied by using the �uid model.
Moreover, even though the structure is di¤erent, as seen below, the �uid model
cannot distinguish between distributions that have the same area under the
curve (which will give us the total number of particles).
Kinetic theory is the microscopic description of plasma, it gives us more

accurate and clear picture of the plasma as compared to �uid model.

Fig. 2.1. Examples of two non-maxwellian distributions:
In the kinetic model, the distribution function of the particles is depending

upon position , velocity and time given as;

f(r; v; t) = f(x; y; z; vx; vy; vz; t) (2.1)

There are seven variables, three spatial, three velocity vectors and one tem-
poral.

2.1 Equation of kinetic model

As the distribution function is a function of position, velocity and time i.e.
f(r; v; t). So, the time derivative of distribution function can be written as;

df

dt
=
@f

@t
+
@f

@x

@x

@t
+
@f

@y

@y

@t
+
@f

@z

@z

@t
+
@f

@vx

@vx
@t

+
@f

@vy

@vy
@t

+
@f

@vz

@vz
@t

(2.2)

As,
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~F = m
d~v

dt
(2.3)

So, it can be written as;

dfc
dt
=
@f

@t
+ ~v:rxf +

q

m
( ~E + ~v � ~B):rvf (2.4)

In case of collisionless plasma dfc
dt = 0

@f

@t
+ ~v:rxf +

q

m
( ~E + ~v � ~B):rvf = 0 (2.5)

The above equation is called Vlasov-Equation.

2.2 Generalized dielectric tensor

The dielectric tensor is a matrix that describes the electric permittivity of
plasma in di¤erent direction. It tells us how an electromagnetic waves propa-
gate and interacts within a plasma. The dielectric tensor of a plasma is typically
anisotropic, meaning that its components vary depending on the direction of the
electric and magnetic �elds. This anisotropy is due to the fact that plasmas are
made up of charged particles that are free to move. The motion of these charged
particles can cause the plasma to respond di¤erently to electric and magnetic
�elds that are applied in di¤erent directions.

2.3 Derivation of dielectric tensor for magnetized plasma

The dielectric tensor matrix is derived from Vlasov�s equation;

@f

@t
+ ~v:

@f

@x
+ ~a:

@f

@v
= 0 (2.6)

We can write the above equation in term of relativistic momentum. The
relativistic momentum de�ned as,

~p = m~v

where;

 = (1� v
2

c2
)

Also,

~F =
d~p

dt
= e( ~E + ~v � ~B)

@F

@v
=
@F

@p

@p

@v
= m

@F

@p
(i)
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and

@p

@t
= m

@v

@t
= ma

) ~a =
1

m

@ ~P

@t
=

1

m
e[ ~E + ~v � ~B] (ii)

Put Eq [i] and [ii] in Eq [2.6], we have;

@f

@t
+ ~v:

@f

@x
+

1

m
e[ ~E + ~v � ~B]� m@f

@~p
= 0

@f

@t
+ ~v:

@f

@x
+ e[ ~E + ~v � ~B]:

@f

@~p
= 0 (2.7)

Now, on linearizing;

f = fo + f1

~B = ~Bo + ~B1

~E = ~E1

Eq [2.7])

@f1
@t

+ ~v:
@f1
@x

+ e

 
~E1 +

~v � ~B1
c

!
:
@fo
@~p

+
e

c

�
~v � ~Bo

�
:
@f1
@~p

= 0 (2.8)

the Laplace Transform of derivative is;

L(
@f1
@t
) =

1Z
0

@f1
@t
e�stdt

= f1e
�stj1o �

1Z
0

f1(�s)e�stdt

)
= �f1(t = 0) + sL(f1)

@f1
@t

= sL[f1] (iii)

Fourier transform of derivative is;

F (
@f1
@x
) =

1p
2�

24 1Z
�1

@f1
@x
(e�ikx)dx

35
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=
1p
2�

24e��kx 1Z
�1

@f1
@x
dx�

1Z
�1

(�ik)e�ikx
Z
@f1
@x
dx

35

=
1p
2�

24e�ikxf1j1�1 �
1Z

�1

(�ik)e�ikx � f1 � dx

35

=
1p
2�

24(ik) 1Z
�1

(e�ikx)f1 � dx

35
F [
@f1
@x
] = (ik)F (f1)

F [
@f1
@x
] = ik � F (f1) (iv)

Apply this Fourier-Laplace transform on Eq [2.8], we have;

(s+ i~k:~v)f1 +
e

c
(~v � ~Bo)

@f1
@p

+ e( ~E1 +
1

c
~v � ~B1)

@fo
@p

= g (2.9)

where;

g =

Z
1p
2�
e�ikxf1(t = 0) + other terms (2.10)

Let�s de�ne the relativistic cyclotron frequency: Relativistic cyclotron fre-
quency is de�ned as �The frequency at which high speed charged particles (speed
close to speed of light) gyrate around magnetic �eld lines.
i.e.;


 =
eBo
mc

=

o


(v)

Put Eq [v] in Eq [2.9], we have;

(s+ i~k:~v)f1 � 

@f1
@�

+ �(�) = 0 (2.11)

where

�(�) = e( ~E1 +
1

c
~v � ~B1)

@fo
@p

� g (vi)

So, Eq [2.11] can be written as;

@f1
@�

� s+ i
~k:~v



f1 =

�(�)



(2.12)

Eq [2.12] is the �rst order inhomogeneous di¤erential equation
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where homogeneous part is;

@G1
@�

� s+ i
~k:~v



G1 = 0 (vii)

Now let�s de�ne the coordinates for di¤erent parameters,
In cylindrical coordinates;

~k = (~k?; 0;~kk)

~v = (~v? cos�; ~v? sin�; ~vk)

)
~k:~v = k?v? cos� + kkvk

So, Eq [vii] will becomes;

@G1
@�

�
s+ ik?v? cos� + ikkvk



G1 = 0Z

@G1
G1

=

Z
s+ ik?v? cos� + ikkvk



d�

G
0

1 = exp

24 1



1Z
�1

�
s+ ikkvk + ik?v? cos�

00
�
d�

00

35
G

0

1 = exp

�
1



s+ ikkvk(�� �

0
)� ik?v?(sin�� sin

0
)

�
(viii)

The solution of inhomogeneous part is given as;

f1 =

Z
G(�0 )�(�0 )



d�

0
(ix)

Now from Maxwell�s curl equations;

r� ~E = �1
c

@ ~B

@t

r� ~B =
1

c

@ ~E

@t
+
4�

c
~J

By applying Fourier-Laplace transform to the above equation, we will get;

i~k � ~E = �s
c
~B +X ) ~B =

�ic
s
k � ~E +X (x)

i~k � ~B =
s

c
~E +

4�

c
~J � Y (xi)

Here X and Y is the integration term.
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Put Eq [x] in [xi];

i~k � �ic
s
~k � ~E =

s

c
~E +

4�

c
~J

c
h
~k � c(~k � ~E)

i
= s2 ~E + 4�s ~J

Applying the property

~A� ( ~B � ~C) = ( ~A: ~C): ~B � ( ~A: ~B): ~C

(s2 + c2~k2) ~E � c2~k(~k: ~E) + 4�s ~J = X � Y

(s2 + c2~k2)E � c2~k(~k: ~E) + 4�s ~J = I (xii)

Here J is the current density and I is the integral term;

J =
X
�

q�no

Z
f�vd

3p

put Eqns [vi] and [ix] in Eq [xii];

(s2+c2k2) ~E�c2~k(~k: ~E)+4�s
X
�

q�no
m�


Z
pdp

�Z
�1

"
e
1

 s+ikkvk(���

0
)�ik?v?(sin��sin�

0
)

� ~E � i
s~v � (~k � ~E):@fo@p

#
�d� = I

(2.13)
or we can written as;

(s2 + c2k2)E � c2~k(~k: ~E) + 4�s(�: ~E) = I

Here � is the conductivity tensor, it tells us how in anisotropic plasma an
electrical conductivity varies in di¤erent directions.

~J = � ~E

Now, we will solve the last term of Eq [2.13];
i-e:

~E � i

s
~v � (~k � ~E):

@fo
@~p

= ~E � i

sm

h
~p� (~k � ~E)

i
:
@fo
@~p

=
@fo
@p

� i

sm

h
~p� (~k � ~E)

i
:
@fo
@~p

(xiii)
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)
~E:
@fo
@~p

= Ex
@fo
@px

+ Ey
@fo
@py

+ Ez
@fo
@pz

In cylindrical coordinates,

px = p? cos�
0
; py = p? sin�

0
; pz = pk

~E:
@fo
@~p

= Ex cos�
0 @fo
@p?

+ Ey sin�
0 @fo
@p?

+ Ez
@fo
@pk

Put the above value in Eq [xiii], we have;

=
�
Ex cos�

0
+ Ey sin�

0
� @fo
@p?

+ Ez
@fo
@pk

� i

sm

h
~p� (~k � ~E)

i
:
@fo
@~p

Applying the identity;

~A� ( ~B � ~C) = ~B( ~A: ~C)� ~C( ~A: ~B)

~p� (~k � ~E) = ~k(~p: ~E)� ~E(~p:~k)

So, the above equation will be;

=
�
Ex cos�

0
+ Ey sin�

0
� @fo
@p?

+Ez
@fo
@pk

� i

sm

�
(~p: ~E)(~k:

@fo
@~p
)� (~p:~k)( ~E:@fo

@~p
)

�
(xiv)

Let solve each term separately;

~p: ~E = p? cos�
0
Ex + p? sin�

0
Ey + pkEz

~k:
@fo
@~p

= k? cos�
0 @fo
@p?

+ kk
@fo
@pk

~p:~k = p? cos�
0
k? + pkkk

~E:
@fo
@~p

= Ex
@fo
@p?

cos�
0
+ Ey

@fo
@p?

sin�
0
+ Ez

@fo
@pk

By putting all the values in Eq [xiv], we will get;

=
�
Ex cos�

0
+ Ey sin�

0
� @fo
@p?

+Ez
@fo
@pk

� i

sm

26664
(p? cos�

0
Ex + p? sin�

0
Ey + pkEz)

(k? cos�
0 @fo
@p?

+ kk
@fo
@pk
)

�(p? cos�
0
k? + pkkk)

(Ex
@fo
@p?

cos�
0
+ Ey

@fo
@p?

sin�
0
+ Ez

@fo
@pk
)

37775
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=
�
Ex cos�

0
+ Ey sin�

0
� @fo
@p?

+ Ez
@fo
@pk

� i

sm

264 p?k? cos
2 �

0 @fo
@~p?

Ex + p?kk cos�
0 @fo
@pk
Ex + p?k? cos�

0
sin�

0 @fo
@p?

Ey + p?kk sin�
0 @fo
@~pk
Ey

+pkk? cos�
0 @fo
@p?

Ez + pkkk
@fo
@pk
Ez � p?k? cos2 �

0
Ex

@fo
@~p?

Ex � p?k? cos�
0
sin�

0 @fo
@~p?

Ey

�p? cos�
0
k?

@fo
@pk
Ez � pkkk sin�

0 @fo
@p?

Ey � pkkk sin�
0 @fo
@p?

Ey � pkkk @fo@~pk
Ez

375
After simpli�cation:

=
�
Ex cos�

0
Ey sin�

0
� @fo
@p?

+Ez
@fo
@pk

� i

sm

26664
Ex cos�

0
kk

�
p?

@fo
@pk

� pk @fo@p?

�
+Ey sin�

0
kk

�
p?

@fo
@pk

� pk @fo@p?

�
�Ez cos�

0
k?

�
p?

@fo
@pk

� pk @fo@p?

�
37775

�
cos�

0 @fo
@p?

� i

sm
cos�

0
kk

�
p?
@fo
@pk

� pk
@fo
@p?

��
Ex

+

�
sin�

0 @fo
@p?

� i

sm
sin�

0
kk

�
p?
@fo
@pk

� pk
@fo
@p?

��
Ey

+

�
@fo
@pk

� i

sm
cos�

0
k?

�
p?
@fo
@pk

� pk
@fo
@p?

��
Ez

26664
cos�

0 @fo
@p?

� i
sm cos�

0
kk

�
p?

@fo
@pk

� pk @fo@p?

�
+sin�

0 @fo
@p?

� i
sm sin�

0
kk

�
p?

@fo
@pk

� pk @fo@p?

�
+ @fo
@pk

� i
sm cos�

0
k?

�
p?

@fo
@pk

� pk @fo@p?

�
37775 :E

= E � i
s~v � (~k � ~E):@fo@p =

~A: ~E

As,

4�s(~�: ~E) = �s
X
�

!2p�



Z
pdp

�Z
�1

�
e
1

 s+ikkvk(���

0
)�ik?v?(sin��sin

0
) � E � i

s
~v � (~k � ~E):

@fo
@~p

�
d�

So, by putting all the values in above equation we will get;

4�s(~�i;j : ~E) = �s
X
�

!2p�



1Z
0

p?dp?

1Z
�1

dpk

2�Z
0

d�

�Z
�1

d�
0

(2.14)

�
�
e
1

 s+ikkvk(���

0
)�ik?v?(sin��sin'

0
)
�
�
�
p? cos�; p? sin�; pk

�
( ~A: ~E)
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From the above equation, we can calculate the di¤erent elements of dielectric
tensor.
Let�s calculate �xx:

4�s�xx = �s
X
�

!2p�



1Z
0

p?dp?

1Z
�1

dpk

2�Z
0

d�

�Z
�1

d�
0

(2.15)

�
�
e
1

 s+ikkvk(���

0
)+ik?v?(sin��sin

0
)
�
� p? cos� cos�

0
�
@fo
@p?

� i

s
kk

�
v?
@fo
@vk

� vk
@fo
@v?

��
By change of variables;

�� �
0
= �

�
0
= �� �

d�
0
= �d�

4�s�xx = �s
X
�

!2p�



1Z
0

~p?d~p?

1Z
�1

d~pk

2�Z
0

d�

0Z
�1

d�
0

(2.16)

�
�
e
1

 s+i

~kk~vk�+i~k?~v?(sin��sin(���))
�
� ~p? cos� cos(�� �)

�
@fo
@p?

� i

s
kk

�
v?
@fo
@vk

� vk
@fo
@v?

��
Now, we will solve each term separately;

2�Z
0

e
ik?v?


 (sin��sin(���)) cos� cos(�� �)d�

By Bessel�s identity:

eiz sin� =
1X

n!�1
e�n� � Jn(z)

eiz sin(���) =
1X

n!�1
e��n(���) � Jn(z)

eiz(sin��sin(���)) =
1X

n!�1
e�n(���+�) � J2n(z)

By using the above bessel property, we can write;
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2�Z
0

e
ik?v?


 (sin��sin(���)) cos� cos(�� �)d�

=

2�Z
0

1X
n!�1

�
ein� � J2n(z)

�
cos� cos(�� �)d�

=
1X

n!�1
J2n(z)

2�Z
0

ein� � cos� cos(�� �)d�

= 2�
1X

n!�1
ein� � J2n(z)�

n2

z2
d� (xv)

Put eq [xv] in Eq [2.16], we will get;

4�s�xx = �s
X
�

!2p�



1Z
0

p?dp?

1Z
�1

dpk

0Z
�1

e
1

 (s+ikkvk+in
)�d� (2.17)

�2�
�
/j2n(z)�

n2

k2?v
2
?

�

2 � p?

�
@fo
@p?

� i

s
kk

�
v?
@fo
@vk

� vk
@fo
@v?

��
Now,

0Z
�1

e
1

 (s+ikkvk+in
)�d� =

"

� e

1

 (s+ikkvk+in)

s+ ikkvk + in


#0
�1

=



s+ ikkvk + in

(xvi)

Put Eq [xvi] in Eq [2.17], we have;

4�s�xx = �2�s
X
�

!2p�



1Z
0

p?dp?

1Z
�1

dpk
n2 � J2n(z)� 
3

k2?v
2
?(s+ ikkvk + in
)

�
@fo
@p?

� i

s
kk

�
v?
@fo
@vk

� vk
@fo
@v?

��
(2.18)

By using bessel identity, we can �nd the other elements of tensor as;
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2�R
0

e�iz[sin��sin(���)]d�

26666666666664

sin� sin(�� �)
sin� cos(�� �)
cos� sin(�� �)
cos� cos(�� �)

1
sin�
cos�

sin(�� �)
cos(�� �)

37777777777775
= 2�

1P
n!�1

ein�

266666666666664

J
02
n

� in
z JnJ

0

n
in
z JnJ

0

n
n2

z2 J
2
n

J2n
�iJnJ

0

n
n
z J

2
n

iJnJ
0

n
n
z J

2
n

377777777777775
Now Eq [xii] can be written as;h

(s2 + c2k2)I � c2~k(~k: ~E) + 4�s�
i
~E = I (xvii)

Here I is the generalized matrix. The above equation for di¤erent component
of generalized dielectric tensors then reads as,24 Rxx Rxy Rxz

Ryx Ryy Ryz
Rzx Rzy Rzz

35
By putting the value of �xx and doing some complicated algebra, we will get

Rxx as,

Rxx = s
2+c2k2?�2�s

X
�

!2p�



1Z
0

p2?dp?

1Z
�1

dpk
n2 � J2n � 
3

k2?v
2
?(s+ ikkvk + �n
)

�
@fo
@p?

� i

s
kk

�
v?
@fo
@vk

� vk
@fo
@v?

��
(2.19)

Similarly by doing the same calculations for �xy, �xz:::::�zz, all other com-
ponents of Ri;j can be written as;

Rxy = �2i�s
X
�

!2p�



1Z
0

p2?dp?

1Z
�1

dpk
n2 � JnJ

0

n � 
2
k?v?(s+ ikkvk + in
)

�
@fo
@p?

� i

s
kk

�
v?
@fo
@vk

� vk
@fo
@v?

��
(2.20)

Rxz = �c2kkk?�2�s
X
�

!2p�



1Z
0

p2?dp?

1Z
�1

dpk
n2 � J2n � 
2

k?v?(s+ ikkvk + in
)

�
@fo
@pk

� i

s
kk

�
v?
@fo
@vk

� vk
@fo
@v?

��
(2.21)

Ryx = 2�s
X
�

!2p�



1Z
0

p2?dp?

1Z
�1

dpk
n2 � JnJ

0

n � 
2
k?v?(s+ ikkvk + in
)

�
@fo
@p?

� i

s
kk

�
v?
@fo
@vk

� vk
@fo
@v?

��
(2.22)
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Ryy = s
2+c2k2�2�s

X
�

!2p�



1Z
0

p2?dp?

1Z
�1

dpk
J
0

n � 
2
k?v?(s+ ikkvk + in
)

�
@fo
@p?

� i

s
kk

�
v?
@fo
@vk

� vk
@fo
@v?

��
(2.23)

Ryz = 2i�s
X
�

!2p�



1Z
0

p2?d~p?

1Z
�1

dpk
JnJ

0

n � 

k?v?(s+ ikkvk + in
)

�
@fo
@pk

� i

s
kk

�
v?
@fo
@vk

� vk
@fo
@v?

��
(2.24)

Rzx = �c2kkk?�2�s
X
�

!2p�



1Z
0

p?dp?

1Z
�1

pkdpk
n� Jn � 
2

k?v?(s+ ikkvk + in
)

�
@fo
@p?

� i

s
kk

�
v?
@fo
@vk

� vk
@fo
@v?

��
(2.25)

Rzy = �2i�s
X
�

!2p�



1Z
0

p?dp?

1Z
�1

pkdpk
JnJ

0

n � 

(s+ ikkvk + in
)

�
�
@fo
@p?

� i

s
kk

�
v?
@fo
@vk

� vk
@fo
@v?

��
(2.26)

Rzz = s
2+c2k2?�2�s

X
�

!2p�



1Z
0

p?dp?

1Z
�1

pkdpk
J2n � 


(s+ ikkvk + in
)

�
@fo
@pk

� i

s
kk

�
v?
@fo
@vk

� vk
@fo
@v?

��
(2.27)

The above equations are the components of the dielectric tensor, each com-
ponent of a tensor is de�ned for di¤erent types of waves.
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3 MATHEMATICAL MODEL

The surface impedance and skin depth of a transverse waves have already been
calculated by using the bi-maxwellian distribution function [11]. In this thesis
we are extending this work discuss the surface impedance and skin depth for bi-
kappa distributed plasmas in both the limits: that is resonant and non-resonant
cases.

3.1 Generalized dispersion relation of transverse waves by
kinetic model

Transverse waves propagate in such a way that its wave vector is perpendicular
to electric �eld (~k ? ~E) as shown in the �gure.

Fig. 3.1. Geometry of the wave.
The vlasov�s equation is given by;

@f

@t
+ ~v:

@f

@~x
+
e

m
[ ~E +

1

c
~v � ~B]:

@f

@~v
= 0 (3.1)

Upon linearization;

f = fo + f1

~E = ~E1

~B = ~Bo + ~B1

In case of unmagnetized plasma ~Bo=0

@f1
@t

+ ~v:
@f1
@~x

+
e

m
[ ~E1 +

1

c
~v � ~B1]:

@fo
@~v

= 0 (3.2)
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By considering the sinusoidal perturbations,

@

@t
= �i!; @

@x
= ik

By applying Fourier-Laplace transform and put the above values in Eq [3.2];

�i! � �f1 + i~v:~k � �f1 +
e

m
[ ~E1

@fo
@~v

+
1

c
~v � ~B1

@fo
@~v
] = 0

i
�
�! + ~v:~k

�
�f1 +

e

m
[ ~E1

@fo
@~v

+
1

c
~v � ~B1

@fo
@~v
] = 0

�f1 = i
e

m
�
! � ~v:~k

� [ ~E1 @fo
@~v

+
1

c
~v � ~B1

@fo
@~v
] (3.3)

Transverse permittivity

It is the component of the permittivity tensor which describe the response
of a plasma to an electric �eld which is perpendicular to the direction of prop-
agation ( ~E ? ~K). It is given as;

"t(!; k) = 1�
4�i

!E(k)
e

Z
v� (f) dv (3.4)

Put Eq [3.3] in Eq [3.4],
)

"t(!; k) = 1�
4�i

!E(k)
e

Z
v

24i e

m
�
! � ~v:~k

� � ~E1 @fo
@~v

+
1

c
~v � ~B1

@fo
@~v

�35 (3.5)

Now from Faraday�s law;

r� ~E = �1
c

@ ~B

@t

) ik � ~E = �1
c
(�i!) ~B

c~E

!
= ~B (3.6)

Put Eq [3.6] in Eq [3.5],

"t(!; k) = 1�
4�i

!E(k)
e

Z
v

24i e

m
�
! � ~v:~k

� �E1 @fo
@v

+
1

c
v � ckE

!

@fo
@v

�35
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"t(!; k) = 1 +
4�e2

m!

Z
v

24 E1�
! � ~v:~k

�
E(k)

@fo
@v

+
vk�

! � ~v:~k
� @fo
@v

35
Since our wave is transverse so ~k. ~E=0;

"t(!; k) = 1 +
4�e2

m!2

Z
vx

24 @fo
@v?

+
v2xk�

! � ~vk:~k
� @fo
@v

35
"t(!; k) = 1 +

4�e2

m!2

Z
vx
@fo
@v?

+
v2xk�

! � ~vk:~k
� @fo
@vk

(3.7)

The dispersion relation is;

c2k2

!2
= 1 +

4�e2

m!2

Z 0@v? @fo
@v?

+
v?

2k�
! � ~vk:~k

� @fo
@vk

1A dv (3.8)

The above equation is the generalized dispersion relation of transverse waves
in un-magnetized plasma.

3.2 Dispersion relation of transverse waves by bi-kappa
distribution function

The generalized dispersion relation is given by;

c2k2

!2
= 1 +

4�e2

m!2

Z 0@v? @fo
@v?

+
v2?k�

! � ~vk:~k
� @fo
@vk

1A dv (3.9)

The bii-kappa distribution function is de�ned as;

fo =
1

�3=2�2?�k

�(�+ 1)

�3=2�(�� 1
2 )

 
1 +

v2k

��2k
+
v2?
��2?

!���1

fo = A

 
1 +

v2k

��2k
+
v2?
��2?

!���1
(3.10)

Here;

A =
1

�3=2�2?�k

�(�+ 1)

�3=2�(�� 1
2 )
; �2?;k = (

2�� 3
�

)v2t?;k

Now
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@fo
@v?

= A(��� 1)
 
1 +

v2k

��2k
+
v2?
��2?

!���2
� 2v?

��2?
(3.11)

@fo
@vk

= A(��� 1)
 
1 +

v2k

��2k
+
v2?
��2?

!���2

�
2vk

��2k
(3.12)

Put Eqns [3.10], [3.11], and [3.12] in Eq [3.9];

c2k2

!2
= 1+

4�e2

m!2
A
R
dv

26664
v?

(
(��� 1)

�
1 +

v2k
��2k

+
v2?
��2?

����2)
� 2v?

��2?
+

v2?k

(!�~vk:~k)
(��� 1)

�
�
1 +

v2k
��2k

+
v2?
��2?

����2
� 2vk

��2k

37775

c2k2

!2
= 1+

8�e2

m!2
A
R
dv

24 (��� 1)
��2?

v2?

 
1 +

v2k

��2k
+
v2?
��2?

!���2
+
k(��� 1)v2?vk
��2k(! � ~vk~k)

 
1 +

v2k

��2k
+
v2?
��2?

!���235
As; Z

dv =

Z 1

0

Z 1

�1

Z 2�

0

v?dv?dvkd�

c2k2

!2
= 1+

8�e2

mw2
A

2664Z 1

0

Z 1

�1

Z 2�

0

0BB@ [ (���1)
��2?

v2?

�
1 +

v2k
��2k

+
v2?
��2?

����2
+
(���1)v2?kvk
��2k(!�~vk~k)

�
1 +

v2k
��2k

+
v2?
��2?

����2
1CCA v?dv?dvkd�

3775
as; Z 2�

0

d� = 2�

c2k2

!2
= 1+

16�2e2

mw2
A

2664Z 1

0

Z 1

�1

0BB@ v3?
(���1)
��2?

�
1 +

v2k
��2k

+
v2?
��2?

����2
+
(���1)v2?kvk
��2k(!�~vk~k)

�
1 +

v2k
��2k

+
v2?
��2?

����2
1CCA dv?dvk

3775
(3.13)

Now we will perform parallel and perpendicular integration separately;
Perpendicular Integration:

Z 1

0

v3?
(��� 1)
��2?

 
1 +

v2k

��2k
+
v2?
��2?

!���2
dv?
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=
(��� 1)
��2?

Z 1

0

v3?

 
1 +

v2k

��2k
+
v2?
��2?

!���2
dv?

By change of variables;

=
(��� 1)
��2?

Z 1

0

x3

 
1 +

v2k

�2
+
v2?
�2

!���2
dx

=
(��� 1)
��2?

 
(1 + v2

�2 )
���4

2(�+ �2)

!
(3.14)

Put Eq [3.14] in Eq [3.13],

c2k2

!2
= 1+

16�2e2

m!2
A

"Z 1

�1

(
(��� 1)
��2?

 
(1 + v2

�2 )
���4

2(�+ �2)

!
+
(��� 1)kvk
��2k(! � ~vk~k)

 
(1 + v2

�2 )
���4

2(�+ �2)

!)
dvk

#

Here;

�2 = ��2?

c2k2

!2
= 1+

16�2e2

m!2
A

"Z 1

�1

(
�(�+ 1)
��2?

 
(1 + v2

�2 )
���4

2�(�+ 1)

!
+
�(�+ 1)kvk
��2k(! � ~vk~k)

 
(1 + v2

�2 )
���4

2�(�+ 1)

!)
dvk

#

c2k2

!2
= 1� 16�

2e2

m!2
A

"Z 1

�1

(
(1 + v2

�2 )
���4

2�2�2?
+

(1 + v2

�2 )
���4

2�2�2k(! � vkk)

)
dvk

#
(3.15)

As;

Z +1

�1

 
1 +

v2k

�2

!��
dvk =

p
��(�� 1

2 )q
1
�2�(�)

(3.16)

and

Z +1

�1

�
1 +

v2k
�2

�
! � vk�

��

dvk = �
!

�

Z +1

�1

�
1 +

v2k
�2

�
vk � !

�

��

By change of variables;

x2 =
v2k

�2k
; v2k = x

2�2k; dvk = dx�k
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=) �!
�

Z +1

�1

�
1 +

v2k
�

���
(x�k � !

� )
dx�k

let
g =

!

k�k

�!
�

Z +1

�1

�
1 + x2

�

���
(x� g) dx = I (3.17)

Put Eq [3.16] and [3.17] in Eq [3.15];

) c2k2

!2
= 1�16�

2e2

m!2
A

24 �4

2�2�2?

p
��(� 1

2 + �)q
1
�2�(�)

+
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2�2�2k
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p
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2 + �)q
1
�2�(�)

� !
�

Z +1
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(x� g) dx]
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c2k2

!2
= 1�16�

2e2

m!2
A

264 �4

2�2�2?

p
��(�� 1

2 )

�(�) �k
p
�

� �4

2�2�2k

�p
��(�� 1

2 )

�(�) �k
p
�+ !

�

R +1
�1

(1+ x2

� )
��

(x�g) dx

� 375 ;* �2 = ��2k
Now, by using modi�ed plasma dispersion function;

Z�(g) =
1p
��1=2

�(�)

�(�� 1
2 )
(I)

I =

p
��1=2�(�� 1

2 )Z�(g)

�(�)

Put the value of modi�ed plasma dispersion function in above equation, we
will have;
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�k
p
�+

!

�

p
��1=2�(�� 1

2 )Z�(g)
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2e2
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A
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"p
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�(�)
�k
p
�

(
1
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�2k

�
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!
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Z�(g)

�)#

c2k2
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2no
m

A

no!2
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2�2
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�(�)
�k
p
�

(
1

�2?
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�2k

�
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!

k�k
Z�(g)
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c2k2
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�(�)
�k
p
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(
1

�2?
� 1

�2k

�
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!

k�k
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(3.19)

Put the value of A in Eq [3.19],

A =
1

�3=2�2?�k

�(�+ 1)

�3=2�(�� 1
2 )
; � =

p
��2?
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!2p
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(
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�
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!2p
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p
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"
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2
?
�2k

�
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By using Gamma function properties;
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= 1�

!2p
!2

"
1� �

2
?
�2k

�
1 +

!

k�k
Z�(g)

�#

c2k2

!2
= 1�

!2p
!2

"
1� �

2
?
�2k
(1 + gZ�(g))

#
* g = !

k�k
(3.20)

The above equation is the dispersion relation of transverse wave by bi-kappa
distribution function, where;
Z�(g) is the modi�ed plasma dispersion function

Z�(g) =
�(�)p

��(�� 1
2 )

1Z
�1

ds

s� g�

�
1 +

s2

�

���

�2?;k = (
2�� 3
�

)v2t?;k and vt?;k =

r
T?;k

m
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3.3 Electric �eld equation

Now we will calculate the electric �eld equation from which we will obtain the
electric �eld pro�le for resonant and non-resonant case when a transverse wave
travel in bi-kappa distributed plasma and the sum of both electric �elds equation
will give us a surface impedance whose real part shows power absorption and
imaginary part gives us phase of a re�ected wave then we will connect the surface
impedance equation with skin depth and will obtain the skin depth for high and
low frequency regime.
By Maxwell�s equation,

r� ~E = �1
c

@ ~B

@t
: (3.21)

r� ~B � 1
c

@ ~E

@t
=
4�

c
~J (3.22)

Using the identity ~A:[ ~B�~C] = ~B:[~C � ~A] = ~C[ ~A� ~B] on Eq [3.21],

) r:[r� E] = �1
c
r:(@B

@t
)

[r:r]E = �1
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(r�B)

r2E = �1
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�
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c
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+
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c
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�
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� 4�
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J
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+
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4�i!

c2
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Apply Fourier transform on Eq [3.23],
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dz2
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�
�
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0
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�
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h
e�ikzE

0
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+ike�ikzE

0
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Now;
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c
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Put in above equation, we have;
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�
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c

eikz
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Now, on applying inverse Fourier transform we have;

Ey(z) =
1

2�

Z +1

�1
�2i!Bx(z)

c

eikz

k2 � !2

c2 ["t(!; k)]

The electric �eld pro�le while entering the plasma is given as,

Ey(z) =
�i!
�c

Bx(z)

Z +1

�1

eikz

k2 � !2

c2 ["t(!; k)]
dk (3.24)

Here, "t(!; k) is the transverse permittivity , which is de�ne as,

"t(!; k) = 1�
!2p
!2

"
1� �

2
?
�2k
(1 + gZ�(g))

#
(3.25)
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3.4 Resonant and Non-Resonant cases

The interaction of waves and particles in a plasma is referred to as the resonant
and non-resonant case. The wave frequency in the resonant situation is the
same as the particle�s cyclotron frequency. As a result, the wave and particle
are in phase and the wave is able to impart energy to the particle. While in non-
resonant case both frequencies are not same due to which the wave and particles
are out of phase and the wave does not transmit much amount of energy to the
particles.

3.4.1 Non-resonant case (large argument)

The equation for electric �eld pro�le is,

Ey(z) =
�i!
�c

Bx(z)

Z +1

�1

eikz

k2 � !2

c2 ["t(!; k)]
dk (3.26)

where �t(!; k) shows us the transverse permittivity given as,

"t(!; k) = 1�
!2p
!2

"
1� �

2
?
�2k
(1 + gZ�(g))

#
(3.27)

As in the Eq [3.27] poles exist in the denominator, we will apply residue
theorem.
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�i!
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Bx(z)
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eikz2�iRe s
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c2 [2t (!; k)]

!#
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Put the denominator equal to zero.

k2 � !
2

c2
["t(!; k)] = 0

Put Eq [3.27] in above equation, we will get.
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#
Here Z�(g) is the modi�ed plasma dispersion function which we can expand

as,

Z�(�k � 1) =
i
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+ :::)� 1

�k
(1 +

1
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Put � 1
� (1 +

1
2�2
) term of modi�ed plasma dispersion function expansion in

above equation, we have;
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(3.29)

So the electric �eld pro�le for non-resonant case will be,
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Ey1(z) =
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Put Eq [3.29] in above equation we will get,
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For the limit case; z! 0;
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The above equation [3.30] tells us about the electric �eld pro�le of a wave
incident on a plasma boundary.

3.4.2 Resonant case (small argument)
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As the poles are exist in the denominator so by residue theorem,
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Put Eq [3.27] in above equation,
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For small arguments the modi�ed plasma dispersion relation can be expand
as,

Z�(�k � 1) =
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in above equation,
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Now, separating real and imaginary part,
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Imaginary part:
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So the electric �eld pro�le for resonant case will become,
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As surface impedance de�ne on the plasma boundary so at z! 0;
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The above equation tells us about the electric �eld for resonant case when a
transverse wave penetrating the plasma
The complete pro�le of an electric �eld is the sum of two electric �elds

equations given by Eq [3.30] and [3.33];
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The ratio of tangential electric �eld to that of magnetic �eld is called surface
impedance. So the above equation can be written as,
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3.5 Surface impedance

The surface impedance tells us how an electromagnetic wave interacts with
plasma boundary. It is a complex quantity. The real part of surface impedance
gives us power absorption while the imaginary part tells us about the phase of
the re�ected wave. It is de�ned as;

Zs =
4�

c
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Bx(0)

3.5.1 Real part of surface impedance

The real part of surface impedance tells us about how much a wave will absorb
while entering the plasma. It is given as;
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3.5.2 Imaginary part of Surface Impedance

The imaginary part of surface impedance tells us about the phase of the re�ected
wave from the plasma boundary. It is given as;
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3.6 Relationship between surface impedance and skin depth

The relationship between the surface impedance and skin depth is derived by
using Faraday�s law along side with the de�nition of surface impedance.
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The above equation relates surface impedance with skin depth.

3.7 Calculations of skin depth

In this section we will derive the expressions of skin depth for high and low
frequency regime. As skin depth is de�ned in eq (2.34) as;
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3.7.1 Skin depth ( in low frequency regime)

The surface impedance is calculated as,
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In the low frequency regime the second term of above equation is taken in
consideration. Surface impedance is de�ned as;
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Now,
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Put the values of Eqns [3.38] and [3.39] in Eq [3.37], we will get;
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This is the equation for skin depth in low frequency regime.

3.7.2 Skin depth (in high frequency regime)

The surface impedance is given by Eq [3.34] ,
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and it is de�ned as;
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Put the Eqns [3.42] and [3.41] in Eq [3.37], we will get,
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This equation describes the skin depth in high frequency regime.
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4 RESULTS AND DISCUSSION

We have calculated the surface impedance real and imaginary parts and skin
depth both for resonant and non-resonant cases of transverse wave in bi-kappa
distributed unmagnetized plasma by using the kinetic theory. The integral given
in Eq. [11] has been solved for two limiting case high and low frequency regime
to calculate the real and imaginary parts of the surface impedance and relates
it with the skin depth. As previously mentioned, the plasma�s density and
the electromagnetic wave�s frequency determine whether plasma is underdense
(! > !pe) or overdense (! < !pe). The results have been plotted for nor-
malized frequencies to maintain discussion validity over an extensive spectrum
of frequencies and densities i.e., as a function of !=!pe: In this discussion, all
the results are for overdense plasma, where ! < !pe. As our plasma are bi-
kappa distributed, which means that there will be high velocity particles called
suprathermal particles and temperature anisotropy, which means that the tem-
perature are di¤erent in di¤erent direction. It is represented by � = T?

Tk
,Here

T? is the temperature of the electron moving perpendicular to the direction of
the propagation and Tk is the temperature of electrons parallel to the direction
of the propagation. When plasma is isotropic then � = 1, the greater the value
of � , the more the plasma will be anisotropic. In this work we consider temper-
ature anisotropy � > 1. We investigate how the temperature anisotropy, wave
and plasma frequencies and kappa parameter a¤ects the surface impedance and
skin depth. The detail discussion are given below;

4.1 Real part of surface impedance against wave frequency
for the di¤erent values of temperature anisotropy

The real part of surface impedance tells us how much a wave absorb while
interacting with the plasma surface. We have obtained the real part of surface
impedance by using the dispersion relation of a transverse wave and solving the
modi�ed plasma dispersion function analytically.
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Where ! is the wave frequency, !p is the plasma frequency, T?Tk is the tem-
perature anisotropy, � is the spectral index which tells about the supra-thermal
particles. By plotting the above Eq [4.1] by keeping � = 2 and

vtk
c = 0:01 we

will get the graph of real of surface impedance for di¤erent value of temperature
anisotropy.
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Fig. 4.1. Real part of surface impedance vs wave frequency for the di¤erent
values of temperature anisotropy.
The graph shows that the real part of the surface impedance is inversely pro-

portional to the wave frequency. This means that increasing the frequency the
power absorption decreases. Additionally, keeping the spectral index "�" con-
stant and increasing the temperature anisotropy will increase the power absorp-
tion. In other words, the wave gains more energy as the temperature anisotropy
increases.
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4.1.1 Variation of real part of surface impedance with kappa para-
meter

Fig. 4.2. Real part of surface impedance vs wave frequency for the di¤erent
values of kappa parameter.
We can see that the power absorption increases as � increases by varying the

value of the spectral index � while keeping the temperature anisotropy constant
at �=2. However, it is noticeable from both graphs that the spectral index
in�uences power absorption more than temperature anisotropy.

4.2 Imaginary part of surface impedance against wave fre-
quency for the di¤erent values of temperature anisotropy

The imaginary part of surface impedance related with wave re�ection. It has
been calculated by using transverse waves dispersion relation and its electric
�eld pro�le. The expression of the imaginary part of the surface impedance is;
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By plotting the above Eq [4.2] by keeping � = 2 and
vtk
c = 0:01, we will

get the graph of imaginary part of surface impedance for di¤erent value of
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temperature anisotropy.

Fig. 4.3. Imaginary part of surface impedance vs wave frequency for the
di¤erent values of temperature anisotropy.
The graph shows that the phase re�ection of the wave is directly propor-

tional to the wave frequency,which means that the wave re�ection is greater at
high frequencies Furthermore, the imaginary part of the surface impedance isn�t
signi�cantly a¤ected by temperature anisotropy.

4.2.1 Variation of imaginary part of surface impedance with kappa
parameter

Now we will see how the imaginary of surface impedance changes with kappa
parameter by keeping the temperature anisotropy T?

Tk
= 2 and

vtk
c = 0:01 con-

stant.
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Fig. 4.4. Imaginary part of surface impedance vs wave frequency for the
di¤erent values of kappa parameter.
The graph shows that by keeping the temperature anisotropy constant and

changes the values of the spectral index kappa, the imaginary part of the surface
impedance does not changes, which means that the spectral index kappa does
not have any signi�cant a¤ect on the phase re�ection of the wave.

4.3 Skin depth against wave frequency for di¤erent tem-
perature anisotropy values

The mathematical expression for skin depth has been obtained both for high
and low frequency, by using the relation between surface impedance and skin
depth. The combined expression is given by;

� =
!p
!

2�3=2�(�� 1
2 )
vtk
c

q
2��3
� (!

2

!2p
� 1 + T?

Tk
)

p
��!� T?

Tk

+
!p
!

vuuut1 +
!2p
!2

T?
Tk

2��3
2�

v2tk
c2

(
!2p
!2 � 1)

(4.3)
Where ! is the wave frequency, !p is the plasma frequency, T?Tk is the tem-

perature anisotropy, vtk is the thermal velocity of particles,c is the speed of light
� is the kappa parameter which tells about high velocity particles.
Upon plotting the above Equation [4.3] by keeping � = 2 and

vtk
c = 0:01,

we get the graph of skin depth against the wave frequency for di¤erent value of
temperature anisotropy.
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Fig. 4.5. Skin depth vs wave frequency for the di¤erent values of temperature
anisotropy.
The plot shows the inverse relation between the skin depth and wave fre-

quency becuase as frequency increases wave oscillate more rapidly and their
energy dissipate more quickly as compared to the lower frequencies. It also
indicates that by keeping all other parameters constant and changes only the
temperature anisotropy, the skin depth increases by increasing the temperature
anisotropy because the temperature anisotropy acts energy source, which means
the greater the temperature anisotropy the more the distance will be travel by
the wave inside the plasma.

4.3.1 Variation of skin depth with kappa parameter

The plot of skin depth for di¤erent values of kappa parameter has been plotted
by keeping the temperature anisotropy T?

Tk
= 2 and

vtk
c = 0:01.
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Fig. 4.6. Skin depth vs wave frequency for the di¤erent values of kappa
parameter.
Skin depth varies directly with the kappa parameter. By keeping all other

parameters constant, we observe that as the kappa value increases, the number
of energetic particles decreases, which means that the resistance to the wave
decreases. Therefore, the wave will penetrate more deeply into the plasma. It
is clear from the above graphs that temperature anisotropy a¤ects skin depth
more than the spectral index.

4.4 Skin depth against temperature anisotropy for the dif-
ferent values of wave frequency (low frequency regime)

The skin depth in low frequency regime has been calculated by using the relation
between surface impedance and skin depth. Mathematically;

� =
!p
!

2�3=2�(�� 1
2 )
vtk
c

q
2��3
� (!

2

!2p
� 1 + T?

Tk
)

p
��!� T?
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(4.4)

Where ! is the wave frequency, !p is the plasma frequency, T?Tk is the tem-
perature anisotropy, vtk is the thermal velocity of particles, c is the speed of
light � is the kappa parameter. The skin depth has been plotted against the
temperature anisotropy for the di¤erent values of wave frequency by keeping
� = 2 and

vtk
c = 0:01 constant.
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Fig. 4.7. Skin depth vs temperature anisotropy for di¤erent values of wave
frequency (low frequency regime).
The graph shows that skin depth is inversely related to wave frequency

because the wave dissipates its energy signi�cantly more at high frequency than
at low frequency. The skin depth directly proportional to the temperature
anisotropy. This is due to temperature anisotropy providing more energy to the
wave, causing the wave to go far deeper in plasma. The increase in skin depth
is more dominant at low temperature anisotropy values.

4.4.1 Variation of skin depth with kappa parameter in low frequency
regime

Now we will see how the skin depth in low frequency regime variates with kappa
parameter by keeping the wave frequency ! = 0:001 and

vtk
c = 0:01 constant.
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Fig. 4.8. Skin depth vs temperature anisotropy for di¤erent values of kappa
parameter (low frequency regime).
Skin depth decreases for lower kappa values due to the presence of high-

energy particles. These high-energy particles create more resistance to the wave,
leading it to lose its energy quicker and penetrate less into the plasma. The
number of high-velocity particles reduces as the kappa parameter increases, and
the wave can travel further into the plasma.

4.5 Skin depth against temperature anisotropy for the dif-
ferent values of wave frequency (high frequency regime)

The skin depth in high frequency regime calculated numerically by using the
expression that relates skin depth and surface impedance. Mathematically;

� =
!p
!

vuuut1 +
!2p
!2

T?
Tk

2��3
2�

v2tk
c2

(
!2p
!2 � 1)

(4.5)

Where ! is the wave frequency, !p is the plasma frequency, T?Tk is the tem-
perature anisotropy,vtk is the thermal velocity of particles,c is the speed of light
� is the kappa parameter. The skin depth has been plotted against temperature
anisotropy for di¤erent values of wave frequency where kappa parameter and
speed of particles remains constant i.e.: � = 2 and

vtk
c = 0:01.
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Fig. 4.9. Skin depth vs temperature anisotropy for di¤erent values of wave
frequency (high frequency regime).
The skin depth increases linearly with increasing temperature anisotropy at

high frequency by keeping all the other parameters constant. This is because
the more the temperature anisotropy, the greater will be the energy source for
the wave, and the wave will cover maximum distance . It also shows that skin
depth has an inverse relationship with wave frequency. The higher the frequency
of the wave, the more quickly it will dissipate its energy.

4.5.1 Variation of skin depth with kappa parameter in high fre-
quency regime

Now we will see how skin depth changes by changing the kappa parameter and
keeps the other variable constant. i.e.: ! = 0:001" and

vtk
c = 0:01.
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Fig. 4.10. Skin depth vs temperature anisotropy for di¤erent values of
kappa parameter (high frequency regime).
The skin depth decreases in the presence of high-energy particles because the

higher the energy of the particles, the greater the resistance to the wave, and
smaller will be the skin depth. By increasing the value of the kappa parameter,
the skin depth increases. It is because the high the value of the kappa the
less will be the number of high-energy particles, allowing the wave to penetrate
deeper into the plasma.

4.6 Comparison of skin depth at low and high frequency
regime

As we obtained the expression of the skin depth for two limiting case i.e. high
and low frequency cases. So we compared the skin depth plots for both low and
high frequencies while keeping all other variables constant, to observe how an
electromagnetic wave travel inside the plasma in case of high and low frequencies.
The detail discussions are given below,
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Fig. 4.11. Comparison between the skin depth at low and high frequency
regime.

Skin depth has inverse relationship with the wave frequency, meaning higher
frequencies penetrate less deeply than lower frequencies. This occurs because
the faster oscillations of the electric �eld in high-frequency waves cause the
free electrons in the plasma to respond more quickly and absorb energy more
e¢ ciently, limiting their penetration depth. The above graphs shows the com-
parison of the skin depth at low and high frequency regime by keeping all the
other parameters constant. So we can see from the plots that because of the
low frequency the skin depth in resonant case is greater than the skin depth in
non-resonant case
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5 CONCLUSION

This thesis is about the spatial damping of electromagnetic transverse waves in
bi- Kappa distributed plasma, which is of signi�cant interest to understand the
surface impedance, absorption, re�ection and heating mechanisms in both space
and laboratory plasmas. The kinetic theory is used to calculate the expressions
of the surface impedance and skin depth. The e¤ects of the di¤erent parame-
ters on surface impedance and skin depth has been studied. The results indicate
that the real part of the surface impedance gives us the absorption which is in-
versely proportional to the frequency. Moreover, it is also observed that the real
part of the surface impedance varies with both the temperature anisotropy and
the kappa parameter. Notably, the kappa parameter has a greater in�uence on
the real part of the surface impedance than the temperature anisotropy. On the
other hand, the imaginary part of the surface impedance varies directly with the
frequency. In contrast, the temperature anisotropy and the kappa parameter
have no signi�cant impact on the imaginary part of the surface impedance. The
skin depth has also been calculated by using the relation between surface im-
pedance and skin depth. The skin depth for both the resonant and non-resonant
cases (i.e. low and high frequencies regimes respectively) has been studied. We
also calculate the general expression of skin depth (both for resonant and non-
resonant case) and observed that the skin depth is inversely proportional to the
wave frequency and have direct relation with both the temperature anisotropy
and kappa spectral index. It has been observed that in anisotropic plasma, the
skin depth varies inversely with frequency in both the low and high frequency
regimes. While the e¤ect of the temperature anisotropy in low frequency regime
is more signi�cant in low value of temperature anisotropy as � increases the skin
depth remains constant, In contrast to this in high frequency regime the skin
depth varies linearly with the temperature anisotropy. It is also noted, the kappa
spectral index have direct relation with the skin depth in both the frequency
regimes. In low kappa distributed plasma the wave attenuates less as compared
to the more kappa distributed plasma.
We also compared the resonant and non-resonant case and observe that

the skin depth in resonant case (low frequency) is greater than non-resonant
case(high frequency) it is because of skin depth has inverse relationship with
the wave frequency, meaning higher frequencies penetrate less deeply than lower
frequencies. This occurs because the faster oscillations of the electric �eld in
high-frequency waves cause the free electrons in the plasma to respond more
quickly and absorb energy more e¢ ciently, limiting their penetration depth.

58



6 Bibliography:

[1] Richard Fitzpatrick, Plasma Physics an introduction, 01, Springer (2004).
[2] Https://www.britannica.com/science/phase-state-of-matter.
[3] Frances .F Chen, Introduction to Plasma Physics and controlled fusion,
08 Plenum press, New York (1984).

[4] J.A. Bittencourt, Fundamentals of Plasma Physics, 34 Springer (2004).
[5] David J.Gra¢ th, Introduction to electrodynamics, 332 Pearson. (1999).
[6] D.C Montgomery and D.A Tidmann, Plasma Kinetic Theory, 51,
McGraw-Hill, (1964).

[7] V.Pierrard. M.Lazzar, 267, 153-174, SolarPhys (2010)
[8] M. Lazar, S. M. Shaaban, H. Fichtner, et al., 25, 022902
Physics of plasmas, (2018).

[9] Thomas H. Stix., Waves in plasmas. American institute of Physics,
266, Melville NY, (1992).

[10] N. S. Yoon, S. S. Kim, C. S. Chang, and D.-I. Choi, Phys. Rev. E 54,
757 (1996).

[11] Aman-ur-Rehman; Tajammal H. Khokhar; H. A. Shah, et. al., 26,
082116, Physics of Plasmas , (2019)

[12] Https://cordis.europa.eu/article/id/442098-plasma-antenna-technology
-for-new-communication-systems.

[13] M.Rubel, 38, 315-329, Journal of Fusion Energy, (2019).
[14] Thomas J. Dolan,Magnetic Fusion Technology, 175-232, Springer (2013).

59


	Muhammad Ihrar.pdf
	20231211125228_00001
	20231211125228_00002


