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Abstract

The skin depth has been calculated using the surface impedance for the transverse waves
in bi-kappa distributed plasma. The effects of temperature anisotropy on the surface
impedance and the skin depth have been studied using the kinetic model for an
electromagnetic wave striking on a plasma surface. It is noted that the real part of the
surface impedance has direct relation with temperature anisotropy and kappa parameter,
while changes inversely with the wave frequency. On the other hand the imaginary part,
however, is not affected by kappa parameter and temperature anisotropy significantly but
changes directly with the frequency. It also been calculated that the skin depth is inversely
related to the frequency in both resonant and non-resonant case. It has been found that
in low frequency regime (resonant case) the skin depth first increases with increasing
temperature anisotropy and then remains constant, while in high frequency regime (non-
resonant) the skin depth increases linearly by increasing the temperature anisotropy. It
has been calculated that the skin depth in both high and low frequency regime increases
by increasing the kappa parameter. The comparison between the skin depth at high and
low frequency shows that skin depth is greater in low frequency regime/resonant case.
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1 INTRODUCTION
1.1 What is Plasma?

A plasma is a quasineutral gas of charged particles that shows collective behav-
ior. Plasma is neutral enough that electron density is almost equal to density
of ions but not so neutral that all the electromagnetic forces vanishes. Collec-
tive behavior means that plasma behavior depends on each individual particles.
Plasma is the most abundant form of matter in the known universe. Everything
in the early universe was made up of plasma. Stars, nebulae, and even interstel-
lar space are all currently filled with plasma. Plasma is also propagated across
the solar system in the form of the solar wind, the Earth is entirely wrapped
by plasma, trapped within its magnetic field. There are also lots of terrestrial
plasmas to be observed. They appear in scientific experiments of many kinds,
lightning, fluorescent bulbs, and more [1].
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Fig. 1.1. States of matter [2].

1.2 Debye shielding

Debye shielding is the characteristic behavior of plasma that describe the screen-
ing of electric field by plasma particles. Assume we intended to create an electric
field within plasma by introducing two charged balls connected to a battery. The
balls would attract particles of opposite charge, resulting in a cloud of ions sur-
rounding the negative ball and a cloud of electrons surrounding the positive
ball. If the plasma was cold and there were no thermal motions, there would be
the same number of charges in the cloud as there were in the ball; the shield-
ing would be perfect, and there would be no electric field in the plasma’s body
beyond the clouds. If the temperature is finite, however, the particles at the
cloud’s edge, where the electric field is weak, have enough thermal energy to
escape the electrostatic potential well. The cloud’s "edge" then appears at the



radius where the potential energy is approximately equal to the thermal energy
KT of the particles, indicating that the shielding is not complete. Potentials of
the order of KT /e can leak into the plasma, creating inadequate electric fields.
The approximate thickness of such a charge clouds is given by,

e KT,
= 1.1
Ap =/ e (1.1)

Where, Ap is called Debye length and it’s the measure of length over which
the electric field is screening out by plasma [3]

Fig. 1.2. The Debye shielding.

From here we can defined quasi-neutrality. If the debye length is much
shorter than dimension L, then whenever the potential introduced to the plasma,
it will shielded out in a short distance as compared to L, which will left the bulk
of plasma free of potentials.

1.3 Ciriteria for plasma

Every ionized gas is not plasma, there is certain conditions that must satisfy for
an ionized gas to be called a plasma.

1.3.1 Quasineutrality

If the dimension L of a system is larger than Debye length, then potential will
be shielded out at a short distance, leaving the bulk of plasma free of fields.

Ap << L



1.3.2 Numbers of particles

Debye shielding is possible only if there are large numbers of particles. If there
are few particles then debye shielding will not be a valid concept.

Np >>1

1.3.3 Collision time

If collision between the particles are large, then the motion of particles is con-
trolled by hydrodynamic forces rather than electromagnetic forces. If w is the
frequency of plasma oscillation and 7 is the mean time between the collision
with neutral atoms. then following condition is need to be satisfied for gas to
behave like plasma [3].

wr >>1

1.4 Plasma models

There are different plasma mathematical models that are used to examine the
plasma, its properties and phenomenon associated with it e.g. particle orbit
model, fluid model and kinetic model. We will discuss it one by one.

1.4.1 Particle orbit model

It is a simple approach in which we study the motion of individual particle of
plasma i.e. its interaction with the electric and magnetic field. This gives us an
understanding that how charged particle behave in the presence of electromag-
netic field. It is applicable in low density plasma.

The basic equation of this model is Newton’s equation;

- dv
F=md=m— 1.2
ma =m-— (1.2)
Where F is the Lorentz force defined as;
F=q(E+7x B) (1.3)
Thus;
d_' — —
md—: =q(E+7x B) (1.4)

But it failed in the case of collisional plasma, because of collisions it’s very
difficult to observe the particles trajectories and orbits [4].



1.4.2 Fluid Model

The presence of numerous fluid-like features in plasma, such as coherent motion
has been observed. Plasma can be treated as a fluid since it has a wide range
of velocities and particle collisions, which helps to maintain the local equilib-
rium distribution of particles. Thus, the dynamics of plasma can be explained
by macroscopic quantities that are directly related to average values, such as
temperature, densities, and velocities [1].

1.3.2.1 Equations of fluid model The equations that are use in a fluid
model are,

1) Maxwell’s equations

2) Equation of continuity

3) Equation for momentum transport

Maxwell’s equations Maxwell equation are given as:

V.E = Eﬁ (1.5)
V.B=0 (1.6)

. 9B
VxE=->" (1.7)

Vx B = o+ e

Here E and B are the electric and magnetic field respectively, J is the
current density and p is the charge density. These quantities indicate the effect
of particle position and mobility on electromagnetic fields.

Equation [1.5] is the Gauss law for electrostatic which tells us that the electric
flux across any closed surface is proportional to the electric charge enclosed by
the surface.

Equation [1.6] is the Gauss law for electromagnetism which says that mag-
netic monopole does not exist.

Equation [1.7] is the Faraday law of electromagnetic induction which states
that "An emf will be induced in a coil by changing the magnetic flux".

Equation [1.8] is the Maxwell-Ampere’s law, it states that by changing the
electric fields or currents will generates circulating magnetic fields [5].

(1.8)

Equation of continuity It tells us that flow rate is constant which means
that mass in a given volume of space changes only if there is a net mass flux
into or out of that volume.

on

= = V.(n1) (1.9)



In term of charge and current density, we can write it as,

op =
o =V (1.10)

Equation for momentum transfer As the velocity in fluid model is a
function of both space and time, so the time derivative of velocity is,

du  Ou 6uxd7:1cA (“)uydiyA (“)uZ@A

du _ du duy 111
it ot T or att T oyl os @’ (1.11)
or
di 0u
—_— = — u. V)i 1.12
= g H@V)a (1.12)
The equation of motion for n number of particles can be written as,
ou el L o
mn— + (€.V)d = nq(E + ¥ x B) (1.13)

ot
The above equation is for collisionless plasma, if we consider collision and
thermal effects than we add the pressure gradient term i.e. -V P to the right
side of the equation.
i.e.

—

mn% + (@.V)i =nq(E +7 x B) - VP (1.14)

The above equation is called momentum transport equation. All these equa-
tions are used to describe the plasma dynamics.

1.4.3 Kinetic model

The fluid model which is the microscopic description of plasma has some lim-
itation that makes it unable to fully describe some phenomenon. For example
we cannot study the wave-particles interactions, temperature anisotropic and
non-thermal plasma. Kinetic theory is the microscopic description of plasma,
it gives us more accurate and clear picture of the plasma as compared to fluid
model.

In the kinetic model, the distribution function of the particles is depending
upon position, velocity and time given as;

f(r7v7t) =f($7y>zavzvvy’vz7t) (1'15)

There are seven variables, three spatial, three velocity vectors and one tem-
poral [3].



1.3.3.1 Equation of kinetic model As the distribution function is a func-
tion of position, velocity and time i.e. f(r,v,t). So, the time derivative of
distribution function can be written as;

df _Of 9fdx _Ofdy  Ofdx _ Of v, _ Of dv, _ Of du,

— = S = 1.16
ot Taror Ty Tt o ot Tavg o oo 1Y
af _of | . ,
= == : . 1.1
7 at+va+an (1.17)
As,
- dv
F=m—
"t
also,
F=q(E+7xB) (1.18)
So, it can be written as;
dfC 8f — q ' = >3
- == . —(F B 1.1
o 6t+va+m( + 7 x B) (1.19)
In case of collisionless plasma ’gf =
¢%+U.Vf+%(ﬁ+ﬁx§):0 (1.20)

The above equation is called Vlasov-Equation [6].

1.5 Classification of distribution functions

There are different types of distributions functions which are used to study the
different plasma environments e.g. maxwellian distribution, kappa distribution
etc.

1.5.1 Maxwellian distribution

The Maxwellian distribution is also known as Maxwell-Boltzmann distribution.
A gas in thermal equilibrium contains particles of all velocities, and the most
probable distribution for all these velocities is Maxwellian distribution.

which is given by;

1 2
() = Aexp(—2el) (121)
Here A is normalization constant given by;
A= n(— )2 (1.22)

2 KT



Here f(u)du shows the numbers of particles per m? with velocities between
u and u+du. %mu2 is the kinetic energy while K is the Boltzmann’s constant
K=1.32x10"%J/K.

The width of the distribution tells us about temperature T [4].

Probability

Speed v (mls)
Fig. 1.3. Maxwell distribution at different temperatures.

Bi-Maxwellian distribution When temperature anisotropy is taken into
account, then we have two different thermal velocities of charged particles i.e.
parallel and perpendicular in the direction of the magnetic field. Mathemati-
cally,

n 1 02 vl
fv) = 55— exp (—L + ') (1.23)
1

1.5.2 Non-Maxwellian distributions

It is observed experimentally that natural occurring plasma is not in thermody-
namic equilibrium. So non-maxwellian distribution is required to deal with such
type of plasma. These type of distributions are common in space and laboratory
plasmas.

Kappa distribution Nonthermal particle distributions occur frequently in
the solar wind and many space plasmas, their presence has been generally de-
termined through spacecraft data. Such variations from Maxwellian distribu-
tions are likely to exist in every low-density plasma in the universe where binary
charge collisions are rare. These suprathermal population are well described by



kappa velocity distribution functions. These distribution have high energy tails
that deviated from maxwellian distribution. It is defined as;

B n T(k+1) LQ et
100 =T i () 20

Where 0 is the thermal velocity,

g_ [2r—3ksT
n K m

Here & is the spectral index. It must take the values from s > % because at
% the thermal velocity is not defined and the distribution function collapses. As
Kk — 00, the distribution function reduces to Maxwellian as shown in the figure
[7].

T
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Fig. 1.4. The kappa velocity distribution function for the different values of
kappa parameters.

Bi-kappa distribution In temperature anisotropic plasmas like non-thermal
emission in astrophysical sources and the magnetic field fluctuations in space
plasma, where the plasma have different temperatures in different directions,
then we bi-kappa distribution function, which is given by,

2 —(k+1)
1 r 1 v 2
floL, v = n (+1) ) <1+|2+Ul> (1.25)

w203 0 k32T (k — 5 KO K0T

It is very useful for studying the instabilities that arises from temperature
anisotropy [8].



1.6 Waves in plasma

There are many types of waves dependmg on the direction of wave vector k to the
electric field E and magnetic field B. The waves exist in plasma are perpendicu-
lar propagating (k 1B ), parallel propagatlng (k I B ), transverse propagating
(E L El) longitudinal propagating (k I El) electrostatic propagating (31 =0)
and electromagnetic propagating waves. Some of the electromagnetic propagat-
ing waves are, Ordinary-mode (O-mode), Extra Ordinary-mode (X-mode), R-L
waves, etc., are produced when there is a magnetic field perturbation [9].

1.7 Surface impedance

It characterizes the interaction of electromagnetic waves with plasma boundary.
It is defined as the ratio of tangential electric field to that of tangential magnetic
field at the plasma surface. Surface impedance is a complex quantity whose real
part shows the power absorption inside the plasma while the imaginary part
give us the phase of the reflected wave [10].

It is given as;

>~

m Ey(0)
Ty = ——= 1.26
¢ B.(0) (1.26)

1.8 Skin depth

When the frequency of the electromagnetic (EM) wave is less than the frequency
of the plasma, it attenuates when it interacts with the plasma. This phenom-
enon is called skin depth. It is the measure of how much an electromagnetic
wave travels inside the plasma. It depends on electrons thermal motion, if the
thermal motion of an electron is weak, then it is called normal skin depth and
if the electron thermal motion is taken into account the skin depth is called
anomalous skin depth. The penetration of an electromagnetic wave depends
on plasma frequency. if w > w, then plasma is called underdense plasma and
electromagnetic wave can pass through the plasma and if w < w), then plasma
is called overdense plasma and electromagnetic waves cannot pass through the
plasma [11].
Let consider the dispersion relation of an O-mode,
2k2 2 2

=w pr

As in overdense plasma w, > w, so the above equation will reduce to,

=0=— (1.27)



where c is the speed of light and w,, is the plasma frequency given as,

nee?

w =
v Me€o

1.9 Application of surface impedance and skin depth

Surface impedance and skin depth have numerous applications in plasma physics.
Some of the applications are;

1.9.1 Designing plasma antennas

A plasma antenna is a new type of radio antenna in which plasma replaces the
metal parts of a typical antenna. A type of plasma antenna " gas plasma an-
tenna'" uses a discharge tube instead of metal elements. A gas plasma antenna,
as compared to metal elements, is a form of plasma antenna. As current trav-
els into the tube, the gas partially or completely ionizes to plasma, becomes
conductive, and behaves as a mirror, eventually transmitting and receiving sig-
nals. Plasma antennas are nearly transparent to a wide range of electromagnetic
waves above the plasma frequency and becomes invisible when the apparatus
is turned off and the gas de-ionizes. Plasma antennas have several advantage
over metallic antennas like, plasma has extremely high electrical conductivity,
which aids in the receiving direction, and transmission of various radio signals.
Plasma antennas may be electronically modified, which implies that their fre-
quency, bandwidth, and directivity can be changed without physically modifying
the antenna. As a result, they are extremely flexible and responsive to a wide
range of applications. The surface impedance of a plasma antenna is critical
to the antenna’s design and functioning. It determines the antenna’s efficiency,
bandwidth, and directivity. The surface impedance influences how the antenna
interacts with the plasma. The skin depth of an antenna controls how much of
its surface is efficiently employed to emit or receive electromagnetic waves [12].

10
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Fig. 1.5. Structure of plasma antenna.

1.9.2 Plasma wall interaction

The plasma core is well separated from the first wall materials in magnetically
confined fusion plasmas. Highly energetic particles, on the other hand, can
escape the contained plasma and incident with the surrounding walls. These
collisions result in transfer of energy to the walls causing localizing heat. Sur-
face impedance plays an important role in plasma wall interaction like, it can
influence the efficiency of energy transfer from the plasma to the wall and hence
the heat load on the material. Surface impedance can affects the magnetic fields
that confine plasma as well as the behavior of instabilities caused by plasma-
wall interactions. Surface impedance affects the reflection and absorptions of
particles which causes sputtering, impurities and stability of plasma. The skin
depth is significant in plasma wall interaction because it controls how far the
plasma’s electromagnetic fields can penetrate inside the wall [13].

11
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Fig. 1.6. Plasma wall interaction.

1.9.3 Plasma heating

The process of raising the temperature of a plasma is known as plasma heating.
It needs to achieve high-temperature fusion processes. This is done by several
methods like Ohmic heating, neutral beam injection, radio frequency heating
and magnetic compression. Surface impedance is an important factor in plasma
heating because it determines how effectively the plasma can be heated. The
skin depth affects how far the radio waves can penetrate into the plasma [14].

Transmission Line
Radio Frequency

—Ssw

microwaves

Fig. 1.7. Plasma heating
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2 PLASMA KINETIC MODEL

The fluid model has some limitation that makes it unable to fully describe some
phenomenon. For example, we can’t use fluid model to study wave particle
interaction, it fails in non-thermal equilibrium plasma. The instabilities arises
in plasma due to different causes cannot be studied by using the fluid model.
Moreover, even though the structure is different, as seen below, the fluid model
cannot distinguish between distributions that have the same area under the
curve (which will give us the total number of particles).

Kinetic theory is the microscopic description of plasma, it gives us more
accurate and clear picture of the plasma as compared to fluid model.

by pll

v
X v);

Fig. 2.1. Examples of two non-maxwellian distributions:
In the kinetic model, the distribution function of the particles is depending
upon position , velocity and time given as;

f(’l",’U,t) = f(m, Y, z,vx,vy,vz,t) (2'1)

There are seven variables, three spatial, three velocity vectors and one tem-
poral.

2.1 Equation of kinetic model

As the distribution function is a function of position, velocity and time i.e.
f(r,v,t). So, the time derivative of distribution function can be written as;

df _of 0fox 0fdy 0f0z  Of Ov.  Of Ovy Of Ov.
di ~ ot "ozot T dyot T 0:0t  ov, ot ov, ot Ou, Ot

(2.2)

As,

13



=m— 2.
m— (2.3)
So, it can be written as;
dfc _ af n — >3
i + U0V f+— (E+v><B).VUf (2.4)
.. dc _
In case of collisionless plasma ({t =0
of L=
Bt + IV, f +— (E X B).V,f=0 (2.5)

The above equation is called Vlasov-Equation.

2.2 Generalized dielectric tensor

The dielectric tensor is a matrix that describes the electric permittivity of
plasma in different direction. It tells us how an electromagnetic waves propa-
gate and interacts within a plasma. The dielectric tensor of a plasma is typically
anisotropic, meaning that its components vary depending on the direction of the
electric and magnetic fields. This anisotropy is due to the fact that plasmas are
made up of charged particles that are free to move. The motion of these charged
particles can cause the plasma to respond differently to electric and magnetic
fields that are applied in different directions.

2.3 Derivation of dielectric tensor for magnetized plasma

The dielectric tensor matrix is derived from Vlasov’s equation;

of  ~of  _of
5 TV aer "B =0 (2.6)

We can write the above equation in term of relativistic momentum. The
relativistic momentum defined as,

p=ymuv
where;
2
v
v=(01- 67)
Also,

N dp o o
F= E+9xB
il )
OF _ OF 0p oF

v 8p D) = Op

14



and

Op ov
E:'ymaz’yma
. 109P 1
éa—vimat m [E‘l"UXB]
Put Eq [i] and [ii] in Eq [2.6], we have;
of of 1 = . = of
815+U'8x+'yme[E+UXB]X’ymaﬁ_o
of  _of = = 0f
T +v.8x +e[E+v><B].aﬁ—0

Now, on linearizing;

f fo+f1
B=B,+5B
E=EFE,

q [2.7]=

. §xB .
oh | 8fl+e<E1+“XC 1).8fo+2(w30),8f1:0

ot 7

the Laplace Transform of derivative is;

afl /6f1 _stdt

= fre St f/fl(fs)e*“dt
0

= —fi(t =0) + sL(f1)
%ZSL[M

Fourier transform of derivative is;

df1 1 0f1, _ika
F(am) \/ﬂl_ 83:( k)dm]

15
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| e fOR k/@
= e D dx /( ik)e o dz

21
= L e—ikxf1|oo — 7(—ik)€_ikx X fl X dx
V2T -
—— |®) 7( ) fy
= 7 [ XL
V2T !
0 .
IS = aoyF(h)
0 _ .
IS = ik x P(f) (iv)
Apply this Fourier-Laplace transform on Eq [2.8], we have;
- e,, =.0 L = .0f,
(s—i—zk.v)fl—l—g(vXBo)a—fpl—i—e(El—&—fval) aj; =g (2.9)
where;
|,
= T f1(t = 0) 4 other t 2.10
g / me fi( ) + other terms (2.10)

Let’s define the relativistic cyclotron frequency: Relativistic cyclotron fre-
quency is defined as "The frequency at which high speed charged particles (speed
close to speed of light) gyrate around magnetic field lines.

ie.;
g= Lo _ L (v)
yme 5
Put Eq [v] in Eq [2.9], we have;
o, 0
(s+ik.0)f1 — Qai'](; + CI)(@) =0 (2.11)

where

o 1 — >3 a.fo .
O gy = e(Er + Ev x By) op —g (vi)

So, Eq [2.11] can be written as;

2 0 T g (2.12)

Eq [2.12] is the first order inhomogeneous differential equation

16



where homogeneous part is;

oG, s+ik.4

0P Q

Gy =0 (vii)

Now let’s define the coordinates for different parameters,
In cylindrical coordinates;

k= (ki,0,k))

U = (U, cos @, v sin ®, v))

=

—

kv =kivycos®+ kjy

So, Eq [vii] will becomes;

0G s+ik v, COS(I)+ik|\UHG 0
1 P

e Q
/ 3G1 - / s+ik v cos® + Zk”’UH 4P
G, Q
1 (oo}
Gll = exp 5 / (S + ZkH’U” + ik, v cos (I)”) d(b”
/ 1 . / . . .
Gy = exp {Qs + ik (® — @ ) — ik v (sin® — sin )] (viii)
The solution of inhomogeneous part is given as;
[EN P ,
fi= [ e (i)
Q
Now from Maxwell’s curl equations;
. 10B
v - -2
X c Ot

ikxBE=-B+X = B= "SkxE+X (x)
c s
= N S - A4r - .
tkxB=-E+—J-Y (xi)
c c

Here X and Y is the integration term.

17



Put Eq [¥]
zkx—kfofE+4—7rq
s
kx c(k E)] = $°E + 4dnsJ

BxC)=(AC).B - (A.B).C

(s + PKE — Pk(k.E) + drsJ = X —Y
(s> + PK)E — Pk(k.E) + 4rsJ =1 (xii)

Here J is the current density and I is the integral term
J = anno/favd?’p
«

put Eqns [vi] and [ix] in Eq [xii]
s+ikjv)(®— o' )—ik v (sin ®— sin @ )
xd® =1

qao/pdp/[eQ —gvx(kxE)af"
(2.13)

(s> +PK?) E—Pk(k.E) +47TSZ

or we can written as;

(s> + PK)E — Pk(k.E) + 4ws(0.E) = I

Here § is the conductivity tensor, it tells us how in anisotropic plasma an
electrical conductivity varies in different directions

J=0oE

Now, we will solve the last term of Eq [2.13]

i-e:
B Lo (F x E)fg;
— - S;m [ﬁ (k x E)] .88];_;,
S L @ixB) S (xiii)

18



o 6f0 _ afo afo
E g = Eg 2+ By

In cylindrical coordinates,

dafo
+ Ez
Opy Op.

Pz =prcos®, p,=prsin®, p, =p

= Jf,

7 9fo +0fo Afo

+ E,sin® + B,

= F,cos®
! Op. Ip|

op Op.

Put the above value in Eq [xiii], we have;

! . ’ afo afo 1 - e = afo

= (E, ® +FE i} E, - kx E)|.——

( CoSL o+ By sin ) op1 + dp  sym {p x (B x )} op
Applying the identity;

Ax (B xC) = B(AC) — C(A.B)

So, the above equation will be;

_ 4 . ! afo afo_ 1 - 5 "8fo (= “8fo
= (Ez cos® + E,sin® ) ap. +E, o sym p.E) (k. 817) (p.k)(E. 8]5')
(xiv)

Let solve each term separately;

PE=pLcos® E, +pysind E, +p|E.

8fo ! afo 8f0
k.— =k cos® + kK
op + op, dp
ﬁE = p, cos 'k, + ik
n afo 8fo ’ 8fo . ’ afo
E.—=E, cos® + FE sin® + F,
op op1 Yopy Ip)

By putting all the values in Eq [xiv], we will get;

(pL cos ®'E, + py sin @lEy +p E.)

/ N Ofo . Of, i ki cos® o 4 9l
= (ET cos® + E, sin<I>> / E, fo_ 1 (kL ap. T I ap;)
dpr "Opy sym ,, —pucos®kL+pky)
fo ! fo qin & df.
(Eogy=cos® + Eygresin® + E; T )

19



’ / 8
(Ewcosq) +Eysin<D> fo

dfo
+ E

3]% “op,

E -‘rka‘LCOS(I’ sin @' 8f°E —|-ka“§111(1) “E

. +p‘|klcos<1> E +p\|k\|8poE pJ_kJ_COSQ(D Ewgf E, pJ_k:J_cos<I> sin @’ ngy

] fo fo
Pl COS(I) k)J_ apH E kaH Sln‘I) L Ey - p”k‘H sm(I)
After simplification:

o1,
ap Ly — PR g5 B

. FE, cos <I>,k” (pL ggu
— (B. cos®' B, sin @) gfo g0
P

Ofo )

— E,sin® k
“apy sym Ty 1 (peo

Ofo
Bp” )
B, cos®'k, (m e =) aa;fi)
of. 0fo 0
o' Zlo ® b
{COS opr  sym il (pL ) ~Mop,
. 0f, ' 0Jo 0%,
) - ‘I’ g
i {sm OpL  sym sin® Ky (pL 9| o 8pL>] ’
8fo 7 ! < a'f afo >:|
+ | 2o cosd k o z
L?m sym Mo Mg,
cos @ 2o

9fo 0fo
op1 s*ym COSCI)kH (pl-ap“ — D Bpl)
. " dfo Ofo
+sin @ 81{ L sin®'ky (p. 2L

Lap, — P gfi) B
+9Le — cos @'k (pu Bl —py 22
=E-1ix(kxE).%Y=AE
As,

4drs(d

2
E):—SZW

P
5(1 /pdp/ |:eslzs+ik‘v(<I>—<I>,)—ik'J_vJ_(sin<1)—sin/) <« FE — o (
+oo

dd
s " op
So, by putting all the values in above equation we will get

4ms(d; LE) =

0o 2w Lo
_SZ /pJ_dPL /dpu/d@/d@/ (2.14)
—00 0 +o0
11y !
e

~ ( s+ik)v) (®—P )—iki vy (sin ®—singp )) ~ (pL cos®,p| sin@,pu) (A’ E)
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From the above equation, we can calculate the different elements of dielectric
tensor.

Let’s calculate 0.

00 0o 27 o
W2 ’
ATSO 4y = — Lo d d d® [ d® 2.15
TSO SZ Q /PJ_ PJ_/ pu/ / ( )
« 0 —c0 0 +oo
« (e%s-‘rik”v” (@—@')Hhu(sin<1>—sin')) % b1 s B cos B fo jk” 'UJ_% oy 9fo
31& S a’UH ov,
By change of variables;
-0 =a
 =d—a
dd = —do
0o o] 2m 0
UJ2 ’
AMS$Oyy = stﬁ/mdm /dﬁu/dfb / dd (2.16)
« 0 —00 0 +oo

% (e%s+iﬁ“6“ atik, T, (sin ¢7sin(<1>7a)))

dfo i dfo Afo
xﬁlcosq)cos@—oz){ i —Ek’u <vlf—v / )}
Now, we will solve each term separately;

2w

/eihﬂM (sin @=sin(®=0)) ¢o5 G cos(d — a)dP
0

By Bessel’s identity:

eiz sin® _ i em@ % Jn(z)

n——oo

eizsin(@—a) _ Z e—L"(q:‘—Ol) % Jn(z>

n——oo

o0

eiz(sin@—sin((b—(x)) — Z ebn(‘i’—@-{-a) « Jﬁ(z)

n——oo

By using the above bessel property, we can write;
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2m
/elhﬂU (sin ®=sin(P=) o5 G cos(® — a)dP

0
2m [ee)
= / Z [ x J2(2)] cos ® cos(® — a)dP
o n——co
- 2
= Z Jz(z)/ei"a x cos @ cos(P — a)dP
nmmee 0
o 2
=27 Z e x J2(2) x ;dfb (xv)
n——oo

Put eq [xv] in Eq [2.16], we will get;

9 00 oo 0
T804 = —szwg /pLdpl /dp\I/ﬁ“ﬂknvnﬂnmada (2.17)
o 0 —o0 +oo
n? af. i of af
27 j 0? > — -k =2 — 2
X 27 <]/i(z) X kf_vi) X pL {8191_ pl <Ul8v| ) 8%—)}
Now,

0 0

/ eé(s-}-ik”v”+inﬂ)ada — [Q %

+o0

erll(s-i-ikH’UH +in)

s +ikjv) +in -
Q) .
C ZkHU” + in2 (XVI)

Put Eq [xvi] in Eq [2.17], we have;

i 7 n?x J2(z2)x Q3 [of, i af, 9/,
450y = —2 ve [ pidp, [ d . TR\ vegy TG,
SO TS Z 0 /pL pL / D kivi (s + ikjv) + infY) {Bpj_ sl <Ul av| V)| Ol >}
e} 0 — 00
(2.18)

By using bessel identity, we can find the other elements of tensor as;
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[ sin®sin(® — ) | [ JIQ
sin @ cos(P — «) Zdn Ty
cos Dsin(P — «) ’:J ),

o cos ® cos(P — ) . ;L;Jfl
f e—iz[sin @—sin(@—a)]dq) 1 =9 Z eina J721
0 sin ¢ nomeo —idnJ),
cos ® n J2
sin(® — «) ijnjl
cos(® —a) | QJQ”
Now Eq [xii] can be written as;
(s> + Pk — Pk(k.E) + 4dnso | E = I (xvii)

Here I is the generalized matrix. The above equation for different component
of generalized dielectric tensors then reads as,

Ry Rzy Ry
Ryr Ry, Ry.

By putting the value of ¢, and doing some complicated algebra, we will get
Rxm as,

s 91s w? ) n? x J? x Q of, i Afo df,
o = —2ms ) d d -k o
R st e kl 2ms Q /pL P / l k‘2 (S + Zki”’UH + LnQ) {8]91_ S I+ aUH Y 8’UJ_
[0 0 — 00
(2.19)

Similarly by doing the same calculations for o4y, 04;.....0;, all other com-
ponents of R; ; can be written as;

w2 T Vi n2x J,J,x Q2 [8f, i fo O,

_ —2 Do 2 / nYn o _ k o o
Ry LTS E Q /pj_dpl de kiv (s + ikyvy + in$2) {apl s ( 8UH — Y Ovy )}
a 0 — 00

(2.20)
2 o0 o0 2 2 .
) w2 ) n?x J2xQ of, i afo fo
xz — - - d d — *k —
r Chyki—2ms ) =5 /’”L pl/ I oL (s + ko) + inQ) [8p| BRI
[0 0 — 00
(2.21)
w2 F 7 n? x JoJ. x Q2 af, i af of
r = Pa 2 d d 2 — -k = - :
R, 27“9%: Q 0/]9J_ PJ__/ P kivy (s +ikjv) + inQ) [31& s (UL3U| I 5’1&)]
(2.22)
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9 o0 o0 7 2 .
2,212 “pa 2 I X Q2 oo i@ 9fo Ofo
Ryy = sk QWSZ Q /pLdpL / dp” kLUL(S + ik”v” + an) |:8pl SkH vt 8’UH Yl 8UL
« 0 —o0
(2.23)
w2 T T Tndl, % Q) of, i of of
L = . Po 2 dn d nYn YJo 2k YJo o
R, 2@7752 Q /PL DL / D) kivy (s + ikjoy +inf) {619' PRl <'UL Bu) Y| 5’1&)}
(0% 0 — 00
(2.24)
2 o0 oo 2 .
) Wy nx J, x Q afe i Ofo fo
L= 9 “Pe -k o=
R, c k”kl WSZ Q /pLdpL /p”de kJ_/UJ_(S'i_Z'k”’UH T inQ) [8p¢ s I\vL 3’UH v v
o 0 — 00
(2.25)
w2 T T Jnd. X Q of, i af, af.
=2 Pa nen ° — k =2 — -
Ry ims ) Q /pl-dpL / PP (s 4 ko) + inf2) 8 |:6PL s (UL gl N 31&”
« 0 —00
(2.26)
2 % < 2
2, 212 “pa Jn x 2 Ofo 1 9fo Ifo
R s“+c ki 27rsz 0 /pL DL /p” P (s—|—zk‘|v||—|—mQ) {827' PRl maU” vl\avl
« 0 s
(2.27)

The above equations are the components of the dielectric tensor, each com-
ponent of a tensor is defined for different types of waves.
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3 MATHEMATICAL MODEL

The surface impedance and skin depth of a transverse waves have already been
calculated by using the bi-maxwellian distribution function [11]. In this thesis
we are extending this work discuss the surface impedance and skin depth for bi-
kappa distributed plasmas in both the limits: that is resonant and non-resonant
cases.

3.1 Generalized dispersion relation of transverse waves by
kinetic model

Transverse waves propagate in such a way that its wave vector is perpendicular
to electric field (k L E) as shown in the figure.

Y-axis

X-axis

Z-axis

Fig. 3.1. Geometry of the wave.
The vlasov’s equation is given by;

%+ﬁ.g—£+%[ﬁ+éﬁx é].%:o (3.1)
Upon linearization;
f=fot+ /1
E=E
B=B,+B

In case of unmagnetized plasma BO:O

| .
Oh L 590 | 1 Yy 5.9 g (3.2)
c ov
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By considering the sinusoidal perturbations,

9 _ —iw 9 _ 1k
ot " ox
By applying Fourier-Laplace transform and put the above values in Eq [3.2];
~ Ofo . Ofo
—iw X 8f1 + iUk X 6 f1 + [ 8]1 fvalaj;,]:O
Ofo L = 0f,
( w+vk)(5f1+ [Elaf_, fvalaJ;,]ZO
. e a o JEN >3 a o
0f1 =1 [E1 afﬁ *1} X Blaij;] (33)

m (w — . k)
Transverse permittivity

It is the component of the permittivity tensor which describe the response
of a plasma to an electric field which is perpendicular to the direction of prop-
agation (E L K). It is given as;

el k) = 1 — e/vé(f) dv (3.4)

WE(k)

Put Eq [3.3] in Eq [3.4],
=

4’/Ti . >3 afo
er(w, k) =1- e/v f— <E1 - + v x By _,> (3.5)
WE(r) m (w - ﬁ.k) v v

. 10B
VXE=="%0
= ik x E = —=(—iw)B
cE -
- (3.6)

Put Eq [3.6] in Eq [3.5],

er(w, k) =1- A e/v i% (Elafo + 1v X CkEafO)
wE 1 m(wff)’.k) ov ¢ w Ov

26



4 2 E 0 P k 0 o
crlw.k) = 14— /” . af s af
me (w=5F) By % (w-7k) O

Since our wave is transverse so k.E=0;

4me? /v af, n v2k df,

k)=1 —i
er(w, k) + w2 v, (w B ﬁu.E) v

dme? 0 ok o
er(w, k) =1+ 7re2 /Uxa—f + anf (3.7)
mw 8UJ_ (w - 17”./4}) av“
The dispersion relation is;
2.2 A 2
L (OJ - ’U”.k> Il

The above equation is the generalized dispersion relation of transverse waves
in un-magnetized plasma.

3.2 Dispersion relation of transverse waves by bi-kappa
distribution function

The generalized dispersion relation is given by;

k2 4me? df, n vk df,
— — [ v A
w? mw? ov (w — 7 k) v

dv (3.9)

The bii-kappa distribution function is defined as;

—Kk—1
1 T(k+1) v 2
= 1+ — + —
fo m3/207 0 k3/2T(k — 3) < K07 KO

Uﬁ U2 —k—1
fo=A(l14+ —5+—5 (3.10)
kO KO
Here;
1 I'(k+1) 9 2k —3, 4
A= , 00 1 =(—)w
WS/ZGQLGH HB/QF(H — %) Ll ( K ) bl
Now
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2 —Kk—=2
Ole _ A(—r—1) (1 + Ly ) x 2L (3.11)

vy 59 n92 KO
9fo i e - 2u)

= A(— 1)1+ + X —= 3.12
v (=~ 1) < Kﬁﬁ /i@z Kﬁﬁ ( )

Put Equs [3.10], [3.11], and [3.12] in Eq [3.9];

r 2 —Kk—=2 5
o 20 vik e —

k? 47T6 CA[dv - {( Y <1 M + ) “ et T (""_’UII-E)( 1)

w2 - m v 02 Tre2 2v

x(1+naﬂ+ﬁ;ﬁ> X o

k2 87re _(*FL -1 ”ﬁ v? o k(—r — 1)”3.”“ UH vi o
= A fdv |l | 14—+ s 1+ 0+

w K/HJ_ KJGH HHJ_ K)GH (w — UHk) K‘a Kej_

As;

o] 00 2
/dv:/ / / vidvdvdg
0 —o0 JO
) —Kk—2
—rk—1 UH
21.2 2 a2 <1+ 92 + >
ck 8” / / / v dvy dvyd

w2 ( 102 k —k—2
r—Dv] {=r=1)vd kyy ”H
KGH (w— v”k) <1 + )

as;

27
/ do =27
0
”H

3( rk—1)
k2 ~y 1677 / / K07 <
w? ( k—1) vav” (1 n vH

) —Kk—2
d'UJ_d'U”

4y

(3.13)
Now we will perform parallel and perpendicular integration separately;
Perpendicular Integration:

—K—2
/mvii(inil) 1+U—ﬁ+—vi dv |
0 et K&ﬁ ot

(w ’UH k)



2 —Kk—=2
(—r—1) /°° 5 v, vt
=2 |1+ 24+ = dvy
n@i 0 + nb‘ﬁ 1193_

By change of variables;

2 —K—2
—x—1 oo v 2
:7('%2 )/ z3 1+—!+% dx

_(=k-1) ((1 + ZZ)“,B“)

,‘493_ 2(k + K?)

Put Eq [3.14] in Eq [3.13],

K2

(3.14)

16722 © [(—k—1) (14 5)"p*
w2 =1+ o2 A[/w{ ey ( 20k + K2) >

Here;

8% = k%

(—r =Dk (A28
+/<50|2(w17|l;)< 2(”6—1_“{2) )}d |‘|

21.2 2.2 o 1 v% —k 4
Ak :1+167reA / (5—2&—1) (14 %)™ 8
w? mw? oo o 2k(k + 1)

(st Dk (A28t
* n&ﬁ(wfﬁulz) < 25(’{4'1) )}d |‘|

2k? 16722 < 1+ Lz)fﬁﬂél
2 =1 54 o2 +
w mw e 2K267

As;

+oo 'Uﬁ -
14+ — dv
/_ N o2 I

and

—c0 W YR R J_~

By change of variables;

2 _ Y
Tt ==

2
eﬁ, ’Uﬁ = 2329”, d?)“ = deH

29

VAl(k — 1)

2= L(k)

(F), o)
=

(L+ &) "6
o dv .
2/{20ﬁ(w — ) k) } l} (3.15)

(3.16)
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-(d)
“ / S dab)

_— — —
K (z0) — %)
let
-
9= %o,
L oo (1 + L—,f)f
—7/ -~ —de=1 (3.17)
£)ow (=9
Put Eq [3.16] and [3.17] in Eq [3.15];
G _ 16w | p0 VAThrR) | B VAT +m> w [T
2 — T A 22 29 I R (_'“)dx]
w mw 2r407 /ﬁf(f@) 2& I p R J-x r—g
Bt Vrh(k—3)
k2 1622 5707 T(m - OIVE .
2 — T 2 4 Val(k—1) +oo(1+ ,'.Oé—:‘ﬁ”
w mew 2529ﬁ ( T'(k) S vy 0”\/>+ f (z— g) dl‘)
Now, by using modified plasma dispersion function;
1 (k)
Z 1
@ = Zmar iy
_ Vs (5 — 5)Zx(9)
I'(x)
Put the value of modified plasma dispersion function in above equation, we
will have;
w fﬁl/zl“(

k2 w262 4 (k-1 4 p 1
Mo 10 A[ gy e S (frr((m) 2 O vk + —

272 262 4 N w
2k 16m°¢* | 5 [Wﬂ\/g{lz_ll?(lﬂwnz”(g))}}

k2 me’n, 8t | Val (-1 + & w
e [ty (o]

30



dre®n, A 7B | VAD(=% + k) 1 1 w
Sl o 12 [F(,{) NG 2 gfﬁ (1 + kelZn(g))

1
(3.19)
Put the value of A in Eq [3.19],
1 T(k+1) )
= = 0
/2070 k32T (k — 3)’ b= VKoL
ck? w?, K207 1

D(k+1) |[V7D(—% + k) 11 w
w2 S w? K2 732026, K32 (k — L) [ ]_"(:) "I\/E{Qz - (1+ Zn(g)) H
6> w

D(k+1) =&l'(k)

k2 w2 /KK (k) 6> w
SRR ot T A a2 R R 1
= 2 w? T(k)K3/2 9ﬁ ( +k9\| n(g))

12, 6 w
—1-2 Ly Yy
w? 2 o7 ( kO, (g))

k2 w? 0°
-t 1P |1-L(q 7z,
2 o2 [ 0 (1+9Z:(9))

k2 . w2 /KD(k + 1)

w?

w2 T(k)K3/2

By using Gamma function properties;

The above equation is the dispersion relation of transverse wave by bi-kappa
distribution function, where;

Z,.(g) is the modified plasma dispersion function

Zx(9) = ﬁpr((:)_ 5) Zsfsgn (1+82>K

26 — 3 T,
01” = (7% )112 and v, = I

ti
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3.3 Electric field equation

Now we will calculate the electric field equation from which we will obtain the
electric field profile for resonant and non-resonant case when a transverse wave
travel in bi-kappa distributed plasma and the sum of both electric fields equation
will give us a surface impedance whose real part shows power absorption and
imaginary part gives us phase of a reflected wave then we will connect the surface
impedance equation with skin depth and will obtain the skin depth for high and
low frequency regime.
By Maxwell’s equation,

Vxﬁz—i%lj (3.21)
Vxé—i%?:irj (3.22)
Using the identity A.[BxC] = B.[C x A] = C[A x B] on Eq [3.21],
= VIV B = V()
V.V]E = %%(v « B)
V?E = —%% (V x B)
L (1)
de;’Z(Z) + %jEy(z) - —47;% (3.23)

Apply Fourier transform on Eq [3.23],

+oo 2E ) +oo 2 ) +oo 47 )
/ d y(z)e—zkzdz+/ %Ey(z)e—zkdeZ/ B WZwJe—zkzdz

2
— 0o dz —0c0 —o00

—ikz 00 . —ikz w? T Amiw ik
(=B (2) 1) — ((~ib)e kEy(z))—f—c—Ey(k:):/ AT g ik g,

) , +oo . , 2 too g )
[t ()] ke B )+ % By (k) = /_ SR OB()e Mz, ] = 0B(2)
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w? 4w
— Ey(k)

) ’ 0 T +oo o
{eﬂkz Ey(z)]_oo n [e k Ey(z)]o + ik (ikEgy) + 5 By (k) = ==
—ikO —ik(—o0) 1’ —ikoo 1 —ik0’ 27,2 w? 4miw
(6 y(0) ~ € y(—w))+(6 Ey(o) — € Ey<o>>+Z KB+ By(k) = —— 5~ By (k)
/ 5 w? 4dmiw
2 (0) = k*Eq,y — C—QEy(k) — C—QEU(IC)
Now;
- 10B
E=———
VX c Ot
—/ w= 0
=——B'"— =ik
c at "
Put in above equation, we have;
iwBy(2) s w?  Amiw
2(————)=F k*— — — ——
( c ) y(2) ( 2 2

2iwB(2) i ,  w? dam
_ e Pe\C) ikz E —— 1 -
p e y(2) {k c2 + w
2iwB,(2) , w?
_7()6“6'2 _ Ey(z) <k2 — —Q[Et(W,k)}
p c
2iwB, (2 e’
Ey(z) = - ) 2 _ w2
c k? — 7[5t(w7 k)]

Now, on applying inverse Fourier transform we have;

1 [T 2%wB,(z etkz
Ey(z) = 7/ - ( ) 2 w2
21 ) oo ¢ k=% e(w k)]

The electric field profile while entering the plasma is given as,

—w +o0 eikz
Ey(z) = —Bx(z)/ ———dk (3.24)
me —oo k% — Zrler(w, k)]

Here, ¢;(w, k) is the transverse permittivity , which is define as,

(3.25)

2 2
b [1 gz
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3.4 Resonant and Non-Resonant cases

The interaction of waves and particles in a plasma is referred to as the resonant
and non-resonant case. The wave frequency in the resonant situation is the
same as the particle’s cyclotron frequency. As a result, the wave and particle
are in phase and the wave is able to impart energy to the particle. While in non-
resonant case both frequencies are not same due to which the wave and particles
are out of phase and the wave does not transmit much amount of energy to the
particles.

3.4.1 Non-resonant case (large argument)
The equation for electric field profile is,
o +oo ikz
Ey(2) = —~ B, (2) / S ;) (3.26)
e —00 k% — %[et(wa k)]

where ¢;(w, k) shows us the transverse permittivity given as,

w2 92
k) =1- 2 [1 -9 (14 42.(9)

L (3.27)
0

As in the Eq [3.27] poles exist in the denominator, we will apply residue
theorem.
—iw

Ey(z) = B.(z)

e

ikz
91 Re s : (3.28)
k2 — %€ (w, k)]

Put the denominator equal to zero.
2
w
k* — C—Q[at(w,k’)] =0
Put Eq [3.27] in above equation, we will get.

o= - - Gz -

c2 w2 Gﬁ

2k? w? 62
=1-2L21-=+{1+¢,.(2,
w2 w2 [ 9ﬁ {1+6.(Z(9)}

Here Z,(g) is the modified plasma dispersion function which we can expand

as,
i/mRIE3/2 K2 1 1
Z(p>2l)= ———F - (l-5+.)——(1+—F+.)
L (k- 3) &k " & 268
Put —%(1 + ﬁ) term of modified plasma dispersion function expansion in

above equation, we have;
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So the electric field profile for non-resonant case will be,
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For the limit case; z— 0,

(3.30)

The above equation [3.30] tells us about the electric field profile of a wave
incident on a plasma boundary.

3.4.2 Resonant case (small argument)

i +oo eikz
By(z) = ?B‘r(z) /_OO k2 — <7 [€; (w, k)]

As the poles are exist in the denominator so by residue theorem,

2
= {kQ—Z € (w,k;)] =0

Put Eq [3.27] in above equation,

w? w? 62
it |- Lo aaen )| -

w? Hﬁ

For small arguments the modified plasma dispersion relation can be expand
as,

i/TK!

2k —1 2k +1
k32T (k — 1)

(K* +1) 4
27525 +..)- - &(1 »

Z(& < 1) = (1-6+ &)

Put #&i%) in above equation,
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12 w? 1 wZ 1 62 LY i/TK! B
e e U erre-n) ] 71

2 w? 62 w i/TK!
K242k k, — k2= |12l UL (4 Y :
P L2 w? Qﬁ * kO k32T (k — 1)

k? < k2

2 w2 62 w i/TK!
= k2 Q'krk-:w— 1Pl ZL(14 =V
PSR = [ w? { o] * kO k32T (k — 1)

Now, separating real and imaginary part,
Real part:

Put 2 3 T
_ ek —=9 o 2 L
YoV

(3.31)

Imaginary part:

ok, = 00w /Al
r c2 Qﬁ k@H 53/2F(I€ — %)

1 w26% w VTR!

"T22 2 0) 3P (k - L)

3,2

Put value of 0f = 2 v, and k, in above equation,

K

i 1 WwiT) w /TE!

2 [“c’—; {1 — %’Z’ (1 _ %)H c2 Ty vy, K3/2T (1 — %) 2r—3

K
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1 TL w ﬁﬂ'
(4 -1+ %) T v wsar(s - 1) /23

K

ki =

As,
k=k,+ik;

Put the value of &k, and k; in above equation,

2 w? T 1 T !
SN =y P R A
¢ w T (5 -1+ %) T v amser(s - 4)

w? — w2 T\ . 1 T, w VTE!
ky, = ) 1— =+ —H(—

w? .\ T v,
e 1+ ﬁ) It 263/20 (1 — 3)4 /2

2 w2 T 1 T !
yy = wp<1l)+i( L w VTK

So the electric field profile for resonant case will become,

%g -1+ %) Tjj vy, 21321 (k — %) 25=3

K

(3.32)

ikz
w e’
Ey2 (Z) BI(Z)E iﬁmxTiJ-L
w2 _ ﬁ(l _ Ty Tty
c2 c? T 2,{3/2F(n7%)\/2~;3(%§71+%)
ikz
w e
Eys (Z) B,;(Z); £ in/TRIX ek
w [1_ ﬁ(l -1 “ vty
c w? T 2n3/2r(5—%)\/—2“;3(:—§—1+%
p
eikz
Ey,(2) = Ba(2)
Y2 z i 1x Tl _c
o2 i/TR!IX T v

_ %% _ T
1 (1 T”)+

K

263/20(k— 1) 4/253 (:—5—1+%)
p

As surface impedance define on the plasma boundary so at z— 0;
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Zeikz =1

z—0
1

E,u(0) = B.(0) e

1— ‘ﬁ)(l -y kil had]

w? T 263/2T (k— 1)y /222 771+%)
1
E,,(0) = B,(0) - AT (3.33)
-3 Mt
w I 2/{3/2F(n ) H KK/ 3(:%71+%)
P

The above equation tells us about the electric field for resonant case when a
transverse wave penetrating the plasma

The complete profile of an electric field is the sum of two electric fields
equations given by Eq [3.30] and [3.33];

Ey0) = Ey, (0) + Ey,(0)

2 w2 1
Ey(0) = iB,(0),| — =g —

(710_ ) w2 T szi'XT

: 1- - T0)+ e
T arar e ) OB (2 1A
1 wp T, 2R—3vtzll
E,(0) _; T T o T2+ 1
- w? TR TJ-

B,(0) (% —1) 1_%%(1_%) VR

+
23/2T (ki — 1) L\ /ZE=3 3(‘” —14+ZL TH

The ratio of tangential electric field to that of magnetic field is called surface
impedance. So the above equation can be written as,

B0 |1t F RN 1
2= B0 " w2 M /e It
I (51 1_&%(_&)+ AT
w T 253/2F(H_%)%H\/@(L_1+€ﬁ)
(3.34)
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3.5 Surface impedance

The surface impedance tells us how an electromagnetic wave interacts with
plasma boundary. It is a complex quantity. The real part of surface impedance
gives us power absorption while the imaginary part tells us about the phase of
the reflected wave. It is defined as;

3.5.1 Real part of surface impedance

The real part of surface impedance tells us about how much a wave will absorb
while entering the plasma. It is given as;

1
Re|ZS| - iR X Sk
1_";5(1_L)+ — il
T e ) S EES ( 14h)
p
. T
iV/TRIX ==
1- 91— Ty - T
o3
ST et ) < ES (s -1 )
X “p Il
i 1x Lo
1_“’7125(1_74)_ ZIﬁH'XTH
T, 't 3 w2 T
“ I 263/2T (n—4) - /253 E*Hﬁ)
; IxEL
1 wp 1- T WX il
- F( - TH)

Ut =3, .2 T
P
2k3/2T(k—1) CH /L(ﬁ_]_,_i”)

2 T, 2
1-Z0-3)| + Mk
w Ty 2n3/2r(n—%)4\/2~7f(%—1+%)

1- 21— %)
Re|Zs| = 5 — 5 (3.35)
{ lfw—’z’( ?)} N f;@.xT—H
? : 26820 (n= ) =L VB (57 -1+ )

3.5.2 Imaginary part of Surface Impedance

The imaginary part of surface impedance tells us about the phase of the reflected
wave from the plasma boundary. It is given as;
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(3.36)

3.6 Relationship between surface impedance and skin depth

The relationship between the surface impedance and skin depth is derived by
using Faraday’s law along side with the definition of surface impedance.

— —

Ey (0) eikz

t
<
—

w
&

I

By(2) = By (0) [/ h07]

Now, By Faraday Law;

~  10B
VIE=
VxE=-“5
c
As,
T
vxB=| £ 2 2
0 Ey(z) 0
0 iw
- -“pB
2 By = -2B.(2)
. W
(iky — ki) Ey(2) = ?ch(z)
c(ik, — k;)

B.(z) = - E
(5= =R (o)
Ey(z) w
B.(z)  c(k; —ik,)

As,
4dr E,(z)
Zy= 22U
¢ Bu(2)
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2 a0 [ i) r
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Im | Z,| pL [ ik; ]
| T2+
1Z)?  drw 1
Im|Z,| & k
A2 |Z)? 1
- =0 6=— 3.37
47w Im | Zs| k; (3:37)

The above equation relates surface impedance with skin depth.

3.7 Calculations of skin depth
In this section we will derive the expressions of skin depth for high and low
frequency regime. As skin depth is defined in eq (2.34) as;

- c? |ZS|2

 dmw Im|Z,]
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3.7.1 Skin depth ( in low frequency regime)

The surface impedance is calculated as,

—_
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‘v ©
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vt
T aesrr e B (5

In the low frequency regime the second term of above equation is taken in
consideration. Surface impedance is defined as;

S|

7 _4r E,(0)
¢ B.(0)
By putting the values,
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Now,

T
IK’XTfJ”‘
A 2k3/2T (r—4) L /252 ——1+%)
Im|Zs| = —— 5 2
‘ 1- % T, VERL T
. p — L +
w2( T”) 23 /2T (1 t” /ZK, 3 771+77ﬂ“ﬁ
(3.39)
Put the values of Eqns [3.38] and [3.39] in Eq [3.37], we will get
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This is the equation for skin depth in low frequency regime

3.7.2 Skin depth (in high frequency regime)

The surface impedance is given by Eq [3.34]

14 “pTL26-3 vy
7 _ Ey(0) T T o i 1
s = =1 2 - T
BI(O) (712) _ ) 1 LTE( - L) n zv\/?m!XT—ﬁ
@ R O N e A

44



and it is defined as;

_ 4 E,(0)
Zs = ¢ B,(0)

we will only considered the first term of Eq [3.34] for calculations,
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This equation describes the skin depth in high frequency regime.
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4 RESULTS AND DISCUSSION

We have calculated the surface impedance real and imaginary parts and skin
depth both for resonant and non-resonant cases of transverse wave in bi-kappa
distributed unmagnetized plasma by using the kinetic theory. The integral given
in Eq. [11] has been solved for two limiting case high and low frequency regime
to calculate the real and imaginary parts of the surface impedance and relates
it with the skin depth. As previously mentioned, the plasma’s density and
the electromagnetic wave’s frequency determine whether plasma is underdense
(w > wpe) or overdense (w < wpe). The results have been plotted for nor-
malized frequencies to maintain discussion validity over an extensive spectrum
of frequencies and densities i.e., as a function of w/wy.. In this discussion, all
the results are for overdense plasma, where w < wp.. As our plasma are bi-
kappa distributed, which means that there will be high velocity particles called
suprathermal particles and temperature anisotropy, which means that the tem-
perature are different in different direction. It is represented by n = %,Here
T, is the temperature of the electron moving perpendicular to the direction of
the propagation and T is the temperature of electrons parallel to the direction
of the propagation. When plasma is isotropic then 1 = 1, the greater the value
of 1 , the more the plasma will be anisotropic. In this work we consider temper-
ature anisotropy n > 1. We investigate how the temperature anisotropy, wave
and plasma frequencies and kappa parameter affects the surface impedance and
skin depth. The detail discussion are given below;

4.1 Real part of surface impedance against wave frequency
for the different values of temperature anisotropy

The real part of surface impedance tells us how much a wave absorb while
interacting with the plasma surface. We have obtained the real part of surface
impedance by using the dispersion relation of a transverse wave and solving the
modified plasma dispersion function analytically.

w T
1-%a-%)
Rel|Z;| = - 5 (4.1)
Tr! =k
1= S0-)+ (= i
ST Thaenre- pyES (-1 5
Where w is the wave frequency, w,, is the plasma frequency, % is the tem-

perature anisotropy, k is the spectral index which tells about the supra-thermal
particles. By plotting the above Eq [4.1] by keeping x = 2 and U%” = 0.01 we
will get the graph of real of surface impedance for different value of temperature
anisotropy.
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Fig. 4.1. Real part of surface impedance vs wave frequency for the different
values of temperature anisotropy.

The graph shows that the real part of the surface impedance is inversely pro-
portional to the wave frequency. This means that increasing the frequency the
power absorption decreases. Additionally, keeping the spectral index "k” con-
stant and increasing the temperature anisotropy will increase the power absorp-
tion. In other words, the wave gains more energy as the temperature anisotropy
increases.
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4.1.1 Variation of real part of surface impedance with kappa para-

meter
0.0020}
0.0015} o
Re[Zs] -4
—_— K=
0.0010} ke
I k=10
0.0005}

0.0 0.2 04 0.6 0.8

Fig. 4.2. Real part of surface impedance vs wave frequency for the different
values of kappa parameter.

We can see that the power absorption increases as x increases by varying the
value of the spectral index x while keeping the temperature anisotropy constant
at n=2. However, it is noticeable from both graphs that the spectral index
influences power absorption more than temperature anisotropy.

4.2 Imaginary part of surface impedance against wave fre-
quency for the different values of temperature anisotropy

The imaginary part of surface impedance related with wave reflection. It has
been calculated by using transverse waves dispersion relation and its electric
field profile. The expression of the imaginary part of the surface impedance is;

1x L
- - VTRIX il
T, 2k—3 vt 3 w2
I+ 35 263/20 (k= §) b /22 (25 — 14 B)
Im |Z,| = ! — 7 I
st w?2 2 T
£ 1 TRIX =
(wZ ) |: 1 i%( _ n):| + f T
T t "3 w2
w I 263/20 (r— 1) =L /253 E—H%
(4.2)

By plotting the above Eq [4.2] by keeping k = 2 andv%” = 0.01, we will
get the graph of imaginary part of surface impedance for different value of
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temperature anisotropy.
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Fig. 4.3. Imaginary part of surface impedance vs wave frequency for the
different values of temperature anisotropy.

The graph shows that the phase reflection of the wave is directly propor-
tional to the wave frequency,which means that the wave reflection is greater at
high frequencies Furthermore, the imaginary part of the surface impedance isn’t
significantly affected by temperature anisotropy.

4.2.1 Variation of imaginary part of surface impedance with kappa

parameter
Now we will see how the imaginary of surface impedance changes with kappa
U
parameter by keeping the temperature anisotropy % = 2 and % = 0.01 con-
stant.
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Fig. 4.4. Imaginary part of surface impedance vs wave frequency for the
different values of kappa parameter.

The graph shows that by keeping the temperature anisotropy constant and
changes the values of the spectral index kappa, the imaginary part of the surface
impedance does not changes, which means that the spectral index kappa does
not have any significant affect on the phase reflection of the wave.

4.3 Skin depth against wave frequency for different tem-
perature anisotropy values

The mathematical expression for skin depth has been obtained both for high
and low frequency, by using the relation between surface impedance and skin
depth. The combined expression is given by;

3/2 1\ % [2k—3 [ w? T w2 T, 2k—3
p2/~€/F(i<L75)7 (& -1+ %) 1+ 57

5= wf ko \w? ﬁ w 2k c?
1w Lo w2
w LT T w (% —1)
(4.3)
Where w is the wave frequency, w,, is the plasma frequency, % is the tem-

perature anisotropy, vy, is the thermal velocity of particles,c is the speed of light
k is the kappa parameter which tells about high velocity particles.

Upon plotting the above Equation [4.3] by keeping x = 2 and WT” = 0.01,
we get the graph of skin depth against the wave frequency for different value of
temperature anisotropy.

50



50+

40}
30f
° [ 5
: — n=
20+
— n=10
— n=20
10 =
ot
0.000 0.001 0.002 0.003 0.004 0.005
[ )
Wp

Fig. 4.5. Skin depth vs wave frequency for the different values of temperature
anisotropy.

The plot shows the inverse relation between the skin depth and wave fre-
quency becuase as frequency increases wave oscillate more rapidly and their
energy dissipate more quickly as compared to the lower frequencies. It also
indicates that by keeping all other parameters constant and changes only the
temperature anisotropy, the skin depth increases by increasing the temperature
anisotropy because the temperature anisotropy acts energy source, which means
the greater the temperature anisotropy the more the distance will be travel by
the wave inside the plasma.

4.3.1 Variation of skin depth with kappa parameter

The plot of skin depth for different values of kappa parameter has been plotted
by keeping the t t isotropy Z- = 2 and —L = 0.01
y keeping the temperature anisotropy 7~ = 2 and —- = 0.01.
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Fig. 4.6. Skin depth vs wave frequency for the different values of kappa
parameter.

Skin depth varies directly with the kappa parameter. By keeping all other
parameters constant, we observe that as the kappa value increases, the number
of energetic particles decreases, which means that the resistance to the wave
decreases. Therefore, the wave will penetrate more deeply into the plasma. It
is clear from the above graphs that temperature anisotropy affects skin depth
more than the spectral index.

4.4 Skin depth against temperature anisotropy for the dif-
ferent values of wave frequency (low frequency regime)

The skin depth in low frequency regime has been calculated by using the relation
between surface impedance and skin depth. Mathematically;

5 ﬂ2ﬁ33/zr(li — %)WT”\/Z"—,?(Z—; -1+ %)
w LA %

Where w is the wave frequency, w,, is the plasma frequency, % is the tem-
perature anisotropy, vy, is the thermal velocity of particles, c is the speed of
light x is the kappa parameter. The skin depth has been plotted against the
temperature anisotropy for the different values of wave frequency by keeping

k=2 and MT” = 0.01 constant.

(4.4)
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Fig. 4.7. Skin depth vs temperature anisotropy for different values of wave
frequency (low frequency regime).

The graph shows that skin depth is inversely related to wave frequency
because the wave dissipates its energy significantly more at high frequency than
at low frequency. The skin depth directly proportional to the temperature
anisotropy. This is due to temperature anisotropy providing more energy to the
wave, causing the wave to go far deeper in plasma. The increase in skin depth
is more dominant at low temperature anisotropy values.

4.4.1 Variation of skin depth with kappa parameter in low frequency
regime

Now we will see how the skin depth in low frequency regime variates with kappa
v
parameter by keeping the wave frequency w = 0.001 and % = 0.01 constant.
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Fig. 4.8. Skin depth vs temperature anisotropy for different values of kappa
parameter (low frequency regime).

Skin depth decreases for lower kappa values due to the presence of high-
energy particles. These high-energy particles create more resistance to the wave,
leading it to lose its energy quicker and penetrate less into the plasma. The
number of high-velocity particles reduces as the kappa parameter increases, and
the wave can travel further into the plasma.

4.5 Skin depth against temperature anisotropy for the dif-
ferent values of wave frequency (high frequency regime)

The skin depth in high frequency regime calculated numerically by using the
expression that relates skin depth and surface impedance. Mathematically;

5 = w = I 26 ¢ (45)
@ (-1
Where w is the wave frequency, w), is the plasma frequency, % is the tem-

perature anisotropy, v, is the thermal velocity of particles,c is the speed of light
k is the kappa parameter. The skin depth has been plotted against temperature
anisotropy for different values of wave frequency where kappa parameter and
speed of particles remains constant i.e.: kK = 2 and v%” =0.01.

o4



1.6}

— w=0.01
| ] — w=0.02
14} : .
— w=0.03

w=0.04

Fig. 4.9. Skin depth vs temperature anisotropy for different values of wave
frequency (high frequency regime).

The skin depth increases linearly with increasing temperature anisotropy at
high frequency by keeping all the other parameters constant. This is because
the more the temperature anisotropy, the greater will be the energy source for
the wave, and the wave will cover maximum distance . It also shows that skin
depth has an inverse relationship with wave frequency. The higher the frequency
of the wave, the more quickly it will dissipate its energy.

4.5.1 Variation of skin depth with kappa parameter in high fre-
quency regime

Now we will see how skin depth changes by changing the kappa parameter and

keeps the other variable constant. i.e.: w = 0.001" and vtT” = 0.01.
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Fig. 4.10. Skin depth vs temperature anisotropy for different values of
kappa parameter (high frequency regime).

The skin depth decreases in the presence of high-energy particles because the
higher the energy of the particles, the greater the resistance to the wave, and
smaller will be the skin depth. By increasing the value of the kappa parameter,
the skin depth increases. It is because the high the value of the kappa the
less will be the number of high-energy particles, allowing the wave to penetrate
deeper into the plasma.

4.6 Comparison of skin depth at low and high frequency
regime

As we obtained the expression of the skin depth for two limiting case i.e. high
and low frequency cases. So we compared the skin depth plots for both low and
high frequencies while keeping all other variables constant, to observe how an
electromagnetic wave travel inside the plasma in case of high and low frequencies.
The detail discussions are given below,
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Fig. 4.11. Comparison between the skin depth at low and high frequency
regime.

Skin depth has inverse relationship with the wave frequency, meaning higher
frequencies penetrate less deeply than lower frequencies. This occurs because
the faster oscillations of the electric field in high-frequency waves cause the
free electrons in the plasma to respond more quickly and absorb energy more
efficiently, limiting their penetration depth. The above graphs shows the com-
parison of the skin depth at low and high frequency regime by keeping all the
other parameters constant. So we can see from the plots that because of the
low frequency the skin depth in resonant case is greater than the skin depth in
non-resonant case
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5 CONCLUSION

This thesis is about the spatial damping of electromagnetic transverse waves in
bi- Kappa distributed plasma, which is of significant interest to understand the
surface impedance, absorption, reflection and heating mechanisms in both space
and laboratory plasmas. The kinetic theory is used to calculate the expressions
of the surface impedance and skin depth. The effects of the different parame-
ters on surface impedance and skin depth has been studied. The results indicate
that the real part of the surface impedance gives us the absorption which is in-
versely proportional to the frequency. Moreover, it is also observed that the real
part of the surface impedance varies with both the temperature anisotropy and
the kappa parameter. Notably, the kappa parameter has a greater influence on
the real part of the surface impedance than the temperature anisotropy. On the
other hand, the imaginary part of the surface impedance varies directly with the
frequency. In contrast, the temperature anisotropy and the kappa parameter
have no significant impact on the imaginary part of the surface impedance. The
skin depth has also been calculated by using the relation between surface im-
pedance and skin depth. The skin depth for both the resonant and non-resonant
cases (i.e. low and high frequencies regimes respectively) has been studied. We
also calculate the general expression of skin depth (both for resonant and non-
resonant case) and observed that the skin depth is inversely proportional to the
wave frequency and have direct relation with both the temperature anisotropy
and kappa spectral index. It has been observed that in anisotropic plasma, the
skin depth varies inversely with frequency in both the low and high frequency
regimes. While the effect of the temperature anisotropy in low frequency regime
is more significant in low value of temperature anisotropy as 7 increases the skin
depth remains constant, In contrast to this in high frequency regime the skin
depth varies linearly with the temperature anisotropy. It is also noted, the kappa
spectral index have direct relation with the skin depth in both the frequency
regimes. In low kappa distributed plasma the wave attenuates less as compared
to the more kappa distributed plasma.

We also compared the resonant and non-resonant case and observe that
the skin depth in resonant case (low frequency) is greater than non-resonant
case(high frequency) it is because of skin depth has inverse relationship with
the wave frequency, meaning higher frequencies penetrate less deeply than lower
frequencies. This occurs because the faster oscillations of the electric field in
high-frequency waves cause the free electrons in the plasma to respond more
quickly and absorb energy more efficiently, limiting their penetration depth.
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