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Abstract

In this thesis timelike geodesics in the Kerr-Newmann spacetime are discussed.

It is thought that spacetime curvature is responsible for gravitation. Geodesics in

General Relativity describe the path of particles under the influence of gravitation.

The study of geodesics is of intrinsic significance in the study of the geometry of

spacetime.

A. Qadir and A.A. Siddiqui have discussed some aspects of the timelike geodesics

in the Reissner-Nordstrom background geometry. In particular, boundary of these

geodesics for freely falling observer is obtained at r = Q2/2m, where Q and m are

the charge and the mass of the black hole, respectively. Boundaries for the geodesics

for observers with positive and negative energies, at infinity, are also given. It is

found that boundary moves backward for observer with positive energy and moves

forward for observer with negative energy. In this thesis this work is extended for

the Kerr-Newmann spacetime geometry. The barrier for the freely falling observers

at rest (zero energy at infinity) and with positive and negative energies are obtained.

All the results obtained by Qadir and Siddiqui can be recovered from our results by

taking the angular momentum, a, equal to zero.
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Chapter 1

Some Solutions of the Einstein

Field Equations

1.1 Introduction

The Einstein theory of General relativity (GR) [1] is the most generally accepted

theory of gravitation. According to GR matter-energy alters the geometry of its

surroundings and thus the behaviour of nearby objects. GR gives most accurate

results for strong gravitational fields and also for weak gravitational fields.

In 1915, Albert Einstein published a set of 10 differential equations known as

the Einstein field equations EFEs [2]. Einstein believed that the Universe is static

and to balance the gravitational pull he added a cosmological constant to the field

equations. These equations relate the curvature of the spacetime with the presence

of mass, energy and momentum. The first spherically symmetric static vacuum so-

lution of EFEs was given by Schwarzschild in 1916 [3]. Reissner-Nordstrom (RN)

gave [4] another spherically symmetric static solution of EFEs, which represents the
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geometry around a point massive electric charge, static at origin.

If a pressure gradient force is not sufficiently strong, a body can continue collaps-

ing due to its self-gravity [5]. This phenomenon is known as gravitational collapse.

Gravitational collapse leads to formation of singularities. A gravitational singularity

or spacetime singularity is a location where spacetime curvature becomes infinite.

It is considered as missing piece of the spacetime and disrupts the predictability of

the spacetime. It is generally assumed that naked singularities must be physically

excluded, as they could otherwise introduce unpredictable influences in their future

null cones. Considering geodesics for a naked RN singularity, it is found that the

singularity is effectively clothed. Regarding electron as a naked singularity, the size

of the clothed singularity turns out to be classical electro-magnetic radius of the

electron, to an observer initially at rest and falling freely from infinity [6]. In this

thesis we extend the study of timelike geodesics in the Kerr-Newmann (KN) geome-

try, which is a solution of the Einstein-Maxwell equations, describing the spacetime

geometry surrounding a charged, rotating mass. The plan of the thesis is as follows:

In the Chapter 1, basic knowledge of differential geometry and derivation of the

Einstein field equations are given, then some solutions of Einstein field equations

are discussed. Chapter 2 presents review of a paper by Qadir and Siddiqui [6] on

some aspects of timelike geodesics in the RN singularity background. This work is

extended in Chapter 3 for the KN spacetime and a brief conclusion of the thesis is

given.

Differential geometry is a basic tool for deriving EFEs, so some basics of differen-

tial geometry are discussed first. Assuming that reader has knowledge of vectors and

tensors, a discussion of the metric tensor, Christofell symbols, covariant derivative,

the Riemann Curvature tensor and other related tensors are given in this section.
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The Minkowski spacetime is a flat four dimensional manifold (x, y, z, t) having

three ordinary dimensions of space combined with a dimension of time. Every point

on a Minkowski spacetime is called an event. An event is represented by a vector.

Consider any two events P and Q with coordinates (tp, xp, yp, zp) and (tQ, xQ, yQ, zQ)

respectively. The distance between these two events is defined as

ds2 = c2dt2 − dx2 − dy2 − dz2, (1.1)

which is known as the Minkowski line element. The interval separating any two

events is timelike if ds2 > 0, spacelike if ds2 < 0, and null if ds2 = 0. Eq. (1.1) can

be written as

ds2 = gabdx
adxb, (a, b = 0, 1, 2, 3) (1.2)

where gab is second rank covariant symmetric tensor called the metric tensor, it maps

any two vectors u and v into R [7] i.e.

g(u, v) = gabu
avb = u.v.

The partial derivatives of a tensor of rank one or higher do not give a tensor. To

preserve the invariance of the derivatives we use a complicated rule of differentia-

tion, known as covariant differentiation. It is denoted by semicolon. The covariant

derivative of a covariant vector Ua is given by

Ua;b = Ua,b − ΓcabUc, (1.3)

and the covariant derivative of contravariant vector is

Ua
;b = Ua

,b + ΓacbU
c. (1.4)

The covariant derivative of a metric tensor is zero.

gac;b = 0, (1.5)
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For mixed tensor

Ua
b ;d = Ua

b,d + ΓacdU
c
b − ΓcbdU

a
c ,

where Γabc is the Christofell symbol, and it is defined in terms of the metric tensor

and its partial derivatives as

Γacb =
1

2
gad(gdb,c + gdc,b − gbc,d), (1.6)

and is symmetric in lower indices

Γacb = Γabc. (1.7)

The geodesic equations that give shortest path between two events is given by

ẍa + Γabcẋ
bẋc = 0. (1.8)

The Riemann Curvature tensor has great importance in describing the geometry of

spacetime, and it also helps to construct other tensors which give a full description

of gravitation [3]. In terms of Christofell symbols the Riemann Curvature tensor,

Ra
bed, is given as

Ra
bed = Γabd,e − Γabe,d + ΓcbdΓ

a
ec − ΓcbeΓ

a
cd, (1.9)

which can also be written as

Rabed = gacR
c
bed.

The curvature tensor satisfies the Bianchi identities, which are

Ra
bed +Ra

edb +Ra
dbe = 0, (1.10)

and

Rabed;c +Rabdc;e +Rabce;d = 0. (1.11)
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The Ricci tensor, Rab, can be obtained by contracting the Curvature tensor as

Rab = Rc
acb = gcdRcadb. (1.12)

The Ricci scalar, R, can be obtained by contracting the Ricci tensor as

R = Ra
a = gabRab. (1.13)

1.1.1 The Stress-Energy Tensor

The stress-energy tensor is a tensor quantity that describes the flux and density of

momentum and energy in spacetime. The stress-energy tensor is the source of the

gravitational field in the EFEs, just as mass density is the source of gravitational

field in Newtonian physics. The energy-momentum tensor is denoted by T ab. It is a

tensor of rank two and its components are displayed by square matrix of order 4

T ab =



T 00 T 01 T 02 T 03

T 10 T 11 T 12 T 13

T 20 T 21 T 22 T 23

T 30 T 31 T 32 T 33


, (1.14)

where T 00 is energy density, denoted by ρ i.e

T 00 = ρ.

T aa is stress tenor. T 0a = T a0 represents the momentum density and remaining T ab

when a 6= b represents shear stress. The contravariant form, Tab, and mixed form,

T ab , of the energy-momentum tensor are

Tab = gacgbdT
cd, (1.15)
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and

T ab = gcbT
ac.

In electromagnetic field the stress-energy tensor is given as

T emab =
−1

µo

(
−FaeF e

b +
1

4
gabF

uvFuv

)
, (1.16)

where µo is a constant.

1.1.2 The Einstein Tensor

The Einstein tensor, Gab, is obtained from the second Bianchi identity given by Eq.

(1.11). We start from contracting Eq. (1.11) with gab and using result given in Eq.

(1.5) to get

Rbd;e +Rc
bde;c −Rbe;d = 0. (1.17)

Contracting the above Eq. (1.17) with gbd, we get

(Red − 1

2
Rged);d = 0, (1.18)

where the term inside brackets is the Einstein tensor and it tells about the geometric

properties of a spacetime. In lower indices the Einstein tensor is given as

Gab = Rab −
1

2
Rgab. (1.19)

Gab is symmetric and divergence free, i.e.

Gab = Gba,

and

Gab;a = 0. (1.20)
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1.2 Einstein’s Theory of General Relativity

GR deals with geometry of gravitational force. Newton’s theory and GR give the

same answers, but the former tells us to think of gravity as a force, and the latter

tells us to think of it as curvature of spacetime. Newton’s theory of gravity is an

approximation to GR that works only when gravity is relatively weak, but breaks

down when gravity is strong [8]. Einstein knew that he had to build a theory that

was capable of describing the complicated nature of gravitation, and the universe,

utilising his ideas of curved spacetime, but he also had to create this theory with

the characteristic that at large distances from mass sources the universe can be ex-

plained by Newtonian mechanics. Einstein says, mass-energy tells spacetime how to

curve and curved spacetime tells mass-energy how to move. In GR we study space-

time in terms of curvature. A number of observational phenomena are successfully

explained by GR, such as bending of light, precession of perihelion of Mercury and

gravitational red shift [9].

Precession of Perihelion of Mercury:

The Mercury’s orbit is shifting its position very gradually over time, due to the

curvature of space-time around the massive sun. The orientation of Mercury’s orbit

is found to precess in space over time, This is commonly called the precession of the

perihelion, because it causes the position of the perihelion to move. Only part of

this can be accounted for by perturbations in Newton’s theory. There is an extra 43

seconds of arc per century in this precession that is predicted by GR and observed

to occur (a second of arc is 1/3600 of an angular degree). This effect is extremely

small, but the measurements are very precise and can detect such small effects very

well [10].
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Gravitational redshift:

GR predicts that light coming from a strong gravitational field should have its wave-

length shifted to larger values, detailed observations indicate such a red shift, and

that its magnitude is correctly given by Einstein’s theory.

Bending of Light:

Light bends because of an intrinsic curvature in the spacetime surrounding a massive

body [11].

Gravitational Collapse and Black Hole:

If a pressure gradient force is not sufficiently strong, a body can continue collaps-

ing due to its self-gravity [5]. This phenomenon is known as gravitational collapse.

A star is a self-gravitating collection of matter supported by its thermal pressure.

Thermal pressure is generated in star by thermonuclear reactions in it. Eventually,

these reactions can not continue forever and the pressure reduces to balance gravity

and star cools, contracts and the density of star continues to increase, so that the

escape velocity exceeds the speed of light. The question arises, what should be the

volume of an object so that it becomes dense enough to have escape velocity greater

then speed of light, and what would be the geometry of spacetime around such an

object?

Black Hole:

A black hole is a region of spacetime from which nothing can escape, not even light.

Around a black hole there is a mathematically defined surface, that marks the point

of no return, and is called an event horizon [12] .

Singularities:

A gravitational singularity or spacetime singularity is a location where spacetime

curvature becomes infinite. They are considered as missing pieces of the spacetime.
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They disrupt the predictability of the spacetime, and allow uncontrollable informa-

tion to enter into it. There are two types of singularities; (i) coordinate singularity

and (ii) essential singularity. Coordinate singularity is due to bad choice of coor-

dinates and can be removed by using appropriate coordinate transformations, and

Essential singularity is a physical singularity and can not be removed by coordinates

transformation. It is impossible to predict anything about the spacetime at such a

singularity.

Cosmin Censorship Hypothesis:

In 1969, Penrose gave that all singularities in physically realistic spacetimes are hid-

den inside event horizon, the horizon is the boundary of the region which is causally

connected to a distant observer [13]. Thus it acts like a one way membrane through

which energy and information can pass to the interior, but not to the exterior. The

singularity has no causal connection to an external observer; he cannot see it.

1.2.1 The Einstein Field Equations

In this section we discuss the EFEs and their important solutions. EFEs are a set

of 10 partial differential equations. Paths of freely falling bodies in a gravitational

field are simply the geodesics of the spacetime [14]. According to Newton’s first

law of motion Every object in a state of uniform motion tends to remain in that

state of motion unless an external force is applied to it. Einstein postulated that

particle would travel on a geodesic in spacetime. The path’s straightness depends

on spacetime curvature. In Newtonian viewpoint, gravitational force depends on the

presence of matter. In viewpoint of relativity, there is no difference between matter

and energy. Thus spacetime curvature must be related to the matter-energy. The
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symmetric stress energy tensor T ab tells about matter- energy distribution. T ab is

divergence free, i.e. we have

T ab;b = 0. (1.21)

As we discussed gravitation is due to curvature in spacetime, and the curvature of

spacetime is related to presence of matter-energy. Thus we expect that there must

be a relation between the stress energy tensor and the curvature tensor, i.e. we have

fab(Re
dch, grp) = T ab. (1.22)

We try to take fab in the simplest form. We take the Ricci tensor Rab and Ricci

scalar R to give

Rab −
1

2
gabR + Λgab = αTab, (1.23)

where Λ is cosmological constant and α is the Einstein gravitational constant. For

Λ = 0, we get

Rab −
1

2
gabR = αTab. (1.24)

Equations (1.24) are the EFEs. We take the classical gravitational equations to

evaluate the Einstein gravitational constant α

∇2ϕ = 4πGρ, (1.25)

where ρ is matter density and ϕ is the gravitational potential energy. For stress-free

material, we write

T ab ∼ ρc2ẋaẋb. (1.26)

Special relativistically in rest frame we have [15]

ẋ0 =
dx0

dx0
= 1,
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and

ẋi = 0, (i = 1, 2, 3).

Therefore, the geodesic equations

ẍi + Γi00ẋ
0ẋ0 = 0,

give

ẍi = 1/2giig00,i.

Taking the classical limit gii ∼ −1, we have

ẍi = −1/2(∇g00)c2. (1.27)

Classicaly

ẍi = −∇ϕ. (1.28)

Comparing Eqs. (1.27) and (1.28) we get

g00 = 2ϕ/c2 + constant. (1.29)

As r →∞, ϕ→ 0, therefore, constant→ 1. Hence,

g00 = 1 + 2ϕ/c2. (1.30)

The 00-component of the EFEs is

R00 −
1

2
Rg00 = αT00. (1.31)

Using Eq. (1.26) with lower indices in Eq. (1.31) we get

R00 −
1

2
Rg00 = αρc2 = 2Γi00,i,
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or

R00 −
1

2
Rg00 = ∇2g00. (1.32)

Using value of g00 from Eq. (1.30) in Eq. (1.2.1) we obtain

R00 −
1

2
Rg00 = 2∇2ϕ/c2. (1.33)

From Eqs. (1.33) and (1.2.1), we get

2∇2ϕ/c2 = αρc2, (1.34)

or

α = 2∇2ϕ/ρc4. (1.35)

From Eqs. (1.35) and (1.25), we get

α =
8πG

c4
. (1.36)

Putting the value of α in the EFEs (1.24), we get

Rab −
1

2
Rgab =

8πG

c4
Tab, (1.37)

or

gabRab −
1

2
RgabgabR =

8πG

c4
gabTab.

Or

R− 1

2
Rgabgab =

8πG

c4
T. (1.38)

In 4-dimensions gabgab = 4, so we have

R = −8πG

c4
T .
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Now, putting the value of R in Eq. (1.37), we get

Rab =
8πG

c4
(Tab −

1

2
gabT ). (1.39)

In vacuum trace, T , of Tab is zero, therefore, the EFEs in vacuum are

Rab = 0. (1.40)

1.2.2 The Schwarzschild Solution

The Schwarzschild solution is one of the most important and simplest of all exact

solutions to EFEs. This is spherically symmetric and time independent solution of

Einstein’s vacuum equations. the German physicist, Karl Schwarzschild [2] calcu-

lated the space around a spherically symmetric body static at the origin. The line

element at large distance from origin is required to be Lorentzian. In spherical polar

coordinates spherically symmetric static metric can be written as [14]

ds2 = eυ(r)c2dt2 − eµ(r)dr2 − r2dΩ2, (1.41)

where

dΩ2 = dθ2 + r2 sin2 θdφ2. (1.42)

The metric tensor gab is

gab =



eυ(r) 0 0 0

0 −eµ(r) 0 0

0 0 −r2 0

0 0 0 −r2 sin2 θ


, (1.43)
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and its inverse gab is

gab =



e−υ(r) 0 0 0

0 −eµ(r) 0 0

0 0 − 1
r2

0

0 0 0 − 1
r2 sin2 θ


. (1.44)

The non zero Christoffel symbols are

Γ0
01 =

υ′(r)

2
, Γ2

33 = − sin θcos θ, Γ3
23 = cot θ, (1.45)

Γ2
12 =

1

r
, Γ3

13 =
1

r
, Γ1

33 = −r sin2 θe−µ(r), (1.46)

Γ1
11 =

µ′(r)

2
, Γ1

22 = −re−µ(r), Γ1
00 =

υ′(r)

2
eυ(r)−µ(r), (1.47)

where ′ denotes derivative with respect to r. The surviving EFEs are

R00 = υ′′(r) +
1

2
υ′(r)(υ′(r)− µ′(r)) + 2

υ′(r)

r
= 0, (1.48)

R11 = −υ′′(r)− 1

2
υ′(r)(υ′(r)− µ′(r)) + 2

µ′(r)

r
= 0, (1.49)

R22 = 1− e−µ(r) +
1

2
r(µ′(r)− υ′(r))e−µ(r) = 0, (1.50)

R33 = R22 sin2 θ = 0. (1.51)

Adding Eqs. (1.48) and (1.49), we get

(υ(r) + µ(r))′ = 0,

or

υ + µ = constant. (1.52)
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If this constant of integration were non-zero we could define a new function υ(r) =

υ(r)− constant [2]. Therefore, without loss of generality, we can take constant = 0,

to have

υ(r) = −µ(r). (1.53)

Using Eq. (1.53) in Eq. (1.50), we get

1− (e−µ(r) − rµ′(r)e−µ(r)) = 0,

or

(re−µ(r))′ = 1,

or

e−µ(r) = 1 +
β

r
. (1.54)

From Eqs. (1.53) and (1.54), we have

eυ(r) = (1 +
β

r
). (1.55)

Here β is constant of integration. Using Eqs. (1.54) and (1.55) in Eq. (1.41), we

have

ds2 = c2
(

1 +
β

r

)
dt2 − dr2

1 + β
r

− r2dΩ2. (1.56)

Now, to determine the value of β, we use geodesic equations (1.8), to get

ẍ0 + 2Γ0
01ẋ

0ẋ1 = 0,

ẍ1 + Γ1
00(ẋ

0)2 + Γ1
11(ẋ

1)2 + Γ1
22(ẋ

2)2 + Γ1
33(ẋ

3)2 = 0,

ẍ2 + 2Γ2
12ẋ

1ẋ2 + Γ2
33(ẋ

3)2 = 0,
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ẍ3 + 2Γ3
13ẋ

1ẋ3 + 2Γ3
23ẋ

2ẋ3 = 0.

We can write above system of equations in terms of t, r, θ, φ as

c
d2t

ds2
+ cυ′(r)

dt

ds

dr

ds
= 0. (1.57)

d2r

ds2
+

1

2
c2υ′(r)eυ(r)−µ(r)

(
dt

ds

)2

+
1

2
µ′(r)

(
dr

ds

)2

− re−µ(r)
(
dθ

ds

)2

− r sin2 θe−µ(r)
(
dφ

ds

)2

= 0,

(1.58)

d2θ

ds2
+

2

r

dr

ds

dθ

ds
− sin θ cos θ

(
dφ

ds

)2

= 0, (1.59)

d2φ

ds2
+

2

r

dr

ds

dφ

ds
+ 2 cot θ

dθ

ds

dφ

ds
= 0. (1.60)

By choosing θ = π/2 and θ̇ = 0, above geodesic equations reduce to

d2t

ds2
+ υ′(r)

dt

ds

dr

ds
= 0, (1.61)

d2r

dt2
+

1

2
c2υ′(r)eυ(r)−µ(r)

(
dt

ds

)2

+
1

2
µ′(r)

(
dr

ds

)2

− re−µ(r)
(
dφ

ds

)2

= 0, (1.62)

d2φ

ds2
+

2

r

dr

ds

dφ

ds
= 0, (1.63)

dυ(r)

ds
=
dυ(r)

dr

dr

ds
= υ′(r)

dr

ds
. (1.64)

From Eq. (1.61), we get

d

ds

(
eυ(r)

dt

ds

)
= 0,

or

eυ(r)
dt

ds
= λ,

.

dt

ds
=

λ

eυ(r)
=

λ

1− β
r

, (1.65)

16



where λ is constant of integration. When r →∞, dt
ds
→ 1

c
, so we get

c
dt

ds
= e−υ(r). (1.66)

Multiplying Eq. (1.63) with r2, to have

d

ds
(r2

dφ

ds
) = 0,

or

r2
dφ

ds
= h0, (1.67)

where h0 is constant of integration. Classically,

r2
dφ

ds
=
h

c
, (1.68)

where c is the speed of light and h is Planck’s constant. Comparing Eqs. (1.68) and

(1.67), we have

h0 =
h

c
. (1.69)

Equation (1.41) can be written as

1 = eυ(r)
(
cdt

ds

)2

− eµ(r)
(
dr

ds

)2

− r2
(
dφ

ds

)2

. (1.70)

Putting values of c dt
ds

and dφ
ds

from Eqs. (1.66) and (1.68) in Eq. (1.41), we obtain

e−υ(r)
(
dr

ds

)2

= eυ(r) − h2

c2r2
− 1. (1.71)

Using Eqs. (1.71) and (1.66) and (eυ(r))′ = −β
r2

in Eq. (1.58), we get

dr2

ds2
− h2

c2r3
− β

2r2
− 3

2

βh2

c2r4
. (1.72)

From Eq. (1.68), we have

r2dφ =
h

c
ds, (1.73)
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or

d

ds
=

h

cr2
d

dφ
. (1.74)

Putting r = 1
w

in Eq. (1.74), to have

d

ds
=
hw2

c

d

dφ
. (1.75)

Using Eq. (1.75) in Eq. (1.72), we get

d2r

ds2
= −h

2w2

c2
d2w

dφ2
. (1.76)

From Eqs. (1.72) and (1.77), we have

d2w

dφ2
+ w = −c

2β

2h
− 3β

2
w2. (1.77)

Classical Newtonian equation for a particle in gravitational field is

d2w

dφ2
+ w = −Gm

h2
. (1.78)

For large value of r we can neglect w2, therefore, from Eqs. (1.78) and (1.77) we get

β = −2Gm

c2
. (1.79)

Thus Eq. (1.41) can be written as

ds2 = c2
(

1− 2Gm

c2r

)
dt2 − dr2(

1− 2Gm
c2r

) − r2dΩ2. (1.80)

This metric (1.80) is known as the Schwarzschild metric. In gravitational units

(c = G = 1) above metric can be written in the simpler form as

ds2 =

(
1− 2m

r

)
dt2 − dr2(

1− 2m
r

) − r2dΩ2. (1.81)
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1.2.3 The Reissner-Nordstrom Solution

Writing the most general spherical symmetric static metric given by Eq. (1.41) as

ds2 = A(r)c2dt2 −B(r)dr2 − r2(dθ2 + sin2 θdφ2), (1.82)

where A(r) and B(r) are arbitrary functions of r. For electromagnetic field, the

EFEs are

Rab = αTab
em, (1.83)

where Tab
em is electromagnetic stress-energy tensor. Electromagnetic field tensor is

taken as

Fab =



0 E1(r)/c 0 0

−E1(r)/c 0 0 0

0 0 0 0

0 0 0 0


, (1.84)

and

F ab =



0 −E1(r)/A(r)B(r)c 0 0

E1(r)/A(r)B(r)c 0 0 0

0 0 0 0

0 0 0 0


. (1.85)

Using Eq. (1.16) we get

T00
em =

−(E1)
2

2µoc2B(r)
, (1.86)

T11
em =

(E1)
2

2µoc2A(r)
, (1.87)

T22
em =

−r2(E1)
2

2µoc2A(r)B(r)
, (1.88)
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T33
em =

−r2(E1)
2

2µoc2A(r)B(r)
sin2 θ. (1.89)

For metric (1.1), using Eqs. (1.86), (1.87) (1.88) and (1.89) in Eq. (1.83) we hve

−A(r)′′

2B(r)
+
A(r)′

4B(r)
(
A(r)′

A(r)
+
B(r)′

B(r)
)− A(r)′

rB(r)
=
−αE1

2

2µoB(r)c2
, (1.90)

A′′

2A
− A′

4A
(
A′

A
+
B′

B
)− B′

rB
=

αE1
2

2µoA(r)c2
, (1.91)

1

B(r)
− 1 +

r

2B(r)
(
A(r)′

A(r)
− B(r)′

B(r)
)− B(r)′

rB(r)
=

−αr2E1
2

2µoA(r)B(r)c2
, (1.92)

sin2 θ

(
1

B(r)
− 1 +

r

2B(r)
(
A(r)′

A(r)
− B(r)′

B(r)
)− B(r)′

rB(r)

)
=

(
−αr2E1

2

2µoA(r)B(r)c2

)
.

(1.93)

Multiplying Eq. (1.90) by B(r)
A(r)

and adding in Eq. (1.91), we get

A(r)B′(r) + A′(r)B(r) = 0, (1.94)

or

[A(r)B(r)]′ = 0, (1.95)

or

B(r) =
−c1
A(r)

. (1.96)

Here c1 is constant of integration. Using Eq. (1.96) in Eq. (1.92), we get

A(r) + rA′(r) = c1 −
αr2E1

2

2µoc2
, (1.97)

where α = 8πG
c4

. Integrating Eq. (1.97) w.r.t r, we get

A(r) = c1 +
GQ2

4πεoc4r2
+
c2
r
. (1.98)
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where c2 is constant of integration. To find the arbitrary constants c1 and c2, use

the weak field limit

g00 = 1− 2GM

c2
. (1.99)

Comparing Eqs. (1.98) and (1.99), we get c1 = 1 and c2 = −2GM
c2

. Using c1 and c2

in Eq. (1.98), we get

A(r) = 1− 2GM

c2r
+

GQ2

4πεoc4r2
. (1.100)

In gravitational units (c = G = 1) and taking 1
4πεo

= 1, A(r) in Eq. (1.100) becomes

A(r) = 1− 2m

r
+
Q2

r2
, (1.101)

and

B(r) = (1− 2m

r
+
Q2

r2
)−1. (1.102)

Using Eqs. (1.101) and (1.102) in Eq. (1.82), we get

ds2 =

(
1− 2m

r
+
Q2

r2

)
dt2 − (1− 2m

r
+
Q2

r2
)−1dr2 − r2(dθ2 + sin2 θdφ2). (1.103)

The above metric (1.103) is known as the Riessner-Nordstrom solution of the EFEs.

It describes the spherically symmetric static geometry due to a charged massive

point. The event horizons for this metric are located where g11 →∞, and are at

r± = m+
√
m2 −Q2. (1.104)

r± are coordinate singularities. r− defines the inner horizon of the black hole and r+

defines the outer horizon of the black hole. At r = 0 there is an essential singularity.

Naked RN Solution:

If Q > m then there is no real root of Eq. (1.104), so there is no coordinate
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singularity, and in this case solution is known as naked RN Solution.

Extreme RN Solution:

When Q = m then we have repeated roots r± = m, and solution is called extreme

RN Solution.

Usual RN Solution:

If m > Q then there are two distinct real roots, and solution is called usual RN

Solution.

1.2.4 The Kerr Solution

Solution of the EFEs due to a point mass, m, and angular momentum per unit mass,

a, called the Kerr solution, is given in Boyer-Lindquist coordinates as

ds2 = c2
(

1− 2mr

ρ2

)
dt2 +

4macr

ρ2
sin2 θdtdφ− ρ2

∆
dr2 − ρ2dθ2 (1.105)

−
(
r2 + a2 +

2ma2r

ρ2
sin2 θ

)
sin2 θdφ2, (1.106)

where

ρ2 = r2 + a2 cos2 θ,

and

∆ = r2 − 2mr + a2.

Horizons exist when g11 →∞, and are at

r± = m±
√
m2 − a2. (1.107)

For m > a, there are two horizons. This case is called regular Kerr black hole. When

m < a, there is no horizon and we have naked singularity. For m = a one horizon

exists and it is called extreme Kerr Solution.
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Chapter 2

Behaviour of Timelike Geodesics

in the Reissner-Nordstrom

Spacetime

A geodesic is a generalization of a straight line to curved spaces. A geodesic in

Euclidean space is a straight line. The geodesic is the straightest available path

between two points in the spacetime [2]. The term geodesic comes from geodesy, the

science of measuring the size and shape of Earth, in the original sense, a geodesic was

the shortest path between two points on the Earth’s surface, namely, a segment of a

great circle. The term has been generalized to include measurements in much more

general spaces. Geodesics in GR describe the path of particles under the influence

of gravitational force. The shortest path between two points in a curved space can

be found mathematically by equation of the length of a curve, and then minimizing

this length by the calculus of variations. Geodesics are commonly studied in metric

geometry. In particular, the path followed by, an orbiting satellite, or orbits of
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planets are all geodesics in curved spacetime.

To derive geodesic equations, let us begin by considering a geodesic as a curve

xa(u). The equations satisfied by xa(u) are determined by the requirement that,

along the curve

dt

du
= f(u)t, (2.1)

The components ta = dxa

du
of the tangent vector in the coordinate basis must satisfy

Dta

Du
=
dta

du
+ Γabct

bdx
c

du
= f(u)ta. (2.2)

Also Equations satisfied by geodesics are

d2xa

du2
+ Γabc

dxb

du

dxc

du
= f(u)

dxa

du
. (2.3)

If the curve is parameterized in such a way that f(u) vanishes, then u is a privi-

leged parameter called an affine parameter [16]. From Eq. (2.1) we see that this

corresponds to a parametrization in which the tangent vector ta remains same at all

points along the curve, so we have

dt

du
= 0→ Dta

Du
= 0. (2.4)

Therefore, from Eq. (2.2), an affinely parameterized geodesic satisfies the equation

as

d2xa

du2
+ Γabc

dxb

du

dxc

du
= 0. (2.5)

If we change the parameter from an affine parameter u to some other parameter v

then the functions xa(v) describing curve in terms of v will differ from the original

functions xa(u). If, for some arbitrary new parameter v, we rewrite Eq.(2.5) in terms

of derivatives with respect to v then the geodesic equation becomes

d2xa

dv2
+ Γabc

dxb

dv

dxc

dv
=

(
d2u/dv2

du/dv

)
dxa

dv
. (2.6)
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It is clear from above Eq. (2.6) that if u is an affine parameter then so too is any

linearly related parameter v = pu+ q, where p and q are constants.

2.0.5 Geodesics Equations through Lagrangian

In classical mechanics, a system can be described in terms of generalised coordinates

xa that are functions of time t. A line element in these coordinates is defined as

given in Eq. (1.2). The Lagrangian for the system can be formed from the potential

and the kinetic energies as

L = K − V =
1

2
gabẋ

aẋb − V (x). (2.7)

By demanding the action

S =

∫ tj

ti

Ldt,

to be stationary for small variations in the functions xa(t), the equations of motion

for this system are then found as the Euler-Lagrange equations [16]

d

ds

(
∂L

∂ẋa

)
− ∂L

∂xa
= 0. (2.8)

Ignoring term 1
2

in Eq. (2.7) and substituting in Eq. (2.8), we get

ẍa + Γabcẋ
bẋc = 0. (2.9)

Thus the Euler-Lagrange equations provide a useful and easy way of generating the

geodesic equations. We note that, in finding solutions of the geodesic equations, it

is often helpful to find the first integral of the equations. For null geodesics the first

integral is simply

gabẋ
aẋb = 0,
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and for time-like geodesics, we have

|gabẋaẋb| = 1.

If gab do not depend on some particular coordinate xc then

d

ds

(
∂L

∂ẋc

)
= 0,

or

∂L

∂ẋc
= constant,

or

gcbẋ
b = constant,

where ẋb = tb and tb is tangent vector, and we have

tc = constant.

If the metric coefficients gab do not depend on the coordinate xc then the covari-

ant component tc of the tangent vector is a conserved quantity along an affinely

parameterised geodesic.

2.0.6 Stationary property of non-null geodesics

Let us consider non-null geodesics as curves of extremal length between two points P

and Q in the manifold. Consider a curve xa(u), where u is some general parameter.

The length along the curve is

L =

∫ Q

P

ds, (2.10)
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or

L =

∫ Q

P

|gabẋaẋb|
1
2du,

where the dot represents derivative with respect to u. Now consider the variation

in path as xa(u) → xa(u) + δxa(u). The requirement for xa(u) to be a geodesic

is that δL = 0 with respect to the variation in the path. This is a calculus of

variations problem, in which the integrand is F = ṡ = |gabẋaẋb|
1
2 . Substituting F in

Euler-Lagrange equation (2.8) we get

d

du

(
∂

∂ẋe
|gabẋaẋb|

1
2

)
− ∂

∂xe
|gabẋaẋb|

1
2 = 0,

or

d

du

(
1

ṡ
gaeẋ

a

)
− 1

2ṡ
(∂egabẋ

aẋb) = 0. (2.11)

Using ġae = (∂bgae)ẋ
b in Eq. (2.11), we get

gaeẍ
a + (∂bgae)ẋ

bẋa − 1

2
(∂egabẋ

aẋb) =
s̈

ṡ
gaeẋ

a. (2.12)

Interchanging a and c we can write (∂bgae)ẋ
aẋb = 1

2
(∂bgae + ∂agbe)ẋ

aẋb and substi-

tuting in Eq. (2.12), we get

1

2
(∂bgae + ∂agbe)ẋ

aẋb + gaeẍ
a − 1

2
(∂egabẋ

aẋb) =
s̈

ṡ
ẋagae. (2.13)

Now, multiplying Eq. (2.13) by gde, we have

ẍd +
1

2
gde(∂bgae + ∂agbe − ∂cgab)ẋbẋc =

s̈

ṡ
ẋd. (2.14)

We can see that 1
2
gde(∂bgae + ∂agbe− ∂cgab) = Γdbc, so we can write above equation as

ẍd + Γdbcẋ
aẋb =

s̈

ṡ
ẋd, (2.15)
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and relabeling gives

ẍa + Γabcẋ
bẋc =

s̈

ṡ
ẋa. (2.16)

Comparing Eq. (2.16) with Eq. (2.6), we can see that the two are equivalent. For a

non null geodesic, an affine parameter u is related to the distance s measured along

the curve by u = as+ b, where a and b are constants and a is non zero.

2.1 Behaviour of Timelike Geodesics in the Reisnerr-

Nordstrom Metric

In this subsection we review the work of Qadir and Siddiqui [6] on timelike geodesics

in the RN black hole spacetime. Consider Lagrangian for the metric (1.103)

L = gabẋ
aẋb,

where dot represents derivative with respect to s. Using Eq. (1.103), we have

L = eν(r)ṫ2 − e−ν(r)ṙ2 − r2θ̇2 − r2 sin2 θφ̇2. (2.17)

Geodesic equations for t, r, θ and φ are

d

ds
(2eν(r)ṫ) = 0, (2.18)

or

eν(r)ṫ = K, (2.19)

r̈e−ν(r) + v′ṫ2 − e−2νv′ṙ2 − r(θ̇2 + sin2 θφ̇2) = 0, (2.20)

r2θ̈ + 2rṙθ̇ − r2 sin θ cos θφ̇2 = 0, (2.21)
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and

d

ds
(r2 sin2 θφ̇) = 0,

or

r2 sin2 θφ̇ = J. (2.22)

Here K and J are constants of integration. K and J are related to energy and

angular momentum respectively. From Eq. (2.19), we have

ṫ = Ke−ν(r). (2.23)

Because of the spherical symmetry of the RN metric, take θ = φ = π
2
. And dividing

both sides of Eq. (1.103) by ds2, we have

1 = eν(r)ṫ2 − e−ν(r)ṙ2. (2.24)

Using Eq. (2.23) in Eq. (2.24), to get

1 = K2e−ν(r) − e−ν(r)ṙ2,

or

ṙ = ±
√
K2 − eν(r). (2.25)

Using Eq. (2.23) and Eq. (2.25), we get

dr

dt
= ±
√
K2 − eν(r)
Ke−ν(r)

. (2.26)

It is clear from above equation that the geodesics will be defined for

K2 ≥ eν(r).
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Using re-scaled radial parameter

r∗ =

∫
e−ν(r)dr,

the differential equation for the geodesics given by Eq. (2.26) can be written as

dr∗
dt

= K
√
K2 − eν(r). (2.27)

For RN metric eν(r) = 1− 2m
r

+ Q2

r2
. And considering following three cases

(i) K = 1

(ii) K > 1

(iii) K < 1

Case 1: Taking K = 1, for an observer falling freely from infinity initially at rest. In

this case there is a boundary beyond which geodesics are not defined. This boundary

is obtained from Eq. (2.27) at r = rb as

rb =
Q2

2m
. (2.28)

These geodesics are shown in Figure 2.1. Case 2: For K > 1, taking K2 = 1 + ε,

geodesics correspond to an observer having positive energy at infinity. In this case

geodesics have barrier at

rc =
−m±

√
m2 + εQ2

ε
. (2.29)

Notice that rc ≈ rb−εQ4/8m3. This shows that for an observer with positive energy

at infinity size of the barrier is smaller. Behaviour of these geodesics is given in

Figure 2.2.

Case 3: For K < 1, taking K2 = 1 − ε, correspond to an observer having

negative energy at infinity. In this case there are two barriers

r± =
−m±

√
m2 + εQ2

ε
. (2.30)

30



Figure 2.1: Two geodesics, g1 and g2, in (t, r∗) coordinates, for K = 1. Both have

the same behaviour, coming in, hitting r = rb and going back. Also note that they

are parallel. The only difference between them is the time at which they hit the

classical electromagnetic radius, t = 1, and t = 2. (Q = 2m is taken)
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Figure 2.2: Two geodesics in the (t, r∗) coordinates for K2 = 1.5, touching the new

barrier, rc, at t = 0 for (g1) and t = 1.5 for (g2). The geodesics are again parallel.

Notice that the barrier moves inwards to r = rc compared with r = rb.
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Figure 2.3: Two geodesics in the (t, r∗) coordinates for K2 = 0.9. Now the geodesics

start at r = r+ in the infinite past and go in to r = r before going back out to

r = r+. We have taken one geodesic, g1, touching the inner boundary at t = 0, and

the other, g2, at t = 10. Notice that the inner boundary lies outside the classical

electromagnetic radius.
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Here the inner boundary moves forward from rb to r− ≈ rb + εQ4

8m3 . The outer barrier

indicates that the observer with negative energy at infinity actually do not reach to

infinity. These geodesics are displayed in Figure 2.3.

2.1.1 Electron as a Naked Singularity

In gravitational units (c = G = 1), m = 6.8 × 1059cm and Q = 1.4 × 1034cm for

the electron. As Q > m for electron, it is considered as a naked RN singularity.

Of course, the electron should be treated as a Kerr-Newmann (KN) singularity

and not a RN singularity. It is seen that rb is the classical electromagnetic radius,

1.4 × 1013cm. This is the radius of the electron that would appear to an observer

with zero energy at infinity. However an observer with positive energy would see

that rb shrunk arbitrarily to rc. In the high energy limit, the size decreases to Q√
ε
.
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Chapter 3

TimeLike Geodesics in the

Kerr-Newmann Spacetime

In Chapter 2, timelike geodesics for the RN black hole have been discussed. It is seen

that there is a barrier beyond which these geodesics are not defined. Therefore, there

is no timelike path available beyond the barrier. Treating electron as a source of

naked RN geometry, it is found that the size of the boundary of timelike geodesics

turns out to be the classical electromagnetic radius of the electron [6]. However,

it is felt that spin angular momentum of the electron was not considered in this

analysis. In order to incorporate the angular momentum also one should consider

KN geometry. Here, in this Chapter we calculate the timelike geodesics for the KN

black hole and obtain the boundaries for these geodesics.

3.1 The Kerr-Newmann Solution

The KN solution, representing the geometry of a charged rotating object, is an exact

solution of the Einstein-Maxwell equations. Its line element in Boyer-Lindquist
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coordinates is written as [17]

ds2 =
ρ2

∆
dr2 + ρ2dθ2 +

sin2 θ

ρ2
[adt− (r2 + a2)dφ]2 − ∆

ρ2
(dt− a sin2 θdφ)2, (3.1)

where

ρ2 = r2 + a2 cos2 θ, ∆ = r2 − 2mr + a2 +Q2. (3.2)

Here m, Q and a are mass, charge and angular momentum per unit mass respectively.

For this metric we have two event horizons at

r± = m±
√
m2 −Q2 − a2.

If the condition m2 < a2 +Q2 is satisfied, then no horizons are present and the KN

spacetime represents the exterior field of a naked singularity.

3.2 Timelike Geodesics in the Kerr-Newmann Space-

time

Lagrangian for the KN metric is

L =
ρ2

∆
ṙ2 + ρ2θ̇2 +

sin2 θ

ρ2
[aṫ− (r2 + a2)φ̇]2 − ∆

ρ2
(ṫ− a sin2 θφ̇)2. (3.3)

As the above Lagrangian (3.3) is independent of t, so the Euler Lagrange Eq. (2.8)

for t reduces to

d

ds

∂L

∂ṫ
= 0, (3.4)

or

∂L

∂ṫ
= K, (3.5)
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where K is a constant of integration. This constant is conserved and corresponds

to the energy of the observer at infinity. Putting the value of L (with θ = π
2
) in Eq.

(3.5), we have

1

r2
[a2ṫ− a(r2 + a2)φ̇−∆ṫ+ a∆φ̇] = K. (3.6)

The Euler-Lagrange Eq. (2.8) for φ, gives

d

ds

∂L

∂φ̇
− ∂L

∂φ
= 0.

As L is also independent of φ, so second term is zero and we get

∂L

∂φ̇
= J,

where J is a constant of integration and it is related to angular momentum. Again

using L from Eq. (2.8) with θ = π
2
, we get

1

r2
[(r2 + a2)2φ̇− a(r2 + a2)ṫ−∆a2φ̇+ a∆ṫ] = J. (3.7)

Multiplying Eq. (3.6) by a and adding in Eq. (3.7), we get

(r2 + a2)φ̇− aṫ = aK + J, (3.8)

or

φ̇ =
aK + J + aṫ

(r2 + a2)
. (3.9)

Using Eqs. (3.9) and (3.6) and simplifying, we get

ṫ =
K[r2(r2 + a2) + a2(2mr −Q2)]− aJ(2mr −Q2)

r2∆
. (3.10)

Using Eq. (3.10) in Eq. (3.9), we get

φ̇ =
aK(2mr −Q2) + J(r2 − 2mr +Q2)

r2(r2 − 2mr + a2 +Q2)
. (3.11)
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For timelike geodesics taking L = 1 in Eq. (3.3) and using Eqs. (3.11) and (3.10),

we get

ṙ = ±
√
r2[2mr −Q2 − J2 − (1−K2)(r2 + a2)] + (J − aK)2(2mr −Q2)

r2
. (3.12)

From Eqs. (3.12) and (3.10), we finally obtain the required equation for the timelike

geodesics as

dr

dt
= ±∆

√
(J − aK)2(2mr −Q2) + r2[−J2 + 2mr −Q2 − (1−K2)(r2 + a2)]

K[r2(r2 + a2) + a2(2mr −Q2)]− aJ(2mr −Q2)
.

(3.13)

The geodesic given by the above Eq. (3.13) are defined if the term inside the square

root is non-negative, i.e

(J − aK)2(2mr −Q2) + r2[2mr −Q2 − J2 − (1−K2)(r2 + a2)] > 0. (3.14)

Taking J = a in Eq. (3.14), we have

a2(1−K)2(2r −Q2) + r2[−a2 + 2r −Q2 − (1−K2)(r2 + a2)] > 0. (3.15)

Now, we have three cases K = 1, K > 1 and K < 1.

Case 1: For an observer falling freely from infinity initially at rest, taking K = 1

in Eq. (3.15), we get

r2(2r − a2 −Q2) > 0.

We get barrier at r = rb as

rb =
a2 +Q2

2
. (3.16)

Notice that for a = 0, this barrier is same as that for the RN case given by Eq.

(2.28).

Case 2: For K > 1, taking K2 = 1 + ε in Eq. (3.15), we obtain

a2(1−
√

1 + ε)2(2r −Q2) + r2(2r − a2 −Q2 + ε(r2 + a2)) > 0. (3.17)
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K > 1 corresponds to an observer with positive velocity at infinity. Note that if we

take a = 0 in Eq. (3.17), then we get same result as for RN in Eq. (2.29).

Case 3: K < 1, corresponds to an observer with negative energy at infinity. we

take K2 = 1− ε in Eq. (3.15), to have

a2(1−
√

1 + ε)2(2r −Q2) + r2(2r − a2 −Q2 − ε(r2 + a2)) > 0. (3.18)

Taking a = 0 in Eq. (3.18), we get same results as obtained in Eq. (2.30).

3.3 Conclusion

The study of black hole spacetime has always been interesting, due to their special

geometries. The study of such geometries helps to understand the dynamics of these

objects. In this thesis, timelike geodesics in the Kerr-Newmann black hole geometry

have been studied.

In chapter one, some basic concepts like, the metric tensor, Christofell symbols,

covariant derivative, the Riemann Curvature tensor and other related tensors have

been given. In chapter two, some basic concepts and equations related to the time-

like geodesics and review of the work by A. Qadir and A.A Siddiqui on timelike

geodesics in the RN geometry are given. In their paper, they have shown that time-

like geodesics do not go up to the essential singularity. They find that, there is a

barrier at

rb =
Q2

2m
,
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for freely falling observer initially at rest, at infinity. For an observer with positive

energy, at infinity, the geodesics will not turn back at rb, and have barrier at

rc ≈ rb − εQ4/8m3,

geodesics for an observer with negative energy, at infinity, have two barriers, r− and

r+.

r− ≈ rb +
εQ4

8m3
, (3.19)

r+ ≈
2m

ε
. (3.20)

In this thesis we have extended their work for the KN spacetime. We have obtained

the barrier for an observer, freely falling at rest, with positive and negative energies,

at infinity, respectively, at

r =
Q2 + a2

2m
, (3.21)

2r3 − r2(a2 +Q2 + ε2 + 2ε)− a2(ε2 + 2ε+Q2ε2) + 2rε2 = 0, (3.22)

and

2r3 − r2(a2 +Q2 − 2ε+ ε2) + 2ra2(ε)2 + a2(2ε− ε2)− Q2a2

(ε)2
= 0. (3.23)

Notice that the barrier for positive energy at infinity moves closer to the essential

singularity, whereas for negative energy at infinity it moves away from the essential

singularity and is outside the barrier for the freely falling observer.

Effect of Rotation:

The effect of rotation is same as effect of charge in case of RN metric. Greater values

of a and Q both move barrier away from the essential singularity. Also notice that

all the results for the RN metric can be obtained as a special case of the KN metric

by taking a = 0.
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