
Abelian Sandpile group of

Square cycle graph C2
n

by

Sadia Aslam

A dissertation submitted in partial fulfillment of the requirements

for the degree of Master of Philosophy in Mathematics

Supervised by

Dr. Muhammad Ishaq

School of Natural Sciences (SNS)

National University of Sciences and Technology

Islamabad, Pakistan





Abstract

Sandpile group of graph G is a finite abelian group it is closely related with the
laplacian matrix. In this thesis, we have discussed abelian sandpile model. The
structure of square cycle graph C2

n is determined and also it is shown that the Smith
normal form of sandpile group is always the direct sum of two or three cyclic groups.
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Preface

The Abelian sandpile model could be described informally as a cellular automaton
on a graph as follows: The cells of such automata are the vertices of a rooted graph
and each cell contains a certain number of grains of sand. The transitions of the
automaton follow the toppling rule, which applies to any cell except the root: a
cell vi containing at least as many grains as its degree di transfers a grain of sand
through each edge to each of its neighbors vj . After a toppling of the vertex vi,
the number of grains in this cell decreases by its degree, while the number of those
neighbors increases by the number of edges that are adjacent. The root r does not
topple and could be considered as collecting all the grains leaving the system. If the
graph is connected it is easy to see that from any initial configuration the system
reaches a stable configuration in which the number of grains in each cell is less
than its degree. Dhar shows also that some configurations, the so-called recurrent
configurations, play an important role and possess some interesting mathematical
properties: they form a finite abelian group (called the sandpile group) whose order
is equal to the number of spanning trees of the graph.

The thesis has four chapters. Chapter one covers the introduction and basic
about groups and finitely generated abelian groups and also discusses some results
related to these.

Chapter two is on Graph theory. Here we define the concepts related to the
Graph theory and also provide different representation of Graph.

Chapter three is on the literature review in which we define the concept related to
Abelian Sandpile Model. Here we also discuss The Smith normal form of a matrix.

Chapter four gives the review of [14] in which the structure of square cycle
graph C2

n is determined. The aim is to compute the structure of sandpile group by
determine its smith normal form . In first section we define square cycle graph. In
second section using toppling rule we find the system of relation for the generators
of S(C2

n) and also it is shown that there are at most three generators for S(C2
n). In

Next section relation matrix between these generators is calculated we also prove
proposition and then some well-known identities of Fibonacci number are listed in
remark which we will use later. Next there is a theorem in which we prove using row
and column operation that the relation matrix between the generators of abelain
sandpile group on C2

n is equivalent to matrix An. In last section we prove some
lemma which will help us in finding the coefficient of Smith normal form of C2

n and
then using these result we compute the smith normal of relation matrix and prove
that S(C2

n) ∼= Z(n,Fn) ⊕ Z(Fn)⊕ Z nFn
(n,Fn)

.
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Chapter 1

Group Theory

1.1 Introduction

In this chapter, basic concepts of group theory are given. Especially abelian group
and finitely genertared abelian group. These definition and results will be used in
the results of next chapters.

Definition 1.1.1. A set A under a binary operation * is called a group if it satisfies
following axioms:

• * is associative, that is

(a ∗ b) ∗ c = a ∗ (b ∗ c), for all a, b, c ∈ A.

• There exists e ∈ A such that for all a ∈ A

e ∗ a = a ∗ e = a,

and e is called an identity element in A.

• For each a ∈ A there exists a
′ ∈ A such that

a ∗ a′ = a
′ ∗ a = e,

a
′

is called an inverse of a.

A group G under the binary relation ∗ is denoted by (G, ∗). The number of elements
in a group is called order of group if the number of element in G is finite then group
is called finite otherwise infinite.
A group G is called abelian if G is commutative under binary operation * that is

for all a, b ∈ G, a ∗ b = b ∗ a.
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Example 1.1.1. (R,+), (Q,+), (Z,+), (C,+) are groups under the ordinary ad-
dition of numbers.

Example 1.1.2. The set of all m×n matrices with real entries denoted by Mm×n(R)
is a group under the matrix addition.

Example 1.1.3. The group of integer modulo n denoted by Zn = {0, 1, 2 · · · , n− 1}
under the operation of addition modulo n is an abelian group.

Definition 1.1.2. Let G be a group, a non empty subset K of G is called a subgroup
of G, if K itself is a group under the same binary operation of G.

Proposition 1.1.1. [12]. A non empty subset K of a group G is a subgroup iff

for all a, b ∈ K, ab−1 ∈ K.

Example 1.1.4. Let n be an integer then, nZ = {nr : r ∈ Z} is a subgroup of
(Z,+).

(nZ,+) < (Z,+) < (Q,+) < (R,+) < (C,+)

Definition 1.1.3. A group G, is cyclic if it can be generated by a single element
say a ∈ G that is,

G = < a > = {an|n ∈ Z} .

All subgroups of a cyclic group are also cyclic. Cyclic groups are abelian group.

Example 1.1.5. Z is cyclic because Z =< 1 >, Zn is also cyclic as Zn =< 1 > .

Corollary 1.1.1. [12]. All groups of prime order are cyclic.

Theorem 1.1.1. [12]. The order of cyclic group is equal to the order of its gener-
ator.

Definition 1.1.4. Let G be a group and H be a subgroup of G for an element a ∈
G, we define a subset of G

aH = {ah : h ∈ H} ,

this subset aH of G is called left coset of G, and the subset

Ha = {ha : h ∈ H} ,

is called right coset of G.

Remark 1.1.1. [12]. Let G be a group and H be a subgroup of G, then
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• If a ∈ H then aH = H = Ha.

• Usually aH 6= Ha but when G is an abelian group the left and right coset of a
subgroup by a same element are equal.

• A subgroup H is always a left and right coset of itself eH = H = He.

Lemma 1.1.1. [12]. Let G be a group for g ∈ G, gH = H iff g ∈ H .

Theorem 1.1.2. [12]. Consider G be a group and H be any subgroup then the set
of all left or right cosets of H in G defines a partition of G.

Definition 1.1.5. Let H be a subgroup of G. The index of H in G is the number of
distinct left or right cosets of H in G. This number, which is positive and sometime
may be infinite is denoted by [G : H].

Example 1.1.6. The index of subgroup (nZ,+) in (Z,+) is n.

Example 1.1.7. The index of (Z,+) in (R,+) is infinite.

Theorem 1.1.3. [12] Let H be a subgroup of a group G, then o(G) = o(H)[G : H].
In particular, if G is finite then o(H) divides o(G) and

[G : H] =
o(G)

o(H)
.

Corollary 1.1.2. [12]. If G is finite group and g ∈ G, then the order of g divides
the order of G.

Definition 1.1.6. Let G be a group and H be a subgroup of G if Ha = aH for all
a ∈ G then H is called normal subgroup G. Symbolically,

H E G.

G and {e} are improper normal subgroup of G.

Remark 1.1.2. [12]. If G is an abelian group then its any subgroup H of G will be
normal as,

for all g ∈ G, gH = Hg.

Definition 1.1.7. Let G be a group the center of G is the set

Z(G) = {x ∈ G : gx = xg, for all g ∈ G} .

It is an abelian subgroup of G and clearly Z(G) is a normal subgroup of G.
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Proposition 1.1.2. [12]. Let G be a group and H be a subgroup of index 2 in G
then H must be normal in G.

Definition 1.1.8. Let G be a group and fix g ∈ G the element gxg−1 is called
conjugate of x by g and the set gHg−1 = {gHg−1 : h ∈ H} is the conjugate of H
by g, where H is the subgroup of G.

Theorem 1.1.4. [12] The subgroup H of G is normal in G if and only if

g−1Hg = H, for all g ∈ G.

Definition 1.1.9. Let H be a normal subgroup of G. The set G/H = {aH | a ∈ G}
the set of left cosets becomes a gruop under well defined coset multiplication,

(aH)(bH) = (ab)H.

In this case G/H is called factor or quotient group of G by H.

The order of above factor or quotient group of G by H is o(G/H) = [G : H].

Example 1.1.8. The group (Q,+) has normal subgroup (Z,+) then (Q/Z,+) is a
factor group under the operation

(a+ Z) + (b+ Z) = (a+ b) + Z, for all a, b ∈ Q.

Remark 1.1.3. [12]. If G is an abelian group and G/H be a factor group of G by
H, then G/H is also abelian.

Theorem 1.1.5. [12] Every quotient group of a cyclic group is cyclic.

1.2 Group Isomorphism

In this section we define the idea of two groups having same structure by concept
of isomorphism. Isomorphism of two groups means that elements of one group can
be renammed as the element of other group.

Definition 1.2.1. The homomophrism between groups (G, ∗) and (H, •) is a map-
ping or a function φ : G −→ H such that

φ(a ∗ b) = φ(a) • φ(b), for all a, b ∈ G,

if this map is one to one then it is called a monomorphism. If this map is onto then
it is called an epimorphsim and if this map is one to one and also onto then φ is
called an isomorphism, then we say G is isomorpic to H and we write

(G, ∗) ∼= (H, •).
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Isomorphism is an equivalence relation. If G,H,K are groups then

• G ∼= G.

• If G ∼= H then H ∼= G.

• If G ∼= H and H ∼= K then G ∼= K.

Theorem 1.2.1. [12]. Consider G be cyclic group if

• If o(G) = n, then G ∼= Zn.

• If o(G) =∞, then G ∼= Z.

So, the complete list of cyclic groups is {0} ,Z2,Z3,Z4, . . . ,Z in this list no any two
cyclic groups are isomorphic because these all are of different order.

Example 1.2.1. The group of real number under addition is isomorpic to the group
of positive real number under multiplication under the isomorphisim f(x) = ex.

Definition 1.2.2. Let φ: G→ H be a homomorphism. If eH is an identity element
in H then kernel is a subset of G and it contains all the elements of G which are
mapped to eH ,

ker φ = {x ∈ G : φ(x) = eH} ,

kernel is the normal subgroup of G.

Theorem 1.2.2. [12]. (The first isomorphism theorem) Let f : G → G′ be
a group homoorphism and let K = kerf , then G/K ∼= f(G).

Theorem 1.2.3. [12]. (The second isomorphism theorem)
Let G be a group, let A and B be subgroups of G and assume A 6 NG(B) then AB
is a subgroup of G and B E AB, (A ∩B) E A, AB/B ∼= A

A
⋂
B

Theorem 1.2.4. [12]. (The third isomorphism )
Let G be a group and let H and Kbe normal subgroups of G with H 6 K then
K/H . G/H and

G/H/K/H ∼= G/K.
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1.3 Internal direct product

Definition 1.3.1. Consider H and K are two subgroup of a group G by HK we
mean the set {hk : h ∈ H, k ∈ K} and it is not necessary that HK is also a subgroup
of G.

Example 1.3.1. Let G = S3 ,H =< (1, 2) >, K =< (1, 3) >.Then HK =
{(1), (1, 2), (1, 3), (1, 3, 2)} which is not subgroup of G.

Proposition 1.3.1. [12]. Consider H,K are two subgroups of a group G and as-
sume that H,K are normal in G then HK is a subgroup of G.

Definition 1.3.2. Let G be a group and N,N
′

be subgroups of G then G is termed
the internal direct product of N,N

′
if the following conditions hold,

• N,N ′ are normal in G

• The intersection of N and N
′

is trivial that is N ∩N ′ = {e}

• The product of N,N
′

is equal to G, that is G = NN
′
.

Theorem 1.3.1. [12]. Consider G be a group and Hi E G for i ∈ {1, . . . , n} then
G is the internal direct product of H1, H2, . . . , Hi if

• G = H1H2H3 · · ·Hn

• (H1H2 · · ·Hi) ∩Hi+1 = {e}.

1.4 External direct product of groups

Definition 1.4.1. External direct product of the groups G1, G2, , . . . , Gn is the
set of all n-tuples

{(g1, g2, . . . , gn) | gi ∈ Gi} .

External direct product of G1, G2, . . . , Gn is denoted by G1 ⊕ G2 ⊕ · · · ⊕ Gn. It
is also a group under the comopnentwise operation.

If G1, G2, . . . , Gn are finite and o(G1) = m1, o(G2) = m2 , o(Gn) = mn then
o(G1 ×G2 . . .×Gn) = m1m2 . . .mn. Clearly o(G1 ×G2 . . .×Gn) is finite.

Example 1.4.1. Z2 = {0, 1} is an abelian group. Z2 ⊕ Z2 is also an abelian group
of order 4. Its four elements are (0, 0), (0, 1), (1, 0), (1, 1).
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Proposition 1.4.1. [12]. Let G be a group and suppose G is the internal direct
product of H1, H2, . . . , Hn. Let T be the external direct product of H1, H2, . . . , Hn

then G and T are isomorphic.

Proposition 1.4.2. [12]. Suppose G1, G2, . . . Gk are groups and G1⊕G2⊕ . . .⊕, Gk

be the direct sum of these groups, then for (g1, g2, . . . , gk) ∈ G1 ⊕G2 ⊕ · · · ⊕Gk

o(g1, g2, . . . , gk) = lcm {o(g1), o(g2), . . . , o(gk)} ,where o(gi) <∞ for all i.

Lemma 1.4.1. [12]. Let G and H be groups of finite order such that G ⊕ H is
cyclic then G and H are cyclic and o(G) and o(H) are relatively prime.

Definition 1.4.2. Let M be any subset of a group G.

< M >= ∩
M⊆H

H, where H is subgroup of G .

Then < M > is called a subgroup of G generated by M .

Definition 1.4.3. Consider M be any subset of G then we define a set M by

M =
{
mδ

1m
δ
2 · · ·mδ

n | n ∈ Z, n ≥ 0, mi ∈M δi = ±1, for each i
}

M is the set of all finite products of elements of M and inverse of elements of M . If
M = φ then M = 1

Proposition 1.4.3. [12]. Let M be a non empty subset of a group G, and let

M =
{
mδ

1m
δ
2 · · ·mδ

n | n ∈ Z, n ≥ 0, mi ∈M δi = ±1 for each i
}

That is,

M =
{
mδ

1m
δ
2 · · ·mδ

n | n ∈ Z, n ≥ 0 and δi ∈ Z
}

and < M > is the subgroup of G generated by M then < M >= M .
If M is finite and < M >= G, then we say that G is finitely generated.

1.5 Finitely generated abelian group

An abelian group G is finitely generated if for all x ∈ G there are elements x1, . . . , xn
belongs to G such that x can be written as a linear combination of these xi i ∈
{1, . . . , n}

x = a1x1 + a2x2 + . . .+ anxn, ai ∈ Z

and we say {x1, x2, . . . , xn} is a generating set of G or x1, . . . , xn generate G.
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Remark 1.5.1. [12]. Let G be a group

• If G is finite then it is clearly finitely generated.

• If G is cyclic group then it is finitely generated. As cyclic groups are generated
by single element. So Z and Zn are finitely generated.

• Finitely generated groups are always countable.

Theorem 1.5.1. [12]. (Fundamental theorem of finitely generated abelian group)
Let G be a finitely generated abelian group then it is isomorphic to the one of the
form

G ∼= Zr ⊕ Zn1 ⊕ Zn2 ⊕ · · · ⊕ Zns , (1.1)

for some integers r, n1, n2 · · · , ns satisfy the given conditions.

• r ≥ 0 and nj ≥ 2 for all j.

• ni+1|ni for 1 ≤ i ≤ s− 1.

• Moreover the representation of G in (1.1) is unique.

Definition 1.5.1. To descirbe G in form of Theorem 1.5.1 is known as invariant
factor decomposition of G, where integer r is called free rank or betti number of G
and integers n1, . . . , ns are called invariant factors of G.

Remark 1.5.2. The free rank is zero if and only if the finitely generated abelian
group is finite.
If G is finite then product of invariant factors is equal to the order of finitely gener-
ated abelian group.

Example 1.5.1. Consider a group G to be an abelian group of order 180 then its
all non isomorphic groups are Z180 , Z90 ⊕ Z2 , Z60 ⊕ Z3 , Z30 ⊕ Z6.

Proposition 1.5.1. [12]. If GCD(m,n) = 1 then Zm ⊕ Zn ∼= Zmn
Theorem 1.5.2. [12]. (Primary decomposition theorem)
Let G be a finitely generated abelian and of order n > 1, factorize n into the distinct
prime powers and this factorization must be unique, n = pα1

1 · · · p
αk
k , then

G ∼= A1 ⊕ A2 ⊕ · · · ⊕ Ak, where |Ai| = Pαi
i . (1.2)

Moreover, for each A ∈ {A1, · · · , Ak}, with |A| = Pα,

A ∼= Zpβ1 ⊕ · · · ⊕ Zpβt for some partition β1 ≥ · · · ≥ βt ≥ 1 of α.

Finally these decompositions are unique.

8



Definition 1.5.2. In theorem 1.5.2 the integer P βj are called elementary divisor of
G and to describe G in 1.2 is known as elementary divisor decomposition of G.

Example 1.5.2. Z2 ⊕ Z3
∼= Z6 as GCD(2, 3) = 1

1.6 Generators and relations

In abstract algebra, there is small part of theory of abelian groups but an important
part and has important features. One of the most important features is underlying
patterns. One way to define an abelian group is to construct a group table and
through this we can find the sum of two elements of group without having to be
bothered what element actullay are. It is cleared that it is not possible to construct
the table in case of infinite group. One way to define abelian groups absractly the
another way is to use of generators and relations.
Consider x1, x2 . . . , xn are n symbols, and representing nothing in particular. The
expression given below known as formal linear combination of xi’s ,

α1x1 + α2x2 + . . .+ αnxn, where the coefficients αi ∈ Z.

If two formal linear combinations of these xi are given say α1x1 +α2x2 + . . .+αnxn
and β1x1 + β2x2 + . . .+ βnxn then we can add these two by common way that is

(α1xn + . . .+ αnxn) + (β1x1 . . .+ βnxn) = (α1 + β1)x1 + . . .+ (αn + βn)xn.

So by adding these two formal linear combinations of xi we get another formal
linear combination of xi. So set of all formal linear combinations of xi is closed
under addition. As the coefficients of these formal linear combinations belong to
integers so, associative law holds. 0x1 + 0x2 + . . . + 0xn is identity formal linear
combination. For α1x1 + α2x2 + . . . + αnxn the inverse formal linear combinations
is (−α1)x1 + (−α2)x2 + . . . + (−αn)xn. So set of all formal linear combination of
x1, x2 . . . , xn is a group and is denoted by < x1, x2, . . . , xn > and as the coefficient
αi’s belongs to integers so this group is also an abelian group.

Example 1.6.1. < x1, x2, x3 >= {mx1 + nx2 + qx3 : m,n, q ∈ Z} is a group. It
is clear that < x1, x2, x3 >∼= Z⊕Z⊕Z under the isomorphism φ(mx1 +ny1 +qz1) =
(m,n, q).
Similarly if we have more gernators then these are isomorphic to more copies of Z.

Consider a finite set of these formal linear combinations and put all these linear
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combinations equal to zero

α11x1 + . . .+ α1nxn = 0

α21x1 + . . .+ α2nxn = 0

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·

αm1x1 + . . .+ αmnxn = 0

from these relations we have to identify how many formal linear equations in group
to one another.

Example 1.6.2. Consider two generators, one is 3x + 5y = 0 then second is
7x + 10y = 0, now add these two relation 7x + 10y + (3x + 5y) = 10x + 15y but it
is not necessary 10x+ 15y = 0 that 2x+ 3y = 0, because division is not possible as
this work is on integers while addition and subtraction is possible.
From 3x+ 5y = 0, we can write 3x = −5y. So in all formal linear combinations we
can replace 3x by the multiple of y, so abelian can be split into disjoint subsets that
are:

{ay | a ∈ Z} , {x+ ay | a ∈ Z} , {2x+ ay | a ∈ Z} .

These subsets of abelian group are disjoint.

So if R1 = R2 = · · · = Rn = 0 are given relations so the abelian group generated by
x1, x2, · · · , xn subject to these relations denoted by

< x1, x2, . . . , xn | R1, R2, . . . , Rn >

Example 1.6.3. Consider < x | 6x = 0 >. A linear combination of one generators
is same as multiple of this generator that is why the element of this group must be of
form nx where n ∈ Z and distinct elements are 0, x, 2x, 3x, 4x, 5x as 6x = 0 and
no other element of this group for example if we have 7x then 7x = x+6x = x+0 = x
so 7x ≡ x so this group is same as the group of integer mod 6 so, < x | 6x = 0 >∼= Z6.

Example 1.6.4. < x, y | 2x = 0 , 5y = 0 > ∼= Z2 ⊕ Z5.
< x, y | 2x = 0 , 5y = 0 >= {0, y, 2y, 3y, 4y, x+ y, x+ 2y, x+ 3y, x+ 4y}. So
< x, y | 2x = 0 , 5y = 0 >∼= Z2 ⊕ Z5 under the map φ which is defined as φ(mx +
ny) = (m,n).
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1.6.1 Relation Matrices.

If one or two generators with one or two relations are given then it is easy to find its
isomorphic group which is also abelian but in case when we have given m relations
in n variable it is difficult. In this case we just manipulate their coefficients, as a
row of a matrix rather than manipulate the relation. So if we have m relations with
n variables we associate a matrix m × n whose rows are coefficients of successive
relation and this matrix is known as relation matrix.
Consider A is m×n integers matrix, [A] = [αij] then [A] denotes the abelian group,

< x1, . . . , xn | α11x1 + . . .+ α1nxn = 0, . . . , αm1x1 + . . .+ αmnxn = 0 > . (1.3)

If we change the name of variables in above abelian group for example

< y1, . . . , yn | α11y1 + . . .+ α1nyn = 0, . . . , αm1y1 + . . .+ αmnyn = 0 > . (1.4)

So (1.3) and (1.4) are isomorphic.

Example 1.6.5. The set of relations:

4x+ 3y + 2z = 0, 2x+ 9z = 0,

can be written as,

(
4 3 2
2 0 9

)
.

Example 1.6.6. Let < x, y | 2x+ 4y = 0, 8x+ 3y = 0 > =

[
2 4
8 3

]
.

If we change C1 by C2 then

[
2 4
8 3

]
∼=
[
4 2
3 8

]
by changing two columns mean changing

two variables, in one group 2x + 4y = 0 and in second group 4x + 2y = 0 and this
give a group that is isomorphic to the original one. So[
2 4
8 3

]
=< x, y | 2x+ 4y = 0, 8x+ 3y = 0 >∼=

[
4 2
3 8

]
=< x, y | 4x+ 2y = 0, 3x+ 8y = 0 > .

under the map φ(ax+ by) = bx+ ay.

By above example it is clear that by changing a row or column in relation matrix
we get the group that is isomorphic to the original one.

Similarly in relation matrix, by adding or subtracting the integer multiple of one
row (column) to another row (column) we get the group that is isomorphic to the
original group.
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Example 1.6.7. Let

[
3 7
2 4

]
, if we add the 10 times the second column to the first

then [
3 7
2 4

]
∼=
[
73 7
42 4

]

Let us see how,

[
3 7
2 4

]
=< x, y | 3x + 7y = 0, 2x + 4y = 0 > now, let z = y − 10x

or y = z + 10x put y = z + 10x in formal linear combination of x and y

3x+ 7y = 3x+ 7(z + 10x) = 73x+ 7z = 0

2x+ 4y = 2x+ 4(z + 10x) = 42x+ 4z = 0[
3 7
2 4

]
∼=< x, y | 3x + 7y = 0, 2x + 4y = 0 >∼=< x, z | 73x + 7z = 0, 42x + 4z =

0 >∼=< x, y | 73x+ 7y = 0, 42x+ 4y = 0 >∼=
[
73 7
42 4

]
.

So abelian groups of

[
3 7
2 4

]
and

[
73 7
42 4

]
are identical.

So in relation matrix we can interchange a row or column also can multiply a
row(column) by −1 and can add or subtract the integer multiple of row(column).
So elementary row operations are
Elementary integers row(column ) operation.

• Ri ↔ Rj (Interchange row i with j).

• Ri → −Ri (Change the sign of row i ).

• Ri ± kRj (Add or subtract the k times row j from row i).

Theorem 1.6.1. Let a matrix P which is obtained by applying the row and column
operations on matrix Q then [P ] ∼= [Q].

So we can associate an abeilan group, which is given in terms of finitely many gener-
ators and relations, by a matrix, by simplifying the matrix using above elementary
rows and column operation.

Example 1.6.8. Let us simplify

[
3 7
2 4

]
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[
3 7
2 4

]
∼=
[
1 3
2 4

]
C1 ↔ C2

∼=
[
1 1
2 0

]
C2 − 2C1

∼=
[
1 0
0 2

]
C1 ↔ C2

∼= [2] ∼= Z2

In Theorem 1.2.1 complete list of cyclic groups are given so if relation matrix R
is diagonal then the abelian group [R] is the direct sum of cyclic groups.

Example 1.6.9.

2 0 0
0 3 0
0 0 5

 ∼= Z2 ⊕ Z3 ⊕ Z5

If one of the diagonal entry is 1 it represent a variable that is equated to zero.
So it can be ignored by removing the row and column of that entry.

Example 1.6.10.

2 0 0
0 1 0
0 0 5

 ∼= Z2 ⊕ Z5 we ignore R2 and C2 because diagonal

entry 1 lies in it.

If the rows are more than columns in a diagonal matrix then one or more columns
must be zero at the right end. Each one represents a variables that enter into no
relation and contibute a summand of Z to the direct sum decomposition.

Example 1.6.11.

2 0 0 0 0
0 3 0 0 0
0 0 5 0 0

 ∼=
2 0 0

0 3 0
0 0 5

 ⊕Z⊕ Z ∼= Z2 ⊕ Z3 ⊕ Z5 ⊕ Z⊕ Z

In case when the matrix has more columns then rows then by using elementary

row (column) operations we can get one column


m
0
· · ·
0

 thus it will give Zm if m > 0

nothing if m = 1 and Z if m = 0 for example [4] ∼= Z4, [1] ∼= [0], [0] ∼= Z

Example 1.6.12. < α, β, γ | 4α − β + 5γ = 0, 14α + 7β + 7γ = 0 > the relation

matrix is

[
4 −1 5
14 7 7

]
.
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[
4 −1 5
14 7 7

]
∼=
[
−1 4 5
7 14 7

]
C1 ↔ C2

∼=
[

1 4 5
−7 14 7

]
− C1

∼=
[
1 4 5
0 42 42

]
7R1 +R2

∼=
[
1 0 0
0 42 42

]
C2 − 4C1 and C3 − 5C1

∼=
[
1 −0 0
0 42 42

]
C3 − C2

∼= Z42 ⊕ Z.

Example 1.6.13.

Let


2 2 2
0 8 0
0 0 8
8 0 0

 ∼=


2 2 2
0 8 0
0 0 8
0 −8 −8


∼= Z2 ⊕

 8 0
0 8
−8 −8


∼= Z2 ⊕

8 0
0 8
0 −8


∼= Z2 ⊕ Z8 ⊕

[
8
−8

]
∼= Z2 ⊕ Z8 ⊕

[
8
0

]
∼= Z2 ⊕ Z8 ⊕ Z8.
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Chapter 2

Basic concept and
Definition of Graph Theory

2.1 Introduction.

Graph theory is a branch of mathematics and it is started by Euler as early as
1736 when he proposed problem to travel the seven bridges of the city Konigsberg
in one round and every bridge is traveled only once. He modeled this problem in
graph and found out the solution. Graph theory has huge applications in engineering
and science especially in chemical engineering, mechanical engineering, architecture,
operational research, technology, combinatorics, and computer science. Therefore
many books has been published on graph theory such as Bondy and Murty, D.B
West. In this chapter basic definition and concept of graph theory are given. This
chapter gives a detailed overview of different types of graphs, different representation
of graph and results which we will use in our last chapter.

2.2 What is graph?

A graph G is a structure of two sets V and E and denoted by G = (V,E), where V is
called vertex set and elements of V are called vertices (nodes, point) of graph and E
which is the adjenceny relation between vertices is called edge set and elements of E
are called edges or lines. We can represent the graph with different ways. One usual
way is by drawing a picture of graph using different points and lines. We locate
a dot for each vertex and if there is a link or an edge between two vertices, then
join these two vertices by a line (line may be straight or curved). The graph can be
drawn in different ways all just matter where two vertices from an edge or link and
where does not. The order of a graph is the number of vertices of a graph and it is
denoted by |V | and number of edges of graph is the size of graph and denoted by
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|E|. If the graph G has order 0 or 1 then G is called trivial graph.
Adjacency and Incidence. Two vertices v1 and v2 are called adjacent if there is
an edge e between these two vertices. Two edges e1 6= e2 are called incident if these
two edges have a common end vertex v.
Degree of a vertex of graph. The degree of a vertex v of a graph G is the number
of edges incident with v which is denoted by d(v). The minimum degree vertex of
a graph G is denoted by δ(G) and maximum degree vertex of a graph G is denoted
by ∆(G). A vertex is said to be an isolated vertex if the degree of that vertex is 0.
If the degree of vertex is 1 then vertex is called leaf. vertex is called even(odd) if
the degree of that vertex is even(odd).

Lemma 2.2.1. [4] The graph G = (V,E) where V = {v1, v2, . . . , vn} and E =
{e1, e2, . . . , em} satisfies

∑n
i=1 d(vi) = 2m. Or in other words, the sum of degree of

vertices of a graph is twice the number of its edges.
This lemma is known as hand shaking lemma.

Corollary 2.2.1. [4] Every graph has an even number of vertices of odd degree.

Figure 2.1: Graph G

Example 2.2.1. In figure 2.1 which is given above the graph G is given with vertices
1, 2, · · · , 7 and edge set {(1, 2), (1, 5), (2, 5), (3, 4), (5, 7)}.

•The order of this graph G is 7.
•The size of this graph G is 5.
•The vertices 1, 2, 5 and 5, 7 and 3, 4 are adjacent.
•The edges (1, 2), (2, 5) and (1, 5) are incident.
•The degree of vertices, d(1) = 2, d(2) = 2, d(3) = 1, d(4) = 1, d(5) = 3, d(6) = 0, d(7)
= 1 while ∆(G) = 3 and δ(G) = 0.
•.The vertex 6 is an isolated vertex.

Two or more than two edges of a graph G are called multiple edges if these are
connected by a same pair of vertices and an edge joining a vertex to itself is called
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loop and a graph G which has no multiple edge or loop is called simple graph.
In figure 2.2 graph with loop is given while in figure 2.3 simple graph is given.

Figure 2.2: Graph G with loop and multiple edges(member).

Figure 2.3: Simple graph.

Subgraphs. A graph G′ = (V ′, E ′) is said to be a subgraph of a graph G = (V,E),
if V ⊆ V ′ and E ⊆ E ′ and edges of G′ have sames endpoints as that in G, and we
write G′ ⊆ G.

Figure 2.4: Graph G with subgraph G’

Isomorphic graphs. Two graphs G = (V,E) and G
′

= (V
′
, E
′
), where |V | = |V ′|

and |E| = |E ′| are isomrphic if there exists one to one correspondence between their
vertices set but adjacency must be preserved and we write G ∼= G′.

Walk, Trail, path. A non empty graphG = (V,E) of the form V = {v0, v1, · · · , vk}
E = {v0v1, · · · , · · · , vk−1, vk} is called a walk of length k where number of edges in
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Figure 2.5: Two isomorphic graph.

walk is called length of walk. If v0 = vk then walk is closed. A walk in graph G is
called trail if no edge is repeated more than once. A walk in graph G is called path
in which no vertex is repeated and hence no edge. A path of length n is denoted by
Pn. A trail in graph G is called circuit if trail is closed. A trial must be of length
three or more. A closed trail that repeat no vertex except first and last is called
cycle. A cycle of n length is denoted by Cn if length of edges are odd then cycle is
odd if length of edges is even then cycle is even.

2.3 Matrix representation of graph.

In this section, we introduce the matrix representation of graph, that is, adjacency
matrix. Suppose G be a graph with n vertices v1, . . . , vn. The adjacency matrix
A(G) of a graph G is a n× n square matrix in which the entry aij = 1, if vertex vi
is adjacent to vj and 0 otherwise. A(G) is a square matrix and the sum of rows of
A(G) is equal to the degree vertex of graph G. The adjacency matrix for figure 2.1
is given below.

A(G) =



0 1 0 0 1 0 0
1 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
1 1 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 1 0


.

Another way to represent a graph by matrix is incident matrix. Suppose G be a
graph with n vertices v1, . . . , vn and m edges e1, . . . , em then incident matrix is m×n
matrix in which ij(ith row and jth column) is equal to 1 if vertex v1 is incident to
edge ej and zero otherwise.
Degree matrix of graph. Suppose G be a graph with n vertices v1, . . . , vn then
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degree matrix D(G) is n × n diagonal matrix in with dij is equal to degree of vi if
i = j and zero otherwise. This matrix contains the information of each vertex of
graph. The degree matrix for D(G) for figure 2.1 is given below.

D(G) =



2 0 0 0 0 0 0
0 2 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 3 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1


.

Laplacian matrix. Laplacian matrix is defined as L(G) = D(G) − A(G). It is
used to find the number of spanning trees of graph. We will define spanning tree of
graph in next section.

2.4 Types of graph

There are many types of graphs depending on the number of edges and vertices of
graph, inter connectivity and overall structure of graph. We will discuss only few
important types of graphs.
Null graph. A graph which has no edge is called null graph.
Trivial graph. A graph which has only one vertex and hence no edge is called
trivial graph.
Connected graph. A graph G is called connected if for each pair v1, v2 ∈ V (G)
there exist some v1v2 path or in simple word there must be atleast one edge for every
vertex in graph.
Disconnected graph. If there is no path for some pair v1, v2 ∈ V (G) then G is
called disconnected.
Regular graph. In a graph if degree of each vertex is same then graph is called
regular graph. If in a graph degree of each vertex is k then graph is called k−regualr
graph.
Complete graph. A simple graph in which each pair of vertices of graph is con-
nected by a unique edge is called complete graph. A complete graph which has n
vertices is denoted by Kn.
Cyclic graph. A simple graph that contains atleast one cycle is called cyclic graph.
In cyclic graph number vertices of graph is equal to number of edges and degree of
each vertex is exactly 2. A cyclic graph with n vertices is denoted by Cn.
Acyclic graph. A simple graph that contains no cycle is called acyclic.
Bipartite graph. A simple graph G = (V,E) in which vertex set V (G) can be
partitioned into two set V1(G), V2(G) such that every edge E connect a vertex V1(G)
to one in V2(G).
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Theorem 2.4.1. [4] A graph G is called bipartite if and only if it contains no odd
cycle.

Complete bipartite Graph. A bipartite graph is called complete bipartite if
every vertex of first partition (vertex set) is connected by every vertex of second
partition( vertex set). If number of vertices in first set in m and number of vertices
in second partitioning set is n then complete bipartite set is denoted by Km,n.
Star graph. Star is a special form of complete bipartite graph. It is of form K1,n−1
with n vertices i.e in one first partition set there is a single vertex and remaining all
vertices are in second partitioning set.
Tree. An acyclic graph which is also connected is called tree. Tree is minimal
connected that is if we remove a single edge graph will become disconnected. A tree
of order n has exactly n− 1 edges.
Spanning tree of a graph. Spanning tree of a graph is its subgraph that contains
all vertices, and is a tree. A graph may have many spanning trees. The number of
spanning trees of a graph G is denoted by T (G). We can find number of spanning
trees of a graph using different methods. Number of spanning trees of a tree itself
is 1. Spanning tree of cycli graph with n vertices is n. There is also Kirchhoff’s
theorem. We take the Laplacian matrix of the graph then delete an arbitrary row
and its corresponding column, and then find the determinant of the matrix. The
value of the determinant will be the number of spanning trees for the graph.
Examples.

Figure 2.6: A graph with three vertices and no edge hence null graph.
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Figure 2.7: A connected graph.

Figure 2.8: A disconnected graph.

Figure 2.9: Each vertex is of degree 2 hence a regular graph

.

Figure 2.10: A complete graph K4.
.

Figure 2.11: A Graph with two cycle abcda and cfgec hence it is a cyclic graph.
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Figure 2.12: A graph with no cycle hence it is acyclic.

Figure 2.13: A bipartite graph with vertex set V1 and V2.

Figure 2.14: Each vertex of set V1 is connected by an edge wueh vertex set V2 hence
complete bipartite graph.

Figure 2.15: All vertices a, b, c, d
are connected by single vertex e hence it is star K1,4.
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Chapter 3

Abelian Sandpile Model

3.1 Introduction

In 1987 Per Bak, Chao Tang introduced a model known as ”Self-Organized Criti-
cality” using the examples of sandpile in [1, 11] then Deepak Dhar generalized the
above model and introduced Abelian Sandpile Model. In 2010 Lionel Levine, James
propp considered finite connected graph G for which they associate an abelian group
S(G).
The Abelian Sandpile Model is a diffusion process on a finite directed multi-graph
that has been used to show self organized criticality. The model was defined on
square grids with cells that randomly, with breaks in between, received sand grains.
These had a maximum capacity of three sand grains; once this capacity was ex-
ceeded, the sand would topple into adjacent cells or fall off the edge of the grid.
These square grids are a type of graph, with the cells as the vertices and edges con-
necting adjacent cells and allowing sand grains to pass from one cell to a neighboring
cell.

Definition 3.1.1. Let G = (V ∪{s} , E) be a graph consists of finitely many vertices
and finitely many edges. These edges might be multiple, there may be two or more
edges between two vertices. We also consider a special vertex s which is acting as a
sink s.
An abelian sandplie Γ is a sequence of indistinguishable particle or chips on the
vertices of graph. More precisely, it is an assignment of non negative integer to the
vertices of graph, where non negative integer indicates how many particles or chips
are at each vertex or it is specified by a map Γ : V → {0, 1, 2 · · · }. The sequence of
above non negative integers is called configuration.

Definition 3.1.2. A sandpile Γ is stable at v ∈ V , if Γ(v) < degG(v) and Γ is called
a stable sandpile if it is stable for all v ∈ V . A sandpile Γ is called unstable if for
some v ∈ V , Γ(v) ≥ degG(v).
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3.1.1 Toppling

When a vertex of a graph is unstable or when a vertex accumulates as many chips
as its degree then the vertex is allowed to topple which means that it fires, sending
one chip along each vertex adjacent to it. When a vertex v topples , the chips are
re-distributed are follows:

Γ(v)→ Γ(v)− degG(v)

Γ(w)→ Γ(w) + avw, w ∈ V, w 6= v,

where avw is the number of edges between v and w. Toppling a vertex may in turn
cause other vertices unstable, then these vertices are also toppled simultaneously.
This process repeats until all the vertices becomes stable. Consider ηj ∈ SG which
is row vector it can be written as

ηj → ηj −4ij, where j ∈ V and 4ij is the toppling matrix.

The toppling matrix is the graph laplacian:

(4G)ij =


deg(G)i− aii, if i = j ∈ V
−aij, if i 6= j i , j ∈ V
0 otherwise.

Toppling rule can be be defined by the mapping Tz : N→ N

Tz(ηj) =

{
ηj −4ij, if ηj ≥ degGi;
ηj = ηj, otherwise.

Remark 3.1.1. [24].
The toppling rule commutes on the unstable configurations that is for all y, z ∈ V

and η such that η(y) ≥ 4yy and η(z) ≥ 4zz, we have

Ty ◦ Tz(η) = Tz ◦ Tx(η)

After a finitely many toppling the configuration reached to a stable configuration.
The result of final configuration does not depends on the the order in which sequence
of toppling is chosen.

Definition 3.1.3. A sink s is a special vertex that never topples. We require that
from every vertex it is possible to travel via the edges get to the sink. It is one of
the vertex that collect the particle falling off to the system. The presence of sink
assures that the process of toppling terminate after stability of graph.
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Definition 3.1.4. Recurrent configuration are configuration if there is a sequence
of toppling that leads to the same configuration.

Definition 3.1.5. . The set of all stable recurrent configuration forms the sandpile
group with given binary operation,

C1 ⊕ C2 = C1 + C2.

Here C1 + C2 is pointwise addition of chip assignments to vertices and C denotes
the unique critical configuration reachable from C.

3.2 Sandpile group

Now in this section Sandpile group of graph G is defined. Sandpile group can be
defined as a quotient group of Zn−1 by a subgroup generated by the elements that
are express the toplling rule.

Definition 3.2.1. Let G = (V ∪ {s} , E) be a finite connected multigraph where
|V | = n and s is sink that doesnot topple. Sandpile group of graph G is closely
connected with the laplacian matrix L(G) as follow: Thinking of L(G) as an linear
map Zn → Zn, its cokernel has the form [14].

cokerL(G) = Zn/L(G)Zn ∼= Z⊕ S(G)

Let G be a graph with n vertices with sink or rooted vertex xs then S(G) on
graph G is a quotient group of Zn−1 by the subgroup spanned by n−1 element that
are 41,42, . . . ,4s−1,4s+1, . . . ,4n, where 4j expressing the toppling rule that is

4j = djxj −
∑

vk is adjacent to vi

ajkxk,

where xk = (0, . . . , 0, 1, 0, . . . , 0) ∈ Zn whose unique non zero entry 1 is in the
position k, and the element xs, so,

S(G) ∼= Zn/span(41,42, . . . ,4s−1, xs,4s+1, . . . ,4n) for more detail see [7].

Theorem 3.2.1. [1] The order of sandplie group on graph G is equal to number of
spanning tree of graph.

Theorem 3.2.2. Kirchhoffs Matrix Tree Theorem

For any connected graph G, the number of spanning trees is equal to det(
︷ ︸︸ ︷
L(G)),

where
︷ ︸︸ ︷
L(G) is obtained from L(G) by deleting the row and column corresponding to

any chosen vertex.
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3.3 Smith Normal Form of a Matrix.

3.3.1 Introduction

In 1861, H.J.Smith introduced the Smith normal form of a matrix. Its plays an
important role in the study of algebraic group theory, matrix equivalence, homology
group theory. Due to its wide application many researcher worked on the problem
of smith normal form.

Definition 3.3.1. For every integer matrix A, there exist unimodular matrices P
and Q and also a diagonal matrix S where diagonal entries (s11, s22, . . . , snn) of S
are non-negative, for i = 1, · · · , n such that A = PSQ, sii|sii+1. S is called smith
normal form of A, si are called the invariant factors of matrix A, sii are called the
invariant factors of matrix A.

In above definition, the smith normal form S of a matrix A is unique while the
choices of P and Qare not unique.

Remark 3.3.1. i)If A is a given n×n integer matrix with invariant factors s1, s2, · · · , sn
then

det(A) = ±
∏

0≤i≤n

sii and sii = 0, if i > rank(A)

ii) For each i, product s11, s22, · · · , sii is the greatest common divisor of all i × i
minor determinant of A [14].

Smith normal form of a matrix can be computed via a series of elementary column
and row operations instead of abstract definition of smith normal form of a matrix.
The elementary column and row operations consisting of
1. Adding an integer multiple of one row (column) to another.
2. Multiplying a row (columns) by −1.
3. Swapping two rows (columns).

Example 3.3.1. Consider a 2× 2 matrix:

M =

[
1 5
1 3

]
∼
[
1 0
1 2

]
C2 − 5C1

∼
[
1 0
0 2

]
R2 −R1

1, 2 are the invariant factors of M . det(M)= 1(3)− 5(1) = 2 = 1× 2.
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Chapter 4

Sandpile group of square cycle
graph

4.1 Introduction

There are infinite numbers of graphs whose sandpile group have been completely
determined. In [5, 6, 7, 8] sandpile group sturcture of different graph have been
completely determined. In this chapter the structure of sandpile group of square
cycle graph C2

n is computed by determining its smith normal form. We also show
that sandpile group of square cycle graph C2

n is direct sum of two or three cyclic
groups. Number of spanning tree of C2

n is τ(C2
n) = nF 2

n which is equal to order of
sandpile group of C2

n. Hence the order of sandpile group of C2
n is equal to nF 2

n . First
we define square cycle graph.

Definition 4.1.1. Square cycle, C2
n is a graph that has n vertices. Square cycle

graph C2
n is a 4-regular graph and each vertex i is adjacent to the vertices i±1, i±2

(mod n). See fig. 4.1 for some examples of C2
n

Figure 4.1: Some examples of the graphs C2
n.
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4.2 System of relation for the generators of S(Cn
2)

In this section, we will first show that there are at most three generator for Sandpile
group S(Cn

2) of square cycle graph and then we reduce these generator to the
relation matrix and then we will give some properties of the sequences concerning
the entries of relation matrix.
Now we first start work on the system of relation. It is assumed that n ≥ 5. we
have chosen vertex 4 as the root, such that x4 = 0. Applying the toppling rule (that
is , if vi 6= vr is a vertex degree di, a generator of this group is.

∆i = dixi −
∑

vj is adjacent vi

aijxj,

where aij is the number of edges between vertices vi and vj, and xi = (0, · · · , 1, 0, · · · , 0) ∈
Zn. By applying this on each vertex except root vertex we get,

for i = 1, ∆1 = 4x1 − x2 − x3 − xn−1 − xn, (4.1)

for i = 2, ∆2 = 4x2 − x1 − x3 − x4 − xn, (4.2)

for i = 3, ∆3 = 4x3 − x2 − x1 − x4 − x5, (4.3)

...

for i = n− 1, ∆n−1 = 4xn−1 − x1 − xn−2 − xn−3 − xn, (4.4)

for i = n, ∆n = 4xn − x1 − x2 − xn−1 − xn−2. (4.5)

Since vertex 4 has been chosen as the rooted vertex (Sink), therefore x4 = 0. If
xi is the image of xi in Zn/4 Zn. The following system of relation is obtained

x1 = 4xn−1 − xn−2 − xn−3 − xn, by (4.4)
x2 = 4xn − x1 − xn−2 − xn−1, by (4.5)
x3 = 4x1 − x2 − xn−1 − xn, by (4.1)
xi = 4xi−2 − xi−3 − xi−4 − xi−1. for each 5 ≤ i ≤ n

From this system it is cleared that there are at most three generators for S(C2
n).

Indeed each x1, x2, x3. For each 5 ≤ i ≤ n, ai, bi, ci are defined such that,

xi = (−1)i(aix1 + bix2 + cix3).
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Proposition 4.2.1. [14]. If the sequence (ci)i≥5 is extended by co = 1, c1 = c2 = c4 = 0,
c3 = 1, then the following equalities hold:

ci = 4ci−2 + ci−1 + ci−3 − ci−4,
(4.6)

ai =
ci − ci−1 − ci−2 + (−1)i

2
, bi = ci−2. (4.7)

Proof. From system of generators of S(C2
n) relations relations are obtained for

ai, bi, ci with 5 ≤ i ≤ n that are,

ai = 4ai−2 − ai−1 − a1−3 − ai−4.
bi = 4bi−2 − bi−1 − bi−3 − bi−4.
ci = 4ci−2 + ci−1 + ci−3 − ci−4.

from these recurrence relation and initial values of ci, a
′
is and b′is can be expressed

in terms of the c′is.

4.2.1 Relation matrix between the the generators x1, x2, x3

System of equation after applying the toppling rule are:

x1 = 4xn−1 − xn−2 − xn−3 − xn (4.8)

x2 = 4xn − x1 − xn−2 − xn−1, (4.9)

x3 = 4x1 − x2 − xn−1 − xn, (4.10)

xi = 4xi−2 − xi−3 − xi−4 − xi−1. (4.11)

(4.12)

From this system it can been seen each xi can be expressed in terms of x1, x2, x3
such that

xi = (−1)i(aix1 + bix2 + cix3), for 5 ≤ i ≤ n. (4.13)

Using (4.13),

xn−1 = (−1)n−1(an−1x1 + bn−1x2 + cn−1x3),

xn−2 = (−1)n−2(an−2x1 + bn−2x2 + cn−2x3),

xn−3 = (−1)n−3(an−3x1 + bn−3x2 + cn−3x3).
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Put these value in (4.8)

x1 =4 [(−1)n − 1(an−1x1 + bn−1x2 + cn−1x3]− [(−1)n − 2(an−2x1 + bn−2x2 + cn−2]

− [(−1)n − 3(an−3x1 + bn−3x2 + cn−3x3]− [(−1)n(anx1 + bnx2 + cnx3]

=
[
(−1)n−14an−1 − (−1)n−2an−2 − (−1)n−3an−3 − (−1)nan

]
x1+[

(−1)n−14bn−1 − (−1)n−2bn−2 − (−1)n−3bn−3 − (−1)nbn
]
x2+[

(−1)n−14cn−1 + (−1)n−2cn−2 + (−1)n−3cn−3 + (−1)ncn
]
x3.

By putting values of a, b, c we get,

x1 = (−1)n+1an+1x1 + (−1)n+1bn+1x2 − (−1)n+1cn+1x3

x1 = (−1)n+1(an+1x1 + bn+1x2 − cn+1x3). (4.14)

Now for x2 we put the values of xn, xn−1, xn−2, x1 in (4.9)

x2 =4 [(−1)n(anx1 + bnx2 + cnx3)]−
[
(−1)n−1(an−1x1 + bn−1x2 + cn−1x3)

]
− [(−1)n − 2(an−2x1 + bn−2x2 + cn−2x3)] +

[
(−1)n+1(an+1x1 + bn+1x2 + cn+1x3)

]
=
[
4(−1)nan − (−1)n−1an−1 − (−1)n−2an−2 − (−1)n+1an+1

]
x1+[

4(−1)nbn − (−1)n−1bn−1 − (−1)n−2bn−2 − (−1)n+1bn+1

]
x2+[

−4(−1)ncn + (−1)n−1cn−1 + (−1)n−2cn−2 + (−1)n+1cn+1

]
x3 .

By putting values of a, b, c we get,

x2 = (−1)n+2an+2x1 + (−1)n+2bn+2x2 − (−1)n+2cn+2x3

x2 = (−1)n+2(an+2x1 + bn+2x2 − cn+2x3). (4.15)

Now for x3 we put the values of x1, , xn−1, xn, , x1 in (4.10)

x3 =
[
(−1)n+1(an+1x1 + bn+1x2 − cn+1x3)

]
−
[
(−1)n−1(an−1x1 + bn−1x2 − cn−1x3)

]
− [(−1)n(anx1 + bnx2 − cnx3)]−

[
(−1)n+2(an+2x1 + bn+2x2 − cn+2x3

)
]

=
[
4(−1)n+1an+1 − (−1)n−1an−1 − (−1)nan − (−1)n+2an+2

]
x1+[

4(−1)n+1bn+1 − (−1)n−1bn−1 − (−1)nbn − (−1)n+2bn+2

]
x2+[

−4(−1)n+1cn+1 + (−1)n−1cn−1 + (−1)ncn + (−1)n+2cn+2

]
x3.
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By putting values of a, b, c we get,

x3 = (−1)n+3an+3x1 + (−1)n+3bn+3x2 − (−1)n+3cn+3x3

x3 = (−1)n+3(an+3x1 + bn+3x2 − cn+3x3). (4.16)

Using (4.14)

x1 = (−1)n+1(an+1x1 + bn+1x2 − cn+1x3)

x1(−1)−n−1 = (an+1x1 + bn+1x2 − cn+1x3)

an+1x1 − x1(−1)−n−1 + bn+1x2 − cn+1x3) = 0

(an+1 − (−1)n)x1 + bn+1 + cn+1 = 0

Similarly, Using (4.15) and (4.16) we get,

an+2x1 + (−bn+2 + (−1)n)x2 − cn+2 = 0

an+3x1 + bn+3x2 + (−cn+3 + (−1)n)x3 = 0.

Thus, the relation matrix between the generators x1, x2, x3 is

Bn =

an+1 + (−1)n bn+1 −cn+1

−an+2 −bn+2 + (−1)n cn+2

an+3 bn+3 −cn+3 + (−1)n

 .

Proposition 4.2.2. [14]. For n ≥ 0, the following equations hold:

cn+1 + cn+2 = F 2
n , cn+2 − cn = F 2

n − F 2
n−1, an+1 + an+2 = Fn−1Fn− 2. (4.17)

Proof. From eq. ,we get

cn+1 = 4cn−1 + cn + cn−2 − cn−3.
cn+2 = 4cn + cn+1 + cn−1 − cn−2.

Adding cn+1, cn+2 we get,

cn+1 + cn+2 = 2(cn + cn+1) + 2(cn−1+cn)− cn−2 + cn−1 For n ≥ 3. (4.18)

with initial condition c1 + c2 = 0, c2 + c3 = 1, c3 + c4 = 1, writing explicit form of
the sequence in (4.18), The characteristic equation will be,

r3 − 2r2 − 2r + 1 = 0, by solving we get,

r1 =
3 +
√

5

2
, r2 =

3−
√

5

2
, r3 = −1.
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Using these values of r1, r2, r3 the sequence in (4.18) becomes,

cn+1 + cn+2 = α1

(
3 +
√

5

2

)n

+ α2

(
3−
√

5

2

)n

+ α3(−1)n.

Using initial values of (4.18), we get the value of α1 =
1

5
, α2 =

1

5
, α3 =

−2

5
by

putting these value we get,

cn+1 + cn+2 =

[(
3+
√
5

2

)n
+
(

3−
√
5

2

)n
− 2(−1)n

]
5

= F 2
n .

Where Fn =
1√
5

[(
1+
√
5

2

)n
−
(

1−
√
5

2

)n]
is the nth Fibonacci number. Hence,

cn+1 − cn = (cn+2 + cn+1 − cn+1 + cn) = F 2
n − Fn−1.

As, an = cn−cn−1−cn−2+(1)n

2
then an+1 = cn+1−cn−cn−1+(−1)n+1

2
,

an+2 = cn+2−cn+1−cn+(−1)n+2

2
.

So, an+1 + an+2 =
cn+2 + cn+1 − cn

2

=
F 2
n − F 2

n−1 − F 2
n−2

2
= Fn−2Fn−1.

Some well-known identities of Fibonacci numbers are listed in next remark which
will be used later.

Remark 4.2.1. [17]. For all n,

F2n = Fn(Fn+1 + Fn−1), (4.19)

F 2
n+1 − F 2

n = Fn+2Fn−1, (4.20)

Fn+1Fn−1 = F 2
n + (−1), (4.21)

FnFn−3 = Fn−1Fn−2 + (−1)n, (4.22)

F 2
1 + F 2

3 + · · ·+ F 2
2m+1 =

2(F4m + 2m)

5
, (4.23)

F 2
1 + F 2

2 + · · ·+ F 2
n = Fn+1Fn+2, (4.24)
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F2n+2 − 1 =

{
FnFn+1 + FnFn+3, n is even,
Fn+1Fn+2 + Fn1Fn+2, n is odd,

F2n−2 + 1 =

{
FnFn−1 + FnFn−3, n is even,
Fn+1Fn−2 + Fn1Fn−2, n is odd.

Lemma 4.2.1. [14]. For m ≥ 0, then

c2m+2 = F2mF2m+1 −
2(F4m + 2m)

5
, (4.25)

c2m+1 =
2(F4m + 2m)

5
− F2m−1F2m, (4.26)

a2m+2 − 1 = F2m−2F2m+1 −
F4m+2m

5
, (4.27)

a2m+1 + 1 =
F4m+2m

5
+ F2m−3F2m. (4.28)

Proof. The first identity will be proven using (4.17)

c2m+2 = F 2
2m − c2m+1

= F 2
2m − (F 2

2m−1 − c2m)

= · · ·
= (F 2

2 + F 2
4 + · · ·+ F 2

2m−2 + F 2
2m)− (F 2

1 + F 2
3 + · · ·+ F 2

2m−1)

= (F 2
1 + F 2

2 + · · ·+ F 2
2m−1 + F 2

2m)− 2(F 2
1 + F 2

3 + · · ·+ F 2
2m−1)

= F2mF2m+1 −
2(F4m + 2m)

5
. by (4.23), (4.24)

The second identity will be proven using (4.17)

c2m+1 = F 2
2m−1 − c2m

= F 2
2m−1 − (F2m−2 − c2m−1)

= · · ·
= (F 2

1 + F 2
3 + · · ·+ F 2

2m−1)− (F 2
2 + F 2

4 + · · ·+ F 2
2m−2 + F 2

2m)

= 2(F 2
1 + F 2

3 + · · ·+ F 2
2m−1)− (F 2

1 + F 2
2 + · · ·+ F 2

2m−1 + F 2
2m)

=
2(F4m + 2m)

5
− F2mF2m−1. by (4.23), (4.24)
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The third identity,

a2m+2 =
c2m+2 − c2m+1 − c2m

2

a2m+2 − 1 =
c2m+2 − c2m+1 − c2m

2
− 1

=
c2m+2 − F 2

2m−1

2
− 1 by(4.17)

=
F2mF2m+1 − 2(F4m+2)

5
− F 2

2m−1

2
− 1 by(4.25)

=
5F2mF2m+1 − 2F4m + 4m− 5F 2

2m−1 − 5

10

=
F2mF2m+1 − F2m−3F2m+1

2
− F4m + 2m

5

= F2m−2F2m+1 −
F4m + 2m

5
.

The fourth identity,

a2m+1 =
c2m+1 − c2m − c2m−1 − 1

2

a2m+1 + 1 =
c2m+1 − c2m − c2m−1 − 1

2
+ 1

=
c2m+1 − F 2

2m−2 + 1

2

=
c2m+1 − F2m−2F2m−4

2

=
F4m + 2m

5
− F2mF2m−1 − F2m−4F2m

2

=
F4m + 2m

5
− F2m(F2m−1 + F2m−4)

2

=
F4m+2m

5
+ F2mF2m−3.

Theorem 4.2.1. [14]. For n ≥ 5, the relation matrix between the relation matrix
x1, x2, x3 of the abelian sandile group on C2

n is equivalent to

An =

Fn 0 0
0 Fn 0
0 F4m+2m

5
n

 ,

where n = 2m is even or n = 2m+ 1 is odd. In other words, for n ≥ 5, one has

S(C2
n) ∼= Z3/AnZ3.
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Proof. In order to prove the theorem, it suffices to prove the relation matrix Bn is
unimodular equivalent to An.
The odd case: n = 2m+ 1, bn+1 = b2m+2 = c2m and Proposition and Remark.

Bn =

a2m+2 − 1 c2m −c2m+2

−a2m+3 −c2m+1 − 1 c2m+3

a2m+4 c2m+2 −c2m+4 − 1


∼

 a2m+2 − 1 c2m −c2m+2

−(a2m+2 + a2m+3 + 1 −(c2m + c2m+1)− 1 c2m+2 + c2m+3

a2m+3 + a2m+4 c2m+1 + c2m+2 + 1 −(c2m+3 + c2m+4 − 1)

R1 −R2, R3 −R2

∼

 a2m+2 − 1 −(c2m+2 − c2m) −c2m+2

−(a2m+2 + a2m+3 + 1) −(c2m + c2m+1 − 1 + (c2m+2 + c2m+3)) c2m+2 + c2m+3

a2m+3 + a2m+4 (c2m+1 + c2m+2)− (c2m+3 + c2m+4) −(c2m+3 + c2m+4)− 1

 ,

(4.29)

using identities from Remark 4.2.1 we calculate the values of entries βij of above
matrix (4.29).

β12 = −(c2m+2 − c2m)

= −(F 2
2m − F 2

2m−1) by using (4.17)

= −F2m−2F2m+1,

β21 = −(a2m+2 + a2m+3) + 1

= −F2mF2m−1 + 1, by using (4.17)

β22 = −(c2m + c2m+1)− 1 + (c2m+2 + c2m+3)
As, c2m + c2m+1 = F 2

2m−1 and c2m+2 + c2m+3 = F 2
2m+1 by using (4.17)

= F 2
2m+1 − F 2

2m−1 − 1,
β31 = a2m+3 + a2m+4

As, an+1 + an+2 = Fn−1Fn−2 by (4.17) then
= F2mF2m+1,

β32 = (c2m+1 + c2m+2)− (c2m+3 + c2m+4)
As, c2m+1 + c2m+2 = F 2

2m and c2m+3 + c2m+4 = F 2
2m+2 by using (4.17)

= F 2
2m − F 2

2m+2,
β33 = −(c2m+3 + c2m+4)− 1
As, cn+1 + cn+2 = F 2

n

=−F 2
2m+2 − 1.

By substituting the values of βij in matrix (4.29), the matrix will be equal to,

35



 a2m+2 − 1 −F2m−2F2m+1 −c2m+2

−F2m−1F2m + 1 F 2
2m+1 − F 2

2m−1 − 1 F 2
2m+1

F2mF2m+1 F 2
2m − F 2

2m+2 −F 2
2m+2 − 1



∼

 F2mF2m+1 F 2
2m − F 2

2m+2 −F 2
2m+2 − 1

−F2m−1F2m + 1 F 2
2m+1 − F 2

2m−1 − 1 F 2
2m+1

a2m+2 − 1 −F2m−2F2m+1 −c2m+2

R1 ↔ R3

∼

−F 2
2m+2 − 1 F 2

2m − F 2
2m+2 F2mF2m+1

F 2
2m+1 F 2

2m+1 − F 2
2m−1 − 1 −F2m−1F2m + 1

−c2m+2 −F2m−2F2m+1 a2m+2 − 1

C1 ↔ C3

∼

 F 2
2m+1 F 2

2m+1 − F 2
2m−1 − 1 −F2m−1F2m + 1

−F 2
2m+2 − 1 F 2

2m − F 2
2m+2 F2mF2m+1

−c2m+2 −F2m−2F2m+1 a2m+2 − 1

R1 ↔ R2

∼

 F 2
2m+1 F 2

2m+1 − F 2
2m−1 − 1 −F2m−1F2m + 1

F 2
2m+2 + 1 F 2

2m+2 − F 2
2m −F2mF2m+1

−c2m+2 −F2m−2F2m+1 a2m+2 − 1

 (−1)R2.

(4.30)

Now again we calculate the values of entries βij of above matrix (4.30).

β12 =F 2
2m+1 − F 2

2m−1 − 1

=F 2
2m+1 − (F 2

2m−1 + 1)

=F 2
2m+1 − (F 2

2m−1 − F 2
2m−2 + F 2

2m−2 + 1)

=F 2
2m+1 − (F2mF2m−3 + F2m−1F2m−3)

=F 2
2m+1 − F2m−3(F2m + F2m−1) Using (4.20), (4.21)

=F 2
2m+1 − F2m−3F2m+1

=F2m+1(F2m+1 + F2m−3)

=F2m+1(F2m + F2m−1 − F2m−3)

=F2m+1(F2m + F2m−2 + F2m−3 − F2m−3)

=F2m+1(F2m + F2m−2),

β13 =− F2m−1F2m + 1

=− (F2m−1F2m + (−1)2m+1)

=− F2m−2F2m+1, Using (4.22)
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β21 =F 2
2m+2 + 1

=F 2
2m+2 + (−1)2m+2

=F2m+1F2m+3, Using (4.21)

β22 =F 2
2m+2 − F 2

2m

=F 2
2m+2 − 1− F 2

2m + 1

=F 2
2m+2 + 1− (F 2

2m + 1)

=F2m+3F2m+1 − F2m+1F2m−1 Using (4.21)

=F2m+1(F2m+3 − F2m−1)

=F2m+1(F2m+2 + F2m+1 − F2m−1)

=F2m+1(F2m+2 + F2m + F2m−1 − F2m−1)

=F2m+1(F2m+2 + F2m).

By substituting the values in above matrix (4.30) will be equal to

∼

 F 2
2m+1 F2m+1(F2m + F2m−2) −F2m+1F2m−2

F2m+1F2m+3 F2m+1(F2m+ F2m+2) −F2mF2m+1

−c2m+2 −F2m−2F2m+1 a2m+2 − 1



∼

 F 2
2m+1 F 2

2m+1 + F2m+1(F2m + F2m−2) −F2m+1F2m−2
F2m+1F2m+3 F2m+1F2m+3 + F2m+1(F2m + F2m+2) −F2mF2m+1

−c2m+2 −c2m+2 − F2m−2F2m+1 a2m+2 − 1

 C1 + C2.

As, the sequence Fn of Fibonacci numbers is defined by the recurrence relation

Fn = Fn−1 + Fn−2, then

F2m+1 = F2m + F2m−1 and F2m = F2m − F2m−1

F2m−1 = F2m − F2m−1.
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Put these values in F 2
2m+1 + F2m+1(F2m + F2m−2)

= F2m+1(F2m+1 + F2m + F2m−2)

= F2m+1(F2m + F2m−1 + F2m + F2m − F2m−1)

= 3F2mF2m+1.

Now F2m+1F2m+3 + F2m+1(F2m + F2m+2)

= F2m+1(F2m+3 + (F2m + F2m+2)

= F2m+1(F2m+1 + F2m+2 + F2m + F2m+1 + F2m)

= F2m+1(2F2m+1 + 2F2m + F2m+1 + F2m) By putting the value of F2m+2

= F2m+1(3F2m + F2m+1)

= 3F2m+1(F2m + F2m+1

= 3F2m+1F2m+2.

By substituting value of F 2
2m+1+F2m+1(F2m+F2m−2) and F2m+1F2m+3+F2m+1(F2m+

F2m+2) above matrix becomes,

 F 2
2m+1 3F2m+1F2m −F2m+1F2m−2

F2m+1F2m+3 3F2m+1F2m+2 −F2mF2m+1

−c2m+2 −c2m+2 − F2m−2F2m+1 a2m+2 − 1



=

F2m+1 F2m 0
F2m+3 F2m+2 0

0 0 1

 F2m+1 0 F2m+1

0 3F2m+1 −2F2m+1

−c2m+2 −c2m+2 − F2m−2F2m+1 a2m+2 − 1

 .

Since

det

F2m+1 F2m 0
F2m+3 F2m+2 0

0 0 1

 =det

(
F2m+1 F2m

F2m+2 F2m+1

)
=F 2

2m+1 − F2mF2m+2

=F2mF2m+2 − (−1)2m+1 − F2mF2m+2

=− (−1) = 1,

Bn ∼

 F2m+1 0 F2m+1

0 3F2m+1 −2F2m+1

−c2m+2 −c2m+2 − F2m−2F2m+1 a2m+2 − 1



∼

 F2m+1 0 0
0 3F2m+1 −2F2m+1

−c2m+2 −c2m+2 − F2m−2F2m+1 a2m+2 + c2m+2 − 1

C3 − C1
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∼

 F2m+1 0 0
0 F2m+1 −2F2m+1

−c2m+2 −F2m−2F2m+1 + a2m+2 a2m+2 + c2m+2 − 1

C2 + C3

∼

 F2m+1 0 0
0 F2m+1 0

−c2m+2 y x

 2C2 + C3,

where
x = a2m+2 + c2m+2 − 1 + 2(−F2m−2F2m+1 + a2m+2 − 1)

= 3(a2m+2 − 1) + c2m+2 − 2F2m−2F2m+1

= 3(F2m−2F2m+1 − F4m+2m
5

) + (F2mF2m+1 − 2(F4m+2m)
5

− 2F2m−2F2m+1)

= 3F2m−2F2m+1 − 3(F4m+2m)
5

+ F2mF2m+1 − 2(F4m+2m)
5

− 2F2m−2F2m+1)

= F2mF2m+1 + F2m−2F2m+1 − F4m − 2m

= F2mF2m+1 + F2mF2m−1 − 1− F4m − 2m

= F2m(F2m+1 + F2m−1)− F4m − 2m− 1

= −(2m+ 1),

And y = −F2m−2F2m+1 + a2m+2 + 1

= −F2m−2F2m+1 + (F2m−2F2m+1 − F4m+2m

5
),

= −F4m+2m

5
.

Hence

Bn ∼

 F2m+1 0 0
0 F2m+1 0

−c2m+2 −F4m+2m

5
−(2m+ 1)



∼


F2m+1 0 0

0 F2m+1 0

2(F4m+2m)
5

−F4m+2m

5
−(2m+ 1)
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∼

 F2m+1 0 0
0 F2m+1 0

−2(F4m+2m)
5

F4m+2m

5
2m+ 1

 (−1)R3

∼

F2m+1 0 0
0 F2m+1 0

0 F4m+2m

5
2m+ 1

 2C1 + 2C2.

The even case: n = 2m, by bn+1 = b2m+2 = c2m and Proposition and Remark
4.2.1,

Bn =

a2m+1 + 1 c2m−1 −c2m+1

−a2m+2 −c2m + 1 c2m+2

a2m+3 c2m+1 −c2m+3 + 1



∼

 a2m+1 + 1 c2m−1 −c2m+1

−(a2m+1 + a2m+2)− 1 −(c2m−1 + c2m) + 1 c2m+1 + c2m+2

a2m+2 + a2m+3 c2m + c2m+1 −(c2m+2 + c2m+3) + 1

R1 −R2, R3 −R2

∼

 a2m+1 + 1 −(c2m+1 − c2m−1) −c2m+1

−(a2m+1 + a2m+2)− 1 −(c2m−1 + c2m) + 1 + c2m+1 + c2m+2 c2m+1 + c2m+2

a2m+2 + a2m+3 c2m + c2m+1 − (c2m+2 + c2m+3) + 1 −(c2m+2 + c2m+3) + 1

C2 + C3.

Using identities from Remark 4.2.1 we calculate the values of entries αij of above
matrix.

α12 = −(c2m+1 − c2m−1)
= −(F 2

2m−1 − F 2
2m−2) by using (4.17)

= −F2m−3F2m,

α21 = −(a2m+1 + a2m+2)− 1

= −F2m−1F2m−2 − 1, by using (4.17)

α22 = −(c2m−1 + c2m) + 1 + (c2m+1 + c2m+2)
As, c2m−1 + c2m = F 2

2m−2 and c2m+1 + c2m+2 = F 2
2m by using (4.17)

= F 2
2m − F 2

2m−2 + 1,
α31 = a2m+2 + a2m+3

As, an+1 + an+2 = Fn−1Fn−2 by (4.17) then
= F2m−1F2m
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α32 = (c2m + c2m+1)− (c2m+2 + c2m+3)
As, c2m + c2m+1 = F 2

2m−1 and c2m+2 + c2m+3 = F 2
2m+1 by using (4.17)

= F 2
2m−1 − F 2

2m+1,
β33 = −(c2m+2 + c2m+3) + 1
As, cn+1 + cn+2 = F 2

n

=−F 2
2m+1 + 1.

By substituting the values of αij in matrix (??), the matrix will be equal to,

 a2m+1 + 1 −F2m−3F2m −c2m+1

−F2m−2F2m−1 − 1 F 2
2m − F 2

2m−2 + 1 F 2
2m

F2m−1F2m F 2
2m−1 − F 2

2m+1 −F 2
2m+1 + 1



∼

 F2m−1F2m F 2
2m−1 − F 2

2m+1 −F 2
2m+1 + 1

−F2m−2F2m−1 − 1 F 2
2m − F 2

2m−2 + 1 F 2
2m

a2m+1 + 1 −F2m−3F2m −c2m+1

R1 ↔ R3

∼

−F 2
2m+1 + 1 F 2

2m−1 − F 2
2m+1 F2m−1F2m

F 2
2m F 2

2m − F 2
2m−2 + 1 −F2m−2F2m−1 − 1

−c2m+1 −F2m−3F2m a2m+1 + 1

C1 ↔ C3

∼

 F 2
2m F 2

2m − F 2
2m−2 + 1 −F2m−2F2m−1 − 1

−F 2
2m+1 + 1 F 2

2m−1 − F 2
2m+1 F2m−1F2m

−c2m+1 −F2m−3F2m a2m+1 + 1

R1 ↔ R2

∼

 F 2
2m F 2

2m − F 2
2m−2 + 1 −F2m−2F2m−1 − 1

F 2
2m+1 − 1 F 2

2m+1 − F 2
2m−1 −F2m−1F2m

−c2m+1 −F2m−3F2m a2m+1 + 1

 (−1)R2.

Now again we calculate the values of entries αij of above matrix .

α12 =F 2
2m − F 2

2m−2 + 1

=F 2
2m − (F 2

2m−2 − 1)

=F 2
2m − (F 2

2m−2 − F 2
2m−3 + F 2

2m−3 − 1)

=F 2
2m − (F2m−1F2m−4 + F2m−2F2m−4)

=F 2
2m − F2m−4(F2m−1 + F2m−2) Using (4.20), (4.21)
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=F 2
2m − F2m−4F2m

=F2m(F2m − F2m−4)

=F2m(F2m−1 + F2m−2 − F2m−4)

=F2m(F2m−1 + F2m−3 + F2m−4 − F2m−4)

=F2m(F2m−1 + F2m−3)α13

=− F2m−2F2m−1 − 1

=− (F2m−2F2m−1 + (−1)2m)

=− F2m−3F2m, Using (4.22)

α21 =F 2
2m+1 − 1

=F 2
2m+1 + (−1)2m+1

=F2mF2m+2, Using (4.21)

α22 =F 2
2m+1 − F 2

2m−1

=F 2
2m+1 − 1− F 2

2m−1 + 1

=F 2
2m+1 − 1− (F 2

2m−1 − 1)

=F2m+2F2m − F2m−2F2m Using (4.21)

=F2m(F2m+2 − F2m−2)

=F2m(F2m+1 + F2m − F2m−2)

=F2m(F2m+1 + F2m−1 + F2m−2 − F2m−2)

=F2m(F2m+1 + F2m−1).

By substituting the values the above matrix will be equal to

∼

 F 2
2m F2m(F2m−1 + F2m−3) −F2mF2m−3

F2mF2m+2 F2m(F2m−1 + F2m+1) −F2m−1F2m

−c2m+1 −F2m−3F2m a2m+1 + 1



∼

 F 2
2m F 2

2m + F2m(F2m−1 + F2m−3) −F2mF2m−3
F2mF2m+2 F2mF2m+2 + F2m(F2m−1 + F2m+1) −F2m−1F2m

−c2m+1 −c2m+1 − F2m−3F2m a2m+1 + 1

C1 + C2.

As, the sequence Fn of Fibonacci numbers is defined by the recurrence relation
Fn = Fn−1 + Fn−2, using this recurrence relation,

F 2
2m + F2m(F2m−1 + F2m−3)

=F2m(F2m + F2m−1 − F2m−3)

=F2m(F2m−1 + F2m−2 + F2m−1 + F2m−1 − F2m−2)

=3F2m−1F2m.
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Now F2mF2m+2 + F2m(F2m−1 + F2m+1)

=F2m(F2m+2 + F2m−1 + F2m+1)

=F2m(F2m + F2m+1 + F2m−1 + F2m + F2m−1)

=F2m(2F2m + 2F2m−1 + F2m+1)

=F2m(2F2m + 2F2m−1 + F2m + F2m−1)

=3F2m(F2m + F2m−1)

=3F2mF2m+1.

By putting the value of F 2
2m + F2m(F2m−1 and F2mF2m+2 + F2m(F2m−1 + F2m+1 the

above matrix becomes, F 2
2m 3F2m−1F2m −F2mF2m−3

F2mF2m+2 3F2mF2m+1 −F2m−1F2m

−c2m+1 −c2m+1 − F2m−3F2m a2m+1 + 1



=

 F2m F2m−1 0
F2m+2 F2m+1 0

0 0 1

 F2m 0 F2m

0 3F2m −2F2m

−c2m+1 −c2m+1 − F2m−3F2m a2m+1 + 1

 .

Since

det

 F2m F2m−1 0
F2m+2 F2m+1 0

0 0 1

 =det

(
F2m F2m−1
F2m+1 F2m

)
=F 2

2m − F2m−1F2m+1

=F2m−1F2m+1 − (−1)2m − F2m−1F2m+1

=− 1,

Bn ∼

 F2m 0 F2m

0 3F2m −2F2m

−c2m+1 −c2m+1 − F2m−3F2m a2m+1 + 1



∼

 F2m 0 0
0 3F2m −2F2m

−c2m+1 −c2m+1 − F2m−3F2m a2m+1 + c2m+2 + 1

C3 − C1

∼

 F2m 0 0
0 F2m −2F2m

−c2m+1 −F2m−3F2m + a2m+1 + 1 a2m+1 + c2m+1 + 1

C2 + C3
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∼

 F2m 0 0
0 F2m 0

−c2m+1 y x

C3 + 2C2,

where
x = a2m+1 + c2m+1 + 1 + 2(−F2m−3F2m + a2m+1 + 1)

= 3(a2m+1 + 1) + c2m+1 − 2F2m−3F2m

= 3(F4m+2m
5

+ F2m−3F2m) + 2(F4m+2m)
5

− F2mF2m−1 − 2F2m−3F2m

= F4m + 2m− F2m−3F2m − F2m−1F2m

= F4m + 2m− F2m(F2m−1 + F2m−3)

= 2m,

and y = −F2m−3F2m+1 + a2m+1

= −F2m−3F2m + F4m+2m

5
+ F2m−3 + F2m

= F4m+2m

5
.

Hence

Bn ∼

 F2m 0 0
0 F2m 0

−c2m+1
F4m+2m

5
2m



∼


F2m 0 0

0 F2m 0

2(F4m+2m)
5

F4m+2m

5
2m



∼

F2m 0 0
0 F2m 0

0 F4m+2m

5
2m

C1 − 2C2.

Corollary 4.2.1. [16]. The number of spanning trees in C2
n is

τ(C2
n) = nF 2

n .
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4.3 Analysis of the coefficient of the Smith nor-

mal form of S(C2
n)

In this section structure of sandpile group S(C2
n) will be determined. It is known

that the sequence {Fn mod 5e}n>0 is periodic and the least period of this sequence
is 4 · 5e for each e > 1 [18]. Hence

Fx+4y5e ≡ Fxmod5e.

As F−n = (1)n+1Fn. The following identity can be found in [13] , which can be
proven by induction.

Fkn+r =
k∑

h=0

(
k

h

)
F h
nF

k−h
n−1Fr+h. (4.31)

for k > 0 and every integer r.
From the above identity and the facts F1 = F1 = F2 = 1, F0 = 0, F3 = 2, F4 =
3, F5 = 5, one has

F5n = Fn
(
5F 4

n−1 + 10FnF
3
n−1 + 20F 2

nF
2
n−1 + 15F 3

nFn−1 + 5F 4
n

)
, (4.32)

F5n−1 = F 5
n−1 + 10F 2

nF
3
n−1 + 15F 3

nFn−1 + 10F 4
nFn−1 + 3F 5

n , (4.33)

F5n+1 = F 5
n−1 + 5FnF

4
n−1 + 20F 2

nF
3
n−1 + 30F 3

nFn−1 + 25F 4
nFn−1 + 8F 5

n . (4.34)

Now identities of Fibonacci numbers modulo 5e+1 will be shown, which will be used
in the proof of the main result of this section.

Lemma 4.3.1. [14]. Let e > 0. Then

F4·5e ≡ 3 · 5e mod 5e+1,

F4·5e−1 ≡ 5e+1 mod 5e+1,

F4·5e+1 ≡ 4 · 5e+1 mod 5e+1.

Proof. This lemma can be proven by induction on e. If e = 0 the lemma is clearly
true, and when e = 1, F20 = 6765 ≡ 15 mod 52, F19 = 4181 ≡ 6 mod 52 and
F21 = 10, 946 ≡ 21 mod 52.
Suppose the lemma is true for some e > 1. Since 2e + 1 > e + 2 for e > 1 and by
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virtue of the induction assumption, the following relations can be obtained:

5F4·5e = 5(3 · 5e + a5e+1) for some a ∈ Z
= 52e+1(3 + 5a)2

≡ 0 mod 5e+2,

5F4·5eF
4
4·52−1 = 5(3 · 5e + a5e+1)(5e + 1 + b5e+1)4 for some a, b ∈ Z

≡ 5e+1(3 + 5a) mod 5e+2

≡ 3 · 5e+1 mod 5e+2,

F4·5e1 = (5e + 1 + b5e+1)5

≡ 5e+1 + 1 mod 5e+2.

Thus, by Eqs. (4.33) to (4.34) and the induction assumption, the following relations
can be obtained:

F4·5e+1−1 = F5·4·5e−1 ≡ F 5
4·5e−1 mod 5e+2

≡ 5e+1 + 1 mod 5e+2,

F4·5e+1 = F5·4·5e ≡ 5F4.5eF
4
4.5e−1

≡ 3 · 5e+1 mod 5e+2,

F4·5e+1+1 = F5·4·5e+1

≡ F 5
c·5e−15 + F4·5eF

4
4·5e−1 mod 5e+2

≡ 4 · 5e+1 + 1 mod 5e+2.

This completes the proof.

Lemma 4.3.2. [14] Let e > 0. Then

F2·5e−2 ≡ 4 · 5e + 1 mod 5e+1,

F6·5e−2 ≡ 2 · 5e + 1 mod 5e+1,

F14·5e−2 ≡ 3 · 5e + 1 mod 5e+1,

F18·5e−2 ≡ 5e + 1 mod 5e+1.

If 5e|m then 5e|F4m and thus 5e|F4m + 2m. The next two lemmas are more.

Lemma 4.3.3. [14]. Let 5e|m. Then 5e|F4m+2m

5
.

Proof. If 5e+1|m then 5e+1|F2m + 2m and the result follows. Let 5e|m but 5e+1 - m.
Then m = 5e+1y + x5e, for some y, x ∈ Z and 1 6 x 6 4. Hence 2m = 2x5e

mod 5e+1 and by Lemma 6, then

F4m = F4x5e+4y5e+1

≡ F4x5e mod 5e+1
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≡


3 · 5e mod 5e+1, x = 1
5e mod 5e+1, x = 2
4 · 5e mod 5e+1, x = 3
2 · 5e mod 5e+1, x = 4.

Hence 5e|F4m+2m
5

.

Lemma 4.3.4. [14]. Let 5e|2m+ 1. Then 5e|F4m+2m
5

.

Proof.

F4m + 2m

5
=
F4m1 + 2m+ 1

5
=
F2m+1(F2m + F2m2) + 2m+ 1

5
.

As in the proof of the above lemma, let 5e|2m+ 1 but 5e+1 - 2m+ 1. Thus 2m+ 1 =
5e+1y + x5e, y, x ∈ Z and 1 6 x 6 4, and just one of x and y is odd. Then
4m = 2y5e+1 + 2x5e − 2, 2m = x5e − 1 mod 5e+1. If y = 2a and x is odd, then

F4m = F2x5e+4a5e+1−2

≡ F2x5e−2 mod 5e+1

≡
{

4 · 5e + 1 mod 5e+1, x = 1
2 · 5e + 1 mod 5e+1, x = 3.

If y = 2a+ 1 and x is even, then

F4m = F(2x+10)5e+4a5e+1−2

≡ F(2x+10)5e−2 mod 5e+1

≡
{

3 · 5e + 1 mod 5e+1, x = 2
5e + 1 mod 5e+1, x = 4.

Hence 5e|F4m+2m
5

.

Theorem 4.3.1. Let n > 3. Then

S(C2
n) ∼= Z(n,Fn) ⊕ ZFn ⊕ Z nFn

(n,Fn)
.

Proof. For n = 3 or 4, the result follows from that S(C2
3) ∼= Z2 ⊕ Z6 and S(C2

4) ∼=
Z3⊕Z12. For n > 5, it suffices to prove the Smith normal form S = diag(S11, S22, S33)
of the matrix An in Theorem (4.2.1) is the diagonal matrix:(n, Fn) 0 0

0 Fn 0
0 0 nFn

(n,Fn)

 .
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For finding the coefficient of smith normal form of matrix An we use remark (3.3.1)
Computation of S11.
S11= Greatest common divisor of all 1× 1 determinants.
For n = 2m or n = 2m+ 1 so S11 = (n, Fn,

F4m+2m
5

),
Computation of S22.
S22=Greatest common divisor of all 2× 2 determinants.
For n = 2m or n = 2m+1 so S22 = (nFn, F 2

n , Fn
F4m+2m

5
) = Fn(n, Fn,

F4m+2m
5

)
= S11Fn, S22 = Fn,
Computation of S33.
S11S22S33= determinant of An.
For n = 2m or n = 2m+ 1 so S11S22S33 = nF 2

n . S33 = nFn
(n, Fn)

.

In order to prove theorem it is sufficient to prove that S11 = (n, Fn,
F4m+2m

5
) = (n, Fn).

The even case: n = 2m. For each common factor d of 2m and F2m,
if (d, 5) = 1 then d is also a factor of F2m(F2m−1+F2m+1+2m)

5
= F4m+2m

5
; if

d = 5e for some e ≥ 1, then d is also a factor of F4m+2m
5

by lemma 4.3. Hence,
(2m, F2m,

F4m+2m
5

) = (2m, F2m).

The odd case: n = 2m + 1. As F4m+2m
5

= F2m+1(F2m+F2m−2+2m+1)
5

, for each
common factor d of 2m + 1 and F2m+1, if (d, 5) = 1 then d is also a factor of
F4m+2m

5
; if d = 5e for some e ≥ 1, then d is also a factor of F4m+2m

5
by lemma 4.3.

Hence, (2m+ 1, F2m+1,
F4m+2m

5
) = (2m+ 1, F2m+1).

Hence, the sandpile group of square cycle graph S(C2
n) is,

S(C2
n) ∼= Z(n,Fn) ⊕ ZFn ⊕ Z nFn

(n,Fn)
.

4.4 Concluding remarks

The main objective of the work was to study the structure of abelian sandpile group
of square cycle graph C2

n and also to give the explicit Smith normal form of this
group. Pointing out that that sandpile group is never cyclic but is always the direct
sum of two or three cycles. As by-product this implies that cyclic group ZFn is
always a summand of sandpile group of square cycle graph C2

n.
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