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Abstract

Fractional calculus adds to the beauty of conventional calculus by extending the concept of integer
order differentiation and integration to arbitrary order. This thesis directs to existence and unique-
ness theory and methods to solve fractional differential equations. This thesis begins with history
and introduction to basic concepts related to fractional calculus. We have seen the existence and
uniqueness results for initial value problems. Power series method and Laplace transform method for
solving fractional differential equations are discussed.

In literature many numerical methods have been established to solve fractional differential equations.
In this thesis we have used combination of two quadrature methods to solve fractional differential
equations numerically. Particularly we have combined trapezoidal rule and Simpson’s rule to solve ini-
tial value problems for fractional differential equations. We have transformed the class of fractional
differential equations to a system of algebraic equations and then developed operational matrices.
Matlab programmes are designed to seek the solution of algebraic system. The proposed method can
even work successfully for equations involving weakly singular kernel. The efficiency of this method
is revealed by solving a variety of problems. We have compared the results with exact solutions. We
have also compared the results for the proposed method with some other numerical methods to check
the reliability and efficiency of the method.
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Chapter 1

Introduction

Fractional calculus is a field of mathematics that deals with the derivatives and integrals of non-
integer order. It can be marked as old as classical calculus that deals with derivatives and integrals
of integer order. Derivatives and integrals of fractional order are considered as non-local operators
since both these operators involve integration which is a non-local operator (as it is defined on an
interval). This property makes these operators an efficient and powerful tool to define long term
memory effects, asymptotic scaling and hereditary properties of various physical phenomena.

Many mathematicians put their interest and efforts in the field of fractional calculus and also devel-
oped their own definitions for derivatives and integrals of fractional order. The most famous definitions
in the field of fractional calculus are the Riemann-Liouville, Caputo, Weyl and Grunwald-Letnikov
definitions. In general, these definitions are not alike except for some special class of functions. The
most often used definition of fractional integral and derivative is given by Riemann and Liouville.
But the situations in which this definition is not applicable we prefer to use Caputo’s approach.

The increasing number of applications of fractional differential equations motivated many researchers
and appreciable work has been done to develop efficient methods for exact and numerical solutions
of fractional differential equations. Mathematical models are widely used to explain the behavior of
physical phenomena. The best way to evaluate these models is by using calculus. These are the ana-
lytic methods, because we use analysis to reach the solution. But this tends to work only for simple
models. For more complex models, the solution becomes too complicated. Then we turn to numer-
ical methods for solving the problem. Many numerical methods are developed to solve fractional
differential equations. These methods include homotype perturbation method [2], Haar Wavelets
method [10], Adomian decomposition method [23], extrapolation method [14], predictor-corrector
method [16], homotype analysis method [21], fractional linear multi-step method [33], generalized
differential transform method [39], variational iteration method [52] and finite difference method [53].

The thesis comprises of five chapters. The first chapter is concerned with history, basic definitions
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and preliminary concepts related to fractional derivatives and integrals and applications of fractional
calculus. Chapter 2 is based on existence and uniqueness results for solution of fractional differen-
tial equations. Chapter 3 deals with power series method to solve fractional differential equations.
Chapter 4 is about Laplace transform method for fractional differential equations and Chapter 5 is
related to solving fractional differential equations using combination of quadrature methods. At the
end we have given some further workable contents.

1.1 History

Guillaume de L’Hopital (1661 - 1704) and Gottfried Leibniz (1646 - 1716) are considered as the ini-
tiators of fractional calculus that deals with derivatives and integrals of arbitrary order. The key idea
behind the development of fractional calculus was the question raised by L’Hopital in 1695. L’Hopital
asked Leibniz about the differentiation of order 1/2. Leibniz response was “an apparent paradox from
which one day useful consequences will be drawn."

Leonhard Euler’s (1707 - 1783) also showed his interest in fractional calculus. In 1730 he men-
tioned that when n is a positive integer and f is a function of x then the ratio dnf to dxn can always
be achieved. But what will the ratio dnf to dxn if n is not an integer. We can see the problem in this
case is that when n is a positive integer one can find dn by continuing the process of differentiation
but this is not possible when n is a fraction. Yet one can solve this issue with the help of interpolation.

In 1812 Pierre-Simon Laplace (1749 - 1827) defined a fractional order derivative by using integrals in
the definition. Sylvestre Francois Lacroix (1765-1843) was a French mathematician who published a
700 pages text on classical calculus and mentioned fractional derivatives in it by dedicating less than
two pages on this issue. Thus the first appearance of fractional derivatives in text was in 1819. It
took 279 years after L’Hopital curiosity in fractional calculus to devote a text entirely comprising on
fractional calculus.

Leibniz, Euler, Laplace, and Fourier worked on derivatives of arbitrary order, but the first appli-
cation of fractional operators was given by Niels Henrik Abel (1802 - 1829) in 1823. Abel used
the fractional calculus to solve an integral equation which arises in the modeling of the tautochrone
problem1. In this problem, we get an expression of the form

∫ x
0

(x − t)−
1
2dt. The integral under

consideration is a particular case of a definite integral that defines fractional integration of order 1
2
,

except for a multiplicative constant 1
Γ( 1

2
)
.

1The problem is connected with the determination of a curve along which a heavy particle, sliding without friction,
descends to its lowest position, such that the time of descent is a given function of its initial position.
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A French mathematician, Joseph Liouville (1809-1882) was inspired by Abel’s solution and gave
the first logical definition of a fractional derivative. In 1832 he published three long memoirs and
a few more by 1855 that showed his enthusiasm to the theory of fractional calculus. He was also
victorious in applying his definitions to problems arising in potential theory.

There was a disagreement from 1835 to 1850 between two definitions of a fractional derivative given
by Lacroix and Liouville. George Peacock showed his approval in Lacroix version. While other
mathematicians were in favour of Liouville’s definition. In 1850 the dispute was resolved by William
Center who noticed that the dissimilarity arises between these two definitions from how they define
fractional derivative of a constant. If we have a look at the definition given by Lacroix we see that
fractional derivative of a constant is not zero. But in accordance with Liouville’s formula fractional
derivative of a constant is zero since we have Γ(0) =∞.

In 1847 Bernhard Riemann (1826-1866) devoted a paper to fractional operations that was published
after his death. N. Ya. Sonin in 1869 wrote a paper titled as “On differentiation with arbitrary index"
that was comprised of initial work done by Riemann and Liouville in theory of fractional calculus.
The starting point of his discussion was Cauchy’s formula for repeated integration. A. V. Letnikov
wrote four papers on fractional operations. In 1872 he extended the concept of Sonin by writing a pa-
per entitled “An explanation of the fundamental concepts of the theory of differentiation of arbitrary
order". Sonin and Letnikov defined a fractional derivative using a closed contour in the definition.
Fractional derivatives were used in electromagnetic theory by Oliver Heaviside in 1920 and, later, in
1936 A. Gemant introduced fractional derivatives to problems in elasticity.

Fractional calculus was considered a part of specialized seminars and pacts since the seventies. In
June 1974 Bertram Ross assembled the first conference on fractional calculus and its applications
after completing his Ph.D. thesis on fractional calculus. In 1974 a chemist Keith B. Oldham and a
mathematician Jerome Spanier published the first monograph on this issue. This association between
a chemist and a mathematician to use the semi-derivatives and semi-integrals in dealing with prob-
lems of mass and heat transfer, surely established the foundations of new era for fractional calculus.
In 1987 Stefan G. Samko, Anatoly A. Kilbas and Oleg I. Marichev wrote a book on fractional calculus
in Russian. This book was translated to English in 1993 and was titled as “Fractional Integrals and
Derivatives: Theory and Applications". In 1991 A. Oustaloup introduced fractional derivatives in
frequency response.

Fractional derivatives and integrals were considered as non-local operators till 1996 but in the same
year Kolwankar introduced the notion of local fractional derivatives that appears in fractals and were
popularized by Mandelbrot in 1970. Mandelbort promoted their significance in modelling of various
irregular objects and activities observed in nature. This concept entirely changed the viewpoint of
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fractional calculus and since then a lot of work has been done to deduce the fractal dimensions in di-
verse disciplines ranging from biology to astrophysics. A natural continuation of these developments
puts our interest to analogous questions which involve fractals, for example, diffusion on fractals,
wave equation with fractal boundary conditions etc. As a result, it is required to be able to consoli-
date fractals in usual calculus or its appropriate generalization. Fractional calculus is considered as a
reliable candidate that succeeded in dealing with this deadlock since the theory of ordinary calculus
fails to deal with fractals as these are generally non-differentiable.

In 1999 Igor Podlubny showed his great interest in fractional calculus by writing a book entitled
“Fractional Differential Equations". This book appeared to be very handy in studying the applica-
tions of fractional calculus in automatic control. Fractional calculus has huge applications in linear
viscoelasticity as this theory is capable of dealing with hereditary phenomena with long memory. For
more detailed knowledge on this topic one can see the books written by R. Hilfer (2000), B. West,
M. Bologna and P. Grigolini (2003), A. Kilbas, H. M. Srivastava and J. Trujillo (2006) and the latest
one by F. Mainardi (2010).

Fractional calculus was thought to be an abstract discipline of mathematics without applications.
But last few decades has changed our opinion after an outburst of research activities on the appli-
cations of fractional calculus. It has applications in diverse scientific fields ranging from the physics
of diffusion and advection phenomena, to control systems to finance and economics. The increasing
number of applications of fractional differential equations motivated many researchers and apprecia-
ble work has been done to develop efficient methods for exact and numerical solutions of fractional
differential equations. Therefore several methods for the approximate solutions to classical differential
equations are extended to solve differential equations of fractional order numerically. This motivates
us to use the technique of combining different quadrature rules. We have combined the trapezoidal
rule and Simpson

1

3
rd rule as done in [24] and [36]. The reason behind combining these two rules was

Simpson rule is only applicable to an even number of intervals and the trapezoidal rule is less accu-
rate. After combining these two rules we can implement it on any number of intervals and also the
error estimate can be minimized. Further, we have studied the efficiency of our method by applying
the method to different problems that are already done by other researchers.

1.2 Some basic concepts

In this section we discuss some basic definitions and terminologies from analysis that will be helpful
in our further work.

Definition 1.2.1. A collection of closed intervals in R is said to be non overlapping if their interiors
are disjoint. The interior of an interval is the largest open interval that is contained in that interval.
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Definition 1.2.2. [37] A real-valued function y defined on an interval I is said to be absolutely
continuous on I if and only if for every ε > 0 there exists δ > 0 such that for any finite collection of
non overlapping intervals {[ak, bk] : k = 1, 2, · · · , n} contained in I with

∑n
k=1(bk − ak) < δ, we have∑n

k=1 |y(bk)− y(ak)| < ε.

Example 1.2.3. In this problem we prove y(x) =
√
x is absolutely continuous on I = [0, 1]. For this

we take {[ak, bk] : k = 1, 2, · · · , n} a collection of non-overlapping closed intervals contained in [0, 1].
Also let for δ > 0

n∑
k=1

(bk − ak) < δ ⇒ (b1 − a1) + (b2 − a2) + · · ·+ (bn − an) < δ. (1.2.1)

We know the following relations hold

1. (
√
u−
√
v)(
√
u+
√
v) = u− v.

2. −
√
u ≤
√
v ⇒ (

√
u−
√
v) ≤ (

√
u+
√
v).

3. (
√
v −
√
u).2 = (

√
v −
√
u)(
√
v −
√
u) ≤ (

√
v −
√
u)(
√
v +
√
u).

(1.2.2)

We use Equation (1.2.2) to prove the absolute continuity of y(x) =
√
x.

(
√
b1 −

√
a1)2 + · · ·+ (

√
bn −

√
an)2

≤ (
√
b1 −

√
a1)(

√
b1 +

√
a1) + · · ·+ (

√
bn −

√
an)(

√
bn +

√
an)

= (b1 − a1) + (b2 − a2) + · · ·+ (bn − an).

(1.2.3)

Using Equation (1.2.1) in Equation (1.2.3) we get

n∑
k=1

(√
bk −

√
ak

)2

< δ.

Thus,
n∑
k=1

|y(bk)− y(ak)| < ε where δ = ε.

Hence y(x) =
√
x is absolutely continuous on [0, 1].

Definition 1.2.4. By ACm or ACm[a, b] we denote the set of functions with absolutely continuous
(m−1) derivatives, i.e, the function y for which there exists (almost everywhere) a function z ∈ L1[a, b]

such that
ym−1(x) = ym−1(a) +

∫ x

a

z(t)dt.

In this case z is the mth derivative of y; and we write z = y(m).

Lemma 1.2.5. (Grunwald’s Lemma) Let {yn} and {zn} be two nonnegative sequences and let a be a
nonnegative constant. If

yn ≤ a+
n∑
i=1

yizi for n ≥ 0,
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then

yn ≤ a
n∏
j=1

(1 + zj) ≤ a exp

(
n∑
j=1

zj

)
.

Definition 1.2.6. Let function y be defined on a set I. A point x0 ∈ I is called fixed point for y if
y(x0) = x0.

Definition 1.2.7. [29] Let X be a family of functions each of which maps the Banach space (B1, dB1)

into the Banach space (B2, dB2). The family X is said to be equicontinuous at a point b0 ∈ B1 if for
each ε > 0 there exists a δ > 0 such that for all y ∈ X we have

dB2(y(b0), y(b)) < ε whenever dB1(b0, b) < δ.

If the above definition is true for all b0 ∈ B1, then we say that family X is equicontinuous on B1.

Definition 1.2.8. [22] An operator T of Banach space B is said to be compact iff every class of
open sets which covers T has a finite subclass which also covers T .

Theorem 1.2.9. [22](Arzela-Ascoli theorem) Suppose A be a bounded subset of Rn, and let T be a
subset of C(A). Then T is relatively compact if and only if it is bounded and equicontinuous.

Theorem 1.2.10. (Schauder’s fixed point theorem)
Suppose that S is a nonempty, compact and convex subset of the Banach space B and J : S → S is
a compact operator. Then J has atleast one fixed point in S.

Theorem 1.2.11. [35](Cauchy’s formula for repeated integration) Let y be some continuous function
on the interval [a, b]. The nth repeated integral of y based at a, is given by single integration

Ina y(x) =

∫ x

a

∫ xn−1

a

· · ·
∫ x2

a

∫ x1

a

y(x0)dx0dx1 · · · dxn−1 =

∫ x

a

(x− x0)n−1

(n− 1)!
y(x0)dx0. (1.2.4)

Proof. A proof is given by induction on order of integration. Consider the case when n = 1, we have
(x− t)n−1 = (x− t)0 = 1. So,

I1
ay(x) =

∫ x

a

(x− x0)0

(0)!
y(x0)dx0 =

∫ x

a

(x− x0)n−1

(n− 1)!
y(x0)dx0,

means Equation (1.2.4) holds for n = 1. Now suppose the statement (1.2.4) holds for some arbitrary
n and we will prove it for n+ 1 by changing the order of integration.

In+1
a y(x) =

∫ x

a

∫ xn

a

· · ·
∫ x2

a

∫ x1

a

y(x0)dx0dx1 · · · dxn. (1.2.5)

Since the Equation (1.2.4) holds for n, we can write Equation (1.2.5) as

In+1
a y(x) =

1

(n− 1)!

∫ x

a

∫ xn

a

(xn − x0)n−1y(x0)dx0dxn. (1.2.6)
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Now we change the order of integration in Equation (1.2.6). The double integral on right side of
Equation (1.2.6) is to be first integrated in the x0 − direction from x0 = a to x0 = xn and then the
resulting integral is to be integrated in the xn − direction from xn = a to xn = x.

Figure 1.1: Changing order of integration.

The region of integration is the triangular area ABC. In the integral under consideration, the
area ABC is divided in strips parallel to x0 − axis (for example strip P ′Q′). To reverse the order
of integration, we have to first integrate with respect to xn regarding x0 as constant and then with
respect to x0. This is done by dividing the above mentioned area ABC in strips parallel to the
xn − axis (for example, PQ). Thus, we note that first we must integrate from xn = x0 to xn = x in
xn − direction and afterwards in the x0 − direction from x0 = a to x0 = x. Thus, changing the order
of integration on right side of Equation (1.2.6) as shown in the Figure (1.1), we obtain

In+1
a y(x) =

1

(n− 1)!

∫ x

a

∫ x

x0

(xn − x0)n−1y(x0)dxndx0. (1.2.7)

Integration of Equation (1.2.7) with respect to xn yields

In+1
a y(x) =

1

n!

∫ x

a

{(x− x0)n − (x0 − x0)n}y(x0)dx0,

In+1
a y(x) =

1

n!

∫ x

a

(x− x0)ny(x0)dx0.

Thus the result follows by induction.
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1.3 The gamma function

The gamma function is defined for all complex numbers except the non-positive integers. The gamma
function is defined for complex numbers with positive real part via improper integral

Γ(x) =

∫ ∞
0

tx−1e−tdt. (1.3.1)

The integral in Equation (1.3.1) is uniformly convergent for x > 0. If one integrates by parts the
integral

Γ(x+ 1) =

∫ ∞
0

txe−tdt,

one obtains the functional equation

Γ(x+ 1) = xΓ(x), x > 0. (1.3.2)

From (1.3.2) we get
Γ(x) = Γ(x+ 1)/x, x > −1, x 6= 0. (1.3.3)

The repeated application of (1.3.3) gives us

Γ(x) =
Γ(x+ n)

x(x+ 1)(x+ 2) · · · (x+ n− 1)
, x ∈ R\{0,−1,−2,−3, · · · }. (1.3.4)

The Equations (1.3.3) and (1.3.4) are valid even for complex values provided x ∈ C\{0,−1,−2, · · · }.
The gamma function is also an extension of the factorial function with its argument shifted down by
1, to real and complex numbers. That is, if n is a positive integer then Γ(n) = (n− 1)!. The Figure
5.2b shows the plot of gamma and inverse gamma function.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−20

−15

−10

−5

0

5

10

15

20

−5 ≤ x ≤ 5

Γ
(x

),
  

1
/Γ

(x
)

 

 

Γ(x)

1/Γ(x)

Figure 1.2: Plot of gamma and inverse gamma function.

Definition 1.3.1. [5] The beta function is defined for Re(x) > 0 and Re(y) > 0 as

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt. (1.3.5)

Relation between beta and gamma function: The beta function is related to gamma function
as

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
, x, y ∈ C\{0,−1,−2, · · · }.
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1.4 Mittag-Leffler function

The Mittag-leffler function is named after the great Swedish mathematician Gosta Magnus Mittag-
Leffler (1846 − 1927). This function provides a simple generalization of the exponential function
because of the replacement of k! = Γ(k + 1) by (αk)! = Γ(αk + 1) in the denominator of the
power terms of the exponential series. Successful applications of the Mittag-Leffler function and its
generalizations, has made this better known among scientists. Mittag-Leffler function became very
important in the study of fractional differential and integral equations after its involvement in the
solution of Abel integral equation of the second kind.

Definition 1.4.1. [19] The one parameter Mittag-Lefler function is defined by the power series

Eα(x) =
∞∑
k=0

xk

Γ(αk + 1)
, α > 0.

The Mittag-Leffler function plays an important role among special functions.

Definition 1.4.2. The two-parametric Mittag-Leffler function is defined as

Eα,β(x) =
∞∑
k=0

xk

Γ(αk + β)
, α > 0, β ∈ C.

This is a generalization to one-parameter Mittag-Leffler function since we have Eα,1(x) = Eα(x).

Theorem 1.4.3. [13] Consider the two-parameter Mittag-Leffler function Eα,β for some α, β > 0.
The power series defining Eα,β(x) is convergent for all x ∈ C. In other words, Eα,β is an entire
function.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−3

−2

−1

0

1

2

3

−10 ≤ x ≤ 10

E
α

,1
/2

(−
x
.2

)

 

 

α=1.7

α=1.8

α=1.9

α=2

Figure 1.3: The Mittag-Leffler function Eα, 1
2
(−x2) at different values of α.
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Figure 1.4: The Mittag-Leffler function Eα,2(−x2) at different values of α.

Remark 1.4.4. The continuity of Mittag-Leffler function in x ≥ 0 imply that if µ ≥ 0 then there is
a constant C such that

Eα(µxα) ≤ Ceµ
1
α x, 0 < α < 2.

1.5 Fractional derivatives and integrals

In this section, we introduce notations, definitions, and preliminary lemmas concerning fractional
calculus theory. Let us start with the development of Riemann-Liouville’s formula for integrals with
fractional order. We know that

I1
ay(x) =

∫ x

a

y(x0)dx0,

I2
ay(x) =

∫ x

a

∫ x1

a

y(x0)dx0dx1,

I3
ay(x) =

∫ x

a

∫ x2

a

∫ x1

a

y(x0)dx0dx1dx2,

.

.

.

Ina y(x) =

∫ x

a

∫ xn−1

a

· · ·
∫ x2

a

∫ x1

a

y(x0)dx0dx1 · · · dxn−1.

But how can we evaluate I
1
2
a y(x) and Iπa y(x)? For evaluation of these type of integrals we use Cauchy’s

formula for repeated integration (1.2.4). If in the Equation (1.2.4), we replace (n− 1)! with Γ(n) and
n with real number α, we get definition for Riemann-Liouville’s formula for integrals with fractional
order.

Definition 1.5.1. [1] The Riemann-Liouville fractional integral of order α ∈ (0,∞) of a function
y ∈ L1[a, b] is defined by

Iαa y(x) =
1

Γ(α)

∫ x

a

(x− t)α−1y(t)dt.
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Theorem 1.5.2. [13] Let α, β ≥ 0 and y ∈ L1[a, b]. Then,

Iαa I
β
a y = Iα+β

a y,

holds almost everywhere on [a, b].

Corollary 1.5.3. [13] Under the assumptions of Theorem 1.5.2 Iαa Iβa y = Iβa I
α
a y.

Lemma 1.5.4. [13] If α ≥ 0, β > −1, then the Riemann-Liouville fractional integral of the function
(x− a)β is given by

Iαa (x− a)β =
Γ(β + 1)

Γ(β + α + 1)
(x− a)β+α. (1.5.1)

Proof. The Reimann-Liouville integral of (x− a)β is given by

Iαa (x− a)β =

∫ x

a

(x− s)α−1(s− a)β

Γ(α)
ds. (1.5.2)

Let u = s−a
x−a , u → 0 as s → a and u → 1 as s → x. Also s = a + (x − a)u and ds = (x − a)du.

Making all these substitutions in (1.5.2) we get

Iαa (x− a)β =
(x− a)α+β

Γ(α)

∫ 1

0

(1− u)α−1uβdu. (1.5.3)

Using (1.3.5) in (1.5.3) we get

Iαa (x− a)β =
Γ(β + 1)

Γ(α + β + 1)
(x− a)α+β. (1.5.4)

Example 1.5.5. Find I
1
2
1 (x− 1)1/3.

For evaluation of above integral we use (1.5.1) and get

I
1
2
1 (x− 1)1/3 =

Γ(1
3

+ 1)

Γ(1
2

+ 1
3

+ 1)
(x− 1)

1
2

+ 1
3

=
Γ(4

3
)

Γ(11
6

)
(x− 1)

5
6

= 0.9464(x− 1)
5
6 .

Now we try to develop formula for Riemann-Liouville fractional derivative. For this we start with
fundamental theorem of calculus which states: Let y be continuous on an open interval I containing
a, then for every x in the interval,

d

dx
Y (x) = y(x),

where Y (x) =
∫ x
a
y(s)ds. We can write above equation as y(x) = d

dx

∫ x
a
y(s)ds or y(x) = DIay, where

D = d
dx
. Repeated application of previous equation gives

y = DnIna y,
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where Dn = dn

dxn
, n = 0, 1, 2, · · · . If we replace n by m− n, with n < m and apply Dn on both sides,

we will have
Dny = DnDm−nIm−na y ⇒ Dny = DmIm−na y.

The above relation is still valid if n is replaced by α ∈ R, provided m−α > 0 and in this way we get
formula for Riemann-Liouville fractional derivative of order α.

Definition 1.5.6. [27] The Riemann-Liouville fractional derivative of order α ∈ (0,∞) with n = dαe,
of a function y ∈ L1[a, b] is defined by

RLDα
a y(x) =

dn

dxn
In−αa y(x)

=
1

Γ(n− α)

dn

dxn

∫ x

a

(x− t)n−α−1y(t)dt, for almost all x ∈ [a, b].

Theorem 1.5.7. [13] Let y1 and y2 be two functions defined on [a, b] such that RLDα
a y1 and RLDα

a y2

exist. Moreover, let c1, c2 ∈ R. Then, RLDα
a (c1y1 + c2y2) exists almost everywhere, and

RLDα
a (c1y1 + c2y2) = c1

RLDα
a y1 + c2

RLDα
a y2.

Theorem 1.5.8. [13] If α ≥ 0, β > −1, with n = dαe then the Riemann-Liouville fractional
derivative of the function (x− a)β is given by

RLDα
a (x− a)β =

Γ(β + 1)

Γ(β − α + 1)
(x− a)β−α. (1.5.5)

Example 1.5.9. In this example we develop fractional derivative of y(x) = c where c is constant.
We apply Definition 1.5.6 on y(x) = c and we get

RLDα
a y(x) =

d

dx
I1−α

0 c, α > 0. (1.5.6)

Applying Definition 1.5.1 on Equation (1.5.6) we get

RLDα
a y(x) =

d

dx
.

1

Γ(1− α)

∫ x

0

(x− t)−αcdt, α > 0. (1.5.7)

Making substitution x− t = u, du = −dt in Equation (1.5.7) we get

RLDα
a y(x) =

cx−α

Γ(1− α)
, α > 0.

The Figure 1.5 shows the fractional derivative of y(x) = 10 at α = 1.1, 2.1, 3.7, 4.3. From figure it
is quite obvious that fractional order derivative of a constant is other than zero.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−3

−2

−1

0

1

2

3

x

D
α 0
1
0

 

 

α=1.1

α=2.1

α=3.7

α=4.3

Figure 1.5: Fractional derivative of constant y(x) = c = 10 at different values of α.
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Example 1.5.10. Now we see fractional order derivative of y(x) = 1.

RLDα
0 1 = RLDα

0 x
0

=
x−α

Γ(1− α)
.

The Figure 1.6 shows the fractional order derivative of y(x) = 1 at different values of x. In this
example we have taken x = 1.3, 1.4, 1.6, 1.8 and 1 ≤ α ≤ 4. We observe that fractional order
derivative of 1 at α = 1, 2, 3, 4 is zero. A 3D plot of fractional order derivatives and integrals of
y(x) = 1 is given in Figure 1.7.

1 1.5 2 2.5 3 3.5 4
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

1 ≤ α ≤ 4

D
α 0
 1

 

 

x=1.3

x=1.4

x=1.6

x=1.8

Figure 1.6: Fractional derivative of y(x) = 1 at different values of x.
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, 
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D

α 0
 C

, 
(C

=
1

)

Figure 1.7: 3D representation of fractional derivative and fractional integral of y(x) = 1 at different
values for 0 ≤ x ≤ 5 and −2 ≤ α ≤ 2.

Example 1.5.11. In this example we see graphically fractional order derivative and integral of
function y(x) = x and y(x) = x2. The Figure 1.8 shows fractional order derivative of y(x) = x

with orders α = 0, 0.5, 1 and fractional order integral of y(x) = x with orders α = 0.5, 1 and x

varies between 0 and 3. The Figure 1.9 shows 3D plot of fractional order derivatives and integrals of
y(x) = xβ with β = 1, − 2 ≤ α ≤ 2 and 0 ≤ x ≤ 5 and Figure 1.10 shows 3D plot of y(x) = x2 with
−2 ≤ α ≤ 2 and 0 ≤ x ≤ 5.
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Figure 1.8: Fractional derivative and integral of y(x) = x at different values of α.
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Figure 1.9: Fractional derivative and integral of y(x) = x at different values for 0 ≤ x ≤ 5 and
−2 ≤ α ≤ 2.
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Figure 1.10: Fractional derivative and integral of y(x) = x2 at different values for 0 ≤ x ≤ 5 and
−2 ≤ α ≤ 2.

Theorem 1.5.12. [42] Assume that m− 1 < α1 ≤ m, n− 1 < α2 ≤ n and m,n ∈ N. Both RLDα1
a

and RLDα2
a exist. Then,

RLDα1
a

RLDα2
a y(x) = RLDα1+α2

a y(x)−
n∑
j=1

RLDα2−j
a y(a)

(x− a)−α1−j

Γ(1− α1 − j)
. (1.5.8)

Interchanging α1 and α2 also m and n in Equation (1.5.8) we get

RLDα2
a

RLDα1
a y(x) = RLDα1+α2

a y(x)−
m∑
j=1

RLDα1−j
a y(a)

(x− a)−α2−j

Γ(1− α2 − j)
. (1.5.9)
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The comparison of Equation (1.5.8) and Equation (1.5.9) shows that in general Riemann-Liouville
fractional derivative operators do not commute. These operators can commute only if the sum in the
expressions of (1.5.8) and (1.5.9) vanish. In this case we have

RLDα1
a

RLDα2
a y(x) = RLDα2

a
RLDα1

a y(x) = RLDα1+α2
a y(x).

Theorem 1.5.13. [13] Assume that α1, α2 ≥ 0. Moreover let φ ∈ L1[a, b] and y = Iα1+α2
a φ. Then,

RLDα1
a

RLDα2
a y = RLDα1+α2

a y.

Note that in order to apply this identity we do not need to know the function φ explicitly. It is
sufficient to know that such a function exists.

Example 1.5.14. Let y(x) = x and α1 = α2 = 1
2
. To find RLD

1
2
0 x, we use Equation (1.5.5)

RLD
1
2
0 x =

Γ(1 + 1)

Γ(1− 1/2 + 1)
(x)1−1/2

=
x1/2

Γ(3/2)

=
2x1/2

√
π
.

Now compute RLD
1
2
0 (2x

1
2√
π

) using same procedure and we get RLD
1
2
0 (2x

1
2√
π

) = 1.We know that RLD
1
2

+ 1
2

0 x = RLDx =

1. Which means RLD
1
2
0
RLD

1
2
0 x = RLD

1
2

+ 1
2

0 x = 1

Example 1.5.15. Now we try to construct counter example for Theorem (1.5.13). For this we take
y(x) = x−1/2 and α1 = α2 = 1

2
. Applying Equation (1.5.5) on RLD

1
2
0 x
− 1

2 we get RLD
1
2
0 x
− 1

2 = 0 also
RLD

1
2
0 0 = 0. We know that RLD

1
2

+ 1
2

0 x−
1
2 = RLDx−

1
2 = −1

2
x−

3
2 .

We observe that Theorem (1.5.13) holds for Example (1.5.14) and does not hold for Example
(1.5.15).

Lemma 1.5.16. If α, β ∈ R+, α > β and y ∈ L1[a, b], then RLDβ
aI

α
a y = Iα−βa y holds almost

everywhere on [a, b].

Lemma 1.5.17. [13] Let α > 0, then for every y ∈ L1[a, b], RLDα
a I

α
a y = y almost everywhere.

Theorem 1.5.18. [42] Let y ∈ ACm[a, b] and m − 1 < α ≤ m. Then, the Riemann-Liouville
fractional derivative RLDα

a exists almost everywhere on [a, b]. Furthermore, RLDα
a y ∈ Lp[a, b] for

1 ≤ p < 1
α
and

RLDα
a y(x) =

m−1∑
k=0

Dky(a)

Γ(k − α + 1)
(x− a)k−α + Im−αa Dmy(x).
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1.6 The Caputo fractional derivatives

The definition of fractional derivatives specified by Riemann-Liouville has great significance in ex-
panding theory of fractional derivatives and integrals. But it has many drawbacks when it comes to
model real-world phenomena with fractional differential equations. Since applied problems involve
initial conditions of type y(a), y′(a) etc and Riemann-Liouville definition of fractional derivatives fails
to utilize such initial conditions. The best approach to overcome this difficulty is given by Caputo in
1967. In this section we discuss Caputo fractional derivatives and its basic properties.

Definition 1.6.1. [27] The Caputo fractional derivative of order α ∈ R+ of a function y ∈ ACm[a, b]

where m = dαe is defined by
cDα

a y(x) = Im−αa Dmy(x).

Lemma 1.6.2. Let n − 1 < α ≤ n, n ∈ N, α, c1, c2 ∈ C, and the functions y(x) and z(x) be such
that both cDα

a y(x) and cDα
a z(x) exist. The Caputo fractional derivative is a linear operator, i. e.,

cDα
a (c1y(x) + c2z(x)) = c1

cDα
a y(x) + c2

cDα
a z(x).

Lemma 1.6.3. Suppose that n − 1 < α ≤ n,m, n ∈ N, α ∈ R and the function y(x) is such that
cDα1

a y(x) exists. Then in general

cDα
aD

m
a y(x) = cDα+m

a y(x) 6= Dm
a

cDα
a y(x).

Theorem 1.6.4. [13] Assume that α ≥ 0, m = dαe, and y ∈ ACm[a, b]. Then

Iαa
cDα

a y(x) = y(x)−
m−1∑
i=0

Diy(a)

i!
(x− a)i.

Corollary 1.6.5. [13] (Taylor expansion for Caputo derivatives) Under the assumptions of
Theorem 1.6.4,

y(x) = Iαa
cDα

a y(x) +
m−1∑
i=0

Diy(a)

i!
(x− a)i.

The relations shown in Theorem 1.6.4 and Corollary 1.6.5 have major implications when it comes
to the solution of differential equations involving the two types of differential operators.

Lemma 1.6.6. Let α, β ∈ R+, α > β and y be some continuous function. Then cDβ
aI

α
a y(x) =

Iβ−αy(x).

Lemma 1.6.7. [13] Let α, β ≥ 0 and m = dαe then Caputo fractional derivative of y(x) = (x− a)β

is defined as

cDα
a y(x) =


0, β ∈ {0, 1, 2, ...,m− 1},

Γ(β+1)
Γ(β+1−α)

(x− a)β−α, β ∈ N and β ≥ m

or β /∈ N and β > m− 1.
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Theorem 1.6.8. [13](Relation between Reimann-Liouville and Caputo’s fractional deriva-

tive) Assume α ≥ 0, m = dαe and for some y(x), both RLDα
a y(x) and cDα

a y(x) exist. Then

cDα
a y(x) = RLDα

a y(x)−
m−1∑
i=0

Diy(a)

Γ(i− α + 1)
(x− a)i−α.

Comparison between Riemann-liouville and Caputo fractional derivative

The definitions of fractional derivatives specified by Riemann-Liouville and Caputo have played a
significant role in expansion of theory of fractional calculus. But every definition have certain lim-
itations and drawbacks. When we compare Riemann-Liouville and Caputo derivatives we see that
Riemann-Liouville derivative of a constant is non-zero while Caputo derivative of a constant is zero.
Which means Caputo derivative is in line with classical derivative in this sense. Also from the Defi-
nition 1.5.6 and Definition 1.6.1 we see that the class of functions for which Riemann-Liouville exists
is much larger than the class of functions for which Caputo fractional derivative exists. In problems
involving Riemann-Liouville derivative, initial conditions are set by taking fractional derivatives of
function at initial point. But when we look at physical models, we need initial conditions of type
y(a), y′(a), y′′(a), · · · . Because these initial conditions represent suitable quantities like displacement,
velocity, acceleration etc. For this reason Caputo derivative is preferred when dealing with physical
models. Now we check the connection of Riemann-Liouville and Caputo derivative with classical
derivative. For α ∈ (n− 1, n), n ∈ Z+, we have

lim
α→(n−1)+

RLDα
0 y(x) = y(n−1)(x),

lim
α→(n)+

RLDα
0 y(x) = y(n)(x).

Similarly, for α ∈ (n− 1, n), n ∈ Z+ we get

lim
α→(n−1)+

cDα
0 y(x) = y(n−1)(x)− y(n−1)(0),

lim
α→(n)+

cDα
0 y(x) = y(n)(x).

Remark 1.6.9. Let y(x) be a function for which both Riemann-Liouville and Caputo derivative exist
with n− 1 < α < n where n ∈ N. Then in general Dα

a y(x) 6= cDα
a y(x). But by Theorem 1.6.8 these

operators are equal when α→ n.

1.7 Applications of fractional calculus

The focus of our study is numerical solution to fractional differential equations. In this section we
define what is a fractional differential equation and consider some applications of fractional calculus
to determine the handiness of this subject.
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Definition 1.7.1. An equation involving fractional order derivatives is called fractional differential
equation. For example FDE with constant coefficients and order α is given by

{Dnα + an−1D
(n−1)α + ...+ a0D

0α}y(x) = 0, x ≥ 0, n ∈ N.

Abel’s Problem:

In 1825 an Italian mathematician Neils Henrik Abel developed an integral equation while model-
ing of tautochrone problem. We model this problem as done in [46]. For this we consider a smooth
curve that is present in a vertical plane. A heavy particle begins its motion from position P as shown
in Figure 1.11. We now find the time T of descent to the ending position O, taking in account the role
of gravity in it. We choose our coordinates as x − axis vertically upward and y − axis horizontally
with O as origin. Also choose coordinates of position P as (x, y), of Q as (ξ, η) and OQ as arc s.

Figure 1.11: Descend of particle.

At any time, the particle under consideration will have the potential energy and kinetic energy at
position Q. The sum of these energies is constant. We can write the sum mathematically as

K.E.+ P.E. = constt. (1.7.1)

Using definition of kinetic energy and potential energy in Equation (1.7.1)

1

2
mv2 +mgξ = constt. (1.7.2)

Rewriting Equation (1.7.2) as
1

2
v2 + gξ = M, (1.7.3)

where m denotes the mass of the particle, v is the speed of the particle at Q and it depends on time
t, g is the acceleration that is due to action of gravity and ξ is the vertical coordinate of the particle
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at position Q. Initially, v(0) = 0 at P , the vertical coordinate is x, and thus the constant M can be
evaluated as M = gx. Thus Equation (1.7.3) can be written as

1

2
v2 = g(x− ξ). (1.7.4)

Hence from Equation (1.7.4) we get
v = ±

√
2g(x− ξ). (1.7.5)

But v = ds
dt

= speed along the curve s. Therefore, Equation (1.7.5) takes the form

ds

dt
= ±

√
2g(x− ξ). (1.7.6)

We consider only the negative value of ds
dt

and integrate Equation (1.7.6) from P to Q by separating
the variables, we get

t = −
∫ Q

P

ds√
2g(x− ξ)

. (1.7.7)

The total time of descent is given as,

T =

∫ P

O

ds√
2g(x− ξ)

. (1.7.8)

If the shape of the curve is known, then s can be written in terms of ξ and thus ds can also be written
in term of ξ. For this we let ds = u(ξ)dξ, and hence Equation (1.7.8) can be expressed as

T =

∫ x

0

u(ξ)dξ√
2g(x− ξ)

. (1.7.9)

From Equation (1.7.9) we observe that time T of descent is a function of x let us call it y(x). The
problem in this case is to find the unknown function u(x) from the Euation (1.7.9).

y(x) =

∫ x

0

u(ξ)dξ√
2g(x− ξ)

. (1.7.10)

Equation (1.7.10) can be written as

y(x) =

∫ x

0

K(x, ξ)u(ξ)dξ. (1.7.11)

Equation (1.7.11) is a linear integral equation of the first kind for the determination of u(ξ). Here,
K(x, ξ) = 1√

2g(x−ξ)
is the kernel of the integral equation. The Equation (1.7.10) is a specific form

of fractional integration of order 1
2
if we multiply the Equation (1.7.10) with 1

Γ( 1
2

)
. Abel’s integral

equation is the earliest example of fractional integral equation. It is found in many fields of science,
such as microscopy, seismology, radio astronomy, electron emission, atomic scattering, radar ranging,
plasma diagnostics, X-ray radiography, and optical fiber evaluation.

Fractional oscillator:
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Fractional oscillator is a generalization of harmonic oscillator, i.e. we replace ordinary derivatives
in equation of harmonic oscillator by fractional order derivatives. The following equation describes
fractional oscillator,

Dαy(x) + ωα−βDβy(x) = 0,

where 1 < α ≤ 2, 0 < β ≤ 1, and ω is the vibration eigenfrequency.

Bagley-Torvik equation:

Bagley-Torvik equation is a non homogenous multi-term fractional differential equation that arises
in the modeling of a rigid plate immersed in a Newtonian fluid. The general form of this equation is
given by

Ay2(x) +BD
3
2y(x) + Cy(x) = h(x),

where A 6= 0 and B, C ∈ R. We shall discuss Bagley-Torvik equation in detail in Chapter 2 and
Chapter 5.

Viscoelasticity:

Viscoelasticity is the property of materials that exhibit both viscous and elastic characteristics when
undergoing deformation. Viscous materials, like honey, resist shear flow and strain linearly with time
when a stress is applied. Elastic materials strain when stretched and quickly return to their original
state once the stress is removed. Viscoclasticity appears to be the field with considerable applications
of fractional calculus.

Stress σ(t) and strain ε(t) are the two main subjects of viscoelasticity. A number of models vary
from each other in the way how we associate stress with strain. We note that for Hooke’s law stress is
proportional to the zeroth derivative of strain i.e. σ(t) = Eε(t) where E is constant and for Newton’s
law to the first derivative of strain i.e. σ(t) = η dε(t)

dt
. Hence, it is logical to establish a more general

model i. e., proportionality of stress to the α − derivative of strain where α ∈ (0, 1) as done by G.
W. Scott Blair

σ(t) = E0D
α
t ε(t),

where E0 and α are material-dependent constants. The Hooke’s law is a one parameter model and
Scott Blair’s model is a two parameter model with E and α as the parameters. One can also get a
three parameter model known as Voigt model and can be expressed as

σ(t) = b0ε(t) + b1D
αε(t).
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Chapter 2

Existence and uniqueness of solutions for

fractional differential equations

In this chapter we have seen the existence and uniqueness of solutions of initial value problems
for linear and nonlinear fractional differential equations. In the first section operator for fractional
differentiation and initial conditions are taken in Caputo sense. The second section deals with the
operator for fractional order differentiation in Riemann-Liouville sense and initial conditions are taken
as suggested by Caputo. We have seen in particular that the solution depends on the order of the
fractional differential equation and also on the initial condition. The existence and uniqueness of the
solution to linear and nonlinear fractional differential equations have been thoroughly investigated
in [14, 27]. For the latest works on existence and uniqueness of solutions of the initial and boundary
value problems for nonlinear fractional differential equation one may see [30–32].

2.1 Existence and uniqueness of solutions for linear fractional

differential equations

In this section we investigate the question of existence and uniqueness of solution for the following
initial value problem

cDα1
a y(x) + P cDα2

a y(x) +Qy(x) = h(x), x ∈ [a, b], (2.1.1)

y(a) = y0, y′(a) = y0, (2.1.2)

where α1, α2 ∈ R+, α1 ≥ α2, P,Q ∈ R and h(x) is known function. It is to be noted that Bagley-
Torvik equation and fractional oscillator are special cases of (2.1.1). The questions of existence and
uniqueness of the solution to initial value problem (2.1.1) - (2.1.2) have been discussed in [34]. It is to
be noted that in [34] the function h(x) in Equation (2.1.1) is assumed to be continuous. We present
in [45], the existence result for problem (2.1.1) - (2.1.2) under weaker assumptions.
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Integral equations are extensively used to study the qualitative properties of differential equation.
At this point we establish an equivalence result between (2.1.1) - (2.1.2) and Volterra integral equation.

Theorem 2.1.1. Assume h ∈ L1[a, b], then a function y is solution of initial value problem (2.1.1) -
(2.1.2) if and only if y is solution of the integral equation

y(x) +

∫ x

a

Υ(x, s)y(s)ds = H(x), (2.1.3)

where H(x) :=
∫ x
a

Υα1(x, s)h(s)ds+ u(x;α1, α2),
u(x;α1, α2) :=

(
1 + (x−a)α1−α2

Γ(α1−α2+1)

)
y0 +

(
1 + (x−a)α1−α2

Γ(α1−α2+2)

)
(x− a)y1,

Υα1(x, s) := (x−s)α1−1

Γ(α1)
and Υ(x, s) := PΥα1−α2(x, s) +QΥα1(x, s).

Proof. Assume y is solution of (2.1.1), (2.1.2). Applying fractional integral Iα1
a on both sides of

Equation (2.1.1) and using Theorem 1.6.4, we get

y(x)− y(a)− y′(a)(x− a) + PIα1
a Dα2

a y(x) +QIα1
a y(x) = Iα1

a h(x). (2.1.4)

Applying Theorem 1.5.2, Equation (2.1.4) reduces to

y(x) + PIα1−α2
a (Iα2

a Dα2
a y(x)) +QIα1

a y(x) = Iα1
a h(x) + y0 + y1(x− a). (2.1.5)

Using Theorem 1.6.4, we get

y(x) + PIα1−α2
a (y(x)− y0 − (x− a)y1) +QIα1

a y(x) = Iα1
a h(x) + y0 + (x− a)y1. (2.1.6)

Applying Lemma 1.5.4 we get

y(x) + PIα1−α2
a y(x) +QIα1

a y(x) = Iα1
a h(x) + u(x;α1, α2). (2.1.7)

Equation (2.1.7) can be written as

y(x) +

∫ x

a

Υ(x, s)y(s)ds =

∫ x

a

Υα1(x, s)h(s)ds+ u(x;α1, α2) = H(x).

Remark 2.1.2. If h ∈ L1[a, b] is bounded then the function H(x) is continuous on [a, b].

The function Υ(x, s) is continuous for x, s ∈ [a, b] provided α1 ≥ 1 and weakly singular if 0 < α1 <

1. Following theorem guarantees the existence of unique solution for the problem (2.1.1) - (2.1.2).

Theorem 2.1.3. For α1 > 0 assume h ∈ L1[0, 1] is bounded. Then there exists a unique continuous
solution of the problem (2.1.1) - (2.1.2).
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Proof. Consider the iterations

yn(x) = H(x)−
∫ x

0

Υ(x, s)un−1(s)ds, n = 1, 2, · · · , (2.1.8)

with y0(x) = H(x). Now

ζn(x) = −
∫ x

0

Υ(x, s)ζn−1(s)ds, n = 1, 2, · · · , (2.1.9)

where
ζn(x) := yn(x)− yn−1(x) with ψ0(x) := H(x). (2.1.10)

From Equation (2.1.10) we have

yn(x) :=
n∑
i=0

ζi(x).

Now, we prove that {yn}∞n=0 converges.
Since H is continuous on [0, 1], so there exists M > 0 such that |H(x)| ≤M for all x ∈ [0, 1].
For n = 1, from (2.1.9) we have

|ζ1(x)| ≤M

∫ x

0

Υ(x, s)ds = M
(x− 0)α1

Γ(α1 + 1)
≤ M

Γ(α1 + 1)
. (2.1.11)

By induction, one can easily prove that

|ζn(x)| ≤ M

(Γ(α1 + 1))n
. (2.1.12)

Note that 1
Γ(α1+1)

< 1. Therefore the sequence of functions {yn(x)}∞n=0 converges uniformly to a
continuous limit y(x). That is

y(x) = lim
n→∞

yn(x) =
∞∑
i=0

ζi(x).

Now we show that y(x) satisfies the Equation (2.1.1).
Summing equations in (2.1.9)

∞∑
i=0

ζi+1(x) = −
∞∑
i=0

∫ x

0

Υ(x, s)ζi(s)ds. (2.1.13)

Uniform convergence of {ζi}∞i=0 allows us to interchange the sum and integral in (2.1.13). Hence
∞∑
i=0

ζi(x)−H(x) = −
∫ x

0

Υ(x, s)
∞∑
i=0

ζi(s)ds,

or
y(x) = H(x)−

∫ x

0

Υ(x, s)y(s)ds.

Now we prove that y(x) is only solution of (2.1.9). On contrary, assume there exists an other
continuous solution z(x) of (2.1.9). For n = 1, from Equation (2.1.8) we get

|y(x)− z(x)| ≤
∫ x

0

Υ(x, s)|y(s)− z(s)|ds. (2.1.14)
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Since y(x)− z(x) is continuous on [0, 1]. There exists a constant M > 0 such that
|y(x)− z(x)| ≤M for all x ∈ [0, 1]. Thus Equation (2.1.14) becomes

|y(x)− z(x)| ≤M

∫ x

0

Υ(x, s)ds =
M

Γ(α1 + 1)
. (2.1.15)

Repeated application of (2.1.15) gives

|y(x)− z(x)| ≤ M

(Γ(α1 + 1))n
. (2.1.16)

|y(x)− z(x)| ≤ lim
n→∞

M

(Γ(α1 + 1))n
= 0.

Hence, y(x) = z(x) for all x ∈ [0, 1].

2.2 Existence and uniqueness of non-linear fractional differen-

tial equations

In this section we check the existence and uniqueness of fractional differential equations by reviewing
the work done in [17]. We consider the following initial value problem for fractional differential
equation

RLDα1
0 (y − Tn−1[y])(x) = h(x, y(x)),

y(i)(0) = y
(i)
0 , i = 0, 1, 2, · · · , n− 1,

(2.2.1)

where Tn−1[y] :=
∑n−1

k=0
xky(k)(0)

k!
represents the Taylor polynomial of order (n − 1) for y which is

centered at 0. Now we state the results that will help us in checking the existence and uniqueness of
solution for problem (2.2.1).

Lemma 2.2.1. If the function h in (2.2.1) is continuous then our problem (2.2.1) is equivalent to
the nonlinear Volterra integral equation of the second kind:

y(x) =
n−1∑
i=0

xi

i!
y(i)(0) +

1

α1

∫ x

0

(x− s)α1−1h(s, y(s))ds, (2.2.2)

with n− 1 < α1 ≤ n. In simple words we say that every solution to problem (2.2.2) is also a solution
to problem (2.2.1) and vice versa. So we turn our focus to problem (2.2.2).

The kernel in (2.2.2) is weakly singular when 0 < α1 < 1 and continuous when α1 ≥ 1. We
consider only the case when 0 < α1 < 1 because for α1 ≥ 1 the proof is similar to classical case. The
proof of Lemma 2.2.1 is similar to proof of Theorem 2.1.1.

Theorem 2.2.2. Let A be a nonempty closed subset of Banach space B, and let qm ≥ 0 for every m
such that

∑∞
m=0 qm converges. Also, let the mapping J : A→ A satisfy the inequality

‖Jma− Jmb‖ ≤ qm‖a− b‖,
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for every m ∈ N and every a, b ∈ A. Then, J has a uniquely defined fixed point a∗. Furthermore, for
any a0 ∈ A, the sequence (Jma0)∞m=1 converges to this fixed point a∗.

Theorem 2.2.3. (Existence) Assume that E := [0, %∗]× [y
(0)
0 − p, y

(0)
0 + p] with some

varrho∗ > 0 and some p > 0, also let the function h : D → R be continuous. Further define
% := min{%∗, (pΓ(α1+1)

‖h‖∞ )
1
α1 }. Then there exists a function y : [0, %] → R that solves the Equation

(2.2.1).

Proof. We will only discuss the case 0 < α1 < 1, by Lemma 2.2.1 Equation (2.2.2) reduces to

y(x) = y
(0)
0 +

1

Γ(α1)

∫ x

0

(x− s)α1−1h(s, u(s))ds. (2.2.3)

Now we define the set A := {y ∈ C[0, %] : ‖y − y(0)
0 ‖∞ ≤ p}. This is a closed subset of Banach space

B of all continuous functions on [0, %] with Chebyshev norm. Sine y(0)
0 ∈ A which means set A is

nonempty. Define the operator J on A by

(Jy)(x) = y
(0)
0 +

1

Γ(α1)

∫ x

0

(x− t)α1−1h(s, y(s))ds. (2.2.4)

We see from Equation (2.2.3) and Equation (2.2.4) that y = Jy. Now we prove that operator J maps
convex and closed set A to itself. For this let y ∈ A and x ∈ [0, %], we see∣∣∣(Jy)(x)− y(0)

0

∣∣∣ =
1

Γ(α1)

∣∣∣ ∫ x

0

(x− s)α1−1h(s, u(s))ds
∣∣∣

≤ xα1

α1Γ(α1)
‖h‖∞

≤ %α1

Γ(α1 + 1)
‖h‖∞

≤ pΓ(α1 + 1)‖h‖∞
‖h‖∞Γ(α1 + 1)

.

Thus, ∣∣∣(Jy)(x)− y(0)
0

∣∣∣ ≤ p. (2.2.5)

Equation (2.2.5) implies Jy ∈ A for y ∈ A. Which means J maps the set A to itself. Now we
prove the continuity of operator J . Since a function h is continuous on the compact set E, it is also
uniformly continuous on the same set. Thus for an arbitrary ε > 0, we can find δ > 0 such that

|h(x, y)− h(x, s)| < εΓ(α1 + 1)

%α1
whenever |y − s| < δ. (2.2.6)

Now let y, ŷ ∈ A such that ‖y − ŷ‖ < δ. Then Equation (2.2.6) implies

|h(x, y(x))− h(x, ŷ(x))| < εΓ(α1 + 1)

%α1
, (2.2.7)

for all x ∈ [0, %]. Thus,

|(Jy)(x)− (Jŷ)(x)| = 1

Γ(α1)

∣∣∣ ∫ x

0

(x− t)α1−1{h(s, y(s))− h(s, ŷ(s))}ds
∣∣∣. (2.2.8)
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Using Equation (2.2.6) in Equation (2.2.7) we get

|(Jy)(x)− (Jŷ)(x)| ≤ εΓ(α1 + 1)

%α1Γ(α1)

∫ x

0

(x− s)α1−1ds

=
xα1εΓ(α1 + 1)

%α1Γ(α1 + 1)

≤ ε%α1

%α1
= ε.

(2.2.9)

Equation (2.2.9) implies operator J is continuous. Now we show that the set of functions J(A) :=

{Jy : y ∈ A} is bounded in a point wise sense. For this consider s ∈ J(A), and for all x ∈ [0, %] we
have

|s(x)| = |(Jy)(x)|

=
∣∣∣y(0)

0 +
1

Γ(α1)

∫ x

0

(x− s)α1−1h(s, y(s))ds
∣∣∣

≤ |y(0)
0 |+

1

Γ(α1)

∫ x

0

(x− s)α1−1|h(s, y(s))ds|

≤ |y(0)
0 |+

‖h‖∞
Γ(α1 + 1)

xα1

≤ |y(0)
0 |+

‖h‖∞
Γ(α1 + 1)

%α1

≤ |y(0)
0 |+ p.

(2.2.10)

Equation (2.2.10) shows that J(A) is bounded in a pointwise sense. Now we show that J(A) is
equicontinuous. For 0 ≤ x1 ≤ x2 ≤ %, we have∣∣∣(Jy)(x1)− (Jy)(x2)

∣∣∣ =
1

α1

∣∣∣ ∫ x1

0

(x1 − s)α1−1h(s, y(s))ds−
∫ x2

0

(x2 − s)α1−1h(s, y(s))ds
∣∣∣. (2.2.11)

Now in Equation (2.2.11) writing
∫ x2

0
=
∫ x1

0
+
∫ x2

x1
, we have∣∣∣(Jy)(x1)− (Jy)(x2)

∣∣∣ =
1

α1

∣∣∣ ∫ x1

0

{(x1 − s)α1−1 − (x2 − s)}h(s, y(s))ds−
∫ x2

x1

(x2 − s)α1−1h(s, y(s))ds
∣∣∣

≤ ‖h‖∞
α1

∣∣∣ ∫ x1

0

{(x1 − s)α1−1 − (x2 − s)}ds−
∫ x2

x1

(x2 − s)α1−1ds
∣∣∣.

(2.2.12)

Integrating Equation (2.2.12) yields∣∣∣(Jy)(x1)− (Jy)(x2)
∣∣∣ ≤ ‖h‖∞

Γ(α1 + 1)
{2(x2 − x1)α1 + xα1

1 − xα1
2 }. (2.2.13)

Since x2 ≥ x1, Equation (2.2.13) can be written as∣∣∣(Jy)(x1)− (Jy)(x2)
∣∣∣ ≤ 2‖h‖∞

Γ(α1 + 1)
(x2 − x1)α1 . (2.2.14)

Hence, ∣∣∣(Jy)(x1)− (Jy)(x2)
∣∣∣ ≤ 2‖h‖∞

Γ(α1 + 1)
(δ)α1 whenever |x2 − x1| < δ. (2.2.15)

26



Equation (2.2.15) shows that the expression on right hand side is independent of y, which means J(A)

is equicontinuous. Then the statement of Arzela-Ascoli theorem guarantees that J(A) is relatively
compact. Then, by Schauder’s fixed point theorem we know that J has a fixed point. By construction
of J we know that fixed point of J is solution to our initial value problem which confirms the existence
of solution to problem (2.2.1).

Theorem 2.2.4. (Uniqueness) Assume that E := [0, %∗] × [y
(0)
0 − p, y

(0)
0 + p] with some %∗ > 0 and

some p > 0. Furthermore, let the function h : E → R be bounded on E and fulfill a Lipschitz condition
with respect to the second variable; i.e.,

|h(x, y)− h(x, s)| ≤M |y − s|,

with some constant M > 0 independent of x, y and s. Then, denoting % as in Theorem 2.2.3, there
exists at most one function y : [0, %]→ R solving the initial value problem (2.2.1).

Proof. We proceed in similar way to Theorem 2.2.3 and define an operator J on A := {y ∈ C[0, %] :

‖y − y(0)
0 ‖∞ ≤ p} in the same way as defined in proof of previous theorem

(Jy)(x) = y
(0)
0 +

1

Γ(α1)

∫ x

0

(x− t)α1−1h(s, y(s))ds. (2.2.16)

To prove the uniqueness, we will show that operator J has a unique fixed point. We have seen in
Equation (2.2.15) of the previous theorem that Jy is a continuous function for 0 ≤ x1 ≤ x2 ≤ %.
Equation (2.2.5) yields that J maps the set A to itself.
Now for every n ∈ N0 and every x ∈ [0, %], we get

‖Jny − Jnŷ‖L∞[0,x] = ‖J(Jn−1y)− J(Jn−1ŷ)‖L∞[0,x]. (2.2.17)

Using definition of operator J in Equation (2.2.17) we get

‖Jny − Jnŷ‖L∞[0,x] =
1

Γ(α1)
sup

0≤w≤x

∣∣∣ ∫ w

0

(w − t)α1−1{h(s, Jn−1y(s))− h(s, Jn−1)ŷ(s))}ds
∣∣∣. (2.2.18)

Using Lipschitz assumption on function h in Equation (2.2.18) we get

‖Jny − Jnŷ‖L∞[0,x] ≤
M

Γ(α1)
sup

0≤w≤x

∫ w

0

(w − s)α1−1
∣∣∣{Jn−1y(s)− Jn−1ŷ(s))}

∣∣∣ds
≤ M

Γ(α1)

∫ x

0

(x− s)α1−1 sup
0≤w≤s

∣∣∣{Jn−1y(w)− Jn−1ŷ(w))}
∣∣∣ds

=
M

Γ(α1)Γ(α1(n− 1))

∫ x

0

(x− s)α1−1 sup
0≤w≤s

∣∣∣ ∫ w

0

(w − s)α1(n−1)−1{h(s, y(s))− h(s, ŷ(s))}
∣∣∣ds.

(2.2.19)
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Again using Lipschitz assumption on function h we get

‖Jny − Jnŷ‖L∞[0,x] ≤
Mn

Γ(α1)Γ(α1(n− 1))

∫ x

0

(x− s)α1−1 sup
0≤w≤s

∣∣∣{∫ w

0

(w − s)α1(n−1)−1{|y(s)− ŷ(s)|}
∣∣∣ds

≤ Mn

Γ(α1)Γ(1 + α1(n− 1))

∫ x

0

(x− s)α1−1sα1(n−1) sup
0≤w≤s

|y(w)− ŷ(w)|ds

≤ Mn

Γ(α1)Γ(1 + α1(n− 1))
sup

0≤w≤x
|y(w)− ŷ(w)|

∫ x

0

(x− s)α1−1tα1(n−1)ds.

(2.2.20)

Using definition of beta function in Equation (2.2.20) we get

‖Jny − Jnŷ‖L∞[0,x] ≤
Mn

Γ(α1)Γ(1 + α1(n− 1))
‖y − ŷ‖L∞[0,x]

Γ(α1)Γ(1 + α1(n− 1))

Γ(1 + α1n)
xα1n. (2.2.21)

After simplifications Equation (2.2.21) yields

‖Jny − Jnŷ‖L∞[0,x] ≤
(Mxα1)n

Γ(1 + α1n)
‖y − ŷ‖L∞[0,x]. (2.2.22)

Taking Chebyshev norm on our interval [0, %], Equation (2.2.22) yields

‖Jny − Jnŷ‖L∞[0,x] ≤
(M%α1)n

Γ(1 + α1n)
‖y − ŷ‖L∞[0,x]. (2.2.23)

We have shown that operator J satisfies the conditions of Theorem 2.2.2 with pn = (M%α1 )n

Γ(1+α1n)
. The

only thing left here is the convergence of series
∑∞

n=0 pn. We see that

∞∑
n=0

(M%α1)n

Γ(1 + α1n)
=: Eα1(M%α1). (2.2.24)

Theorem 1.4.4 yields the series in Equation (2.2.24) is convergent. Theorem 2.2.2 yields J has a
uniquely fixed point which proves the uniqueness of solution of fractional differential equation.

We have discussed the case until now in which function h depends on variable x and function
y(x). Now we consider the fractional differential equation in which function h depends not only on
y but also on fractional derivatives of y. For this we consider the initial value problem for following
non-linear fractional differential equation as discussed in [12]

cDα1
a y(x) = h(x,cDα2

a y(x)), 0 < x ≤ 1,

y(i)(0) = µi, i = 0, 1, 2, ...,m− 1,
(2.2.25)

where m − 1 < α1 < m, n − 1 < α2 < n (m,n ∈ N,m − 1 ≥ n), cDα1
a ,

cDα2
a are the α1st and α2nd

Caputo derivatives of function y and function h ∈ C([0, 1] × R). Now we state some results for the
existence and uniqueness of solution for fractional differential equations from [28].
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Lemma 2.2.5. Let m,n ∈ N, m − 1 < α1 < m, n − 1 < α2 < n, n ≤ m − 1 and assume that the
following two hold
(a) h : [0, 1]× R→ R is continuously differentiable function.
(b) h(0, 0) = 0 and h(s, 0) 6= 0 on a compact subinterval of (0, 1].
Then y ∈ Cm[0, 1] is a solution of equation (2.2.25) if and only if

y(x) =
n−1∑
i=0

xi

i!
µi +

∫ x

0

(x− s)n−1w(s)ds

(n− 1)!
,

where w ∈ C[0, 1] is a solution of the equation

w(x) =
m−n−1∑
i=0

xi

i!
µn+i +

1

Γ(α1 − n)

∫ x

0

(x− t)α1−n−1h
(
s,

1

Γ(n− α2)

∫ s

0

(s− t)n−α2−1w(t)dt
)
ds.

Lemma 2.2.6. Let n ∈ N, n−1 < α2 < α1 < n and assume that (a) and (b) hold. Then, y ∈ Cn[0, 1]

is a solution of Equation (2.2.25) if and only if

y(x) =
n−1∑
i=0

xi

i!
µi +

∫ x

0

(x− s)α2−1w(s)ds

Γ(α2)
, 0 ≤ x ≤ 1,

where w ∈ C[0, 1] is a solution of the equation

w(x) =
1

Γ(α1 − α2)

∫ x

0

(x− s)α1−α2−1h(s, w(s))ds, 0 ≤ x ≤ 1. (2.2.26)

Lemma 2.2.7. [12] If (a), (b) and
(c) There exists p > 1, 0 < η < 1 and a(x) ∈ C([0, 1], [0,∞)) such that

1− η ≥ 1

Γ(α1 − α2)
sup

0≤x≤1

∫ x

0

(x− s)α1−α2−1a(s)ds,

0 < H :=
1

Γ(α1 − α2)
sup

0≤x≤1

∫ x

0

(x− s)α1−α2−1|h(s, 0)|ds <∞.

And for any y, z ∈ C([0,∞)) with 0 ≤ |y(x)|, |z(x)| ≤ H
η
for 0 ≤ x ≤ 1,

|h(x, y(x))− h(x, z(x))| ≤ a(x)|y(x)− z(x)| for 0 ≤ x ≤ 1.

holds. Then Equation (2.2.26) has a unique solution ϕ with ‖ϕ‖ ≤ pH
η
.

Lemma 2.2.8. [12] If (a)-(c) holds and y(x) is a solution of Equation (2.2.26), then y(x) ≡ ϕ(x).

Theorem 2.2.9. Let n − 1 < α2 < α1 < n (n ∈ N). Assume that (a)-(c) holds then Equation
(2.2.25) has a unique solution.

Proof. Lemmas 2.2.6, 2.2.7 and 2.2.8 can be used to verify the statement of this theorem.
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Theorem 2.2.10. Let n− 1 < α2 < n ≤ m− 1 < α1 < m(n,m ∈ N). Assume that (a), (b) and
(d) There exists p > 1, 0 < η < 1 and a(x) ∈ C([0, 1], [0,∞)) such that

1− η ≥ 1

Γ(α1 − n)Γ(n− α2 + 1)
sup

0≤x≤1

∫ x

0

(x− s)α1−n−1sn−α2a(s)ds,

0 < H := sup
0≤x≤1

[∣∣∣ n−1∑
i=0

xi

i!
µi

∣∣∣+

∫ x

0

(x− s)α1−n−1|h(s, 0)|ds
]
<∞.

And for any y, z ∈ C([0,∞)) with 0 ≤ |y(x)|, |z(x)| ≤ H
η
for 0 ≤ x ≤ 1,

|h(x, y(x))− h(x, z(x))| ≤ a(x)|y(x)− z(x)| for 0 ≤ x ≤ 1.

hold. Then Equation (2.2.25) has a unique solution.
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Chapter 3

Power series method for solving fractional

differential equations

Power series method is a powerful tool for solving fractional order differential and integral equations.
In this method we look for the solution of fractional order differential or integral equation in the form
of power series and coefficients of this series are determined using initial or boundary conditions. For
latest works on power series method for fractional differential equation one can see [40] and [48]. In
this chapter we have reviewed the work done in [47] and [26]. This chapter deals with solution of
fractional differential equations of order α (0 < α < 1) and 2α (0 < α < 1) around α-ordinary and
regular α-singular point. We consider the following homogeneous fractional differential equation

Dα
a y(x) + A(x)y(x) = 0, (3.0.1)

where α ∈ (0, 1) and A(x) is defined on the interval [a, b]. Dα
a represents both Riemann-Liouville and

Caputo fractional derivative.

Definition 3.0.1. [47] Let α ∈ (0, 1], y(x) is a real function defined on the interval [a, b], and
x0 ∈ [a, b]. Then y(x) is said to be α-analytic at x0 if there exists an interval N(x0) such that, for
all x ∈ N(x0), y(x) can be expressed as a series of natural powers of (x− x0)α. That is, u(x) can be
expressed as

∑∞
n=0 cn(x− x0)nα where cn ∈ R and the series is absolutely convergent for |x− x0| < µ

with µ > 0.

Definition 3.0.2. [47] A point x0 ∈ [a, b] is said to be α-ordinary point of the homogeneous fractional
differential Equation (3.0.1) if the functions Ak(x) with k = 0, 1, · · · , n − 1 are α-analytic in x0. A
point x0 ∈ [a, b] which is not α-ordinary will be called α-singular.

Definition 3.0.3. [47] Let x0 ∈ [a, b] be an α-singular point of the homogeneous fractional differential
Equation (3.0.1). The point x0 is said to be a regular α-singular point of this equation if the functions
(x − x0)(n−k)αAk(α) are α − analytic in x0 with k = 0, 1, · · · , n − 1. Otherwise, x0 is said to be an
essential α-singular point.
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3.1 Solution around an α-ordinary point

In this section we have evaluated solution of homogeneous fractional differential equation of order
α (0 < α < 1) and 2α (0 < α < 1) around a α-ordinary point in the form of power series. The results
and method is taken from [26].

3.1.1 Solution around an α-ordinary point of a fractional differential equa-

tion of order α

In this section we seek solution of the following fractional differential equation

Dα
a y(x) + A(x)y(x) = 0, (3.1.1)

around an α-ordinary point x0 ∈ [a, b] with α ∈ (0, 1) and A(x) is defined in the interval [a, b]. Since
x0 is an α-ordinary point we can represent A(x) in the following form

A(x) =
∑

An(x− x0)nα. (3.1.2)

The series represented in Equation (3.1.2) is convergent for x ∈ [x0, x0 + µ] with µ > 0.

Theorem 3.1.1. Let x0 ∈ [a, b] be an α-ordinary point of the equation

RLDα
a y(x) + A(x)y(x) = 0, (3.1.3)

with α ∈ [0, 1] and q0 ∈ R. Then there exits a unique function

y(x) = (x− x0)α−1

∞∑
n=0

qn(x− x0)nα, (3.1.4)

which is the solution of the Equation (3.1.3) for x ∈ (x0, x0 + µ) and which satisfies the initial
condition q0 = limx→x0(x− x0)1−αy(x).

Proof. We begin with seeking the solution of the Equation (3.1.3) given in Equation (3.1.4). For this
we take fractional order derivative of Equation (3.1.4) and substitute the result in Equation (3.1.3)

∞∑
n=1

qn
Γ(n+ 1)α

Γ(nα)
(x− x0)nα−1 +

∞∑
n=0

A(x)qn(x− x0)(n+1)α−1 = 0. (3.1.5)

Replacing n with n+ 1 in first series of Equation (3.1.5) we get
∞∑
n=0

qn+1
Γ(n+ 2)α

Γ(n+ 1)α)
(x− x0)(n+1)α−1 +

∞∑
n=0

A(x)qn(x− x0)(n+1)α−1 = 0. (3.1.6)

Let Λn = Γ(n+2)α
Γ(n+1)α

, and substitute Equation (3.1.2) in Equation (3.1.6) we get

∞∑
n=0

qn+1Γn(x− x0)(n+1)α−1 +
∞∑
n=0

A0qn(x− x0)(n+1)α−1

+
∞∑
n=0

A1qn(x− x0)(n+2)α−1 +
∞∑
n=0

A2qn(x− x0)(n+3)α−1 + · · · = 0.

(3.1.7)
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Now equate the coefficients of powers of x− x0. When n = 0

q1Λ0 + A0q0 = 0 implies q1 = −A0q0

Λ0

.

When n = 1

q2 = −A0q1 + A1q0

Λ1

.

When n = 2

q3 = −A0q2 + A1q1 + A2q0

Λ2

.

Continuing in this manner we get the following recurrence relation

qn+1 = −
∑n

k=0An−kqk
Λn

. (3.1.8)

Now we show the convergence of the series given in Equation (3.1.4) for x ∈ (x0, x0 +µ). Since series
in Equation (3.1.2) is convergent there exist a constant M > 0 such that

|An(x− x0)nα)| ≤ |An||(x− x0)nα| ≤Mµnα. (3.1.9)

Let r < µ⇒ 1
r
> 1

µ
, substitute this in Equation (3.1.9) we get

|An−k| ≤
Mrkα

rnα
. (3.1.10)

Substituting Equation (3.1.10) in Equation (3.1.8) we get

|qn+1| ≤
M

rnαΛn

n∑
k=0

rkαqk.

We define cn where n ∈ N from the above recurrence relation as

cn+1 =
M

rnαΛn

n∑
k=0

rkαck (n ∈ N0).

It is obvious 0 ≤ |qn| ≤ |cn| for n ∈ N0. The series
∑∞

n=0 cn(x−x0)nα+1 is convergent for |x−x0| < r,
because in accordance with the asymptotic representation

Γ(z + a)

Γ(z + b)
= za−b

{
1 +O(

1

z
)

}
, (3.1.11)

there holds the following estimate

lim
n→∞

∣∣∣∣cn+1(x− x0)(n+1)α

cn(x− x0)nα

∣∣∣∣ = lim
n→∞

∣∣∣∣∣
M

(nα)αrnα

∑n
k=0 r

kαck(x− x0)α

M
(nα)αr(n−1)α

∑n−1
k=0 r

kαck(x− x0)α

∣∣∣∣∣
=

∣∣∣∣(x− x))
α

rα

∣∣∣∣ .
Since |x− x0| < µ and r < µ, this implies |x−x0|

r
< 1

lim
n→∞

∣∣∣∣cn+1(x− x0)(n+1)α

cn(x− x0)nα

∣∣∣∣ =

∣∣∣∣(x− x))
α

rα

∣∣∣∣ < 1.

Which means |cn(x−x0)nα+1| ≤ Nrnα+1 with N > 0 and also |qn(x−x0)(n+1)α−1| ≤ N1r
(n+1)α−1 with

N1 > 0. So series in Equation (3.1.4) is convergent.
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Theorem 3.1.2. Let x0 ∈ [a, b] be an α-ordinary point of the equation

cDα
a y(x) + A(x)y(x) = 0, (3.1.12)

with α ∈ [0, 1] and q0 ∈ R. Then there exits a unique α-analytic function y(x) in x0 as a solution to
Equation (3.1.12) for x ∈ [x0, x0 + µ] such that the initial condition y(x0) = q0 is satisfied.

Proof. The proof of this theorem is done on similar pattern of Theorem 3.1.1 by searching the solution
in the form y(x) =

∑∞
n=0 qn(x− x0)nα and using recurrence relation for coefficients qn as follows

qn+1 = −
∑n

k=0An−kqk
Λn

,

where Λn = Γ((n+1)α+1)
Γ(nα+1)

.

Example 3.1.3. Consider the following fractional differential equation of order α (0 < α < 1)

RLDα
0 y(x) + xαy(x) = 0. (3.1.13)

According to Theorem 3.1.1 suppose solution of Equation (3.1.13)

y(x) =
∞∑
n=0

qnx
(n+1)α−1. (3.1.14)

In Equation (3.1.13) x = 0 is α-ordinary point and suppose series solution for A(x) = xα as follows

A(x) = xα =
∞∑
n=0

Anx
nα. (3.1.15)

Equating coefficients of powers of xα in Equation (3.1.15) yields

A0 = 0, A1 = 1, A2 = 0, A3 = 0, · · · .

According to Theorem 3.1.1 consider the recurrence relation for coefficients qn

qn+1 = −
∑∞

k=0An−kqk
Λn

, (3.1.16)

where Λn = Γ((n+2)α)
Γ((n+1)α)

.
When n = 0 Equation (3.1.16) implies

q1 = −
∑0

k=0 a0−kqk
Γ0

= − Γ(α)

Γ(2α)
a0q0

= 0.

When n = 1 Equation (3.1.16) implies

q2 = −Γ(2α)

Γ(3α)
q0.
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When n = 3 Equation (3.1.16) implies
q3 = 0.

When n = 4 Equation (3.1.16) implies

q4 =
Γ(2α)Γ(4α)

Γ(3α)Γ(5α)
q0.

Similarly when n+ 1 = 2n we get

q2n = (−1)n
n∏
j=1

Γ(2jα)

Γ((2j + 1)α)
q0. (3.1.17)

Substituting Equation (3.1.17) in Equation (3.1.14) results

y(x) =
∞∑
n=0

qnx
(n+1)α−1

= q0x
α−1 +

∞∑
n=1

qnx
(n+1)α−1

= q0x
α−1 +

∞∑
n=1

(−1)n
n∏
j=1

Γ(2jα)

Γ((2j + 1)α)
q0x

(2n+1)α−1

= q0x
α−1

{
1 +

∞∑
n=1

(−1)n
n∏
j=1

Γ(2jα)

Γ((2j + 1)α)
x2nα

}
.

Example 3.1.4. Now we consider the same fractional differential equation of order α (0 < α < 1)

with fractional derivative replaced by Caputo fractional derivative

cDα
0 y(x) + xαy(x) = 0. (3.1.18)

x = 0 is α-ordinary point of Equation (3.1.18) and we consider the solution of Equation (3.1.18) in
accordance with Theorem 3.1.2

y(x) =
∞∑
n=0

qn(x− x0)nα. (3.1.19)

The recurrence relation for coefficients qn is given by

qn+1 = −
∑n

k=0An−kqk
Λn

, (3.1.20)

where Λn = Γ((n+1)α+1)
Γ(nα+1)

.
When n = 1 Equation (3.1.20) yields

q1 = 0.

When n = 2 Equation (3.1.20) yields

q2 = − Γ(α + 1)

Γ(2α + 1)
q0.
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When n = 2 Equation (3.1.20) yields
q3 = 0.

When n = 3 Equation (3.1.20) yields

q4 =
Γ(α + 1)Γ(3α + 1)

Γ(2α + 1)Γ(4α + 1)
q0.

Similarly when n+ 1 = 2n Equation (3.1.20) yields

q2n = (−1)n
n∏
j=1

Γ((2j − 1)α + 1)

Γ(2jα + 1)
q0. (3.1.21)

Substituting Equation (3.1.21) in Equation (3.1.19) results

y(x) = q0

{
1 +

∞∑
n=1

(−1)n
n∏
j=1

Γ((2j − 1)α + 1)

Γ(2jα + 1)
xnα

}
.

3.1.2 Solution around an α-ordinary point of a fractional differential equa-

tion of order 2α

In this section we consider the following fractional order differential equation

D2α
a y(x) + A(x)Dα

a y(x) +B(x)y(x) = 0, (3.1.22)

and find its solution around an α-ordinary point x0 ∈ [a, b]. Where A(x) and B(x) are defined on an
interval [a,b], and D2α

a y(x) and Dα
a y(x) represent Riemann-Liouville or Caputo derivatives of order

2α and α respectively of a function y(x). Since x0 is an α-ordinary point of Equation (3.1.22) we can
assume the following series representations of functions A(x) and B(x)

A(x) =
∞∑
n=0

An(x− x0)nα, for x ∈ [x0, x0 + µ1], µ1 > 0,

B(x) =
∞∑
n=0

Bn(x− x0)nα, for x ∈ [x0, x0 + µ2], µ2 > 0.

(3.1.23)

Theorem 3.1.5. Let α ∈ (0, 1], q0, q1 ∈ R and x0 ∈ [a, b] be an α-ordinary point of the following
equation

RLD2α
a y(x) + A(x) RLDαy(x) +B(x)y(x) = 0. (3.1.24)

Then there exists a unique solution of Equation (3.1.24) given by

y(x) = (x− x0)α−1

∞∑
n=0

qn(x− x0)nα,

for x ∈ (x0, x0 + µ) with µ = min{µ1, µ2}, which satisfies the following initial conditions

lim
x→x0

[(x− x0)1−αy(x)] = q0,

and
Γ(α)

Γ(2α)
lim
x→x0

[(x− x0)1−αDα
a y(x)] = q1.
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Proof. We search the solution of the Equation (3.1.24) given by

y(x) =
∞∑
n=0

qn(x− x0)(n+1)α−1. (3.1.25)

Taking fractional derivatives of order α and 2α of Equation (3.1.25) we get

RLDα
a y(x) =

∞∑
n=1

qn
Γ((n+ 1)α)

Γ(nα)
(x− x0)nα−1, (3.1.26)

and
RLD2α

a y(x) =
∞∑
n=2

qn
Γ((n+ 1)α)

Γ((n− 1)α)
(x− x0)(n−1)α−1. (3.1.27)

After substituting Equation (3.1.26) and Equation (3.1.27) in Equation (3.1.24) we get

∞∑
n=2

qn
Γ((n+ 1)α)

Γ((n− 1)α)
(x− x0)(n−1)α−1 + A(x)

∞∑
n=1

qn
Γ((n+ 1)α)

Γ(nα)
(x− x0)nα−1

+B(x)
∞∑
n=0

qn(x− x0)(n+1)α−1 = 0.

(3.1.28)

Replacing n with n+ 2 in first series and n with n+ 1 in second series of Equation (3.1.28) we get

∞∑
n=0

qn+2
Γ((n+ 3)α)

Γ((n+ 1)α)
(x− x0)(n+1)α−1 + A(x)

∞∑
n=0

qn+1
Γ((n+ 2)α)

Γ((n+ 1)α)
(x− x0)(n+1)α−1

+B(x)
∞∑
n=0

qn(x− x0)(n+1)α−1 = 0.

(3.1.29)

Let Λn1 = Γ((n+3)α)
Γ((n+1)α)

and Λn2 = Γ((n+2)α)
Γ((n+1)α)

and substituting these in Equation (3.1.29) we get

∞∑
n=0

qn+2Λn1(x− x0)(n+1)α−1 + A(x)
∞∑
n=0

qn+1Λn2(x− x0)(n+1)α−1

+B(x)
∞∑
n=0

qn(x− x0)(n+1)α−1 = 0.

(3.1.30)

Using series for A(x) and B(x) in Equation (3.1.30) we get

∞∑
n=0

qn+2Λn1(x− x0)(n+1)α−1 + A0

∞∑
n=0

qn+1Λn2(x− x0)(n+1)α−1

+ A1

∞∑
n=0

qn+1Λn2(x− x0)(n+2)α−1 + A2

∞∑
n=0

qn+1Λn2(x− x0)(n+3)α−1 + · · ·

+B0

∞∑
n=0

qn(x− x0)(n+1)α−1 +B1

∞∑
n=0

qn(x− x0)(n+2)α−1

+B2

∞∑
n=0

qn(x− x0)(n+3)α−1 + · · · = 0.

(3.1.31)
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Further simplifications transforms Equation (3.1.31) as
∞∑
n=0

qn+2Λn1(x− x0)(n+1)α−1 + A0

∞∑
n=0

qn+1Λn2(x− x0)(n+1)α−1

+ A1

∞∑
n=1

qnΛ(n−1)2(x− x0)(n+1)α−1 + A2

∞∑
n=2

qn−1Λ(n−2)2(x− x0)(n+1)α−1 + · · ·

+B0

∞∑
n=0

qn(x− x0)(n+1)α−1 +B1

∞∑
n=1

qn−1(x− x0)(n+1)α−1

+B2

∞∑
n=2

qn−2(x− x0)(n+1)α−1 + · · · = 0.

(3.1.32)

After equating coefficients of powers of x − x0 in Equation (3.1.32) we get the following recurrence
relation with n ≥ 2

qn = − 1

Λ(n−2)1

n−2∑
k=0

{qk+1An−k−2Λk2 +Bn−k−2qk} . (3.1.33)

If we replace n by n+ 2 in Equation (3.1.33) we get

qn+2 = − 1

Λn1

n∑
k=0

{qk+1An−kΛk2 +Bn−kqk} . (3.1.34)

Now we show the convergence of series in Equation (3.1.25) for x ∈ (x0, x0 +µ) with µ = min{µ1, µ2}
and let r < µ⇒ 1

r
> 1

µ
. Since the series in Equation (3.1.23) are convergent for x ∈ [x0, x0 + r], there

exists a constant M > 0 such that

|An−k| ≤
Mrkα

rnα
, for n ∈ N0, 0 ≤ k ≤ n,

|Bn−k| ≤
Mrkα

rnα
, for n ∈ N0, 0 ≤ k ≤ n.

(3.1.35)

Using Equation (3.1.35) in Equation (3.1.34) we get

|qn+2| ≤
M

rnαΛn1

n∑
k=0

{qk+1Λk2 + qk}rkα.

Also,

|qn+2| ≤
M

rnαΛn1

n∑
k=0

{qk+1Λk2 + qk}rkα +M |qn+1|rα.

Now let c0 = |q0|, c1 = |q1| and ck (k > 1) is defined by the following recurrence relation

|cn+2| =
M

rnαΛn1

n∑
k=0

{ck+1Λk2 + ck}rkα +M |cn+1|rα.

The series
∑∞

n=0 cn(x − x0)(n+1)α−1 is convergent for |x − x0| < r, because in accordance with the
asymptotic representation (3.1.11) the following estimate holds

lim
n→∞

∣∣∣∣cn+1(x− x0)(n+1)α

cn(x− x0)nα

∣∣∣∣ < 1.
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Which means |cn(x−x0)(n+1)α−1| ≤ Nr(n+1)α−1 for N > 0 and also |qn(x−x0)(n+1)α−1| ≤ N1r
(n+1)α−1

for N1 > 0.

Theorem 3.1.6. Let α ∈ (0, 1], q0, q1 ∈ R and x0 ∈ [a, b] be an α-ordinary point of the following
equation

cD2α
a y(x) + A(x)Dα

a y(x) +B(x)y(x) = 0. (3.1.36)

Then there exists a unique solution of Equation (3.1.36) given by

y(x) =
∞∑
n=0

qn(x− x0)nα,

for x ∈ (x0, x0 +µ) with µ = min{µ1, µ2}. This solution is α-analytic function in x0 and satisfies the
following initial conditions

lim
x→x0

y(x)] = q0,

and
lim
x→x0

cDα
a y(x)] = q1.

Proof. Proof is done on similar pattern of Theorem 3.1.5 and we get the following recurrence relation

qn+2 = − 1

Λn1

n∑
k=0

{Λk2An−kqk+1 +Bn−kqk} ,

where Λn1 = Γ((n+2)α+1)
Γ(nα+1)

and Λn2 = Γ((n+1)α+1)
Γ(nα+1)

.

Example 3.1.7. Consider the following fractional differential equation of order 2α (0 < α < 1)

RLD2α
a y(x) + (x− 1)αy(x) = 0, (3.1.37)

where x = 1 is α-ordinary point, B(x) = (x−1)α and a(x) = 0. According to Theorem 3.1.5 consider
the solution of Equation (3.1.37) as

y(x) =
∞∑
n=0

qn(x− 1)(n+1)α−1. (3.1.38)

Since An ′s are zero, the recurrence relation for coefficients qn is given by

qn+2 = −
∑n

k=0Bn−kqk
Λn1

, (3.1.39)

where Λn1 = Γ((n+3)α)
Γ((n+1)α)

.
When n = 0 Equation (3.1.39) yields

q2 = 0.

When n = 1 Equation (3.1.39) yields

q3 = −Γ(2α)

Γ(4α)
q0.
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When n = 2 Equation (3.1.39) yields

q4 = −Γ(3α)

Γ(5α)
q1.

When n = 3 Equation (3.1.39) yields
q5 = 0.

When n = 4 Equation (3.1.39) yields

q6 =
Γ(2α)Γ(5α)

Γ(4α)Γ(7α)
q0.

When n = 5 Equation (3.1.39) yields

q7 =
Γ(3α)Γ(6α)

Γ(5α)Γ(8α)
q1.

Continuing in this manner we get

y(x) = q0(x− 1)α−1

{
1 +

∞∑
k=1

(−1)klk(x− 1)3kα

}
+ q1(x− 1)α−1

{
xα +

∞∑
k=1

(−1)kmk(x− 1)(3k+1)α

}
,

where

lk =
k∏
j=1

Γ((3j − 1)α)

Γ((3j + 1)α)
,

and

mk =
k∏
j=1

Γ(3jα)

Γ((3j + 2)α)
.

Example 3.1.8. Now consider the following fractional differential equation of order 2α (0 < α < 1)

cD2α
0 y(x) + xα cDα

0 y(x) = 0, (3.1.40)

where x = 0 is α-ordinary point, A(x) = xα and B(x) = 0. According to Theorem 3.1.6 consider the
solution of Equation (3.1.40) as

y(x) =
∞∑
n=0

qnx
nα. (3.1.41)

The recurrence relation for coefficients qn is given by

qn+2 = −
∑n

k=0 Λk2An−kqk+1

Λn1

, (3.1.42)

where Λn1 = Γ((n+2)α+1)
Γ(nα+1)

and Λn2 = Γ((k+1)α+1)
Γ(kα+1)

.
When n = 0 Equation (3.1.42) implies

q2 = 0.

When n = 1 Equation (3.1.42) implies

q3 = −(Γ(α + 1))2

Γ(3α + 1)
q1.
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When n = 2 Equation (3.1.42) implies
q4 = 0.

When n = 3 Equation (3.1.42) implies

q5 =
(Γ(α + 1))2(Γ(3α + 1))2

Γ(2α + 1)Γ(3α + 1)Γ(5α + 1)
q1.

When n = 4 Equation (3.1.42) implies
q6 = 0.

When n = 5 Equation (3.1.42) implies

q7 = − (Γ(α + 1))2(Γ(3α + 1))2(Γ(5α + 1))2

Γ(2α + 1)Γ(3α + 1)Γ(4α + 1)Γ(5α + 1)Γ(7α + 1)
q1.

After substituting q′ns in Equation (3.1.41) we get

y(x) = q1x
α

{
1− (Γ(α + 1))2

Γ(3α + 1)
x2α +

(Γ(α + 1))2(Γ(3α + 1))2

Γ(2α + 1)Γ(3α + 1)Γ(5α + 1)
x4α

− (Γ(α + 1))2(Γ(3α + 1))2(Γ(5α + 1))2

Γ(2α + 1)Γ(3α + 1)Γ(4α + 1)Γ(5α + 1)Γ(7α + 1)
x6α +− · · ·

}
.

3.2 Solution around an α-singular point

In this section we see how to evaluate solution of homogeneous fractional differential equation of order
α (0 < α < 1) and 2α (0 < α < 1) around a regular α-singular point in the form of power series. The
results and method is taken from [47].

3.2.1 Solution around an α-singular point to a fractional differential equa-

tion of order α

This section is related to fractional power series solution to homogeneous linear fractional differential
equation of order α with 0 < α ≤ 1 about a regular α-singular point x0. For convenience we consider
fractional differential equation of the form

(x− x0)αDα
a y(x) + A(x)y(x) = 0, (3.2.1)

where A(x) is α-analytic function around x0 since x0 is regular α-singular point.

Theorem 3.2.1. Let x0 ≥ a be a regular α-singular point of Equation (3.2.1) of order α, and let
A(x) can be written in power series expansion as

A(x) =
∞∑
n=0

An(x− x0)nα. (3.2.2)
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Then there exists the solution

y(x;α, s1) = (x− x0)s1
∞∑
n=0

qn(x− x0)nα, (3.2.3)

to the Equation (3.2.1) on a certain interval to the right of x0. Here q0 is a non-zero arbitrary
constant, s1 > −1 is the unique real solution to the equation

Γ(s+ 1)

Γ(s− α + 1)
+ A0 = 0,

and the coefficients qn(n ≥ 1) are given by qn = −Γ(nα+s−α+1)
Γ(nα+s+1)

∑n−1
k=0 qkAn−k. Moreover, if the series

in Equation (3.2.2) converges for all x in a semi-interval 0 < x − x0 < R (R > 0), then the series
solution in Equation (3.2.3) of Equation (3.2.1) is also convergent in the same interval.

Proof. We begin with proving the solution of the Equation (3.2.1) of the form given in Equation
(3.2.3). Fractional order derivative of y(x) is given by

Dα
a y(x) =

∞∑
n=0

qn
Γ(nα + s1 + 1)

Γ((n− 1)α + s1 + 1)
(x− x0)(n−1)α+s1 . (3.2.4)

After substituting Equation (3.2.4) in Equation (3.2.1) we get
∞∑
n=0

qn
Γ(nα + s1 + 1)

Γ((n− 1)α + s1 + 1)
(x− x0)nα+s1 +

∞∑
n=0

A(x)qn(x− x0)nα+s1 = 0. (3.2.5)

Let Λn = Γ(nα+s1+1)
Γ((n−1)α+s1+1)

, Equation (3.2.5) becomes

∞∑
n=0

qnΛn(x− x0)nα+s1 +
∞∑
n=0

A(x)qn(x− x0)nα+s1 = 0. (3.2.6)

After substituting Equation (3.2.2) in Equation (3.2.6) we get
∞∑
n=0

qnΛn(x− x0)nα+s1 +
∞∑
n=0

A0qn(x− x0)nα+s1 +
∞∑
n=0

A1qn(x− x0)(n+1)α+s1

+
∞∑
n=0

A2qn(x− x0)(n+2)α+s1 +
∞∑
n=0

A3qn(x− x0)(n+3)α+s1 + · · · = 0.

(3.2.7)

Further simplifications reduces the above equation to the following form
∞∑
n=0

qnΛn(x− x0)nα+s1 +
∞∑
n=0

A0qn(x− x0)nα+s1 +
∞∑
n=1

A1qn−1(x− x0)nα+s1

+
∞∑
n=2

A2qn−2(x− x0)nα+s1 +
∞∑
n=3

A3qn−3(x− x0)nα+s1 + · · · = 0.

(3.2.8)

After equating coefficients of powers of x− x0 we get the following recurrence relation

qn = −
∑n−1

k=0 qkAn−k
f0(nα + s1)

,

where f0(nα + s1) = Γ(nα+s1+1)
Γ((n−1)α+s1+1)

+ A0. The convergence of the series (3.2.3) is done on similar
pattern as done in Theorem 3.1.5 for 0 < |x− x0| < r < R.
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Example 3.2.2. Consider the following fractional differential equation of order α(0 < α < 1)

xαDα
0 y(x)− 2y(x) = 0, (3.2.9)

where x = 0 is α-singular point of Equation (3.2.9). And A(x) = −2 which means A0 = −2 and
rest of the A′ns are zero for n ∈ N. According to Theorem 3.2.1 we consider the solution of Equation
(3.2.9) as follows

y(x;α, s) =
∞∑
n=0

qnx
nα+s, (3.2.10)

where s is the root of the following indicial equation

Γ(s+ 1)

Γ(s− α + 1)
+ A0 = 0.

The recurrence relation for coefficients Bn is given by

qn = −
∑n−1

k=0 qkAn−k
f0(nα + s)

, (3.2.11)

where f0(nα + s) = Γ(nα+s+1)
Γ(nα+s−α+1)

+ A0.
When n = 1 Equation (3.2.11) yields

q1 = 0.

When n = 2 Equation (3.2.11) yields
q2 = 0.

When n = 3 Equation (3.2.11) yields
q3 = 0.

Which means all qn ′s are zero except q0. Equation (3.2.10) takes the form

y(x;α, s) = q0x
s.

Table 3.1 represents different values of s by changing α between 0 and 1.
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α s

0.2 31.5981
0.25 15.6226
0.3 9.7255
0.34 7.3456
0.4 5.3507
0.5 3.7422
0.66 2.6802
0.7 2.5340
0.8 2.2722
0.9 2.1065
0.99 2.0086

Table 3.1: Values of s corresponding to 0 < α < 1.

3.2.2 Solution around an α-singular point to a fractional differential equa-

tion of order 2α

Now consider the following homogeneous fractional differential equation of order 2α with 0 < α ≤ 1

(x− x0)2αD2α
a y(x) + (x− x0)αA(x)Dα

a y(x) +B(x)y(x) = 0, (3.2.12)

where x0 is regular α-singular point of Equation (3.2.12). Then the functions A(x) and B(x) are
α-analytic around x0 and therefore they have the following series expansions

A(x) =
∞∑
n=0

An(x− x0)nα and B(x) =
∞∑
n=0

Bn(x− x0)nα, (3.2.13)

defined on a semi-interval 0 < x − x0 < r for some r > 0 and with x0 ≥ a. Our aim is to find a
solution to Equation (3.2.12) of the form

y(x;α, s) =
∞∑
n=0

qn(x− x0)nα+s, (3.2.14)

with q0 6= 0 and s being a number to be determined. Differentiating Equation (3.2.14) and substituting
the results in Equation (3.2.12) yields

∞∑
n=0

qn
Γ(nα + s+ 1)

Γ((n− 2)α + s+ 1)
(x− x0)nα+s + A(x)

∞∑
n=0

qn
Γ(nα + s+ 1)

Γ((n− 1)α + s+ 1)
(x− x0)nα+s

+B(x)
∞∑
n=0

qn(x− x0)nα+s = 0.

(3.2.15)
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Equation (3.2.15) can also be written as
∞∑
n=0

qnΛn1(x− x0)nα+s + A(x)
∞∑
n=0

qnΛn2(x− x0)nα+s +B(x)
∞∑
n=0

qn(x− x0)nα+s = 0. (3.2.16)

where Λn1 = Γ(nα+s+1)
Γ((n−2)α+s+1)

and Λn2 = Γ(nα+s+1)
Γ((n−1)α+s+1)

. When n = 1 Equation (3.2.16) implies

q1Λ11 + A0q1Λ12 + A1q0Λ02 +B0q1 +B1q0 = 0. (3.2.17)

Equation (3.2.17) ca be rewritten as

q1f0(α + s) + (A1Λ02 +B1)q0 = 0, (3.2.18)

where f0(nα + s) = Λ11 + A0Λ12 +B0. When n = 2 equation (3.2.16) yields

q2f0(2α + s) + q1(A1Λ12 +B1) + q0(A2Λ02 +B2) = 0. (3.2.19)

Now when n = n then Equation (3.2.16) implies in accordance with Equations (3.2.18) and (3.2.19)

qn = −
∑n−1

k=0 qkfn−k(nα + s)

f0(nα + s)
, (3.2.20)

where fk(s) = Ak
Γ(s+1)

Γ(s−α+1)
+Bk. Since q0 6= 0 which means f0(s) = 0.

If f0(s) = 0 has two complex roots then they must be conjugates since Γ(z) = Γ(z) for all z ∈ C.
If s1 and s2 are two roots of the indicial equation with s1 − s2 6= nα for n ∈ N0 then the Equation
(3.2.20) yields two solutions by replacing s with s1 and s2 to Equation (3.2.12). The proof of the
convergence for 0 < x− x0 < r < R of both solutions is done on similar pattern of Theorem 3.1.5.
Now we are left with the problem of finding a solution to Equation (3.2.12) if s1−s2 = nα for n ∈ N0.
To sort this problem we state the following theorem.

Theorem 3.2.3. Let x0 ≥ a be a regular α−singular point of Equation (3.2.12) and let the series
(3.2.13) be convergent on a semi-interval 0 < x− x0 < R with R > 0. Let s1 and s2 be two real roots
of the fractional indicial equation with s1, s2 > α− 1 and s1 ≥ s2. Then, in interval 0 < x−x0 < R,
Equation (3.2.12) has one solution of the form

y1(x;α, s1) =
∞∑
n=0

qn(x− x0)nα+s1 , q0(s1) 6= 0.

(a) If s1 = s2 then the second solution to Equation (3.2.12) has the following form:

y2(x;α, s1) = y1(x;α, s1) log(x− x0) +
∞∑
n=0

pn(x− x0)nα+s1 , (3.2.21)

where pn = ∂
∂s

(qn(s))|s=s1.
(b) If s1 − s2 = nα with n ∈ N, then a second solution to Equation (3.2.12) is given by

y2(x;α, s2) = y1(x;α, s1).H(x). log(x− x0) +
∞∑
n=0

pn(s2)(x− x0)nα+s2 , (3.2.22)

where H(x) is a function obtained by evaluating the derivative H(x) = ∂
∂s
{(s− s2)y1(x;α, s)}|s=s2.

Moreover, the series (3.2.21) and (3.2.22) are convergent for all x on the semi-interval 0 < x−x0 < R.
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Example 3.2.4. Consider the following fractional differential equation

x2αD2α
0 y(x) + xαDα

0 y(x)− y(x) = 0. (3.2.23)

Here x = 0 is α-singular point, A(x) = 1 which means A0 = 1, A′ns = 0 for n ∈ N and B(x) = −1

which means B0 = −1, B′ns = 0 for n ∈ N. The general solution of Equation (3.2.23) is given by

y(x;α, s) =
∞∑
n=0

qnx
nα+s. (3.2.24)

s in Equation (3.2.24) is evaluated using the following indicial equation

f0(s) :=
Γ(s+ 1)

Γ(s− 2α + 1)
+

Γ(s+ 1)

Γ(s− α + 1)
A0 +B0 = 0.

The recurrence relation for coefficients qn is given as

qn = −
∑n−1

l=0 qlfn−l(nα + s)

f0(nα + s)
. (3.2.25)

When n = 1 Equation (3.2.25) yields
q1 = 0.

When n = 2 Equation (3.2.25) yields
q2 = 0.

When n = 3 Equation (3.2.25) yields
q3 = 0.

Which means all q′ns are zero for n ∈ N. After substituting q′ns in Equation (3.2.24) we get

y(x;α, s) = q0x
s.

Table 3.2 shows different values of s corresponding to α ∈ (0, 1).

α s1 s2

0.1 -0.6895 -
0.2 -0.3978 -
0.7 0.5828 -
0.8 0.7293 -
0.95 0.9348 -

Table 3.2: Values of s1 and s2 corresponding to 0 < α < 1.
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Chapter 4

Laplace transform method for solving

fractional differential equations

Laplace transform is an efficient method to solve differential and integral equations. It turns differ-
ential and integral equation to algebraic equation that can be solved easily. It transforms a function
of real variable to a function of complex variable. Inverse of the Laplace transform exists for a huge
class of functions. It transforms a function of complex variable to a function of real variable. In this
chapter we will see how Laplace transform method is used to solve fractional integrals and derivatives.
Further we will apply it to solve fractional differential equations.

Definition 4.0.1. The Laplace transform of a function y(x), defined for x ≥ 0, is defined by

Y (s) = L{y(x)} =

∫ ∞
0

e−sxy(x)dx,

where s is real and L is called the Laplace transform operator. If Y (s) = L{y(x)} for some function
y(x). We define the inverse Laplace transform as

L−1 {Y (s)} = y(x).

Theorem 4.0.2. If y(x) is piecewise continuous function on the interval of integration 0 ≤ x < A

for any positive A and y(x) is of exponential order eax as x → ∞ then the Laplace transform exists
and must satisfy lims→∞ Y (s) = 0.

Theorem 4.0.3. (The Convolution Theorem for Laplace Transform:) Consider two functions y(x)

and z(x) that satisfies the conditions which are necessary for the existence of Laplace transform. Then
the Laplace transform of the convolution product (y ∗ z)(x) is given by

L{(y ∗ z)(x)} = L
{∫ x

0

y(x− t)z(t)dt

}
= Y (s)Z(s). (4.0.1)

Lemma 4.0.4. [25] For any α1, α2 > 0 and A ∈ Cn×n,

L
{
xα2−1Eα1,α2(Axα1)

}
=

sα1−α2

(sα1 − A)
,
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holds for Re(s) > ‖A‖
1
α1 .

Proof. We know that 1
1−x =

∑∞
n=0 x

n with |x| < 1. Then for Re(s) > ‖A‖
1
α1 we have

1

sα1 − A
=

s−α1

1− A
sα1

= s−α1

∞∑
n=0

{
A

sα1

}n
=
∞∑
n=0

Ans−α1(n+1).

(4.0.2)

L
{
xα2−1Eα1,α2(Axα1)

}
= L

{
xα2−1

∞∑
n=0

(Axα1)n

Γ(α1n+ α2)

}

= L

{
∞∑
n=0

Anxα1n+α2−1

Γ(α1n+ α2)

}

=
∞∑
n=0

AnL{xα1n+α2−1}
Γ(α1n+ α2)

=
∞∑
n=0

AnΓ(α1n+ α2)

sα1n+α2Γ(α1n+ α2)

=
∞∑
n=0

Ans−(α1n+α2)

= sα1−α2

∞∑
n=0

Ans−α1(n+1).

(4.0.3)

Using Equation (4.0.2) in Equation (4.0.3) we get

L
{
xα2−1Eα1,α2(Axα1)

}
=

sα1−α2

(sα1 − A)
.

4.0.1 Laplace transform of fractional integrals and derivatives

In this section we will discuss Laplace transform of Riemann-Liouville approach and Caputo’s ap-
proach. First we consider Laplace transform of Riemann-Liouville integral.

L{Iα0 y(x)} = L
{

1

Γ(α)

∫ x

0

(x− t)α−1y(t)dt

}
= L

{
1

Γ(α)
xα−1 ∗ y(x)

}
=
Y (s)

sα
.

Now we see Laplace transform of Riemann-Liouville derivative which can be developed in the similar
pattern.

L
{
RLDα

0 y(x)
}

= L
{
dn

dxn
In−αy(x)

}
= L

{
1

Γ(n− α)

dn

dxn

∫ x

0

(x− t)n−α−1y(t)dt

}
.

(4.0.4)
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Let F (x) = In−α0 y(x) and applying Laplace transform of derivative on equation (4.0.4) we get

L
{
RLDα

0 y(x)
}

= snL{F (x)} − sn−1F (0)− ...− sF n−2(0)− F n−1(0).

or

L
{
RLDα

0 y(x)
}

= sαY (s)−
n∑
j=1

sn−jF j−1(0). (4.0.5)

Now we construct Laplace transform of Caputo fractional derivative in the following manner:

L{ cDα
0 y(x)} = L

{
Im−α0 Dmy(x)

}
= L

{
xm−α−1

Γ(m− α)

}
L
{
dm

dtm
y(t)

}
=

1

sm−α
.
{
smL{y(t)} − sm−1y(0)− ...− sym−2(0)− ym−1(0)

}
.

= sαY (s)−
m∑
j=1

sα−jyj−1(0).

Lemma 4.0.5. [25] Assume c ≥ 0, α > 0 and a(x) is a non-negative function that is locally
integrable on 0 ≤ x < T (for some T ≤ ∞) and also assume y(x) is a non-negative function that is
locally integrable on 0 ≤ x < T with

y(x) ≤ a(x) + c

∫ x

0

(x− t)α−1y(t)dt,

on this interval. Then
y(x) ≤ a(x) + λ

∫ x

0

F ′α(λ(x− t))a(t)dt,

where λ = (cΓ(α))
1
α , Fα(x) =

∑∞
k=0

xkα

Γ(kα+1)
and F ′α(x) represents derivative of function F with respect

to x. Also F ′α(x) ' xα−1

Γ(α)
as x → 0+ and F ′α(x) ' ex

α
as x → +∞. If a(x) = a = constant then

y(x) ≤ aFα(λx).

Theorem 4.0.6. [25] Assume cDα
0 y(x)− Ay(x) = h(x), with 0 < α < 1, x ≥ 0 and y(0) = q1 has a

unique continuous solution y(x), where A is an n×n constant matrix and h(x) is an n−dimensional
vector valued continuous function. If h(x) is continuous on [0,∞) and exponentially bounded, then
y(x) and its Caputo derivative cDα

a y(x) are both exponentially bounded, thus their Laplace transforms
exist.

Proof. Since h(x) is exponentially bounded then there exist M, m, a > 0 such that ‖h(x)‖ ≤ meax

for all x ≥M .
Now consider cDα

0 y(x)− Ay(x) = h(x) and apply fractional order integral on it

Iα0
cDα

0 y(x)− Iα0 Ay(x) = Iα0 h(x), (4.0.6)

Equation (4.0.6) can be written as

y(x) = q1 +

∫ x

0

(x− t)α−1

Γ(α)
{Ay(t) + h(t)} dt, 0 ≤ x <∞. (4.0.7)
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For x ≥M Equation (4.0.7) can be written as

y(x) = q1 +

∫ M

0

(x− t)α−1

Γ(α)
{Ay(t) + h(t)} dt+

∫ x

M

(x− t)α−1

Γ(α)
{Ay(t) + h(t)} dt. (4.0.8)

Since the solution y(x) is unique and continuous also A is an n × n constant matrix and h(x) is
bounded. This implies Ay(x) + h(x) is bounded on [0,M ]. Which means there exists K > 0 such
that ‖Ay(x) + h(x)‖ ≤ K. After applying norm on equation we get

‖y(x)‖ = ‖q1‖+

∫ M

0

(x− t)α−1

Γ(α)
‖Ay(t) + h(t)‖dt+

∫ x

M

(x− t)α−1

Γ(α)
‖Ay(t) + h(t)‖dt

≤ ‖q1‖+
K

Γ(α)

∫ M

0

(x− t)α−1dt+

∫ x

M

(x− t)α−1

Γ(α)
‖A‖‖y(t)‖dt

+

∫ x

M

(x− t)α−1

Γ(α)
‖h(t)‖dt.

(4.0.9)

Now we multiply Inequality (4.0.9) with e−ax

‖y(x)‖e−ax ≤ ‖c1‖e−ax +
Ke−ax

Γ(α)

∫ M

0

(x− t)α−1dt+

∫ x

M

e−ax(x− t)α−1

Γ(α)
‖A‖‖y(t)‖dt

+

∫ x

M

e−ax(x− t)α−1

Γ(α)
‖h(t)‖dt

≤ ‖q1‖e−ax +
Ke−ax

αΓ(α)
(xα + (x−M)α) +

∫ x

M

e−ax(x− t)α−1

Γ(α)
‖A‖‖y(t)‖dt

+

∫ x

M

e−ax(x− t)α−1

Γ(α)
‖h(t)‖dt.

Since ‖h(x)‖ ≤ meax above Inequality takes the form

‖y(x)‖e−ax ≤ ‖q1‖e−ax +
Ke−ax

αΓ(α)
(xα + (x−M)α)

+

∫ x

M

e−ax(x− t)α−1

Γ(α)
‖A‖‖y(t)‖dt+

∫ x

M

m(x− t)α−1

Γ(α)
ea(t−x)dt.

(4.0.10)

Since e−ax ≤ e−aM and e−ax ≤ e−at, Inequality (4.0.10) can be written

‖y(x)‖e−ax ≤ ‖q1‖e−aM +
Ke−aM

αΓ(α)
(xα + (x−M)α) +

∫ x

M

e−at(x− t)α−1

Γ(α)
‖A‖‖y(t)‖dt

+

∫ x

M

m(x− t)α−1

Γ(α)
ea(t−x)dt,

‖y(x)‖e−ax ≤ ‖c1‖e−aM +
Ke−aM

αΓ(α)
(xα + (x−M)α)

+

∫ x

0

e−at(x− t)α−1

Γ(α)
‖A‖‖y(t)‖dt+

∫ x

0

m(x− t)α−1

Γ(α)
ea(t−x)dt.

(4.0.11)

Since 0 ≤ α ≤ 1 and M ≤ x which means xα −Mα ≤ (x−M)α this implies xα − (x−M)α ≤ Mα.
Under these conditions Inequality (4.0.11) can be written as

‖y(x)‖e−ax ≤ ‖q1‖e−aM +
KMαe−aM

αΓ(α)
+

∫ x

0

e−at(x− t)α−1

Γ(α)
‖A‖‖y(t)‖dt

+

∫ x

0

m(x− t)α−1

Γ(α)
ea(t−x)dt.

(4.0.12)
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Now substitute x− t = s with condition 0 ≤ x <∞ in last integral of Inequality (4.0.12) and we will
have

‖y(x)‖e−ax ≤ ‖q1‖e−aM +
KMαe−aM

αΓ(α)
+

∫ x

0

e−at(x− t)α−1

Γ(α)
‖A‖‖y(t)‖dt

+

∫ ∞
0

m(s)α−1

Γ(α)
e−asds.

(4.0.13)

Substitute s = u
a
in Inequality (4.0.13)

‖y(x)‖e−ax ≤ ‖q1‖e−aM +
KMαe−aM

αΓ(α)
+

∫ x

0

e−at(x− t)α−1

Γ(α)
‖A‖‖y(t)‖dt

+

∫ ∞
0

muα−1

Γ(α)aα
e−udu.

(4.0.14)

Using definition of gamma function in Inequality (4.0.14) we get

‖y(x)‖e−ax ≤ ‖c1‖e−aM +
KMαe−aM

αΓ(α)
+
m

aα

+

∫ x

0

e−at(x− t)α−1

Γ(α)
‖A‖‖y(t)‖dt.

(4.0.15)

We denote a = ‖q1‖e−aM + KMαe−aM

αΓ(α)
+ m

aα
, b = ‖A‖

Γ(α)
and v(x) = ‖y(x)‖e−ax in Inequality (4.0.15)

v(x) ≤ a+ b

∫ x

0

(x− t)α−1v(t)dt, x ≥M. (4.0.16)

Using Lemma 4.0.5 in Inequality (4.0.16) we get

v(x) ≤ aFα(λx) = a
∞∑
k=0

(bΓ(α))kxkα

Γ(kα + 1)
, x ≥M. (4.0.17)

Using definition of Mittag-Leffler function in Equation (4.0.17) we get

v(x) ≤ aEα(bΓ(α)xα), x ≥M. (4.0.18)

Using Remark 1.4.4 in Inequality (4.0.18) we get

v(x) ≤ aCe(bΓ(α))
1
αx , x ≥M. (4.0.19)

Since v(x) = ‖y(x)‖e−ax, Inequality (4.0.19) becomes

y(x) ≤ aCe((bΓ(α))
1
α+a)x, x ≥M. (4.0.20)

Now consider cDα
0 y(x) = Ay(x) + h(x) and after taking norm on it we get

‖ cDα
0 y(x)‖ ≤ ‖A‖‖y(x)‖+ ‖h(x)‖

≤ a‖A‖Ce((bΓ(α))
1
α+a)x +meax

≤ a‖A‖Ce((bΓ(α))
1
α+a)x +me((bΓ(α))

1
α+a)x

≤ {a‖A‖C +m} e((bΓ(α))
1
α+a)x.

(4.0.21)

Thus inequalities (4.0.20) and (4.0.21) show that u(x) and its Caputo derivative are exponentially
bounded.
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Example 4.0.7. We consider the following linear differential equation

Dα
0 y(x) + y(x) = 0,

y(0) = 1, y′(0) = 0.
(4.0.22)

Applying Laplace transform on Equation (4.0.22) we get

L{Dα
0 y(x)}+ L{y(x)} = 0. (4.0.23)

Using Equation (4.0.5) in Equation (4.0.23) we will have

sαY (s)− sα−1 + Y (s) = 0 implies Y (s) =
sα−1

sα + 1
. (4.0.24)

Now consider

1

sα + 1
=

s−α

1 + s−α

= s−α
∞∑
k=0

s−αk

=
∞∑
0

s−α(k+1).

(4.0.25)

Using Equation (4.0.25) in Equation (4.0.24) we obtain

Y (s) =
∞∑
k=0

s−αk−1. (4.0.26)

Applying inverse Laplace transform on Equation (4.0.26) we get

y(x) =
∞∑
k=0

xαk

Γ(αk + 1)
.

Solutions for different values of α are shown in Figure in 5.5a.
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Figure 4.1: Solution of fractional differential equation (4.0.22) at different values of α.
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Example 4.0.8. Consider the following fractional order differential equation

D2
0y(x) +Dα

0 y(x) + y(x) = 6x3

{
x−2

Γ(2)
− x−α

Γ(4− α)

}
,

0 ≤ α ≤ 1, y(0) = 0, y′(0) = 0.

(4.0.27)

Applying Laplace transform on Equation (4.0.27) we get

(s2 + sα + 1)Y (s) =
6

s2
− 6

s4−α .

Thus,

Y (s) =
6

s2 + sα + 1

{
1

s2
− 1

s4−α

}
. (4.0.28)

Now consider

1

s2 + sα + 1
=

s−α

s2−α + 1 + s−α

=
s−α

{s2−α+1}
{

1 + s−α

s2−α+1

}
=

s−α

s2−α + 1

∞∑
k=0

{
s−α

s2−α + 1

}k
=
∞∑
k=0

s−αk−α

(s2−α + 1)k+1

=
∞∑
k=0

s−2k−2

(1 + sα−2)k+1

=
∞∑
k=0

s−2k−2

∞∑
r=0

(−sα−2)r
(
k + r

r

)
.

Thus
1

s2 + sα + 1
=
∞∑
k=0

(−1)k
∞∑
r=0

(
k + r

r

)
(−1)rs(α−2)r−2k−2. (4.0.29)

Using Equation (4.0.29) in Equation (4.0.28) we obtain,

Y (s) = 6

{
∞∑
k=0

(−1)k
∞∑
r=0

(
k + r

r

)
(−1)rs(α−2)r−2k−4 −

∞∑
k=0

(−1)k
∞∑
r=0

(
k + r

r

)
(−1)rs(α−2)r−2k−6+α

}
.

(4.0.30)
Applying inverse Laplace transform on Equation (4.0.30) we have,

y(x) =6
∞∑
k=0

(−1)k
∞∑
r=0

(
k + r

r

)
(−1)r

x(2−α)r+2k+3

Γ((2− α)r + 2k + 3)

− 6
∞∑
k=0

(−1)k
∞∑
r=0

(
k + r

r

)
(−1)r

x(2−α)r+2k−α+5

Γ((2− α)r + 2k +−α + 6)
.
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Example 4.0.9. Consider the following fractional differential equation

d2y

dx2
+ b cDαy(x) + ω2y(x) = h(x),

y(0) = q0, y′(0) = q1.

(4.0.31)

We consider three different cases to solve Equation (4.0.31)
Case I: 0 < α < 1

After applying Laplace transform method on Equation (4.0.31)we get

L
{
d2y

dx2

}
+ bL{cDα

0 y(x)}+ ω2L{y(x)} = L{h(x)} . (4.0.32)

Equation (4.0.32) yields

s2Y (s)− sy(0)− y′(0) + bsαY (s)− bsα−1q0 + ω2Y (s) = H(s). (4.0.33)

Equation (4.0.33) can be rewritten as

Y (s) =
1

s2 + bsα + ω2

{
H(s) + (s+ bsα−1)q0 + q1

}
. (4.0.34)

After simplifications Equation (4.0.34) implies

Y (s) =
∞∑
k=0

(−1)kω2k

∞∑
r=0

(−1)r
(
k + r

r

)
s(α−2)r−2(k+1)

{
H(s) + (s+ bsα−1)q0 + q1

}
. (4.0.35)

After applying inverse Laplace transform on Equation (4.0.35) we get

y(x) = L−1

{
∞∑
k=0

(−1)kω2k

∞∑
r=0

(−1)r
(
k + r

r

)
s(α−2)r−2(k+1)

{
H(s) + (s+ bsα−1)q0 + q1

}}
. (4.0.36)

We can compute Equation (4.0.36) if we know the initial conditions, b, ω and function h. It can be
computed directly for the case in which Laplace inverse of function H exits. But there are very few
class of functions for which inverse Laplace transform can be computed directly. This is the main
disadvantage in applying Laplace transform to the problems. To overcome this situation we look
for numerical methods used for inversion of Laplace transform. These methods extend the class of
functions that can be solved with Laplace transform method. These methods include Taylor series
method for inversion of Laplace transform, Method of Weeks for inversion of Laplace transform etc.
Case II: 1 < α < 2

After applying Laplace transform on Equation (4.0.31) we get

L
{
d2y

dx2

}
+ bL{cDα

0 y(x)}+ ω2L{y(x)} = L{h(x)} . (4.0.37)

Equation (4.0.37) yields

s2Y (s)− sy(0)− y′(0) + bsαY (s)− bsα−1q0 − sα−2q1 + ω2Y (s) = H(s). (4.0.38)
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Equation (4.0.38) can be rewritten as

Y (s) =
1

s2 + bsα + ω2

{
H(s) + (s+ bsα−1)q0 + (1 + sα−2)q1

}
. (4.0.39)

Simplifications and inverse Laplace transform converts Equation (4.0.38) to

y(x) = L−1

{
∞∑
k=0

(−1)kω2k

∞∑
r=0

(−1)r
(
k + r

r

)
s(α−2)r−2(k+1)

{
H(s) + (s+ bsα−1)q0 + (1 + sα−2)q1

}}
.

Case III: α = 1

When α = 1 Equation (4.0.31) becomes ordinary equation. After applying Laplace transform on it
we get

L
{
d2y

dx2

}
+ bL

{
D1

0y(x)
}

+ ω2L{y(x)} = L{h(x)} . (4.0.40)

Equation (4.0.40) implies

s2Y (s)− sq0 − q1 + bsY (s)− bq0 + ω2Y (s) = H(s). (4.0.41)

Equation (4.0.41) can be rewritten as

Y (s) =
1

s2 + bs+ ω2
{H(s) + (s+ b)q0 + q1} . (4.0.42)

After applying inverse Laplace transform on Equation (4.0.42) we get

y(x) = L−1

{
∞∑
k=0

(−1)kω2k

∞∑
r=0

(−1)r
(
k + r

r

)
s−r−2(k+1) {H(s) + (s+ b)q0 + q1}

}
.
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Chapter 5

A quadrature method for numerical solution

of fractional differential equations

In this chapter, we have developed a numerical method [45] to solve a class of fractional differential
equations. We have combined two quadrature rules by following [4] and [36]. In particular, we have
combined trapezoidal rule and Simpson 1

3
rd rule. After combining these two rules, we have developed

the method and we were able to use this method beyond the limitations of these two rules. We
have implemented our method on different problems to check its feasibility. Further Matlab code is
generated to check it for greater number of intervals. The result is published in [45].
The first section of this chapter deals with quadrature and what is convergence, stability and con-
sistency of a numerical method. Second section deals with development of method, third section is
about convergence analysis of presented method and fourth section deals with numerical results. At
the end conclusion is given.

5.1 Quadrature

The approximation of integral of a function y(x) on some interval I using some numerical technique
is called quadrature method. A quadrature rule is generally defined as∫ b

a

y(x)dx =
m+1∑
k=1

wky(xk) + Error,

where wk represents weights(or coefficients) of a numerical method used and x′ks are nodes at which a
function y is evaluated. The interval I = [a, b] can be finite or infinite interval over which integration
is done. Whenever we use numerical technique to solve our problem we look for its convergence,
stability and consistency.

Definition 5.1.1. A numerical method is said to be convergent if

|y − ym| → 0 as m→∞,
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where y denotes exact solution and ym denotes numerical solution. In other words we can say a
numerical scheme is convergent if the error between exact and numerical solution is approximately
zero.

Definition 5.1.2. A numerical scheme is said to be consistent if truncation error vanishes by in-
creasing number of nodes.

Definition 5.1.3. A numerical method is said to be stable if numerical errors does not grow un-
boundedly.

Theorem 5.1.4. (Convergence theorem) [20] A quadrature method is said to be convergent if and
only if it is consistent and stable.

5.2 Development of method

In this section we produce the method by combination of quadrature rules. We have used Simpson’s
1
3
rd rule when the number of nodes is odd and when the number of nodes is even we use a combination

of trapezoidal rule and Simpson’s 1
3
rdrule. We split our interval to deal with the problem of weakly

singular kernel as done in [24]. Now consider the following initial value problem for class of fractional
differential equations

cDα1
a y(x) + P cDα2

a y(x) +Qy(x) = h(x), x ∈ [a, b], (5.2.1)

y(a) = y0, y′(a) = y0, y(k)(a) = 0, for k = 2, 3, · · · , dα1e (5.2.2)

where α1, α2 ∈ R+, α1 ≥ α2, P,Q ∈ R and h(x) is known functions.
After applying fractional integral Iα1

a on Equation (5.2.1) and using Theorem 1.6.4, we get

y(x)− y(a)− (x− a)y′(a) + PIα1
a

cDα2
a y(x) +QIα1

a y(x) = Iα1
a h(x). (5.2.3)

Using Theorem 1.5.2 in Equation (5.2.3), we get

y(x) + PIα1−α2
a (Iα2

a Dα2
a y(x)) +QIα1

a y(x) = Iα1
a h(x) + y0 + (x− a)y1. (5.2.4)

After applying Theorem 1.6.4 on Equation (5.2.4), we get

y(x) + PIα1−α2
a (y(x)− y0 − (x− a)y1) +QIα1

a y(x) = Iα1
a h(x) + y0 + (x− a)y1. (5.2.5)

Using Lemma 1.5.4, we get

y(x) + PIα1−α2
a y(x) +QIα1

a y(x) = Iα1
a h(x) + u(x;α1, α2), (5.2.6)

where y(x;α1, α2) :=
(

1 + P (x−a)α1−α2

Γ(α1−α2+1)

)
y0 +

(
1 + P (x−a)α1−α2

Γ(α1−α2+2)

)
(x− a)y1.

Equation (5.2.5) can also be written as

y(x) +

∫ x

a

Υ(x, t)y(s)ds =

∫ x

a

Υα1(x, s)h(s)ds+ y(x;α1, α2) := H(x), (5.2.7)
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where Υα1(x, s) := (x−s)α1−1

Γ(α1)
and Υ(x, s) := PΥα1−α2(x, s) + QΥα(x, s). For approximation of the

solution of Equation 5.2.7, we combine trapezoidal and the Simpson’s 1
3
rd rule.

Let xk = a + (k − 1)h, k = 1, 2, · · · ,m where h = b−a
m
, m ∈ N. Thus we have a = x1 < x2 <

x3 < · · · < xm = b a subdivision of [a, b]. At x = a = x1 Equation (5.2.7) gives y1 = u1 and at nodes
x2i+1, i = 1, 2, · · · ,m Equation (5.2.7) takes the form

y(x2i+1) +
i∑

k=1

∫ x2k+1

x2k−1

Υ(x2i+1, s)y(s)ds = H(x2i+1;α1, α2), (5.2.8)

where H(x2i+1;α1, α2) =
∫ x2i+1

a
Υα1(x2i+1, s)h(s)ds+ u(x2i+1;α1, α2).

Or H(x2i+1;α1, α2) =
∑i

k=1

{∫ x2k+1

x2k−1
Υα1(x2i+1, s)h(s)ds+ u(x2i+1;α1, α2)

}
.

After separating k = i from the sum, we get

i∑
k=1

∫ x2k+1

x2k−1

Υα1(x2i+1, s)h(s)ds =
l−1∑
k=1

∫ x2k+1

x2k−1

Υα1(x2i+1, t)h(s)ds

+

∫ x2i+1

x2i−1

Υα1(x2i+1, s)h(s)ds.

(5.2.9)

Note that at s = x, the functions Υ(x, s) is singular when α1 − α2 < 1 or α1 < 1 and Υα1(x, s) is
singular for α1 < 1. So we can not directly apply the Simpson’s rule to approximate last integrals in
(5.2.9). To sort this problem, we add and subtract h(x2i+1) in the integrand∫ x2i+1

x2i−1

Υα1(x2i+1, s)h(s)ds =h(x2i+1)

∫ x2i+1

x2i−1

Υα1(x2i+1, s)ds+

∫ x2i+1

x2i−1

Υα1(x2i+1, t)(h(s)− h(x2i+1))ds

=Uα1(x2i−1, x2i+1)h(x2i+1) +

∫ x2i+1

x2i−1

Υα1(x2i+1, s)(h(s)− h(x2i+1))ds

=Uα1(x2i−1, x2i+1)h(x2i+1) +
h

3
Υα1(x2i+1, x2i−1)h(x2i−1)

+
4h

3
Υα1(x2i+1, x2i)h(x2i)−

h

3
Υα1(x2i+1, x2i−1)h(x2i+1)

− 4h

3
Υα1(x2i+1, x2i)h(x2i+1),

(5.2.10)

where Uα1(x2i−1, x2i+1) :=
∫ x2i+1

x2i−1
Υα1(x2i+1, s)ds = 1

Γ(α1)
{(x2i+1 − x2i−1)α1}.

Similarly,∫ x2i+1

x2i−1

Υ(x2i+1, s)y(s)ds =U(x2i−1, x2i+1)y(x2i+1) +
h

3
Υ(x2i+1, x2i−1)y(x2i−1)

+
4h

3
Υ(x2i+1, x2i)y(x2i)−

h

3
Υ(x2i+1, x2i−1)y(x2i+1)

− 4h

3
Υ(x2i+1, x2i))y(x2i+1),

(5.2.11)
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where U(x2i−1, x2i+1) = PUα1−α2(x2i−1, x2i+1) + QUα1(x2i−1, x2i+1). Thus Equation (5.2.8) acquires
the form

y(x2k+1) +
h

3

i−1∑
k=1

{
Υ(x2i+1, x2k−1)y(x2k−1) + 4Υ(x2i+1, x2k)y(x2k) + Υ(x2i+1, x2k+1)y(x2k+1)

}
+ U(x2i−1, x2i+1)y(x2i+1) +

h

3
Υ(x2i+1, x2i−1)y(x2i−1) +

4h

3
Υ(x2i+1, x2i)y(x2i)

− h

3
Υ(x2i+1, x2i−1)y(x2i+1)− 4h

3
Υ(x2i+1, x2i)y(x2i+1) = H(x2i+1;α1, α2).

(5.2.12)

At x2i, i = 1, 2, · · · ,m Equation (5.2.7) takes the form

y(x2i) +
i−1∑
k=1

∫ x2k+1

x2k−1

Υ(x2i, s)y(s)ds+

∫ x2i

x2i−1

Υα1(x2i, s)y(s)ds = H(x2i;α1, α2), (5.2.13)

where

H(x2i;α1, α2) :=

∫ x2i

a

Υα1(x2i, s)h(s)ds

=

∫ x2i−1

a

Υα1(x2i, s)h(s)ds+

∫ x2i

x2i−1

Υα1(x2i, s)h(s)ds+ u(x2i;α1, α2)

=
i−1∑
k=1

∫ x2i+1

x2i−1

Υα1(x2i, s)h(s)ds+

∫ x2i

x2i−1

Υα1(x2i, t)f(t)dt+ u(x2i;α1, α2).

(5.2.14)

Now, here we use a similar argument as in 5.2.11, and apply trapezoidal rule∫ x2i

x2i−1

Υα1(x2i, s)h(s)ds = h(x2i)

∫ x2i

x2i−1

Υα1(x2i, s)ds+

∫ x2i

x2i−1

Υα1(x2i, s)(h(s)− h(x2i))ds

=
h

2
Υα1(x2i, x2i−1)h(x2i−1) +

(
Uα(x2i−1, x2i)−

h

2
Υα(x2i, x2i−1)

)
h(x2i).

(5.2.15)

Thus, using (5.2.15) in (5.2.14), we have

H(x2i;α1, α2) =
h

3

i−1∑
k=1

{
Υα(x2i, x2i−1)h(x2i−1) + 4Υα1(x2i, x2k)h(x2k) + Υα1(x2i, x2k+1)h(x2k+1)

}
+
h

2
Υα1(x2i, x2i−1)h(x2i−1) +

(
Uα1(x2i−1, x2i)−

h

2
Υα1(x2i, x2i−1)

)
h(x2i) + u(x2i+1;α1, α2).

(5.2.16)

Therefore, Equation (5.2.13) becomes

y(x2i)+
h

3

i−1∑
k=1

{
Υ(x2i, x2k−1)y(x2k−1) + 4Υ(x2i, x2k)y(x2k) + Υ(x2i, x2k+1)y(x2k+1)

}
+
h

2
Υ(x2i, x2i−1)y(x2i−1) +

(
Uα(x2i−1, x2i)−

h

2
Υ(x2i, x2i−1)

)
y(x2i) = H(x2i;α1, α2).

(5.2.17)
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We have transformed the problem (5.2.1) - (5.2.2) into an algebraic system of equations (5.2.12) and
(5.2.17), which can be written as Ny = H, where, for the matrix N is given by

N = h



1 0 0 0 0 · · ·
1
2

Υ
α1
21

1
h

(
U
α1
12 − 1− h

2
Υ
α1
21

)
0 0 0 · · ·

1
3

Υ
α1
31

4
3

Υ
α1
32

1
h

(
U
α1
13 − 1− h

3
(Υ
α1
31 + 4Υ

α1
32 )

)
0 0 · · ·

1
3

Υ
α1
41

4
3

Υ
α1
42

5
6

Υ
α1
43

1
h

(
U
α1
34 − 1− h

2
Υ
α1
43

)
0 · · ·

1
3

Υ
α1
51

4
3

Υ
α1
52

2
3

Υ
α1
53

4
3

Υ
α1
54

1
h

(
U
α1
35 − 1− h

3
(Υ
α1
53 + 4Υ

α1
54 )

)
· · ·

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .


,

where Υα1
kl = Υα1(x(k), x(l)) and Uα1

kl = Uα1(x(k), x(l)). One can compute the numerical results
using matlab by following these steps
For k = 1 To m
x[k] = a+ (k − 1) ∗ h
For k = 1 To m
s[l] = a+ (l − 1) ∗ h
N [1, 1] = 1

N [2, 1] = h
2
∗Υ[2, 1]

i = l − 1
2
(3− (−1)l)

If (l < 2) Then
N [k, l] = h

3
∗Υ[k, 1]

Elseif (l > k) Then
N [k, l] = 0

Elseif (k = l) Then
N [k, l] = U [i, l]− 1− 2∗h

5−(−1)l
∗ (Υ[l, l] + 2 ∗ (1− (−1)l) ∗Υ[l, i+ 1])

Elseif (l = k1) Then
N [k, l] = 9−(−1)l

3(3−(−1)l)
∗ h ∗Υ[k, l]

Else
N [k, l] = h

3
∗ (3 + (−1)l) ∗Υ[k, l]

End If
End For k
End For l

5.3 Convergence

In this section we check the convergence of our proposed method. A numerical method is said to be
converging if for any specified error tolerance it takes a finite number of steps to arrive at a solution
with that error. If this is not the case then a numerical method is divergent.
From equation (5.2.7) we get,

y(x) = H(x)−
∫ x

a

Υ(x, s)y(s)ds. (5.3.1)
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Above equation can be written as,

ym(xk) = H(xk)−
m∑
l=1

ωlΥ(xk, xl)y(xl). (5.3.2)

Theorem 5.3.1. We assume the weight ωl in (5.3.2) satisfy |ωm| ≤ Γ(α1)
(b−a)α1−1 , then

|ym(xk)− y(xk)| ≤
|γm|

1− |ωm|Υkm

m−1∏
l=0

(
1 +

|ωl|Υkl

1− |ωm|Υkm

)
.

where

γm =
m∑
l=1

ωlΥ(xk, xl)y(xl)−
∫ xk

a

Υ(xk, t)y(s)ds.

Proof. From Equation (5.3.1) and Equation (5.3.2) we get

|ym(xk)− y(xk)| ≤
∣∣∣ m∑
l=1

ωlΥ(xk, xl)ym(xl)−
∫ xk

a

Υ(xk, s)y(s)ds
∣∣∣

=
∣∣∣ m∑
l=1

ωlΥ(xk, xl)(ym(xl)− y(xl)) +
m∑
l=1

ωlΥ(xk, xl)y(xl)−
∫ xk

a

Υ(xk, s)y(s)ds
∣∣∣

≤
∣∣∣ m∑
l=1

ωlΥ(xk, xl)(ym(xl)− y(xl))
∣∣∣+ |γm|

≤ |γm|+
m−1∑
l=1

|ωl|Υ(xk, xl)|(ym(xl)− y(xl))|+ |ωm|Υ(xk, xm)|(ym(xm)− y(xm))|,

Let
emk = |ym(xk)− y(xk)| and Υkl = Υ(xk, xl).

Then

emk ≤ |γm|+
m∑
l=1

|ωl|Υkleml + |ωm|Υkmemm.

By Gronwall’s lemma

emk ≤
|γm|

1− |ωm|Υkm

m−1∏
l=0

(
1 +

|ωl|Υkl

1− |ωm|Υkm

)
.

Thus,
lim
m→∞

emk = 0.

5.4 Numerical results

In this section, we apply our method to solve different initial value problems for fractional differential
equations. We make comparison of numerical results with exact solutions and results obtained by
other methods to check efficiency of the developed method.
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Example 5.4.1. Consider the following fractional differential equation

cDα
0 y(x) + y(x) = xα + Γ(1 + α),

with y(0) = 0 if 0 < α ≤ 1 and y(0) = 0, y′(0) = 0 for 1 < α ≤ 2. The exact solution is y(x) = xα.
We check the effect of changing fractional order of differentiation on numerical results in this problem.
The Table 5.1 shows absolute errors for different step sizes and at different values of α. From readings
of Table 5.1 we observe that the method is working efficiently for the given problem. We also see
numerical results are less accurate near α = 0. The reason behind this is the singularity of Υ and Υα

for 0 < α ≤ 1. Otherwise the results are quite accurate even for small values of m. In Figure 5.1 the
numerical results and exact solutions are shown for m = 50 and at different values of α.

m α = 0.25 α = 0.50 α = 0.75 α = 1 α = 1.25 α = 1.75 α = 2

10 0.0139 0.0045 9.3711e-004 2.2204e-016 6.9780e-004 0.0013 0.0012
50 0.0071 0.0010 1.1625e-004 4.4409e-016 3.0082e-005 1.8347e-005 1.0300e-005
100 0.0053 5.4287e-004 6.2222e-005 4.4409e-016 9.7015e-006 3.2171e-006 1.2992e-006
150 0.0044 3.6826e-004 4.4260e-005 4.4409e-016 5.2622e-006 1.2144e-006 3.8609e-007
200 0.0039 2.7911e-004 3.5015e-005 8.8818e-016 3.4710e-006 6.2270e-007 1.6312e-007
500 0.0026 1.1452e-004 1.7025e-005 1.1102e-015 9.8930e-007 8.4925e-008 1.0467e-008

Table 5.1: Absolute errors at different values of α.

Figure 5.1: Numerical results m = 50 at different values of α.

Example 5.4.2. Now consider the following fractional differential equation

cDα
0 y(x) + x

1
3y(x) = x

4
3 +

3x
2
3

2Γ(2
3
)
,

with α = 1/3, y(0) = 0 and exact solution y(x) = x. In [10] the problem is solved with the help
of Haar wavelet method. We have compared the absolute errors produced by the developed method
with absolute errors of Haar wavelet method to check the feasibility of our method. The readings of
Table 5.2 show that proposed method converges before Haar wavelet method.
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m Quadrature Method Haar Wavelets Method in [10]

8 0.0039 0.0095
16 0.0022 0.0051
32 0.0012 0.0027
64 6.2734e-004 0.0014

Table 5.2: Absolute errors at different values of m obtained by presented method and Haar wavelet
method [10].

Example 5.4.3. Consider the following initial value problem for fractional differential equation

cDα
0 y = λy,

diy(x)

dxi
= y

(i)
0 , (5.4.1)

with i = 0, ..., dαe and y
(i)
0 = 0 for i > 0. The exact solution of Equation (5.4.1) is given by

y(x) = y0Eα,1(λxα) where Eα,β(z) is the Mittag-Leffler function. The Figure 5.2a shows the numerical
solutions are quiet similar to exact solutions. In Figure 5.2b maximum absolute error is depicted,
where m = 100 and 1 ≤ α ≤ 2. In Table 5.3 maximum absolute error for 0 ≤ x ≤ 1 is shown
at different values of m and α. We see from the readings of table that error decreases when m

is increased. When we take small values of m error decreases outstandingly but for large m error
decreases at very slow rate. In Figure 5.2b, we observe that for h = 0.05 the maximum absolute error
for 1 ≤ α ≤ 2 is bounded by 3× 10−5. The level of accuracy for h = 0.001 is almost same as in [49].
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(a) Comparison of results for m = 50 and 1 ≤ α ≤ 2.
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(b) Absolute error for m = 100 , 1 ≤ α ≤ 2, λ = −1.

Figure 5.2: Comparison of results and maximum absolute error for 1 ≤ α ≤ 2.
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m α = 0.5 α = 1 α = 1.5 α = 2 α = 2.5 α = 3

20 0.0025 9.9123e-006 2.6909e-005 1.4839e-005 3.1779e-006 3.0231e-007
50 9.9938e-004 6.5350e-007 2.3131e-006 9.7401e-007 1.5640e-007 8.4113e-009
100 4.9069e-004 8.2505e-008 1.1330e-006 1.2266e-007 1.6996e-008 5.4001e-010
200 2.4097e-004 1.0365e-008 4.5580e-007 1.5387e-008 2.3249e-009 3.4201e-011
500 1.0579e-004 6.6534e-010 1.2281e-007 9.8678e-010 2.1974e-010 8.8229e-013

Table 5.3: Maximum absolute errors for 0 ≤ x ≤ 1 and at different values of m and α.

Example 5.4.4. We consider the following initial value problem

cDα
0 y(x) + ωα−β cDβ

0 y(x) = 0, y(0) = y0, y
′(0) = y1, (5.4.2)

where 1 < α ≤ 2, 0 ≤ β ≤ 1. When 1 < α ≤ 2, β = 0 and y′(0) = 0 then the Equation (5.4.2) turns
into fractional oscillator equation.

In [3], [8], [18] and [46] fractional oscillator is discussed in detail. Figure 5.3a depicts the numerical
and exact solutions at α = 2 for different values of β. From Figure 5.3b we see that when β approaches
to 0 or 1, the solutions of fractional differential equations are same as solutions of classical differential
equation. In Figure 5.4a numerical solutions for β = 0.1 at different values of α. In Figure 5.4b the
maximum absolute error between exact and numerical results is shown for the classical case. When
m = 100 the upper bound of error is 3.5 × 10−4 on interval [0, 1.5]. The error decreases if m is
increased.
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(a) Comparison of results for α = 2, β = 0, β = 0.5 and
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(b) 3D Comparison of results for α = 2, β = 0, β = 0.5

and β = 1.

Figure 5.3: Comparison of exact and numerical solution for different values of α and β.
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(a) Comparison of results form = 100 at 1 ≤ α ≤ 2, β = 0.1

and m = 50.
(b) Maximum absolute error.

Figure 5.4: Comparison of results for different values of α and β and Maximum absolute error.

Example 5.4.5. Now we consider general Bagley-Torvik equation

cD2
0y(x) + cDβ

0 y(x) + y(x) = h(x), y(0) = y0, y′(0) = y1. (5.4.3)

If we take β = 3/2 and

h(x) =

8, 0 ≤ x ≤ 1,

0, x > 1,

the equation in (5.4.3) turns into Bagley-Torvik equation. Theorem 2.1.3 guarantees the existence
of unique solution for initial value problem (5.4.3). Many authors have discussed this equation by
different approximate numerical methods. In [9], [15], [38], [44] and [50] analytic and numerical
approach for Bagley-Torvik equation is discussed in detail.
For β = 2, y0 = 0, y1 = 1, the exact solution of problem (5.4.3) is

y(x) = 8

 1− cos
(

x√
2

)
, 0 ≤ x ≤ 1;

cos
(

x√
2

)
− cos

(
1√
2

)
cos
(

x√
2

)
+ sin

(
1√
2

)
sin
(

x√
2

)
, x > 1.

Also for β = 1, y0 = 0, y1 = 1, the exact solution of the problem (5.4.3) is given by y(x) = 8
3
e−

x
2 q(x),

where q(x) is given by

q(x) =


3e

x
2 − 3 cos

(√
3x
2

)
−
√

3 sin
(√

3x
2

)
, 0 ≤ x ≤ 1;

−3 cos
(√

3x
2

)
+ 3
√
e cos

(√
3

2

)
cos
(√

3x
2

)
−
√

3e sin
(√

3
2

)
cos
(√

3x
2

)
−
√

3 sin
(√

3x
2

)
+
√

3e cos
(√

3
2

)
sin
(√

3x
2

)
+ 3
√
e sin

(√
3

2

)
sin
(√

3x
2

)
, x > 1.

We have compared the exact and numerical solution for m = 100 and β = 1, 2 in Figure 5.5a. The
exact solution of the problem (5.4.3) cannot be obtained when β is a fraction. Therefore, for β = 3/2,
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we have considered only the numerical solution in Figure 5.5a. From figure we see that the presented
method is working effectively. In Figure 5.5b the numerical solutions for 1 ≤ β ≤ 2 are considered for
x ∈ [0, 20]. We see that the proposed method efficiently gives the solutions of the problem (5.4.3) for
any β ∈ (1, 2). In Table 5.4 we have compared the results of the presented method, for β = 3/2 and
m = 200, with the methods discussed in [6, 38]. The readings of Table 5.4 show that the numerical
results and exact solution coincide with each other. The Figure 5.6a and Figure 5.6b show the
maximum absolute error for β = 2 and β = 1 respectively. The maximum absolute error increases
with increase in interval for x and keeping m fixed. The error can be minimized by increasing m.
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Figure 5.5: Exact and numerical solutions for m = 100,α = 2 and 1 ≤ β ≤ 2.

0 5 10 15 20
0

1

2

3

x 10
−4

x

E
rr

o
r

(a) Error estimate for m = 200 and α = β = 2.
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(b) Error estimate for m = 200, α = 2 and β = 1.

Figure 5.6: Error estimate for m = 200 at different values of α, β.
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x yFDM yADM yV IM Presented Method Exact

0.0 0.000000 0.000000 0.000000 0.000000 0.000000
0.1 0.036111 0.036478 0.036478 0.033500 0.033507
0.2 0.139904 0.140640 0.140640 0.125211 0.125221
0.3 0.306402 0.307485 0.307485 0.267598 0.267609
0.4 0.531856 0.533284 0.533284 0.455426 0.455435
0.5 0.812989 0.814757 0.814757 0.684330 0.684335
0.6 1.146733 1.148840 1.148840 0.950396 0.950393
0.7 1.530132 1.532571 1.532571 1.249973 1.249959
0.8 1.960252 1.963033 1.963033 1.579584 1.579557
0.9 2.434223 2.437331 2.437331 1.935875 1.935832
1.0 2.949144 2.952567 2.952567 2.311015 2.315526

Table 5.4: Comparison of present method with FDM, ADM and VIM.

5.5 Conclusion

We have developed an easy and feasible numerical method to deal with a specific class of fractional
differential equations. The method works efficiently even when the kernel is singular. The existence
and uniqueness results for our problem are discussed in section 1 of chapter 2. We have converted our
problem into an algebraic system and developed an algorithm to solve the system. We have checked
the capability of our method by applying it on number of problems. We have also checked efficiency of
our proposed method by comparing the results produced by our method with the results of different
numerical schemes already developed by other authors. The comparison of proposed method with
other methods is quite satisfactory for the given problems. We are planning to extend our method
in future by using other quadrature rules and get even more accurate results.
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Further Workable Content

We have dealt with finding numerical technique by combining quadrature rules. The numerical
method is simple to use as it is based on combination of trapezoidal and Simpson’s 1

3
rd rule. These

rules are yet easy to apply but both these methods are less accurate then other methods used for nu-
merical integration. For better results one can use methods like Gaussian quadrature, Newton-Cotes
method, Gregory’s quadrature rule etc. We have not checked this method for nonlinear fractional
differential equations and boundary value problems. For these type of problems it need some more
calculations. In future we will try to extend this method to such problems.

We are also working on finding numerical technique for fractional differential equations using Cheby-
shev polynomial. We have developed a method. But yet the method is not applied to any problems
for checking it’s efficiency. Soon we will get through this problem and come to a nice conclusion.
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