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0.1 Abstract

In this dissertation, we study a numerical method that is based on Wiener Chaos expansion

(WCE) and the Lax-Wendro� method for solving Burger's equation. Modi�ed form of Lax-

Wendro� scheme is obtained when Lax-Wendro� scheme is expanded using Wiener Chaos

expansion, this introduces an in�nite system of deterministic equations with respect to non

random Fourier-Hermite coe�cients. One of the important property of the modi�ed form

of Lax-Wendro� scheme is that all the statistical moments of the solution can be computed

using simple formulas obtained by this scheme.

The stability of Wiener Chaos expansion approach to computing statistical moments have

been numerically tested as well.
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0.2 Introduction

This dissertation is mainly concerned with the solution of a Burger's di�erential equation using

non-deterministic initial conditions whereas for deterministic continuous initial conditions,

the solution is unique which is also well-behaved. Non-deterministic initial conditions gives

�uctuation and discontinuity in the results. In this dissertation, behavior in the �rst two

moments is examined using Burger's di�erential equation as a model.

Burger's di�erential equation was initially used to study turbulence which exhibits chaotic

behavior in the �uid.

To study the random behavior we used the modi�ed form of Lax-Wendro� numerical

scheme which obtained from Wiener chaos expansion (WCE). In this dissertation, WCE is

expanded with respect to the Gaussian random variable. v(x, t, ξ) is the WCE of a solution

to the Burger's equation and assumed as

v(x, t, ξ) =

∞∑
n=0

1√
n!
vn(x, t)ξn(ξ). (1)

Where ξn(x) is the nth-order Wick polynomial [5]. As Wick polynomials forms complete

orthogonal basis in the Wiener space and the series in the right-hand side of Eq. (1) converges

in L2(<, ξ), where the Gaussian measure is de�ned as

µ(dx) =
1√
2π
e−x

2/2dx[5]. (2)

Like every Fourier expansion, WCE also separates variables. More precisely WCE separates

non-random variables (x, t) from the random variables ξ. Then non-random Fourier-Hermite

coe�cients satisfy an in�nite system of deterministic equations with nonlinearity like to the

one in Burger's equation. This system for the Fourier-Hermite coe�cients is commonly

indicated as propagator because it controls the propagation of randomness by the deterministic

dynamics of the equation. An important property of the propagator is that all statistical

moments of the solution to the Burger's equation can be calculated by simple formulae that

include only the solution of the propagator [5]. Moreover since the propagator is deterministic,

so it only needs to be solved once.

Chapter 1 consists of the theoretical background of not only the Burger's equation but

also the properties of Hermite polynomials. They are used to expand the random conditions

as a series of these polynomials.

Chapter 2 is devoted to the development of Lax-Wendro� scheme for the numerical solution

of the problem. Also stability of Lax-Wendro� is discussed in this chapter. This is the most

useful part of the dissertation. This scheme is then used to solve the di�erential equation in

the presence of random discontinuous initial conditions, these content is in chapter 3.

Conclusion of scheme is given in chapter 4.
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Chapter 1

Theoretical Background

This chapter deals with some basic de�nitions, equations and theorems which are used in the

remaining chapters.

1.1 Burger's Equation

Burger's equation is a fundamental partial di�erential equation in �uid mechanics. Burger's

equation was initially proposed as a turbulence model until further studies, including the work

of Hopf and Cole, showed that this equation did not have the adequate properties [1].

For a given velocity v and viscosity coe�cient ν with x and t as spatial and temporal

variables respectively, the general form of Viscous Burger's equation in one dimension is [1]

∂v

∂t
+ v

∂v

∂x
= ν

∂2v

∂x2
. (1.1)

Nonlinear term in Eq. (1.1) still represents a great challenge for analytical as well as for

numerical solving. By putting ν = 0 in Eq. (1.1) gives Inviscous Burger's equation. Conser-

vation form is de�ned as
∂v

∂t
+
∂f

∂x
= ν

∂2v

∂x2
, (1.2)

where f = v2/2 [1].

The second and third term in Eq. (1.1) is called convective and di�usive/viscous respectively.

Burger's equation is parabolic when viscous term is included. In the absence of viscous

term from the Burger's equation, the remaining equation becomes hyperbolic whose solution is

4



known to show shock formulation. Also, by dropping the viscous term from Burger's equation,

the nonlinearity allows discontinuous solutions.

1.2 Hermite Polynomials

Probabilistic Hermite polynomials are orthogonal polynomials over the interval (−∞,∞)

with respect to the weight function e−x
2/2 de�ned as [2]

Hn(x) = (−1)nex
2/2 d

n

dxn
e−x

2/2. (1.3)

1.3 Properties of Hermite Polynomials

Following are the few properties of Hermite polynomials

1.3.1 Generating Function

Generating function of Hermite polynomials is de�ned as [2]

ψ(x, z) = e2zx−z2 =
∞∑
n=0

Hn(x)

n!
zn. (1.4)

1.3.2 Even/Odd Function

The Hermite polynomials satisfy the property

Hn(−x) = (−1)nHn(x). (1.5)

In Eq. (1.5), the Hermite polynomial Hn(x) is an even function when n is even and is odd

when n is odd.

1.3.3 Relations Satis�ed by Hermite Polynomials

H ′n(x) = nHn−1(x) = xHn(x)−Hn+1(x), n = 1, 2, 3, . . . (1.6)

H ′′n(x)− xH ′n(x) + nHn(x) = 0; n = 0, 1, 2, . . . (1.7)
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Proof. By expanding ψ(x, z) as a Taylor series in z gives

ψ(x, z) =
∞∑
n=0

∂nψ(x, z)

∂zn
|z=0

zn

n!
. (1.8)

On the other hand Eq. (1.4) can be written as

ψ(x, z) = e−z
2/2+xz+x2/2−x2/2, (1.9)

= ex
2/2e

−1
2

(z−x)2 . (1.10)

Substituting Eq. (1.10) in Eq. (1.8) gives

ψ(x, z) = ex
2/2

∞∑
n=0

∂ne
−1
2

(z−x)2

∂zn
|z=0

zn

n!
. (1.11)

But
∂ψ

∂z
(z − x) = −∂ψ

∂x
(z − x). (1.12)

Then Eq. (1.11) becomes

ψ(x, z) = ex
2/2

∞∑
n=0

(−1)n
∂n

∂xn
e

−1
2

(z−x)2 |z=0
zn

n!
, (1.13)

or

ψ(x, z) =

∞∑
n=0

Hn(x)
zn

n!
. (1.14)

Hence, the coe�cients of Taylor series of ψ(x, z) are exactly the Hermite polynomials.

By comparing Eq. (1.8) and Eq. (1.14), we have

Hn(x) =
∂nψ(x, z)

∂zn
|z=0. (1.15)
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To prove the relation given in Eq. (1.10) di�erentiating Eq. (1.3) w.r.t ′x′

H ′n(x) = (−1)nxex
2/2 d

n

dxn
e−x

2/2 + (−1)nex
2/2 d

n+1

dxn+1
e−x

2/2, (1.16)

= xHn(x)− (−1)n+1ex
2/2 d

n+1

dxn+1
e−x

2/2. (1.17)

Again using Eq. (1.3) in Eq. (1.17) yields

H ′n(x) = xHn(x)−Hn+1(x). (1.18)

By di�erentiating Eq. (1.14) with respect to ′′x′′ gives

∂

∂x
ψ(x, z) =

∂

∂x

[ ∞∑
n=0

((−1)nex
2/2 d

n

dxn
e−x

2/2)
zn

n!

]
, (1.19)

=

∞∑
n=0

(−1)n
zn

n!

[
xex

2/2 d
n

dxn
e−x

2/2 − (−1)ex
2/2 d

n+1

dxn+1
e−x

2/2

]
, (1.20)

=
∞∑
n=0

zn

n!

[
x(−1)nex

2/2 d
n

dxn
e−x

2/2 − (−1)n+1ex
2/2 d

n+1

dxn+1
e−x

2/2

]
. (1.21)

Using Eq. (1.3) in Eq. (1.21), we get

∂

∂x
ψ(x, z) =

∞∑
n=0

zn

n!

[
xHn(x)−Hn+1(x)

]
. (1.22)

Di�erentiating Eq. (1.4) w.r.t ′′x′′ gives

∂

∂x
ψ(x, z) = ze−z

2/2+xz, (1.23)

∂

∂x
ψ(x, z) = zψ(x, z). (1.24)

Comparing Eq. (1.22) and Eq. (1.24), we �nd

zψ(x, z) =

∞∑
n=0

zn

n!

[
xHn(x)−Hn+1(x)

]
. (1.25)
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Substituting Eq. (1.11) and Eq. (1.14) in Eq. (1.25)

∞∑
n=0

Hn(x)
zn+1

n!
=

∞∑
n=0

zn

n!
H ′n(x). (1.26)

By shifting the summation index in Eq. (1.26), we obtain

∞∑
n=1

nHn−1(x)
zn

n!
=

∞∑
n=1

zn

n!
H ′n(x). (1.27)

On comparing the coe�cients of zn/n! in Eq. (1.27) gives

H ′n(x) = nHn−1(x), n = 1, 2, . . . (1.28)

From Eq. (1.18) and Eq. (1.28), we arrive at [3]

H ′n(x) = xHn(x)−Hn+1(x) = nHn−1(x). n = 1, 2, 3, . . . (1.29)

Hermite polynomials {Hn(x)}, satis�es a second order recursion relation or a �rst order

di�erence di�erential equation.

Di�erentiating Eq. (1.18), we have

H ′n+1(x)−Hn(x)− xH ′n(x) +H ′′n(x) = 0. (1.30)

Using Eq. (1.28) in Eq. (1.30) gives

(n+ 1)Hn(x)−Hn(x)− xH ′n(x) +H ′′n(x) = 0, (1.31)

or

H ′′n(x)− xH ′n(x) + nHn(x) = 0, n = 0, 1, 2, . . . (1.32)

This is a second order linear di�erential equation satis�ed by the Hermite polynomials {Hn(x)},
called Hermite's di�erential equation.
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1.3.4 Orthogonality

The family of Hermite polynomial's {Hn(x)} for n = 0, 1, 2, . . . is orthogonal with respect to

the weight function e−x
2/2 [4]

∫ ∞
−∞

Hm(x)Hn(x)e
−x2
2 dx =


0 if n 6= m,

n!
√

(2π) if n = m.

(1.33)

Proof. Let un be a particular solution de�ned as

un = Hn(x)e
−x2
4 (1.34)

be satisfying the second order linear di�erential equation

u′′n + (n+
1

2
− x2

4
)un = 0. (1.35)

Let

um = Hm(x)e
−x2
4 (1.36)

be a particular solution satisfying the second order linear di�erential equation

u′′m + (m+
1

2
− x2

4
)um = 0. (1.37)

Multiplying Eq. (1.35) by um and Eq. (1.37) by un gives

u′′num + nunum +
1

2
unum −

x2

4
unum = 0, (1.38)

u′′mun +munum +
1

2
unum −

x2

4
unum = 0. (1.39)

Subtracting Eq. (1.39) from Eq. (1.38), we get

u′′num − u′′mun + (n−m)unum = 0, (1.40)

or
d

dx
(u′num − u′mun) + (n−m)unum = 0. (1.41)
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Integrating Eq. (1.41) over (−∞,∞), we get

(n−m)

∫ ∞
−∞

unumdx = 0. (1.42)

Since un, um, → 0 as x → ± ∞. So by substituting the values of un, um from Eq. (1.34) and

Eq. (1.36) respectively in Eq. (1.42) gives

(n−m)

∫ ∞
−∞

Hm(x)Hn(x)e−
x2

2 dx = 0. (1.43)

Thus if n 6= m then ∫ ∞
−∞

Hm(x)Hn(x)e−
x2

2 dx = 0. (1.44)

If n = m then using Eq. (1.28) in Eq. (1.30) gives

Hn+1(x)− xHn(x) + nHn−1(x) = 0. n = 1, 2, . . . (1.45)

Replacing n by (n− 1) in Eq. (1.45), we have

Hn(x)− xHn−1(x) + (n− 1)Hn−2(x) = 0, n = 2, 3, . . . (1.46)

Multiplying Eq. (1.45) by Hn−1(x) and Eq. (1.46) by Hn(x) respectively, we obtain

Hn+1(x)Hn−1(x)− xHn(x)Hn−1(x) + nH2
n−1(x) = 0, n = 1, 2, . . . (1.47)

H2
n(x)− xHn−1(x)Hn(x) + (n− 1)Hn−2(x)Hn(x) = 0. n = 2, 3, . . . (1.48)

Subtracting Eq. (1.47) from Eq. (1.48), we get

H2
n(x) + (n− 1)Hn−2(x)Hn(x)− nH2

n−1(x)−Hn+1(x)Hn−1(x) = 0. n = 2, 3, . . . (1.49)

Multiplying Eq. (1.49) by e−x
2/2 and integrating over (−∞,∞)

∫ ∞
−∞

H2
n(x)e

−x2
2 dx+ (n− 1)

∫ ∞
−∞

Hn−2(x)Hn(x)e
−x2
2 dx− n

∫ ∞
−∞

H2
n−1(x)e

−x2
2 dx−∫ ∞

−∞
Hn+1(x)Hn−1(x)e

−x2
2 dx = 0, n = 2, 3, . . . (1.50)
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Using Eq. (1.44) in Eq. (1.50), we have

∫ ∞
−∞

H2
n(x)e

−x2
2 dx = n

∫ ∞
−∞

H2
n−1(x)e

−x2
2 dx, n = 2, 3, . . . (1.51)

= n(n− 1)

∫ ∞
−∞

H2
n−2(x)e

−x2
2 dx, (1.52)

= n(n− 1)(n− 2)

∫ ∞
−∞

H2
n−3(x)e

−x2
2 dx (1.53)

and so on.

In general

∫ ∞
−∞

H2
n(x)e

−x2
2 dx = n!

∫ ∞
−∞

H2
0 (x)e

−x2
2 dx, n = 0, 1, 2, . . . (1.54)

= n!

∫ ∞
−∞

e−x
2/2dx, (1.55)

= n!
√

2π. n = 2, 3, . . . (1.56)

Direct calculation shows that this result is also valid for n = 0 and 1.

Hence if n = m then ∫ ∞
−∞

H2
n(x)e

−x2
2 dx = n!

√
2π, (1.57)

Eq. (1.44) and Eq. (1.57) have the required results. The inner product of two real valued

function F (x) and G(x) is de�ned as [5]

< F,G >w=

∫ ∞
−∞

F (x)G(x)w(x)dx, (1.58)

where the weight function w(x) is the Gaussian probability density function

w(x) =
1√
2π
e

−x2
2 . (1.59)

Let

‖G(x)‖w =
√
< G,G >w (1.60)

be the induced norm from the inner product [5] . The Gram Schmidt process with respect to

this norm applied to the sequences of functions de�ned by 1, x, x2, . . . gives the orthonormal
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sequences ξn called the Wick polynomial of order n de�ned as

ξn(x) =
1√
n!
Hn(x) (1.61)

with Hermite polynomials de�ned as in Eq. (1.3) [5].

Theorem 1.3.1. Wick polynomial {ξn} de�ned by Eq. (1.61) is a complete set of orthonormal

basis in L2(−∞,∞) with respect to the weight function w(x) [5]:

where

w(x) =
1√
2π
e

−x2
2 . (1.62)

Theorem 1.3.2. Let f(x) be de�ned for all �nite values of x and integrable in any �nite

interval;

Let

F (x) = F (0) +

∫ x

0
f(t)dt. −∞ < x <∞. (1.63)

If

F (x) = O(ekx
2/2), 0 < k < 1, and |x| −→ ∞ (1.64)

and

‖ − xF (x) + f(x)‖2w (1.65)

is convergent, then
N∑
n=0

< F, ξn >w ξn(x)w(x) (1.66)

converges uniformly to the product of F (x) and ω(x) in (−∞,∞) [5].

Lemma 1. Since the set of Hermite polynomials of order n ({Hn}) is a basis, thus the product

of Hermite polynomials of di�erent order Hα(x) and Hβ(x) can be represented in terms of

Hn, where α and β are any nonnegative integers, i.e.,

Hα(x)Hβ(x) =

αΛβ∑
γ=0

γ!

(
α

γ

)(
β

γ

)
Hα+β−2γ(x), (1.67)

where αΛβ = min(α, β).

Proof. ψ(x, z) is the generating function of Hn(x) de�ned in Eq. (1.4) can be written as

ψ(x, z)ψ(x,w) =

∞∑
α=0

∞∑
β=0

(
Hα(x)

α!
zα
)(

Hβ(x)

β!
wβ
)
, (1.68)
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or

ψ(x, z)ψ(x,w) =
∞∑
α=0

∞∑
β=0

Hα(x)

α!

Hβ(x)

β!
zαwβ, (1.69)

ψ(x, z)ψ(x,w) = e(− z
2

2
+xz)e(−w

2

2
+xw), (1.70)

ψ(x, z)ψ(x,w) = e(x
2

2
)e(zw)e−

1
2

(z+w−x)2 . (1.71)

or

ψ(x, z)ψ(x,w) =

∞∑
p=0

(zw)p

p!
ex

2/2e−(z+w−x)2/2. (1.72)

Using Eq. (1.4) in Eq. (1.72), we obtain

ψ(x, z)ψ(x,w) =
∞∑
p=0

(zw)p

p!

∞∑
k=0

Hk(x)

k!
(z + w)k. (1.73)

For some values z and w and a nonnegative number k, de�nition of binomial theorem is

(z + w)k =
∑

0≤m≤k

(
k

m

)
zmwk−m. (1.74)

Using Eq. (1.74) in Eq. (1.73), we have

ψ(x, z)ψ(x,w) =

∞∑
p=0

(zw)p

p!

∞∑
k=0

Hk(x)

k!

∑
0≤m≤k

(
k

m

)
zmwk−m, (1.75)

=

∞∑
p=0

∞∑
k=0

Hk(x)

p!

∑
0≤m≤k

1

k!

(
k

m

)
z(m+p)w(k−m+p). (1.76)

Let k = m+ v, then m ≤ k is equivalent to v ≥ 0.

Thus we can rewrite the above equation as

ψ(x, z)ψ(x,w) =
∞∑
p=0

∞∑
k=0

Hk(x)

p!

∞∑
v=0

1

k!

(
k

m

)
z(m+p)w(k−m+p), (1.77)

=

∞∑
p=0

∞∑
m=0

∞∑
v=0

Hm+v(x)

p!m!v!
zm+pwv+p. (1.78)

Let α = m+ p and β = v + p satisfying m = α− p ≥ 0 and v = β − p ≥ 0 or p ≤ α ∧ β,

13



Then Eq. (1.78) becomes

ψ(x, z)ψ(x,w) =

∞∑
α=0

∞∑
β=0

 ∑
m+p=α v+p=β

Hm+v(x)

p!m!v!

zαwβ, (1.79)

ψ(x, z)ψ(x,w) =
∞∑
α=0

∞∑
β=0

∑
p≤α∧β

Hα+β−2p(x)

p!(α− p)!(β − p)!
zαwβ. (1.80)

Comparing Eq. (1.69) and Eq. (1.80)

Hα(x)Hβ(x) =
∑

p≤α∧β

α!β!

p!(α− p)!(β − p)!
Hα+β−2p(x). (1.81)

Taking p = γ

Hα(x)Hβ(x) =
∑

γ≤α∧β

α!

γ!(α− γ)!

β!γ!

γ!(β − γ)!
Hα+β−2p(x), (1.82)

or

Hα(x)Hβ(x) =
∑

γ≤α∧β

(
α

γ

)(
β

γ

)
γ!Hα+β−2γ(x). (1.83)

Lemma 2.

( ∞∑
α=0

uα
α!
Hα(x)

)( ∞∑
β=0

vβ
β!
Hβ(x)

)
=

∞∑
n=0

1

n!

∞∑
m=0

1

m!

n∑
k=0

(
n

k

)
um+kvm+n−kHn(x). (1.84)

Proof. For constants uα and vβ (α = β = 0, 1, 2, . . .), Lemma 1 can be written as

( ∞∑
α=0

uα
α!
Hα(x)

) ∞∑
β=0

vβ
β!
Hβ(x)

 =

∞∑
α=0

uα
α!

∞∑
β=0

vβ
β!

α∧β∑
γ=0

(
α

γ

)(
β

γ

)
γ!Hα+β−2γ(x). (1.85)
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Letting (α, β, γ) = (m+ k,m+ n− k,m) in Eq. (1.85) gives

( ∞∑
α=0

uα
α!
Hα(x)

) ∞∑
β=0

vβ
β!
Hβ(x)

 (1.86)

=
∞∑
n=0

∞∑
m=0

n∑
k=0

um+k

(m+ k)!

vm+n−k
(m+ n− k)!

m!

(
m+ k

m

)(
m+ n− k

m

)
Hn(x),

(1.87)

=
∞∑
n=0

∞∑
m=0

n∑
k=0

um+kvm+n−k
k!m!(n− k)!

Hn(x), (1.88)

=
∞∑
n=0

1

n!

∞∑
m=0

1

m!

n∑
k=0

(
n

k

)
um+kvm+n−kHn(x), (1.89)

which is the required result [3].
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Chapter 2

Derivation of Numerical Algorithm

2.1 Lax-Wendro� scheme (LW) for Deterministic Conservation

Law

We �rst derive Lax-Wendro� scheme (LW) for deterministic conservation law. The conserva-

tive form of Burger's equation in one dimension can be expressed as

∂v

∂t
+

∂

∂x
f(v) = 0, (2.1)

as f(v) = v2/2.

Di�erentiating Eq. (2.1) w.r.t ′′t′′ gives

∂

∂t

(
∂v

∂t

)
=

∂

∂t

(
− ∂f

∂x

)
, (2.2)

=
∂

∂x

(
− ∂f

∂v

∂v

∂t

)
. (2.3)

Using Eq. (2.1) in Eq. (2.3), we get

∂2v

∂t2
=

∂

∂x

(
A
∂f

∂x

)
, (2.4)

where

A =
∂f

∂v
. (2.5)
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Consider Taylor series expansion in time variable for v(x, t+ ∆t) is de�ned by

v(x, t+ ∆t) = v(x, t) +
∂v

∂t
∆t+

∂2v

∂t2
(∆t)2

2!
+O(∆t)3. (2.6)

Replacing ∂v/∂t and ∂2v/∂t2 in Eq. (2.6) by Eq. (2.1) and Eq. (2.4), we have

v(x, t+ ∆t) = v(x, t)− ∂f

∂x
∆t+

∂

∂x

(
A
∂f

∂x

)
(∆t)2

2!
+O(∆t)3, (2.7)

v(x, t+ ∆t)− v(x, t) = −∂f
∂x

∆t+
∂

∂x

(
A
∂f

∂x

)
(∆t)2

2!
+O(∆t)3. (2.8)

Eq. (2.8) can be rewritten as

v(x, t+ ∆t)− v(x, t)

∆t
= −∂f

∂x
+

∂

∂x
(A
∂f

∂x
)
(∆t)

2!
+O(∆t)2. (2.9)

By using central di�erence formula for spatial variable x in Eq. (2.9) gives

(
∂f

∂x

)
j,i

=
fj+1,i − fj−1,i

2∆x
, (2.10)

(
∂

∂x

(
A
∂f

∂x

))
j,i

=

(
A∂f
∂x

)
j+1/2,i

−
(
A∂f
∂x

)
j−1/2,i

∆x
. (2.11)

Using forward and backward di�erence formula's for spatial variable x in Eq. (2.11), we have

(
∂

∂x

(
A
∂f

∂x

))
j,i

=

Aj+1/2,i

(
fj+1,i−fj,i

∆x

)
−Aj−1/2,i

(
fj,i−fj−1,i

∆x

)
∆x

. (2.12)

By averaging the function A de�ned in Eq. (2.5)

Aj+1/2,i =
Aj+1 +Aj

2
, (2.13)

Aj−1/2,i =
Aj +Aj−1

2
. (2.14)
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Thus Eq. (2.12) becomes

∂

∂x

(
A
∂f

∂x

)
=

1
2∆x

((
Aj+1,i +Aj,i

)(
fj+1,i − fj,i

)
−
(
Aj−1,i +Aj,i

)(
fj,i − fj−1,i

))
∆x

. (2.15)

Putting Eq. (2.10) and Eq. (2.15) in Eq. (2.9) and after simpli�cation, we get

vj,i+1 = vj,i−
1

2

(
∆t

∆x

)(
fj+1,i−fj−1,i

)
+

1

4

(
∆t

∆x

)2[(
Aj+1,i+Aj,i

)(
fj+1,i−fj,i

)
−
(
Aj−1,i+Aj,i

)(
fj,i−fj−1,i

)]
,

(2.16)

where vj,i = v(xj , ti).

Using

fj+1,i − fj,i = ∆+xFj,i, (2.17)

fj,i − fj−1,i = ∆−xFj,i, (2.18)

Aj+1,i +Aj,i
2

= Aj+1/2,i, (2.19)

Aj−1,i +Aj,i
2

= Aj−1/2,i, (2.20)

then Eq. (2.16) becomes [6]

vj,i+1 = vj,i−
1

2

(
∆t

∆x

)(
∆+xFj,i+ ∆−xFj,i

)
+

1

4

(
∆t

∆x

)2[
Aj+1/2,i∆+xFj,i−Aj−1/2,i∆−xFj,i

]
.

(2.21)

2.2 Modi�ed Form of the Lax-Wendro� Scheme Using Wiener

Chaos Expansion

Now we derive modi�ed form of the Lax-Wendro� scheme using Wiener Chaos Expansion.

Let us consider Eq. (2.1) for v(x, t, ξ) with random initial condition v(x, 0, ξ) = g(x, ξ). g(x, ξ)

is a function of x and ξ. ξ is standard Gaussian random variable i.e., it has zero mean and

unit variance [5].

The Wiener Chaos expansion is the Fourier expansion with respect to the randomness [7].

In this dissertation, WCE represents the solution v = v(x, t, ξ) of Eq. (2.1) as a series with
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respect to the Wick polynomials ξn(ξ)

v(x, t, ξ) =
∞∑
n=0

1√
n!
vn(x, t)ξn(ξ), (2.22)

where

vn(x, t) =
√
n! < v(x, t, ξ), ξn(ξ) >w . (2.23)

Therefore, vn is called Fourier-Hermite Coe�cients of order n of the function v. For notational

simplicity we write Hn(ξ) = Hn and ξn(ξ) = ξn.

Eq. (2.1) can be written as

vt + vvx = 0. (2.24)

By using the series Eq. (2.22) for vvx of Eq. (2.1), we get

vvx =

( ∞∑
α=0

1√
α!
vα(x, t)ξα

) ∞∑
β=0

1√
β!
vβx (x, t)Hβ

 . (2.25)

Using Eq. (1.61) in Eq. (2.25) gives

vvx =

( ∞∑
α=0

1

α!
vα(x, t)Hα

) ∞∑
β=0

1

β!
vβx (x, t)Hβ

 . (2.26)

By using Lemma 2 on the right side of Eq. (2.26)

vvx =

∞∑
n=0

1

n!

∞∑
m=0

1

m!

n∑
k=0

(
n

k

)
vm+kvm+n−k

x Hn. (2.27)

Again using Eq. (1.61) gives

vvx =

∞∑
n=0

1

n!

∞∑
m=0

1

m!

n∑
k=0

(
n

k

)
vm+kvm+n−k

x

√
n!ξn. (2.28)

After putting Eq. (2.28) in Eq. (2.1) becomes

∂v

∂t
= −

∞∑
n=0

1

n!

∞∑
m=0

1

m!

n∑
k=0

(
n

k

)
vm+kvm+n−k

x

√
n!ξn. (2.29)
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Using Eq. (2.22) in Eq. (2.29) gives

∂

∂t

∞∑
n=0

1√
n!
vn(x, t)ξn = −

∞∑
n=0

1

n!

∞∑
m=0

1

m!

n∑
k=0

(
n

k

)
vm+kvm+n−k

x

√
n!ξn, (2.30)

or
∂

∂t
vn(x, t) = −

∞∑
m=0

1

m!

n∑
k=0

(
n

k

)
vm+k(x, t)vm+n−k

x (x, t). (2.31)

Substituting t = 0 in Eq. (2.23) and using v(x, 0, ξ) = g(x, ξ) gives

vn(x, 0) =
√
n! < v(x, 0, ξ), ξn(ξ) >w, (2.32)

=
√
n! < g(x, ξ), ξn(ξ) >w, (2.33)

= E
[
g(x, ξ), ξn(ξ)

]
. (2.34)

Now by using orthogonality of Theorem 1.3.1 i.e., for every n <∞, the Fourier-Hermite

coe�cient vn is a solution of following system

∂

∂t
vn(x, t) = −

∞∑
m=0

1

m!

n∑
k=0

(
n

k

)
vm+k(x, t)

∂

∂x
vm+n−k(x, t) (2.35)

with

vn(x, 0) = E
[
g(x, ξ), ξn(ξ)

]
, (2.36)

where t ∈ (0, T ] and x ∈ < [5]. Also E is an expectation operator de�ned as

E
[
f(x)

]
=

∫ ∞
−∞

f(x)w(x)dx. (2.37)

The system of Eq. (2.35) and Eq. (2.36) is known as Propagator system because they governs

the propagation of randomness. It separates non-random variable (x, t) from random variable

ξ. Since this propagator system is a deterministic, so it need to be solved only once.

When vj,i is expanded using a series in Eq. (2.21), the propagator system for each Hermite

Fourier coe�cient vn(j, i) = vn(xj , ti) can be obtained by a following modi�ed version of the
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Lax-Wendro� scheme

vnj,i+1 = vnj,i −
1

4

(
∆t

∆x

)(
wnj+1,i + wnj−1,i

)
+

1

8

(
∆t

∆x

)2 ∞∑
α=0

[(
zn,αj,i + zn,αj+1,i

)(
wαj+1,i − wαj,i

)
−
(
zn,αj,i + zn,αj−1,i

)(
wαj,i − wαj−1,i

)]
, (2.38)

where

wαj,i =
∞∑
m=0

1

m!

2
∑

0≤k<α/2

(
α

k

)
vm+k
j,i vm+α−k

j,i + χ(
α/2=[α/2]

)( α

α/2

)(
v
m+α/2
j,i

)2

 (2.39)

and

zn,αj,i =
n∑

q=max(0,n−α)

1

(α− n+ q)!

(
n

q

)
vα−n+2q
j,i , (2.40)

where χ(a=[b]) is one, when a and b in χ is one otherwise equal to zero. Also [x] is the smallest

integer which is not smaller than x.

Eq. (2.38), Eq. (2.39) and Eq. (2.40) can be obtained from Eq. (2.21) by substituting

∆+xFj,i, ∆−xFj,i, Aj+1/2,i, Aj−1/2,i in it which can be derived as follows:

Using Fj,i = f(vj,i) and f(vj,i) = v2
j,i/2 in Eq. (2.17) gives

∆+xFj,i = f(vj+1,i)− f(vj,i), (2.41)

=
1

2

(
vj+1,ivj+1,i − vj,ivj,i

)
. (2.42)

Using Eq. (2.28) in Eq. (2.42) gives

∆+xFj,i =
1

2

∞∑
n=0

1√
n!

∞∑
m=0

1

m!

n∑
k=0

(
n

k

)
ξn

[
vm+k
j+1,iv

m+n−k
j+1,i − vm+k

j,i vm+n−k
j,i

]
, (2.43)

=
1

2

∞∑
n=0

1√
n!

∞∑
m=0

1

m!

n∑
k=0

(
n

k

)
ψm,n,kj+1/2,iξn, (2.44)

where

ψm,n,kj+1/2,i = vm+k
j+1,iv

m+n−k
j+1,i − vm+k

j,i vm+n−k
j,i . (2.45)
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Eq. (2.18) gives

∆−xFj,i = f(vj,i)− f(vj−1,i), (2.46)

=
1

2

(
vj,ivj,i − vj−1,ivj−1,i

)
. (2.47)

Using Eq. (2.28) in Eq. (2.47)

∆−xFj,i =
1

2

∞∑
n=0

1√
n!

∞∑
m=0

1

m!

n∑
k=0

(
n

k

)
ξn

[
vm+k
j,i vm+n−k

j,i − vm+k
j−1,iv

m+n−k
j−1,i

]
, (2.48)

=
1

2

∞∑
n=0

1√
n!

∞∑
m=0

1

m!

n∑
k=0

(
n

k

)
ψm,n,kj−1/2,iξn, (2.49)

where

ψm,n,kj−1/2,i = vm+k
j,i vm+n−k

j,i − vm+k
j−1,iv

m+n−k
j−1,i . (2.50)

Also

∆+xFj,i + ∆−xFj,i = Fj+1,i − Fj−1,i, (2.51)

= f(vj+1,i)− f(vj−1,i), (2.52)

=
1

2

(
vj+1,ivj+1,i − vj−1,ivj−1,i

)
. (2.53)

Using Eq. (2.28) in Eq. (2.53) gives

∆+xFj,i + ∆−xFj,i =
1

2

∞∑
n=0

1√
n!

∞∑
m=0

1

m!

n∑
k=0

(
n

k

)
ξn

[
vm+k
j+1,iv

m+n−k
j+1,i − vm+k

j−1,iv
m+n−k
j−1,i

]
, (2.54)

=
1

2

∞∑
n=0

1√
n!

∞∑
m=0

1

m!

n∑
k=0

(
n

k

)
φm,n,kj,i ξn, (2.55)

where

φm,n,kj,i = vm+k
j+1,iv

m+n−k
j+1,i − vm+k

j−1,iv
m+n−k
j−1,i . (2.56)
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Replacing Aj,i from Eq. (2.5) in Eq. (2.19) gives

Aj+1/2,i =
1

2

[ ∂
∂v
f(vj,i) +

∂

∂v
f(vj+1,i)

]
, (2.57)

Aj+1/2,i =
1

2

(
vj,i + vj+1,i

)
. (2.58)

Substituting Eq. (2.22) in Eq. (2.58)

Aj+1/2,i =
1

2

∞∑
α=0

1√
α!
φαj+1/2,iξα, (2.59)

where

φαj+1/2,i = vαj,i + vαj+1,i. (2.60)

Again replacing Aj,i from Eq. (2.5) in Eq. (2.20) gives

Aj−1/2,i =
1

2

[
∂

∂v
f(vj,i) +

∂

∂v
f(vj−1,i)

]
, (2.61)

=
1

2

(
vj,i + vj−1,i

)
. (2.62)

By putting Eq. (2.22) in Eq. (2.62), we obtain

Aj−1/2,i =
1

2

∞∑
α=0

1√
α!
φαj−1/2,iξα, (2.63)

where

φαj−1/2,i = vαj,i + vαj−1,i. (2.64)

Taking product of Eq. (2.44) and Eq. (2.59), we get

Aj+1/2,i∆+xFj,i =
1

4

∞∑
α=0

1

α!
φαj+1/2,i

∞∑
β=0

1

β

∞∑
m=0

1

m!

β∑
k=0

(
β

k

)
ψm,β,kj+1/2,i

(√
α!ξα

)(√
β!ξβ

)
. (2.65)
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Using Eq. (1.61) in Eq. (2.65) yields

Aj+1/2,i∆+xFj,i =
1

4

∞∑
α=0

1

α!
φαj+1/2,i

∞∑
β=0

1

β

∞∑
m=0

1

m!

β∑
k=0

(
β

k

)
ψm,β,kj+1/2,i

(
Hα(x)Hβ(x)

)
. (2.66)

By using Lemma 1 in Eq. (2.65), we have

Aj+1/2,i∆+xFj,i =
1

4

∞∑
α=0

1

α!
φαj+1/2,i

∞∑
β=0

1

β!

∞∑
m=0

1

m!

β∑
k=0

(
β

k

)
ψm,β,kj+1/2,i

αΛβ∑
γ=0

γ!

(
α

γ

)(
β

γ

)
Hα+β−2γ(x).

(2.67)

Taking α = p+ q, β = p+ n− q and γ = p in Eq. (2.67) gives

Aj+1/2,i∆+xFj,i =
1

4

∞∑
n=0

∞∑
p=0

n∑
q=0

1

(p+ q)!
φp+qj+1/2,i

1

(p+ n− q)!

∞∑
m=0

1

m!

p+n−q∑
k=0

(
p+ n− q

k

)
ψm,p+n−q,kj+1/2,i p!

(
p+ q

p

)(
p+ n− q

p

)
Hn(x), (2.68)

or

Aj+1/2,i∆+xFj,i =
1

4

∞∑
n=0

1√
n!

∞∑
p=0

1

p!

n∑
q=0

(
n

q

)
φp+qj+1/2,i

∞∑
m=0

1

m!

p+n−q∑
k=0

(
p+ n− q

k

)
ψm,p+n−q,kj+1/2,i ξn.

(2.69)

Similarly, taking product of Eq. (2.49) and Eq. (2.63) gives

Aj−1/2,i∆−xFj,i =
1

4

∞∑
n=0

1√
n!

∞∑
p=0

1

p!

n∑
q=0

(
n

q

)
φp+qj−1/2,i

∞∑
m=0

1

m!

p+n−q∑
k=0

(
p+ n− q

k

)
ψm,p+n−q,kj−1/2,i ξn.

(2.70)
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Now substituting Eq. (2.22),(2.55),(2.69) and (2.70) in Eq. (2.21)

∞∑
n=0

1√
n!
vnj,i+1ξn =

∞∑
n=0

1√
n!
vnj,iξn −

1

2

(
∆t

∆x

)[
1

2

∞∑
n=0

1√
n!

∞∑
m=0

1

m!

n∑
k=0

(
n

k

)
φm,n,kj,i ξn

]

+
1

2

(
∆t

∆x

)2[1

4

∞∑
n=0

1√
n!

∞∑
p=0

1

p!

n∑
q=0

(
n

q

)
φp+qj+1/2,i

∞∑
m=0

1

m!

p+n−q∑
k=0

(
p+ n− q

k

)
ψm,p+n−q,kj+1/2,i ξn

− 1

4

∞∑
n=0

1√
n!

∞∑
p=0

1

p!

n∑
q=0

(
n

q

)
φp+qj−1/2,i

∞∑
m=0

1

m!

p+n−q∑
k=0

(
p+ n− q

k

)
ψm,p+n−q,kj−1/2,i ξn

]
. (2.71)

or

∞∑
n=0

1√
n!
vnj,i+1ξn =

∞∑
n=0

1√
n!
ξn

[
vnj,i −

1

4

(
∆t

∆x

) ∞∑
m=0

1

m!

n∑
k=0

(
n

k

)
φm,n,kj,i

+
1

8

(
∆t

∆x

)2 ∞∑
p=0

1

p!

n∑
q=0

(
n

q

)
φp+qj+1/2,i

∞∑
m=0

1

m!

p+n−q∑
k=0

(
p+ n− q

k

)
ψm,p+n−q,kj+1/2,i

− 1

8

(
∆t

∆x

)2 ∞∑
p=0

1

p!

n∑
q=0

(
n

q

)
φp+qj−1/2,i

∞∑
m=0

1

m!

p+n−q∑
k=0

(
p+ n− q

k

)
ψm,p+n−q,kj−1/2,i

]
. (2.72)

Comparing the coe�cient of ξ on both sides of Eq. (2.72), we obtain
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vnj,i+1 = vnj,i −
∆t

4∆x

∞∑
m=0

1

m!

n∑
k=0

(
n

k

)
φm,n,kj,i

+
1

8

(
∆t

∆x

)2 ∞∑
p=0

1

p!

n∑
q=0

(
n

q

)
φp+qj+1/2,i

∞∑
m=0

1

m!

p+n−q∑
k=0

(
p+ n− q

k

)
ψm,p+n−q,kj+1/2,i

− 1

8

(
∆t

∆x

)2 ∞∑
p=0

1

p!

n∑
q=0

(
n

q

)
φp+qj−1/2,i

∞∑
m=0

1

m!

p+n−q∑
k=0

(
p+ n− q

k

)
ψm,p+n−q,kj−1/2,i . (2.73)

As Eq. (2.73) contains nested loops, so it is practically not possible to compute vnj,i directly

from Eq. (2.73), we need to simplify, the procedure is as follows:

Eq. (2.73) can be written as

vnj,i+1 = vnj,i −
∆t

4∆x
E1 +

1

8

(
∆t

∆x

)2

E2 −
1

8

(
∆t

∆x

)2

E3, (2.74)

where

E1 =
∞∑
m=0

1

m!

n∑
k=0

(
n

k

)
φm,n,kj,i (2.75)

E2 =
∞∑
p=0

1

p!

n∑
q=0

(
n

q

)
φp+qj+1/2,i

∞∑
m=0

1

m!

p+n−q∑
k=0

(
p+ n− q

k

)
ψm,p+n−q,kj+1/2,i , (2.76)

E3 =

∞∑
p=0

1

p!

n∑
q=0

(
n

q

)
φp+qj−1/2,i

∞∑
m=0

1

m!

p+n−q∑
k=0

(
p+ n− q

k

)
ψm,p+n−q,kj−1/2,i . (2.77)

Using Eq. (2.56) in Eq. (2.75)

E1 =
∞∑
m=0

1

m!

n∑
k=0

(
n

k

)[
vm+k
j+1,iv

m+n−k
j+1,i − vm+k

j−1,iv
m+n−k
j−1,i

]
, (2.78)

E1 = ωj+1,i − ωj−1,i, (2.79)
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where

ωj+1,i =
∞∑
m=0

1

m!

n∑
k=0

(
n

k

)
vm+k
j+1,iv

m+n−k
j+1,i (2.80)

and

ωj−1,i =

∞∑
m=0

1

m!

n∑
k=0

(
n

k

)
vm+k
j−1,iv

m+n−k
j−1,i . (2.81)

Let α = p+ n− q, then Eq. (2.76) becomes

E2 =
∞∑
α=0

 n∑
q=max(0,n−α)

1

(α− n+ q)!

(
n

q

)
φα+2q−n
j+1/2,i

( ∞∑
m=0

1

m!

α∑
k=0

(
α

k

)
ψm,α,kj+1/2,i

)
. (2.82)

Now in the above equation, we have summation over α, in which �rst term is independent

of m and k and the second term is independent of q. This saves computations by removing

unnecessary nested loops. In addition Eq. (2.82) can also be simpli�ed as

E2 =
∞∑
α=0

(G1G2), (2.83)

where

G1 =

n∑
q=max(0,n−α)

1

(α− n+ q)!

(
n

q

)
φα+2q−n
j+1/2,i (2.84)

and

G2 =
∞∑
m=0

1

m!

α∑
k=0

(
α

k

)
ψm,α,kj+1/2,i. (2.85)

Now using Eq. (2.60) in Eq. (2.84)

G1 =
n∑

q=max(0,n−α)

1

(α− n+ q)!

(
n

q

)[
vα−n+2q
j,i + vα−n+2q

j+1,i

]
, (2.86)

=

n∑
q=max(0,n−α)

1

(α− n+ q)!

(
n

q

)
vα−n+2q
j,i +

n∑
q=max(0,n−α)

1

(α− n+ q)!

(
n

q

)
vα−n+2q
j+1,i .

(2.87)
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If in Eq. (2.87) we say

zn,αj,i =

n∑
q=max(0,n−α)

1

(α− n+ q)!

(
n

q

)
vα−n+2q
j,i (2.88)

and

zn,αj+1,i =
n∑

q=max(0,n−α)

1

(α− n+ q)!

(
n

q

)
vα−n+2q
j+1,i . (2.89)

Then, Eq. (2.76) becomes

G1 = zn,αj,i + zn,αj+1,i. (2.90)

Now substituting Eq. (2.45) in Eq. (2.85)

G2 =
∞∑
m=0

1

m!

(
2

∑
0≤k<α/2

(
α

k

)[
vm+k
j+1,iv

m+α−k
j+1,i − vm+k

j,i vm+α−k
j,i

])

+ χ(
α
2

=[α
2

]

)( α

α/2

)[
v
m+α/2
j+1,i v

m+α−α/2
j+1,i − vm+α/2

j,i v
m+α−α/2
j,i

]
,

(2.91)

or

G2 =

∞∑
m=0

1

m!

2
∑

0≤k<α/2

(
α

k

)
vm+k
j+1,iv

m+α−k
j+1,i − 2

∑
0≤k<α/2

(
α

k

)
vm+k
j,i vm+α−k

j,i


+ χ(

α
2

=[α
2

]

)( α

α/2

)(
v
m+α/2
j+1,i

)2
− χ(

α
2

=[α
2

]

)( α

α/2

)(
v
m+α/2
j,i

)2
,

(2.92)
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or

G2 =

∞∑
m=0

1

m!

(
2

∑
0≤k<α/2

(
α

k

)
vm+k
j+1/2,iv

m+α−k
j+1/2,i

+ χ(
α
2

=[α
2

]

)( α

α/2

)(
v
m+α/2
j+1,i

)2)
−
∞∑
m=0

1

m!

(
2

∑
0≤k<α/2

(
α

k

)
vm+k
j,i vm+α−k

j,i

+ χ(
α
2

=[α
2

]

)( α

α/2

)(
v
m+α/2
j,i

)2)
.

(2.93)

If in Eq. (2.93) we say

ωαj+1,i =
∞∑
m=0

1

m!

2
∑

0≤k<α/2

(
α

k

)
vm+k
j+1/2,iv

m+α−k
j+1/2,i + χ(

α
2

=[α
2

]

)( α

α/2

)(
v
m+α/2
j+1,i

)2

 (2.94)

ωαj,i =

∞∑
m=0

1

m!

2
∑

0≤k<α/2

(
α

k

)
vm+k
j,i vm+α−k

j,i + χ(
α
2

=[α
2

]

)( α

α/2

)(
v
m+α/2
j,i

)2

 . (2.95)

Then Eq. (2.93) becomes

G2 = ωαj+1,i − ωαj,i. (2.96)

Substituting Eq. (2.90) and Eq. (2.96) in Eq. (2.83), we get

E2 =
∞∑
α=0

[
(zn,αj,i + zn,αj+1,i)(ω

α
j+1,i − ωαj,i)

]
. (2.97)

Similarly Eq. (2.77) becomes

E3 =

∞∑
α=0

[
(zn,αj,i + zn,αj−1,i)(ω

α
j,i − ωαj−1,i)

]
. (2.98)
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Substituting Eq. (2.79), (2.97) and (2.98) in Eq. (2.74), we get

vnj,i+1 = vnj,i −
1

4

(
∆t

∆x

)(
ωj+1,i − ωj−1,i

)
+

1

8

(
∆t

∆x

)2 ∞∑
α=0

[
(zn,αj,i + zn,αj+1,i)(ω

α
j+1,i − ωαj,i)

]
−

1

8

(
∆t

∆x

)2 ∞∑
α=0

[
(zn,αj,i + zn,αj−1,i)(ω

α
j,i − ωαj−1,i)

]
,

(2.99)

or

vnj,i+1 = vnj,i −
1

4

(
∆t

∆x

)(
ωj+1,i − ωj−1,i

)
+

1

8

(
∆t

∆x

)2 ∞∑
α=0

[
(zn,αj,i + zn,αj+1,i)(ω

α
j+1,i − ωαj,i)− (zn,αj,i + zn,αj−1,i)(ω

α
j,i − ωαj−1,i)

]
. (2.100)

Thus we complete the derivation of Eq. (2.38), Eq. (2.39) and Eq. (2.40).

Having the propagator system, (Eq. (2.35) and Eq. (2.36)) we can compute the statistical

moments as follows:

Let n = 0 in Eq. (1.61)

ξ0 = H0(x). (2.101)

Taking expectation on both sides of Eq. (2.101) and using the de�nition of expectation from

Eq. (2.37) on right hand side of Eq. (2.101) gives

E
[
ξ0

]
=

∫ +∞

−∞
H0(x)w(x)dx. (2.102)

By using the de�nition of weight function from Eq. (1.59) and H0(x) = 1, we have

E
[
ξ0

]
=

∫ +∞

−∞
H0(x)

1

2
√
π
e−x

2/2dx. (2.103)

After simplifying Eq. (2.103), we get

E
[
ξ0

]
= 1. (2.104)
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Now we examine the cases when n ≥ 0. Putting n = 1 and H1(x) = x in (2.102), it becomes

E
[
ξ1

]
=

∫ +∞

−∞
x

1

2
√
π
e−x

2/2dx. (2.105)

After simplify Eq. (2.105), we get

E
[
ξ1

]
= 0. (2.106)

Let n = 2 and H1(x) = x2 − 1 in Eq. (2.102) becomes

E
[
ξ2

]
=

∫ +∞

−∞
(x2 − 1)

1

2
√
π
ex

2/2dx. (2.107)

After simplify Eq. (2.107), it gives

E
[
ξ2

]
= 0. (2.108)

In General

E
[
ξn

]
=


1 ifn = 0,

0 ifn 6= 0.

(2.109)

Thus the First Moment can be obtained by putting n = 0 and taking expectation on both

sides of Eq. (2.22) and then using (2.109) we can say that

E
[
v(x, t, ξ)

]
= v0(x, t), (2.110)

where expectation and limit can be interchanged because of uniform convergence in Theorem

1.61. From Theorem 1.3.1 and Parseval's identity, Second Moment can be computed as follows:

Squaring Eq. (2.22)

v2(x, t, ξ) =

[ ∞∑
n=0

1√
n!
vn(x, t)ξn

][ ∞∑
m=0

1√
m!
vm(x, t)ξm

]
, (2.111)

or

v2(x, t, ξ) =

∞∑
n=0

1√
n!
vn(x, t)

∞∑
m=0

1√
m!
vm(x, t)

[
ξnξm

]
. (2.112)
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Taking expectation on both sides of Eq. (2.112)

E
(
v2(x, t, ξ)

)
=

∞∑
n=0

1√
n!
vn(x, t)

∞∑
m=0

1√
m!
vm(x, t)E

[
ξnξm

]
. (2.113)

Using Eq. (1.61) to �nd E
[
ξnξm

]
of Eq. (2.113) gives

E
[
ξnξm

]
= E

[
1√
n!
Hn(x)

1√
m!
Hm(x)

]
, (2.114)

=
1√
n!

1√
m!
E
[
Hn(x)Hm(x)

]
. (2.115)

But as E
[
Hn(x)Hm(x)

]
=
√
n!δn,m [3], Eq. (2.113) becomes

E
(
v2(x, t, ξ)

)
=
∞∑
n=0

1

n!
|vn(x, t)|2. (2.116)

2.3 Stability of Modi�ed Lax-Wendro� Scheme

Any numerical scheme is said to be stable if disturbance does not grows as the calculations

proceed.

Let us assume that there is no explicit dependance of f on x except through v in Eq. (2.1)

describe as
∂v

∂t
+
∂f

∂v

∂v

∂x
, (2.117)

where

A =
∂f

∂v
= v (2.118)

is constant Jacobian which depends on v itself. As in Eq. (2.1), ∂f/∂x = vvx which on using

Eq. (2.118) becomes
∂f

∂x
= Avx. (2.119)

Using Eq. (2.119) in Eq. (2.1) gives

vt = Avx, (2.120)

32



vtt = A2 ∂
2v

∂x2
. (2.121)

Consider Taylor series expansion in terms of indices as

vj,i+1 = vj,i +
∂v

∂t
∆t+

∂2v

∂t2
(∆t)2

2!
+O(∆t)3. (2.122)

Substituting Eq. (2.120) and Eq. (2.121) in Eq. (2.122), we obtain

vj,i+1 = vj,i −A∆t
∂v

∂x
+

(∆t)2

2!
A2 ∂

2v

∂x2
. (2.123)

Using central di�erence formula of second order for spatial derivatives in Eq. (2.120) [6]

vj,i+1 = vj,i −A∆t

[
vj+1,i − vj−1,i

2∆x

]
+

1

2
(∆t)2A2

[
vj+1,i − 2vj,i + vj−1,i

(∆x)2

]
, (2.124)

or

vj,i+1 = vj,i −
1

2

(
A∆t

∆x

)[
vj+1,i − vj−1,i

]
+

1

2

(
A∆t

∆x

)2[
vj+1,i − 2vj,i + vj−1,i

]
. (2.125)

The stability of modi�ed Lax-Wendro� in Eq. (2.100) can be obtained by discussing the

stability of scheme when Jacobian of Eq. (2.1) can assumed to be a constant [5]. Each

Fourier-Hermite coe�cient vn, then satis�es deterministic Lax-Wendro� in Eq. (2.21). Thus

Eq. (2.125) can be written as [5]

vnj,i+1 = vnj,i −
1

2

(
A∆t

∆x

)[
vnj+1,i − vnj−1,i

]
+

1

2

(
A∆t

∆x

)2[
vnj+1,i − 2vnj,i + vnj−1,i

]
. (2.126)

To check stability criteria of Eq. (2.126), we have to check the stability of Eq. (2.125) by

using Von-Neumann stability analysis, which is used to check out the stability requirements

of any �nite di�erence equation [6].

Let us assume that the solution of Eq. (2.1) at time step i and space step x = xj is of

complex exponential type de�ned as v(j, i) = eιkxj , where ι =
√
−1, k is real number. Then

let

vj,i = eιkxj , (2.127)

also

vj+1,i = eιkx(j+1) , (2.128)
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vj−1,i = eιkx(j−1) . (2.129)

Substituting Eq. (2.127), (2.128) and (2.129) in Eq. (2.125), we get

Vj,i+1 = eιkxj − 1

2

(
A∆t

∆x

)[
eιkx(j+1) − eιkx(j−1)

]
+

1

2

(
A∆t

∆x

)2 [
eιkx(j+1) − 2eιkxj + eιkx(j−1)

]
.

(2.130)

As x(j+1) = xj + ∆x and x(j−1) = xj −∆x then Eq. (2.130) becomes

Vj,i+1 = eιkxj−1

2

(
A∆t

∆x

)[
eιk(xj+∆x) − eιk(xj−∆x)

]
+

1

2

(
A∆t

∆x

)2 [
eιk(xj+∆x) − 2eιkxj + eιk(xj−∆x)

]
.

(2.131)

or

Vj,i+1 = eιkxj

[
1− A∆t

2∆x

[
eιk∆x − e−ιk∆x

]
+

1

2

(
A∆t

∆x

)2 [
eιk∆x − 2 + e−ιk∆x

]]
. (2.132)

Let θ = k∆x then

Vj,i+1 = eιkxj

[
1−

(
A∆t

∆x

)
ι

[
eιθ − e−ιθ

2ι

]
+

(
A∆t

∆x

)2 [eιθ + e−ιθ

2
− 1

]]
. (2.133)

De�ning trigonometric identities as

cosθ =
eιθ + e−ιθ

2
(2.134)

and

sinθ =
eιθ − e−ιθ

2ι
. (2.135)

Substituting Eq. (2.134) and Eq. (2.135) in Eq. (2.133) gives

Vj,i+1 = eιkxj

[
1−

(
A∆t

∆x

)
ιsinθ +

(
A∆t

∆x

)2 (
cosθ − 1

)]
, (2.136)

or

Vj,i+1 = λeιkxj , (2.137)

34



where λ is the ampli�cation factor de�ned as

λ = 1−
(
A∆t

∆x

)
ιsinθ +

(
A∆t

∆x

)2 (
cosθ − 1

)
, (2.138)

As λ has real and imaginary parts, so for stable solution, the absolute values of λ should be

bounded for all values of θ. Mathematically

| λ |2= λλ̄ ≤ 1. (2.139)

Putting the value of Eq. (2.138) in Eq. (2.139) gives

| λ |2 =

((
1 +

(
A∆t

∆x

)2 (
cosθ − 1

))
− ι
(
A∆t

∆x
sinθ

))((
1 +

(
A∆t

∆x

)2 (
cosθ − 1

))
+ ι

(
A∆t

∆x
sinθ

))
,

(2.140)

=

(
1 +

(
A∆t

∆x

)2

(cosθ − 1)

)2

+

((
A∆t

∆x
sinθ

))2

. (2.141)

Let

c =
A∆t

∆x
. (2.142)

Then Eq. (2.141) becomes

| λ |2=
(

1 + c2
(
cosθ − 1

))2
+ c2sin2θ, (2.143)

or

| λ |2=

(
1− 2c2sin2 θ

2

)2

+ 2c2sin2 θ

2
cos2 θ

2
. (2.144)

After simpli�cation, we get

| λ |2= 1− 4c2
(

1− c2
)
sin4 θ

2
. (2.145)

If

g(θ) = 4c2
(

1− c2
)
sin4 θ

2
, (2.146)

then Eq. (2.145) becomes

| λ |2= 1− g(θ). (2.147)
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For λ ≤ 1, we must have 0 ≤ g(θ) ≤ 2, in Eq. (2.147). This gives us stability condition i.e.,

| c |≤ 1, (2.148)

where

c =
∆t

∆x
max[v], (2.149)

is the Courant number or CFL (Courant, Friedrichs, Lewy) condition, which is necessary (not

su�cient) condition for the stability of explicit hyperbolic equation. Max[v] is the maximum

eigen value of jacobian matrix.

2.4 Signi�cance of Courant Number

Figure 2.1: Analytical and computational characteristic lines.
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In Fig. 2.1 lines AB and AC are characteristic of Eq. (2.1). Point A is in�uenced by the

data of the region BAC which is called domain of dependance of point A [6]. Now consider

Eq. (2.126) which is �nite di�erence representation of Eq. (2.1). Eq. (2.126) shows that a

newly calculated value at (j, i+ 1) depends up on the values j − 1, j, j + 1 at time level i+ 1

and it proceeds at time level i+ 2 in a similar manner.

Eq. (2.149) indicates that for a stable solution, the domain of dependance in the �nite

di�erence scheme shown by B′AC ′ in Fig. 2.1 must include the domain of dependance of

partial di�erential equation shown by BAC.

Result given in Fig. 2.1 is considered to be inaccurate because it includes some unnecessary

information propagating from region B′AB and C ′AC. If c = 1 then the numerical solution

is considered to be stable because in that case both analytical and computational domain are

identical. On the other hand, if the numerical domain does not contain the analytical domain

then some necessary information for computation is deleted which results as an unstable

solution [6].
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Chapter 3

Numerical Results

Before analyzing the stability of Lax-Wendro� with Wiener Chaos expansion, we have to

change the initial and boundary conditions for vn (Fourier-Hermite coe�cient) as follows:

By using initial condition v(x, 0, ξ) = g(x, ξ), in Eq. (2.22) gives

g(x, 0, ξ) =
∞∑
n=0

1√
n!
gn(x, 0)ξn, (3.1)

where

gn =
√
n!E

[
gξn

]
. (3.2)

Thus gn(x, 0) becomes the initial condition of vn(x, t).

Similarly, a left boundary condition v(x0, t, ξ) = h(t, ξ), can be written as

h(t, ξ) =

∞∑
n=0

1√
n!
hnξn, (3.3)

where

hn =
√
n!E

[
hξn

]
. (3.4)

Thus hn(t) is the left boundary condition forvn(x, t) at x = x0.

In ref. [8], Leveque remarks that for general systems of equations with arbitrary initial

data, no numerical method has been proved to be stable or convergent in general. The stability

of Lax-Wendro� with Wiener Chaos expansion in Eq. (2.38) is obtained by analyzing the
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stability of the scheme when Jacobian of Eq. (2.1) is assumed to be constant. Now let us

consider a nonlinear inviscid Burger's equation in term of randomness as

vt(x, t, ξ) +
∂

∂x
f(v(x, t, ξ)) = 0, (3.5)

vt(x, t, ξ) + v(x, t, ξ)vx(x, t, ξ) = 0 (3.6)

with the boundary condition as v(−1, t, ξ) = 1 and random discontinuous initial condition as

v(x, 0, ξ) =


1 if x < 0,

sin(xξ) if x > 0.

(3.7)

Where x ∈ [−1, 1] and ξ is normally distributed with zero mean and unit variance. The initial

condition can be obtained from Eq. (3.1) as follows:

For x < 0 and v(x, 0, ξ) = 1, then Eq. (2.23) becomes

vn =
√
n!E

[
ξn

]
. (3.8)

Using Eq. (2.109) in Eq. (3.8) we have for x < 0

vn(x, 0) =


1 if n = 0,

0 if n 6= 0.

(3.9)

Now for x > 0, Eq. (2.23) becomes

vn = E
[
sin(xξ)ξn

]
, (3.10)

and by de�nition of expectation, Eq. (3.10) becomes

E
[
sin(xξ)ξn

]
=

∫ ∞
−∞

sin(xξ)ξnw(ξ)dξ (3.11)
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using Eq. (1.61) and Eq. (1.62) in Eq. (3.11) gives

E
[
sin(xξ)ξn

]
=

∫ ∞
−∞

sin(xξ)
1√
n!

(
(−1)nex

2/2 d
n

dξn
e−ξ

2/2
) 1√

2π
eξ

2/2dξ, (3.12)

=
(−1)n√
n!
√

2π

∫ ∞
−∞

sin(xξ)
dn

dξn
e−ξ

2/2dξ. (3.13)

Integrating by parts, we get

E
[
sin(xξ)ξn

]
=

(−1)n+1x√
n!
√

2π

∫ ∞
−∞

cos(xξ)
dn−1

dξn−1
e−ξ

2/2dξ. (3.14)

Again integrating by parts

E
[
sin(xξ)ξn

]
=

(−1)n+1x2

√
n!
√

2π

∫ ∞
−∞

sin(xξ)
dn−2

dξn−2
e−ξ

2/2dξ. (3.15)

Now for n = 2m+ 1, sin(xξ) has (−1)2m+1 signs.

Also
d2m+1

dξ2m+1
sin(xξ) = (−1)mx(2m+1)cos(xξ). m = 0, 1, 2, . . . (3.16)

Thus (3.13) becomes

E
[
sin(xξ)ξn

]
=

(−1)mx2m+1√
(2m+ 1)!

√
2π

∫ ∞
−∞

cos(xξ)e−ξ
2/2dξ. m = 0, 1, 2, . . . (3.17)

Considering

∫ ∞
−∞

cos(xξ)e−ξ
2/2dξ = Re

∫ ∞
−∞

eιxξe−ξ
2/2dξ, (3.18)

= Re

∫ ∞
−∞

eιxξ−
ξ2

2 dξ, (3.19)

= e−x
2/2Re

∫ ∞
−∞

e
−1
2

(ξ−ιx)2dξ. (3.20)
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Then using the result from [9] in Eq. (3.20), we obtain

∫ ∞
−∞

cos(xξ)e−ξ
2/2dξ = e−x

2/2
√

2π. (3.21)

Using Eq. (3.21) in Eq. (3.17) gives

E
[
sin(xξ)ξn

]
=

(−1)mx2m+1√
(2m+ 1)!

e−x
2/2. (3.22)

Then substituting Eq. (3.22) in Eq. (3.10) gives

vn(x, 0) =
(−1)mx2m+1√

(2m+ 1)!
e−x

2/2, if n = 2m+ 1. (3.23)

If n = 2m, then Eq. (3.10) becomes

vn(x, 0) = 0. (3.24)

Thus from Eq. (3.23) and Eq. (3.24), we get for x > 0

vn(x, 0) =


(−1)mx2m+1√

(2m+1)!
e−x

2/2 if n = 2m+ 1,

0 if n = 2m.

(3.25)

For left boundary condition at x0 = −1, we have

v(−1, t) = 1. (3.26)

Also

h(t, ξ) = 1. (3.27)

Using Eq. (3.27)

hn =
√
n!E

[
ξn

]
. (3.28)
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Using Eq. (2.109) in Eq. (3.4) gives

hn(t, ξ) =


0 if n 6= 0,

1 if n = 0.

(3.29)

Thus hn(t, ξ) is the left boundary condition for vn(x, t) at x = −1.

For the right boundary condition at x = 1, we can use the following possibilities [10]

vj,i+1 = vj−1,i+1, (3.30)

vj,i+1 = 2vj−1,i+1 − vj−2,i+1, (3.31)

vj,i+1 = vj−1,i, (3.32)

vj,i+1 = 2vj−1,i+1 − vj−2,i−1. (3.33)

Eq. (3.30) and Eq. (3.31) are simple extrapolations and Eq. (3.32) and Eq. (3.33)

are called quasi-characteristics extrapolations. Any error at boundary will e�ect the entire

solution. The use of wrong boundary conditions will cause oscillations in the solution. These

oscillations are usually away from the boundaries.

The only way to pinpoint the problem is to change the boundary conditions and then observe

the solution. Also the incorrect boundary conditions will e�ect the stability of the whole

scheme. Here in this scheme we use boundary conditions Eq. (3.31) on right side, at point 1

of given interval.

Using MATLAB code, Fig. 3.1 shows First moment when n = 0 of the solution for Eq.

(3.6) computed by Lax-Wendro� with WCE when Courant number is 0.6 or 1. These solutions

obtained are at t = 1.80 sec.
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Figure 3.1: First Moment from LW with WCE when c = 0.6 or 1.
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Figure 3.2: Second Moment from LW with WCE when c = 0.6 or 1.

Fig. 3.2 shows second moment for n ≥ 0 and t = 1.80 sec for Eq. (3.6).

As we see that both solutions are stable but the one obtained with Courant number

0.6 is much less accurate and shows �uctuations near discontinuities. Also Lax-Wendro� is

dissipative (dissipation is damping out high frequency waves which makes the solution too

oscillatory) because if c < 1, then there is rapid exponential decay of oscillations. So, the best

solution is obtained when Courant number is 1.

44



The solution for step sizes ∆x = 0.01 and ∆t = 0.01 with various t′s are shown in Fig.

3.3 and Fig. 3.4 for �rst and second moments respectively.

Figure 3.3: First Moment from LW with WCE with ∆x = 0.01 and ∆t = 0.01.
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Figure 3.4: Second Moment from LW with WCE with ∆x = 0.01 and ∆t = 0.01.

Clearly these solutions show the propagation in horizontal direction as the time passes.

Let us consider Eq. (3.6) with the boundary condition at x0 = −1 is v(−1, t, ξ) = 1 and

random continuous initial condition at t = 0

v(x, 0, ξ) =


1 if x ≤ 0,

cos(xξ) if x > 0,

(3.34)

where x ∈ [−1, 1] and ξ is normally distributed with zero mean and unit variance. We

solve Eq. (3.6) to �nd out First moment and Second moment.

The initial condition for x ≤ 0 remains same as in Eq. (3.9). Now for x > 0, Eq. (2.23)

becomes

vn = E
[
cos(xξ)ξn

]
, (3.35)
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and by using the de�nition of expectation from Eq. (2.37) in Eq. (3.35) gives

E
[
cos(xξ)ξn

]
=

∫ ∞
−∞

cos(xξ)ξnw(ξ)dξ. (3.36)

Using Eq. (1.59) and Eq. (3.36) gives

E
[
cos(xξ)ξn

]
=

∫ ∞
−∞

cos(xξ)
1√
n!

(
(−1)nex

2/2 d
n

dξn
e−ξ

2/2

)
1√
2π
eξ

2/2dξ, (3.37)

=
(−1)n√
n!
√

2π

∫ ∞
−∞

cos(xξ)
dn

dξn
e−ξ

2/2dξ. (3.38)

Integrating by parts, we get

E
[
cos(xξ)ξn

]
=

(−1)n+1x√
n!
√

2π

∫ ∞
−∞

sin(xξ)
dn−1

dξn−1
e−ξ

2/2dξ. (3.39)

Again integrating by parts

E
[
cos(xξ)ξn

]
=

(−1)n+1x2

√
n!
√

2π

∫ ∞
−∞

cos(xξ)
dn−2

dξn−2
e−ξ

2/2dξ. (3.40)

For n = 2m, cos(xξ) has (−1)2m signs.

Also
d2m

dξ2m
cos(xξ) = (−1)mx2msin(xξ). m = 0, 1, 2, . . . (3.41)

Thus Eq. (3.38) becomes

E
[
cos(xξ)ξn

]
=

(−1)mx2m√
(2m)!

√
2π

∫ ∞
−∞

sin(xξ)e−ξ
2/2dξ. m = 0, 1, 2, . . . (3.42)

Considering

∫ ∞
−∞

sin(xξ)e−ξ
2/2dξ = Img

∫ ∞
−∞

eιxξe−ξ
2/2dξ, (3.43)

= Img

∫ ∞
−∞

eιxξ−
ξ2

2 dξ, (3.44)

= e−x
2/2Img

∫ ∞
−∞

e
−1
2

(ξ−ιx)2dξ. (3.45)
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Using the result from [9] in Eq. (3.45), we have

∫ ∞
−∞

sin(xξ)e−ξ
2/2dξ = e−x

2/2
√

2π. (3.46)

Now using Eq. (3.46) in Eq. (3.42) becomes

E
[
cos(xξ)ξn

]
=

(−1)mx2m√
(2m)!

e−x
2/2. (3.47)

Putting Eq. (3.47) in Eq. (3.35) gives

vn(x, 0) =
(−1)mx2m√

(2m)!
e−x

2/2, if n = 2m. (3.48)

If n = 2m+ 1, Eq. (3.35) becomes

vn(x, 0) = 0. (3.49)

Thus from Eq. (3.48) and Eq. (3.49), we get for x >0,

vn(x, 0) =


(−1)mx2m√

(2m)!
e−x

2/2 if n = 2m,

0 if n = 2m.

(3.50)
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Fig. 3.5 and Fig. 3.6 shows the graphs of First moment and Second moment respectively

when t = 1.8 sec.

Both graph does not show any dispersion or dissipation.

Figure 3.5: First Moment from LW with WCE with c = 0.6 or 1.

49



Figure 3.6: Second Moment from LW with WCE with ∆x = 0.01 and ∆t = 0.01.
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Chapter 4

Concluding Remarks

First we derived modi�ed Lax-Wendro� scheme for nonlinear Burger's equation with random

initial conditions using Wiener Chaos expansion. Then we obtained �rst and second statistical

moments for the problem

We see that when the initial conditions are discontinuous, the modi�ed Lax-Wendro�

scheme will exhibit oscillatory behavior. In order to implement the method with a non-

oscillatory numerical scheme, predictor-corrector methods such as MacCormack method or

Total Variation Diminishing (TVD) approach can be applied.
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