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ABSTRACT 

 

Recently, research interest is revolving in understanding the temperature dependence of 

environmental partitioning properties governing the fate, behavior, and transport of organic 

pollutants, which may be attributed to the global warming phenomenon. The environmental 

partitioning property data are generally measured at room temperature (20-25◦C) which requires 

the temperature correction for the hot climatic regions. Enthalpy is an important thermodynamic 

parameter required to correct partitioning property data for temperatures differences. In this thesis, 

I developed an easy and parsimonious 2-parameter partitioning model (2p-PM) to predict standard 

molar enthalpies of vaporization. Unlike previous models such as the widely used Abraham 

Solvation Model (ASM), my 2p-PM — based on correlation of enthalpy of vaporization with a 

linear combination of two partition coefficients of octanol-water and air-water systems — is 

computationally fast and parametrically parsimonious with almost similar predictive performance 

as observed for the ASM. This new model can be integrated in the US EPA’s EPI-Suite Software. 

In the second part of my thesis, I developed a GC×GC model which is based on the retention time 

information of non-polar chemicals on the comprehensive two-dimensional gas chromatography 

(GC×GC). It can be applied to complex environmental mixtures such as polyhalogenated flame 

retardants, paint additives, and plasticizers. Taken together, this study provides the means and 

methods to understand the temperature dependence of vaporization of chemicals in different 

climatic scenarios. 

Keywords 

Standard molar enthalpy of vaporization, linear free energy relationship, Enthalpy of phase change, 

Abraham solvation model, quantitative structure vaporization enthalpy relationships, Trouton’s 

rule, entropy, EPI-Suite™. 
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  Chapter 1 

INTRODUCTION 

1.1 Background  

Organic chemicals’ equilibrium partitioning properties stimulate their transportation and 

circulation among various phases of the environment such as air, soil, water, etc. (Schwarzenbach, 

R. P., Gschwend, P. M., & Imboden, 2002). Fate models typically work with equilibrium 

partitioning properties for evaluating their behavior along with examining the effects of 

hydrophobic pollutants on the environment. They work as input parameters, which are defined as 

to 

             𝑃𝑥𝑦,𝑖 = {
𝐶𝑥,𝑖

𝐶𝑦,𝑖
}  𝑒𝑞𝑢𝑖𝑙𝑙𝑖𝑏𝑟𝑖𝑢𝑚                                                      (1) 

𝑤ℎ𝑒𝑟𝑒,                                                                                                                                       

    𝑃𝑥𝑦,𝑖 = 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑎𝑚𝑖𝑑 𝑥 𝑎𝑛𝑑 𝑦 𝑝ℎ𝑎𝑠𝑒 

    𝐶𝑥,𝑖, 𝐶𝑦,𝑖 =

𝐴𝑡 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑖𝑛𝑔 𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚, 𝑐𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑒𝑛𝑡 𝑖 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡𝑤𝑜 𝑝ℎ𝑎𝑠𝑒𝑠   

Partitioning of a compound between two media is influenced by factors like solubility, pH of the 

system, temperature etc. (Bahadur et al., 1997)(Chaurasia, 2017)(Chiou et al., 1977).  

If we measure partition coefficients as a function of temperature so it requires lengthy and accurate 

experimentation. The dependence of partition coefficient on temperature is an important factor but 

most often it is not considered while developing environmental models based on partitioning 

parameters.(Bahadur et al., 1997). 

Jianguo Wu et al. used global climate models for estimating variations in Ksoil-air values for POPs 

under warming climatic conditions. It was found that Climate warming not only strongly 

influences the temporal and spatial variability of contaminants but also their behavior, partitioning 

properties, and persistence etc (Wu, 2020). Recent studies showed that Global climate change lead 

to many processes and interactions that have strong potential to affect the physiochemical 

properties and their fate and transport in the environment is also altered because partitioning of 

chemicals is sensitive to it (Gouin et al., 2013)(Wu, 2020). Therefore, it is necessary to estimate 
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or model the organic chemicals' fate and transport in the environment based on the temperature-

dependent environmental-related partitioning coefficients (Macleod et al., 2007).                                                                                                        

In gas-phase systems, partitioning of chemicals is highly temperature-dependent so their respective 

enthalpies of the phase transfer (enthalpy of vaporization) must be known. 

Standard molar enthalpy of vaporization is the measure of energy that is required by one mole of 

the substance, at constant temperature and pressure, to undergo a transition from liquid to gas 

phase. The usual unit is kilojoules per mole (kJ/mol) (Helmenstine, Anne Marie, Ph.D (2020). 

An improved Watson equation for the enthalpy of vaporization as a function of temperature is given 

in the following equation (Coker, 2014).  

                           ∆𝐻𝑣 = 𝐴(1 − 𝑇𝑇𝑐)𝑛                                              (2) 

Where 

∆𝐻𝑣  = enthalpy of vaporization (kJ/mol)  

𝐴, 𝑇𝑐 and  𝑛 = regression coefficients for a chemical compound  

𝑇 = temperature (K)  

The logarithm of the partition coefficient of compound i is linearly related to the corresponding 

enthalpy by following free energy relation.  

                             𝑙𝑛𝐾𝑖 = −
∆𝐺

𝑅𝑇
+ 𝑐𝑜𝑛𝑠𝑡𝑖                                           (3) 

As we know 

                                                  ∆𝐺𝑖=∆𝐻𝑖 − 𝑇∆𝑆𝑖                                                   (4)                                                                                               

By using above equation 3, it is possible to estimate the the equilibrium partition coefficient of 

compound i at temperature T if the enthalpy of phase change is known. (Goss & Schwarzenbach, 

1999).  

Above equation 4 shows a quantitative linear relationship between enthalpy and entropy of a 

partitioning system but this relationship can be implied only as long as chemicals are dominated 

by the same type of interactions. (Goss & Schwarzenbach, 1999).                                                                                        

Abraham and coworkers (Abraham & Acree, 2012) also highlighted a predictive method for 

estimating Kw (gas to water partition coefficient) values at temperature range of 273-373K via 

https://www.thoughtco.com/energy-definition-and-examples-2698976
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equations proposed by Plyasunov and Shock. This method is based on using the thermodynamic 

input quantities, log Kw (298), ∆Hw, and ∆Cpw for the estimation of Kw (gas to water partition 

coefficient) values. But the problem while considering this approach is that it requires all the three 

thermodynamic properties for predicting Kw (gas to water partition coefficient) values.  

Chromatographic techniques can also be used as a tool for the estimation of various physical and 

biological properties. Various studies explore the potential of gas chromatography (Ellison, 2005) 

(Gobble & Chickos, 2015) (Chickos et al., 1995) to estimate the enthalpies of vaporization of 

neutral organic compounds. In recent studies, two-dimensional gas chromatography emerged as a 

better chromatographic technique for the risk assessment of chemicals (Barden & McGregor, 

2017). According to Nabi et al., many diffusion-related (logK) and environmental partitioning 

properties of nonpolar complex organic compounds were favorably predicted using LFERs based 

on two solute parameters i.e., 𝑢1,𝑖 and 𝑢2,𝑖 which were extracted from the first- and second-

dimensions retention time of the analytes on GC×GC chromatogram. A set of 79 nonpolar model 

chemicals was first used to theoretically calibrate the GC×GC model Eq. 1 for 32 properties and 

then we validated our model equation 1 via set of 52 nonpolar chemicals already analyzed on the 

two-dimensional gas chromatography GC×GC instrument. 

                𝑙𝑜𝑔𝐾 = 𝜆3 + 𝜆2𝑢2,𝑖 + 𝜆1𝑢1,𝑖                       (5) 

Where 𝜆3, 𝜆2, 𝜆1 are constants and specific to each partitioning system. This GC×GC model is a 

powerful tool that allows the estimates of properties to apply directly on the nonpolar compounds 

detected in environmental mixtures (Naseem et al., 2021), (Nabi & Arey, 2017). 

1.2. Problem statement  

It is difficult to measure the enthalpy values for chemicals experimentally due to the unavailability 

of optimum conditions and environmental losses (material losses, energy losses, changes in 

temperature, pressure, etc.) during experiments. Also, the existing computational models to find 

enthalpy values have limited applicability because some of these are parameter intensive and need 

laborious experimental work to find out the descriptors, some of these do not have enough 

databases of required independent parameters, and some of these are too difficult for interpretation 

of non-technical users. These practical constraints invited us to develop simple and parsimonious 

models to reliably find the enthalpy values of chemicals.    
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1.3. Hypothesis  

2p-PM based on the linear combination of logKow and logKaw (octanol-water and air-water 

portioning coefficients respectively) and GCxGC model based on descriptors 𝑢1,𝑖 and 𝑢2,𝑖  can 

predict enthalpies of vaporization of neutral organic chemicals with the accuracy nearly equal to 

Abraham Solvation Model. 

By keeping in view the above problem statement, we designed our study based on the following 

objectives.  

 To develop a statistically robust, rigorous, and parsimonious partitioning model that would 

be computationally inexpensive and simple to apply 

 To investigate different types of inter-molecular descriptors dictating the enthalpies of the 

phase transfer for neutral organic chemicals. 

 To develop a robust GC x GC model that would have potential to predict enthalpies of 

phase change for non-polar complex mixtures. 

1.4. Scope of the study   

The research work was divided into two phases.  

 In the first phase, 2p-partitioning model has been developed to determine variability in 

enthalpy of phase change for neutral organic chemicals. 

 In the second phase, the model has been tested for certain criteria of internal and external 

validity to check its robustness. 

1.5. Significance of the study   

 Our newly developed two-parameter models (both partitioning and GC x GC) can be used 

by various researchers in chemical laboratories or industries to estimate enthalpies of phase 

change rapidly and accurately at low cost.  

 Estimated enthalpy data can be incorporated into the partitioning model to make necessary 

temperature corrections due to climate change. 
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                                                                                                             Chapter 2                                                                                                                                                                       

LITERATURE REVIEW 

For last many years, researchers are putting their considerable efforts to accurately measure 

∆𝑣𝑎𝑝𝐻𝑚
0   values. The experimental value of this thermodynamic property for any chemical is not 

easy to measure accurately due to certain limitations like human errors, environmental losses, and 

unavailability of optimum conditions. At present experimental measurements from researchers are 

unable to keep pace with the discovery of new chemical compounds. Moreover, a decrease in 

spending from the private sector for research and development has also caused reduction in 

development of experimental values. 

So, to cater this problem, we seek help from predictive methods or techniques. For estimating  

∆𝑣𝑎𝑝𝐻𝑚
0  values of pure chemicals, already available predictive methods can be categorized as 

those based on: 

(i) Trouton’s rule and other associated methods (Fishtine, 1963a)(Fishtine, 1963b) (Wadsö 

et al., 1966)(Zhao, Li, et al., 1999)(Zhao, Ni, et al., 1999). 

(ii) Correlations of vapor pressure with  ∆𝑣𝑎𝑝𝐻𝑚
0  and information about critical constants 

(Clausius-Clapeyron equation) (ANTOINE & C., 1888)(Wagner, 1973)(Walton, 1989)  

(iii) Law of corresponding states (PITZER et al., 1993)(Wang & Shi, 1990)(Morgan &   

Kobayashi, 1994). 

(iv) Estimation methods involving empirical mathematical equations which highlight 

relationship between vaporization enthalpy and other measured physical properties 

(Giacalone, n.d.)(Chen, 1965)(Vetere, 1979)(Vetere, 1995)(Liu, 2001)(Bowden & Jones, 

1948)(Wright, 1960)(An et al., 1995). 

(v)  QSAR methods by using descriptors derived from structural considerations (Ivanciuc et 

al., 2001)(Arjmand & Shafiei, 2018)(Abooali & Sobati, 2014)(Gharagheizi, 2012). 

(vi) Estimation method such as group additivity, group contribution, and fragmentation     

methods used for assigning the numerical values to the functional group or atom 

arrangement present in the molecule (Naef & Acree, 2017)(Abdi et al., 2018)(Rebas et 

al., 2016)(Gharagheizi et al., 2011). 

(vii) Models based on quantum mechanics (Kaminski et al., 2017) (Flôres et al., 2016). 
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(viii) Models based on Abraham solute descriptors. (Churchill et al., 2019) (Shanmugam et al.,   

2021)(Abraham et al., 2021)(Tirumala et al., 2020)(Shanmugam et al., 2021). 

Hence, there is an emerging trend since many years to develop fast and authentic 

estimation methods for enthalpies of phase change.  

There are certain limitations associated with each predictive method. For example, Group 

additivity and group contribution methods can be applied only to those molecules for which all 

required group values are available. (Churchill et al., 2019). 

Models based on QSAR (quantitative structure activity relationship) method estimated  ∆𝑣𝑎𝑝𝐻𝑚
0  

values at normal boiling points with good correlations. But this method required the molecular 

descriptors and normal boiling data of chemicals. 

Another predictive method based on Solvation free energy calculations makes the use of 

electrostatic contribution COSMO solvation model for the electrostatic contribution, and 

perturbation theory for the hard-core molecules’ cavity term. But this method was limited to the 

class of organic compounds comprising only the selective kinds of atoms (H, C, F, Cl, N, O atoms). 

Moreover, model also required the experimental data of liquid molar volumes which is often not 

readily available or requires difficult alternatives. (Lin et al., 2004).  

Recently, Solomonov and coworkers published a remarkable work in which they reported the 

method to estimate both standard molar enthalpies of vaporization and sublimation based on the 

difference in enthalpies of solution and solvent.  

                                     ∆𝑠𝑢𝑏𝐻𝑚
0 = ∆𝑠𝑜𝑙𝑛𝐻𝑚

0 − ∆𝑠𝑜𝑙𝑣𝐻𝑚
0                                              (6) 

                                      ∆𝑣𝑎𝑝𝐻𝑚
0 = ∆𝑠𝑜𝑙𝑛𝐻𝑚

0 − ∆𝑠𝑜𝑙𝑣𝐻𝑚
0                                             (7) 

But this method also has limitations associated with it as it requires a wide range of solvents and 

applies to limited number of chemicals. (Solomonov et al., 2004). 

Churchill and coworkers, in their study developed poly-parameter LFER model equations 

comprising Abraham solute descriptors to accurately estimate ∆𝑣𝑎𝑝𝐻𝑚
0  for 703 chemicals. It was 

found that Abraham model correlations also provide reasonably accurate estimates of ∆𝑣𝑎𝑝𝐻𝑚
0  so 

they consider the same modeled equations for ∆𝑣𝑎𝑝𝐻𝑚
0  estimation that has already been used to 

estimate ∆𝑠𝑜𝑙𝑣𝐻𝑚
0 .  

Churchill model showed that enthalpy of phase change depends upon different types of 

intermolecular interactions that are believed to be present in solution.  
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∆𝑣𝑎𝑝𝐻𝑚
0  (𝑘𝐽𝑚𝑜𝑙−1) = 5.938(0.313) − 7.667(0.456)𝐸 + 9.983(0.876)𝑆 + 15.483(1.200)𝐴 +

1.694(0.558)𝐵 + 9.608(0.067)𝐿 − 1.541(0.618)𝑆. 𝑆 + 43.483(1.964)𝐴. 𝐵                    (8) 

                     (𝑤ℎ𝑒𝑟𝑒 𝑛 = 703, 𝑆𝐷 = 2.55, 𝑅2 = 0.979, 𝐹 = 4710.9)    

∆𝑣𝑎𝑝𝐻𝑚
0  (𝑘𝐽𝑚𝑜𝑙−1) = −3.246(0.412) + 5.114(0.515)𝐸 + 19.635(0.955)𝑆 +

20.131(1.355)𝐴 + 1.266(0.629)𝐵 + 34.388(0.271)𝑉 − 2.487(0.698)𝑆. 𝑆 +

42.350(2.215)𝐴. 𝐵                                                                                                                 (9) 

                        (𝑊ℎ𝑒𝑟𝑒 𝑛 = 703, 𝑆𝐷 = 2.87, 𝑅2 = 0.974, 𝐹 = 3687.6) 

Where, E, S shows polarizability/di-polarity and molar refraction of solute, A, B represents acidity 

and basicity of the hydrogen bonds present in solute, V represents McGowan characteristic volume 

of a solute when molecules are stationary(cm3 /mole)/10 and L is the logarithm of the solute’s 

dimensionless gas-to-hexadecane  partition coefficient at 298 K (Churchill et al., 2019)(Naseem et 

al., 2021)(Holley et al., 2011).To yield better mathematical correlations they introduced two 

additional interaction terms named as A.B and S.S to account for any compound-compound 

interactions that could be present in pure organic compounds. 

We can see that modeled equations (8) (9) have good explanatory power but a careful point-by-

point comparison of calculated versus experimental  ∆𝑣𝑎𝑝𝐻𝑚
0   values reveal that correlation 

overpredicted enthalpy values for 28 alkylamines ,16 alkanediols and 1 alkanetriol. Therefore, new 

model correlations were then developed after excluding these chemicals from the list comprising 

of 658 chemicals.  

∆𝑠𝑜𝑙𝑣𝐻𝑚
0  (𝑘𝐽𝑚𝑜𝑙−1) = 6.192(0.243) − 7.688(0.361)𝐸 + 10.222(0.684)𝑆 +

3.068(1.366)𝐴 + 1.341(0.506)𝐵 + 9.517(0.052)𝐿 − 1.038(0.483)𝑆. 𝑆 + 81.336(3.314)𝐴. 𝐵   

(10)                            

(𝑊ℎ𝑒𝑟𝑒 𝑛 = 658, 𝑆𝐷 = 1.95, 𝑅2 = 0.986, 𝐹 = 6759.9)                                    

∆𝑠𝑜𝑙𝑣𝐻𝑚
0  (𝑘𝐽𝑚𝑜𝑙−1) = −2.960(0.356) + 4.688(0.452)𝐸 + 20.076(0.863)𝑆 +

8.803(1.711)𝐴 + 0.328(0.633)𝐵 + 34.145(0.236)𝑉 − 1.861(0.606)𝑆. 𝑆 +

77.495(4.147)𝐴. 𝐵                                                                                                                            (11) 

                 (𝑊𝑖𝑡ℎ 𝑁 = 658, 𝑆𝐷 = 2.44, 𝑅2 = 0.979, 𝐹 = 4286.1)  
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A good R2 and reduced SD values show that back calculations were poor for above-mentioned 

compounds. 

Further in their study Churchill et al.,2019, introduced 3 indicator variables to their already 

modeled equations to include these chemicals into Abraham model correlations.  

∆𝑠𝑜𝑙𝑣𝐻𝑚
0  (𝑘𝐽𝑚𝑜𝑙−1) = 6.100(0.257) − 7.363(0.380)𝐸 + 9.733(0.733)𝑆 + 4.025(1.351)𝐴 +

2.123(0.521)𝐵 + 9.537(0.055)𝐿 − 1.180(0.515)𝑆. 𝑆 + 77.871(3.233)𝐴. 𝐵 −

5.781(0.441)𝐼𝑎𝑚𝑖𝑛𝑒 − 14.783(1.235)𝐼𝑛𝑜𝑛−𝛼,𝜔−𝑑𝑖𝑜𝑙 − 17.873(1.431)𝐼𝛼,𝜔−𝑑𝑖𝑜𝑙        (12)      

       (𝑊𝑖𝑡ℎ 𝑁 = 703, 𝑆𝐷 = 2.09, 𝑅2 = 0.986, 𝐹 = 4925.6) 

∆𝑠𝑜𝑙𝑣𝐻𝑚
0  (𝑘𝐽𝑚𝑜𝑙−1) = −3.008(0.368) + 5.226(0.456)𝐸 + 18.422(0.892)𝑆 +

8.978(1.661)𝐴 + 1.363(0.637)𝐵 + 34.141(0.242)𝑉 − 2.045(0.631)𝑆. 𝑆 +

75.728(3.952)𝐴. 𝐵 − 4.888(0.543)𝐼𝑎𝑚𝑖𝑛𝑒 − 13.297(1.510)𝐼𝑛𝑜𝑛−𝛼,𝜔−𝑑𝑖𝑜𝑙 −

17.619(1.748)𝐼𝛼,𝜔−𝑑𝑖𝑜𝑙                                                                                                              (13) 

      (𝑊𝑖𝑡ℎ 𝑁 = 703, 𝑆𝐷 = 2.54, 𝑅2 = 0.979, 𝐹 = 3274.7) 

It has been seen that all Abraham modeled correlation equations proposed by the authors have 

good explanatory power, but they require computationally expensive Abraham experimental input 

parameters. Currently, only for <8000 organic compounds experimental data of Abraham 

descriptors is available. Moreover, above correlations require different indicator variables to 

include chemicals that showed deviations. So, all these problems call for the model that could 

precisely estimate ∆𝑣𝑎𝑝𝐻𝑚
0  of compounds without using Abraham descriptors and involving any 

indicator variable.                 
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Chapter 3 

METHODOLOGY 

In this chapter, detail about data acquisition, materials and methods is described which was used 

for the investigation purpose of our study. Reliable computational software like R-studio, 

XLSTAT were used to perform data analysis. 

3.1. Data acquisition  

Standard molar enthalpy of vaporization  ∆𝑣𝑎𝑝𝐻𝑚
0  experimental values involving 703 chemicals 

were taken from the referenced paper (Churchill et al., 2019). List of all chemicals along with the 

values of their respective ASDs is mentioned in the table S1 of supporting information. To avoid 

over-representation, multiple values reported for a single chemical were averaged using an 

arithmetic mean. All the inorganic values were omitted from the data sets. We included all the 

chemicals (28 alkylamines,16 alkanediols and 1 alkanetriol) into the data list which had been 

eliminated into the previous reference study because our proposed 2-parameter LFER can account 

for enthalpy estimates for all chemicals providing their Kow and Kaw values are known. The values 

for Abraham solvation descriptors, SMILES codes, and CAS numbers of chemicals were taken 

from the freely available database UFZ LSER. The estimated values of Kow and Kaw were acquired 

from EPI Suite TM 4.1 – KOWWIN v1.68, Henry Win v 3.20, (US-EPA, 2018) respectively. The 

experimental values of logKow were available for only 355 chemicals out of 703 chemicals. We 

used the ASM model (Poole et al., 2013) to calculate the logKow values for the remaining 348 

chemicals. Similarly, the experimental values of logKaw were available for 398 chemicals the 

remaining values were predicted by using ASM (Poole et al., 2013). We used the values of logKaw 

and logKow estimated from ASM in place of unavailable experimental values. 

3.2. Calibration and evaluation of model 

3.2.1. 2-parameter partitioning model   

For calibration and evaluation of 2-parameter model, we will use Kow and Kaw values estimated via 

ASM equations(Poole et al., 2013) instead of the experimental values because for most of the 

chemicals experimental values were not available (for 355 chemicals exp. Kow values and for 398 
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chemicals Kaw values ). We observed that in comparison to the other estimation approaches, ASM 

estimated Kow, Kaw values were more accurately.  

For further evaluation of accuracies, we compared both ASM predicted, and EPI-suite estimated 

values of logKow and logKaw with experimental data reported in reference(Churchill et al., 2019)  

A careful point-by-point comparison of the ASM and EPI suite estimated values for the same 

experimental data (n=355) reveals that ASM equation for logKaw performed much better 

(RMSE=0.24) than KOWWIN v1.68 (RMSE=0.25). Similarly, ASM equation for logKaw was better 

(RMSE=0.38) than Henry Win v3.20(RMSE=0.45) when the experimental data size was n=398. 

So, when experimental values are available, we would prefer them over ASM predicted values, 

which in turn would be considered as more accurate or preferable over the EPI-Suite estimated 

values of logKow and logKaw. 

The 2-parameter model is then evaluated by putting experimentally determined and EPI Suite™ 

estimated values of Kow and Kaw. For the final data set, both experimental as well as estimated 

values of Kow and Kaw are attached as an additional file in table S2 of supporting information. 

We used ASM predicted Kow and Kaw values only for a rigorous evaluation of the model. Once this 

evaluation is done, our 2p-LFER model does not need ASDs any longer as Kow and Kaw properties 

in the model are not dependent only on ASDs for their values. ∆𝑣𝑎𝑝𝐻𝑚
0  values of the chemicals for 

which values of ASDs are not known-can be estimated by using logKow and logKaw in the 2p-LFER 

model. Further, these parameters can be either measure in a laboratory, or can be found in 

literature, or can be predicted reliably by using estimation approaches like 4.1 – KOWWIN v1.68, 

Henry Win v3.20 (US-EPA, 2018). Conversely, it has been seen that laboratory measurements of 

Kow and Kaw are easy than laboratory measurements of ASDs.  

In the end, we tested the fitting of our 2p-LFER model to experimental data of  ∆𝑣𝑎𝑝𝐻𝑚
0 , logKow 

and logKaw (n=300) (R2=0.83). We also tested its fitting on data containing experimental values of  

∆𝑣𝑎𝑝𝐻𝑚
0  and EPI Suite™ estimated values of logKow and logKaw (R2=0.83). Statistics of these 

trainings were then compared to the statistics of model when it was trained on data involving 

experimental ∆𝑣𝑎𝑝𝐻𝑚
0  values and ASM estimated logKow and logKaw values (R2=0.94).  
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3.2.2. GC x GC Model  

The GC × GC Model was calibrated and evaluated by using the data from the previous study (Nabi 

et al., 2014). A set comprised of 79 nonpolar chemicals from different chemical families was used 

for the calibration of the model (as shown in table 1).  

 

Table 1. Set of 79 nonpolar chemicals used for the calibration of the GC × GC model 

Chemical  Chemical  Chemical  Chemical  

nonane carbon tetrachloride benzene, propyl- fluorene 

decane 1,1,2-trichloroethane benzene, butyl- phenanthrene 

undecane hexachloroethane benzene, pentyl- pyrene 

dodecane γ-HCH benzene, octyl- benz[a]anthracene 

methylcyclopentane 1,3-butadiene, 1,1,2,3,4,4-

hexachloro- 

benzene, decyl- chrysene 

cyclooctane 1,3-cyclopentadiene, 

1,2,3,4,5,5-hexachloro- 

fluorobenzene PCB 28 

cyclododecane Enflurane 1,3-difluorobenzene PCB 52 

cyclohexadiene 1-bromobutane 1,4-difluorobenzene PCB 101 

1,5,9-cyclododecatriene 1-bromooctane 1,3,5-trifluorobenzene PCB 118 

3-methylcyclohexene dibromomethane 1,2,3,5-tetrafluorobenzene PCB 138 

cyclonona-1,2-diene tribromomethane benzene, 1,3-dichloro- PCB 153 

fluoromethane hexabromoethane benzene, 1,4-dichloro- PCB 180 

1-fluorobutane diiodomethane benzene, 1,2-dichloro- p,p'-DDE 

1-fluoropentane 1,2-diiodethane benzene, 1,2,4-trichloro- 

1-fluorononane 1-iodohexane benzene, hexachloro- 

tetrafluoromethane Iodononane bromobenzene 

sulfur hexafluoride 1-iodobutane 1,4-dibromobenzene 

1-chlorobutane Benzene 1,3-dibromobenzene 

1-chlorooctane Toluene 1,3,5-tribromobenzene 

1,4-diiodobenzene acenaphthylene 1,2,3,5-tetrabromobenzene 

naphthalene Acenaphthene iodobenzene 

naphthalene, 1-methyl- Dibenzofuran 1,3-diiodobenzene 

 

The singular value decomposition (SVD) analysis was done on 6 ASDs (E, S, A, B, L, V) of 79 

chemicals to further evaluate the representativeness of the calibration dataset. The first dimensions 

explain the 99% variability according to SVD analysis. In the next step, the solute parameters 𝑢1 
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and 𝑢2 for the calibration set of 79 chemicals were acquired by the transformation of the gas-

stationary phase partition coefficients for the first and second dimensions of the GC × GC. The 

ASM equations for the relevant stationary phases from the literature were used to estimate the 

values of the gas-stationary phase partition coefficient for these 79 nonpolar chemicals (Churchill 

et al., 2019) . Then, to develop two-parameter GC x GC, we used 𝑢1 and 𝑢2 as independent 

variables and ∆𝑣𝑎𝑝𝐻𝑚
0  as dependent variable and performed MLR analysis. 

In the final step, the above fitted GC × GC  model was  independently validated by using earlier 

published (Nabi et al., 2014) 𝑢1 and 𝑢2 values for 52 nonpolar chemicals. For this set the solute 

parameters 𝑢1 and 𝑢2 were acquired by transforming the retention time of first and second 

dimension of nonpolar analytes measured by GC × GC instrument (Nabi et al., 2014), (Nabi & 

Arey, 2017). The calibration set and the validation set were different in a sense that the values of 

input parameters 𝑢1 and 𝑢2  for validation set were experimentally determined by the analysis of 

these chemicals on GC × GC instrument while the values of 𝑢1 and 𝑢2 were determined 

theoretically for the calibration set. 

For some nonpolar chemicals, experimental ∆𝑣𝑎𝑝𝐻𝑚
0  values were not available in the validation 

and calibration set of the GC × GC model. So, for such chemicals we used the ASMs’ estimated 

values. After the training and validation, GC × GC model no longer needs the experimental values 

of ASDs. In contrast to ASMs, the GC × GC models now can be used to predict ∆𝑣𝑎𝑝𝐻𝑚
0  values 

for complex non-polar mixtures. The only thing that users need would be the values of 𝑢1 and 𝑢2 

of a chemical to estimate its ∆𝑣𝑎𝑝𝐻𝑚
0  values. The 𝑢1 and 𝑢2 values for the nonpolar chemicals can 

be easily determined by analyzing them on the GC × GC instrument. To develop GC × GC model, 

both validation and training datasets contain only nonpolar chemicals which have representatives 

of many chemical families such as benzene, n-alkanes, cycloalkanes, halogenated alkanes, 

cycloalkenes, halogenated alkenes, n-alkylbenzenes, halogenated benzenes, polychlorinated 

naphthalenes (PCNs), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons 

(PAHs), polybrominated diphenyl ethers (PBDEs), and organochlorine pesticides. 

3.3. Statistical analysis  

In my study, I performed statistical analyses like multiple linear regression, Principal Component 

Analysis (PCA), and cross-validation by using statistical software R-studio (version - 3.5.3) (R 

(3.5.3), n.d.)(Dexter, 2014) and XLSTAT (2018). Contribution of a variable in the model was 
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considered statistically significant if the computed t-value of the variable coefficient is less than 

or equal to the critical t-values reported at the significance level (p-value <0.05) for a given degree 

of freedom. The Akaike Information Criterion was employed for the selection of the ideal number 

of variables in the model. AIC penalizes the model upon adding new variables that do not impart 

sufficient information to the model. Hence, a model with minimum AIC value was selected. 

Analysis of correlation was also performed to check any overlapping information brought by 

different descriptors. 

Different regression diagnostics were applied to the models e.g studentized residuals, Cook’s 

distance, and hat values, in order to determine its domain of applicability and to identify the 

influential values in the training datasets. Moreover, bootstrapping technique was used for 

estimating the standard errors of beta-coefficients (fitting co-efficient) in my model. Some cross-

validation techniques such as K-nearest neighbors, K-fold (n = 10), repeated K-fold (n = 10, repeat 

= 3, repeat=10), leave-one-out and bootstrapping (n = 1000) to evaluate the robustness. To 

identify the contribution of each variable in the principal component, PCA test was used. 
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                                                                                                    Chapter 4 

RESULTS AND DISCUSSIONS 

4.1. Justification of two-parameter model 

I proposed a hypothesis that enthalpy of phase change of neutral organic and organometallic 

compounds can be estimated adequately by using two parameters Kow and Kaw. To test this 

hypothesis, I examined the information content that each descriptor in Abraham solvation 

parameter model contains. Abraham solvation parameter model equations from the literature 

shows that for neutral organic compounds, five dimensions of the information [E, S, A, B, L] and 

[E, S, A, B, V] are good enough to successfully explain about 98% and 97% of the variability in 

the enthalpy data respectively. However, PCA on the 703×7 matrix of ASDs [E, S, A, B, V, L] of 

the training set shows that the first two of the total 7 dimensions express about 71.7% of the total 

information. Rest of the information 28.3% was depicted by the remaining dimensions. It has been 

seen that the first dimension was primarily comprised of a linear combination of L, S, B and V 

with small influence of A and E. while the second dimension was comprised of mainly S, V and 

the remaining dimensions were comprised of minor contributions from other descriptors. Results 

show the distribution of variance among six parameters. It also originates a need for the 

development of a parsimonious model in replacement of such parameter intensive model. But what 

could be appropriate descriptors in the parsimonious model that would express the maximum 

information corresponding to all these dimensions of PCA?  

Criteria for selection of model descriptors 

The following considerations should be taken into account while selecting suitable descriptors: 

i. They should be accessible easily. 

ii. They can be either easily measurable in laboratory or has a wide experimental database. 

iii. They could sufficiently account for changes in free energy during any phase change. 

In fig 1, it can be observed that octanol-water and air-water partition coefficients are the two unique 

parameters that have been qualified for the above criteria. To prove this claim, we reviewed the 

information distribution resulting from the PCA 703×9 matrix [E, S, A, B, V, L, ∆Hm, logKow and 
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logKaw] in principal components. It has been seen that maximum variability in enthalpy data has 

been partitioned between the first two dimensions (76%) of PCA and so my two partition 

coefficients (logKow and logKaw). Only these two descriptors alone contain much of the information 

encoded into all ASDs. 

The ggheat map of the correlation matrix shows the correlation of our two descriptors, logKow and 

logKaw with ∆𝑣𝑎𝑝𝐻𝑚
0  , indicating that they contain similar information about intermolecular 

interactions, encoded in ASDs. Taken together, it has been seen that, logKow and logKaw show a 

strong correlation (r= 0.3, r=-0.43 respectively) with ∆𝑠𝑜𝑙𝑣𝐻𝑚
0 . Hence, supporting results from 

correlation encourages us to prefer the suitability of Kow and Kaw properties as these properties have 

easy and quick estimation approaches with a wide experimental database compared to ASDs. 
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Fig.1 Dimensionality analysis of my proposed 2-pm. First three boards display the results obtained from 

principal component analysis performed on the 703x 7 matrix of Abraham solute descriptors. a. scree 

plot of eigenvalues (i.e., how much information each principal component retains). b. correlogram 

representing the distribution of Cos2 (quality of representation) into 8 dimensions. size and color 

intensity of circle is proportional to the quality of presentation of information by variable c. correlation 

circle representing the quality of representation and relationship between variables in first two 

dimensions. The length of the arrowed line from origin to the circumference is proportional to the quality 

of representation of the variable. Angles between these arrowed lines measure of the degree of correlation 

among descriptors. V and L are almost orthogonal to the [E, S, A, B] but show a positive correlation with 

each other.  d. gg heat correlation map (correlogram obtained after Pearson correlation analysis of 703x 

9 matrix). Colors red and blue indicate positive and negative correlations respectively among different 

pairs of variables.  
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4.2. Two-parameter LFER model 

4.2.1 2-parameter model developed on ASM and Experimental log 𝑲𝒐𝒘 and log 

𝑲𝒂𝒘 values 

My two parameter Linear model based on the descriptors, logKow and logKaw successfully 

explained the variability in ∆𝑠𝑜𝑙𝑣𝐻𝑚
0  data with R2=0.91. 

∆𝑠𝑜𝑙𝑣𝐻𝑚
0 (𝑘𝐽𝑚𝑜𝑙−1) = 5.460(±0.567) + 10.876(±0.141)𝑙𝑜𝑔𝐾𝑜𝑤 − 9.418(±0.115)𝑙𝑜𝑔𝐾𝑎𝑤     

(14) 

(n=703, 𝑅2=0.9134, Adj 𝑅2 =0.91, RMSE= 5.224) 

Here the n denotes the number of experimental observations of ∆𝑣𝑎𝑝𝐻𝑚
0 , 𝑅2 and Adj 𝑅2 represents 

the coefficient of correlation and adjusted coefficient of correlation respectively and RMSE stands 

for root mean square error. To train our model equation, we estimate the values of Kow and Kaw 

from respective ASM equations due to the scarcity of experimental data (Poole et al., 2013). 

First, I put experimental values of Kow and Kaw in the model equation, tested its performance then 

put the ASM predicted values and tested its performance. We found that experimentally 

determined Kow and Kaw values were in good agreement with the ∆𝑣𝑎𝑝𝐻𝑚
0  experimental values than 

ASM predicted logKow and logKaw. These statistics suggested that logKow and logKaw experimental 

values exhibit more accuracy than ASM predicted values.  
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       Figure 2: Bar-plot representing the contribution of each partition coefficient 

4.2.2 2-parameter model developed on Experimental log 𝑲𝒐𝒘 and log 𝑲𝒂𝒘 values  

When the 2-parameter model was trained solely on experimentally determined 

∆𝑠𝑜𝑙𝑣𝐻𝑚
0 , logKow and logKaw values, it resulted in the regression coefficient of R2 = 0.84. 

∆𝑠𝑜𝑙𝑣𝐻𝑚
0 (𝑘𝐽𝑚𝑜𝑙−1) = 8.473(±1.082) + 9.677(±0.304)𝑙𝑜𝑔𝐾𝑜𝑤 − 9.067(±0.239)𝑙𝑜𝑔𝐾𝑎𝑤             

(15) 

(n = 300, 𝑅2 = 0.84, Adj 𝑅2 = 0.84, RMSE =  4.088) 

Where n represents the number of experimental values of ∆𝑠𝑜𝑙𝑣𝐻𝑚
0 , logKow and logKaw. 

𝑅2, Adj 𝑅2and RMSE represents the correlation coefficient, adjusted correlation coefficient and 

root mean square error respectively.  

4.2.3 2-parameter model trained on the log 𝑲𝒐𝒘 and log 𝑲𝒂𝒘 values estimated 

from EPI-Suite. 

When 2-parameter model was trained solely on EPI-Suite estimated logKow and 

logKaw values, it was successful to explain about 84% variability in my enthalpy data.  
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∆𝑠𝑜𝑙𝑣𝐻𝑚
0 (𝑘𝐽𝑚𝑜𝑙−1) = 6.545(±0.788) + 11.43(±0.211)𝑙𝑜𝑔𝐾𝑜𝑤 − 9.032(±0.161)𝑙𝑜𝑔𝐾𝑎𝑤  

(16) 

(n = 703, 𝑅2 = 0.84, Adj 𝑅2 = 0.84, RMSE =  7.175) 

Where n represents the number of experimental values of ∆𝑠𝑜𝑙𝑣𝐻𝑚
0 , logKow and logKaw. 

𝑅2, Adj 𝑅2and RMSE represents the coefficient of determination, adjusted coefficient of 

determination and root mean square error respectively.  

4.2.4 2-parameter model developed using interaction terms  

Churchill et al., introduced interactions terms A.B and S.S in their Abraham model correlation 

equations for compound-compound interactions that could be present in pure organic compounds 

and produced significantly better correlation results. Addition of interaction terms in our already 

developed modeled equation 4 yielded a slightly better mathematical correlation.  

∆𝑠𝑜𝑙𝑣𝐻𝑚
0 (𝑘𝐽𝑚𝑜𝑙−1) =  4.677(± 0.561)  + 10.934 (± 0.137)𝑙𝑜𝑔𝐾𝑜𝑤 −

                                           9.958 (± 0.136) 𝑙𝑜𝑔𝐾𝑎𝑤 + 0.250 (±0.036) 𝑙𝑜𝑔𝐾𝑜𝑤 ∗ 𝑙𝑜𝑔𝐾𝑎𝑤        (17) 

 

(n = 703, 𝑅2 = 0.9188, Adj 𝑅2 = 0.9185, RMSE =  5.061) 

From the above equation we can see that addition of interaction term in the already developed 

model equation for the 703 chemical data set didn’t cause any significant increase in 𝑅2 value 

(from 0.914 to 0.918) but eq 6 is recommended over eq 5 as it deals with the compound-compound 

interaction already been discussed in the referenced Churchill model.  
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(a)                                                                                                       (b) 

 

(c)                                                                                         (d) 

Fig 3: (a) Shows that experimental logkaw is plotted against ASM logkaw. (b) Shows that experimental logkaw is plotted 

against estimated logkaw. (c) Shows that experimental logkow is plotted against ASM logkow. (d) Shows that 

experimental logkow is plotted against estimated logkow. Upper and lower lines around the regression line( solid line in 

the middle) bound the 95% confidence interval.   
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4.2.4 One parameter LFER model 

In the end I will check the contribution of the explanatory power of descriptors Kow alone to explain 

the variability in ∆𝑣𝑎𝑝𝐻𝑚
0 .  

                               ∆𝑠𝑜𝑙𝑣𝐻𝑚
0 (𝑘𝐽𝑚𝑜𝑙−1) = 0 + 12.11 (± 0.2897)𝑙𝑜𝑔𝐾𝑜𝑤                               (18) 

 

(n = 703, 𝑅2 = 0.7134, Adj 𝑅2 = 0.713, RMSE =  27.99) 

 

                              ∆𝑠𝑜𝑙𝑣𝐻𝑚
0 (𝑘𝐽𝑚𝑜𝑙−1) =  0 − 10.2128 (± 0.63) 𝑙𝑜𝑔𝐾𝑎𝑤                              (19) 

(n = 703, 𝑅2 = 0.2722, Adj 𝑅2 = 0.2712, RMSE =  44.59) 

Results have shown that out of a total 91.4% variance, 71% is explained by Kow alone. In 

comparison, Kaw depicts a small proportion of variability in ∆𝑣𝑎𝑝𝐻𝑚
0 . Reason behind the unequal 

depiction of information by two variables, Kow and Kaw, is that the former accounts for all the 

specific and non-specific interactions that are believed to be present in a compound while the later 

accounts for only hydrogen-bond interactions.  

4.2.5 GC x GC model 

My newly developed GC × GC model (Eq.20) is successful to explain the variability in the 

∆𝑣𝑎𝑝𝐻𝑚
0  data of nonpolar organic chemicals with good correlation coefficient 𝑅2 = 0.988. Here, 

only the experimental ∆𝑣𝑎𝑝𝐻𝑚
0   data of 79 nonpolar chemicals was used to create training set. 

ASM estimated values were preferred when the experimental values were unavailable. 

 

 ∆𝑠𝑜𝑙𝑣𝐻𝑚
0 (𝑘𝐽𝑚𝑜𝑙−1) = 11.980(±0.718) + 16.397(±0.239)𝑢1 − 10.277(±1.983)𝑢2         (20) 

 

(𝑛 = 79, 𝑅2 = 0.988, 𝐴𝑑𝑗. 𝑅2 = 0.987 , 𝑅𝑀𝑆𝐸 = 2.393) 

 

 

 

 

 



 
 

32 
 

 

 

Figure 4: Bar-plot representing the contribution of each partition coefficient 

4.3. Model Validation  

4.3.1 2p-PM validation  

I tested this model (eq 4) for certain criteria of external and internal validity. For internal validation, 

I performed four independent cross-validation tests (K-fold, repeated K-fold, Leave-one-out, and 

Bootstrap cross-validations) with their results (see Table S1) indicating that the developed model 

is statistically robust. It fulfills the criteria for internal validity and can be used for predictive 

purposes. 
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Table S1: Cross-validation of 2-parameter model (equation 4) to evaluate model robustness. 

For external validation, I will randomly split our whole data set into a training set (n=564) and test 

set (n=139) through the Hold-out approach. Model is first trained on a training set comprising 564 

chemicals resulting in equation 5. 

∆𝑠𝑜𝑙𝑣𝐻𝑚
0 (𝑘𝐽𝑚𝑜𝑙−1) = 5.5165(±0.63) + 10.875(±0.156)𝑙𝑜𝑔𝐾𝑜𝑤 − 9.360(±0.12)𝑙𝑜𝑔𝐾𝑎𝑤 

(21) 

(n=564, 𝑅2=0.9144, Adj 𝑅2 =0.9141, RMSE= 5.223) 

It has been seen that equation 21 has regression statistics similar to the equation 14. Moreover, 

cross-validation statistics of both equations were also found to be the same. For both training and 

validation sets, I compared the predicted  ∆𝑣𝑎𝑝𝐻𝑚
0  values from equation 5 with experimental 

values. As equation 4 is being trained on full data set, so it would be more appropriate and highly 

recommended to the users to prefer equation 4 trained on full data set (n = 703) than equation 5.    

 

 

 

Indicators  Hold-out approach 

(splitting of data, test 

vs train) 

LOOCV K - 

fold 

CV 

Repeated K - 

fold CV 

CV by Bootstrapping 

  KNN(test) KNN(train)     3 

times 

10times  N= 

100 

N=500 N=1000 

R2 0.9091 0.9144 0.912 0.912 0.913 0.912 0.914 0.911 0.911 

RMSE 5.25 5.22 5.25 5.144 5.15 5.14 5.217 5.25 5.26 

Adj.R2 0.9087 0.9141 ------ ------ ------- ------- --- ---- ---- 

MAE 3.551 3.327 3.39 3.39 3.39 3.39 3.404 3.41 3.42 
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Table S2: Cross-validation statistics of 2p-PM (equation 5) by using 4 independent tests. 

 

It has been seen that model equation trained solely on available experimental Kow and Kaw values 

yielded better mathematical correlations than trained on ASM estimated values of logKow and 

logKaw. However, the mathematical correlation was found to be worsened when the model 

equation was trained on the logKow and logKaw values estimated from EPI-Suite (KOWWIN v1.69 

and Henry win v3.21). So, for appropriate estimation, we would recommend preferring equation 

4 above all the trained equations as it is being trained on the large and accurate dataset. But if, for 

some chemicals, experimental logKow and logKaw values and ASM based logKow and logKaw values 

are not available so in this case logKow and logKaw values estimated from EPI-Suite would be a 

good alternative.  

 

Indicators   LOOCV K - fold 

CV 

Repeated K - fold 

CV 

CV by Bootstrapping 

       3 

times 

10times  N= 

100 

N=500 N=1000 

R2  0.912 0.915 0.915 0.915 0.914 0.912 0.9131 

RMSE  5.26 5.144 5.15 5.14 5.20 5.27 5.24 

Adj.R2  ------ ------ ------

- 

-------    

MAE  3.35 3.36 3.36 3.35 3.36 3.38 3.38 
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Figure 5:  Experimental VS calculated ∆𝑠𝑜𝑙𝑣𝐻𝑚
0 . Linear regression plot for Two - Parameter 

Partitioning Model (eq 4) showing training set and validation set. Here upper and lower dotted 

lines bound 95% CI around the regression line (dotted middle line). 

4.3.2 GC x GC model validation  

The performance of our GC×GC model was evaluated by comparing its estimated values with 

the ASMs and PMs predicted ∆𝑣𝑎𝑝𝐻𝑚
0  values. The RMSE value was (3.2153) for the GC×GC 

model while the RMSE values of PMs was (9.397) for the same model set. The cross-validation 

was done by using the bootstrap and leave-one-out techniques to further evaluate the model 

robustness. 
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I would use the following independent approach to validate the GC×GC models. The input 

parameters 𝑢1 and 𝑢2were acquired by the analysis of 70 nonpolar chemicals on GC×GC 

instrument from an earlier study (Nabi et al., 2014). The values of 𝑢1 and 𝑢2 for this dataset were 

incorporated into already developed GC×GC model equation. The calculated values of ∆𝑣𝑎𝑝𝐻𝑚
0 by 

this method compared appropriately with ∆𝑣𝑎𝑝𝐻𝑚
0  values estimated by ASMs and PM. 

Table S2: Cross-validation statistics of GC × GC model by using independent tests 

 

Indicators  Hold-out approach 

(splitting of data, test 

vs train) 

LOOCV K - 

fold 

CV 

Repeated K - 

fold CV 

Bootstrapping 

method  

N=500 

Independent 

set 

approach  

  KNN(test) KNN(train)     3 

times 

10times   N=70  

R2 0.984 0.989 0.9865 0.912 0.98 0.99 0.98 ----- 

RMSE 3.122 2.149 2.44 5.144 2.40 2.28 2.46 3.215 

MAE 2.01 1.40 1.66 3.39 1.66 1.67 1.72 ----- 
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Figure 6:  Experimental VS calculated ∆𝑠𝑜𝑙𝑣𝐻𝑚
0  via GC × GC model. Linear regression plot for 

GC × GC model showing training set and validation set. Here, upper and lower dotted lines 

bound 95% CI around the regression line (dotted middle line). 
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Chapter 5 

CONCLUSIONS AND RECOMMENDATIONS 

I have been able to develop a poly-parameter linear regression equation, based on two descriptors 

Kow and Kaw from EPI Suite™, which correlates the ∆𝑣𝑎𝑝𝐻𝑚
0  data with squared correlation 

coefficient of approximately 91%. Above derived correlation in eq 4 is comparable to, if not better 

than, other method that make use of complicated and expensive techniques for estimating ∆𝑣𝑎𝑝𝐻𝑚
0 . 

My model performed better than Churchill model, in a sense, that it can predict ∆𝑣𝑎𝑝𝐻𝑚
0  values of 

chemicals belonging to any class of neutral organic compounds for which Abraham descriptors 

are not known and without using indicator variables. Above all, Churchill correlation model is 

more accurate as it gives us approximately 98% accurate estimates of ∆𝑣𝑎𝑝𝐻𝑚
0  but at cost of 

expensive Abraham descriptors which are currently available only for 8000 or so organic 

compounds. From here my model takes the lead as it can predict enthalpy change values without 

using above descriptors with an accuracy nearly equal to Churchill model. We believe that this 

study, to some extent, overcome the limitations of already developed models and paved a pathway 

leading to accurate, facile and, rapid risk assessment of organic species via enthalpy data.  

5.1 Integration of partitioning model into EPI SuiteTM 

Estimation program interface (EPI) SuiteTM is the collection of many modules for the estimation 

of environmental fate and physical/chemical properties of a large number of compounds. It was 

developed by the Environmental Protection Agency (EPA) and Syracuse Research 

Corporation(Balakrishnan et al., 2020). I inputted the estimated values of logKow and logKaw given 

by EPI SuiteTM software (KOWWIN v1.69 and Henrywin v3.21) into the PMs for enthalpies of 

phase changes. The values predicted by using this approach were compared with the experimental 

values of  ∆𝑣𝑎𝑝𝐻𝑚
0  obtained from the literature (Churchill  et al., 2010). Though the statistics 

(RMSE ranged from 0.3988 to 1.280) were not as good as for experimental and ASM predicted 

logKow and logKaw values (RMSE ranged from 0.2134 to 0.5817) but still, these are good enough 

for integration into EPISuiteTM for the easy and quick predictions of ∆𝑣𝑎𝑝𝐻𝑚
0 values for multiple 

neutral organic compounds. 
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5.2 Limitations and outlooks  

A disadvantage of my 2-parameter model is that it can make predictions only for neutral organic 

compounds. It is not suitable for ionized species which show distinct partitioning behavior than 

neutral compounds.(Bouwer, 1997). Moreover, it is applicable only under neutral conditions. 

However, by adding descriptors like pKα according to a given pH of the system of interest it is 

possible to account for the partitioning behavior of ionized species. (Franco & Trapp, 2008).  

Introducing the descriptors of ionizability to the model and its evaluation would extend the scope 

of my study that would be discuss in future studies.                                                                                                                                       

Due to unavailability of experimental logKow and logKaw, I trained our model by taking the 

estimated values of logKow and logKaw via ASM equations.(Poole et al., 2013). Although, ASM 

equations give us accurate predictions of logKow and logKaw values, but I believe that if our 2-

parameter model has been trained on experimental values its predicting power is expected to be 

improved. But if I train the model on pure experimental data, inflated errors around regression 

coefficients are expected.  
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