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Abstract

This dissertation is a mathematical analysis of fluid flow and heat transfer to a laminar

thin liquid film of a viscoelastic fluid over a horizontal stretching sheet. An appropriate

similarity transformation has been used to investigate the flow of a thin liquid film and

subsequent heat transfer from the stretching sheet. The similarity transformation enables

one to reduce the unsteady Prandtl’s boundary layer equations to a system of non–linear

ordinary differential equations. The resulting non–linear differential equations are solved

via the homotopy decomposition method. The results obtained have a higher degree of

accuracy as compared with the RK–4 method with shooting technique used by different

authors. Boundary layer thickness is explored for some typical values of the unsteadiness

parameter and magnetic parameter. Some general results of the present analysis show

the effects of the Prandtl number, Eckert number, unsteadiness and magnetic parameters

on the flow and the heat transfer parameters. Film thickness is decreased by increasing

values of the magnetic parameter and unsteadiness parameter and vice versa. Both the

parameters decrease the temperature profile and increase the shear stress by increasing

their values. High values of the Prandtl number decrease the temperature profile. The

effect of increasing values of the Eckert number is to increase the temperature distribution

in flow region.
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√

b
ν(1−αt)h

25 S unsteadiness parameter - α
b

26 Pr Prandtl number - Pr =
νρCp

k

27 Ec Eckert number - Ec =
U2

Cp(Ts−T0)

28 Mn magnetic parameter - Mn =
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Chapter 1

Introduction

1.1 Motivation

Thin liquid films have many applications in different branches of science and technology.

They have attracted the attention of number of researchers. The knowledge of fluid flow

and heat transfer within a thin liquid film is crucial to understand the coating process,

design of various heat exchangers, chemical processing equipments, food stuff processing,

wire and fiber coating and cooling of plastic sheets. The prime aim in almost every

extrusion application is to maintain the surface quality of the extrudate. All the coating

processes demand a smooth glossy surface to meet the requirements for best appearance

and optimum service properties such as low friction, transparency and strength.

The problem of extrusion of thin surface layers needs special attention to gain some

knowledge for cooling the coating product efficiently. Heat transfer may alter the results

appreciably due to viscous dissipation if the fluid is very viscous in the extrusion of plastic.

In most problems of polymer extrusion, the flow is induced by the stretching motion of

the elastic sheet. For example, in a melt spinning process the extrudate from the die

is generally drawn and simultaneously stretched into a filament or sheet. That sheet is

solidified with coolant liquid or by direct contact of water by gradual cooling. The quality

of the final product greatly depends on the rate of cooling and the rate of stretching.

The choice of an appropriate cooling liquid has a vital role as it has a direct impact on

the rate of cooling. Care must be taken to exercise optimum stretching rate. Sudden

stretching may spoil the properties desired for the final outcome. Some important liquids

like synthetic oils, dilute polymeric solutions such as 5.4 % of polyisobutelene in cetane

can be used as effective coolant liquids [1]. The flow and heat transfer characteristics

of a thin liquid film over a stretching sheet considerably affect the quality of the final

product in such extrusion processes. So the analysis and fundamental understanding of

the momentum and thermal transports for such processes are very important.

1
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1.2 Literature survey

B.C. Sakiadis [2] was the pioneer researcher who work on various aspects of the stretching

problem involving Newtonian and non–Newtonian fluids. Crane [3] was the first among

others who consider the steady two dimensional flow of a Newtonian fluid driven by a

stretching elastic flat sheet which moves in its own plane with a velocity varying linearly

with a distance from a fixed point. Prandtl’s boundary layer theory proved to be of

great use in Newtonian fluids as Navier-Stokes equations can be converted into simplified

boundary layer equations that are easier to handle. Many authors extended Crane’s work

to explore various aspects of flow and heat transfer occurring in an infinite domain of the

fluid surrounding the stretching sheet [4–17]. Sarpakaya [18] was the pioneer researcher to

study the magnetohydrodynamic (MHD) flow of a non-Newtonian fluid.

Wang [19] was first who considered the hydrodynamics of a flow in a thin liquid film

driven by an unsteady stretching surface. Wang himself [20, 21] reduced the unsteady

Navier–Stokes equation to a non–linear ordinary differential equation with the help of a

similarity transformation and solved the same using a kind of multiple shooting method

(see [22]). Lio [23] has used homotopy analysis method to re-investigate the thin film flow

over a stretching sheet. Of late the works of Wang [24] on finite fluid domain are extended

by several authors [25–30] for fluid of both Newtonian and non–Newtonian kinds using

various velocity and thermal boundary conditions. There are extensive works in literature

concerning the production of thin fluid film either on vertical wall achieved through the

action of gravity or that over a rotating disk achieved through the action of centrifugal

forces. Sparrow and Gregg [31] considered the problem of laminar film condensation on

a vertical plate. They were pioneer to solve this problem. The solution given by them

is based on the boundary layer theory and similarity transformation. Dandput et al. [32]

have investigated the liquid film over an unsteady stretching sheet. Hayyat et al. [33] have

studied the flow of second grade fluid film over an unsteady stretching sheet. Chin [34,35]

has discussed heat transfer in a power law fluid film over an unsteady stretching sheet and

the effects of viscous dissipation on heat transfer in a non-Newtonian liquid film over an

unsteady stretching sheet. Abel and Tawade [36] analyzed the heat transfer in a liquid

film over an unsteady stretching surface with viscous dissipation in presence of external

magnetic field. Mamaloukas and Abel [37] discussed the effect of the Prandtl number and

magnetic parameter on viscous flow parameters. They have not discussed the effect of the

Eckert number for the different values of unsteadiness parameter and magnetic parameter.

In this dissertation we have solved the problem of fluid flow and heat transfer in a

liquid film over an unsteady stretching sheet by the Decomposition method connected

with homotopy. The important observation in this study is that the sheet temperature is

reduced for increasing values of the Prandtl number and the Eckert number. Our results
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have a higher degree of accuracy than the results of Wang [24], Anderson [26], Subhas [36]

and Mamaloukas [37]. The effects of the Eckert number and Parandtl number on the flow

and heat transfer have been discussed for different values of the unsteadiness parameter

and magnetic parameter.

1.3 Contribution of this dissertation

The main contribution of this dissertation is to solve a system of boundary value problems

consisting of a third order ordinary differential equation for flow problem and a second

order differential equation for heat transfer via the homotopy decomposition method. The

effects of the four parameters, namely unsteadiness parameter, magnetic parameter, the

Prandtl number and the Eckert number on the flow and heat transfer have been analyzed.

1.4 Plan of the dissertation

In chapter 2, the preliminaries along with examples have been given which are the pillars

of the later work. The terminology which is used in chapter 2, will work throughout this

dissertation. This chapter demands the basic knowledge of description of flow, general

theory of stress and strain, conservation of mass, conservation of momentum, constitutive

equations, Navier–Stokes equations, boundary layer theory and thermal boundary layer

equations. In chapter 3.1, we have described a problem of magnetohydrodynamic (MHD)

flow and heat transfer in a liquid film of viscoelastic incompressible fluid over a horizontal

stretching sheet and have analyzed the problem with four parameters. The effects of the

unsteadiness parameter, magnetic parameter, Prandtl number and Eckert number on the

flow and heat transfer have been discussed.



Chapter 2

Preliminaries

Fluid motion has been analyzed by the assumption that fluid under consideration forms

a physical continuum. A physical continuum is a medium filled with a continuous matter

such that every part of the medium, however small, is itself a continuum and entirely filled

with matter. While considering the motion of fluids, it is helpful to keep an infinitesimal

volume of fluid as a geometrical point in a mathematical continuum of numbers. The laws

of fluid motion can be described by the Euclidean space. Euclidean space is sufficient to

describe the laws of fluid motion because this space is a curvature free space in which

set of rectangular cartesian coordinates can always be introduced on a global scale. One

can introduce any other system of coordinates in this space without altering the nature

of space itself. In motion of fluid, the speed encounter is much smaller than the speed of

light so that the relativistic effects are negligibly small. To describe any kind of motion, a

reference coordinate system is needed. Since fluid motion does not require any relativistic

considerations, one can take time as an absolute quantity common to any frame of reference

at rest [38]. In this dissertation we have discussed Navier–Stokes equation for motion of

fluid. Boundary layer theory have been used to derive boundary layer equations with the

help of order of magnitude approach. Model analysis and the Reynold’s number have been

explained for the requirement of the problem. Basics of heat transfer, energy conservation,

thermal boundary layer equations for heat transfer have also been discussed.

The following part of this chapter deals with some basic definitions and notions about

the fluid flow and heat transfer. All the definitions and notions have been taken from the

Literature given in references [38–44].

2.1 Basic definitions and notions

Configuration: The set of coordinates that describes the position of all the particles of

a substance is known as a configuration of that substance.

Deformation: If the substance undergoes some change from any initial configuration

4
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then the change in the substance from an initial configuration to the current configuration

is defined as deformation. The deformation can take place because of external forces, body

forces and temperature variations.

Flow: When a force is exerted on a substance, its configuration changes and thus it

undergoes deformation. If the deformation takes place continuously then this phenomenon

is called a flow.

Fluid: In every day life, three states of matter are recognized: solid, liquid and gas.

Liquids and gases have flow property while solids do not have that characteristic. On the

basis of flow property, liquids and gases are known as fluids. Fluids flow under the action

of some internal forces and flow continuously as long as these forces are in action. These

forces are known as shearing forces. Fluids flow under its own weight and take the shape of

any body with which it comes into contact. Hence fluid is defined as “a substance which

deforms continuously or we say it is flowing when some shearing forces are applied, no

matter how these forces are” [38].

Fluid mechanics: It is a branch of engineering science which deals with the behavior

of fluids under the conditions of rest and motion. One can study the fluid behavior with

and without influence of the forces. If the forces are absent the study is characterized

as fluid kinematics and otherwise fluid dynamics. Furthermore, the effect of forces could

be discussed in both the ways whether fluid is at rest or in motion. However, in this

dissertation we are dealing with the fluid in motion.

Magnetohydrodynamics (MHD): The subject which deals with the mutual interaction

of fluid flow and magnetic field is called magnetohydrodynamics [38].

Continuum assumption: It is well known that matter is made up of molecules or atoms

which are always in the state of random motion. In fluid dynamics the study of individual

molecule is neither necessary nor appropriate from the point of view of use of mathematical

methods. Hence one can consider the macroscopic (bulk) behavior of fluids by assuming

that fluids are continuously distributed over a given space [38]. This assumption is known

as continuum assumption. This continuum concept of matter allows one to subdivide a

fluid into fluid elements indefinitely.

Fluid element or fluid parcel or material element: It is a very small amount of

fluid. Fluid element is defined as the fluid contained within the infinitesimal volume [38].

Thin liquid film: A microscopically thin layer of material that is deposited onto a metal,

ceramic, semiconductor or plastic base. Typically less than one micron thick, thin films

can be conductive or dielectric (non-conductive) and are used in myriad applications.

For example: The top metallic layer on a chip and the coating on magnetic disks are

thin films. Thin films of photovoltaic material using silicon, cadmium telluride and other

elements are used to make solar panels and solar roof shingles.

Since Kinematics is the branch of science that deals with the motion apart from the
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consideration of mass and forces so we describe the kinematics of a fluid.

2.1.1 Kinematics of fluid

Lagrangian and Euler method of description: In Lagrangian method of description

of fluid motion, a particular fluid particle is identified and changes in velocity, acceleration

etc are studied as that fluid move onwards. On the other hand, in the Eulerian method

of description, the individual fluid particle is not identified. Instead, a point in a fluid

is chosen and changes in velocity, acceleration etc are studied as the fluid passes through

the chosen fixed point. We have adopted here the Lagrangian method of describing fluid

motion. We take a fluid particle and discuss its velocity and acceleration.

Velocity of fluid particle: Let us consider the fluid particle be at a point P (x, y, z) at

any time t and vector r denotes its position. This particle is displaced at another point

Q(x+ δx, y+ δy, z+ δz) at time t+ δt. Then the movement of particle in the time interval

δt is described by change of displacement PQ and denoted by δr. The rate of change

of displacement is called velocity and one can denote this velocity of fluid particle by q.

Mathematically we write

q = lim
δt→0

δr

δt
=
dr

dt
.

Clearly q is a function of position vector r and time t. Hence q can be expressed as

q =
dx

dt
i+

dy

dt
j+

dz

dt
k = ui+ vj+ wk,

which implies that

u =
dx

dt
, v =

dy

dt
, w =

dz

dt
,

where u, v, w are called components of velocity of fluid particle along the coordinate axes.

Material, local and convective derivatives: Suppose P (x, y, z) is any point within

the fluid and the velocity components of the fluid element are the function of position and

time t, that is,

u = f(x, y, z, t), v = g(x, y, z, t), w = h(x, y, z, t).

In a short interval of time δt, let particle which is at P moves to the point Q(x, y, z, t) by

covering a distance: uδt in the x-direction, vδt in the y-direction and wδt in the z-direction.

Then coordinates of Q are (x+uδt, y+vδt, z+wδt). If u+δu be the x-component , v+δv

be the y-component, w + δw be the z-component of velocity at Q. Then,

u+ δu = f(x+ uδt, y + vδt, z + wδt, t+ δt),

v + δv = g(x+ uδt, y + vδt, z + wδt, t+ δt),

w + δw = h(x+ uδt, y + vδt, z + wδt, t+ δt).

(2.1.1)
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Applying Taylor’s series to first component of equation (2.1.1) up to first order partial

derivative

u+ δu =f(x, y, z, t) + δt
∂f(x, y, z, t)

∂t
+ uδt

∂f(x, y, z, t)

∂x
+ vδt

∂f(x, y, z, t)

∂y

+ wδt
∂f(x, y, z, t)

∂z
+ · · ·,

u+ δu =u+ (
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
)δt+O(δt)2.

Let ax, ay and az be the components of the acceleration of the element of fluid at P . Then

we have

ax = lim
δt→0

δu

δt
= (

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
)u =

Du

Dt
,

where D
Dt = (u ∂

∂x + v ∂
∂y + w ∂

∂z + ∂
∂t), which is known as Particle derivative, Material

derivative or Substantial derivative. Similarly, we have:

ay = (
∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
)v =

Dv

Dt
, az = (

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
)w =

Dw

Dt
.

One can represent this derivative in vector notation as

Du

Dt
=
∂u

∂t
+ (q · ∇)u, (2.1.2)

where q = ui+ vj+wk, ∇ = ∂
∂x i+

∂
∂y j+

∂
∂zk. The term

∂
∂t is called local derivative and it

is associated with time variation at a fixed position, the term (q · ∇) is called convective

derivative and it is associated with the change of a physical quantity (fluid particle) due

to motion. Similarly, we can write for the components v, w

Dv

Dt
=
∂v

∂t
+ (q · ∇)v and

Dw

Dt
=
∂w

∂t
+ (q · ∇)w. (2.1.3)

Combining equations (2.1.2) and (2.1.3) with vector notation

Dq

Dt
=
∂q

∂t
+ (q · ∇)q.

Here Dq
Dt shows the acceleration of fluid particle of a fixed identity which is rate of change

of velocity.

2.1.2 Types of force

Force: It is an influence that causes a change of direction, change of speed or change of

shape of an object. In fluid mechanics we come across different forces. In this subsection

we briefly explain them one by one.

Surface force: It is a type of force which acts on the inner and outer surface of the

fluid element and which is proportional to the surface area of the element on which it

acts. Surface force arises due to action of surrounding fluid (through direct contact) on
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the element under consideration. Thus it is a boundary or surface action. This force is

expressed as “force per unit surface area of the chosen element”. For example, stress force

on fluid.

Stress force on fluid: A fluid has the property that it is deformable, then the stress is

a measure of internal forces acting on a fluid. In the quantitative terms, it is the amount

of average force per unit area of a control volume within the fluid. A fluid is continuum

by continuum assumption. So the stress forces are distributed continuously in all possible

directions. The intensity of stress is expressed in unit of force divided by unit of area. In

a three dimensional space the stress force has nine components and is represented by a

tensor of rank 2 which is denoted by τij , where i, j = x, y, z.

Shear stress: A shear stress is defined as a stress which is applied on parallel or tan-

gential direction to a surface of a material (fluid). Usually shear stresses are denoted by

τxy, τxz, τyx, τyz, τzx, τzy.

Normal stress: The stress applied in normal direction to the surface of a material (fluid)

is known as normal stress. Usually normal stresses are denoted by τxx, τyy, τzz.

Figure 2.1: Stress force on surface of fluid body.

Strain: Whenever a stress is applied to a body (fluid) it deforms. This deformation is

called strain. The tensor that measures this deformation is called strain tensor. In solids

deformation takes place in one step, however, for fluids the deformation is continuous and

we deal with rate of strain.

Body force: It is a type of force which is proportional to mass (or possibly the volume)

of the fluid on which it acts. The body force is distributed throughout the volume of the

body and this force is usually expressed as “force per unit mass of the element”.

For example: gravity and inertia forces. Body forces may arise from other physical reasons

such as electric and magnetic force.

Inertial force: This force arises due to the acceleration of the body itself and therefore

not require any physical interaction. It is also called fictitious or pseudo or d’Alembert

force. Fictitious forces are always proportional to mass and according to Newton second
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law

F = ma, (2.1.4)

where a is acceleration.

2.1.3 Some basic properties of fluids

Mass density: For any material, mass density is defined as the quantity of matter (mass

of the fluid) in a unit volume at a given temperature and pressure [40]. It is denoted by ρ.

Here the concept of continuum will be useful and not the properties of individual molecule.

Consider a point P in the fluid having coordinates (x, y, z) in an Euclidean

space. Take a small volume δv about the point P. Denote the mass of this small volume

element by δm. Let x denote the linear dimension of the volume element which is large

compared with the mean distance between molecules. The mass density ρ at a point P is

the limiting value as the unit volume δv tends to x3, that is

ρ = lim
δv→x3

δm

δv
, (2.1.5)

its unit in system international (SI) is kg/m3. The fluid having less density will float

over the fluid having more density provided we have two different fluids having different

densities and mixing does not occur. Mass density varies with variation in temperature

and pressure. However, for solids and liquids this variation is negligible and we take it as

constant.

Pressure: When fluid is contained in a vessel, it exerts a force at each point of the inner

side of the vessel. This normal force per unit area acting on a real or imaginary surface in

the fluid is defined as pressure, that is,

Pressure =
force exerted

area of boundary
.

If the force F exerted on each unit area S of the boundary is the same, the pressure is said to

be uniform. It is denoted by p. Symbolically we can write p = F
S . In most cases of fluid

problems, it is observed that the pressure changes from point to point. Mathematically,

consider the element of force δF normal to a small area δS surrounding the point under

consideration: Mean pressure = δF
δS . Take limit δS → 0 but δS remains large enough to

preserve the concept of the fluid as continuum. Pressure at a point P (x, y, z) is

p = lim
δS→0

δF

δS
=
dF

dS
, (2.1.6)

its unit in system international (SI) is N/m2.

Incompressibility: The changes in pressure also occurs in every liquid problem. These

changes are sufficiently large. They are not so large to cause appreciable changes in density.

So these changes are usually ignored and liquids are treated as incompressible. A fluid is
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said to be incompressible if it requires large change in pressure to produce some appreciable

change in density [40]. We have used this concept in remark given in section 2.2.

Viscosity: One can observe that flow of water and air is much easier than syrup and

heavy oils. This demonstrate the existence of a property in the fluid, which controls its

rate of flow. This property of fluids is said to be viscosity or internal resistance (friction).

Newton says that viscosity is due to molecular diffusion between layers in the fluid. When

a molecule leaves one layer, it transfers its momentum to the adjoining layer. That transfer

creates an acceleration and that acceleration creates shear forces which are related to the

viscosity. Hence viscosity is defined as “it is a representative of internal fluid friction occurs

due to the motion of inter connected layers of fluid and thus causing a resistance to the

fluid flow” [40].

There are two types of viscosity.

(a) Dynamic viscosity: In a particular context of fluid dynamics, dynamic viscosity

is the ratio of shearing stress to the velocity gradient in a fluid. This definition comes

from Newton’s law of viscosity which states that the resulting shear stress is directly

proportional to the deformation rate. The constant of proportionality in this case is

known as dynamic viscosity or absolute viscosity or coefficient of viscosity. It is denoted

by symbol µ and defined as

µ =
τxy
du
dy

, (2.1.7)

where τ is a shear stress and du
dy is a velocity grad.

(b) Kinematic viscosity: In a continuum description, we are interested in diffusion of

momentum which is characterized by the ratio of dynamic viscosity µ to the density ρ of

the fluid. It is denoted by ν and expressed as

ν =
µ

ρ
. (2.1.8)

2.1.4 Types of fluids

Viscous fluid or real fluid: When normal as well as shear forces (stresses) exist in a

fluid, then the fluid is said to be viscous fluid. A viscous fluid has non-zero coefficient of

viscosity µ ̸= 0. For example: syrup and heavy oil are treated as viscous fluids.

Viscoelastic fluids: When the applied stress is released, some fluids after deformation

partially return to their original shape, such fluids are known as viscoelastic fluids.

For example: paint, crude oil (engine oils), asphalt, cosmetics, biological fluids (blood, pro-

tein solutions), toothpaste, grease, foodstuffs (ketckup, dough, salad dressing, egg white),

plastics (polymer melts, rubbers and polymeric liquids) are viscoelastic fluids.

In solids, shear stress is a function of strain but in fluids, shear stress is a function of

rate of strain. Depending on this relationship, fluids can be characterized for modeling as:

(a) Newtonian fluid: A Newtonian fluid is a fluid in which viscosity remains constant for
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all shear rates when the constant conditions of temperature and pressure are maintained.

For such fluids we say that applied shear stress is directly and linearly proportional to rate

of deformation. Mathematically,

τ = µ
du

dy
.

This law is known as Newton’s law of viscosity. For example: water, air, ethnol, benzene

etc are Newtonian fluids.

(b) Non–Newtonian fluid: A non-Newtonian fluid is a fluid whose flow properties are

not described by a single value of viscosity. In such cases viscosity is not constant but

depends upon the shear stress. If the viscosity decreases with an increase in applied shear

stress we call the fluid as shear thinning and if the viscosity increases the fluid is termed

as shear thickening. For non-Newtonian fluids we say that applied shear stress is not

proportional to rate of strain but its higher powers and its derivatives. In mathematical

terms

τ = k(
du

dy
)n,

where k is consistency index and n is flow behavior index. Above equation can also be

written as

τ = k(
du

dy
)n−1du

dy
= η

du

dy
,

where η is apparent viscosity. This relation is also known as constitutive relation. Due to

complexity of fluids that exists in nature, a single constitutive relation is not possible that

describes all the features of non–Newtonian fluids. For example: Tooth paste, shampoo,

gel, greases, lubricating oils, paints, blood, molten polymers and polymer solutions are

non-Newtonian fluids.

Viscoelastic materials behave in a manner similar to Newtonian fluids under

time-invariant conditions.

2.1.5 Types of flow

Laminar flow: If each fluid particle traces out a definite curve and curves traced out by

any two different fluid particles do not overlap (intersect) each other then this type of flow

is said to be laminar flow.

Unsteady flow: A flow in which properties and condition ϕ (say) associated with motion

of fluid depend on time so that flow pattern varies with time is said to be unsteady flow.

Symbolically,
∂ϕ

∂t
̸= 0. (2.1.9)

ϕ may be velocity, density, pressure, temperature etc.

Incompressible flow: A flow in which volume density of the flowing fluid does not change

with respect to time and space coordinates during the flow is said to be incompressible
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flow. All common liquids are generally incompressible and all gases are compressible.

Mathematically, if q is the velocity vector of fluid particle then

∇.q = 0. (2.1.10)

2.2 Law of conservation of mass (equation of continuity)

The equation of continuity is the mathematical form of the law of conservation of mass.

The law states that “fluid mass can neither be created nor destroyed”. Thus in continuous

motion, equation of continuity expresses the fact “ the rate at which the mass enters into

the system is equal to the rate at which mass leaves the system”. The continuity equation

expresses the fact that the flow of fluid is continuous; it has no break in it. Equation of

continuity (law of conservation of mass) in mathematical form is written as

Dρ

Dt
+ ρ∇ · q = 0. (2.2.1)

In cartesian coordinate system, this equation holds at all points of fluids.

Remark

• If the fluid is incompressible then ρ is constant, that is Dρ
Dt = 0. Then equation (2.2.1)

in cartesian coordinate system implies ∂u
∂x + ∂v

∂y +
∂w
∂z = 0.

• If there is motion in two dimensional xy-plane (say), then equation of continuity in

two dimensional flow is
∂u

∂x
+
∂v

∂y
= 0. (2.2.2)

2.3 Pattern of flow

Streamlines provide a fundamental and valuable tool for visualizing two dimensional (2D)

or three dimensional (3D) flow fields. The concept of streamlines is useful because it

enables the fluid flow in patterns of stream lines.

Streamlines: A stream line is a curve drawn in a fluid so that its tangent at each point

is in the direction of motion (i.e fluid velocity) at that point. Since the tangent is taken as

straight line, consider a point P (x, y, z) on a straight line. Let r be the position vector of

a point P . Let q = ui+ vj+wk be the fluid velocity at P . In case of stream line, tangent

dr = dxi+ dyj+ dzk is parallel to the fluid velocity q. Then

q× dr = 0 implies that
dx

u
=
dy

v
=
dz

w
.

In 2-dimensional flow
dx

u(x, y)
=

dy

v(x, y)
. (2.3.1)
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The equation (2.3.1) is a double infinite set of solutions that constitutes stream lines.

Stream function ψ is a scalar field whose relationship to velocity q is carefully selected to

automatically satisfy continuity.

Stream function: A stream function is an integral solution of the streamline equation.

dx

dt
= u(x, y),

dy

dt
= v(x, y).

By eliminating the time variable we obtain:

dx

u(x, y)
=

dy

v(x, y)
. (2.3.2)

The streamlines v(x, y)dx − u(x, y)dy = 0 are described by a differential of a function

i.e dψ = 0, whose integral gives a stream function ψ(x, y) = c, where c is a constant of

integration. The two characteristic properties of the stream function are: (i) the value of

ψ is constant on each streamline. (ii) the mass flow between two streamlines is ψ2 − ψ1,

where ψi is the value of ψ at the i- th streamline.

Use of stream function to satisfy mass–conservation equation: In case of flow

of an incompressible fluid, mass–conservation equation (2.2.2) reduces to the statement

that a vector divergence is zero, the divergence being of q or ρq respectively [39]. If we

impose the further restriction that the flow field is two dimensional, this vector divergence

is actually the sum of only two partial derivatives, and the mass conservation equation

can then be regarded as defining a scalar function ψ(x, y) from which the components

of q are obtained by differentiation. The procedure is described here for the case of an

incompressible fluid.

Consider two dimensional flow of a fluid. Let u, v be the components of velocity. Then

from equation (2.3.1), we have:

v dx− u dy = 0. (2.3.3)

The equation of continuity (2.2.2) gives −∂u
∂x = ∂v

∂y , which suggests the introduction of a

function ψ(x, y) called a stream function such that the differential equation (2.3.3) must

be exact differential dψ (say). We can write dψ = v dx − u dy = 0, also dψ can be

written as

dψ =
∂ψ

∂x
dx+

∂ψ

∂y
dy = 0. (2.3.4)

Comparing the equations (2.3.3) and (2.3.4), we obtain:

v =
∂ψ

∂x
, u = −∂ψ

∂y
,

which satisfy the equation of continuity (2.2.2).
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2.4 Navier–Stokes equation of motion

The Navier–Stokes equation describes the motion of a fluid. Equation of motion for viscous

incompressible flow with constant viscosity can be written from the literature given in

references [39].

Inertia(per volume)︷ ︸︸ ︷
ρ
( ∂q

∂t︸︷︷︸
unsteady

acceleration

+ (q · ∇)q︸ ︷︷ ︸
convective
acceleration

)
=

Divergence of stress︷ ︸︸ ︷
−∇p︸ ︷︷ ︸
pressure
gradient

+ µ∇2q︸ ︷︷ ︸
viscosity

+ ρB,︸︷︷︸
body force

(2.4.1)

which may be written as

(
∂q

∂t
+ (q · ∇)q) = −1

ρ
∇p+ ν∇2q+B,

where ν = µ
ρ is kinematic viscosity. In cartesian coordinate system, we obtain:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −1

ρ

∂p

∂x
+ ν(

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
) +Bx,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −1

ρ

∂p

∂y
+ ν(

∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2
) +By,

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −1

ρ

∂p

∂z
+ ν(

∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2
) +Bz.

For 2-dimensional plane flow, the equations

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν(

∂2u

∂x2
+
∂2u

∂y2
) +Bx,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν(

∂2v

∂x2
+
∂2v

∂y2
) +By,

0 = Bz.

(2.4.2)

are known as Navier Stoke’s equation of motion for two dimensional flow of viscous

incompressible fluid.

2.5 Fluid model and dynamical similarity

In order to construct the model which should have all the characteristics of the actual

object (prototype) and should give the required information about the prototype, the

following similarity must be ensured between the model and the prototype:

Reynold’s law of dynamical similarity: Dynamical similarity is the similarity of forces.

The flow in the model and its prototype are dynamical similar if at all the corresponding

points, identical type of forces are parallel and bear the same ratio. For example, if

Fvm, Fim, Fgm and Fvp, Fip, Fgp denote the viscous, inertia, gravity forces at a point in the

model and its prototype. Then, force ratio must be

Fvm
Fvp

=
Fim
Fip

=
Fgm
Fgp

= Fr.
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Reynold’s number: Reynold’s number denoted by Re ensures dynamic similarity at

corresponding points near the boundaries where viscous effects are more important. We

know that the inertia force (product of mass and acceleration) always exist in all flow

problems. Besides the inertia force, there always exist some additional forces (viscous

force, gravity force, pressure force, elastic force and so on) which are responsible for fluid

motion. The Reynold’s number is defined as the ratio of inertia force to the viscous force.

Re =
inertia force

viscous force
=

mass · acceleration
stress · cross sectional area

=
( cross sectional area · linear dimension · density ) · velocity/time

µ(dudy ) cross sectional area

Re =
linear dimension · density · velocity

µ(dudy ) · time
=

linear dimension · ρ · velocity

µ(UL )( linear dimension/velocity )

=
ρ · ( velocity )2

µ(UL )
=
UL
µ
ρ

=
UL

ν
.

2.6 Prandtl boundary layer theory

The boundary layer is a thin layer in which the effect of viscosity is important however

high the Reynold’s number may be [39]. As the Reynold’s number of a flow increases, the

effect of convection at any point becomes more important. In cases of some flow systems

involving a rigid boundary, the region in which viscosity has any effect on the flow shrinks

to a thin layer at the boundary as viscosity ν → 0. For example: flow due to an oscillating

plane wall, flow near a stagnation point at a plane wall, convergent flow in a channel,

the MHD flow over a stretching sheet etc, needs the concept of boundary layer. Now we

explain these approximations.

For convenience, consider a laminar two dimensional flow of a fluid. The fluid is of low

viscosity (large Reynold’s number) over a fixed semi infinite sheet. Unlike an ideal fluid,

it does not slide over the sheet but “sticks” to it. Assume that the sheet is at rest. The

fluid in contact with it will also be at rest. When the fluid is flowing on the surface of

sheet,the effect of surface motion is maximum at the adjacent fluid layer. The resistance

or viscosity is maximum near the surface. As one moves outwards (away from the sheet)

along the normal, the effect of viscosity reduces, that is, the velocity of the fluid will

gradually increase and will attain a full stream velocity U. After a thin region above the

sheet this effect is practically negligible (the transition from zero velocity at the sheet to

the full magnitude U takes place within the thin layer of the fluid in contact with the

sheet). That thin layer adjacent to the surface is known as a boundary layer. There is no

definite line between potential flow region (when friction is negligible) and the boundary

layer. Therefore in practice, we define the boundary layer as that region where the fluid

velocity is parallel to the surface and less than 99 % of the free stream velocity which is
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described by potential flow theory. The distance from the surface to the fluid layer which

attains a free stream velocity is termed as boundary layer thickness. It is denoted by δ.

The thickness of the boundary layer(δ) grows along a surface (over which fluid is

flowing) from the leading edge. The shape of the velocity profile and rate of increase of

the boundary layer thickness depend on the pressure gradient ∂p
∂x . Thus, if the pressure

increases in the direction of flow, the boundary layer thickness increases rapidly. When the

adverse pressure gradient is large, separation will occur followed by a region of reversed

flow. Separation point S is defined as the point at which

(
∂u

∂y
)y=0 = 0

where u is the x component of velocity. Due to the reversal of flow, there is considerable

thicknening of the boundary layer, and associated with it, there is a flow of boundary

layer fluid into the outside region. The exact location of the point of separation can be

determined only with the help of integration of the boundary layer equations.

The method of dividing the fluid in two regions was first proposed by Prandtl in 1905.

He suggested that the entire field of flow can be divided (for the sake of mathematical

analysis) into the following two regions:

(i) A very thin layer (boundary layer) in the vicinity of sheet in which the velocity

gradient normal to wall (i.e. ∂u
∂y ) is very large. Accordingly, the viscous stress µ∂u∂y

becomes important even when µ is small. Thus the viscous and inertial forces are of

the same order within the boundary layer.

(ii) In the remaining region (i.e. outside the boundary layer) ∂u
∂y is very small and so

the viscous forces may be ignored completely. Outside the boundary layer, the flow

can be regarded non-viscous and hence the theory of non-viscous fluids offers a very

good approximation there.

The following conditions are usually imposed on the distribution of velocity in the bound-

ary layer:

• the no slip condition

• that no mass shall flow through the wall

• that the velocity at the outer edge of the boundary layer shall approach that predicted

by an appropriate non-viscous theory.

Across the boundary layer the flow velocity changes from value zero at the boundary to

some finite value characteristic of an inviscid fluid, and derivatives w.r.t. y of any flow

quantity are in general much larger than those with respect to x. Thus at points within
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the boundary layer we may use the approximations [39]

| ∂u
∂x

|6| ∂u
∂y

|, | ∂
2u

∂x2
|6| ∂

2u

∂y2
| .

Importance of boundary layer theory: A thin boundary layer plays a vital role in

fluid dynamics. It has become a powerful method of analyzing the complex behavior of

real fluids. The concept of boundary layer can be utilized to simplify the Navier-Stokes

equations to such an extent that it becomes possible to tackle many practical problems

of great importance. The drag on ships and missiles, the efficiency of compressors and

turbines in jet engines, the effectiveness of air intakes for ram-and turbojets and so on

depend on the concept of boundary layer and its effects on the main flow. The boundary

layer theory can predict flow separation. It can explain the existence of a wake. The

pressure distribution produces a net force in the direction in which stream flows.

2.6.1 Prandtl boundary layer equations for 2-dimensional flow

Order of magnitude approach:

To apply the order of magnitude approach, consider the flow over a semi-infinite sheet.

We take rectangular cartesian coordinates with x measured in the sheet in the direction

of the laminar two dimensional incompressible flow, and y measured normal to the sheet.

Let viscosity of the fluid and thickness δ of boundary layer be small. Let U be the velocity

in the main stream just outside the boundary layer. We now determine the order of

magnitude of each term of the equations (2.4.2) and (2.2.2) to enable us to drop small

terms and thus to arrive at the simplified boundary layer equations. One can designate

the order of any quantity (q, say) by O(q).

Let O(u) = 1 and O(∂u∂x) = 1 within the boundary layer. Then ∂u
∂y is large as ∂u

∂y = 1
δ ,

u decreasing from a finite value U at the outer boundary of the layer to zero at the flat

sheet. Again O(∂
2u
∂y2

) = 1
δ2

in the boundary layer. Further O(∂u∂t ) = O(∂
2u
∂x2

) = 1. The

equation of continuity after labeling the order of magnitude shows that O(∂v∂y ) = 1.

∂u

∂x
+
∂v

∂y
= 0,

1 1

Since v = 0 when y = 0, O(v) = δ. Again O(∂v∂t ) = O( ∂v∂x) = O( ∂
2v
∂x2

) = δ whereas

O(∂
2v
∂y2

) = δ
δ2

= 1
δ . All these values have been inserted in equations of momentum in

absence of body force. The terms of body forces can not be dropped as they are not small

terms. The momentum equations after labeling the order of magnitude implies

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν(

∂2u

∂x2
+
∂2u

∂y2
),

( 1 1 1 δ
1

δ
) (1

1

δ2
)

(2.6.1)
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∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν(

∂2v

∂x2
+
∂2v

∂y2
).

( δ 1 δ δ 1) (δ
1

δ
)

(2.6.2)

Since the viscous force is taken as of the same order of magnitude as the inertia forces

within the boundary layer, the equation (2.6.1) implies that we must have O( ν
δ2
) = 1

so that O(δ) =
√
ν =

√
µ
ρ showing that smaller the viscosity of the fluid, the thinner the

boundary layer.

By neglecting the terms of the order δ and smaller from mass and momentum equation,

we obtain:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

∂2u

∂y2
,

0 = −∂p
∂y
,

(2.6.3)

with equation of continuity

∂u

∂x
+
∂v

∂y
= 0.

The equation (2.6.3) shows that the pressure distribution is a function of x only, that is,

for a given x, pressure p is constant throughout the boundary layer. If there is no pressure

gradient then ∇p = 0.

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
,

∂u

∂x
+
∂v

∂y
= 0. (2.6.4)

For the flow outside the boundary layer

∂U

∂t
+ U

∂U

∂x
= −1

ρ

dp

dx
. (2.6.5)

If the body force is present then equation (2.6.4) takes the form

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
+Bx,

∂u

∂x
+
∂v

∂y
= 0.

(2.6.6)

The above equations (2.6.6) are known as Prandtl’s boundary layer equations.

2.7 Basics of heat transfer

In simple terms, the discipline of heat transfer is concerned with only two things [42]:

(i) Temperature: It is a number that is related to average kinetic energy of the

molecules of a substance. If temperature is measured in kelvin degrees then this

number is proportional to the average kinetic energy of the molecules.
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(ii) Heat: In physics, heat is energy which is spontaneously flowing from an object with

a high temperature to an object with a lower temperature. It is a measurement of

the total energy in a substance. That total energy is made up of the kinetic energy

and potential energy of the molecules of a fluid.

A clear structure: When heat comes into a fluid, energy comes into the fluid which

can be used to increase the kinetic energy of the molecules, would cause an increase in

temperature, or that heat could be used to increase the potential energy of the molecules

causing a change in state that is not accompanied by an increase in temperature.

Similar deal is with polymeric solutions. On a microscopic scale, thermal energy is

related to the kinetic energy of the molecules. The greater a material temperature, the

greater the thermal agitation of its constituent molecules (manifested both in linear mo-

tion and vibrational modes). It is natural for regions containing greater molecular kinetic

energy to pass this energy to regions with less kinetic energy. Several material properties

serve to modulate the heat transferred between two regions at differing temperature. For

example thermal conductivities, specific heat, material densities, fluid velocities, surface

emissivity and more. Taken together, these properties serve to make the solution of many

heat transfer problems.

Heat transfer: It is a mechanism of transfer of thermal energy between two places having

different temperatures. It occurs until the system reaches to thermal equilibrium. Heat

transfer can take place through three basic modes, conduction, convection and radiation.

Conduction: In conduction process the thermal energy is transferred in two ways: molec-

ular interaction and by free electron. The equation which describes heat transfer in this

mechanism is known as Fourier’s law and mathematically

q

A
= −k∇T,

where q is the heat flux vector, A is the area normal to the direction of heat flow, ∇T is

the temperature gradient, k is the thermal conductivity and negative sign indicates that

heat flow is in the direction of a negative gradient.

Convection: The transfer of heat due to mixing of moments of different parts of the

fluid caused by density differences. In case of laminar flow all the energy transfer is by

molecular means. The rate equation for convective heat transfer was first given by Newton

in 1701, that is
q

A
= h△T,

in which △T is the temperature difference and h is the convective heat transfer coefficient.

Convective heat transfer is of two types.

Forced convection: In this type the fluid is made to flow past a surface by an external

agent. This classification describes those convective situation in which fluid circulation is
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produced due to some surface force or external force.

Natural or free convection: In free convection, the fluid motion result from the density

difference which are due to temperature difference.

Mixed convection: A convection in which both natural and forced convection occur at

a time.

2.7.1 Conservation of energy (energy equation)

We consider conservation of energy on the basis of first law of thermodynamics which

states that “ the total energy added to the system (both by heat and by work done on the

fluid) increase the internal energy per unit mass of fluid”. Let Q be the heat added per

unit mass of fluid through conduction and E be the internal energy per unit mass of fluid.

Then the rate of work done W by the normal and shearing stresses on a unit volume of

the fluid is

W =− p∇ · q+Φ, (2.7.1)

where the dissipation function Φ [39] is given by

Φ =µ
[
2{(∂u

∂x
)2 + (

∂v

∂y
)2 + (

∂w

∂z
)2} − 2

3
(
∂u

∂x
+
∂v

∂y
+
∂w

∂z
)2

+ (
∂v

∂x
+
∂u

∂y
)2 + (

∂v

∂z
+
∂w

∂y
)2 + (

∂w

∂x
+
∂u

∂z
)2)

]
.

(2.7.2)

Then the first law of thermodynamics (in terms of variation of energy) [40] may be written

as

ρ
dQ

dt
+W = ρ

DE

Dt
. (2.7.3)

Using equation (2.7.1) in equation (2.7.3), we obtain:

ρ
dQ

dt
− p∇ · q+Φ = ρ

DE

Dt
which implies ρ

dQ

dt
+Φ = ρ

DE

Dt
+ p∇ · q.

Also from equation of continuity (2.2.1)

Dρ

Dt
+ ρ∇ · q = 0 which implies p∇ · q = −p

ρ

Dρ

Dt
.

Now borrow a result

D

Dt
(
p

ρ
) =

1

ρ

Dp

Dt
− (

p

ρ2
)
Dρ

Dt
which implies p∇ · q = ρ

D

Dt
(
p

ρ
)− Dp

Dt
.

Using above equations, first law of thermodynamics gives

ρ
dQ

dt
+Φ = ρ

D

Dt
(E +

p

ρ
)− Dp

Dt
.

Put (E + p
ρ) = h ( enthalpy )

ρ
dQ

dt
+Φ = ρ

Dh

Dt
− Dp

Dt
. (2.7.4)
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Evaluation of heat Q: Let f be the rate of flow of heat across a given surface and ∂T
∂n

be the temperature gradient along the surface. According to the Fourier heat conduction

law “ the heat flux f crossing an area (i.e quantity of heat per unit time) is proportional

to the temperature gradient along the surface” [1]

f = −k∂T
∂n

,

where k is the thermal conductivity of the fluid and the negative sign signifies that the

direction of the flux is opposite to that of temperature gradient. Let there be a fluid

particle at P (x, y, z). T and ρ be the temperature and density of the fluid at P (x, y, z)

respectively. Construct a small parallelepiped with edges of length δx, δy, δz, parallel to

their respective coordinate axes, have P at one of the angular points. Then the heat flow

through the face PQRS per unit time is

f(x, y, z) = −k∂T
∂x

δyδz.

The heat flow through the opposite face Ṕ Q́ŔŚ per unit time can be obtained by Taylor’s

theorem

f(x+ δx, y, z) = f(x, y, z) + δx
∂

∂x
f(x, y, z) + · · ·.

Hence, the net gain in energy per unit time within the fluid element in the x-direction

(due to flow through faces) PQRS and Ṕ Q́ŔŚ is

Net gain in energy in x- direction = f(x, y, z)− [f(x, y, z) + δx
∂

∂x
f(x, y, z) + · · ·]

= −δx ∂
∂x
f(x, y, z) to the first order of approximation

= −δx ∂
∂x

(−k∂T
∂x

δyδz)

= δxδyδz
∂

∂x
(k
∂T

∂x
).
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Similarly,

Net gain in energy in y- direction = δxδyδz
∂

∂y
(k
∂T

∂y
),

Net gain in energy in z- direction = δxδyδz
∂

∂z
(k
∂T

∂z
).

Hence the total quantity of heat introduced in the fluid element during time δt is

Net gain in energy = δtδxδyδz[
∂

∂x
(k
∂T

∂x
) +

∂

∂y
(k
∂T

∂y
) +

∂

∂z
(k
∂T

∂z
)].

Hence the rate of heat added by conduction per unit volume is given by

ρ
dQ

dt
= [

∂

∂x
(k
∂T

∂x
) +

∂

∂y
(k
∂T

∂y
) +

∂

∂z
(k
∂T

∂z
)],

implies that ρ
dQ

dt
= ∇(k∇T ).

(2.7.5)

Using above equation (2.7.5) in (2.7.4) with the assumption that there is no direct heating

from chemical reaction and radiation heating, the required energy equation (2.7.4) becomes

∇(k∇T ) + Φ = ρ
Dh

Dt
− Dp

Dt
.

In cartesian coordinates the energy equation for viscous compressible fluid reduces to the

form

[
∂

∂x
(k
∂T

∂x
) +

∂

∂y
(k
∂T

∂y
) +

∂

∂z
(k
∂T

∂z
)] + Φ = ρ

Dh

Dt
− Dp

Dt
.

If h = CpT and Cp is specific heat at constant pressure.

[
∂

∂x
(k
∂T

∂x
) +

∂

∂y
(k
∂T

∂y
) +

∂

∂z
(k
∂T

∂z
)] + Φ = ρ

D

Dt
(CpT )−

Dp

Dt
. (2.7.6)

Case of viscous incompressible fluids: When the fluid is taken incompressible viscous

fluid, k = constant and µ = constant. Further more, the equation of continuity for such a

fluid is given by

∇ · q = 0 =
∂u

∂x
+
∂v

∂y
+
∂w

∂z
.

The dissipation function Φ for the present problem is given by [39]

Φ = µ
[
2{(∂u

∂x
)2 + (

∂v

∂y
)2 + (

∂w

∂z
)2}+ (

∂v

∂x
+
∂u

∂y
)2 + (

∂v

∂z
+
∂w

∂y
)2 + (

∂w

∂x
+
∂u

∂z
)2)

]
.

If Cp be the specific heat at constant volume, then Cp = Cv for an incompressible fluid.

With the above mentioned discussion, the energy equation assumes the form

k(
∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2
) + Φ = ρCp

DT

Dt
− Dp

Dt
.

If pressure is kept constant that is Dp
Dt = 0, then

ρCp
DT

Dt
= k(

∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2
) + Φ, from definition of material derivative we obtain

ρCp(
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
) = k(

∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2
) + Φ,

where Φ = 2µ
[
(
∂u

∂x
)2 + (

∂v

∂y
)2
]
+ µ{(∂v

∂x
)2 + (

∂u

∂y
)2 + 2

∂v

∂x

∂u

∂y
}.
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In two dimensional plane xy-plane (say)

ρCp(
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
) = k(

∂2T

∂x2
+
∂2T

∂y2
) + Φ,

where Φ =µ
[
2{(∂u

∂x
)2 + (

∂v

∂y
)2}+ (

∂v

∂x
+
∂u

∂y
)2
]
.

(2.7.7)

2.7.2 Thermal boundary layer theory

When a fluid past a heated or cooled body, the heat is transferred by conduction, convec-

tion, and radiation. Heat transfer by radiation is negligible unless the temperature is very

high. Accordingly, we shall confine our present discussion to heat transfer by conduction

and convection only. The conductivity of ordinary fluids is small. For such fluids the heat

transport due to conduction is comparable to that due to convection only across a thin

layer near the surface of the body. It follows that the temperature field which spreads

from the body extends only over a narrow zone in the immediate vicinity of its surface,

where as the fluid at a larger distance from the surface is not materially effected by the

heated body. This thin layer (narrow region) near the surface of the body is called thermal

boundary layer. There are two types of thermal boundary layer problems, namely

Forced convection: When fluid is forced past a body and change in temperature is not

too large. This is called forced convection. In this convection heat transfer coefficient is

independent of change in temperature. It is the flow in which the velocity arises from the

variable density (i.e due to force of buoyancy) is negligible in comparison with the velocity

of the main or forced flow.

Free or natural convection: When fluid buoys up from a hot body or down from a cold

one, the heat transfer coefficient varies as some weak powers of change in temperature.

This is free or natural convection. The free convection is the flow in which the motion is

essentially caused by the effect of gravity on the heated fluid of variable density.

2.7.3 Thermal boundary layer equation in 2-dim flow

Order of magnitude approach:

To apply the order of magnitude approach, consider the flow over a semi-infinite sheet. We

derive the thermal boundary layer equation. We take rectangular cartesian coordinates

with xmeasured in the sheet in the direction of the laminar two dimensional incompressible

flow, and y measured normal to the sheet. Let u, v be the velocity components in x- and

y-directions respectively. Let viscosity of the fluid be small and δ be the small thickness

of velocity boundary layer. Let δt be the small thermal boundary layer. Let U be the

velocity in the main stream just outside the boundary layer. Then the equation of energy

for unsteady flow of viscous incompressible fluid in two dimension is given as: we shall

follow a method similar to that used in velocity boundary layer equation.
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We now determine the order of magnitude of each term in momentum equation to

enable us to drop small terms and thus to arrive at the simplified thermal boundary layer

equations. We shall designate the order of any quantity (q, say) by O(q).

Let δ and δt be the velocity boundary layer thickness and thermal boundary layer

thickness respectively. Let O(T ) = 1, O(x) = 1, O(u) = 1, O(y) = δt. As we have proved

in section 2.6.1, O(v) = δ , O(ν) = δ2. The orders of magnitudes are shown in equations

(2.7.8) and (2.7.9) under the individual terms.

ρCp(
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
) = k(

∂2T

∂x2
+
∂2T

∂y2
) + Φ,

1 ( 1 1 1 δ
1

δt
) δ2t (1

1

δ2t
)

(2.7.8)

where the dissipation function Φ is given by

Φ =2µ
[
(
∂u

∂x
)2 + (

∂v

∂y
)2
]
+ µ{(∂v

∂x
)2 + (

∂u

∂y
)2 + 2

∂v

∂x

∂u

∂y
}.

δ2t [1 δ2/δ2t ] δ2{δ2 1

δ2t
δ
1

δt
}

(2.7.9)

From equation(2.7.8) it follows that the term ∂2T
∂x2

may be neglected in comparison with
∂2T
∂y2

. The conduction terms become of same order of magnitude as the convection term,

only, if O(k) = δ2t and δ and δt are of the same order of magnitude. O(
k

ρCp

ν ) =
δ2t
δ2
, that

is, O( 1√
Pr
) = δt

δ as O(ρCp) = 1, where Pr= Prandtl number = (µCp/k) and ν = µ/ρ. For

liquids, O(δt) < O(δ). Suppose that O(δt) and O(δ) have the same order of magnitude.

By neglecting the terms of the order δ and smaller, we observe the equations (2.7.8),

(2.7.9) and note that only term which retained in Φ is µ(∂u∂y )
2. Hence the equation of the

boundary layer for an incompressible fluid with constant properties in two dimensional

unsteady flow with equation of continuity is

∂u

∂x
+
∂v

∂y
= 0,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
+Bx,

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

k

ρCp
(
∂2T

∂y2
) +

µ

ρCp
(
∂u

∂y
)2.

(2.7.10)

Above equations (2.7.10) are the basic equations which govern the velocity and temper-

ature distribution in a boundary layer past a solid sheet, in forced convection. If the

solid sheet is replaced by unmixed fluid then the equations (2.7.10) also govern the mass,

momentum and heat transfer in a boundary layer past a unmixed fluid sheet, in forced

convection.
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Fluid flow and heat transfer in a

liquid film over a stretching sheet

3.1 Description of the physical problem

Thin liquid films have many applications in different branches of sciences and technology.

Knowledge of thin liquid film has main role to understand the coating process, design of

various heat exchangers, chemical processing, wire and fibre coating, food stuff processing,

extrusion of plastic sheets and transpiration cooling. Best appearance with a smooth glossy

surface and attractive service properties such as low friction, transparency and strength is

the market demand in all coating process. The knowledge for cooling the coating product

efficiently solve the problem of extrusion of thin surface layer. The rate of heat transfer

and cooling procedures improve the quality of the final product. If the fluid is very

viscous in the extrusion of plastic sheet, heat transfer may alter the results due to viscous

dissipation [36].

In most problems of polymer extrusion, the flow of fluid is induced by stretching of

elastic sheet. For example, in a melting process, the extrudate from the die is generally

drawn and simultaneously stretched into a filament or sheet. That sheet is solidified by

gradual cooling with coolant liquid. The rate of cooling and rate of stretching usually

affects the quality of the final product. The choice of an appropriate cooling liquid is very

important as it has a direct impact on the rate of cooling. Synthetic oil, dilute polymeric

solutions such as 5.4 % of isobutelene in cetane are some important cooling liquids [1].

Sudden stretching may spoil the properties desired for the final outcome, so the optimum

stretching rate needs a great care.

As the flow and heat transfer characteristics directly affects the quality of the final

product, so the analysis and fundamental understanding of the momentum and thermal

transports for such extrusion processes are very important.

25
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Figure 3.1: Fluid flow over a horizontal plastic sheet.

3.1.1 Mathematical formulation

In a problem of polymer extrusion, consider the flow of a thin viscoelastic liquid film over

an elastic sheet which is stretching horizontally. The sheet issues from a narrow slit. At

the slit we fix origin of cartesian coordinate system. Naturally the sheet is like a plane.

The x- axis is chosen in the direction of motion of sheet and the y-axis is taken normal to

the sheet. The stretching velocity is proportional to x. If b is the initial stretching rate

with dimension per time, then velocity of stretching sheet is assumed to be of the form

U(x, t) = b x at time t = 0. The stretching rate is controlled by a factor (1−α t) to ensure

the quality of the final product, where α is a positive constant 0 ≤ α < 1 with dimension

per time. Then the velocity of stretching sheet takes the form [19,27]

U(x, t) = b x (1− α t)−1, t < α−1. (3.1.1)

In the context of polymer extrusion, the material properties and the elasticity of the

extruded sheet may vary with the pulling force. If the sheet is stretched by the action

of magnetic force along the x-axis. This force is the body force in the form of applied

transverse magnetic field which is assumed to be of variable kind. Let B0 be the strength

of magnetic field. The magnetic force denoted by B(x, t) may be taken in the special form

to stretch the elastic sheet with rate (1− αt)−
1
2

B(x, t) = (1− αt)−
1
2B0. (3.1.2)

Now we dissolve a high-molecular-weight polymer (viscoelastic) into a simple Newtonian

fluid and consider a thin liquid film of uniform thickness h(t), that is, independent of posi-

tion, lying on the horizontal stretching sheet. The fluid motion within the film is initially

caused by stretching of sheet and then by viscous shearing arising from the stretching

of the elastic sheet. The flow field is exposed on the influence of an external transverse

magnetic field of strength B as defined in equation (3.1.2). For the viscous fluid of kine-

matic viscosity ν, we recognize the local Reynolds number Re based on the surface velocity

U(x, t) as

Re = U xν−1 = bx2(ν(1− αt))−1. (3.1.3)
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Let T0 be temperature at the slit and temperature of surrounding Tref can be taken either

as constant reference temperature with 0 ≤ Tref < T0. The surface temperature Ts of

the stretching sheet varies with the distance x from the slit and time t and is defined in

particular form as

Ts = T0 −
ReTref

2(1− αt)
1
2

= T0 −
b x2

2 ν
(1− αt)−

3
2Tref .

(3.1.4)

The equation(3.1.4) for the temperature Ts(x, t) of the sheet represents a situation in

which sheet temperature decreases from T0 at the slit in proportion to x2 and amount of

temperature reduction along the sheet increases with time. Assume that the liquid we are

using is non-volatile. So we neglect the effect of latent heat due to evaporation. Further

the buoyancy is neglected due to relatively thin liquid film.

Assumptions:

The pressure in the surrounding gas phase is assumed to be uniform and the gravity force

gives rise to a hydrostatic pressure variation in the liquid film. Further it is assumed that

the induced magnetic field is negligibly small.

In order to justify the boundary layer approximation, the length scale in the primary

flow direction must be significantly larger than the length scale in the cross stream di-

rection. Choose the representative measure of film thickness to be ( bν )
1
2 so that the scale

ratio is large enough, that is, x

( b
ν
)
1
2
≫ 1. This choice of length scale enables us to employ

the boundary layer approximations.

3.1.2 Governing equations

The temperature and velocity fields within the thin liquid film are governed by two di-

mensional boundary layer equations for mass, momentum and thermal energy [36], [See

also section (2.7.3)]
∂u

∂x
+
∂v

∂y
= 0, (3.1.5)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
− σB2

ρ
u, (3.1.6)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

k

ρCp

∂2T

∂y2
+

µ

ρCp
(
∂u

∂y
)2. (3.1.7)

where σB2

ρ is the magnetic parameter, σ is the electric conductivity, B is a variable mag-

netic field along the y-axis, k
ρCp

is thermal diffusivity and Cp is the specific heat, u and v are

the horizontal and vertical components of velocity of thin liquid film, T is the temperature

of thin liquid film.
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3.1.3 Boundary conditions

The statement of the problem may be completed by giving the boundary conditions as

follows:

At y = 0, u = U, v = 0, T = Ts,

At y = h,
∂u

∂y
= 0,

∂T

∂y
= 0.

(3.1.8)

Initially, the horizontal component of velocity of thin liquid film is same as the velocity

of horizontal stretching sheet (solidified plastic sheet) and there is no vertical component

of velocity of thin liquid film. Also temperature of the thin liquid film is same as the

temperature of elastic sheet. The sheer stress (τ = µ∂u∂y ) and heat flux (q = −k ∂T∂y ) vanish
at the free surface.

The thin liquid film is assumed to have smooth planner surface at the adiabatic free

surface (at film thickness y = h) so as to avoid the complications due to surface waves. Also

it is assumed that the upper boundary surface of thin liquid film is thermally insulated.

3.2 Non-dimensionalization

Introducing the dimensionless quantities η, f(η) and θ(η) as follows:

η =
( b

ν(1− αt)

) 1
2
y,

f(η) = ψ(x, y, t)x−1
( νb

1− αt

)− 1
2
,

θ(η) =
T0 − T (x, y, t)

Tref

(
bx2

2ν(1−αt)−
3
2

) .
(3.2.1)

The fluid tangential velocity and normal velocity can be expressed in terms of stream

function as follows

u =
∂ψ

∂y
=

b

1− αt
xf ′(η), v = −∂ψ

∂x
= −(

νb

1− αt
)
1
2 f(η). (3.2.2)

Taking first order partial derivative of u with respect to x, of v with respect to y

∂u

∂x
=

b

1− αt
f ′(η),

∂v

∂y
= − b

1− αt
f ′(η), (3.2.3)

which implies that ∂u
∂x + ∂v

∂y = 0, that is, the equation of continuity is satisfied.
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3.2.1 Fluid flow problem (velocity boundary layer problem)

To convert the momentum equation (3.1.6) into ordinary differential equation, we proceed

as

∂u

∂t
=

bα

(1− αt)2
xf ′(η) +

b

(1− αt)
xf ′′(η)

∂η

∂t

=
bα

(1− αt)2
xf ′(η) +

b

(1− αt)
xf ′′(η)

∂

∂t

√
b

ν(1− αt)
y

=
bα

(1− αt)2
xf ′(η) +

b

(1− αt)
xf ′′(η)

√
b

ν

α

2
(1− αt)

−3
2 y

=
bα

(1− αt)2
xf ′(η) + b

√
b

ν

α

2
(1− αt)

−5
2 xyf ′′(η)

= bα(1− αt)−2xf ′(η) +

√
b

ν

bα

2
(1− αt)

−5
2 xyf ′′(η).

(3.2.4)

Taking partial derivative of u with respect to y

∂u

∂y
=

∂

∂y
[

b

(1− αt)
xf ′(η)] =

b

(1− αt)
xf ′′(η)

∂η

∂y

=
b

(1− αt)
xf ′′(η)

∂

∂y

√
b

ν(1− αt)
y =

b

(1− αt)
xf ′′(η)

√
b

ν(1− αt)
y

=
b

(1− αt)
xf ′′(η)

1√
ν

√
b

(1− αt)
y =

1√
ν
(

b

1− αt
)
3
2xf ′′(η).

(3.2.5)

Taking second partial derivative of u with respect to y, we get:

∂2u

∂y2
=

∂

∂y
[
1√
ν
(

b

1− αt
)
3
2xf ′′(η)] =

1√
ν
(

b

1− αt
)
3
2xf ′′′(η)

∂

∂y
η

=
1√
ν
(

b

1− αt
)
3
2xf ′′′(η)

∂

∂y

√
b

ν(1− αt)
.y =

1√
ν
(

b

1− αt
)
3
2xf ′′′(η)

√
b

ν(1− αt)

=
1

ν
(

b

1− αt
)2xf ′′′(η) =

1

ν
b2(1− αt)−2xf ′′′(η).

(3.2.6)

Using equations (3.2.2 - 3.2.6) in equation of momentum (3.1.6), we obtain:

bα(1− αt)−2xf ′(η) + b

√
b

ν

α

2
(1− αt)

−5
2 yxf ′′(η) + xf ′(η)(

b

(1− αt)
)2f ′(η)

−f(η)( b

1− αt
)2xf ′′(η) = b2(1− αt)−2xf ′′′(η)− (

σB2

ρ
)

b

(1− αt)
xf ′(η).

Dividing by b2(1− αt)−2, above equation takes the form

α

b
f ′(η) +

α

2b

√
b

ν(1− αt)
yf ′′(η) + f ′(η)f ′(η)− f(η)f ′′(η) = f ′′′(η)− (

σB2

ρb
)

1

(1− αt)−1
f ′(η)
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using equation (3.1.2)

α

b
f ′(η) +

α

2b
ηf ′′(η) + f ′(η)f ′(η)− f(η)f ′′(η) = f ′′′(η)− (

σB2
0

ρb
)f ′(η). (3.2.7)

The quantity α
b is known as unsteadiness parameter which is denoted by S. The parameter

S ≡ α
b is the dimensionless measure of the unsteadiness.

The quantity
σB2

0
ρb is known as magnetic parameter which is denoted by Mn. The

magnetic parameter Mn ≡ σB2
0

ρb reflects electrically conducting fluid with magnetic field or

the Hartman number.

Substitute S ≡ α
b and Mn ≡ σB2

0
ρb in equation (3.2.7), we obtain:

S[f ′(η) +
η

2
f ′′(η)] + f ′2(η)− f(η)f ′′(η) = f ′′′(η)−Mnf

′(η).

One can reorganize this equation as the flow model in the form

[
d3

dη3
− (Mn + S)

d

dη
]f(η) = [{Sη

2
− f(η)} d

2

dη2
+ (

d

dη
)2]f(η) or

Lf(η) = Nf(η). (3.2.8)

Here L = [ d
3

dη3
−(Mn+S)

d
dη ] is a linear differential operator andN = [{Sη2 −f(η)} d2

dη2
+( ddη )

2]

is a non-linear.

3.2.2 Heat flow problem (thermal boundary layer problem)

Differentiate the equation of temperature (3.2.1) with respect to t, x and y, we obtain:

∂T

∂t
= −Tref (

b2x2

2ν
)(1− αt)

−5
2
S

2
[3θ(η) + ηθ′(η)],

∂T

∂x
= −Tref (

2bx

2ν
)(1− αt)

−3
2 θ(η).

(3.2.9)

∂T

∂y
=

∂

∂y
[(T0 − Tref (

bx2

2ν
)(1− αt)

−3
2 θ(η))] = −Tref (

bx2

2ν
)(1− αt)

−3
2 θ′(η)

∂η

∂y

= −Tref (
bx2

2ν
)(1− αt)

−3
2 θ′(η)

√
b

ν(1− αt)
= −Tref (

bx2

2ν
)

√
b

ν
(1− αt)−2θ′(η),

(3.2.10)

∂2T

∂y2
= −Tref (

bx2

2ν
)

√
b

ν
(1− αt)−2θ′′(η)

∂η

∂y
= −Tref (

bx2

2ν
)

√
b

ν
(1− αt)−2θ′′(η)

∂

∂y

√
b

ν(1− αt)
y

= −Tref (
bx2

2ν
)(

√
b

ν
)(1− αt)−2θ′′(η)

√
b

ν(1− αt)
= −Tref (

bx2

2ν
)(
b

ν
)(1− αt)

−5
2 θ′′(η).

(3.2.11)

Taking square of both sides of equation (3.2.5), we get:

(
∂u

∂y
)2 =

1

ν
(

b

1− αt
)3x2f ′′2(η). (3.2.12)
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Substituting these equations (3.2.9 - 3.2.11, 3.2.12) in the heat equation (3.1.7), we obtain:

[
S

2
(3θ(η) + ηθ′(η)) + 2θ(η)f ′(η)−θ′(η)f(η)]

=
k

νρCp
θ′′(η)) +

µ

ρCp
2b

(1− αt)−3( b
2x2

2ν )f ′′2(η))

−Tref ( b
2x2

2ν )(1− αt)
−5
2

=
k

νρCp
θ′′(η))− µ

ρCp
2b

(1− αt)
−1
2

−Tref
f ′′2(η)

=
k

νρCp
θ′′(η)) +

µ

ρCp
2b

(1− αt)
−1
2

Tref
f ′′2(η).

Using the equation (3.1.4) for reference temperature Tref = Ts−T0
( bx

2

2ν
)(1−αt)

−3
2
, leads to

[
S

2
(3θ(η) + ηθ′(η)) + 2θ(η)f ′(η)− θ′(η)f(η)] =

k

νρCp
θ′′(η)) +

µ

ρCp
2b(

bx2

2ν
)

(1− αt)
−3
2
(1− αt)

−1
2

(Ts − T0)
f ′′2(η)

=
k

νρCp
θ′′(η)) +

µ

ρCp
b(
bx2

ν
)
(1− αt)−2

(Ts − T0)
f ′′2(η)

=
k

νρCp
θ′′(η)) +

µ

νρCp
b2x2

(1− αt)−2

(Ts − T0)
f ′′2(η)

=
k

νρCp
θ′′(η)) +

µ

νρCp

U2

(Ts − T0)
f ′′2(η)

=
k

νρCp
θ′′(η)) +

µkCp
νρCp

U2

kCp(Ts − T0)
f ′′2(η).

Substitute µ = νρ known as dynamic viscosity in the above equation, where ν = µ
ρ is

kinematic viscosity, we have:

[
S

2
(3θ(η) + ηθ′(η)) + 2θ(η)f ′(η)− θ′(η)f(η)] =

k

νρCp
θ′′(η)) +

νρkCp
νρCp

U2

kCp(Ts − T0)
f ′′2(η)

=
k

νρCp
θ′′(η)) +

k

νρCp

νρCp
k

U2f ′′2(η)

Cp(Ts − T0)
.

Multiplying both sides by
νρCp

k , we get:

νρCp
k

[
S

2
(3θ(η) + ηθ′(η)) + 2θ(η)f ′(η)− θ′(η)f(η)] = θ′′(η)) +

νρCp
k

U2

Cp(Ts − T0)
f ′′2(η).

The quantity
νρCp

k is known as dimensionless Prandtl number and denoted by Pr which is

ratio of momentum diffusivity to thermal diffusivity. The Prandtl number is actually the

ratio of viscous force to the thermal force. It throws light on the relative importance of

viscous dissipation to the thermal dissipation. Substitute Pr =
νρCp

k in above equation we

have

Pr[
S

2
(3θ(η) + ηθ′(η)) + 2θ(η)f ′(η)− θ′(η)f(η)] = θ′′(η)) + Pr

U2

Cp(Ts − T0)
f ′′2(η).

(3.2.13)
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The quantity U2

Cp(Ts−T0) is known as Eckert number and denoted by Ec which is the ratio of

kinetic energy to the enthalpy. Substitute Ec =
U2

Cp(Ts−T0) in equation (3.2.13), we obtain:

Pr[
S

2
(3θ(η) + ηθ′(η)) + 2θ(η)f ′(η)− θ′(η)f(η)] = θ′′(η) + PrEcf

′′(η). (3.2.14)

This equation is linear in θ and can be expressed as

θ′′(η) =
[3PrS

2
+ 2Prf

′(η)
]
θ(η) +

[PrSη
2

− Prf(η)
]
θ′(η)− PrEcf

′′(η) or

θ′′(η) = a(η)θ(η) + b(η)θ′(η) + c(η), (3.2.15)

where a(η) = 3PrS
2 + 2Prf

′(η), b(η) = PrSη
2 − Prf(η), c(η) = −PrEcf ′′(η).

The equation (3.2.15) is linear second order differential equation with variable coefficients

containing unknown function f(η) and its derivatives. The associated boundary conditions

are given below.

3.2.3 Non-dimensionalization of film thickness:

Let β denotes the dimensionless film thickness which is defined by the value of similarity

variable η at the free surface y = h .

At y = h η =
( b

ν(1− αt)

) 1
2
y implies that β =

( b

ν(1− αt)

) 1
2
h(t). (3.2.16)

Physically, h(t) is the original film thickness. Yet β is an unknown constant which should

be determined by the integral part of the boundary value problem. The rate at which film

thickness varies can be obtained by differentiating the original film thickness h(t) in the

above equation (3.2.16) with respect to t in the form

d

dt
h(t) = −αβ

2

√
ν

b(1− αt)
. (3.2.17)

Free surface condition: The kinematic constraint at y = h(t) given by equation v = dh
dt

transforms into the free surface condition which is

v =
d

dt
h(t) = −αβ

2

√
ν

b(1− αt)
. (3.2.18)

Note that h(t) decreases monotonically when time increases and β is constant depend-

ing only upon S and Mn. Then β can be explored by the formula β =
(

α
νS(1−αt)

) 1
2
h(t)

and β =
(

αB2

νρMn(1−αt)

) 1
2
h(t). The relation between S and Mn can be derived by solving

these above two expressions. These scenarios have been discussed in detail in the refer-

ences [11,26,27].
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3.2.4 Non-dimensionalization of boundary conditions

Initial and boundary conditions for fluid flow problem:

(i) From equation (3.1.8) we note, at y = 0, u = U and from equation (3.2.1) η = 0,

and using equation (3.1.1), (3.2.5) we note:

( bx
1−αt)f

′(η) = b
(1−αt)x, for (1 − αt) > 0 and for all x, b > 0 the last equation

reduces to

f ′(0) = 1. (3.2.19)

(ii) From equation (3.1.8) we note: at y = 0, v = 0, then from equation(3.2.1 )

y = 0 implies that η = 0, using equation (3.2.5) we note:
√

νb
1−αtf(0) = 0,

for ν > 0, b > 0, (1− αt) > 0, which becomes

f(0) = 0. (3.2.20)

(iii) From equation (3.1.8) we note: at the free boundary y = h, ∂u∂y = 0. Then from

equation (3.2.1) y = h implies that η =
√

b
ν(1−αt)h, we denote this value of η by β.

Now ∂u
∂y = 0 implies that 1√

ν
( b
1−αt)

3
2xf ′′(β) = 0, ν > 0, b > 0, (1− αt) > 0.

We can write

f ′′(β) = 0. (3.2.21)

Initial and boundary conditions for heat transfer problem:

(i) From equation (3.1.8) we note: at y = 0, T = Ts. Using equation (3.2.1)

y = 0 implies η = 0, from equation (3.1.4) & (3.2.1), we have:

T0 − Tref
bx2

2ν(1−αt)
3
2
= T0 − Tref (

bx2

2ν )(1− αt)
−3
2 θ(0) which implies

At η = 0, θ(0) = 1. (3.2.22)

(ii) From equation (3.1.8) we note: at the free boundary y = h, ∂T
∂y = 0.

Using equation (3.2.1) y = h implies that η = β and from equation (3.2.1) we write:
∂T
∂y = −Tref ( bx

2

2ν )
√

b
ν (1− αt)−2θ′(β) = 0, where ν > 0, b > 0, 1− αt > 0,

x > 0, Tref > 0 which implies

At η = β, θ′(β) = 0. (3.2.23)

The momentum boundary layer problem defined by equation (3.2.8) with boundary con-

ditions (3.2.19),(3.2.20),(3.2.21) is decoupled from the thermal boundary layer problem,

while the temperature field θ(η) is on the other hand coupled to the velocity field.
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Model:

To solve equation (3.2.8) with boundary conditions (3.2.19),(3.2.20),(3.2.21) and the equa-

tion (3.2.15) using boundary conditions (3.2.22) and (3.2.18).

Lf(η) = Nf(η), where L = [
d3

dη3
− (Mn + S)

d

dη
], N = [{Sη

2
− f(η)} d

2

dη2
+ (

d

dη
)2],

f ′(0) = 1, f(0) = 0, θ(0) = 1,

(3.2.24)

θ′′(η) = a(η)θ(η) + b(η)θ′(η) + c(η),

where a(η) =
3PrS

2
+ 2Prf

′(η), b(η) =
PrSη

2
− Prf(η), c(η) = −PrEcf ′′(η),

f ′′(β) = 0, θ′(β) = 0.

(3.2.25)

The equation (3.2.24) and (3.2.25) is the model of our problem to solve.

3.3 Solution of the problem

3.3.1 Method of solution

Now we have to find the solution of boundary value problem (3.2.24) and (3.2.25) with

boundary conditions. Different authors used different numerical and analytical methods

to solve this type of problem. For example:

- Finite difference method:

Finite difference method works reasonably well for linear boundary value problems.

Difference methods can be adapted for non–linear problems but they require guessing

at a tentative solution and then improving this by an iterative process. In addition

to complexity of the programming required, there is no guarantee of convergence of

iterations.

- Shooting technique with RK- method:

Shooting method applies equally well to linear and non–linear problems. Again, there

is no guarantee of convergence, but this method is easy to apply, and when it does

converge, it is usually more efficient than other other iterative methods. Shooting

technique with RK-method have a drawback of lengthy calculation and guessing for

f ′′(0) and θ′(0) in our problem. Generally, the numerical methods such as RungKutta

method are based on discretization techniques, and they only permit us to calculate

the approximate solutions for some values of time and space variables, which causes

us to overlook some important phenomena such as chaos and bifurcation, in addition

to the intensive computer time required to solve the problem. The above drawbacks

of linearization and numerical methods arise the need to search for an alternative
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techniques to solve the nonlinear differential equations, namely, the analytic solution

methods, such as the perturbation method and the Adomian decomposition method.

- Adomian decomposition method:

The Adomian decomposition method is quantitative rather than qualitative, ana-

lytic, requiring neither linearization nor perturbation and continuous with no resort

to discretization. It consists of splitting the given equation into linear and nonlinear

parts, inverting the highest-order derivative operator contained in the linear opera-

tor on both sides, identifying the initial and/or boundary conditions and the terms

involving the independent variables alone as initial approximation, decomposing the

unknown function into a series whose components are to be determined, decomposing

the nonlinear function in terms of special polynomials called Adomians polynomials,

and finding the successive terms of the series solution by recurrent relation using

Adomian polynomials.

Procedure of Adomian’s decomposition method: Adomian decomposition

method (ADM) depends on decomposing the nonlinear differential equation

z(η, f(η)) = 0

into the two components

(L+N)f(η) = 0,

where where L and N are the linear and the non–linear parts of z respectively. The

operator L is assumed to be an invertible operator. Solving for Lf(η) leads to

Lf(η) = −Nf(η) (3.3.1)

where Applying the inverse operator L−1 on both sides of Eq. (3.3.1) yields

f(η) + ϕ(η) = −L−1Nf(η) (3.3.2)

where ϕ(η) is the constant of integration satisfies the condition Lϕ = 0

Now assuming that the solution f(η) can be represented as infinite series of the form

f(η) =

∞∑
n=0

fn(η) (3.3.3)

Furthermore, suppose that the nonlinear term Nf(η) can be written as infinite series in

terms of the Adomian polynomials An of the form

Nf(η) =

∞∑
n=0

An(η) (3.3.4)
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where the Adomian polynomials An of Nf(η) are evaluated using the formula

An =
1

n!
[
dn

dλn
N

∞∑
n=0

fn(η)]λ=0.

Then substituting Eqs. (3.3.3) and (3.3.4) in Eq. (3.3.2) gives

∞∑
n=0

fn(η) = ϕ(η)− L−1
∞∑
n=0

An(η) (3.3.5)

Then equating the terms in the linear system of Eq. (3.3.5) gives the recurrent relation

f0(η) = ϕ(η)fn+1 = −L−1An(η), n ≥ 07

However, in practice all the terms of series (3.3.5) cannot be determined, and the solution

is approximated by the truncated series
∑N

n=0 fn(η) . This method has been proven to be

very efficient in solving various types of nonlinear boundary and initial value problems.

However, ADM does not converge in general, in particular, when the method is applied to

linear operator equations.

Homotopy: The homotopy is a continuous mapping from one deformation to other such

that topological properties are preserved.

So we have adopted the homotopy decomposition method.

3.3.2 Homotopy decomposition method

To explain the basic idea, consider a general non–linear differential equation

zu = f, (3.3.6)

where z represents a general non–linear differential operator involving both linear and

non–linear parts and f is continuous function. Identify linear L and non–linear N parts

of z. The linear part is decomposed as L+R , where L is invertible linear part and R is

remainder of the linear operator. Thus equation (3.3.6) can be written as

[(L+R) +N ]u = f, or Lu = f +Nu, (3.3.7)

where Nu = −(R + N)u represents non–linear terms. Consider a parametric family of

non–linear differential equation by introducing homotopy parameter λ

Lu = f + λNu, λϵ[0, 1]. (3.3.8)

For λ = 0 we have:

Lu = f,

a simple linear problem which can be easily solved. Applying L−1 if it exist, it follows

L−1Lu = L−1(f).
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If L is of order n, then L−1 is the n-fold integral. Thus L−1Lu = u + ϕ where ϕ is the

term emerging from the integration and one gets

u+ ϕ = L−1(f) or u = L−1(f)− ϕ.

Identifying u as the zeroth component of the solution i.e. u0 = L−1f − ϕ.

For λ = 1 we have the original problem (3.3.7). Hence equation (3.3.8) is a homotopy

between

Lu = f and Lu = f +Nu.

For λ ̸= 0 we have:

Lu = f + λNu implies that u = L−1(f)− ϕ+ λL−1(Nu). (3.3.9)

Assume the solution u(λ, η) of the problem (3.3.9) can be expressed as an infinite series

of the type

u(λ, η) = Σλnun, n = 0, 1, 2, 3, · · ·, (3.3.10)

and assume the non–linear part Nu can be expressed as an infinite series of polynomials

of the type

Nu(λ, η) = ΣλnAn, n = 0, 1, 2, 3, · · ·, (3.3.11)

where An are called Adomian’s polynomials, which will be found later. Substituting

equation (3.3.10) and (3.3.11) in (3.3.9), it follows that

Σλnun = L−1f − ϕ− λL−1ΣλnAn = L−1f − ϕ+ L−1Σλn+1An.

Identifying the zeroth component u0 as L−1f − ϕ for n = 0 and λ = 1, the remaining

components un, n = 1, 2, 3, · · · can be determined with comparing coefficients of powers of

λ by the following relations

u0 = L−1f − ϕ, u1 = L−1Nu0 = L−1A0,

u2 = L−1Nu1 = L−1A1, u3 = L−1Nu2 = L−1A2,

........................................ ........................................

un = L−1Nun−1 = L−1An−1, un+1 = L−1Nun = L−1An.

The polynomials A0, A1, A2, A3, ..., An−1, An can be computed as follows :

Choose a parameter λ and set u(λ, η) = Σλnun, n = 0, 1, 2, 3, · · ·
Then

N(u(λ, η)) = ΣλnAn, n = 0, 1, 2, 3, · · ·

N(u(λ, η)) = A0 + λA1 + λ2A2 + λ3A3 + · · ·+ λn−1An−1 + λnAn,

d

dλ
N(u(λ, η)) = A1 + 2λA2 + 3λ2A3 + · · ·+ (n− 1)λn−2An−1 + nλn−1An,

d2

dλ2
N(u(λ, η)) = 2!A2 + 3!λA3 + · · ·+ (n− 1)(n− 2)λn−3An−1 + n(n− 1)λn−2An,

d3

dλ3
N(u(λ, η)) = 3!A3 + · · ·+ (n− 1)(n− 2)(n− 3)λn−4An−1 + n(n− 1)(n− 2)λn−3An,
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.........................................

........................................

........................................

dn

dλn
N(u(λ, η)) = n(n− 1)(n− 2)(n− 3) · · · (n− n+ 2)(n− n+ 1)λn−nAn,

dn

dλn
N(u(λ, η)) = n!An,

An =
1

n!
[
dn

dλn
N(u(λ, η))]λ=0.

Define M-term approximant to the solution u(λ, η) by

ϕM [u] =

M∑
n=0

un

with

u = lim
M→∞

ϕM [u],

where

Lu0 = 0 implies u0, Lu1 = A0 implies u1,

Lu2 = A1 implies u2, Lu3 = A2 implies u3,

Lu4 = A3 implies u4, Lu5 = A4 implies u5,

Lu6 = A5 implies u6, Lu7 = A6 implies that u7,

u = u0 + u1 + u2 + u3 + u4 + u5 + u6 + u7 + u8, up to 8th order

is the solution of non–linear ordinary differential equation.

Convergence of the Decomposition scheme was established by many authors by using

fixed point theorems [44].

3.3.3 Analytical solution of the flow problem

Fluid flow equation (3.2.8) is a third order ordinary non–linear differential equation. So we

need at least three boundary conditions (3.2.19 – 3.2.21) to solve (3.2.8). The Decompo-

sition method connected with homotopy is being adopted to solve the fluid flow equation

(3.2.8). Keeping in view the fluid flow equation (3.2.8) put

Nf(η) = g(η, f, f ′, f ′′) = [
Sη

2
− f(η)]f ′′(η) + f ′2(η), we obtain:

Lf(η) = g(η, f, f ′, f ′′).

Choose a parameter λ such that

Lf(λ, η) = λg(η, f, f ′, f ′′). (3.3.12)
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Case I : For λ = 0, the equation (3.3.12) becomes Lf(η) = 0, which implies

f ′′′(η)− (S +Mn)f
′(η) = 0.

Put a = (S +Mn) implies that f ′′′(η) − af ′(η) = 0 with boundary conditions given by

equation (3.2.19 – 3.2.20) is a simple linear problem and homogenous part of our problem

which can be easily solved.

Homogeneous solution or complementary solution:

f(η) =
e−

√
aη(1 + e

√
aη)(e2

√
aβ + e

√
aη)

√
a(1 + e2

√
aβ)

.

Here we assume that

f0(η) = f(η) =
e−

√
aη(1 + e

√
aη)(e2

√
aβ + e

√
aη)

√
a(1 + e2

√
aβ)

.

Case II: For λ = 1, we obtain original problem of MHD flow from equation (3.2.8),

f ′′′(η)− af ′(η) = g(η, f, f ′, f ′′) = Nf(η) = [
Sη

2
− f(η)]f ′′(η) + f ′2.

Non–homogeneous solution: We assume here the Decomposition series solution in

terms of solution components as

f(η) = Σλifi(η) while g(η, f, f ′, f ′′) = ΣλiAi, i = 0, 1, 2, 3, · · ·. (3.3.13)

The equation (3.3.12) becomes

Σλif ′′′i (η)− aΣλif ′i(η) = λΣλiAi which implies λi[Σf ′′′i (η)− aΣf ′i(η)] = λi+1ΣAi,

with boundary conditions Σλifi(0) = 0, Σλif ′i(0) = 1, Σλif ′′i (β) = 0 for i = 0, 1, 2, 3, · · ·.
On comparing coefficient of λ, we get:

f ′′′0 (η)− af ′0(η) = 0, for λ = 0, f0(0) = 0, f ′0(0) = 1, f ′′β (0) = 0,

f ′′′1 (η)− af ′1(η) = A0 λ = 1, f1(0) = 0, f ′1(0) = 0, f ′′1 (β) = 0,

f ′′′2 (η)− af ′2(η) = A1 , f2(0) = 0, f ′2(0) = 0, f ′′2 (β) = 0,

f ′′′3 (η)− af ′3(η) = A2 , f3(0) = 0, f ′3(0) = 0, f ′′3 (β) = 0,

· · · , · · ·

f ′′′7 (η)− af ′7(η) = A6 , f7(0) = 0, f ′7(0) = 0, f ′′7 (β) = 0.

· · · , · · ·.

Now we need to seek components of non–linear operator A′
is. For this, we have:

g(η, f, f ′, f ′′) = A0 + λA1 + λ2A2 + λ3A3 + · · ·+ λn−1An−1 + · · ·. (3.3.14)
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One can find these components with the help of Taylor’s series of g(η, f, f ′, f ′′) at the

initial point

g(η, f, f ′, f ′′) = [
Sη

2
− f(η)]f ′′(η) + f ′2.

Taking higher partial derivatives of g(η, f, f ′, f ′′) with respect to f, f ′, f ′′, we obtain:

gf (η, f, f
′, f ′′) = −f ′′(η), gf ′(η, f, f

′, f ′′) = 2f ′(η), gf ′′(η, f, f
′, f ′′) = [

Sη

2
− f(η)],

gff (η, f, f
′, f ′′) = 0, gff ′(η, f, f

′, f ′′) = 0, gff ′′(η, f, f
′, f ′′) = −1,

gf ′f (η, f, f
′, f ′′) = 0, gf ′f ′(η, f, f

′, f ′′) = 2, gf ′f ′′(η, f, f
′, f ′′) = 0,

gf ′′f (η, f, f
′, f ′′) = −1, gf ′′f ′(η, f, f

′, f ′′) = 0, gf ′′f ′′(η, f, f
′, f ′′) = 0.

Computing all these partial derivatives at the initial point (η, f0, f
′
0, f

′′
0 ) or “0”

g(0) = [
Sη

2
− f0(η)]f

′′
0 (η) + f ′20 , gf (0) = −f ′′0 (η), gf ′(0) = 2f ′0η), gf ′′(0) = [

Sη

2
− f0(η)],

gff (0) = 0, gff ′(0) = 0, gff ′′(0) = −1, gf ′f (0) = 0, gf ′f ′(0) = 2,

gf ′f ′′(0) = 0, gf ′′f (0) = −1, gf ′′f ′(0) = 0, gf ′′f ′′(0) = 0.

Applying Taylor’s series, we have:

g(η, f, f ′, f ′′) = g(0) + (f − f0)gf (0) + (f ′ − f ′0)gf ′(0) + (f ′′ − f ′′0 )gf ′′(0)

+
1

2!
[(f − f0)(f

′′ − f ′′0 )2gf ′′f (0) + (f ′ − f ′0)
2gf ′f ′(0)],

= −f ′′0 f0 + f ′20 +
Sη

2
f ′′0 + (f − f0)(−f ′′0 ) + (f ′ − f ′0)(2f

′
0)

+ (f ′′ − f ′′0 )(
Sη

2
− f0) +

1

2!
[(f − f0)(f

′′ − f ′′0 )2(−1) + (f ′ − f ′0)
2(2)].

From equation (3.3.13) f(η) = Σλifi(η), i = 0, 1, 2, 3, · · ·.

g(η, f, f ′, f ′′) = −f ′′0 f0 + f ′20 +
Sη

2
f ′′0 + (Σλifi − f0)(−f ′′0 ) + (Σλif ′i − f ′0)(2f

′
0)

+ (Σλif ′′i − f ′′0 )(
Sη

2
− f0) +

1

2!
[(Σλifi − f0)(Σλ

if ′′i − f ′′0 )2(−1)

+ (Σλif ′i − f ′0)
2(2)],

= −f ′′0 f0 + f ′20 +
Sη

2
f ′′0 + (Σλifi)(−f ′′0 ) + (Σλif ′i)(2f

′
0)

+ (Σλif ′′i )(
Sη

2
− f0) +

1

2!
[(Σλifi)(Σλ

if ′′i )2(−1) + (Σλif ′i)
2(2)].
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g(η, f, f ′, f ′′) = −f ′′0 f0 + f ′20 +
Sη

2
f ′′0 + λ[−f ′′0 f1 + 2f ′0f

′
1 + (

Sη

2
− f0)f

′′
1 ]

+ λ2[−f ′′0 f2 + 2f ′0f
′
2 + (

Sη

2
− f0)f

′′
2 − f ′′1 f1 + (f ′1)

2]

+ λ3[−f ′′0 f3 + 2f ′0f
′
3 + (

Sη

2
− f0)f

′′
3 − (f ′′1 f2 + f ′′2 f1) + 2f ′1f

′
2]

+ λ4[−f ′′0 f4 + 2f ′0f
′
4 + (

Sη

2
− f0)f

′′
4 − (f ′′1 f3 + f ′′2 f2 + f ′′3 f1) + (2f ′1f

′
3 + (f ′2)

2]

+ λ5[−f ′′0 f5 + 2f ′0f
′
5 + (

Sη

2
− f0)f

′′
5 − (f ′′1 f4 + f ′′2 f3 + f ′′3 f2 + f ′′4 f1)

+ (f ′5f1 + f ′4f2 + f ′3f3 + f ′2f4 + f ′1f5]

+ λ6[−f ′′0 f6 + 2f ′0f
′
6 + (

Sη

2
− f0)f

′′
6 − (f ′′1 f5 + f ′′2 f4 + f ′′3 f4 + f ′′2 f4 + f ′′1 f5)

+ (2f ′5f1 + 2f ′4f2 + (f ′3)
2)].

Comparing the coefficient of λ with following equation

g(η, f, f ′, f ′′) = A0 + λA1 + λ2A2 + λ3A3 + · · ·+ λn−1An−1 + · · ·.

we get

A0 = −f ′′0 f0 + f ′20 +
Sη

2
f ′′0 , A1 = −f ′′0 f1 + 2f ′0f

′
1 + (

Sη

2
− f0)f

′′
1 ,

A2 = −f ′′0 f2 + 2f ′0f
′
2 + (

Sη

2
− f0)f

′′
2 − f ′′1 f1 + (f ′1)

2,

A3 = −f ′′0 f3 + 2f ′0f
′
3 + (

Sη

2
− f0)f

′′
3 − (f ′′1 f2 + f ′′2 f1) + 2f ′1f

′
2,

· · ·

A6 = −f ′′0 f6 + 2f ′0f
′
6 + (

Sη

2
− f0)f

′′
6 − (f ′′1 f5 + f ′′2 f4 + f ′′3 f4 + f ′′2 f4 + f ′′1 f5)

+ (2f ′5f1 + 2f ′4f2 + (f ′3)
2).

Then

f ′′′0 (η)− af ′0(η) = 0,

f ′′′1 (η)− af ′1(η) = −f ′′0 f0 + f ′20 +
Sη

2
f ′′0 ,

f ′′′2 (η)− af ′2(η) = −f ′′0 f1 + 2f ′0f
′
1 + (

Sη

2
− f0)f

′′
1 ,

f ′′′3 (η)− af ′3(η) = −f ′′0 f2 + 2f ′0f
′
2 + (

Sη

2
− f0)f

′′
2 − f ′′1 f1 + (f ′1)

2,

f ′′′4 (η)− af ′4(η) = −f ′′0 f3 + 2f ′0f
′
3 + (

Sη

2
− f0)f

′′
3 − (f ′′1 f2 + f ′′2 f1) + 2f ′1f

′
2,

f ′′′5 (η)− af ′5(η) = −f ′′0 f4 + 2f ′0f
′
4 + (

Sη

2
− f0)f

′′
4 − (f ′′1 f3 + f ′′2 f2 + f ′′3 f1) + (2f ′1f

′
3 + (f ′2)

2,

f ′′′6 (η)− af ′6(η) = −f ′′0 f5 + 2f ′0f
′
5 + (

Sη

2
− f0)f

′′
5 − (f ′′1 f4 + f ′′2 f3 + f ′′3 f2 + f ′′4 f1)

+ (f ′5f1 + f ′4f2 + f ′3f3 + f ′2f4 + f ′1f5),

f ′′′7 (η)− af ′7(η) = −f ′′0 f6 + 2f ′0f
′
6 + (

Sη

2
− f0)f

′′
6 − (f ′′1 f5 + f ′′2 f4 + f ′′3 f4 + f ′′2 f4 + f ′′1 f5)

+ (2f ′5f1 + 2f ′4f2 + (f ′3)
2).
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We obtain the dimensionless function f(η) to find stream function ψ(x, y, t)

f(η) = f0 + f1 + f3 + f4 + f5 + f6 + f7. (3.3.15)

The equation (3.3.15) will be used to solve the coupling equation of the model (3.2.24).

3.3.4 Solution of the heat flow problem

The dimensionless heat flow problem given in the model(3.2.24):

θ′′(η) = a(η)θ(η) + b(η)θ′(η) + c(η),

where a(η) =
3PrS

2
+ 2Prf

′(η), b(η) =
PrSη

2
− Prf(η), c(η) = −PrEcf ′′(η),

θ(0) = 1, θ′(β) = 0,

(3.3.16)

is a coupling equation containing f(η), f ′(η), f ′′(η). It is a second linear order differential

equation with variable coefficients. We can easily solve it with the help of Mathematica.

The code of Mathematica is given in the Appendix A. The tables obtained have been

explained in detail in the Appendix.

3.4 Results and discussion

3.4.1 Parametric effect of Mn and S on the film thickness

We can adjust the dimensionless film thickness β by variation of the unsteadiness parame-

ter S and magnetic parameter Mn. The numerical results are obtained for small values of

S and Mn. Some typical values of β are shown in the table(A.4) given in the Appendix A.

Figure 3.2 shows the asymptotic graph of β verses S and Figure 3.3 shows the decreasing

behavior of the dimensionless film thickness as S ≥ 0.8. From these two figures we note

that β decreases strictly for S ≥ 0.8 and increases rapidly as S < 0.8. As S → 0 the

solution approaches to analytical solution obtained by Crane [3] with infinitely thick layer

of fluid (β → ∞). The other limiting solution corresponding to S → ∞ represents a thin

liquid film of infinitesimal thickness (β → 0).

The effect of magnetic parameter on the film thickness is clear in Figure 3.4 which

shows that increasing values of Mn decrease the film thickness. The variation of film

thickness β with respect to the magnetic parameter Mn is projected in Figure 3.5 for two

different values of S = 0.8 and S = 1.2. The combined effect of S and Mn is shown in

Figure 3.5. It is evident from the graph in Figure 3.5 that both parameters decrease the

film thickness monotonically by increasing their positive values. It is clear from this plot

that film thickness decreases as increasing values of unsteadiness and magnetic parameter.

The particular value of Mn, say Mn ≥ 10 changes the fluid layer into thin film.

Local skin friction coefficient or drag coefficient: The local skin friction coefficient,



CHAPTER 3. FLUID FLOW AND HEAT TRANSFER IN A LIQUID FILM 43

which is practically important to estimate the heat losses, is denoted by Cf and is given

by

Cf ≡ shearing stress

kinetic energy
=

τ0
1
2ρU

2
=

−2µ(∂u∂y )y=0

ρU2
= −2R

− 1
2

e f ′′(0). (3.4.1)

It is also known as drag coefficient per unit area.

Nusselt number: The local Nusselt number is used to calculate the heat transfer between

the surface (sheet) and the fluid, which is conventionally expressed in dimensionless form

as

Nux ≡ − x

Tref
(
∂T

∂y
)y=0 =

1

2
(1− αt)−

1
2 θ′(0)R

3
2
e . (3.4.2)
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Figure 3.2: Variation of film thickness β with variation of S = 0− 0.8.
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Figure 3.3: Variation of film thickness β with variation of S = 0.8− 2.0.

3.4.2 Effect of Mn on fluid flow and heat transfer

The variation of free surface velocity f ′(β) with respect to magnetic parameterMn for two

different values of S = 0.8, 1.26, is shown in Figure 3.6. Diagram shows that the free surface

velocity initially increases by increasing unsteadiness parameter S but behaves almost as
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Figure 3.4: Variation of β with variation of S = 0.0− 2.0 for Mn = 0.0, 2, 4, 6, 8.
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Figure 3.5: Variation of film thickness β with variation of Mn
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Figure 3.6: Variation of surface velocity f ′(β) verses Mn for Pr = 10, Ec = 0.8

a constant function of Mn. The effect of Mn on the wall shear stress parameter −f ′′(0)
is illustrated in Figure 3.7. Clearly increasing values of Mn result in increasing the wall

shear stress. Also wall shear stress decreases by decreasing the unsteadiness parameter.

Figure 3.8 demonstrates the effect ofMn on the free surface temperature θ(β). This figure

has two graphs, one for S = 0.8 containing dots of small thickness and other for S = 1.2

containing thicker dots. From this plot it is evident that the free surface temperature
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Figure 3.7: Variation of wall shear stress −f ′′(0) verses Mn for Pr = 10, Ec = 0.8
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Figure 3.8: Variation of free surface temperature θ(β) verses Mn for Pr = 10, Ec = 0.8
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Figure 3.9: Variation of wall dimensionless heat flux−θ′(0) versesMn for Pr = 10, Ec = 0.8

increases monotonically with Mn but temperature decreases with increase of unsteadiness

parameter S. Figure 3.9 highlights the effect of Mn on the dimensionless wall heat flux

−θ′(0). It is found from this plot that the dimensionless heat flux −θ′(0) decreases with

the increasing value of Mn and S.

The effect of Mn on the axial velocity is depicted in Figure 3.10 and 3.11 for two

different values of S. Mathematically we can analyze that velocity profile of thin liquid
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Figure 3.10: Variation of velocity profile f ′(η) verses η for Pr = 10, Ec = 0.8, S = 0.8
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Figure 3.11: Variation of velocity profile f ′(η) verses η for Pr = 10, Ec = 0.8, S = 1.2
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Figure 3.12: Variation of temperature profile θ(η) verses η for Pr = 10, Ec = 0.8, S = 0.8

film is decreasing with increasing values of dimensionless variable. The rate of decrease

of velocity becomes zero after a particular value of magnetic and unsteadiness parameter.

The same behavior is with temperature profile. From these plots it is clear that the

increasing values of Mn decreases the axial velocity. This is due to fact that applied

transverse magnetic field produces a drag in the form of Lorentz force thereby decreasing

the magnitude of velocity. The drop in horizontal velocity as a consequence of increase
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Figure 3.13: Variation of temperature profile θ(η) verses η for Pr = 10, Ec = 0.8, S = 1.2
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Figure 3.14: Variation of similarity function f(η) verses η for Pr = 10, Ec = 0.8, S = 0.8

in the strength of magnetic field can be observed for both the values of of S = 0.8 and

S = 1.2. Figure 3.12 and Figure 3.13 depict the effect of Mn on temperature profiles for

two different values of S. The results show that the thermal boundary layer thickness

increases with the increasing values of Mn. The increasing frictional drag due to Lorentz

force is responsible for increasing the thermal boundary layer thickness. Figure 3.14 shows

the graph of similarity function f(η) is increasing with η which reveals the fact that

concentration of the fluid (quantity of fluid) is increasing on the sheet.

3.4.3 Effect of Pr on the fluid flow and heat transfer

The effects of the Prandtl number Pr and the magnetic parameter Mn on the surface

temperature θ(β) are respectively illustrated in the next figures. We have observed from

previous graphs and tables in Appendix A that, increasing values of the magnetic param-

eter Mn cause the surface temperature to blow up monotonically. The opposite effect is

exhibited in case of the Prandtl number Pr, that is, increasing values of Pr decrease the

surface temperature as shown in Figure 3.15. For the Parandtl number of order unity and

below the surface temperature θ(β) attains a finite value below “1” and the temperature

gradients extend all the way to the free surface. In the limiting case Pr → 0, however,
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the dimensionless surface temperature tends to unity that is, the temperature T of liquid

becomes uniform in the vertical direction and equals temperature Ts of sheet. This is

consistent with the trivial solution θ(β) = 1 obtained from the thermal energy equation

(3.2.15) when Pr = 0. At sufficiently high Prandtl number, that is, low thermal diffusivity,

the surface temperature remained practically equal to zero.

Figures (3.16, 3.17) demonstrate the effect of the Prandtl number Pr on temperature

profiles θ(η) for two different values of the unsteadiness parameter S. These plots reveals

the fact that for a particular value of Pr the temperature increases monotonically from

the free surface temperature Ts to wall temperature T0 as observed by Anderson [27]. The

thermal boundary layer thickness decreases drastically for high values of Pr that is, low

thermal diffusivity. Figures 3.18 reveals that the magnetic parameter and unsteadiness

parameter increases the wall dimensionless heat flux for all Parandtl numbers in absence

of the Eckert number. Figures 3.19 shows that the wall shear stress becomes constant for

the particular value of the Parandtl number Pr ≥ 10.
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Figure 3.15: Variation of free surface temperature θ(β) verses Pr forMn = 2−10, Ec = 0.0
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Figure 3.16: Variation of temperature profile θ(η) verses η for Mn = 2 − 10, Ec = 0.0,

S = 0.8
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Figure 3.17: Variation of θ(η) verses η for Mn = 2− 10, Ec = 0.0, S = 1.2
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Figure 3.18: Variation of −θ′(0) verses Pr for Mn = 2− 10, Ec = 0.0

3.4.4 Effect of Ec on the fluid flow and heat transfer

The Eckert number characterize the viscous dissipation. When the fluid is being heated

(Ec > 0), the dimensionless temperature will increase but decrease when the fluid is being

cooled (Ec < 0). The dimensionless fluid temperature decreases with η monotonically

for a positive Ec; while for a negative Ec, θ initially decreases rapidly with η, attains a

minimum value and then increases more gradually to its free surface value θ(β). (Ec = 0)

shows the case of no viscous dissipation.

Figure 3.20 shows the temperature distribution verses η for S = 0.8 while Figure 3.21

for S = 1.2. By analyzing the graphs individually it reveals that the effect of increasing

values of Ec is to increase the temperature distribution in flow region. These graphs also

demonstrates the variation of temperature profiles for various values of Ec. It is observed

from these graphs that the effect of viscous dissipation is to amplify the temperature. This

is due to fact that heat energy is stored in the liquid due to frictional heating. The effect

of Ec > 0 on the free surface temperature θ(β) has been shown in Figure 3.22. Also the

decreasing behavior of wall dimensionless heat flux −θ′(0) may be noted in Figure 3.23.

At particular values of S and Mn Figure 3.24 reveals that the dimensionless free surface
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velocity f ′(β) increases for increasing values of Eckert Ec. Figure 3.25 looks the behavior

of shear stress, that is, the shear stress increases in the thermal boundary layer whose

distance from the sheet is less. As the liquid layer move away from the sheet, the shear

stress rate becomes zero.

By increasing unsteadiness parameter similarity function decreases and flow velocity

decreases with negligible shear stress (Table A.3). The temperature of the boundary

layer increases by increasing of magnetic parameter at a certain level of unsteadiness

parameter(Table A.3). Keeping constant magnetic parameter and increasing unsteadiness

parameter, temperature of boundary layer initially increases and then cools down.
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Figure 3.19: Variation of −f ′′(0) verses Pr for Mn = 2− 10, Ec = 0.0
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Figure 3.20: Variation of θ(η) verses η for Mn = 0.0− 8.0, Pr = 1, 2, 5, 10, 89, S = 0.8
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Figure 3.21: Variation of θ(η) verses η for Mn = 0.0− 8.0, Pr = 1, 2, 5, 10, 89, S = 1.2
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Figure 3.22: Variation of θ(β) verses Ec for Mn = 0.0− 8.0, Pr = 1, 2, 5, 10, 89
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Figure 3.23: Variation of θ′(0) verses Ec for Mn = 0.0− 8.0, Pr = 1, 2, 5, 10, 89
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Figure 3.24: Variation of f ′(β) verses Ec for Mn = 0.0− 8.0 and Pr = 1, 2, 5, 10, 89
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Chapter 4

Conclusion

This dissertation aims to present the analysis of a class of non–linear problems of the

mass, momentum and heat transfer of unsteady flow of thin liquid film over a horizontal

elastic stretching sheet. We use the homotopy decomposition method to solve the system.

With the help of this method, One can control four parameters (the unsteady parame-

ter, magnetic parameter, Parandtl number and Eckert number) to obtain best quality of

product. The analytic and purely numerical solutions agree very well. Based on the case

investigated, the magnetic parameter Mn has a large effect on the velocity as compared to

the temperature. It is hoped that this dissertation is helpful to understand the flow and

heat transfer mechanism of a liquid film and would find applications in different technolo-

gies and manufacturing industries, such as polymer extrusion. The effect of the Eckert

number in presence of heat source/sink on temperature profile will be dealt in future work.
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Appendix A

A.1 Mathematica Code

Taking different values of i = 1, 2, 3, ...; with different parameters, we will check the ef-

fect of parameters on the behavior of fluid flow and heat transfer in a liquid film over a

stretching sheet.

S=0.3 i; h = 0.01; σ = 0.05; ρ = 0.1; B = 0.84528; Mn = 2.0; a = Mn + S; Pr = 3;

Ec = 0.1; β = 2.0;

de =NDSolve[{u′′′[η]− au′[η]] == 0, u[0] == 0, u′[0] == 1, u′′[β] == 0}, u[η], {η, 0, β}];

f0[η ] := Evaluate[u[η]]/.F irst[de]]

A0[η ] = −f ′′0 [η]f0[η] + f ′0[η]f
′
0[η] +

ηS

2
f ′′0 [η];

de1 =NDSolve[{u′′′[η]− au′[η] == A0[η], u[0] == 0, u′[0] == 0, u′′[β] == 0}, u[η], {η, 0, β}];

f1[η ] := Evaluate[u[η]/.F irst[de1]]

A1[η ] = −f ′′0 [η]f1[η] + 2f ′0[η]f
′
1[η] + (

ηS

2
− f0[η])f ′′1 [η]

de2 =NDSolve[{u′′′[η]− au′[η] == A1[η], u[0] == 0, u′[0] == 0, u′′[β] == 0}, u[η], {η, 0, β}];

f2[η ] := Evaluate[u[η]/.F irst[de2]];

A2[η ] = −f ′′0 [η]f2[η] + 2f ′0[η]f
′
2[η] + (

ηS

2
− f0[η])f

′′
2 [η]− f1[η]f

′′
1 [η] + (f ′1[η])

2;

de4 =NDSolve[{u′′′[η]− au′[η] == A2[η], u[0] == 0, u′[0] == 0, u′′[β] == 0}, u[η], {η, 0, β}];

f3[η ] := Evaluate[u[η]/.F irst[de4]]

A3[η ] = −f ′′0 [η]f3[η] + 2f ′0[η]f
′
3[η] + (

ηS

2
− f0[η])f

′′
3 [η]− f1[η]f

′′
2 [η]− f2[η]f

′′
1 [η] + f ′1[η]f

′
2[η]

+ f ′1[η]f
′
2[η]

de5 =NDSolve[{u′′′[η]− au′[η] == A3[η], u[0] == 0, u′[0] == 0, u′′[β]] == 0}, u[η], {η, 0, β}];

f4[η ] := Evaluate[u[η]/.F irst[de5]];
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A4[η ] = −f ′′0 [η]f4[η] + 2f ′0[η]f
′
4[η] + (

ηS

2
− f0[η])f

′′
4 [η]− f1[η]f

′′
3 [η]− f3[η]f

′′
1 [η]

− f2[η]f
′′
2 [η] + 2f ′1[η]f

′
3[η] + f ′2[η]

2;

de6 =NDSolve[{u′′′[η]− au′[η] == A4[η], u[0] == 0, u′[0] == 0, u′′[β]] == 0}, u[η], {η, 0, β}];

f5[η ] := Evaluate[u[η]/.F irst[de6]]

g[η ] = f0[η] + f1[η];

h[η ] = f0[η] + f1[η] + f2[η];

k[η ] = f0[η] + f1[η] + f2[η] + f3[η];

l[η ] = f0[η] + f1[η] + f2[η] + f3[η] + f4[η];

m[η ] = f0[η] + f1[η] + f2[η] + f3[η] + f4[η] + f5[η];

m[i] = m[η ]; , f [i] = m′[η ]; ,

a[η ] =
3PrSη

2
+ 2Prm

′[η], b[η ] =
PrSη

2
− Prm[η], c[η ] = −PrEc(m′′[η])2;

de8 = NDSolve[{u′′[η] == a[η]u[η] + b[η]u′[η] + c[η], u[0] == 1, u′[β] == 0}, u[η], {η, 0, β}];

θ][η ] := Evaluate[u[η]]/.F irst[de8]]

q[i] = θ[η]; step[i];

Print[” i”, ””, ”m[i]”, ””, ”m′[i] ”, ” ”, ” m′′[i] ” ”, ” θ[i] ”, ” ”, ” θ′[i] ”]

Table[i,m[i],m′[i],m′′[i], θ[i], θ′[i], i, 0, β, 0.2] // TableForm

A.2 Tables

The following tables have been calculated with the help of Mathematica using computer

Code given in Appendix. The table A.1 & A.2 give the comparison of present results with

that of Wang [24] and M. S. Abel [36]. With out any doubt, from these tables we can claim

that our results are in well agreement with that of Wang [24] and M. S. Abel [36] under

some limiting cases. The values of f(β), f ′(β), f ′′(β), at the free surface, obtained through

the actual computation, are tabulated in Table A.3. The values tabulated in this table

are very important as they serve the purpose of validating the momentum equation 3.1.6

in dimensionless form, at the free surface η = β. The table A.4 is given for information

about film thickness for different values of unsteadiness and magnetic parameters.
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Table A.1: Comparison of values of skin friction coefficient f ′′(0) with Mn = 0.0

Wang [24] M. S. Abel [36] Present Results

S β f ′′(0) f ′′(0)/β β f ′′(0) β f ′′(0)

0.4 5.122490 -6.699120 -1.307785 4.981455 -1.134098 4.981455 -2.03163

0.6 3.131250 -3.742330 -1.195155 3.131710 -1.195128 3.131710 -1.32446

0.8 2.151990 -2.680940 -1.245795 2.151990 -1.245805 2.151990 -1.28315

1.0 1.543620 -1.972380 -1.277762 1.543617 -1.277769 1.543617 -1.29167

1.2 1.127780 -1.442631 -1.279177 1.127780 -1.279171 1.127780 -1.28397

1.4 0.821032 -1.012784 -1.233549 0.821033 -1.233545 0.821033 -1.23467

1.6 0.576173 -0.642397 -1.114937 0.576176 -1.114941 0.576176 -1.11507

1.8 0.356389 -0.309137 -0.867414 0.356390 -0.867414 0.356389 -0.867417

Comparison of values of skin friction coefficient f ′′(0) with Mn = 0.0

Table A.2: Comparison of values of surface temperature θ(β) and temperature gradient θ′(0)

Wang [24] M. S. Abel [36] Present Results

Pr θ(β) −θ′(0) −θ′(0)/β θ(β) −θ′(0) θ(β) −θ′(0)

S = 0.8 β = 2.151990

0.01 0.960480 0.090474 0.042042 0.960438 0.042120 0.962218 0.407631

1.0 0.097884 3.595790 1.670913 0.097825 1.671919 0.105976 0.166003

2.0 0.024941 5.244150 2.436884 0.024869 2.443914 0.028200 2.434040

3.0 0.008785 6.514440 3.027170 0.008324 3.034915 0.009828 3.026840

S = 1.2 β = 1.127780

0.01 0.982331 0.037734 0.033458 0.982312 0.033515 0.982366 0.033410

1.0 0.286717 1.999590 1.773032 0.286634 1.773772 0.28729 1.772040

2.0 0.128124 2.975450 2.638324 0.128174 2.638431 0.128523 2.637770

3.0 0.067658 3.698830 3.279744 0.067737 3.280329 0.067920 3.281030

Comparison of values of θ(β) and θ′(0) with Mn = 0.0
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Table A.3: Values of f(β), f ′(β), f ′′(β), θ(β), θ′(β) for different values of unsteadiness S

and magnetic parameter Mn with increasing values of the Prandtl and Eckert number

S Mn β Pr Ec f(β) f ′(β) f ′′(β) θ(β) θ′(β)

0.84 5 0.816158 1.0 0.1 2.103810 1.26047 0.000000 0.440266 0.000000

0.84 10 0.599054 2.0 0.2 1.634830 1.42183 0.000000 0.866285 0.000000

0.84 15 0.495568 3.0 0.3 1.382060 1.48664 0.000000 1.579600 0.000000

0.84 20 0.432048 4.0 0.4 1.218740 1.52156 0.000000 2.561430 0.000000

0.84 25 0.388002 5.0 0.5 1.102230 1.54338 0.000000 3.807520 0.000000

0.84 30 0.355159 6.0 0.6 1.013770 1.55831 0.000000 5.316630 0.000000

0.84 35 0.329455 7.0 0.7 0.943654 1.56917 0.000000 7.088180 0.000000

0.84 40 0.308630 8.0 0.8 0.686318 1.57742 0.000000 9.121890 0.000000

0.84 45 0.291312 9.0 0.9 0.838301 1.58390 0.000000 11.41760 0.000000

S Mn β Pr Ec f(β) f ′(β) f ′′(β) θ(β) θ′(β)

0.21 10 0.617259 1.0 0.1 1.66773 1.39082 0.000000 0.792689 0.000000

0.42 10 0.611008 2.0 0.2 1.65659 1.40153 0.000000 0.938928 0.000000

0.63 10 0.604942 3.0 0.3 1.64562 1.41186 0.000000 1.030600 0.000000

0.84 10 0.599054 4.0 0.4 1.63483 1.42183 0.000000 1.038890 0.000000

1.05 10 0.593334 5.0 0.5 1.62422 1.43145 0.000000 0.999654 0.000000

1.26 10 0.587775 6.0 0.6 1.61377 1.44075 0.000000 0.942386 0.000000

1.47 10 0.582370 7.0 0.7 1.60349 1.44973 0.000000 0.883304 0.000000

1.68 10 0.577111 8.0 0.8 1.59338 1.45842 0.000000 0.829751 0.000000

1.89 10 0.571992 9.0 0.9 1.58344 1.46683 0.000000 0.784323 0.000000
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Table A.4: Values of dimensionless film thickness β for different values of unsteadiness

parameter S and magnetic parameter Mn

Part −I Part −II Part −III

S Mn β S Mn β S Mn β

0.0 0.0 ∞ 0.8 0.0 2.15199 1.2 0.0 1.757090

0.001 0.0 60.8675 0.8 1.0 1.43466 1.2 1.0 1.297700

0.01 0.0 19.2480 0.8 2.0 1.15029 1.2 2.0 1.075990

0.1 0.0 6.08675 0.8 3.0 0.987401 1.2 3.0 0.939205

0.2 0.0 4.30398 0.8 4.0 0.878546 1.2 4.0 0.844080

0.4 0.0 3.04338 0.8 5.0 0.799229 1.2 5.0 0.773017

0.6 0.0 2.48491 0.8 6.0 0.738126 1.2 6.0 0.717330

0.8 0.0 2.15199 0.8 7.0 0.689188 1.2 7.0 0.672169

1.0 0.0 1.92480 0.8 8.0 0.648849 1.2 8.0 0.634587

1.2 0.0 1.75709 0.8 9.0 0.614854 1.2 9.0 0.602678

10.0 0.0 0.608675 0.8 10.0 0.585697 1.2 10.0 0.575143

100.0 0.0 0.192480 0.8 11.0 0.560330 1.2 11.0 0.551068



Appendix B

Thermal conductivity: k is called thermal conductivity of fluid.

Momentum diffusivity: µ/ρ is known as momentum diffusivity.

kinematic viscosity: The contribution to acceleration of the material element due to

viscous stresses arising from a given rate of strain is evidently determined by the ratio µ/ρ

and not by the viscosity µ alone. The momentum diffusivity µ/ρ is given the special name

kinematic viscosity and is denoted by ν [39].

Prandtl number:

Pr ≡
µCp
k

=

µ
ρ

k
ρCp

=
momentum diffusivity

energy diffusivity
=
ν

α

Pr =
µCp
k

=
Molecular diffusivity of momentum

Molecular diffusivity of heat

63


