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Abstract

In the study of Quantitative structure-activity (QSAR) and structure-property

(QSPR) relationships, physicochemical properties and topological indices such as

Wiener index, Szeged index, Randić index, Zagreb index, atom-bond connectivity

(ABC) index and geometric-arithmetic (GA) index are used to predict bioactivity

of the chemical compounds.

To compute and study topological indices of nanostructures is a respected prob-

lem in theoretical nanoscience. In this thesis, we compute and study certain degree

based topological indices such as Randić, Zagreb, ABC, GA, ABC4 and GA5 for

various nanostructures like nanotubes and nanocones. We give a characterization

of GA5 index for k-regular graphs which clear the way to compute this index for all

nanotori. We calculate analytically closed results for some counting related polyno-

mials like Omega, Sadhana and Padmakar-Ivan (PI) for certain nanotubes for the

first time. We study degree based and counting related topological indices of certain

networks like silicate networks, hexagonal networks, oxide networks and honeycomb

networks.

We define a new class of silicate networks named as chain silicate networks and

study certain degree based topological indices for them. These results provide a

basis to understand the topology of these important networks.
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Introduction

A graph can be recognized by a polynomial, a connection table, a sequence of

numbers, a matrix and a numeric number (often called a topological index) which

represents the whole graph and these representations are aimed to be uniquely de-

fined for that graph. A topological index is a function Top :
∑
→ R where “R” is

the set of real of real numbers and “
∑

” is the set of finite simple graphs with the

property that Top(G) = Top(H) if both G and H are isomorphic. Obviously, the

number of vertices and edges of a graph are also topological indices.

In the study of Quantitative structure-activity (QSAR) and structure-property

(QSPR) relationships, physicochemical properties and topological indices such as

Wiener index, Szeged index, Randić index, Zagreb index, atom-bond connectivity

(ABC) index and geometric-arithmetic (GA) index are used to predict bioactivity

of the chemical compounds. To compute and study topological indices of nanostruc-

tures is a respected problem in computational and theoretical nanoscience.

The first two chapters are devoted to some basic definitions and terminologies.

In the first chapter, we give a brief introduction of graphs and basic concepts of

graph parameters. The second chapter discusses about introduction to topological

indices of graphs their significance, and some known results about them.

In the third chapter, we study topological indices of various nanotubes like H-

naphtalenic, V C5C7[p, q] nanotubes and CNCk[n] nanocones. Analytically closed

results for certain degree based topological indices like Randić, Zagreb, ABC, GA,

ABC4 and GA5 of these finite families of nanotubes are given. We also com-

pute certain counting related polynomials named as Omega, Sadhana and PI for

H-naphtalenic nanotubes, which are used to compute their corresponding topologi-

cal indices. At the end of this chapter, we give a characterization of GA5 index for

k-regular graphs, which helps to compute this index for all types of nanotori.

In the fourth chapter, we study certain degree based topological indices for var-

ious interconnecting networks like silicate, hexagonal, oxide and honeycomb net-

works. We construct a new class of silicate networks named as chain silicate net-



works and then study their certain degree based topological indices. These results

provide a basis to understand deep topology of these important networks.

A conclusion section highlighting the contribution made in this thesis with some

possible open problems arising from the thesis is given at the end.
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Chapter 1

Preliminaries and basic concepts

This chapter gives a gentle yet concise introduction to most of the terminology used

later in the thesis. The main concern of this section is to give brief introduction

to basic concepts of graphs and is to familiarize about some special graph families.

Some notable concepts in graphs like connectivity and planarity are also discussed

at the end of this section.

1.1 History of graph theory and its branches

It is no coincidence that graph theory has been independently discovered many

times, since it may quite properly be regarded as an area of applied mathematics.

The basic combinatorial nature of graph theory and a clue to its wide applica-

bility are indicated in the words of Sylvester, “The theory of ramification is

one of pure colligation, for it takes no account of magnitude or position ;

geometrical lines are used, but have no more real bearing on the matter

than those employed in genealogical tables have in explaining the laws of

procreation.”

Indeed, the earliest recorded mention of the subject occurs in the works of Euler,

and although the original problem he was considering might be regarded as a some-

what frivolous puzzle, it did arise from the physical world. Subsequent rediscoveries

of graph theory by Kirchhoff and Cayley also had their roots in the physical world.

Kirchhoff’s investigations of electric networks led to his development of the basic
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concepts and theorems concerning trees in graphs, while Cayley considered trees

arising from the enumeration of organic chemical isomers. Another puzzle approach

to graphs was proposed by Hamilton. After this, the celebrated four colour con-

jecture came into prominence and has been notorious ever since. In the present

century, there have already been a great many rediscoveries of graph theory which

we can only mention most briefly in this chronological account.

Euler (1707−1782) became the father of graph theory as well as topology. Graph

theory is considered to have begun in 1736 with the publication of Eulers solution

of the Königsberg bridge problem. The graph theory is one of the few fields of

mathematics with a definite birth date by ore.

Generally speaking, graph theory is a branch of combinatorics but it is closely

connected to applied mathematics, optimization theory and computer science. In

reality, graph theory is cross-disciplinary between mathematics, computer science,

electrical engineering and operations research. Here are some of the subjects within

graph theory that are of interest to people in these disciplines:

1. Optimization problems on graphs: Problems of optimization on graphs

generally treat a graph structure like a road network and attempt to maximize

flow along that network while minimizing costs. There are many classical opti-

mization problems associated to graphs and this field is sometimes considered

a sub-discipline within combinatorial optimization.

2. Topological graph theory: Asks questions about methods of embedding

graphs into topological spaces (like R2 or on the surface of a torus) so that

certain graph-theoretic properties are maintained. For example, the question

of planarity asks: Can a graph be drawn on the plane in such a way so that no

two edge cross? Clearly, the bridges of Königsburg graph had that property,

but not all graphs do.

3. Graph coloring: A question related both to optimization and to planarity

asks how many colors does it take to color each vertex (or edge) of a graph

so that no two adjacent vertices have the same color. Attempting to obtain

a coloring of a graph has several applications to scheduling and computer

science.
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4. Analytic graph theory: Is the study of randomness and probability applied

to graphs? Random graph theory is a subset of this study. In it, we assume

that a graph is drawn from a probability distribution that returns graphs and

we study the properties that certain distributions of graphs have.

5. Algebraic graph theory: Is the application of abstract algebra (sometimes

associated with matrix groups) to graph theory. Many interesting results can

be proved about graphs when using matrices and other algebraic properties.

6. Spectral graph theory: Spectral graph theory is the study of properties

of a graph in relationship to the characteristic polynomial, eigenvalues, and

eigenvectors of matrices associated to the graph, such as its adjacency matrix

or Laplacian matrix.

7. Chemical graph theory: Chemical graph theory is the topology branch of

mathematical chemistry which applies graph theory to mathematical modeling

of chemical phenomena.

Obviously this is not a complete list of all the various problems and applications of

graph theory. However, this is a list of some of the major branches of this subject.

Now, we proceed to the next section which deals with definitions and related concepts

of graphs.

1.2 Graphs and related concepts

A graph is a tuple, G = G(V,E) where V = V (G), a finite nonempty set of n points

(i.e. vertices/nodes) and E = E(G), the set of m unordered pairs of distinct points

of V . Each pair of points (uj, uk) (or simply (j, k)) is a line (i.e. edge or link), ej,k,

of G if and only if (j, k) ∈ E(G).

In a graph G(V,E), the number of vertices |V | are called order of G denoted as n

while the number of edges |E| are called size of G denoted as m. The main concepts

and notation in this text are standard and mainly taken from books [14, 35, 60].

Two vertices are called adjacent if they have a connection by an edge. If two

distinct edges are incident having a vertex in common then they are adjacent edges.
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The set of all vertices having adjacency to u in G is called the neighborhood of u

and denoted as NG(u). The angle between edges as well as the length of an edge

are disregarded.

A directed graph or digraph consists of a finite nonempty set V of vertices along

with a collection of ordered pairs of distinct vertices i.e. directed edges. The elements

of E are directed lines or arcs. In a multigraph two vertices may have more than

one edge joining them. Figure 1.1 depicts the graph, digraph and a multigraph.

Graph

MultigraphDigraph

Figure 1.1: A representation of graph, digraph and multigraph

The number of vertices adjacent to a vertex u is called the degree of the vertex

u, denoted as dG(u) or simply du. An isolated vertex in a graph G is the vertex of

degree 0 while an end vertex (or a leaf) is a vertex of degree 1. Each loop counts to

two edges.

A graph G is said to be finite, if the number of edges and vertices of G are finite,

otherwise G will be an infinite graph.

A walk is a finite string, w1,n = (uj)1≤j≤n, uj ∈ V (G) such that any pair

(uj−1, uj) ∈ E(G), j = 2, ..., n. In a walk, we can visit vertices and edges more

than once. If u1 = un then the walk is said to be closed and is open if u1 6= un,

where u1 and un are the first and last vertex of the walk. A closed walk is also called

a self -returning walk. The set of all walks in G is denoted by W̃ (G) . The length

of a walk w1,n = (uj)1≤j≤n equals the number of edges traveled in it.

A trail is a walk in which all its edges are distinct. The vertices can be revisited.
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A path (i.e. self -avoiding walk) in a graph is a finite or infinite sequence of edges

which connect a sequence of vertices. Revisiting of vertices and edges is prohibited.

A path is closed if its initial and terminal vertices are same. The set of all paths in

G is denoted by P (G).

A graph is connected if there exist a path between any pair of vertices. A maximal

connected subgraph of G is called a component. A graph is called disconnected

graph, if it has at least two components.

A cycle is a closed path. The girth of a graph, g(G), is the length of a shortest

cycle (if any) in G. The circumference, c(G) is the length of a largest cycle. A cycle

is both a self-returning and a self-avoiding walk.

A Hamiltonian path visits once all the vertices in G. A closed hamiltonian path

is called a Hamiltonian circuit. Figure 1.2 illustrate each type of above discussed

walk.

closed Walk path trail cycle

Hamiltonian path Hamiltonian circuit

graph

Figure 1.2: Representation of a graph and closed walk, path, trail, cycle, Hamilto-

nian path and Hamiltonian circuit in it.

Now we discuss some special families of graphs which play an important role in

the theory of graphs.

A path graph, is a simple graph whose vertices can be arranged so that two

vertices are adjacent iff they are consecutive in a list, a path consisting of n vertices

is denoted by Pn. A tree, Tn, is an acyclic connected graph of n vertices. A star is

a set of vertices joined by a common vertex; it is denoted by Sn′ , with n′ = n − 1,

where n is the number of vertices in star. An n-dimensional cycle, Cn, is a chain of

n vertices, having same starting and ending vertex. In a cycle graph, every vertex

is of degree two. Examples of above discussed graphs are depicted in Figure 1.3.
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Path CycleTree Star

Figure 1.3: Examples of path graph, tree graph, star graph and cycle graphs.

A complete graph, Kn, is an n-ordered graph with any two vertices adjacent. The

number of edges in a complete graph is
(
n
2

)
= n(n − 1)/2. In Figure 1.4, complete

graphs with n = 1 to 5 are depicted.

K1

K5

K2
K3 K4

Figure 1.4: Complete graphs of different dimensions.

A bipartite graph is a graph whose vertex set V can be decomposed into two

disjoint subsets X, Y ⊆ V with X ∪ Y = V ; X ∩ Y = ∅ such that the vertices in X

are only adjacent to the vertices in Y .

In a bipartite graph G with partite sets X and Y , if any vertex u ∈ X is adjacent

to any vertex v ∈ Y then G is a complete bipartite graph and is symbolized by Km,n,

with m = |X| and n = |Y |. A star is a complete bipartite graph K1,n. It is clear

that Km,n has m + n vertices and mn edges. Figure 1.5 presents some bipartite

graphs with their bipartition.

A rooted graph is a graph in which heteroatoms or carbons with an unshared

electron are specified. Equivalently, a rooted graph is a graph in which one vertex is

labeled in a special way to distinguish it from other vertices of graph. This labeled

vertex is called the root of the graph (Figure 1.6).

A homeomorph of a graph G is a graph resulted by inserting vertices of degree 2
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K1,3

K2,3

K3,3

Figure 1.5: Different bipartite graphs with bipartition as hole vertices in one partite

set and black vertices in other.

N

O

Figure 1.6: Rooted graphs.

(Figure 1.7). The line graph of a graph G, denoted by L(G), such that its vertices

represent edges of G and two vertices of L(G) are adjacent if the corresponding

edges of G are incident to a common vertex. Figure 1.8 illustrate such a derivation.

Figure 1.7: Homeomorphs of tetrahedron.

Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic (written G1
∼= G2)

if there exists a mapping f : V1 → V2 which obeys the following conditions:

1. f is a bijective function (one-to-one and onto),

7



Figure 1.8: A graph and its line graph.

2. for all vertices u, v ∈ V ; (u, v) ∈ E1 ⇔ (f(u), f(v)) ∈ E2.

The function f is called an isomorphism.

1

3

4
5

2 6

7

8

9

10

1

3

4

5

2

6

7

8

9

10

Figure 1.9: Two isomorphic graphs.

An induced subgraph of a graph G is a graph G1 = (V1, E1) having V1 ⊆ V and

E1 ⊆ E (Figure 1.10). A spanning subgraph is a subgraph G1 = (V,E1) containing

all the vertices of G but E1 ⊆ E (Figure 1.11).

Now we discuss the concept of distance and degree in graphs.

The distance between two vertices u and v, is denoted as d(u, v), is the length of a

shortest path joining them : d(u, v) = min l(pu,v), where l(pu,v) denotes the length of

any path between u and v; and if there is no path between u and v then d(u, v) =∞.

A shortest path is also called a geodesic. The eccentricity of a vertex u, denoted as

eccu, in a connected graph G is the maximum distance between u and any vertex

v of G: eccu = max d(u, v) while the radius of a graph G, denoted as r(G), is the

minimum eccentricity among all vertices u in G: r(G) = min eccu = min max d(u, v).

Conversely, the diameter of a graph G, denoted as d(G), is the maximum eccentricity
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Figure 1.10: A graph and its induced subgraph.

Figure 1.11: A graph and its spanning subgraphs.

in G: d(G) = max eccu = max max d(u, v).

In a connected graph, the distance is a metric, that is, for all vertices u , v and

w,

1. m(u, v) ≥ 0, with m(u, v) = 0 if and only if u = v.

2. m(u, v) = m(v, u)

3. m(u, v) +m(u,w) ≥ m(v, w)

When l(pu,v) is expressed in number of edges, the distance is called topological dis-

tance; when it is measured in meters or submultiples:(nm, pm) it is a metric distance.

Table 1.1 illustrates the two types of distances.

An invariant of a graph is a graph theoretical property, which is preserved by

isomorphism. In other words, it remains unchanged, irrespective of the numbering

or pictorial representation of G.

The degree, du, (i.e. valency), sometimes denoted by k) of a vertex u in G is the

number of edges incident with u or the cardinality of NG(u). Since any edge has two

9



Chemical Compound Topological Distance Metric Distance (pm)

CH3 − CH3 1 154

CH2 = CH2 1 134

CH ≡ CH 1 121

Table 1.1: Topological and Metric Distances

terminal vertices, it contributes twice to the sum of degrees of vertices in G, such

that
∑
u ∈ E du = 2m, a result which was the first theorem of graph theory (Euler,

1736). In a (n,m) graph, 0 ≤ du ≤ n− 1, for any vertex u. If all vertices have the

same degree, k, the graph is called k-regular ; otherwise it is irregular (Figure 1.12).

Figure 1.12: A regular and an irregular graph.

1.3 Chemical graphs

A chemical graph is a model of a chemical system, used to characterize the in-

teractions among its components: atoms, bonds, groups of atoms or molecules. A

structural formula of a chemical compound can be represented by a molecular graph,

its vertices being atoms and edges corresponding to covalent bonds. Usually hydro-

gen atoms are not depicted in which case we speak of hydrogen suppressed molecular

graphs (Figure 1.13).

The heavy atoms different from carbon (i.e. heteroatoms) can be represented, as

shown in Figure 1.6. Similarly, a transform of a molecule (e.g. a chemical reaction)

can be visualized by a reaction graph, whose vertices are chemical species and edges

reaction pathways.
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ccc
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c

Figure 1.13: A chemical structure and its hydrogen depleted representation (molec-

ular graph).

1.4 Planarity and connectivity in graphs

In this section we present some basic concept of planarity in graphs. Concept of

connectivity that are useful in measuring connectedness of graphs is also presented

at the end of this section.

A planar graph usually represented as G = (V,E, F ), with vertex set V , edge set E

and F is being the set of all regions/faces, is a graph, which can be drawn in the

plane without crossing any edge. The plane drawing of a graph is called its plane

graph. The regions in a plane graph are called faces, F , the outer region being

the unbounded/exterior face (e.g. f4 in Figure 1.14). For any plane graph with

n vertices, m edges and f faces the Euler formula [23] is true: V − E + F = 2.

A graph is planar if and only if it has no subgraphs homeomorphic to K5 or K3,3

(Kuratowski’s theorem) [47].

Now we present an important concept in graphs which explains the concept that

how much a graph is connected?

Let G be a connected graph and S ⊆ V (G), if G \ S is disconnected, then S is

referred to as a vertex cut of G.

A vertex cut of G with minimum cardinality is called a minimum vertex cut and

the cardinality of that minimum vertex cut is recognized as connectivity number,

11



f1

f2
f3

f4

Figure 1.14: A planar graph and its faces.

denoted by κ(G). If G is a complete graph, then κ(G) is defined to be n− 1. For a

complete graph G, connectivity number κ(G) is defined to be n−1. Thus, κ(G) = 0

if G is either trivial or disconnected. In a graph G, if κ(G) ≥ k then G is said to be

k-connected.

A cycle Cn, where n ≥ 4 is 2-connected and a path of length two or more is

1-connected. A 3-connected graph G and 1-connected graph H are shown in Figure

1.15.

G H

Figure 1.15: Graph

Let G be a connected graph and S ⊆ E(G), if G \ S is disconnected then S is

referred as an edge cut of G.

An edge cut of minimum cardinality in G is called a minimum edge cut and

the cardinality of that minimum edge cut is referred as edge connectivity number,

denoted by κ′(G).

Let G be a non trivial graph then κ′(G) = 0 if and only if G is disconnected. The

edge connectivity number of a trivial graph is also zero. For a connected graph

12



G, κ′(G) = 1 if and only if G contains a bridge. Furthermore, if G ∼= Kn then

κ′(G) = n− 1. A graph G is said to be k-edge-connected if κ′(G) ≥ k.

Consider the graph G in figure 1.15, the graph G has κ(G) = κ′(G) = 3.

Subdividing a graph G means performing a sequence of edge subdivision opera-

tions. The resulting graph is known as subdivision of the graph G. We can convert

a general graph into a simple graph by the use of subdivision operation.

The barycentric subdivision of a graph G is the subdivision in which a new

vertex of degree two is added in the interior of each edge. It can be noted that

the resulting graph after applying barycentric subdivision is loopless and moreover

a loopless graph can be converted into a simple graph by performing barycentric

subdivision operation.

Consider the graphs of Figure 1.16, where G is a graph having loop and parallel

edges but barycentric subdivision yields a loopless graph and further becomes a

simple graph when we again apply barycentric subdivision. H is a cycle of length 5

but its barycentric subdivision yields a cycle of length 10.

G:

H:

Figure 1.16: Barycentric subdivision of some graphs
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Chapter 2

Topological indices of graphs and

known results

This chapter deals with the concept of topological indices and their major types

based on different graph parameters such as distance, degree etc. Moreover, we

discuss some known results about these topological indices.

2.1 Introduction to topological indices

In graph-theoretical terms, a single numeric number representing a chemical struc-

ture is called a topological descriptor. It does not depend on the labeling or the

pictorial representation of a graph because of being a structural invariant. Despite

the considerable loss of information by the projection in a single numeric number of

a structure, such descriptors found broad applications in the correlation and predic-

tion of several molecular properties and also in tests of similarity and isomorphism.

When a topological descriptor correlates with a molecular property, it can be de-

nominated as molecular index or topological index (TI).

There are hundreds of topological indices which are reported so far. Randić

has outlined some desirable attributes for the topological indices in the view of

preventing their hazardous proliferation.

List of desirable attributes for a topological index.

14



• Direct structural interpretation

• Good correlation with at least one property

• Good discrimination of isomers

• Locally defined

• Generalizable to higher analogues

• Linearly independent

• Simplicity

• Not based on physico-chemical properties

• Not trivially related to other indices

• Efficiency of construction

• Based on familiar structural concepts

• Show a correct size-dependence

• Gradual change with gradual change in structures

Only an index having a direct and clear structural interpretation can help to the

interpretation of a complex molecular property. If the index correlates with a single

molecular property it could indicate the structural composition of that property.

If it is sensible to gradual structural changes (e.g., within a set of isomers) then

the index could give information about the molecular shape. If it is locally defined,

the index could describe local contributions to a given property. If the index can

be generalized to higher analogues or it can be built up on various bases (e.g., on

various matrices) it could offer a larger pool of descriptors for the regression analysis.

Among the molecular properties, good correlation with the structure was found

for: thermodynamic properties (e.g., boiling points, heat of combustion, enthalpy

of formation, etc.), chromatographic retention indices, octane number and various

biological properties.
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Thus, a topological index converts a chemical structure into a single number,

useful in QSPR/QSAR studies. More than a hundred of topological descriptors

were proposed so far and tested for correlation with physico-chemical (QSPR) or

biological activity (QSAR) of the molecules.

There are two types of invariants, named as Local Invariants (LOIs) and Global

Invariants (GLIs). LOIs are defined locally for any atom/vertex whereas GLIs are

defined for the whole chemical structure/graph. When a TI shows one and the same

value for two or more structures, it is said that TI is degenerated. The degeneracy

may appear both in the assignment and the operational stages. The assignment

degeneracy appears when non-equivalent subgraphs (i.e., vertices) receive identical

LOIs or when non-isomorphic graphs show the same ordered LOIs. The operational

degeneracy is seldom encountered (e.g., when simple operations act on weakly dif-

ferentiated LOIs) and leads to the same value of TI for non-isomorphic graphs which

do not show assignment degeneracy.

A graph can be recognized by a numeric number, a polynomial, a sequence of

numbers or a matrix which represents the whole graph, and these representations

are aimed to be uniquely defined for that graph. A TI is actually a numeric quantity

associated with chemical constitution purporting for correlation of chemical struc-

ture with many physio-chemical properties, chemical reactivity or you can say that

biological activity. Mathematically a topological index is a function Top :
∑
→ R

where “R” is the set of real of real numbers and “
∑

” is the set of finite simple

graphs with the property that Top(G) = Top(H) if both G and H are isomorphic.

In other words, these numeric numbers are unique under graph isomorphism.

Why do we name these numeric numbers for a graph as topological indices

? In mathematics, a topology is a the study of geometrical properties and spatial

(related to space) relations unaffected by the continuous change of shape or size of

figures. In other words a topology is a geometrical/structural study of mathemat-

ical objects which remains unaffected by doing some change in size or shape. A

topological index also study the structural properties of underlying structure/graph

(i.e. mathematical object) and remains unchanged/unaffected by doing a continu-

ous change in shape of underlying structure/graph. In topology, a topological space

actually studies the geometrical/structural properties of given space, while in graph
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theory a topological index studies geometrical/structural properties of underlying

graph by giving important information about the graph. Furthermore, we usually

define a space on the set of vertices of a graph satisfying some axioms. On vertex

set of a graph, we define a topology which satisfy the axioms of a topological space

as like we define a metric space. Due to these reasons, we call these numbers as

topological numbers/indices.

Obviously, the number of vertices and edges of a graph are trivially topological

indices. Other common examples of topological indices in a graph which trivially

satisfy the definition of a topological index are radius, diameter and chromatic num-

ber etc. The theory of topological indices was started by the theoretical chemists and

these numbers found to be much significant because of their chemical significance

and importance. We do not call number of edges and vertices, radius, diameter

etc as topological indices due to the reason because they do not have any chemical

significance.

Topological descriptors play a vital role in Quantitative structure-activity (QSAR)

and structure-property (QSPR) study. They correlate certain physico-chemical

properties (boiling point, melting point, strain energy, enthalpy of vaporization,

enthalpy of formation etc.) of certain chemical compounds especially carbon con-

taining compounds (hydrocarbons, nanotubes, nanocones, nanostar, dendrimers,

graphite sheets, diamonds, fullerenes etc). Due to this specific property, these de-

scriptors found diverse application in organic chemistry, nanotechnology and biotech-

nology.

If it is required to find a result for a chemical compound which correlates its

specific physico-chemical property, then we construct its chemical graph and by

applying various graph-theoretic tools, we find a numeric number which correlates

with the value of that particular physico-chemical property. For example, we want to

find the value that correlates the boiling point of any member of alkane family, then

by drawing its hydrogen depleted graph, we find its Wiener index that correlates

its exact value of boiling point. In a similar fashion, if we want to calculate the

correlating value of strain energy of branched or cyclo-alkanes, we just calculate its

atom-bond connectivity (ABC) index (to be discussed in the later part).

This is not the enough introduction to these so-called descriptors, but we must
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stop here. Now, we discuss some major classes of topological indices, their minor

introduction and some well-known results which motivate us to work in this presti-

gious area of research.

2.2 Some major classes of topological indices

As we have already mentioned that, there are hundreds of topological indices which

has been reported so far. So, it is not possible to discuss all of them in this short

text. We classify them with respect to some graph parameters such as degree and

distance etc. In this section, we introduce some distance based, degree based and

counting related topological indices. Distance based indices are purely defined using

distances in graph, degree based indices are constructed using concept of a valency

or degree of vertex and counting related are based on counting the edges in graph,

which are topologically parallel. Not all of the indices can be covered in these classes

because there are some indices which are defined using both degree and distance of

graphs e.g., degree distance index.

In this thesis, G is considered to be simple connected graph with vertex set V (G)

and edge set E(G). Distance between vertices u and v is denoted as dG(u, v) =

d(u, v) while dG(u) = du is the degree of vertex u ∈ V (G). The quantity δG(u) =

Su =
∑

v∈NG(u)

d(v), where NG(u) = {v ∈ V (G) | uv ∈ E(G)}.

Now, we discuss those classes by taking their examples and known results.

2.3 Distance based topological indices

These topological indices are based on distance between two vertices in a graph.

Some examples of these indices are following.

• Wiener index

• Harary index

• Szeged index
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• Balaban index

• Schultz Molecular Topological Index (MTI) , etc

Now, we define and introduce some of the above mentioned indices.

2.3.1 Wiener index

The concept of topological index came from work of Harold Wiener in 1947, while

he was working on boiling point of paraffin. He named this index as path number.

Later on, this concept was changed and path number was named as Wiener index

[62] and then theory of topological index started. The Wiener index is defined as

W (G) =
1

2

∑
(u,v)

d(u, v),

where (u, v) is any ordered pair of vertices in G and d(u, v) is the distance between

vertices u and v.

Its not easy to calculate all distances in a graph having large number of vertices

and edges, so researchers construct some ad hoc techniques to compute these indices

which reduces the computational complexity of these indices. Now, we present some

known results for Wiener index which motivate us to work on nanostructures. To

compute and study the topological indices of nanostructures is a respected problem

in theoretical nanoscience.

Diedea et al. [15] calculated the analytically closed result of Wiener index for

armchair polyhex nanotube TUV C6[p, q], where p and q are defined in a way such

as p is the number of pairs of hexagons in any row and q is the number of vertices

in first column. In Figure 2.1, a TUV C6[p, q] nanotube with p = 3 and q = 8 is

depicted.

Theorem 2.3.1. [15] Consider the armchair polyhex nanotube TUV C6[p, q], p, q > 1
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Figure 2.1: TUV C6[p, q] nanotube with p = 3 and q = 8.

Figure 2.2: A CNC5[2] nanocone.

and z ≡ p(mod2), then its Wiener index is equal to

WTUV C6(p, q, z) = 12(−1)p−zpq + 3(−1)p−z+1 + 3(−1)−z − 12q2z2 + 12q2z +

12(−1)p−zp+ 12z2q + 6(−1)p−z+1p2 + 8pq3 − 28pq + 6q2 +

18q + 8p3q + 12p2q2 + 12(−1)p−zq + 6(−1)p−z+1q2 − 24qz −

12p+ 14p2 + 6(−1)1−zq − 2p4.

Alipour et al. [2] computed the Wiener index of one-pentagonal nanocone,

CNC5[n], having pentagon at its core and hexagonal layers on its conical surface

and n is the number of hexagonal layers on its conical surface. A CNC5[2] nanocone

is depicted in Figure 2.2.

Theorem 2.3.2. [2] Consider the graph of one-pentagonal nanocone, CNC5[n],

then its Wiener index is equal to

W (CNC5[n]) = an5 + bn4 + cn3 + dn2 + en+ f
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where a = 20.6666666666671, b = −1.63759458326337× 10−11,

c = −5.83333333311, d = −1.28391164496× 10−09,

e = 0.166666669517, f = −1.75858629993× 10−09.

Yousefi et al. [66] computed the exact expression of Wiener index for an arbitrary

polyhex nanotorus presented in following theorem.

Theorem 2.3.3. [66] Consider the graph of an arbitrary polyhex nanotorus T =

T [p, q], where p and q are defining parameters, then its Wiener index is equal to

W (T ) =


pq2

24
(6p2 + q2 − 4), q < p;

p2q
24

(3q2 + 3pq + p2 − 4), q ≥ p.

Harary index is the sum of reciprocal distances in a graph. In other words,

we can say that Harary index is the reciprocal extension of a Wiener index. We

omit to discuss this index and we now discuss Szeged index. Which is significantly

more powerful than Wiener index in a way that Wiener index only correlate the

boiling point of branched alkanes, whereas the Szeged index correlate this important

physico-chemical property for both branched and cyclo-alkanes.

2.3.2 Szeged index

Let u and v be two adjacent vertices of the graph G and e = uv be the edge between

them. Let Bu(e) be the set of all vertices of G lying closer to u than to v and Bv(e)

be the set of all vertices of G lying closer to v than to u, that is,

toremovenumbering(beforeeachequation)Bu(e) = {x|x ∈ V (G), d(x, u) < d(x, v)},

Bv(e) = {x|x ∈ V (G), d(x, v) < d(x, u)}.

Let nu(e) = |Bu(e)|, nv(e) = |Bv(e)|. The Szeged index of G is defined as

Sz(G) =
∑

e=uv∈E(G)

nu(e)nv(e).

There is a lot of calculation, which is required to calculate the exact expression of

this index. Eliasi et al. [21] calculate the exact expression of the Szeged index for

armchair polyhex nanotube defined above and depicted in Figure 2.1.
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Theorem 2.3.4. [21] The Szeged index of G = TUV C6[2p, q] is equal to

Case I: If p is even, then

Sz(G) =



− p
12

(
− 36p2q3 + 24p2q2 − 3q + 6q2 + 6q5−

6(−1)qq2 + 4q3 − 3 + 3(−1)qq + 3(−1)q − 6q4
)
, if q ≤ p;

p
60

(
12p5 + 30p4 − 80qp4 − 120qp3 + 160q2p3+

60q3p2 + 80p2q − 120pq2 + 30p(−1)q+

18p+ 24q4p− 33q − 2q5+

15(−1)q+1q + 20q3
)
, if p < q < 2p− 2;

−p2

30

(
− 70pq3 + 24− 26p4 − 80p2 − 15p3 + 60p2q−

40p3q + 80pq
)
, if q ≥ 2p− 2.

Case II: If p is odd, then

Sz(G) =



− p
12

(
− 36p2q3 + 24p2q2 + 9q − 6q2 + 2q5−

9(−1)qq2 − 3 + 4q3 − 9(−1)qq + 3(−1)q − 6q4
)
, if q ≤ p;

p
60

(
30− 80qp4 − 120qp3 + 160q2p3 + 60q3p2+

80p2q − 20q4p+ 120pq2 + 30p(−1)q + 12p5+

30p4 + 20q3 − 42p+ 120pq + 2q5 − 33q − 2q5+

15(−1)q+1q + 20q3
)
, if p < q < 2p− 2;

−p2

30

(
− 60pq + 54p+ 30p2 − 15− 15p4 − 80p3−

70p2q3 − 40p4q + 60p3q + 80p2 + 26p5
)
, if q ≥ 2p− 2.

Yazdani et al. [65] computed the Szeged index of H-naphtalenic nanotubes as

following. This nanotube is defined and discussed with detail in Section 1 of Chapter

3.
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Theorem 2.3.5. [65] The Szeged index of H-naphtalenic nanotube T = NPHX[2m, 2n]

is equal to

Sz(T ) = 2400n3 − 10000n3m− 400n2m2 + 1200m3n2 + 8200m4n2 + 24µ2m+

960µm2n(n−m)2 + 480µm2|n−m|n+ 7200n3m2 + 6400n3m3 −

480µm2n− 8µ2m|n−m| − 4µ2m(n−m)2 − 64µ2m(n−m)3,

where,

µ =


2mn, if m ≥ n;

2mn− 1, if m < n.

We now discuss the Balaban index or in short J index, which has low degeneracy

than Wiener index.

2.3.3 Balaban index

The Balaban index is a topological index introduced by Balaban near to 30 years

ago. The Balaban index of a graph G is the first simple index of very low degeneracy.

This is also called the J index. It is defined as

J(G) =
E(G)

µ+ 1

∑
uv∈E(G)

1
√
σuσv

,

where σu =
∑

w∈V (G)

d(u,w) and µ = m− n+ 1 is called the cyclomatic number of G.

Balaban index has been used in various QSAR and QSPR studies [8]. The

Balaban index and Wiener index are two kinds of important topological indices

based on the distance. Balaban et al. [9] compare the sequence of the isomers of

alkane with k carbon atoms, where 6 ≤ k ≤ 9. The result shows that the sequence

of the isomers of alkane based on the Balaban index is parallel with that based on

the Wiener index. Moreover, the former has smaller degeneracy than latter, which

means that using the Balaban index to characterize molecular structure is better

than the Wiener index [10]. Now, we discuss the result, in which Balaban index

is computed for infinite class of dendrimers Dk, where parameter k is defined in a

special way.
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The nanostar dendrimer is a part of a new group of macroparticles that ap-

pear to be photon funnels just like artificial antennas. These macromolecules and

more precisely those containing phosphorus are used in the formation of nanotubes,

micro and macrocapsules, nanolatex, coloured glasses, chemical sensors, modified

electrodes and so on [7, 20]. Figure 2.3 shows the nanostar dendrimer Dk with

k = 2.

Figure 2.3: The nanostar dendrimer Dk with k = 2.

Theorem 2.3.6. [57] Let Dk be the infinite dendrimer, then its Balaban index is

equal to

J(Dk) =
1

2

(
3 + 2k+2 + (3k − 7)2k

)
+

k∑
i=1

[
3.2i−1(3 + 2k−i+2 + (3k + 3i− 7)2k)

]
.

A TUC4C8(R)[p, q] nanotube is parameterized in this manner that p is the num-

ber of octagons in any fixed row and q is the number of octagons in any fixed column

as shown in Figure 2.4. If we wrap it up so that each dangling edge is connected

to rightmost vertex of the same row we get this nanotube. The Balaban index for

TUC4C8(R) nanotori is discussed by Yousefi-Azari et al. [67].

Theorem 2.3.7. [67] The Balaban index of T = TUC4C8(R)[m,n] nanotori is equal
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Figure 2.4: The graph of TUC4C8(R)[p, q] nanotube with p = 5 and q = 4.

to

J(T ) =


54mn2

(mn+2)(6n2+3mn+m2−4) , n ≤ m;

54mn2

(mn+2)(6m2+3mn+n2−4) , n > m.

Now, we move on to the degree based topological indices, their minor introduc-

tion and some known results. Since, our main concern in this research is on degree

based topological indices, so they need special attention.

2.4 Degree based topological indices

These topological indices are defined on the ground of degree of a vertex. These

indices are of special importance because of their unique chemical significance. They

correlate various physico-chemical properties such as, boiling point, strain energy,

resonance energy and Kovat’s constant in a more efficient way with more prediction

power. The examples of famous degree based topological indices are following.

• Randić index

• Sum-connectivity index

• Zagreb index

• Atom-Bond Connectivity index
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• Geometric-Arithmetic index, etc

Now, we introduce, define and give some known results of these topological indices.

2.4.1 Randić index

The very first and oldest degree based topological index is Randić index denoted by

χ(G) and introduced by Milan Randić [54] in 1975. The Randić index of graph G

is defined as

R− 1
2
(G) = χ(G) =

∑
uv∈E(G)

1√
dudv

.

The general Randić index was proposed by Bollobás and Erdös [11] and Amic et

al. [4] independently, in 1998. Then it has been extensively studied by both math-

ematicians and theoretical chemists [42]. Many important mathematical properties

have been established [12]. For a survey of results, we refer to the new book by Li

and Gutman [49].

The general Randić index Rα(G) is the sum of (dudv)
α over all edges e = uv ∈ E(G)

defined as

Rα(G) =
∑

uv∈E(G)

(dudv)
α.

Obviously R− 1
2
(G) is the particular case of Rα(G) when α = −1

2
.

For a connected graph G, the sum connectivity index is defined as following.

X(G) =
∑

uv∈E(G)

1√
du + dv

.

We present some known motivating results of this Randić index and sum connectivity

index.

An HAC5C7[p, q] is a C5C7 net and constructed by alternating C5 and C7 fol-

lowing the trivalent decoration as shown in Figure 2.6. This type of tiling can cover

a cylinder and a torus also. The 2-dimensional lattice of HAC5C7[p, q], in which p is

the number of heptagons in one row and q is the number of periods in whole lattice

is discussed in [52]. A period consist of three rows as in Figure 2.5 in which m-th

period is shown. Farahani [25] computed the Randić index and sum connectivity

index of HC5C7[p, q] nanotubes.
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3m-2

3m-1

3m

Figure 2.5: m-th period of HAC5C7 nanotube.

Figure 2.6: The graph of HAC5C7[p, q] nanotube with p = 4 and q = 2.

Theorem 2.4.1. [25] Let G be the HC5C7[p, q], ∀p, q ∈ N nanotube, then its Randić

index is

χ(G) = 4pq + 2

(
8
√

6− 5

6

)
p.

Sum connectivity index for G is equal to

X(G) = 2
√

6pq +

(
8
√

5

5
− 2
√

6

3
+

1

2

)
p.

To compute and study the topological indices of networks is an important and

respected problem in network analysis. These results are significant contribution

in network sciences and play an important role to discuss the deep topologies of

underlying networks. Rajan et al. [53] studied and computed certain degree based

topological indices of silicate, hexagonal and honeycomb networks which are defined

and discussed in chapter 4.

Theorem 2.4.2. [53] For an n-dimensional silicate network SLn, the Randić index

is equal to

R 1
2
(SLn) = (3 + 3

√
2)n2 +

√
2n.
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For an n-dimensional hexagonal network HXn, the Randić index is

R 1
2
(HXn) =

3

2
n2 + (

√
6− 4)n+ 2

√
3(1−

√
2) +

1

2
.

For an n-dimensional honeycomb network HCn, the Randić index is

R 1
2
(HCn) = 3n2 + (2

√
6− 5)n+ 5− 2

√
6.

Now we discuss the Zagreb indices.

2.4.2 Zagreb index

An important topological index introduced about forty years ago by Ivan Gutman

and Trinajstić [33] is the Zagreb index or more precisely first zagreb index denoted

by M1(G) and was defined as the sum of degrees of end vertices of all edges of G.

Consider a graph G, then first zagreb index is defined as

M1(G) =
∑

uv∈E(G)

(du + dv).

The second version of Zagreb index is proposed late on. It is defined as the product

of degrees of end vertices of all edges of G

M2(G) =
∑

uv∈E(G)

(du × dv).

There is a lot research, which has been done on this index. Lot of papers have been

published in different fields of theoretical chemistry by researchers of this interesting

interdisciplinary field. We discuss some of the important results of Zagreb index.

Farahani et al. [26] computed the zagreb index and Zegreb polynomial of circum-

coronene series of benzenoid which are benzenoid structures of special type. A

3-dimensional circumcoronene series of benzenoid graph is depicted in Figure 2.7.

Theorem 2.4.3. [26] Let G = Hk, k > 1 be the circumcoronene series of benzenoid.

Then its first Zagreb index is equal to

M1(G) = 54k2 − 30k.

Its second Zagreb index is equal to

M2(G) = 81k2 − 63k + 6.
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Figure 2.7: A 3-dimensional circumcoronene series of benzenoid graph.

Ilić et al. [43] gave lower bounds for first and second Zagreb indices.

Theorem 2.4.4. [43] For an n-ordered simple, connected graph, M1 is bounded

below by

M1 ≥
4m2

n
.

Its second Zagreb index is bounded below by

M2 ≤
4m3

n2
.

2.4.3 Atom-bond connectivity index

One of the well-known connectivity topological index is atom-bond connectivity

(ABC) index introduced by Estrada et al. [22]. For a graph G, the ABC index is

defined as

ABC(G) =
∑

uv∈E(G)

√
du + dv − 2

dudv
.

This topological index is very efficient in correlating some important physico-chemical

properties like strain energy as well as stability of both branched and cyclo-alkanes.

There are subsequent versions of ABC index, which have been defined later on.

The generalized ABC index is defined in the following manner:

ABCk(G) =
∑

uv∈E(G)

√
Qu +Qv − 2

QuQv

.

where k ∈ N and Qu is the quantity which is uniquely related to the vertex u.
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• When Qu = du then k = 1 and du is the degree of vertex u and dv is defined

analogously.

• When Qu = nu then k = 2 and nu denotes the number of vertices of G whose

distances to vertex u are smaller than those to other vertex v of the edge

e = uv.

• When Qu = mu then k = 3 and mu denotes the number of edges of G lying

closer to vertex u than to v of the edge e = uv.

• When Qu = Su then k = 4 and Su =
∑

v∈NG(u)

d(v) and NG(u) = {v ∈ V (G) |

uv ∈ E(G)}.

• When Qu = ξu then k = 5 and ξu = max
v∈V (G)

d(u, v).

Now, we exhibit some known and motivating results for ABCk index.

A TUC4C8(S)[p, q] nanotube is parameterized in this manner that p is the num-

ber of octagons in any fixed row and q is the number of octagons in any fixed

column as shown in Figure 2.8. Asadpour et al. [5] computed the ABC index of

Figure 2.8: A TUC4C8(S)[p, q] nanotube with p = 4 and q = 3.

TUC4C8(S)[p, q] nanotube.

Theorem 2.4.5. [5] Let G be the graph of TUC4C8(S)[p, q] nanotube, then its ABC

index is equal to

ABC(G) =
√

2(8pq − 3p− 3q + 4) + 4

√
3

5
(p+ q − 2).
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The fourth version of ABC index is introduced by Ghorbani et al. [28] in 2010.

They computed it for nanostar dendrimers defined in section 2.3.3 and depicted in

Figure 2.3.

Theorem 2.4.6. [28] Let Gn be the graph of nanostar dendrimers. Then

ABC4(Gn) =

(
1

2

√
6 +

2

7

√
3 +

13

5

√
2 +

√
7

5
+ 10

√
2

7

)
n+(√

6− 2

7

√
3− 8

5

√
2 + 2

√
7

5
− 4

√
2

7

)
.

Farahani computed the ABC4 for V-phenylic nanotube and nanotori.

Theorem 2.4.7. [27] Consider the graph of V-phenylic nanotube V PHX[m,n]

m,n > 1, then its ABC4 index is equal to

ABC4(V PHX[m,n]) =

(
4n+

√
5

6
+

√
7

6
− 2

)
m

Consider the graph of V-phenylic nanotorus V PH[m,n] m,n > 1,. Then its ABC4

index is

ABC4(V PH[m,n]) = 4mn

Now, we study geometric-arithmetic (GA) index, which has more predictive

power than Randić index.

2.4.4 Geometric-arithmetic index

Another well-known topological descriptor is Geometric-Arithmetic (GA) index which

was introduced by Vukičević et al. [61]. Consider a graph G, then its GA index is

defined as

GA(G) =
∑

uv∈E(G)

2
√
dudv

(du + dv)
.

For physico-chemical properties such as entropy, enthalpy of vaporization, standard

enthalpy of vaporization, enthalpy of formation, and a centric factor. The predic-

tive power of GA index is somewhat better than predictive power of the Randić

connectivity index.
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There are some version of GA index, which are defined subsequently. The gen-

eralized GA index is defined in the form:

GAk(G) =
∑

uv∈E(G)

2
√
QuQv

(Qu +Qv)
.

where k ∈ N and Qu is the quantity which is uniquely related to the vertex u.

• When Qu = du then k = 1 and du is the degree of vertex u and dv is defined

analogously.

• When Qu = nu then k = 2 and nu denotes the number of vertices of G whose

distances to vertex u are smaller than those to other vertex v of the edge

e = uv.

• When Qu = mu then k = 3 and mu denotes the number of edges of G lying

closer to vertex u than to v of the edge e = uv.

• When Qu = ξu then k = 4 and ξu = max
v∈V (G)

d(u, v).

• When Qu = Su then k = 5 and Su =
∑

v∈NG(u)

d(v) and NG(u) = {v ∈ V (G) |

uv ∈ E(G)}.

Now, we present some known results for GA index and its version.

A HAC5C6C7[p, q] nanotube is a C5C6C7 net and constructed by alternating

C5, C6 and C7 following the trivalent decoration as shown in Figure 2.10. This

tessellation of C5, C6 and C7 can either cover a cylinder or a torus. The 2-dimensional

lattice of HAC5C6C7[p, q], in which p is the number of pentagons in one row and q

is the number of periods in whole lattice. A period consist of three rows as in Figure

2.9 in which m-th period is shown. Iranmenash et al. [45] computed the GA index

for HAC5C6C7[p, q] nanotubes.

Theorem 2.4.8. [45] For graph of HAC5C6C7[p, q] nanotube, the GA index is

GA(HAC5C6C7[p, q]) =

(
24q +

8
√

6

5
+
√

3− 6

)
p.
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3m-2

3m-1

3m

Figure 2.9: m-th period of HAC5C6C7 nanotube.

Figure 2.10: The graph of HAC5C6C7[p, q] nanotube with p = 4 and q = 2.

Farahani [24] computed the GA5 index of TUC4C8(S)[p, q] nanotubes depicted

in Figure 2.8.

Theorem 2.4.9. [24] For graph of TUC4C8(S)[p, q] nanotube, the GA5 index is

GA5(TUC4C8(S)[p, q]) =

(
12q +

16
√

10

13
+

48
√

2

17
− 7

)
p.

There are hundreds of papers which have been published on these so-called degree

based topological indices so far. Lot of research is done on these numbers so far and

progress is doing so. So this is not an enough introduction to these indices, but we

must stop here.

2.5 Counting related polynomials and topological

indices

Counting polynomials are those polynomials having at exponent the extent of a

property partition and coefficients the multiplicity/occurrence of the corresponding

partition. A counting polynomial is defined as:

P (G, x) =
∑
k

m(G, k)xk, (2.5.1)
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where the coefficient m(G, k) are calculable by various methods, techniques and

algorithms. The expression (1) was found independently by Sachs, Harary, Milić,

Spialter, Hosoya, etc [14]. The corresponding topological index P (G) is defined in

this way:

P (G) = P ′(G, x)|x=1 =
∑
k

m(G, k)× k.

Two edges e = uv and f = xy in E(G) are said to be codistant, usually denoted by

e co f , if

d(x, u) = d(y, v)

and

d(x, v) = d(y, u) = d(x, u) + 1 = d(y, v) + 1.

The relation “co” is reflexive as e co e is true for all edges in G, also symmetric

as if e co f then f co e for all e, f ∈ E(G) but the relation “co” is not necessarily

transitive. Consider

C(e) = {f ∈ E(G) : f co e}.

If the relation is transitive on C(e) also, then C(e) is called an orthogonal cut “co”

of the graph G. Let e = uv and f = xy be two edges of a graph G, which are

opposite or topological parallel, and this relation is denoted by e op f . A set of

opposite edges, within the same face or ring, eventually forming a strip of adjacent

faces/rings, is called an opposite edge strip ops, which is a quasi-orthogonal cut qoc

(i.e. the transitivity relation is not necessarily obeyed). Note that “co” relation is

defined in the whole graph while “op” is defined only in a face/ring.

The following indices are examples of counting related topological indices.

• Omega index

• Sadhana index

• Padmakar-Ivan (PI) index

• Non-Equidistance index, etc

The construction is almost same for all indices which are shown above. All of them

are defined on the base of counting the opposite edge strips ops defined above. We
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discuss two famous among them which Omega, Sadhana and PI polynomials and

indices.

2.5.1 Omega index

The omega polynomial was introduced by Diudea [17] in 2006 on the ground of op

strips. The Omega polynomial is proposed to describe cycle-containing molecular

structures, particularly those associated with nanostructures. Let G be a graph,

then its Omega polynomial denoted by Ω(G, x) in x is defined as

Ω(G, x) =
∑
k

m(G, k)× xk,

where m(G, k) be the number of ops of length k.

The corresponding Omega index Ω(G) is defined as

Ω(G) = Ω′(G, x)|x=1 =
∑
k

m(G, k)× k.

Now, we discuss some known results for Omega polynomial and Omega index for

different families of chemically interesting graphs. A k-polyomino system is a finite

2-connected plane graph such that each interior face (also called cell) is surrounded

by a regular 4k-cycle of length one. In other words, it is an edge-connected union of

cells [48]. In Figure 2.11, a zig-zag chain of 8-cycles with n = 2 is depicted. Ghorbani

Figure 2.11: A zig-zag chain of 8-cycles with n = 2.

et al. [30] computed the Omega polynomial of 2-polyomino and triangular benzenoid

systems.
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Theorem 2.5.1. [30] Consider the graph of 2-polyomino systems Gn, then its Omega

polynomial is equal to

Ω(Gn, x) = (4n− 1)x3 + (8n+ 2)x2.

Triangular benzenoid are the benzenoid structures in which hexagons are ar-

ranged in a manner that they form triangle like structures. In 2.12, triangular

benzenoid of dimension n is shown.

1

2

3

n

Figure 2.12: A triangular benzenoid structure.

Theorem 2.5.2. [30] Consider the graph of triangular benzenoid systems G[n], then

its Omega polynomial is equal to

Ω(G[n], x) = 3(x2 + x3 + ...+ xn+1).

Ghorbani et al. [31] computed the Omega polynomial of an infinite class of

fullerenes.

Fullerenes are molecules in the form of cage-like polyhedra, consisting solely of

carbon atoms. The discovery of C60 bucky-ball, which has a nanometer-scale hollow

spherical structure in 1985 by Kroto and Smalley revealed a new form of existence

of carbon element other than graphite, diamond and amorphous carbon. F4×3n is

an infinite family of fullerenes with 4 × 3n carbon atoms and 2 × 3n+1 bonds. A

F4×31 fullerene is depicted in Figure 2.13.
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Figure 2.13: A F4×31 fullerene.

Theorem 2.5.3. [31] Consider the graph of infinite class of fullerenes, F4×3n, then

Ω(F4×3n , x) =


6x3

n+1
2 +

( n−1
2∑

k=1

6× 3k
)
x6×3

n−1
2 , 2 - n;

6x3
n
2 +1

+

( n
2
−1∑

k=1

6× 3k
)
x6×3

n
2 , 2 | n.

Now we discuss Sadhana polynomial and its index by defining it and giving some

known results.

2.5.2 Sadhana index

The Sadhana polynomial is defined based on counting opposite edge strips in any

graph. This polynomial counts equidistant edges in G [16]. Let G be a graph, then

Sadhana polynomial denoted by Sd(G, x) is defined as

Sd(G, x) =
∑
k

m(G, k)× xe−k,

where m(G, k) be the number of ops of length k and e = E(G) is the edge set

cardinality of G.

The corresponding Sadhana index Ω(G) is defined as

Sd(G) = Sd′(G, x)|x=1 =
∑
k

m(G, k)× e− k.

We give some known results on Sadhana polynomial.
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In Figure 2.11, a zig-zag chain of 8-cycles with n = 2 is depicted. Ghorbani et

al. [30] computed the Sadhana polynomial of 2-polyomino systems.

Theorem 2.5.4. [30] Consider the graph of 2-polyomino systems Gn, then its Omega

polynomial is equal to

Sd(Gn, x) = (4n− 1)x28n−2 + (8n+ 2)x28n−1.

A F4×31 fullerene is depicted in Figure 2.13. Ghorbani et al. [31] computed the

Sadhana polynomial of an infinite class of fullerenes.

Theorem 2.5.5. [31] Consider the graph of infinite class of fullerenes, F4×3n, then

Sd(F4×3n , x) =


6x2×3

n+1−3
n+1
2 +

( n−1
2∑

k=1

2× 3n+1 − 6× 3k
)
x6×3

n−1
2 , 2 - n;

6x2×3
n+1−3

n
2 +1

+

( n
2
−1∑

k=1

2× 3n+1 − 6× 3k
)
x6×3

n
2 , 2 | n.

Now we study PI polynomial and its index.

2.5.3 PI index

The PI polynomial is also defined based on counting opposite edge strips in any

graph. This polynomial counts non-equidistant edges in G [16]. Let G be a graph,

then PI polynomial denoted by PI(G, x) is defined as

PI(G, x) =
∑
k

m(G, k)× k × xe−k.

The corresponding PI index PI(G) is defined as

PI(G) = PI ′(G, x)|x=1 =
∑
k

m(G, k)× k × e− k.

Yazdani et al. [64] determined Padmakar-Ivan (PI) polynomials ofHAC5C6C7[4p, 2q]

nanotubes defined in 2.10.
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Theorem 2.5.6. [64] Let G be the HAC5C6C7 nanotube, then PI polynomial of G

is

PI(G, x) = qx9pq−
p
4 + px9pq+

p
4
6q + 4qx9pq−

15
4
p+2 − 9pq − p

4
+

(
|V (G)|+ 1

2

)
,

where |V (G)| = 3
2
p2q + 7

2
q + p.

In Figure 2.11, a zig-zag chain of 8-cycles with n = 2 is depicted. In Figure 2.12

triangular benzenoid of dimension n is depicted. Ghorbani at et. [30] calculated the

PI polynomial of 2-polyomino and triangular benzenoid systems.

Theorem 2.5.7. [30] Consider the graph of 2-polyomino systems Gn, then its PI

polynomial is equal to

PI(Gn, x) = 4nx35n−3 + 3(3n− 1)x35n−2 + 2(11n+ 2)x35n−1.

For graph of triangular benzenoid systems G[n], the PI polynomial is

PI(G[n], x) = 3(2xe−2 + 3xe−3 + ...+ (n+ 1)xe−n−1),

where e = 28n+ 1.

The non-equidistance index is defined on the same lines with slightly difference

in summation.

That is the end of this chapter. In this chapter, we discussed and studied the

introduction to topological indices, their major classes with respect to some graph

parameters like distance, degree and counting the equi and non-equidistant edges in

a graph. We then briefly studied the topological indices of these classes by giving

some known results on them for different chemically interesting families of graphs

like nanotubes, nanocones, nanostars, fullerenes, polyomino systems and benzenoid

structures.
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Chapter 3

Topological indices of certain

nanostructures

To compute and study the topological indices of nanostructures like nanotubes and

nanostars and nanocones is a respected problem in theoretical and computational

nanoscience. Diudea was the first chemist which considered the problem of comput-

ing topological indices of nanostructures see [15, 18, 19].

In this chapter, we compute certain degree based topological indices like Randić,

Zagreb, ABC, GA, ABC4 and GA5 for certain nanotubes named as H-naphtalenic,

TUC4[p, q] and V C5C7[p, q] nanotubes. We also compute certain counting related

polynomials such as Omega, Sadhana and PI for H-naphtalenic nanotubes and

TUC4[p, q]. Since, graphs of all nanotori are k-regular so we give a characteriza-

tion of GA5 index for k-regular graphs, which helps us to compute this index for all

types of nanotori.

3.1 Results for H-naphtalenic nanotubes

In this section, we compute the certain topological indices for H-Naphtalenic nan-

otubes. This nanotube is a trivalent decoration having sequence of C6, C6, C4,C6, C6,

C4... in first row and a sequence of C6, C8, C6, C8, ... in other row. In other words,

the whole lattice is a plane tiling of C4, C6 and C8 and this type of tiling can either
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Figure 3.1: NPHX[m,n] nanotube with m = 4 and n = 3.

(da, db) where ab ∈ E(H) (2, 3) (3, 3)

Number of edges 8m 15mn− 10m

Table 3.1: Edge partition of 2D-lattice of H-Naphtalenic nanotubes based on degrees

of end vertices of each edge.

cover a cylinder or a torus. These nanotubes usually symbolized as NPHX[m,n],

in which m is the number of pairs of hexagons in first row and n is the number of

alternative hexagons in a column as depicted in Figure 3.1.

Lemma 3.1.1. [39] Let NPHX[m,n] be the graph of H-Naphtalenic nanotubes with

(m,n > 1), then its vertex set cardinality is

|V (NPHX[m,n])| = 10mn.

Lemma 3.1.2. [39] Consider the graph of H-Naphtalenic nanotubes NPHX[m,n]

with (m,n > 1), then its edge set cardinality is

|E(NPHX[m,n])| = 15mn− 2m.

Now we compute certain degree based topological indices for this class of nan-

otubes. We can clearly see that, there are two type of edges in 2D-lattice of this

nanotube as shown in Figure 3.1. Table 3.1 shows this partition of NPHX[m,n]

nanotube.

In the following theorem, we compute the ABC index of NPHX[m,n] nan-

otubes.
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Theorem 3.1.3. Consider the graph of NPHX[m,n] nanotubes, then its ABC

index is equal to

ABC(NPHX[m,n]) =

(
5n− 20 + 12

√
2

3

)
m.

Proof. Consider the graph of NPHX[m,n]. By using the edge partition based on

the degrees of end vertices of each edge of graph of NPHX[m,n] nanotube given in

table 3.1, we compute the ABC index of NPHX[m,n] nanotube. Since

ABC(G) =
∑

uv∈E(G)

√
du + dv − 2

dudv
.

This gives that

ABC(NPHX[m,n]) = (8m)
√

2+3−2
2×3 + (15mn− 10m)

√
3+3−2
3×3 .

After simplification, we get

ABC(NPHX[m,n]) =

(
5n− 20 + 12

√
2

3

)
m.

The GA index for NPHX[m,n] nanotubes is computed in the following theorem.

Theorem 3.1.4. Consider the graph of NPHX[m,n] nanotubes, then its GA index

is equal to

ABC(NPHX[m,n]) =
(
15n− 50 + 16

√
6

5

)
m.

Proof. Consider the graph of NPHX[m,n]. Since

GA(G) =
∑

uv∈E(G)

2
√
dudv

du + dv
.

This implies that

GA(NPHX[m,n]) = (8m)2
√
2×3

2+3
+ (15mn− 10m)2

√
3×3

3+3
.

After simplification, we get

GA(NPHX[m,n]) =
(
15n− 50 + 16

√
6

5

)
m.

Now we compute Randić index for this family of nanotubes.
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(Su, Sv) where uv ∈ E(G) (6, 7) (6, 8) (8, 8) (7, 9) (8, 9) (9, 9)

Number of edges 4m 4m 2m 2m 4m 15mn− 18m

Table 3.2: Edge partition of graph of NPHX[m,n] nanotubes based on degree sum

of vertices lying at unit distance from end vertices of each edge.

Theorem 3.1.5. Let the graph of NPHX[m,n] nanotube, then its Randić index is

χ(NPHX[m,n]) =

(
5n− 10 + 4

√
6

3

)
m.

Proof. By using the partition given in table 3.1 and apply the formula of the Randić

index we can compute this index for NPHX[m,n] nanotube. Since

χ(G) =
∑

uv∈E(G)

1√
dudv

.

This implies that

χ(NPHX[m,n]) = (8m) 1√
2×3 + (15mn− 10m) 1√

3×3 .

After a bit calculation, we get

χ(NPHX[m,n]) =

(
5n− 10 + 4

√
6

3

)
m.

Now we compute two important topological indices ABC4 andGA5 for 2D-lattice

of NPHX[m,n] nanotube. There are six types of edges in NPHX[m,n] nanotube

based on the degree sum of vertices lying at unit distance from end vertices of each

edge. In table 3.2, such a partition is given.

In the following theorem, ABC4 index of NPHX[m,n] nanotube is computed.

Theorem 3.1.6. Consider the graph of NPHX[m,n] nanotubes, then its ABC4

index is

ABC4(NPHX[m,n]) =

(
20

3
n+

2
√

462

21
+

√
14

4
+

2
√

2

3
+

√
30

3
− 6

)
m.

Proof. We use the edge partition of graph of NPHX[m,n] nanotube based on the

degree sum of vertices lying at unit distance from end vertices of each edge. Table
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3.2 explains such a partition for NPHX[m,n] nanotube. Now by using the partition

given in table 3.2 we can apply the formula of ABC4 index to compute this index

for NPHX[m,n] nanotube.

Since

ABC4(G) =
∑

uv∈E(G)

√
Su + Sv − 2

SuSv
.

This implies that

ABC4(NPHX[m,n]) = (4m)
√

6+7−2
6×7 + (4m)

√
6+8−2
6×8 + (2m)

√
8+8−2
8×8 +

(2m)
√

7+9−2
7×9 + (4m)

√
8+9−2
8×9 + (15mn− 18m)

√
9+9−2
9×9 .

After an easy simplification, we get

ABC4(NPHX[m,n]) =

(
20

3
n+

2
√

462

21
+

√
14

4
+

2
√

2

3
+

√
30

3
− 6

)
m.

Now we compute GA5 index of NPHX[m,n] nanotube.

Theorem 3.1.7. Let the graph of NPHX[m,n] nanotube, then its GA5 index is

GA5(NPHX[m,n]) =

(
15n+

8
√

42

13
+

16
√

3

7
+

3
√

7

4
+

48
√

2

17
− 16

)
m.

Proof. The edge partition of graph of NPHX[m,n] nanotube based on the degree

sum of vertices lying at unit distance from end vertices of each edge is given in table

3.2. Now we apply the formula of GA5 index to compute this index for NPHX[m,n]

nanotube.

Since

GA5(G) =
∑

uv∈E(G)

2
√
SuSv

Su + Sv
.

This gives that

GA5(NPHX[m,n]) = (4m)2
√
6×7

6+7
+(4m)2

√
6×8

6+8
+(2m)2

√
8×8

8+8
+(2m)2

√
7×9

7+9
+(4m)2

√
8×9

8+9
+

(15mn− 18m)2
√
9×9

9+9
.

After an easy simplification, we get

GA5(NPHX[m,n]) =

(
15n+

8
√

42

13
+

16
√

3

7
+

3
√

7

4
+

48
√

2

17
− 16

)
m.

Now we compute counting polynomials namely Omega, Sadhana and PI for this

finite family of nanotubes.
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Types of qoc Types of edges No of co-distant edges No of qoc

C1 e1 3m n

C2 e2 2n m

C3 e3 2m n− 1

2i where i = 1, 2, ..., bn
2
c − 1 2

Ck, where k = 1, 2, ... , j ek where k = 4, 5
4m n− 2m+ 1

Table 3.3: Number of co-distant edges of H-Naphtalenic nanotube NPHX[m,n]

when m ≤ bn
2
c.

Theorem 3.1.8. The Omega polynomial of H-Naphtalenic nanotube NPHX[m,n],

∀ m,n ∈ N is equal to:

Ω(NPHX[m,n], x) =


η + 4

bn
2
c−1∑
i=1

x2i + 2(n− 2m+ 1)x4m, m ≤ bn
2
c,

η + 4
n−1∑
i=1

x2i + 2(2m− n+ 1)x2n, m > bn
2
c,

where η = nx3m +mx2n + (n− 1)x2m.

Proof. Let G be the graph of H-Naphtalenic nanotube NPHX[m,n], ∀ m,n ∈ N
with vertex set and edge set cardinalities are 10mn and 15mn − 2m respectively.

Table 3.3 shows the number of co-distant edges in G for m ≤ bn
2
c, table 3.4 shows the

number of co-distant edges in G for m > bn
2
c. The qoc in this nanotube is depicted in

3.2 where horizontal and vertical quasi-orthogonal cuts (qoc) are depicted in figure

a and oblique qoc’s are depicted in figure b. The oblique qoc’s for e4 and e5 are

same.

By using table 3.3 and 3.4, the proof is straightforward. Now we apply formula

and do some easy calculation to get our result.

Ω(G, x) =
∑
k

m(G, k)× xk.

For m ≤ bn
2
c,
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Types of qoc Types of edges No of co-distant edges No of qoc

C1 e1 3m n

C2 e2 2n m

C3 e3 2m n− 1

2i where i = 1, 2, ..., n− 1 2

Ck, where k = 1, 2, ..., j ek where k = 4, 5
2n 2m− n+ 1

Table 3.4: Number of co-distant edges of H-Naphtalenic nanotube NPHX[m,n]

when m > bn
2
c.

Fig a.  
Fig b.

1 2 3 m

2

3

n

C1 C2 C C4
C5 Cj-1 Cj

Cj-1

Cj-2

3

e4
e5

C1

1 2 3 m

2

3

n

C1

C2

C3

e2
e1

e3

Figure 3.2: Fig a: The horizontal and vertical qoc’s, where Fig b: The oblique qoc’s.

Ω(G, x) = nx3m +mx2n + (n− 1)x2m +

2

{
2

bn
2
c−1∑
i=1

x2i + (n− 2m+ 1)x4m
}
.

=⇒ Ω(G, x) = nx3m +mx2n + (n− 1)x2m + 2(n− 2m+ 1)x4m +

4x2 + 4x4 + ...+ 4x2b
n
2
c−2.

For m > bn
2
c,
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Ω(G, x) = nx3m +mx2n + (n− 1)x2m +

2

{
2
n−1∑
i=1

x2i + (2m− n+ 1)x2n
}
.

=⇒ Ω(G, x) = nx3m +mx2n + (n− 1)x2m + 2(2m− n+ 1)x2n +

4x2 + 4x4 + ...+ 4x2n−2.

In the following theorem, the Sadhana polynomial of H-Naphtalenic nanotube

NPHX[m,n] is computed.

Theorem 3.1.9. The Sadhana polynomial of H-Naphtalenic nanotube

NPHX[m,n], ∀ m,n ∈ N is as follows:

Sd(NPHX[m,n], x) =



η + 4
bn
2
c−1∑
i=1

x15mn−2m−2i+

2(n− 2m+ 1)x15mn−6m, m ≤ bn
2
c,

η + 4
n−1∑
i=1

x15mn−2m−2i+

2(2m− n+ 1)x15mn−2m−2n, m > bn
2
c,

where η = nx15mn−5m +mx15mn−2m−2n + (n− 1)x15mn−4m.

Proof. Let G be the graph of H-Naphtalenic nanotube NPHX[m,n], ∀ m,n ∈ N
with vertex set and edge set cardinalities are 10mn and 15mn− 2m respectively.

By using table 3.3 and 3.4 the proof is easy. Now we apply formula and do some

computation to get our result.

Sd(G, x) =
∑
k

m(G, k)× xe−k.

For m ≤ bn
2
c,

Sd(G, x) = nx15mn−5m +mx15mn−2m−2n + (n− 1)x15mn−4m +

2

{
2

bn
2
c−1∑
i=1

x15mn−2m−2i + (n− 2m+ 1)x15mn−6m
}
.
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=⇒ Sd(G, x) = nx15mn−5m +mx15mn−2m−2n + (n− 1)x15mn−4m +

2(n− 2m+ 1)x15mn−6m + 4x15mn−2m−2 +

4x15mn−2m−4 + ...+ 4x15mn−2m−2b
n
2
c−2.

For m > bn
2
c,

Sd(G, x) = nx15mn−5m +mx15mn−2m−2n + (n− 1)x15mn−4m +

2

{
2
n−1∑
i=1

x15mn−2m−2i + (2m− n+ 1)x15mn−2m−2n
}
.

=⇒ Sd(G, x) = nx15mn−5m +mx15mn−2m−2n + (n− 1)x15mn−4m +

2(2m− n+ 1)x15mn−2m−2n + 4x15mn−2m−2 +

4x15mn−2m−4 + ...+ 4x15mn−2m−2n+2.

Now we compute PI polynomial of H-Naphtalenic nanotube NPHX[m,n],

∀ m,n ∈ N. Following theorem shows the PI polynomial for this finite family of

nanotubes.

Theorem 3.1.10. Consider the graph of H-Naphtalenic nanotube NPHX[m,n], ∀
m,n ∈ N. Then its PI polynomial is as follows:

PI(NPHX[m,n], x) =



η +
bn
2
c−1∑
i=1

8ix15mn−2m−2i+

8m(n− 2m+ 1)x15mn−6m, m ≤ bn
2
c,

η +
n−1∑
i=1

8ix15mn−2m−2i+

4n(2m− n+ 1)x15mn−2m−2n, m > bn
2
c,

where η = 3mnx15mn−5m + 2mnx15mn−2m−2n + 2m(n− 1)x15mn−4m.

Proof. Let G be the graph of H-Naphtalenic nanotube NPHX[m,n], ∀ m,n ∈ N.

The proof of this result is just calculation based. We easily prove it by using table

3.3 and 3.4. We know that

PI(G, x) =
∑
k

m(G, k)× k × xe−k.
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For m ≤ bn
2
c,

P I(G, x) = 3mnx15mn−5m + 2mnx15mn−2m−2n + 2m(n− 1)x15mn−4m +

2

{ bn2 c−1∑
i=1

4ix15mn−2m−2i + 4m(n− 2m+ 1)x15mn−6m
}
.

=⇒ PI(G, x) = 3mnx15mn−5m + 2mnx15mn−2m−2n + 2m(n− 1)x15mn−4m +

8m(n− 2m+ 1)x15mn−6m + 8x15mn−2m−2 +

16x15mn−2m−4 + ...+ 8(bn
2
c − 1)x15mn−2n−2(b

n
2
c)−2.

For m > bn
2
c,

P I(G, x) = 3mnx15mn−5m + 2mnx15mn−2m−2n + 2m(n− 1)x15mn−4m +

2

{ n−1∑
i=1

4ix15mn−2m−2i + 2n(2m− n+ 1)x15mn−2m−2n
}
.

=⇒ PI(G, x) = 3mnx15mn−5m + 2mnx15mn−2m−2n + 2m(n− 1)x15mn−4m +

4n(2m− n+ 1)x15mn−2m−2n + 8x15mn−2m−2 +

16x15mn−2m−4 + ...+ 8(n− 1)x15mn−2m−2n+2.

3.2 Results for V C5C7[p, q], (p, q > 1), nanotubes

In this section, we compute the certain topological indices for V C5C7[p, q] nanotubes.

This nanotube is a C5C7 net and constructed by alternating C5 and C7 following

the trivalent decoration as shown in Figure 3.4. This type of tiling can either cover

a cylinder or a torus also. The graph of V C5C7[p, q], in which p is the number of

pentagons in one row and q is the number of periods in whole lattice. A period

consist of four rows as in Figure 3.3 in which m-th period is shown. There are 16p

vertices in one period and 3p vertices which are joined at the end of the graph of

these nanotubes, so vertex cardinality is |V (V C5C7[p, q])| = 16pq + 3p. In a same
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4m

4m-1

4m-2

4m-3

Figure 3.3: m-th period of V C5C7 nanotube.

Figure 3.4: The graph of V C5C7[p, q] nanotube with p = 3 and q = 4.

manner, there are 24p edges in one period and 3p extra edges which are joined to the

end of the graph in these nanotubes, so we have |E(V C5C7[p, q])| = 24pq−3p. Now

we find edge partition of graph of V C5C7[p, q] nanotubes based on degrees of end

vertices of each edge. Table 3.5 shows such a partition for V C5C7[p, q] nanotubes.

In the following theorem, a closed formula of ABC for V C5C7[p, q] nanotubes is

computed.

Theorem 3.2.1. Consider the graph of V C5C7[p, q] nanotubes, then its ABC index

is equal to

ABC(V C5C7[p, q]) =

(
16q +

11
√

2

2
− 28

3

)
p.

Proof. Consider the graph of V C5C7[p, q] nanotubes. By using the edge partition

(du, dv) where uv ∈ E(G) (2, 2) (2, 3) (3, 3)

Number of edges p 10p 24pq − 14p

Table 3.5: Edge partition of V C5C7[p, q] nanotubes based on degrees of end vertices

of each edge.
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based on the degrees of end vertices of each edge of graph of V C5C7[p, q] nanotubes

given in table 3.5, we compute the ABC index. Since

ABC(G) =
∑

uv∈E(G)

√
du + dv − 2

dudv
.

This gives that

ABC(V C5C7[p, q]) = (p)
√

2+2−2
2×2 + (10p)

√
2+3−2
2×3 + (24pq − 14p)

√
3+3−2
3×3 .

After some calculation, we get

ABC(V C5C7[p, q]) =

(
16q +

11
√

2

2
− 28

3

)
p.

The geometric-arithmetic index for V C5C7[p, q] nanotubes is computed in the

following theorem.

Theorem 3.2.2. Consider the graph of V C5C7[p, q] nanotube, then its GA index is

GA(V C5C7[p, q]) =
(
24q + 4

√
6− 13

)
p.

Proof. Consider the graph of V C5C7[p, q]. Table 3.5 shows the partition of edge set

of graph of V C5C7[p, q] based on the degrees of end vertices of each edge. Since

GA(G) =
∑

uv∈E(G)

2
√
dudv

du + dv
.

This implies that

GA(V C5C7[p, q]) = (p)2
√
2×2

2+2
+ (10p)2

√
2×3

2+3
+ (24pq − 14p)2

√
3×3

3+3
.

After simplification, we get

GA(V C5C7[p, q]) =
(
24q + 4

√
6− 13

)
p.

Now we compute Randić and zagreb indices for these nanotubes. Since there are

three types of edges in graph of V C5C7[p, q] nanotubes. Table 1.1 shows such types

of edges in the lattice given in Figure 3.4. By using partition of edge set of graph of

V C5C7[p, q] nanotubes, we compute Randić and zagreb indices for these nanotubes.

In following theorems, we compute Randić index for these nanotubes.
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Theorem 3.2.3. Let the graph of V C5C7[p, q] nanotubes, then its Randić index of

is

χ(V C5C7[p, q]) =

(
8q +

5
√

6

3
− 25

6

)
p.

Proof. By we use the partition given in table 3.5 and apply in the formula of the

Randić index. Since

χ(G) =
∑

uv∈E(G)

1√
dudv

.

This implies that

χ(V C5C7[p, q]) = (p) 1√
2×2 + (10p) 1√

2×3 + (24pq − 14p) 1√
3×3 .

After a bit calculation, we get

χ(V C5C7[p, q]) =

(
8q +

5
√

6

3
− 25

6

)
p.

In following theorem, we compute zagreb index of V C5C7[p, q] nanotubes.

Theorem 3.2.4. Consider the graph of V C5C7[p, q] nanotubes, the first zagreb index

of V C5C7[p, q] nanotubes is

M1(V C5C7[p, q]) =
(
144q − 30

)
p.

Proof. We use the description of variety of edges in graph of V C5C7[p, q] nanotubes

given in table 3.5 to compute this index. Since

M1(G) =
∑

uv∈E(G)

(du + dv).

This implies that M1(V C5C7[p, q]) = (p)(2 + 2) + (10p)(2 + 3) + (24pq− 14p)(3 + 3).

This gives that

M1(V C5C7[p, q]) =
(
144q − 30

)
p.

Now we compute two important topological indices ABC4 and GA5 for two

dimensional lattice of V C5C7[p, q] nanotubes. In order to compute these indices, we

need an edge partition of graph of V C5C7[p, q] nanotubes based on the degree sum

of vertices lying at unit distance from end vertices of each edge. In table 3.6 such

a partition of graph of V C5C7[p, q] nanotubes are shown. In the following theorem,

ABC4 index of V C5C7[p, q] nanotubes is computed.
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(Su, Sv) where uv ∈ E(G) Number of edges

(5, 5) p

(5, 8) 2p

(6, 8) 2p

(8, 8) 2p

(6, 7) 6p

(7, 9) 3p

(8, 9) 4p

(9, 9) 24pq − 23p

Table 3.6: Edge partition of graph of V C5C7[p, q] nanotubes based on degree sum

of vertices lying at unit distance from end vertices of each edge.

Theorem 3.2.5. Consider the graph of V C5C7[p, q] nanotubes, then its ABC4 index

is

ABC4(V C5C7[p, q]) =

(
32

3
q+

2
√

2

5
+

√
110

10
+

√
14

4
+

√
462

7
+

3
√

2 +
√

30

3
− 83

9

)
p.

Proof. We use the edge partition of graph of V C5C7[p, q] nanotubes based on the

degree sum of vertices lying at unit distance from end vertices of each edge. Table

3.6 explains such a partition for V C5C7[p, q] nanotubes.

Now by using the partition given in Table 2 we can apply the formula of ABC4

index to compute this index for V C5C7[p, q] nanotubes. Since

ABC4(G) =
∑

uv∈E(G)

√
Su + Sv − 2

SuSv
.

This implies that ABC4(V C5C7[p, q]) = (p)
√

5+5−2
5×5 + (2p)

√
5+8−2
5×8 + (2p)

√
6+8−2
6×8 +

(2p)
√

8+8−2
8×8 +

(6p)
√

6+7−2
6×7 + (3p)

√
7+9−2
7×9 + (4p)

√
8+9−2
8×9 + (24pq − 23p)

√
9+9−2
9×9 .

After an easy simplification, we get

ABC4(V C5C7[p, q]) =

(
32

3
q+

2
√

2

5
+

√
110

10
+

√
14

4
+

√
462

7
+

3
√

2 +
√

30

3
−83

9

)
p.

53



Now we compute GA5 index of V C5C7[p, q] nanotubes.

Theorem 3.2.6. Let the graph of V C5C7[p, q] nanotubes, then its GA5 index is

GA5(V C5C7[p, q]) =

(
24q +

8
√

10

13
+

8
√

3

7
+

12
√

42

13
+

9
√

7

8
+

48
√

2

17
− 20

)
p.

Proof. The edge partition of graph of V C5C7[p, q] nanotubes based on the degree

sum of vertices lying at unit distance from end vertices of each edge is given in table

3.6. Now we apply the formula of GA5 index to compute this index for V C5C7[p, q]

nanotubes. Since

GA5(G) =
∑

uv∈E(G)

2
√
SuSv

Su + Sv
.

This gives that

GA5(V C5C7[p, q]) = (p)2
√
5×5

5+5
+ (2p)2

√
5×8

5+8
+ (2p)2

√
6×8

6+8
+ (2p)2

√
8×8

8+8
+ (6p)2

√
6×7

6+7
+

(3p)2
√
7×9

7+9
+ (4p)2

√
8×9

8+9
+ (24pq − 23p)2

√
9×9

9+9
.

After an easy simplification, we get

GA5(V C5C7[p, q]) =

(
24q +

8
√

10

13
+

8
√

3

7
+

12
√

42

13
+

9
√

7

8
+

48
√

2

17
− 20

)
p.

3.3 Results for CNCk[n], k ≥ 3, n ≥ 1 nanocones

Now we determine the fourth ABC and fifth GA indices of CNCk[n], k ≥ 3, n ≥ 1

nanocones. A CNCk[n] nanocones consists of a cycle Ck as its core and encompassing

the layers of hexagons on its conical surface. If there are n layers of hexagons on

the conical surface around Ck, then we represent the graph of that nanocones as

CNCk[n] in which number n denotes the number of layers of hexagons and number

in the subscript shows the sides of polygon which acts as the core of nanocones.

A general representation of CNCk[n] nanocones is shown in Figure 3.5, in which

parameters k and n are shown. For further study of nanocones, See [3, 56, 46, 2].

In the following theorem, we present exact formula to calculate ABC4 index of

CNCk[n], k ≥ 3, n ≥ 1 nanocones.
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(Su,Sv) (5, 5) (5, 7) (6, 7) (7, 9) (9, 9)

Number of edges k 2k 2k(n− 1) kn 3
2
kn2 − 1

2
kn

Table 3.7: The edge partition of CNCk[n] based on the degree sum of neighbors of

end vertices of each edge.

Theorem 3.3.1. Consider the graph of CNCk[n], k ≥ 3, n ≥ 1 nanocones, then its

ABC4 index is equal to

ABC4(CNCk[n]) =
2
√

2

5

(
k
)

+

√
14

7

(
2k
)

+

√
462

42

(
2k(n− 1)

)
√

2

3

(
kn
)

+
4

9

(
3

2
(kn2)− 1

2
(kn)

)
.

Proof. Consider the graph of CNCk[n], k ≥ 3, n ≥ 1 nanocones. We have |V (CNCk[n])| =
k(n + 1)2 and |E(CNCk[n])| = 3

2
(kn2) + 5

2
(kn) + k. In order to compute the

fourth ABC index of CNCk[n] nanocones, we find the general partition of CNCk[n]

nanocones in two parameters k and n based on the degree sum of vertices lying at

unit distance from end vertices of each edge. Table 3.7 shows such partition.

Now by using the edge partition given in Table 3.7, we compute the ABC4 index of

CNCk[n] nanocones.

Since

ABC4(G) =
∑

uv∈E(G)

√
Su + Sv − 2

SuSv
.

ABC4(CNCk[n]) = (k)
√

5+5−2
5×5 + (2k)

√
5+7−2
5×7 + 2k(n− 1)

√
6+7−2
6×7 + (kn)

√
7+9−2
7×9 +

(3
2
kn2 − 1

2
kn)
√

9+9−2
9×9 .

After an easy simplification, we get

ABC4(CNCk[n]) =
2
√

2

5

(
k
)

+

√
14

7

(
2k
)

+

√
462

42

(
2k(n− 1)

)
√

2

3

(
kn
)

+
4

9

(
3

2
(kn2)− 1

2
(kn)

)
.

Following theorem presents the GA5 index of CNCk[n] nanocones.
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(du,dv) (2, 2) (2, 3) (3, 3)

Number of edges k 2kn 3
2
kn2 + 1

2
kn

Table 3.8: The edge partition of CNCk[n] based on the degrees of end vertices of

each edge.

Theorem 3.3.2. Consider the graph of CNCk[n], k ≥ 3, n ≥ 1 nanocones, then its

GA5 index is equal to

GA5(CNCk[n]) = k+

√
35

6

(
2k
)
+

2
√

42

13

(
2k(n−1)

)
+

3
√

7

8

(
kn
)
+

(
3

2
(kn2)− 1

2
(kn)

)
.

Proof. Consider G be the graph of CNCk[n], k ≥ 3, n ≥ 1 nanocones. We have

|V (CNCk[n])| = k(n + 1)2, and |E(CNCk[n])| = 3
2
(kn2) + 5

2
(kn) + k. By using

the edge partition given in table 3.7, we compute the ABC4 index of CNCk[n]

nanocones.

Since

GA5(G) =
∑

uv∈E(G)

2
√
SuSv

Su + Sv
.

GA5(G) = (k)2
√
5×5

5+5
+(2k)2

√
5×7

5+7
+2k(n−1)2

√
6×7

6+7
+(kn)2

√
7×9

7+9
+(3

2
kn2− 1

2
kn)2

√
9×9

9+9
.

After an easy simplification, we get

GA5(CNCk[n]) = k+

√
35

6

(
2k
)
+

2
√

42

13

(
2k(n−1)

)
+

3
√

7

8

(
kn
)
+

(
3

2
(kn2)−1

2
(kn)

)
.

Now we compute the edge partition of CNCk[n] nanocones with respect to degree

of end vertices of edges. Following table shows such partition of CNCk[n] nanocones.

In the following theorem, ABC index of CNCk[n] nanocones is presented.

Theorem 3.3.3. Consider the graph of CNCk[n], k ≥ 3, n ≥ 1 nanocones, then its

ABC index is equal to

ABC(CNCk[n]) =

√
2

2

(
k(1 + 2n)

)
+

2

3

(
3

2
kn2 +

1

2
kn

)
.

Proof. By using the edge partition based on the degrees of end vertices of each edge

of CNCk[n] nanocones given in table 3.8 we compute the ABC index of CNCk[n]
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nanocones.

Since

ABC(G) =
∑

uv∈E(G)

√
du + dv − 2

dudv
.

ABC(CNCk[n]) = (k)
√

2+2−2
2×2 + (2kn)

√
2+3−2
2×3 + (3

2
kn2 + 1

2
kn)
√

3+3−2
3×3 .

After an easy simplification, we get

ABC(CNCk[n]) =

√
2

2

(
k(1 + 2n)

)
+

2

3

(
3

2
kn2 +

1

2
kn

)
.

The GA index of CNCk[n] nanocones is computed in the following theorem.

Theorem 3.3.4. Consider the graph of CNCk[n], k ≥ 3, n ≥ 1 nanocones, then its

GA index is equal to

GA(CNCk[n]) = k +
2
√

6

5

(
2kn

)
+
k

2

(
3n2 + n

)
.

Proof. By using the edge partition based on the degrees of end vertices of each edge

of CNCk[n] nanocones given in table 3.8 we compute the GA index of CNCk[n]

nanocones.

Since

GA(G) =
∑

uv∈E(G)

2
√
dudv

du + dv
.

GA(CNCk[n]) = (k)2
√
2×2

2+2
+ (2kn)2

√
2×3

2+3
+ (3

2
kn2 + 1

2
kn)2

√
3×3

3+3
.

After simplification, we get

GA(CNCk[n]) = k +
2
√

6

5

(
2kn

)
+
k

2

(
3n2 + n

)
.

3.4 A characterization of k-regular graphs for GA5

index

Now we describe an important result about GA5 index for regular graphs. In the

next theorem, we give a characterization of k-regular graphs with respect to their

GA5 index. We have an important result about GA5 index for k-regular graphs.
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2

34
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3

n

Figure 3.5: A general representation of graph of CNCk[n] nanocones.

Lemma 3.4.1. [32] Let G be a graph with vertex set V and edge set E and e =

uv ∈ E, then

GA5(G) = |E|
2
√
δG(u)δG(v)

(δG(u) + δG(v))
. (3.4.1)

Theorem 3.4.2. For every non-trivial connected graph G, we have GA5(G) =

|E(G)| if and only if G is k-regular.

Proof. Let G be a k-regular graph. We define a factor η for every edge e = uv ∈
E(G), as follows:

η =
2
√
δG(u)δG(v)

δG(u) + δG(v)
.

Since G is k-regular then for every edge e = uv ∈ E(G), δG(v) = δG(u) = k2. So

one can easily verify that η = 1 for every edge of G. From above lemma, we get

GA5(G) = η|E(G)|. So using these facts, we get GA5(G) = |E(G)|.
Conversely, let GA5(G) = |E(G)| which implies that

η1 + η2 + η2 + η3 + ...+ η|E(G)| = |E(G)|
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for every edge of G, implying that ηi = 1 for 1 ≤ i ≤ |E(G)|. This clearly shows

that G is a k-regular graph.

As an immediate application of Theorem 3.0.28, the GA5 index for all nanotori

is presented in next corollary.

Corollary 3.4.3. The GA5 index of all nanotori is equal to their edge set cardinality.
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Chapter 4

Topological indices of networks

In this chapter, we study the topological indices of certain networks like silicate,

hexagonal, oxide and honeycomb networks.

These results are of very important because they discuss the deep topology of

underlying networks. Rajan et al. [53] studied certain degree based topological

indices namely Randić, Zagreb, ABC and GA indices of silicate, hexagonal, hon-

eycomb and oxide networks. We extend their work to ABC4 and GA5 indices. We

define a new class of silicate networks named as chain silicate networks and study

their topological indices.

4.1 Results for silicate networks

Silicates are building blocks of the common rock-forming minerals and the largest,

very interesting and most complicated minerals by far. The tetrahedron(SiO4)

is basic unit of silicates. Silicates are obtained by fusing metal oxides or metal

carbonates with sand. Almost all silicates contain (SiO4) tetrahedra. A silicate

sheet is a ring of tetrahedrons which are linked by shared oxygen vertices to other

rings in a two dimensional plane that produces a sheet-like structure. Cyclic silicates

are structures which give cycles of different length after being linked by shared

oxygen vertices. Some sheet and cyclic silicates are shown in Figure 4.3. There are

also other types of silicates which are shown in Figure 4.2. From chemical point

of view, the corner vertices of tetrahedron (SiO4) are actually the oxygen atoms
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Figure 4.1: A (SiO4) tetrahedron in which corner vertices are oxygen vertices and

central vertex is silicon vertex.

Orthosilicates Pyrosilicates

Chain Silicates

Figure 4.2: Ortho, Pyro and chain silicates.

and central vertex represents silicon atom. Usually, we call these corner atoms as

oxygen vertices, central atom as silicon vertex and bonds between them as edges from

graphical point of view. A (SiO4) tetrahedron is shown in Figure 4.1. A silicate

network of dimension n symbolizes as (SLn), where n is the number of hexagons

between the center and boundary of SLn. A silicate network of dimension three is

shown in Figure 4.4. The number of vertices in SLn are 15n2 + 3n and number of

edges are 36n2. Table 4.1 shows the partition of edge set of (SLn) based on the

degree sum of vertices lying at unit distance from end vertices of each edge, and

by using this partition we compute the ABC4 and GA5 indices of silicate networks.

In the following theorem, the exact formula of ABC4 index for silicate networks is

computed.

Theorem 4.1.1. Consider the silicate networks SLn, then its ABC4 index is equal
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Cyclic Silicates

Sheet Silicates

Figure 4.3: Cyclic and sheet silicates.

to

ABC4(SLn) =

(√
690 + 3

√
58

5

)
n2 +

(
4
√

7

15
+

16
√

2

3
+

2
√

258

9
+

8
√

13

9
+

2
√

22

3
−
√

690

3
− 6
√

58

5

)
n+

2
√

370

5
+

3
√

58

5
+

2
√

690

15
+

7
√

2

3
−

16
√

2

3
− 2
√

258

9
− 4
√

13

3
− 2
√

22

3
.

Proof. Let G be the graph of silicate networks SLn. We have |V (SLn)| = 15n2 + 3n

and |E(SLn)| = 36n2. We find the edge partition of silicate networks SLn based

on the degree sum of vertices lying at unit distance from end vertices of each edge.

Table 4.1 explains such partition for SLn.

Now by using the partition given in table 4.1 we can apply the formula of ABC4

index to compute this index for G. Since

ABC4(G) =
∑

uv∈E(G)

√
Su + Sv − 2

SuSv
.

This implies that
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(Su, Sv) where uv ∈ E(G) Number of edges

(15, 15) 6n

(15, 24) 24

(15, 27) 24(n− 1)

(18, 27) 12(n− 1)

(18, 30) 18n2 − 30n+ 12

(24, 27) 12

(27, 27) 6(2n− 3)

(27, 30) 12(n− 1)

(30, 30) 18n2 − 36n+ 18

Table 4.1: Edge partition of silicate networks based on degree sum of neighbors of

end vertices of each edge.

ABC4(G) = (6n)
√

15+15−2
15×15 + (24)

√
15+24−2
15×24 + 24(n− 1)

√
15+24−2
15×24 +

12(n− 1)
√

18+27−2
18×27 + (18n2 − 30n+ 12)

√
18+30−2
18×30 + (12)

√
24+27−2
24×27 +

6(2n− 3)
√

27+27−2
27×27 + 12(n− 1)

√
27+30−2
27×30 + (18n2 − 36n+ 18)

√
30+30−2
30×30 .

After an easy simplification, we get

ABC4(SLn) =

(√
690 + 3

√
58

5

)
n2 +

(
4
√

7

15
+

16
√

2

3
+

2
√

258

9
+

8
√

13

9
+

2
√

22

3
−
√

690

3
− 6
√

58

5

)
n+

2
√

370

5
+

3
√

58

5
+

2
√

690

15
+

7
√

2

3
−

16
√

2

3
− 2
√

258

9
− 4
√

13

3
− 2
√

22

3
.

Following theorem computes the GA5 index of silicate networks SLn.

Theorem 4.1.2. Consider the silicate networks SLn, then its GA5 index is equal

to

GA5(SLn) =

(
36 + 9

√
15

2

)
n2 +

(
72
√

5

7
+

24
√

6

5
+

72
√

10

19
− 15

√
15

2
− 18

)
n

96
√

10

13
+

144
√

2

17
+ 3
√

15− 72
√

5

7
− 24

√
6

5
− 72

√
10

19
.
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Figure 4.4: A silicate network SLn with n = 3.

Proof. Let G be the graph of silicate networks SLn. The edge partition of silicate

networks SLn based on the degree sum of vertices lying at unit distance from end

vertices of each edge is given in table 4.1. Now we apply the formula of GA5 index

to compute this index for G. Since

GA5(G) =
∑

uv∈E(G)

2
√
SuSv

Su + Sv
.

This gives that

GA5(G) = (6n)2
√
15×15

15+15
+(24)2

√
15×24

15+24
+24(n−1)2

√
15×27

15+27
+12(n−1)2

√
18×27

18+27
+(18n2−

30n+12)2
√
18×30

18+30
+(12)2

√
24×27

24+27
+6(2n−3)2

√
27×27

27+27
+12(n−1)2

√
27×30

27+30
+(18n2−36n+

18)2
√
30×30

30+30
.

After an easy simplification, we get

GA5(SLn) =

(
36 + 9

√
15

2

)
n2 +

(
72
√

5

7
+

24
√

6

5
+

72
√

10

19
− 15

√
15

2
− 18

)
n

96
√

10

13
+

144
√

2

17
+ 3
√

15− 72
√

5

7
− 24

√
6

5
− 72

√
10

19
.

Now, we define a new family of silicate networks named as chain silicate networks

and then compute its certain degree based topological indices.
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1
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n

Figure 4.5: Chain silicate networks of dimension n.

(du, dv) where uv ∈ E(G) (3, 3) (3, 6) (6, 6)

Number of edges n+ 4 2(2n− 1) n− 2

Table 4.2: Edge partition of CSn based on degrees of end vertices of each edge.

4.2 Chain silicate networks

When tetrahedra are arranged linearly, chain silicate are obtained. We define chain

silicate networks of dimension n as follows: A chain silicate network of dimension n

symbolizes as (CSn) is obtained by arranging n tetrahedra linearly. The number of

vertices in (CSn) with n > 1 are 3n+1 and number of edges are 6n. A chain silicate

network of dimension n is shown in Figure 4.5. Now we find the partition of edge

set of (CSn) based on the degrees of end vertices of each edge, and by using this

partition we compute certain topological indices which are based on this partition.

Table 4.2 shows such a partition.

Now in the following theorem, we computed the ABC index of chain silicate

networks CSn.

Theorem 4.2.1. Consider the chain silicate networks (CSn), n > 1, then its ABC

index is equal to

ABC(CSn) =

(
2

3
+

2
√

14

3
+

√
10

6

)
n+

(
8

3
−
√

14

3
−
√

10

3

)
.

Proof. Let G be the graph of chain silicate networks (CSn). The number of vertices

in CSn are 3n + 1 and number of edges are 6n. Now by using the edge partition

based on the degrees of end vertices of each edge of chain silicate networks (CSn)

given in table 4.2 we compute the ABC index of chain silicate networks (CSn). Since
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ABC(G) =
∑

uv∈E(G)

√
du + dv − 2

dudv
.

This implies that

ABC(CSn) = (n+ 4)
√

3+3−2
3×3 + 2(2n− 1)

√
3+6−2
3×6 + (n− 2)

√
6+6−2
6×6 .

After an easy simplification, we get

ABC(CSn) =

(
2

3
+

2
√

14

3
+

√
10

6

)
n+

(
8

3
−
√

14

3
−
√

10

3

)
.

Following theorem gives GA index of chain silicate networks CSn.

Theorem 4.2.2. Consider the chain silicate networks (CSn), n > 1, then its GA

index is equal to

GA(CSn) =

(
6 + 8

√
2

3

)
n+

(
6− 4

√
2

3

)
.

Proof. By using the edge partition based on the degrees of end vertices of each edge

of chain silicate networks (CSn) given in table 4.2, we compute the GA index of

chain silicate networks (CSn). Since

GA(G) =
∑

uv∈E(G)

2
√
dudv

du + dv
.

This gives that

GA(CSn) = (n+ 4)2
√
3×3

3+3
+ 2(2n− 1)2

√
3×6

3+6
+ (n− 2)2

√
6×6

6+6
.

After simplification, we get

GA(CSn) =

(
6 + 8

√
2

3

)
n+

(
6− 4

√
2

3

)
.

There are seven types of edges in CSn based on degree sum of vertices of neigh-

bors of end vertices for each edge. In table 4.2, such partition of CSn with n > 3 is

presented. Now by using above table, we compute ABC4 and GA5 index of chain

silicate networks CSn. Following theorem presents the ABC4 index of chain silicate

networks CSn.
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(Su, Sv) where uv ∈ E(G) Number of edges

(12, 12) 6

(12, 21) 6

(15, 15) n− 2

(15, 21) 4

(15, 24) 4(n− 3)

(21, 24) 2

(24, 24) n− 4

Table 4.3: Edge partition of CSn based on degree sum of neighbors of end vertices

of each edge.

Theorem 4.2.3. Consider the chain silicate networks (CSn), then its ABC4 index

is equal to

ABC4(CSn) =



3
√
22+2

√
42

6
, n = 2;

√
22
2

+ 2
√
7

15
+
√
217
7

+ 2
√
10

21
+ 4

3

√
34
35
, n = 3;(

2
√
7

15
+
√
370
15

+
√
46
24

)
n+

√
22
2

+
√
217
7

+
√
602
42

+

4
3

√
34
35
−
√
46
6
− 4

√
7

15
−
√
370
5
, n > 3.

Proof. There are three cases to discuss while proving this result. Firstly, we prove

this result for n = 2. Let G be the graph of CS2, there are two type of edges in CS2

based on the degree sum of vertices lying at unit distance from end vertices of each

edge as follows: first type is, for e = uv ∈ E(G) such that Su = Sv = 12 and other

type is, for e = uv ∈ E(G) such that Su = 12 and Su = 18. There are six edges in

each partite set of CS2. Since

ABC4(G) =
∑

uv∈E(G)

√
Su + Sv − 2

SuSv
.

This implies that

ABC4(CS2) = (6)

√
12 + 12− 2

12× 12
+ (6)

√
12 + 18− 2

12× 18
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(Su, Sv) where uv ∈ E(G) (12, 12) (15, 15) (12, 21) (21, 21) (15, 21)

Number of edges 6 1 6 1 4

Table 4.4: Edge partition of CS3 based on degree sum of neighbors of end vertices

of each edge.

.

After a bit calculation we get,

ABC4(CS2) =
3
√

22 + 2
√

42

6
.

Now we prove this result for n = 3. For this, we need edge partition of CS3 as we

have in first case. Following table shows such partition of CS3. Since

ABC4(G) =
∑

uv∈E(G)

√
Su + Sv − 2

SuSv
.

This gives that

ABC4(CS3) = (6)
√

12+12−2
12×12 +(1)

√
15+15−2
15×15 +(6)

√
12+21−2
12×21 +(1)

√
21+21−2
21×21 +(4)

√
15+21−2
15×21 .

After an easy calculation,

ABC4(CS3) =

√
22

2
+

2
√

7

15
+

√
217

7
+

2
√

10

21
+

4

3

√
34

35
.

Now we have third case to prove this result for n > 3. We find the edge partition of

chain silicate networks CSn for n > 3 based on the degree sum of vertices lying at

unit distance from end vertices of each edge. Table 4.4 explains such partition for

CSn. Since

Now by using the partition given in table 4.3 we can apply the formula of ABC4

index to compute this index for G.

ABC4(G) =
∑

uv∈E(G)

√
Su + Sv − 2

SuSv

This implies that

ABC4(G) = (6)
√

12+12−2
12×12 + (6)

√
12+21−2
12×21 + (n− 2)

√
15+15−2
15×15 + (4)

√
15+21−2
15×21 + 4(n−
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3)
√

15+24−2
15×24 + (2)

√
21+24−2
21×24 + (n− 4)

√
24+24−2
24×24 .

After an easy simplification, we get

ABC4(CSn) =
(
2
√
7

15
+
√
370
15

+
√
46
24

)
n+

√
22
2

+
√
217
7

+
√
602
42

+ 4
3

√
34
35
−

√
46
6
− 4

√
7

15
−
√
370
5
.

Now we present GA5 index of chain silicate networks (CSn).

Theorem 4.2.4. Consider the chain silicate networks (CSn), then its GA5 index is

equal to

GA4(CSn) =


30+12

√
6

5
, n = 2;

8 + 24
√
7

11
+ 2

√
35
3
, n = 3;(

26+16
√
10

13

)
n+ 24

√
7

11
+ 2

√
35
3

+ 8
√
14

15
− 48

√
10

13
, n > 3.

Proof. There are three cases to discuss while proving this result. Firstly, we prove

this result for n = 2. Let G be the graph of CS2 ,there are two type of edges in CS2

based on the degree sum of vertices lying at unit distance from end vertices of each

edge as follows: first type is, for e = uv ∈ E(G) such that Su = Sv = 12 and other

type is, for e = uv ∈ E(G) such that Su = 12 and Su = 18. There are six edges in

each partite set of CS2.

Now we apply the formula of GA5 index to compute this index for CS2. Since

GA5(G) =
∑

uv∈E(G)

2
√
SuSv

Su + Sv
.

GA5(CS2) = (6)
2
√

12× 12

12 + 12
+ (6)

2
√

12× 18

12 + 18
.

After an easy calculation, we get

GA5(CS2) =
30 + 12

√
6

5
.

To prove this result for n = 3 we use the same partition given in table 4.4. GA5(CS3) =

(6)2
√
12×12

12+12
+ (1)2

√
15×15

15+15
+ (6)2

√
12×21

12+21
+ (1)2

√
21×21

21+21
+ (4)2

√
15×21

15+21
.

After an easy simplification, we get
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GA5(CS3) = 8 +
24
√

7

11
+

2
√

35

3
.

Now we discuss the third case for n > 3. Table 3. shows required partition for chain

silicate networks CSn, n > 3. Since

GA5(G) =
∑

uv∈E(G)

2
√
SuSv

Su + Sv
.

This implies that

GA5(CSn) = (6)2
√
12×12

12+12
+ (6)2

√
12×21

12+21
+ (n− 2)2

√
15×15

15+15
+ (4)2

√
15×21

15+21
+

4(n− 3)2
√
15×25

15+24
+ (n− 4)2

√
24×24

24+24
. After an easy calculation, we get

GA5(CSn) =
(26 + 16

√
10

13

)
n+

24
√

7

11
+

2
√

35

3
+

8
√

14

15
− 48

√
10

13
.

In the following section, we study hexagonal networks and compute the ABC4

and GA5 indices for these networks.

4.3 Results for hexagonal networks

It is well known fact, that there exist three regular plane tilings with composition

of same kind of regular polygons such as triangular, hexagonal and square. In

the construction of hexagonal networks, triangular tiling is being used. A hexagonal

network of dimension n is usually denoted as HXn, where n is the number of vertices

on each side of hexagon. The number of vertices in hexagonal networks HXn with

n > 1 are 3n2−3n+ 1 and number of edges are 9n2−15n+ 6. A hexagonal network

HXn with n = 6 is depicted in Figure 4.6. In any hexagonal network there are

twelve types of edges based on the degree sum of vertices lying at unit distance from

end vertices of each edge. Table 4.5 shows such edge partition of hexagonal networks

HXn for n > 4. Now we calculate ABC4 and GA5 indices of chain silicate networks

HXn. Following theorem computed the ABC4 index of hexagonal networks.

Theorem 4.3.1. Consider the hexagonal networks HXn, n > 1, then its ABC4
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(Su, Sv) where uv ∈ E(G) Number of edges

(14, 19) 12

(19, 20) 12

(20, 20) 6(n− 5)

(19, 29) 12

(19, 32) 12

(20, 32) 12(n− 4)

(14, 29) 6

(29, 32) 12

(29, 36) 6

(32, 36) 12(n− 3)

(32, 32) 6(n− 4)

(36, 36) 9n2 − 51n+ 72

Table 4.5: Edge partition of HXn based on degree sum of vertices lying at unit

distance from end vertices of each edge.

Figure 4.6: Hexagonal network HXn with n = 6.
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index is equal to

ABC4(HXn) =



√
130+9

√
2

5
, n = 2;

2
√
210
7

+ 3
√
41

203
+ 6

√
290
29

+ 6
√
203
29

, n = 3;

12
√

31
266

+ 6
√

41
406

+ 12
√

46
551

+ 3
√

59
58

+

21√
38

+ 3
√
203
29

+
√
33
2

+
√
70
3

+ 36
19
, n = 4;

√
70
4
n2 +

(
3
√
38

10
+ 3

√
5

2
+
√
33
2

+ 3
√
62

16
− 17

√
70

21

)
n+

12
√

31
266

+ 12
√

37
380

+ 12
√

49
608

+ 12
√

59
928

+

6
√

41
406

+ 12
√

46
551

+ 3
√
203
29
− 3

√
38
2
− 3

√
33
2
−

3
√
62
4

+ 2
√

70− 6
√

5, n > 4.

Proof. Consider the graph of hexagonal networks HXn. We have |V (HXn)| =

3n2 − 3n + 1 and |E(HXn)| = 9n2 − 15n + 6. Now there are four cases to discuss

while proving this result. Firstly, we prove this result for n = 2. let G be the

graph of HX2, there are two type of edges in HX2 based on the degree sum of

vertices lying at unit distance from end vertices of each edge as follows: first type

is, for e = uv ∈ E(G) such that Su = Sv = 10 and other type is, for e = uv ∈ E(G)

such that Su = 10 and Su = 18. There are six edges in each partite set of HX2. Since

ABC4(G) =
∑

uv∈E(G)

√
Su + Sv − 2

SuSv
.

This implies that

ABC4(HX2) = (6)

√
10 + 10− 2

10× 10
+ (6)

√
10 + 18− 2

10× 18
.

After a bit calculation we get,

ABC4(HX2) =

√
130 + 9

√
2

5
.

Now we prove this result for n = 3. For this, we need edge partition of HX3 as we

have in first case. Following Table shows such a partition of HX3. Since

ABC4(G) =
∑

uv∈E(G)

√
Su + Sv − 2

SuSv
.
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(Su, Sv) where uv ∈ E(G) (14, 18) (14, 29) (18, 29) (29, 36)

Number of edges 12 6 12 12

Table 4.6: Edge partition of HX3 based on degree sum of neighbors of end vertices

of each edge.

(Su, Sv) where uv ∈ E(G) Number of edges

(14, 19) 12

(19, 19) 6

(14, 29) 6

(19, 29) 12

(19, 32) 12

(29, 32) 12

(29, 36) 6

(32, 36) 12

(36, 36) 12

Table 4.7: Edge partition of hexagonal network HX4 based on degree sum of neigh-

bors of end vertices of each edge.

This gives that

ABC4(HX3) = (12)
√

14+18−2
14×18 + (6)

√
14+29−2
14×29 + (12)

√
18+29−2
18×29 + (12)

√
29+36−2
29×36 .

After an easy calculation,

ABC4(HX3) =
2
√

210

7
+

3
√

41

203
+

6
√

290

29
+

6
√

203

29
.

Now we discuss the third case to prove this result for n = 4. To prove this result

for HX4, we need edge partition of HX4 based on the degree sum of neighbors of

end vertices of each edge. Following Table shows such a partition for hexagonal

network HX4. Now we apply the formula of ABC4 index to compute this index for
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hexagonal index HX4. Since

ABC4(G) =
∑

uv∈E(G)

√
Su + Sv − 2

SuSv
.

This implies that

ABC4(HX4) = (12)
√

14+19−2
14×19 +(6)

√
19+19−2
19×19 +(6)

√
14+29−2
14×29 +(12)

√
19+29−2
19×29 +(12)

√
19+32−2
19×32 +

(12)
√

29+32−2
29×32 + (6)

√
29+36−2
29×36 + (12)

√
32+36−2
32×36 + (12)

√
36+36−2
36×36 .

After an easy simplification, we get

ABC4(HX4) =
21√
38

+
3
√

203

29
+

√
33

2
+

√
70

3
+

36

19
.

Now we have fourth case to prove this result for n > 4. Let G be the graph of

hexagonal networks HXn with n > 4.

We find the edge partition of chain silicate networks HXn for n > 4 based on the

degree sum of vertices lying at unit distance from end vertices of each edge. Table

4.5 explains such partition for HXn, n > 4.

Now by using the partition given in table 4.5 we can apply the formula of ABC4

index to compute this index for G.

Since

ABC4(G) =
∑

uv∈E(G)

√
Su + Sv − 2

SuSv
.

This implies that

ABC4(G) = (12)
√

14+19−2
14×19 + (12)

√
19+20−2
19×20 + 6(n− 5)

√
20+20−2
20×20 +

(12)
√

19+29−2
19×29 + (12)

√
19+32−2
19×32 + 12(n− 4)

√
20+32−2
20×32 + (6)

√
14+29−2
14×29 +

(12)
√

29+32−2
29×32 + (6)

√
29+36−2
29×36 + 12(n− 3)

√
32+36−2
32×36 +

6(n− 4)
√

32+32−2
32×32 + (9n2 − 51n+ 72)

√
36+36−2
36×36 .

After an easy simplification, we get

ABC4(G) =
√
70
4
n2 +

(
3
√
38

10
+ 3

√
5

2
+
√
33
2

+ 3
√
62

16
− 17

√
70

21

)
n + 12

√
31
266

+ 12
√

37
380

+

12
√

49
608

+12
√

59
928

+6
√

41
406

+12
√

46
551

+ 3
√
203
29
− 3
√
38
2
− 3
√
33
2
− 3
√
62
4

+2
√

70−6
√

5.

We compute GA5 index of hexagonal networks HXn. In the following theorem,

GA5 index of hexagonal networks HXn is being computed.
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Theorem 4.3.2. Consider the hexagonal networks HXn, n > 1, then its GA5 index

is equal to

GA5(HXn) =



42+18
√
5

7
, n = 2;

9
√
7

2
+ 12

√
406

43
+ 72

√
58

47
+ 144

√
29

65
, n = 3;

8
√
266
11

+ 12
√
406

43
+
√
551
2

+ 32
√
38

17
+ 96

√
58

61
+

72
√
29

65
+ 144

√
2

17
+ 18, n = 4;

9n2 +
(
48
√
10

13
+ 144

√
2

17
− 39

)
n+ 24

√
406

43
+ 16

√
95

13
+
√
551
2

+
32
√
38

17
+ 4

√
266
11

+ 96
√
58

61
+ 72

√
29

65
− 192

√
10

13
− 432

√
2

17
+ 18 n > 4.

Proof. Firstly, we prove this result for n = 2. let G be the graph of HX2, there are

two type of edges in HX2 based on the degree sum of vertices lying at unit distance

from end vertices of each edge as follows: first type is, for e = uv ∈ E(G) such that

Su = Sv = 10 and other type is, for e = uv ∈ E(G) such that Su = 10 and Su = 18.

There are six edges in each partite set of HX2. Since

GA5(G) =
∑

uv∈E(G)

2
√
SuSv

Su + Sv
.

GA5(HX2) = (6)
2
√

10× 10

10 + 10
+ (6)

2
√

10× 18

10 + 18
.

After a bit calculation, we get

GA5(HX2) =
42 + 18

√
5

7
.

Now we prove this result for n = 3. For this, we need edge partition of HX3 as we

have in first case. Table 4.6 shows such partition of HX3. Now we compute the fifth

GA index of HX3. Since

GA5(G) =
∑

uv∈E(G)

2
√
SuSv

Su + Sv
.

GA5(HX3) = (12)
2
√

14× 18

14 + 18
+ (6)

2
√

14× 29

14 + 29
+ (12)

2
√

18× 29

18 + 29
+ (12)

2
√

29× 36

29 + 36
.

After an easy calculation, we get

GA5(HX3) =
9
√

7

2
+

12
√

406

43
+

72
√

58

47
+

144
√

29

65
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Now we discuss the third case to prove this result for n = 4. To prove this result for

HX4, we need edge partition of HX4 based on the degree sum of neighbors of end

vertices of each edge. Table 4.7 shows such partition for hexagonal network HX4.

Now we compute the result for n = 4. Since

GA5(G) =
∑

uv∈E(G)

2
√
SuSv

Su + Sv
.

This implies that

GA5(HX4) = (12)2
√
14×19

14+19
+ (6)2

√
19×19

19+19
+ (6)2

√
14×29

14+29
+ (12)2

√
19×29

19+29
+ (12)2

√
19×32

19+32
+

(12)2
√
29×32

29+32
+ (6)2

√
29×36

29+36
+ (12)2

√
32×36

32+36
+ (12)2

√
36×36

36+36
.

After an easy calculation, we get

GA5(HX4) =
8
√

266

11
+

12
√

406

43
+

√
551

2
+

32
√

38

17
+

96
√

58

61
+

72
√

29

65
+

144
√

2

17
+ 18.

Now we have fourth case to prove this result for n > 4. Let G be the graph of

hexagonal networks HXn with n > 4. We find the edge partition of chain silicate

networks HXn for n > 4 based on the degree sum of vertices lying at unit distance

from end vertices of each edge. Table 4.5 explains such partition for HXn, n > 4.

Now by using the partition given in table 4.5 we can apply the formula of ABC4

index to compute this index for G. Since

GA5(G) =
∑

uv∈E(G)

2
√
SuSv

Su + Sv
.

This gives that

GA5(HXn) = (12)2
√
14×19

14+19
+(12)2

√
19×20

19+20
+6(n−5)2

√
20×20

20+20
+(12)2

√
19×29

19+29
+(12)2

√
19×32

19+32
+

12(n− 4)2
√
20×32

20+32
+ (6)2

√
14×29

14+29
+ (12)2

√
29×32

29+32
+ (6)2

√
29×36

29+36
+

12(n− 3)2
√
32×36

32+36
+ 6(n− 4)2

√
32×32

32+32
+ (9n2 − 51n+ 72)2

√
36×36

36+36
.

After an easy simplification, we get

GA5(HXn) = 9n2 +
(
48
√
10

13
+ 144

√
2

17
− 39

)
n+ 24

√
406

43
+ 16

√
95

13
+
√
551
2

+ 32
√
38

17
+

4
√
266
11

+ 96
√
58

61
+ 72

√
29

65
− 192

√
10

13
− 432

√
2

17
+ 18.
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(du, dv) where uv ∈ E(G) (2, 4) (4, 4)

Number of edges 12n 18n2 − 12n

Table 4.8: Edge partition of OXn based on degrees of end vertices of each edge.

Figure 4.7: An oxide network OX5.

4.4 Oxide networks

Oxide networks play a vital role in the study of silicate networks . If we delete silicon

vertices from a silicate network, we get an oxide networks. (See Figure 4.7). An

n-dimensional oxide network is denoted as OXn. The number of vertices in 9n2 +3n

and number of edges are 18n2. There are two types of edges based on the degrees

of end vertices of each edge in oxide networks OXn. Table 4.8 shows such types of

edges for oxide networks OXn.

Now we compute certain degree based topological indices of oxide networks OXn.

In the following theorem, we present ABC index of oxide networks.

Theorem 4.4.1. Consider the oxide networks (OXn), n > 1, then its ABC index

is equal to

ABC(OXn) =
9
√

6

2
n2 + 3n(2

√
2−
√

6).

Proof. By using the edge partition based on the degrees of end vertices of each edge

of oxide networks (OXn) given in table 4.8 we compute the ABC index of oxide

networks (OXn). Since
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ABC(G) =
∑

uv∈E(G)

√
du + dv − 2

dudv
.

This gives that

ABC(OXn) = (12n)
√

2+4−2
2×4 + (18n2 − 12n)

√
4+4−2
4×4 .

After an easy simplification, we get

ABC(OXn) =
9
√

6

2
n2 + 3n(2

√
2−
√

6).

Following theorem gives exact formula GA index of oxide networks OXn.

Theorem 4.4.2. Consider the oxide networks (OXn), n > 1, then its GA index is

equal to

GA(OXn) = 18n2 + 4n(2
√

2− 3).

Proof. By using the edge partition based on the degrees of end vertices of each edge

of oxide networks (OXn) given in table 4.8 we compute the GA index of oxide net-

works (OXn). Since

GA(G) =
∑

uv∈E(G)

2
√
dudv

du + dv
.

This implies that

GA(OXn) = (12n)2
√
2×4

2+4
+ (18n2 − 12n)2

√
4×4

4+4
.

After simplification, we get

GA(OXn) = 18n2 + 4n(2
√

2− 3).

There are six types of edges based on degree sum of vertices lying at unit distance

from end vertices of each edge in oxide networks OXn. We use this partition of edges

of OXn to calculate ABC4 and GA5 indices for oxide networks. Table 4.9 shows

such types of edges of oxide networks OXn. Now we compute ABC4 and GA5

indices of oxide networks OXn. Following theorem gives formula ABC4 index of

oxide networks OXn.
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(Su, Sv) where uv ∈ E(G) Number of edges

(8, 12) 12

(12, 14) 12

(8, 14) 12(n− 1)

(14, 14) 6(2n− 3)

(14, 16) 12(n− 1)

(16, 16) 18n2 − 36n+ 18

Table 4.9: Edge partition of OXn based on degree sum of vertices lying at unit

distance from end vertices of each edge.

Theorem 4.4.3. Consider the oxide networks (OXn), n > 1, then its ABC4 index

is equal to

ABC4(OXn) =
9
√

30

8
n2 +

(
6
√

35

7
+

6
√

26

7
− 9
√

30

4
+ 3
√

2

)
n+

12
√

7

7
+

9
√

30

8
− 6
√

35

7
− 9
√

26

7
+ 3
√

3− 3
√

2.

Proof. We find the edge partition of oxide networks OXn based on the degree sum

of vertices lying at unit distance from end vertices of each edge. Table 4.9 explains

such partition for OXn.

Now by using the partition given in table 4.9 we can apply the formula of ABC4

index to compute this index for G. Since

ABC4(G) =
∑

uv∈E(G)

√
Su + Sv − 2

SuSv
.

This implies that

ABC4(G) = (12)
√

8+12−2
8×12 + (12)

√
12+14−2
12×14 + 12(n− 1)

√
8+14−2
8×14 +

6(2n− 3)
√

14+14−2
14×14 + 12(n− 1)

√
14+16−2
14×16 + (18n2 − 36n+ 18)

√
16+16−2
16×16 .

After an easy simplification, we get
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ABC4(OXn) =
9
√

30

8
n2 +

(
6
√

35

7
+

6
√

26

7
− 9
√

30

4
+ 3
√

2

)
n+

12
√

7

7
+

9
√

30

8
− 6
√

35

7
− 9
√

26

7
+ 3
√

3− 3
√

2.

In the following theorem, GA5 index of oxide networks OXn is computed.

Theorem 4.4.4. Consider the oxide networks (OXn), n > 1, then its GA5 index is

equal to

GA5(OXn) = 18n2−
(

48
√

7

11
+

16
√

14

15
− 24

)
n+

24
√

6

5
+

24
√

42

13
− 16

√
14

15
− 48

√
7

11
.

Proof. The edge partition of oxide networks OXn based on the degree sum of ver-

tices lying at unit distance from end vertices of each edge is given in table 4.9. Now

we apply the formula of GA5 index to compute this index for G. Since

GA5(G) =
∑

uv∈E(G)

2
√
SuSv

Su + Sv
.

This gives that

GA5(G) = (12)2
√
8×12

8+12
+ (12)2

√
12×14

12+14
+ 12(n− 1)2

√
8×14

8+14
+

6(2n− 3)2
√
14×14

14+14
+ 12(n− 1)2

√
14×16

14+16
+ (18n2 − 36n+ 18)2

√
16×16

16+16
.

After an easy simplification, we get

GA5(OXn) = 18n2−
(

48
√

7

11
+

16
√

14

15
−24

)
n+

24
√

6

5
+

24
√

42

13
−16
√

14

15
−48
√

7

11
.

4.5 Honeycomb networks

Honeycomb networks are widely used in computer graphics, cellular phone base sta-

tions, image processing and as a representation of benzoid hydrocarbons in chem-

istry. If we recursively use hexagonal tiling in a particular pattern, honeycomb

networks are formed. An n-dimensional honeycomb network is denoted as HCn,

where n is the number of hexagons between central and boundary hexagon. Hon-

eycomb network HCn is constructed from HCn−1 by adding a layer of hexagons
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Figure 4.8: A 4-dimensional honeycomb network.

(Su, Sv) where uv ∈ E(G) (5, 5) (5, 7) (7, 9) (9, 9)

Number of edges 6 12(n− 1) 6(n− 1) 9n2 − 21n+ 12

Table 4.10: Edge partition of HCn based on degree sum of neighbors of end vertices

of each edge.

around boundary of HCn−1. (See Figure 4.8). The number of vertices in honey-

comb network HCn are 6n2 and number of edges are 9n2− 3n. There are four types

of edges in HCn based on degree sum of vertices lying at unit distance from end

vertices of each edge. Table 4.10 shows such types of edges. By using this partition

of edges of HCn, we compute ABC4 and GA5 indices of HCn. Now we compute

ABC4 index of honeycomb network HCn for n > 1. In the following theorem, we

computed ABC4 index of honeycomb network HCn.

Theorem 4.5.1. Consider the honeycomb networks (HCn), n > 1, then its ABC4

index is equal to

ABC4(HCn) = 4n2 +
(12
√

14

7
+ 2
√

2− 28

3

)
n+

12
√

2

5
− 12

√
14

7
− 2
√

2 +
16

3
.

Proof. We find the edge partition of honeycomb networks HCn based on the degree

sum of vertices lying at unit distance from end vertices of each edge. Table 4.10

explains such partition for HCn.

Now by using the partition given in table 4.10 we can apply the formula of ABC4

index to compute this index for G. Since

81



ABC4(G) =
∑

uv∈E(G)

√
Su + Sv − 2

SuSv
.

This implies that

ABC4(G) = (6)
√

5+5−2
5×5 + 12(n− 1)

√
5+7−2
5×7 + 6(n− 1)

√
7+9−2
7×9 +

(9n2 − 21n+ 12)
√

9+9−2
9×9 .

After an easy simplification, we get

ABC4(HCn) = 4n2 +
(
12
√
14

7
+ 2
√

2− 28
3

)
n+ 12

√
2

5
− 12

√
14

7
− 2
√

2 + 16
3
.

In the following theorem, GA5 index of honeycomb network HCn is computed.

Theorem 4.5.2. Consider the honeycomb networks (HCn), n > 1, then its GA5

index is equal to

GA5(HCn) = 9n2 +
(9
√

7

4
+ 2
√

35− 21
)
n+ 18− 9

√
7

4
− 2
√

35.

Proof. The edge partition of honeycomb networks HCn based on the degree sum of

vertices lying at unit distance from end vertices of each edge is given in table 4.10.

Now we apply the formula of GA5 index to compute this index for G. Since

GA5(G) =
∑

uv∈E(G)

2
√
SuSv

Su + Sv
.

This implies that

GA5(G) = (6)2
√
5×5

5+5
+ 12(n− 1)2

√
5×7

5+7
+ 6(n− 1)2

√
7×9

7+9
+ (9n2 − 21n+ 12)2

√
9×9

9+9
.

After an easy simplification, we get

GA5(HCn) = 9n2 +
(9
√

7

4
+ 2
√

35− 21
)
n+ 18− 9

√
7

4
− 2
√

35.

In this chapter, we have given analytically closed results of certain degree based

topological indices of networks named as silicate, chain silicate, hexagonal. oxide

and honeycomb networks.
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Chapter 5

Conclusion and open problems

Molecular descriptors are the numeric numbers which represent the whole structure

of the graph, having a underlying chemical structure. Among them, topological

indices are those which correlate various physico-chemical properties of underlying

chemical compounds.

In the study of Quantitative structure-activity (QSAR) and structure-property

(QSPR) relationships, physicochemical properties and topological indices such as

Wiener index, Szeged index, Randić index, Zagreb index, atom-bond connectivity

(ABC) index and geometric-arithmetic (GA) index are used to predict bioactivity

of the chemical compounds.

To compute and study topological indices of nanostructures is a respected prob-

lem in theoretical nanoscience. In this thesis, we have calculated the exact formu-

las of Randić, Zagreb, ABC, GA, ABC4 and GA5 indices for H-naphtalenic and

V5C7[p, q] nanotubes and CNCk[n] nanocones. We have given an important charac-

terization of GA5 index for k-regular graphs, which is of much importance because

all nanotori are k-regular. So by using this characterization, we have concluded

that GA5 index of all nanotori will be their edge set cardinality. We have also

computed the exact expressions for certain counting related polynomials named as

Omega, Sadhana and PI polynomials for H-naphtalenic nanotubes, which are used

to calculate their corresponding topological indices.

The study of topological indices for networks is of much importance because

these numeric number discuss the topology of underlying networks. We have studied

83



certain degree based topological indices of various interconnecting networks named

as silicates, hexagonal, oxide and honeycomb. We have defined a new class of silicate

networks and then have studied various degree based topological indices for them.

We close the discussion by raising questions that naturally arise from the text.

Open Problem 1: Determine the exact expressions for the ABCk index for the

k=2,3,5 of H-naphtalenic and V C5C7 nanotubes.

Open Problem 2: Determine the exact formula for GAk index for k=2,3,4 for

H-naphtalenic and V C5C7 nanotubes.

Open Problem 3: Determine the exact expressions of Randi’c, Zagreb, ABCk,

GAk for Y-junction nanotubes where k=1,2,3,4,5.

Open Problem 4: Characterize the k-regular graphs for ABCk index for the

k=2,3,5 and GAk index for k=2,3,4.

Open Problem 5: Compute the exact expressions of Randi’c, Zagreb, ABCk, GAk

for benzenoid structures and Fibonacene.

Open Problem 6: Compute the closed formulas of Omega, Sadhana and PI poly-

nomials for nanotubes like TUC4C8(R)[p, q] and TUC4[p, q].

Open Problem 7: Construct new families of networks by using some graph oper-

ations and then study their topological indices.
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[22] E. Estrada, L. Torres, L. Rodŕıguez, I. Gutman, An atom-bond connectiv-

ity index: Modelling the enthalpy of formation of alkanes, Indian J. Chem.,

37A(1998), 849− 855.

[23] L. Euler, Solutio Problematis ad Geometriam Situs Pertinentis., Comment.

Acad. Sci. I. Petropolitanae, Ser. A, 8(1736), 128− 140.

[24] M. R. Farahani, Fifth geometric-arithmetic index of TUC4C8(S) nanotubes, J.

Chem. Acta, 2(2013), 62− 64.

[25] M. R. Farahani, On the Randic and sum-connectivity index of nanotubes,

Analele universitatii de vest din timisoara, Seria Matematica-Informatica,

2(2013), 39− 46.

[26] M. R. Farahani, Zagreb index and Zagreb polynomial of circumcoronene series

of benzenoid, Adv. Mat. Corrosion, 2(2013), 16− 19.

[27] M. R. Farahani, Computing ABC4 index of V-phenylic nanotubes and nanotori,

Acta Chim. Slov., 60(2013), 429− 432.

[28] A. Ghorbani, M. A. Hosseinzadeh, Computing ABC4 index of nanostar

dendrimers, Optoelectronics and Advanced Materials-Rapid Communications,

4(2010), 1419− 1422.

[29] M. Ghorbani, GA index of TUC4C8(R) nanotube, Optoelectronics and Ad-

vanced Materials-Rapid Communications, 4(2010), 261− 263.

[30] A. Ghorbani, M. Ghazi, Computing Omega and PI polynomials of graphs,

Digest Journal of Nanomaterials and Biostructures, 5(2010), 843− 849.

[31] A. Ghorbani, M. Ghazi, S. Shakeraneh, Computing Omega and PI polynomials

of an infinite class of fullerenes, Optoelectronics and Advanced Materials-Rapid

Communications, 4(2010), 893− 895.

[32] A. Graovac, M. Ghorbani, M. A. Hosseinzadeh, Computing fifth geometric-

arithmetic index for nanostar dendrimers, J. Math. Nanosciences, 1(2011), 33−
42.

87
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