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Abstract
In fluid dynamics, the study of fluid’s velocity, temperature, pressure, dynamic viscosity and

momentum have significant importance. This work explains the systematic study of creeping

flow, in a horizontal porous tube containing cilia, due to metachronal wave propagation. Since

heat transfer study has huge importance in various biomedical and biological industry problems.

This work also includes the mathematical study of transfer of heat and entropy generation

analysis of MHD viscous fluid in a tube containing cilia. The metachronal wave propagation is

main cause behind this creeping viscous flow. In both problems, a low Reynolds number is used

as the inertial forces are weaker than viscous forces and also creeping flow limitations are

fulfilled. For cilia movement, a very large wavelength of metachronal wave is taken into account.

The heat transfer for the flow of MHD viscous fluid is examined by entropy generation.

Numerical solutions are calculated by using mathematica. Exact mathematical solutions are

produced for the governing equations and analyzed with the help of graphs. Streamlines are

also plotted.
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Chapter 1
Introduction

The mechanism in which heat transmits from high temperature reservoir to low temperature

reservoir is called heat transfer. It occurs, because of temperature discrimination between the

system and its encircling, across the boundary of the system. It may occur inside the system

because of temperature variation at various points within the system. The potential behind this

heat flow is the difference in temperature. Biological propulsion has many applications in

medicine, aerospace and it is attaining the attraction of many scientists because of its significant

uses. Different mathematical researches have been conducted for many living things at various

length scales and Reynolds number. Wu [1] has given the most radiant study of the subject. The

area of his research includes flows for both microscopic organisms as well as huge marine

mammals . Cilia1 propulsion is of great importance at microscopic level. As explained by Wu [2],

this field of biological hydrodynamic propulsion has been attracting the interest of many

researchers for decades. In case of sperm flagella of few insects, the span of cilia ranges from a

few microns to more than 2 mm. Cilia have been set up as beating with a whip-like irregular

mechanism which contains both a prevailing as well as recovery stroke. Metachronal waves are

generated because of collective beating of many cilia. When the metachronal wave and

effective stroke both are parallel then it is termed as symplectic otherwise antiplectic. As

illustrated by Feng and Cho [3], In many bio-inspired engineering systems and bio-mimetics,

these characteristics have attracted attention of many scientists and researchers especially in

nanomedicine and drug delivery. In general, atmost two long flagella are present in a cell

whereas several cilia are present in ciliated cells. For example, only a single flagellum is present

1 Cilia are hair-like structures that protrude from the surfaces of certain organisms and
deform in a wavelike fashion to transport fluids.
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in mammalian spermatozoa, two flagella in unicellular green alga Chlamydomonas and a few

thousand cilia are present in unicellular protozoan Paramecium. There purpose is both nutrition

and locomotion. The linear stokes equations, with no slip at the walls, are used to control the

motion of cilia and flagella [4]. Sleigh [5] has described systematically the formation of cilia, facts

by which motion of cilia is affected and the integrate beating of cilia. In male reproductive tract,

the impact of cilia on flow rates is studied by Lardner and Shack [6]. Blake [7] developed a

mathematical model that explains the microscopic structure for ciliated organisms. The fluid

mechanism of cilia motion is theoretically studied by Wu [8]. For cilia movement, the oscillatory

thin boundary layer theory is presented by Brennen [9]. Moreover, water movement by cilia is

studied by Sleigh and Aiello [10]. The fluid flow, by cilia transport, with variable viscosity is

investigated by Agarwal and Uddin [11]. For cilia movement, a spherical container approach is

developed by Blake [12]. The flow of Newtonain fluids developed by mechanical cilia oscillations

is studied by Miller [13]. For cilia-produced mucous flow, Barton and Raynor [14] developed a

systematic approach. The impacts for the flow of viscoelastic fluid on cilia movement are

studied by Smith et al [15]. A fluid-structure interaction view point for the hydrodynamics of cilia

movement is studied by Dauptain et al [16]. Three dimensional computations for cilia

movements are presented by Khaderi and Onck [17]. Khaderi et al [18] studied a flow in which

forward and backward motion of artificial cilia is not same. For microfluidic propulsion, the

study on magnetically-pushed artificial cilia is reported by Khaderi et al [19]. Recently, In

biological porous media, the transport phenomena has attracted much attention. Human body

organs like kidneys, tissues, lungs and our skin consist of permeable materials [20]. A medium

having many tiny holes spread over the matter is called porous media [21]. Khaled and Vafai [22]

have studied the convective flow models for porous media. Staffman [23] presented an example

for flow having boundary conditions described for porous medium.

Peristalsis is a stimulating fluid flow problem in a media having pours. Peristalsis is a wavelike

movement that is generated by regular contraction as well as relaxation of neighbouring

locations. The flow developed because of peristaltic reflex in an isolated guinea pig ileum is

studied by Jeffrey et al [24]. The peristaltic flow through an asymmetric porous media is

explained by Elshehawey et al [25]. Recent study on peristaltic move of Newtonian as well as

non-Newtonian fluids in magnetohydrodynamics is developed by Tripathi and Beg [26].
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In a closed thermodynamic system, entropy occurs due to restlessness in a system . It is the

measure of disorder of the system. Entropy of a system varies inversely with the temperature

and directly with reversible variation in heat. The entropy generation analysis with transfer of

heat is studied by Bejan [27]. Pakdemirli and Yilbas [28] discussed the entropy generation due to

flow of a non-Newtonian fluid in a tube. In backward facing step flow, Nada [29] examined the

entropy generation due to heat and fluid flow for various expansion ratios. In laminar flow

through the hexagonal cross-sectional pipe having persistent temperature at walls, entropy

generation has been studied by Oztop et al [30]. Relevant study on entropy is given in Ref. [31-

41].

A precise analysis of mathematical research has revealed that the study of transfer of heat for

magnetohydrodynamic viscous fluid in a ciliated tube with entropy generation is not studied

mathematically. This research includes the study of heat transfer for MHD viscous fluid in a

ciliated tube with entropy generation. Exact mathematical solutions are developed for the

differential equation problem and are examined with the help of graphs.
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Chapter 2
A…Study….on creeping viscous flow

through a ciliated porous tube

2.1. Introduction:

This chapter includes the study of creeping2 viscous flow, in a horizontal porous3 tube

containing cilia, due to metachronal wave propagation. A low Reynolds number is used as the

inertial forces are weaker than viscous forces and also creeping flow limitations are fulfilled. For

cilia movement, a very large wavelength of metachronal wave is taken into account.

Mathematical solutions have been obtained for the governing equations. To estimate and

elaborate numerical results, Mathematica software is used. The affect of Darcy number and slip

parameter on velocity of fluid, trapping of bolus and pressure gradient are studied graphically.

The trapping of bolus rises as the value of slip parameter increases. This work is useful for

organic propulsion of scientific micro machines in drug transport.

2.2. Mathematical model

2 Creeping flow is a flow in which inertial forces are weaker than viscous forces.

3 A medium having tiny holes dispersed throughout the matter is called porous medium.
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Figure 1 : Geometry of the problem [47]

Consider an incompressible4 Newtonian fluid flow in a ciliated tube. The flow is produced

because of integrate beating of cilia and there is hydrodynamic slip at walls. The internal side of

the tube contains cilia and metachronal5 waves are generated because of integrate functioning

of cilia. Then pick out the cylindrical coordinate system ),( ZR , wherein the Z -axis is oriented

alongside the significant line of pipe having R -axis perpendicular to it. Cilia show wave

movement with pace, c, alongside the outer wall. The envelope of cilia pointers are described

mathematically as [1,9]

)1(                                                                           ,)(2sin),,(

,)(2cos),(

0 





 







 

tcZaatZZgZ

tcZaatZfHR







4 Incompressible flow is a flow in which fluid density is constant.

5Metachronal wave is developed because of sequential action of structures like cilia.
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Here  is cilia length parameter, a shows radius of tube,  depicts wavelength, c represents

velocity of the wave,  is eccentricity for elliptic movement and Z is the reference location of

particle.

The velocities are given as
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Using eq. (2) in eq. (1), we have
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The flow is transient for fixed coordinates ),( ZR , but it is regular for moving frame ),( zr

whereas speed of flow is same for both frames. The equations for viscous flow in wave frame

are

Continuity equation:
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R-direction momentum equation:
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The shift between the fixed and moving frames:
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Ellahi et al. [42], Sadaf and Nadeem [46] have described the relevant conditions on boundaries.
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Where )]2cos(21/[)2cos(2 zz   is the cilia factor.
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Now using the above variables in equations (9) and (10), also applying the estimation of large

wavelength and small Reynolds number6, the dimensionless equations are given as
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The dimensionless conditions on boundaries are described by
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6 Reynolds number shows in case the flow is laminar or irregular. It is defined as the ratio
of inertial forces to viscous forces.
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Integrating equation (14) and applying relevant conditions on boundaries, the velocity profile is

calculated as
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Flow rates for both frames have been linked by:
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The rise in pressure )( P is obtained as:
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2.3. Numerical results and discussion:

This segment describes the velocity field, pressure gradient, flow rate Q and streamlines for

numerous physical parameters with the help of graphs.
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Fig. 2.2(a) Velocity Profile w(r, z) at .7.0 ,5.0 ,3.0 ,1.01 

Fig. 2.2(b) Velocity Profile w(r, z) at .7.0 ,5.0 ,3.0 ,1.0aD
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Fig. 2.2(c) Velocity Profile w(r, z) at .7.0 ,5.0 ,3.0 ,1.0Q

Fig. 2.2(d) Velocity Profile w(r, z) at .7.0 ,5.0 ,3.0 ,1.0
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Figures 2.2(a)-2.2(d) shows the graphs for velocity profile. It is clear from 2.2(a) that velocity

decreases by increasing slip parameter 1 and it gains magnitude by decreasing slip parameter.

Fig. 2.2(b) depicts that velocity of fluid gains magnitude by increasing Darcy number and vice

versa. It shows that the velocity rises as the permeability7 of the medium rises and it decreases

with decrease in permeability. Fig. 2.2(c) shows that as the flow rate Q gains magnitude then the

velocity of fluid also rises and there is decrease in velocity by decreasing flow rate. Fig. 2.2(d)

shows that the velocity decreases by rising cilia length and vice versa. All above graphs show

that velocity has highest estimation at walls of tube and least at the centre. When 0 then it

means that cilia length parameter is zero which implies there is no metachronal wave. In such

case, due to flexibility of walls, the flow is completely peristaltic and is therefore not considered

here.

Fig. 2.3(a) Pressure rise vs. flow rate at .4.0 ,3.0 ,2.0 ,1.01 

7 Permeability is capacity of a porous medium that how much it allows the fluid to
transmit through it.
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Fig. 2.3(b) Pressure rise vs. flow rate at .4.0 ,3.0 ,2.0 ,1.0aD

Fig. 2.3(c) Pressure rise vs. flow rate at .4.0 ,3.0 ,2.0 ,1.0
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In figures 2.3a-2.3c, pressure rise is plotted against the flow rate Q. These graphs depict a linear

relation between these two. We have three different zones

(i) Push zone, in which ),0( P

(ii) free push zone, in which ),0( P

(iii) augmented push zone, in which )0( P .

Fig. 2.3(a) shows that pressure rise reduces as the slip parameter increments in pumping zone

while it increases as slip parameter increases in augmented pumping zone. Fig. 2.3(b) depicts

the same behaviour for Darcy number8. Fig. 2.3(c) shows that cilia length parameter has

opposite behaviour than 1 and  .

Fig. 2.4(a) Pressure gradient vs. Axial coordinate at .4.0 ,3.0 ,2.0 ,1.01 

8Darcy number is a non-dimensional number and it is the ratio of medium’s
permeability and its area of cross-section.
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Fig. 2.4(b) Pressure gradient vs. Axial coordinate at .3.1 ,2.1 ,1.1 ,1aD

Fig. 2.4(c) Pressure gradient vs. Axial coordinate at .7.0 ,6.0 ,5.0 ,4.0
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Figures 2.4a-2.4c shows the pressure gradient plotted against axial coordinate z . The above

graphs show that pressure gradient increases by increasing slip parameter 1 , Darcy number

aD and also by increasing cilia length parameter  . Pressure gradient increases rapidly by small

change in cilia length parameter because when more cilia occur then fluid will take more

pressure and it increases the pressure gradient.

Fig. 2.5(a) Streamlines for the velocity profile at

.3.0,1,2.0,1.0,1.0,1.01  QDa
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Fig. 2.5(b) Streamlines for the velocity profile at

.3.0,1,2.0,1.0,1.0,11.01  QDa

Fig. 2.5(c) Streamlines for the velocity profile at

.3.0,1,2.0,1.0,1.0,12.01  QDa
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Fig. 2.5(d) Streamlines for the velocity profile at

.3.0,1,2.0,1.0,1.0,15.01  QDa

Figures 2.5a-2.5d show streamlines for the velocity field. The above graphs depict that the

trapping of bolus increases in size as the value of slip parameter increases. A peristaltic wave is

produced by contraction of smooth muscle tissues in a sequence. Fluid moves easily at the

centre of the tube and free stream arise at the centre. Therefore more trapping of bolus occurs

near the walls.



20

Conclusions:

This research includes the study of creeping flow produced due to metachronal wave. The main

reason behind this flow and production of metachronal waves is cilia beating. This examine is

relevant to biomimetic propulsion mechanism that includes necessary medication by using

artificial cilia. The present research will be helpful in more laboratory work. The significant

points related to above research are describes as

1. Velocity of fluid gains magnitude by increasing Darcy number while it shows opposite

behaviour for slip parameter.

2. Axial velocity increases with greater flow rate whereas it decreases with increasing axial

coordinate.

3. In pumping region, by increasing slip velocity and permeability, the pressure rise decreases.

4. There is opposite effect of Axial coordinate and Darcy number on rise in pressure.

5. The trapping of bolus upturns by rising the value of slip parameter and it is maximum near the

walls.
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Chapter 3
Heat transfer analysis of MHD viscous

fluid in a ciliated tube with entropy

generation

3.1. Introduction:

This chapter includes the study of transfer of heat and entropy9 generation of MHD10 viscous

fluid flowing through a ciliated tube. Heat transfer study has huge importance in various

biomedical and biological industry problems. The metachronal wave propagation is main cause

behind this creeping viscous flow. A low Reynolds number is used as the inertial forces are

weaker than viscous forces and also creeping flow limitations are fulfilled. For cilia movement, a

very large wavelength of metachronal wave is taken into account. The transfer of heat through

the flow is examined by entropy generation. Numerical solutions are calculated by using

mathematica. Exact mathematical solutions are calculated and analyzed with the help of graphs.

Streamlines are also plotted.

9 Entropy occurs due to disorder or randomness in a system.

10Magnetohydrodynamics (MHD) deals with electrically conducting fluids.
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3.2. Mathematical formulation:

Figure 2 : Geometry of the problem

An incompressible Newtonian flow through a tube containing cilia is considered. Because of

integrate beating of cilia metachronal waves are produced and there is no slip at the wall. The

go with the flow is produced because of integrate beating of cilia. A cylindrical coordinate frame

of reference ),( ZR is selected so that Z -axis is oriented alongside the significant line of tube

having R -axis normal to it. Cilia show wave movement with velocity, c, alongside the outer wall

of tube. The envelope of cilia pointers are described mathematically as [1,9]
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Here  is cilia length parameter, a shows radius of tube,  depicts wavelength, c shows pace

of wave,  depicts eccentricity for elliptic movement and Z is the reference location of particle.

The velocities are given by
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Using eq. (2) in (1), we have
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This flow is transient for fixed frame ),,( ZR but it is regular in a moving frame ),( zr . In

moving frame, the viscous flow is expressed by these equations

Continuity Equation:
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Z-direction momentum equation:
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Heat equation :
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where T is natural temperature of fluid, cp is heat capacitance,  shows viscosity and k
shows effective thermal conductivity.

The shift for the given frames are:
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Ellahi et al [42], Nadeem and Sadaf [46] have described the relevant boundary conditions.
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Where )] 2cos(21/[) 2cos(2 zz   is the cilia factor.

Now introducing the dimensionless variables
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Using above equations in equation 9 to 12, and applying estimations of enormous wavelength
and low-set Reynolds number, then dimensionless equations are given by
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The non-dimensional conditions on boundaries are
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3.3. Viscous dissipation and entropy generation analysis
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These equations [27-37], the dimensional viscous dissipation11 term 1 is defined as
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Also the entropy generation with dimensions has been described by [27-37]

(19)                                                                                        ,
0

1
22

2
0

'''







































z
T

r
TkSgen

Entropy generation in non-dimensional pattern has been calculated by
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Entropy in equation (20) comprises of two parts. First one is because of measurable
temperature dissimilarity and the later is because of viscous effects. Now Bejan number is
determined as [27-37].
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3.4. Exact Solution:

Now by solving Eqs. 15 and 16, and applying relevant boundary conditions ),,,16( ba we have
the velocity

11Viscous dissipation is defined as an irreversible process in which the work that is done
by a fluid on neighbouring layers is transformed into heat.
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The flow rates are linked in two frames as:
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3.5. Results and discussion:
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This segment describes the graphical illustration of velocity field, temperature profile, entropy
generation Ns, bejan number12 eB , pressure gradient and streamlines for different physical

constraints . The graphs for velocity field ),( zrw are shown in Figs. 3.2(a)-3.2(c).
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Fig. 3.2(a). Velocity profile w(r,z) at .7.0,5.0,3.0,1.0

12 Bejan number is non-dimensional drop in pressure through a channel of finite length.
It is the ratio of irreversibility of heat transfer to absolute irreversibility because of both
transfer of heat and viscosity.
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Fig.3.2(b) Velocity profile w(r,z) at M=1,2,3,4.
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Fig.3.2(c) Velocity profile w(r,z) at Q=0.1,0.4,0.7,0.95.



31

Figures 3.2a-3.2c show the parabolic nature of the velocity profile. Figure 2a shows that , by

increasing cilia length parameter )( , the velocity gains magnitude. The special case of 0

implies the absence of metachronal wave by vanishing cilia. In such case, due to flexibility of

walls, the flow is completely peristaltic and is therefore not considered here. Figure 2b shows

that when the Hartmann number13 M rises then velocity diminishes and vice versa. Figure 2c

shows effect of flow rate Q on velocity of fluid and by increasing the flow rate, velocity of fluid

also increases. Therefore, Propulsion is directly proportional to flow rates.
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Fig.3.3(a) Temperature Profile ),( zr at .4,3,2,1rB

13Hartmann number is non-dimensional number and it is ratio of the electromagnetic
forces and the viscous forces.
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Fig.3.3(b) Temperature Profile ),( zr at M=1,2,3,4.

Figures 3.3a-3.3b show the behaviour of temperature in the tube. Temperature gains its highest

estimation at centre and lowest estimation at boundaries of tube. Temperature rises as the

Brinkman number14 rB is increased but decreases as the Hartmann number M is increased.

which analyze that as Hartmann number is ratio of the electromagnetic forces and the viscous

force so when electromagnetic force are greater than viscous forces then temperature reduces.

14 Brickmann number is dimensionless number defined as ratio of heat generated due to
viscous dissipation and heat transferred because of conduction of molecules.
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Fig.3.4(a) Pressure gradient vs. Axial coordinate at .7.0,6.0,4.0,2.0
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Fig.3.4(b) Pressure gradient vs. axial coordinate at .5.3,3,2,1M
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Figures 3.4a-3.4b show the pressure gradient distribution with axial coordinate. Fig. 4(a) depicts

that the pressure gradient increases by small change in cilia length  because when more cilia

occurs then fluid will take more pressure and move that increases the pressure

gradient .Pressure gradient also increases by increasing Hartmann number M ,see Fig.3.4(b).

This rise in pressure gradient is because of the rise in electromagnetic forces.
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Fig.3.5(a) Entropy generation number ),( zrN s at .8.0,6.0,4.0,3.0rB
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Fig.3.5(b) Entropy generation number ),( zrN s at Q=0.1,0.2,0.3,0.4.

In general, Entropy has a non-uniform behaviour. These figures 3.5(a), 3.5(b) show that entropy

generation increases as the rate of flow Q and Brickmann number rB increases and vice versa.

By increasing the rate of flow Q and Brickmann number rB , entropy generation grows at the

walls. As entropy occurs because of disorder or randomness in system and since flow is uniform

at the centre of tube so stationary behaviour occurs at the centre of the tube.
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Fig.3.6(a) Pressure rise vs. flow rate at .4.0,3.0,2.0,1.0
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Fig.3.6(b) Pressure rise vs. flow rate at .4,3,2,1M
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Figures 3.6a-3.6b show that pressure and the flow rate have linear relation. We have three

different pumping zones:

(i) Push zone, for which ),0( P

(ii) Free push zone, for which ),0( P

(iii) Augmented push zone ,for which ),0( P

From figure 3.6a, In the pumping zone, increase in pressure is rising function of cilia length while

in augmented pumping area, it is decreasing function. Pumping occurs from ,3000 Q while

the Augmented pumping occurs in the region .600301 Q
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Fig. 3.7(a) Bejan number Be at rB 1,2,3,4.
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Fig. 3.7(b) Bejan number Be at M=1,2,3,4.

Figures 3.7(a), 3.7(b) depicts the behaviour of bejan number for various parameters. It is clear

from 3.7(a) that bejan number varies directly with rB . Further, 3.7(b) shows that bejan number

varies inversely with Hartmann number M. Bejan number increases at walls and it has

stationary behaviour at the centre of tube. Since bejan number depends on resistive forces so it

is maximum near the walls as the resistive forces are higher near the walls whereas bejan

number is minimum at the centre because resistance is minimum at the centre of the tube.
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Fig. 3.8(a) Streamlines for velocity profile at

.2,1.0,4.0,5.1,122.0  QM 

Fig. 3.8(b) Streamlines for velocity profile at

.2,1.0,4.0,5.1,124.0  QM 
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Fig. 3.8(c) Streamlines for the velocity profile at

.2,1.0,4.0,5.1,125.0  QM 

Fig. 3.8(d) Streamlines for the velocity profile at

.2,1.0,4.0,5.1,127.0  QM 
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Conclusions:

This research includes the study of transfer of heat and entropy generation of MHD viscous fluid

in a ciliated tube. The biological propulsion mechanisms, i.e. the role of movement of cilia tips in

human respiration and also in urodynamics is the motivation behind this work. This study will

further encourage the much wished scientific research. The significant deductions obtained

from this study are

(i) If we increase Hartmann number then velocity decreases but it gains magnitude if flow rate is

increased.

(ii) Axial velocity increases with greater flow rate whereas it decreases with increasing axial

coordinate.

(iii) Temperature gains magnitude with an increase in Brickmann number rB whereas it

decreases by increasing Hartmann number M.

(iv) In the pumping zone, rise in pressure varies directly with cilia length parameter while in

augmented pumping zone, pressure rise varies inversely with cilia length parameter.

(v) Entropy generation varies directly with flow rate Q and Brickmann number rB . It increases

near walls and it is stationary at centre because of uniform fluid flow at centre of tube.

(vi) The trapped bolus decreases in size by increasing cilia length parameter. Since the velocity of

the fluid increases by increasing cilia length parameter and also pressure gradient increases.
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