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Abstract

The physical problems like the planetary motion, simple pendulum and many others are

governed by Hamiltonian equations. We provide approximate solution of Hamiltonian

equations by using structure preserving numerical methods.

The numerical methods which preserve the qualitative features of Hamiltonian system like

energy conservation and symplecticity are used for the long term integration of Hamil-

tonian system. In this thesis we construct symplectic numerical methods like symplectic

Runge-Kutta and symplectic partitioned Runge-Kutta methods. Particularly we deal with

the symplectic implicit Runge-Kutta and symplectic implicit partitioned Runge-Kutta

methods, like Gauss, Radau-I, Radau-II and Lobatto-III for Hamiltonian systems. We

have implemented all these methods and draw a comparison between the results.
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Chapter 1

Introduction

Differential Equations (DEs) play an important role in different fields of sciences. For

example, in Engineering, DEs describe the flow of electrical currents through the series

circuits, in Chemistry, DEs describe the rates of chemical reactions and in Physics, DEs

model Newton’s law. Usually these DEs are ordinary differential equations (ODEs), be-

cause they are most suitable mathematical form which can be used to understand above

mention phenomena. In this thesis, we are concerned with the solutions for the system of

ODEs.

Generally, the system of ODEs with initial conditions are known as the initial value prob-

lem (IVP) and is given as

y′(t) = f(t, y(t)), y(t0) = y0, (1.0.1)

where y′(t) = dy
dt

denotes the derivative of function with respect to time t, y is the flow

of ODE which represents the solution of (1.0.1). In autonomous IVPs, t is taken as the

argument of the vector y that is

y′(t) = f(y(t)), y(t0) = y0.

The system of first order ODEs with initial conditions has the form,

y′1 = f1(t, y1, y2, y3, ...yn) y1(t0) = y1,

y′2 = f2(t, y1, y2, y3, ...yn) y2(t0) = y2,

... =
...

y′n = fn(t, y1, y2, y3, ...yn) yn(t0) = yn.

Example 1.0.1. Let T (t) denotes the temperature of body at any time t, and constant

temperature of the surrounding medium is Tm. If the rate in which a body cools is

represented by dT
dt
, then by Newton’s law of cooling is

dT

dt
∝ T − Tm,
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or

dT

dt
= k(T − Tm)

where k is a proportionality constant. The body is in a state of cooling, when k < 0 and

we have T > Tm [9].

If f(y) satisfies a Lipschitz condition [8], then the solution of (1.0.1) must exist and is

unique.

Definition 1.0.2. A function f(t, y) satisfies a Lipschitz condition in the variable y on a

set E ⊂ R
2 if a constant L > 0 exist with

|f(t, y1)− f(t, y2)| ≤ L|y1 − y2|,

whenever (t, y1) and (t, y2) are in E. The constant L is called a Lipschitz constant for f .

Example 1.0.3. Let y′ = f(t, y) = t|y| and
consider a set

E = {(t, y)| 1 ≤ t ≤ 2 and − 3 ≤ y ≤ 4}.

Now

|f(t, y1)− f(t, y2)| = |t|y1| − t|y2|| = |t|||y1| − |y2|| ≤ 2|y1 − y2|.

Thus f satisfies a Lipschitz condition on E in the variable y with Lipschitz constant L = 2.

It means that the solution of this DE must exist and unique.

1.1 Hamiltonian systems

Classical mechanics is a branch of physics in which we study the motion of bodies. Hamilto-

nian mechanics was first formulated by William Rowan Hamilton. Hamiltonian mechanics

is an improved form of classical mechanics. Hamiltonian theory works in three different

disciplines (equations of motion, partial differential equations and variational principles)

but here we shall use his theory about equations of motion. In Hamiltonian mechanics, the

equations of motion depend on the generalized co-ordinates qi and generalized momenta

pi. These equations are known as Hamiltonian system [7, 10], with Hamiltonian H such

that

p′i = −∂H

∂qi

q′i =
∂H

∂pi
,

(1.1.1)

where ′ denotes the derivative of function with respect to time t

pi = (p1, p2, p3.....pn),
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qi = (q1, q2, q3.....qn),

having 2n degree of freedom. In other words, Hamiltonian systems are mathematical

function that can be used to develop the equations of motion of a dynamical system.

Normally H represents the total energy of the underlying mechanical system. Usually

Hamiltonian can be written as a linear combination of kinetic energy and potential energy,

H(p, q) = T(p) + V(q),

where T is kinetic energy and V is potential energy. Hamiltonian of this form is said to

be separable.

Example 1.1.1. Harmonic oscillator. The equations of motion of the Harmonic oscil-

lator define a Hamiltonian system with generalized momenta p and generalized coordinates

q and are given as

q′ = p, p′ = −q.

The total energy H is given as

H =
p2

2
+

q2

2
.

Some remarkable properties of Hamiltonian systems [10] are given below.

1.2 Energy conservation

Energy is one of the physical quantities that is conserved in our universe. If the Hamilto-

nian function H is autonomous then the energy is conserved such that

d

dt
H(p, q) =

∂H

∂p
p′ +

∂H

∂q
q′,

= −∂H

∂p

∂H

∂q
+

∂H

∂q

∂H

∂p
,

= 0.

Thus H conserves energy

H(p(t), q(t)) = H(p(0), q(0)) = constant.

1.3 Symplecticity

Symplecticity is a qualitative feature of Hamiltonian systems. There are many ways to

explain the notion of symplecticity. One of them is discussed here.

• symplecticity in terms of jacobian.

3



Consider a linear transformation Ψ : (p, q) 7→ (p⋆, q⋆). Ψ is symplectic if,

Ψ′tJΨ′ = J.

Here

J =

(

0 I

-I 0

)

,

is a 2n× 2n matrix, I is n× n identity matrix.

To prove this, suppose that the jacobian of transformation has a unit determinant.

Ψ′ =

(

∂p
∂p⋆

∂p
∂q⋆

∂q
∂p⋆

∂q
∂q⋆

)

.

Now
∂p

∂p⋆
∂q

∂q⋆
− ∂p

∂q⋆
∂q

∂p⋆
= I.

Thus

Ψ′tJΨ′ =

(

∂p∂q
∂p⋆∂p⋆

− ∂p∂q
∂p⋆∂p⋆

∂p
∂p⋆

∂q
∂q⋆

− ∂p
∂q⋆

∂q
∂p⋆

− ∂p
∂p⋆

∂q
∂q⋆

+ ∂p
∂q⋆

∂q
∂p⋆

∂p∂q
∂q⋆∂q⋆

− ∂p∂q
∂q⋆∂q⋆

)

,

Ψ′tJΨ′ =

(

0 I

−I 0

)

= J.

Hence Ψ is symplectic.

1.4 Symplectic integrators

Energy conservation and symplecticity are the properties of Hamiltonian systems. We

want those numerical methods that preserve symplecticity. However, all Runge-Kutta

methods do not preserve this property when we solve Hamiltonian system numerically.

Therefore we need symplectic Runge-Kutta methods.

Solving the Hamiltonian system, we can verify that Runge-Kutta methods are symplectic

if the approximate solution will satisfy the following relation.

< pn+1, qn+1 >=< pn, qn >,

where pn+1, qn+1 and pn, qn are the approximate solutions of Hamiltonian systems at

tn+1 and tn respectively. In this thesis, we have considered Runge-Kutta methods and

partitioned Runge-Kutta methods to be symplectic.

1.5 Linear and quadratic invariants

Hamiltonian systems are those DEs whose solution possess invariants. There are two types

of invariants, we have studied, in this thesis: one is called linear invariant and other is
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called quadratic invariant [4, 5].

Linear invariant: Suppose that an initial value problem is

z′ = f(z(t)), z(t0) = z0. (1.5.1)

A non constant function L(z) is known as linear invariant (first integral) of (1.5.1) if

L′(z)f(z) = 0, ∀z.

This means the solution z(t) of (1.5.1) satisfies

L(z(t)) = L(z0) = constant.

For example, in a conservative system the Hamiltonian function H is a Linear invariant

of (1.1.1) by applying the definition of linear invariant on H then

f(p, q) =

[

−∂H
∂q

∂H
∂p

]

,

H ′ =
[

∂H
∂p

∂H
∂q

]

,

H ′f(p, q) =
[

∂H
∂p

∂H
∂q

]

[

−∂H
∂q

∂H
∂p

]

,

= 0.

Quadratic invariants: Consider a quadratic function

Q(z) = ztCz,

where C is a square symmetric matrix. It is an invariant of (1.5.1)

if

ztCf(z) =< zt, f(z) >= 0, ∀z.

This condition holds for conservative systems. We consider an example of quadratic in-

variant

Harmonic oscillator: Consider the quadratic function

Q(z) = ztC(z),

5



Q(z) =
(

p q
)

(

1 0

0 1

)(

p

q

)

, (1.5.2)

where

z =

(

p

q

)

.

(1.5.2) is an invariant of the equation of motion of of Harmonic oscillator (4.3) because

ztCf(z) =
(

p q
)

(

1 0

0 1

)(

−q

p

)

= 0.
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Chapter 2

Runge-Kutta methods and

partitioned Runge-Kutta methods

2.1 Runge-Kutta methods

Two German scientists Carl Runge (1856− 1927) and Martin Kutta (1867− 1944) devel-

oped the Runge-Kutta methods [2, 3] in 1901 for the numerical solution of ODEs. Carl

Runge developed numerical methods for solving the ODEs that appeared in his study of

atomic spectra. These numerical methods are still used today. He used so much mathe-

matics in his research that physicists thought he was a mathematician and he did so much

physics that mathematicians thought he was a physicist.

Runge-Kutta methods belong to the family of one step methods to calculate numerical

solutions of initial value problems

y′ = f(y(t)), y(t0) = y0. (2.1.1)

Rung-Kutta methods give an approximate solution of (2.1.1) at time tn = nh where

n = 0, 1, 2 . . . and h is the stepsize. The general form of Runge-Kutta methods in case of

autonomous is,

Yi = yn−1 +

s
∑

j=1

aijhf(Yj), i = 1, 2 . . . s,

yn = yn−1 +
s
∑

i=1

bihf(Yi),

(2.1.2)
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and in case of non-autonomous,

Yi = yn−1 +

s
∑

j=1

aijhf(tn + cjh, Yj), i = 1, 2 . . . s,

yn = yn−1 +

s
∑

i=1

bihf(tn + cih, Yi),

where Yi are s stage calculated during the integration from time tn−1 to tn, yn is an

approximate solution. A Runge-Kutta method can also be represented by Butcher tableau

as [2],

c1 a11 a12 · · · a1s

c2 a21 a22 . . . a2s
...

...
...

. . .
...

cs as1 as2 · · · ass

b1 b2 · · · bs

where bi are called the quadrature weights of the method. The

ci =
s
∑

j=1

aij , for i = 1, 2....s, (2.1.3)

are the quadrature nodes of the method at which the stages Yi are calculated. Runge-Kutta

methods are explicit if aij = 0 for i ≤ j which means that the stages can be calculated

sequentially. This requires less computation time for solving ODEs. Runge-Kutta methods

are implicit if aij 6= 0 for some i ≤ j. The stages then become implicit and we need either

fixed point iteration or Newton Raphson method to evaluate them.

Example 2.1.1. Fourth-stage explicit Runge-Kutta method of order 4:

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0

1 0 0 1 0

1
6

2
6

2
6

1
6

,

Y1 = y0,

Y2 = y0 +
h

2
f(Y1),

Y3 = y0 +
h

2
f(Y2),

Y4 = y0 +
h

1
f(Y3),

y1 = y0 +
h

6
f(Y1) +

2h

6
f(Y2) +

2h

6
f(Y3) +

h

6
f(Y4).

8



Example 2.1.2. Two-stages implicit Runge-Kutta method of order 4:

1
2 −

√
3
6

1
4

1
4 −

√
3
6

1
2 +

√
3
6

1
4 +

√
3
6

1
4

1
2

1
2

Y1 = y0 +
h

4
f(Y1) + h(

1

4
−

√
3

6
)f(Y2),

Y2 = y0 + h(
1

4
+

√
3

6
)f(Y1) +

h

4
f(Y2),

y1 = y0 +
h

2
f(Y1) +

h

2
f(Y2).

2.2 Order conditions for Runge-Kutta methods

The order conditions [1] for a Runge-Kutta method (2.1.2) represent a relation between

the coefficients of a Runge-Kutta method such that if these conditions are satisfied, then

the method have a particular order. To find the order conditions of Runge-Kutta method

we have to compare the numerical solution with the Taylor expansion of exact solution.

We accessed the order conditions of Runge-Kutta method by using an explicit method as

well as an implicit method. To find the order of the Runge-Kutta method we first explain

the concept of elementary differentials which is as follows.

y′ = f,

y′′ = f ′f,

y′′′ = f ′′(f, f) + f ′f ′f,

yiv = f ′′′(f, f, f) + 2f ′′(f, f ′, f) + 2f ′f ′′(f, f) + f ′f ′f ′f,

yv = f iv(f, f, f, f) + 4f ′′′(f ′, f, f, f) + 2f ′′′(f, f, f ′, f) + 4f ′′(f ′, f, f ′, f) + 2f ′′(f, f ′′, f, f)

+ 2f ′f ′′′(f, f, f) + 2f ′′f ′′(f, f, f) + 4f ′f ′′(f ′, f, f) + 3f ′′f ′f ′(f, f),

(2.2.1)

where f , f ′f etc are called elementary differentials. The general form of explicit Runge-

Kutta method is

Yi = yn−1 +

i−1
∑

j=1

aijhf(Yj), i = 1, 2, . . . s,

yn = yn−1 +

s
∑

i=1

bihf(Yi),

(2.2.2)
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and

ci =

s
∑

j=1

aij = 0, i = 1, 2, ...s, (2.2.3)

is the consistency condition.

For s = 3,

Y1 = yn−1. (2.2.4)

Y2 = yn−1 + ha21f(Y1), (2.2.5)

by using equation (2.2.4) in equation (2.2.5)

Y2 = yn−1 + hc2f(yn−1), (2.2.6)

Y3 = yn−1 + ha31f(yn−1) + ha32f(Y2), (2.2.7)

by using equation (2.2.6) in equation (2.2.7),

Y3 = yn−1 + ha31f(yn−1) + ha32f(yn−1 + hc2f(yn−1)). (2.2.8)

Using Taylor series,

f(yn−1 + hc2f(yn−1)) = f(yn−1) + hc2f
′f(yn−1) +

h2

2
c22f

′′ff(yn−1) +O(h3), (2.2.9)

by using equation (2.2.9) in equation (2.2.8)

Y3 = yn−1 + h(a31 + a32)f(yn−1) + h2a32c2f
′f(yn−1) +O(h3)

f(Y3) = f(yn−1 + hc3f(yn−1) + h2a32c2f
′f(yn−1) +O(h3)),

and

f(Y3) = f(yn−1) + hc3f
′f(yn−1)) + h2(

1

2
c23f

′′f2(yn−1) + a32c2f
′f ′f(yn−1)) +O(h3).

(2.2.10)

yn = yn−1 + hb1f(Y1) + hb2f(Y2) + hb3f(Y3) +O(h4), (2.2.11)

by using equations (2.2.4), (2.2.9) and (2.2.10) in equation (2.2.11)

yn = yn−1 + hb1f(yn−1) + hb2(f(yn−1) + hc2f
′f(yn−1) +

h2

2
c22f

′′f(yn−1))

+ hb3(f(yn−1) + hc3f
′f(yn−1) + h2(

1

2
c23f

′′f2(yn−1) + a32c2f
′f ′f(yn−1)) +O(h4),

yn = yn−1 + h(b1 + b2 + b3)f(yn−1) + h2(b2c2 + b3c3)f
′f(yn−1)

+ h3(
1

2
(b2c

2
2 + b3c

2
3)f

′′ff(yn−1) + b3a32c2f
′f ′f(yn−1)) +O(h4)).

(2.2.12)

Now the Taylor series of exact solution is

y(tn) = y(tn−1) + hy′(tn−1) +
h2

2!
y′′(tn−1) +

h3

3!
y′′′(tn−1) +O(h4). (2.2.13)

10



By using equation (2.2.1) in equation (2.2.13), comparing it with equation (2.2.12) we

have
3
∑

i=1

bi = 1, (2.2.14)

which is the condition of Runge-Kutta methods of order 1.

3
∑

i=2

bici =
1

2
, (2.2.15)

which is the condition of Runge-Kutta methods of order 2.

3
∑

i=2

bic
2
i =

1

3
,

b3a32c2 =
1

6
,

(2.2.16)

which are the conditions of Runge-Kutta methods of order 3.

2.3 Symplectic Runge-Kutta methods

As discussed in chapter 1, we need the Runge-Kutta methods which when applied to

Hamiltonian system or conservative system can preserve their inherent qualitative fea-

tures, such Runge-Kutta methods are called symplectic Runge-Kutta methods [4,11]. The

Runge-Kutta methods (2.1.2) are symplectic if the numerical solution yn of (2.1.1) satisfies

< yn, yn >=< yn−1, yn−1 > . (2.3.1)

This is only possible if the coefficient of Runge-Kutta methods (2.1.2) satisfies

biaij + bjaji − bibj = 0 ∀ i, j = 1, 2, · · · s. (2.3.2)

Equation (2.3.2) is called the symplectic condition for Runge-Kutta methods.

Proof:

Since for a conservative system, as given in quadratic invariant in section (1.5)

ztCf(z) =< zt, f(z) >= 0,∀ z, (2.3.3)

where C is identity matrix. For the Runge-Kutta method (2.1.2), we apply (2.3.3) on the

stages of the Runge-Kutta method. Therefore

< Yi, f(Yi) >= 0,

using (2.1.2) in above equation we have

< yn−1 +
s
∑

j=1

aijhf(Yj), f(Yi) >= 0,

11



< yn−1, f(Yi) >= −h
s
∑

j=1

aij < f(Yj), f(Yi) > . (2.3.4)

To prove equation (2.3.1), take the left hand side of it and using (2.1.2) we get

< yn, yn > =< yn−1 + h

s
∑

i=1

bif(Yi), yn−1 + h

s
∑

i=1

bif(Yi) >, (2.3.5)

=< yn−1, yn−1 > +h

s
∑

i=1

bi < yn−1, f(Yi) > +h

s
∑

i=1

bi < f(Yi), yn−1 >

+ h2
s
∑

ij=1

bibj < f(Yi), f(Yj) > .

Using equation (2.3.4) in above equation, we have

< yn, yn > =< yn−1, yn−1 > −h2
s
∑

ij=1

biaij < f(Yj), f(Yi) > −h2
s
∑

ij=1

bjaji < f(Yj), f(Yi) >

+ h2
s
∑

ij=1

bibj < f(Yj), f(Yi) >,

< yn, yn > =< yn−1, yn−1 > +h2
s
∑

ij=1

(−biaij − bjaji + bibj) < f(Yj), f(Yi) >,

Now

< yn, yn >=< yn−1, yn−1 >,

If and only if

h2
s
∑

ij=1

(−biaij − bjaji + bibj) < f(Yj), f(Yi) >= 0.

Since

< f(Yj), f(Yi) > 6= 0,

therefore

h2
s
∑

ij=1

(−biaij − bjaji + bibj) = 0,

hence

biaij + bjaji − bibj = 0, ∀ i, j = 1, 2...s.

2.4 Trees and its use in Runge-Kutta methods

Trees [2] play an important role in the development of Runge-Kutta methods. We have

the following definitions.

Trees and rooted trees.

Tree is simply a connected graph with no cycles. It is the combination of vertices and

edges. Tree becomes a rooted tree if we fixed one vertex of it as root. We indicate the

root by placing it at the bottom of a tree diagram. [1, 7]
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As an example we can take a tree t̂

x y

t̂

and its rooted trees are

t̂x t̂y

Let T denotes the set of all rooted trees including the empty tree which has zero vertices

and edges. A single tree with only one vertex is represented by τ and is denoted by .

A tree with two vertices is represented by [τ ] and is denoted by . The following table

represents some rooted trees and their notations.

Rooted trees

Notations [τ2] [[τ ]] [τ3] [τ [τ ]] [[τ2]] [[[τ ]]]

Order: The number of vertices of a tree is called the order of the tree and is denoted by

r(t̂).

For example

t̂ = r(t̂) = 4

Density: It is a product of the order of the trees and the order of subtrees when the tree

is chopped off. It is denoted by γ(t̂).

For example

t̂ = γ(t̂) = 12

Elementary Differentials: To find out the order of a Runge-Kutta method, the numer-

ical solution is compared with the Taylor series expansion of the exact solution. For the

comparison, f(y(t)) needs to be differentiated several times as follows

y′ = f,

y′′ = f ′f,

y′′′ = f ′′(f, f) + f ′f ′f,

yiv = f ′′′(f, f, f) + 2f ′′(f, f ′, f) + 2f ′f ′′(f, f) + f ′f ′f ′f,

yv = f iv(f, f, f, f) + 4f ′′′(f ′, f, f, f) + 2f ′′′(f, f, f ′, f) + 4f ′′(f ′, f, f ′, f) + 2f ′′(f, f ′′, f, f)

+ 2f ′f ′′′(f, f, f) + 2f ′′f ′′(f, f, f) + 4f ′f ′′(f ′, f, f) + 3f ′′f ′f ′(f, f).

13



A set of elementary differentials is denoted by F (t).

Rooted trees Elementary differentials

f

f ′f

f ′′(f, f), f ′f ′f

f ′′′(f, f, f), f ′′(f, f ′, f)

f ′f ′′(f, f), f ′f ′f ′f

Table 2.1: Elementary differentials and their rooted trees.

Elementary Weight: For each tree t̂, a corresponding polynomial can be obtained in

the coefficients of the Runge-Kutta methods known as elementary weight. It is repre-

sented by Φ(t̂). In other words, it is a linear combination of bi, aij and cj . Thus single

vertex is represented by quadrature weights that is, b1, b2, . . . bs. The end vertex of each

edge is represented by quadrature nodes of the method at which the stages Yi calcu-

lated that is, c1, c2, . . . cs. The edge which has edges on both sides is represented by

aij, ∀ i, j = 1, 2, . . . s.

Rooted trees Elementary weight

s
∑

i=1
bi

s
∑

i=1
bici

s
∑

i=1
bic

2
i ,

s
∑

i,j=1
biaij

s
∑

i=1
bic

3
i ,

s
∑

i,j=1
biciaijcj

s
∑

i,j=1
biaijc

2
j ,

s
∑

i,j,k=1

biaijajkck

Table 2.2: Elementary weights and their rooted trees.
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Taylor series of exact solution in terms of trees [4] is given as

y(tn+1) = y(tn) +
∑

hr(t̂)1/(σ(t̂)γ(t̂))F (t)(y(tn)) +O(hp+1). (2.4.1)

The numerical solution of Runge-Kutta method written in terms of trees [7] is given as

yn+1 = yn +
∑ hr(t̂)Φ(t̂)

σ(t̂)
F (t)y(tn) +O(hp+1). (2.4.2)

Comparing equations (2.4.1) and (2.4.2), we have

Φ(t̂) =
1

γ(t̂)
, (2.4.3)

where t̂, r(t̂) and Φ(t̂) are rooted tree, order and elementary weight of that rooted tree

respectively. So the equation (2.4.3) is the order condition for the Runge-Kutta method.

Example 2.4.1. Consider a tree t̂ = .

The elementary weight is

Φ(t̂) =
s
∑

i,j=1

biaijc
2
j .

And the density is

γ(t̂) = 12.

The order condition for this tree is

Φ(t̂) =
1

γ(t̂)

Φ(t̂) =

s
∑

i,j=1

biaijc
2
j =

1

12

2.5 Superfluous trees and non-superfluous trees

A tree is called superfluous [7], if it generates identical rooted trees when any two adjacent

nodes of the tree are taken as a root. Consider a tree t̂ which have vertices x and y. Let

x is taken as root and ρ1t̂x is rooted tree. If we take y as root and ρ2t̂y is rooted tree.

x y

t̂

ρ1t̂x ρ2t̂y

15



As we can see that ρ1t̂x and ρ2t̂y represents two identical rooted trees so underlying tree

is superfluous tree. The important thing is we can choose any two adjacent vertices as

roots. A superfluous tree has even number of vertices.

We consider another tree t̂1 which have vertices x and y. Let x is taken as root and ρ3t̂1x

is a rooted tree. If we take y as root and ρ3t̂1y is rooted tree.

x y

t̂1

ρ3t̂1x ρ4t̂1y

We can see that ρ3t̂1x and ρ4t̂1y are two different rooted trees. So we did not get two

identical rooted trees for any of the two adjacent vertices being taken as root. Thus tree

t̂1 is a non-superfluous tree. A non-superfluous tree has odd number of vertices.

2.6 Order conditions for symplectic Runge-Kutta methods

in terms of rooted trees

The symplectic Runge-Kutta methods have a particular order if the order conditions are

satisfied which is a relation between the coefficients of these methods. The order conditions

for symplectic Runge-Kutta methods [2, 12] are less then the order conditions for general

Runge-Kutta methods. This is due to the fact the superfluous trees do not contribute in

the order conditions while non-superfluous trees contribute half number of order condi-

tions. The following table shows the possible rooted trees of order 1 to 4 for Runge-Kutta

methods.

Order rooted trees order conditions

1
s
∑

i=1
bi = 1

2
s
∑

i=1
bici =

1
2

3
s
∑

i=1
bic

2
i =

1
3 ,

s
∑

i,j=1
biaijcj =

1
6

4
s
∑

i=1
bic

3
i =

1
4 ,

s
∑

i,j=1
biciaijcj =

1
8

4
s
∑

i,j=1
biaijc

2
j =

1
12 ,

s
∑

i,j,k=1

biaijajkck = 1
24

Table 2.3: Order conditions and their rooted trees.
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Now lets discuss the symplectic condition (2.3.2) of Runge-Kutta methods which is not

effected by the following procedure:

1. First multiply symplectic condition by ci then take summation.

2. First apply summation over symplectic condition then multiply it by ci

In both cases we have same expression.

Proof:

Consider the symplectic condition (2.3.2) of Runge-Kutta methods.

biaij + bjaji − bibj = 0. ∀ i, j = 1, 2, . . . s. (2.6.1)

Multiply equation (2.6.1) with cj

biaijcj + bjcjaji − bibjcj = 0. ∀ i, j = 1, 2, . . . s. (2.6.2)

Apply summation over equation (2.6.2) when s = 2, and after simplification, equation

(2.6.2) becomes,

2b1a11c1 + b1a12c2 + b2a21c1 + 2b2a22c2 + b1c1a12 + b2c2a21 − b1b1c1 − b1b2c2 − b2b1c1 − b2b2c2 = 0.

(2.6.3)

Now first apply summation over equation (2.6.2) when s = 2,

G =











b1a11 + b1a11 − b1b1 b1a12 + b2a21 − b1b2

b2a21 + b1a12 − b2b1 b2a22 + b2a22 − b2b2











,

multiply by cj ,

G =











b1a11 + b1a11 − b1b1 b1a12 − b2a21 + b1b2

b2a21 + b1a12 − b2b1 b2a22 − b2a22 + b2b2





















c1

c2











,

or

G =











2b1a11c1 − b21c1 b1a12c2 + b2a21c2 − b1b2c2

b2a21c1 + b1a12c1 − b2b1c1 2b2a22 − b22c2











.

Taking sum of rows and columns, we get

2b1a11c1 − b21c1 + b1a12c2 + b2a21c2 − b1b2c2 + b2a21c1 + b1a12c1 − b2b1c1 + 2b2a22c2 − b22c2 = 0.

(2.6.4)
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We can see that equations (2.6.3) and (2.6.4) are same which shows that symplectic con-

dition of Runge-Kutta methods is not being effected by the procedure.

Lets discuss that how number of order conditions reduces in symplectic Runge-Kutta

methods.

For order 1.

We have only one possible tree , which gives us only one order condition that is

s
∑

i=1

bi = 1.

There is only one order condition for one order symplectic Runge-Kutta methods.

For order 2.

We have one superfluous tree

which does not contribute in order conditions. For example consider the symplectic condi-

tion of Runge-Kutta methods from equation (2.3.2) then apply the summation over i and

j from 1 to s, then we have

∑

i,j

biaij +
∑

i,j

bjaji −
∑

i,j

bibj = 0, (2.6.5)

⇒ 2
∑

i,j

biaij − 1 = 0,

⇒
∑

i,j

biaij =
1

2
.

The order condition for 2nd order symplectic Runge-Kutta methods will automatically

satisfy. The total number of order conditions for order two are one.

For order 3.

For order three, we have only one tree that is non-superfluous,
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that generates two rooted trees. This non-superfluous tree gives only one order condition.

For example, consider the symplectic condition of Runge-Kutta methods from equation

(2.3.2) multiply by cj then apply the summation over i and j from 1 to s, then we have

∑

i,j

biaijcj +
∑

i,j

bjcjaji −
∑

i,j

bibjcj = 0,

∑

i,j

biaijcj +
∑

i,j

bjcjaji −
1

2
= 0,

∑

i,j

biaijcj +
∑

i,j

bjcjaji − (
1

3
+

1

6
) = 0,

(
∑

i,j

biaijcj −
1

6
) + (

∑

i,j

bjc
2
j −

1

3
) = 0.

From this we shall also take only one condition because second one will be automatically

satisfied. The total number of order conditions for order three are two.

For order 4.

For order four, we have two trees: one is superfluous tree and second one is non-superfluous

tree.

Superfluous tree does not give any order condition. A non-superfluous tree generates two

rooted trees. This tree will give only one order condition. Now we want to see that how

this tree is contributing in order conditions. Multiply symplectic condition of Runge-Kutta

methods from equation (2.3.2) by c2j then take the summation over i and j from 1 to s,

then we have

∑

i,j

biaijc
2
j +

∑

i,j

bjc
2
jaji −

∑

i,j

bibjc
2
j = 0,

∑

i,j

biaijc
2
j +

∑

i,j

bjc
2
jaji −

1

3
= 0,

∑

i,j

biaijc
2
j +

∑

i,j

bjc
2
jaji − (

1

4
+

1

12
) = 0,
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(
∑

i,j

biaijc
2
j −

1

12
) + (

∑

i,j

bjc
2
jaji −

1

4
) = 0.

From this we shall pick only one condition and second one will be automatically satisfied.

The total number of order conditions for order four are three.

Number of order conditions of Runge-Kutta methods and symplectic Runge-Kutta meth-

ods are given below in the following table.

Order Number of order conditions Number of order conditions

for Runge-Kutta methods for symplectic Runge-Kutta methods

1 1 1

2 2 1

3 4 2

4 8 3

5 17 6

Table 2.4: Number of order conditions.
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2.7 Partitioned Runge-Kutta methods

Sometime we deal with partitioned system of ODEs as follows

u′ = a(u, v),

v′ = b(u, v).
(2.7.1)

To numerically solve equation (2.7.1) we can apply Partitioned Euler method which is

given below

un+1 = un + ha(un, vn+1),

vn+1 = vn + hb(un, vn+1).
(2.7.2)

where un is treated by implicit Euler method and vn by explicit Euler method. Vogelaere

introduced an important property of this method in 1956, which is symplecticity, that’s

why we call it symplectic Euler method.

Consider a system of ODEs as follows,

p′ = f(q), p(t0) = p0,

q′ = g(p), q(t0) = q0,
(2.7.3)

because we are working on separable Hamiltonian systems. It is sometimes possible to

solve the above mentioned ODEs using one Runge-Kutta method (aij , bi) for one ODE

and second one with different Runge-Kutta method (âij , b̂i).

Suppose that bi, aij and b̂i, âij be the coefficients of two Runge-Kutta methods. A parti-

tioned Runge-Kutta method [1] for the solution of (2.7.3) is given by

Pi = pn−1 + h
s
∑

j=1

aijf(Qj), 1 ≤ i ≤ s,

Qi = qn−1 + h

s
∑

j=1

âijg(Pj), 1 ≤ i ≤ s,

pn = pn−1 + h

s
∑

i=1

bif(Qi),

qn = qn−1 + h
s
∑

i=1

b̂ig(Pi),

(2.7.4)

where Pi and Qi are the stages, pn and qn are the approximated solutions and s is the num-

ber of stages. A partitioned Runge-Kutta method [5,11] is represented by Butcher tableau

c1 a11 a12 · · · a1s

c2 a21 a22 . . . a2s
...

...
...

. . .
...

cs as1 as2 · · · ass

b1 b2 · · · bs

ĉ1 â11 â12 · · · â1s

ĉ2 â21 â22 . . . â2s
...

...
...

. . .
...

ĉs âs1 âs2 · · · âss

b̂1 b̂2 · · · b̂s
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where bi and b̂i are called the quadrature weights of the method. And

ci =
s
∑

j=1

aij , for i = 1, 2...s, ĉi =
s
∑

j=1

âij, for i = 1, 2...s,

are the quadrature nodes of the method at which the stages Pi and Qi are calculated.

Example 2.7.1. The symplectic Euler method (2.7.2) is an example of partitioned Runge-

Kutta method where the implicit Euler method b1 = 1, a11 = 1 is combined with the

explicit Euler method b1 = 1, a11 = 0.

1 1

1

0 0

1

P1 = p0 + hf(Q1),

Q1 = q0,

p1 = p0 + hf(Q1),

q1 = q0 + hg(P1).

Example 2.7.2. An other example of partitioned Runge-Kutta method is,

0 1
8 −1

8

2
3

5
8

1
24

3
4

1
4

1
3

5
24

1
8

1 3
8

5
8

1
4

3
4

P1 = p0 +
h

8
f(Q1)−

h

8
f(Q2),

P2 = p0 +
5h

8
f(Q1) +

h

24
f(Q2),

Q1 = q0 +
5h

24
g(P1) +

h

8
g(P2),

Q2 = q0 +
3h

8
g(P1) +

5h

8
g(P2),

p1 = p0 +
3h

4
f(Q1) +

h

4
f(Q2),

q1 = q0 +
h

4
g(P1) +

3h

4
g(P2).

2.8 Bicolour trees and its use in partitioned Runge-Kutta

methods

Trees play an important role in the development of partitioned Runge-Kutta methods. We

have the following definitions.
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Bicolour trees and bicolour rooted trees: Bicolour tree [1, 7] is simply a connected

graph with no cycles. It is the combination of vertices and edges, its vertices have two

colors one is black and other is white. It becomes a bicolour rooted tree if we fixed one

vertex of it as root. We indicate the root by placing it at the bottom of a tree diagram.

As an example we can take a bicolour tree

x y
t̃

and its bicolour rooted trees are

x y

The terms order, elementary weight and elementary differential are same as described in

section 2.4.

Use of bicolour rooted trees in partitioned Runge-Kutta methods: Consider a

system of ODEs as follows,

p′ = f(q), p(t0) = p0,

q′ = g(p), q(t0) = q0.
(2.8.1)

The elementary differentials are

p′ = f(q),

p′′ =
∂f

∂q
g,

p′′′ =
∂2f

∂q2
(g, g) +

∂f∂g

∂q∂p
f.

(2.8.2)

or

p′ = f,

p′′ = fqg,

p′′′ = fqq(g, g) + fqgqg.

(2.8.3)

where f , fqg etc. are elementary differentials. Similarly we can find the elementary

differentials for q′ = g(p).
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Bicolour rooted trees Order Elementary differentials Elementary weights

1 f
s
∑

i=1
bi

2 fqg
s
∑

ij=1
biâij

3 fqq(g, g)
s
∑

i=1
biĉ

2
i

3 fqgpf
s
∑

ijk=1

biâijcj

Table 2.5: Some bicolour rooted trees and their various functions.

Note: Here two same colour vertices do not connect with same edge.

2.9 Order conditions for partitioned Runge-Kutta methods

The order conditions [1] for a partitioned Runge-Kutta methods can be found by the same

pattern as followed in Runge-Kutta methods. To find the order conditions of partitioned

Runge-Kutta methods we have to compare the numerical solution with the Taylor series

of exact solution. We calculate the order conditions of partitioned Runge-Kutta method

by using explicit method as well as implicit method. To find the order of partitioned

Runge-Kutta method we first explain the concept of elementary differentials that is

p′ = f(q),

p′′ =
∂f

∂q
g,

p′′′ =
∂2f

∂q2
(g, g) +

∂f∂g

∂q∂p
f

q′ = g(p),

q′′ =
∂g

∂p
f,

q′′′ =
∂2g

∂p2
(f, f) +

∂g∂f

∂p∂q
g.

(2.9.1)
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The general form of explicit partitioned Runge-Kutta method is

Pi = pn−1 + h

i−1
∑

j=1

aijf(Qj), 1 ≤ i ≤ s,

Qi = qn−1 + h

i−1
∑

j=1

âijg(Pj), 1 ≤ i ≤ s,

pn = pn−1 + h
s
∑

i=1

bif(Qi),

qn = qn−1 + h

s
∑

i=1

b̂ig(Pi),

(2.9.2)

The following two relations are called the consistency conditions of methods.

ci =

s
∑

j=1

aij = 0, i = 1, 2, ...s,

ĉi =

s
∑

j=1

âij = 0, i = 1, 2, ...s.

For s = 2,

P1 = pn−1,

Q1 = pn−1.
(2.9.3)

P2 = pn−1 + ha21f(qn−1),

Q2 = pn−1 + hâ21g(pn−1).
(2.9.4)

By using equation (2.9.4) the approximate solution becomes

pn = pn−1 + hb1f(qn−1) + hb2f(qn−1 + hâ21g(pn−1)),

qn = pn−1 + hb̂1g(pn−1) + hb̂1g(pn−1 + ha21f(qn−1)),
(2.9.5)

pn = pn−1 + hb1f(qn−1) + hb2f(qn−1) + h2b2â21
∂f

∂qn−1
g(pn−1)) +O(h3),

qn = pn−1 + hb̂1g(pn−1) + hb̂1g(pn−1) + h2b̂2a21
∂g

∂pn−1
f(qn−1)) +O(h3).

(2.9.6)

Now the Taylor series of the exact solution is

p(tn) = p(tn−1) + hp′(tn−1) +
h2

2!
p′′(tn−1) +O(h3),

q(tn) = q(tn−1) + hq′(tn−1) +
h2

2!
q′′(tn−1) +O(h3).

(2.9.7)
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Now using (2.9.1) in equation (2.9.7) then comparing it with equation (2.9.6), we have the

following order conditions.

For first order partitioned Runge-Kutta methods,

2
∑

i=1

bi = 1,

2
∑

i=1

b̂i = 1.

(2.9.8)

For second order partitioned Runge-Kutta methods,

b̂2a21 =
1

2
,

b2â21 =
1

2
.

(2.9.9)

In general,

For first order partitioned Runge-Kutta methods,

s
∑

i=1

bi = 1,

s
∑

i=1

b̂i = 1.

(2.9.10)

For second order partitioned Runge-Kutta methods,

s
∑

ij=1

b̂iaij =
1

2
,

s
∑

ij=1

biâij =
1

2
.

(2.9.11)

For third order partitioned Runge-Kutta methods,

s
∑

i,j=1

b̂iciaij =
1

3
,

s
∑

i,j=1

biĉiâij =
1

3
,

s
∑

i,j=1

biâijcj =
1

6
,

s
∑

i,j=1

b̂iaij ĉj =
1

6
.

(2.9.12)
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2.10 Symplectic partitioned Runge-Kutta methods

Symplecticity of Runge-Kutta methods were discussed in chapter 1. In the same way

symplecticity of partitioned Runge-Kutta methods [4, 11] also discussed here. Consider

an IVP which is given in equation (2.7.3) and partitioned Runge-Kutta method (2.7.4).

Partitioned Runge-Kutta method is symplectic, if numerical solution vectors pn and qn of

partitioned Runge-Kutta methods (2.7.4) satisfy

< pn+1, qn+1 >=< pn, qn > . (2.10.1)

This is only possible if the coefficients of partitioned Runge-Kutta 2.7.4 methods satisfy

biâij + b̂jaji − bib̂j = 0, i, j = 1, 2, . . . s. (2.10.2)

Equation (2.10.2) is said to be symplectic condition.

Proof:

For a conservative system, as given in quadratic invariant in section (1.5)

ztCf(z) =< zt, f(z) >= 0,∀ z, (2.10.3)

where C is identity matrix, now for partitioned Runge-Kutta methods (2.7.4), we apply

(2.10.3) on the stages of partitioned Runge-Kutta methods. Therefore,

< Pi, g(Pi, Qi) >= 0,

using (2.7.4)

< pn + h

s
∑

j=1

aijf(Pj , Qj), g(Pi, Qi) >= 0,

< pn, g(Pi, Qi) >= −h
s
∑

j=1

aij < f(Pj , Qj), g(Pi, Qi) > . (2.10.4)

Again consider

< Qi, f(Pi, Qi) >= 0,

using (2.7.4)

< qn + h

s
∑

j=1

âijf(Pj, Qj), f(Pi, Qi) >= 0,

< qn, f(Pi, Qi) >= −h

s
∑

j=1

âij < g(Pj , Qj), f(Pi, Qi) > . (2.10.5)
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Take the left hand side of equation (2.10.1) using equation (2.7.4) we have

< pn+1, qn+1 > =< pn + h

s
∑

i=1

bif(Pi, Qi), qn + h

s
∑

i=1

b̂ig(Pi, Qi) >,

< pn+1, qn+1 > =< pn, qn > +h

s
∑

i=1

b̂i < pn, g(Pi, Qi) > +h

s
∑

i=1

bi < f(Pi, Qi), qn, >

+ h2
s
∑

ij=1

bib̂i < f(Pi.Qi), g(Pi, Qi) > .

Now using equations (2.10.4) and (2.10.5) in above equation

< pn+1, qn+1 > =< pn, qn > −h2
s
∑

ij=1

b̂jaji < f(Pi, Qi), g(Pj , Qj) >

− h2
s
∑

ij=1

biâij < f(Pj, Qj), g(Pi, Qi) > +h2
s
∑

ij=1

bib̂j < f(Pj, Qj), g(Pi, Qi) >,

< pn+1, qn+1 > =< pn, qn > +h2
s
∑

ij=1

(−biâij − b̂jaji + bib̂j) < f(Pj , Qj), g(Pi, Qi) > .

Now we have our required equation

< pn+1, qn+1 >=< pn, qn > .

If and only if

h2
s
∑

ij=1

(−biâij − b̂jaji + bib̂j) < f(Pj, Qj), g(Pi, Qi) >= 0.

Since

< f(Pj , Qj), g(Pi, Qi) > 6= 0,

therefore

h2
s
∑

ij=1

(−biâij − b̂jaji + bib̂j) = 0,

hence

biâij + b̂jaji − bib̂j = 0. i, j = 1, 2...s.

2.11 Order conditions for symplectic partitioned Runge-Kutta

methods using rooted trees

To define order conditions for symplectic partitioned Runge-Kutta methods we use the

bicolour trees which have been already discussed. Superfluous bicolour trees and non-

superfluous bicolour trees are playing main role in construction of order conditions for
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symplectic partitioned Runge-Kutta methods. The difference between these trees is that a

non-superfluous bicolour tree gives two order conditions while a superfluous bicolour tree

generates only one order condition.

The vertices of trees for that Runge-Kutta methods by which one can solve p′ = f(q) are

represented by filled circle. The vertices of trees for that Runge-Kutta methods which can

be use to solve q′ = g(p) are represented by empty circle. The following table shows the

possible trees of order 1 to 4.

Order rooted trees order conditions

1
s
∑

i=1
bi = 1

s
∑

i=1
b̂i = 1

2
s
∑

i=1
b̂ici =

1
2

s
∑

i=1
biĉi =

1
2

3
s
∑

i=1
b̂ic

2
i = 1

3

s
∑

i=1
biĉ2i =

1
3

3
s
∑

i,j=1
biâijcj =

1
6

s
∑

i,j=1
b̂iaij ĉj =

1
6

4
s
∑

i=1
b̂ic

3
i = 1

4

s
∑

i=1
biĉ

3
i =

1
4

s
∑

i,j=1
biâijc

2
j =

1
12

s
∑

i,j=1
b̂iaij ĉ2j =

1
12

s
∑

i,j=1
b̂iciaij ĉj =

1
8

s
∑

i,j=1
biĉiâijcj =

1
8

s
∑

i,j,k=1

b̂iaij âjkck = 1
24

s
∑

i,j,k=1

biâijajkĉk = 1
24

Table 2.6: Bicolour rooted trees and their order conditions up to order 4.

Here the location of root of bicolour rooted tree does not effect the order conditions at all.

For order 1

We have two possible superfluous bicolour trees and which give us two order conditions

such that,
s
∑

i=1

bi = 1,

s
∑

i=1

b̂i = 1.

The total number of order conditions for order one are two.
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For order 2

We have one superfluous bicolour tree

which generates only one order condition. For example consider the symplectic condition

(2.10.2) of partitioned Runge-Kutta methods then apply the summation over i and j from

1 to s, then we have
s
∑

ij=1

b̂iaij +

s
∑

ji=1

bj âji −
s
∑

ij=1

bib̂j = 0,

⇒
(

s
∑

ij=1

b̂iaij −
1

2
) + (

s
∑

ji=1

bj âji −
1

2
) = 0.

From this we shall take only one condition because second is automatically be satisfied.

Thus the total number of order conditions for order two are three.

For order 3

For order three, these two non-superfluous bicolour trees

generate four bicolour rooted trees such that two pairs are identical. Thus these non-

superfluous bicolour trees give only two order conditions. For example, consider the sym-

plectic condition (2.10.2) of partitioned Runge-Kutta methods, multiply it by cj , and apply

the summation over i and j from 1 to s, then we have

s
∑

ij=1

biâijcj +

s
∑

ji=1

b̂jcjaji −
s
∑

ij=1

bib̂jcj = 0, (2.11.1)

⇒
s
∑

ij=1

biâijcj +
s
∑

ji=1

b̂jcjaji −
1

2
= 0,

⇒
s
∑

ij=1

biâijcj +

s
∑

ji=1

b̂jcjaji − (
1

3
+

1

6
) = 0.

⇒
(

s
∑

ij=1

biâijcj −
1

6
) + (

s
∑

ji=1

b̂jcjaji −
1

3
) = 0.
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From this we shall also take only one condition because second one will be automatically

satisfied. Now for second order condition again multiply symplectic condition (2.10.2) of

partitioned Runge-Kutta method by ĉi then take the summation over i and j from 1 to s,

then we have
s
∑

ij=1

biĉiâij +
s
∑

ji=1

b̂jajiĉi −
s
∑

ij=1

biĉj b̂j = 0,

⇒
s
∑

ij=1

biĉ
2
j +

s
∑

ji=1

b̂jajiĉi −
1

2
= 0,

⇒
s
∑

ij=1

biĉ
2
j +

s
∑

ji=1

b̂jajiĉi − (
1

6
+

1

2
) = 0,

⇒
(

s
∑

ij=1

biĉ
2
j −

1

3
) + (

s
∑

ji=1

b̂jajiĉi −
1

6
) = 0.

From this we shall also pick only one condition because second one will be automatically

satisfied. Thus total number of order conditions for order three are five.

For order 4

For order four, we have one superfluous bicolour tree and two non-superfluous bicolour

trees.

Superfluous bicolour tree gives one order condition. Two non-superfluous bicolour trees

generate four bicolour rooted trees such that two pairs are identical. These trees give only

two order conditions. Now we want to see that how these trees are contributing in order

conditions. Multiply symplectic condition (2.10.2) of partitioned Runge-Kutta methods

by c2j then take the summation over i and j from 1 to s, then we have

s
∑

ij=1

biâijc
2
j +

s
∑

ji=1

b̂jc
2
jaji −

s
∑

ij=1

b̂jc
2
jbi = 0,

⇒
s
∑

ij=1

biâijc
2
j +

s
∑

ji=1

b̂jc
2
jaji −

1

3
= 0,
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⇒
(

s
∑

ij=1

biâijc
2
j −

1

12
) + (

s
∑

ji=1

b̂jc
2
jaji −

1

4
) = 0.

From this we shall take only one condition because second one is automatically be satisfied.

Again multiply symplectic condition (2.10.2) of partitioned Runge-Kutta methods by ĉ2i

then take the summation over i and j from 1 to s, then we have

s
∑

ij=1

biĉ
2
i âij +

s
∑

ji=1

b̂jajiĉ
2
i −

s
∑

ij=1

biĉ
2
i b̂j = 0,

⇒
s
∑

ij=1

biĉ
2
i âij +

s
∑

ji=1

b̂jajiĉ
2
i −

1

3
= 0,

⇒
s
∑

ij=1

biĉ
2
i âij +

s
∑

ji=1

b̂jajiĉ
2
i − (

1

12
+

1

4
) = 0,

⇒
(

s
∑

ij=1

biĉ
2
i âij −

1

4
) + (

s
∑

ji=1

b̂jajiĉ
2
i −

1

2
) = 0.

Now for third order condition, again multiply symplectic condition (2.10.2) of partitioned

Runge-Kutta method by ajkĉk, we have

s
∑

ij=1

biâijajkĉk +
s
∑

ji=1

b̂jajiajkĉk −
s
∑

ij=1

bib̂jajkĉk = 0,

⇒
s
∑

ij=1

biâijajkĉk +

s
∑

ji=1

b̂jajiajkĉk −
1

6
= 0,

⇒
s
∑

ij=1

biâijajkĉk +
s
∑

ji=1

b̂jajiajkĉk − (
1

24
+

1

8
) = 0,

⇒
(

s
∑

ij=1

biâijajkĉk −
1

24
) + (

s
∑

ji=1

b̂jajiajkĉk −
1

8
) = 0.
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Therefore total number of order conditions for symplectic partitioned Runge-Kutta meth-

ods of order four are eight. Number of order conditions for partitioned Runge-Kutta

method and symplectic partitioned Runge-Kutta method are given below in Table

Order Number of order conditions for Number of order conditions for

partioned Runge-Kutta methods symplectic partitioned Runge-Kutta methods

1 1 2

2 4 3

3 8 5

4 16 8

5 34 14

Table 2.7: Number of order conditions.
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Chapter 3

Construction of symplectic

Runge-Kutta methods and

partitioned Runge-Kutta methods

with V-transformation

3.1 Construction of symplectic Runge-Kutta methods

In this chapter we are going to construct symplectic Runge-Kutta methods and symplectic

partitioned Runge-Kutta methods with the help of Vandermonde transformation. For a

Runge-Kutta method (2.1.2) we need to find the values of a’s, b’s and c’s. Our strategy

is to write the values of a’s and b’s in terms of c’s. We then choose the values of c’s [2,6]

from shifted Legendre polynomial on the interval [0, 1]. The shifted Legendre polynomial

of degree s on the interval [0, 1] is,

P ∗
s =

ds

dts
(ts(t− 1)s) (3.1.1)

Gauss:

The values of ci’s are the zeros of shifted Legendre polynomial.

Radau-I:

c1 = 0, the remaining ci are chosen as the zeros of P ∗
s (x)+P ∗

s−1(x).

Radau-II:

cs = 1, the remaining ci are chosen as the zeros of P ∗
s (x)-P

∗
s−1(x).

Lobatto-III:

c1 = 0 and cs = 1,

the remaining ci are chosen as the zeros of P ∗
s (x)-P

∗
s−2(x).
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Note: If we have s-stage Gauss, Radau-I, Radau-II and Lobatto-III Runge-Kutta meth-

ods then the order of these methods is 2s, 2s− 1, 2s − 1 and 2s− 2 respectively.

Using Vandermonde transformation [6, 7], we can construct the symplectic Runge-Kutta

methods. For this we use the pre and post multiplication of Vandermonde matrix with

symplectic condition of Runge-Kutta method (2.1.2).

Consider a Runge-Kutta method [A, bT , c] and consider the Vandermonde matrix V given

as,

V = cj−1
i =















1 c1 c21 . . . cs−1
1

1 c2 c22 . . . cs−1
2

...
...

...
. . .

...

1 cs c2s . . . cs−1
s















Multiply symplectic condition (2.3.2) of Runge-Kutta methods with matrix V as follows

ck−1
i (biaij + bjaji − bibj)c

l−1
j = 0, ∀ i, j, k, l = 1, 2...s. (3.1.2)

For order two, put l, k = 1, 2, and then take summation over i and j from 1 to s.

For l = 1, k = 1,
∑

i,j

biaij +
∑

i,j

bjaji −
∑

i,j

bibj = 0. (3.1.3)

For l = 1, k = 2,
∑

i,j

biciaij +
∑

i,j

bjajici −
∑

i,j

bicibj = 0. (3.1.4)

For l = 2, k = 1,
∑

i,j

biaijcj +
∑

i,j

bjcjaji −
∑

i,j

bibjcj = 0. (3.1.5)

For l = 2, k = 2,
∑

i,j

biciaijcj +
∑

i,j

bjcjajici −
∑

i,j

bicibjcj = 0. (3.1.6)

We are constructing method of order two, then following order conditions (2.2.14) and

(2.2.15) must satisfy
s
∑

i

bi = 1,
s
∑

i=1

bici =
1

2
. (3.1.7)

Using equations (3.1.7) in equations (3.1.3)-(3.1.6) we have

∑

i,j

biaij =
1

2
, or

∑

i

bici =
1

2
. (3.1.8)

∑

i,j

biciaij +
∑

i,j

bjajici =
1

2
. (3.1.9)

∑

i,j

biaijcj +
∑

i,j

bjcjaji =
1

2
. (3.1.10)
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∑

i,j

biciaijcj =
1

8
. (3.1.11)

Now for the values of b2 we consider the relation

bi(ci − c1) = bici − bic1. (3.1.12)

Take summation over i from 1 to s and use the equations (3.1.7) we have

∑

i

bi(ci − c1) =
∑

i

bici −
∑

i

bic1,

b2(c2 − c1) =
1

2
− c1,

b2 =
(12 − c1)

c2 − c1
.

Similarly we can get

b1 =
(12 − c2)

c1 − c2
.

Now to calculate a11 we consider the following relation,

bi(ci − c2)aij(cj − c2) = biciaijcj − biciaijc2 − biaijcjc2 + biaijc2c2,

take the summation over i and j, and use equations (3.1.7)-(3.1.11) we have

a11 =
1
8 −

c2
3 − c2

6 + c2c2
2

b1(c1 − c2)(c1 − c2)
.

Similarly we have

a12 =
1
8 −

c1
3 − c2

6 + c2c1
2

b1(c1 − c2)(c2 − c1)
,

a21 =
1
8 −

c2
3 − c1

6 + c1c2
2

b2(c2 − c1)(c1 − c2)
,

a22 =
1
8 −

c1
3 − c1

6 + c1c1
2

b2(c2 − c1)(c2 − c1)
.

A class of two stages symplectic Runge-Kutta methods can be found by choosing c1 and

c2. We can choose c1 and c2 as the zeros of shifted Legendre polynomial.

Gauss: s = 2

1
2 −

√
3
6

1
4

1
4 −

√
3
6

1
2 +

√
3
6

1
4 +

√
3
6

1
4

1
2

1
2
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Radau-I: s = 2

0 1
8

−1
8

2
3

7
24

3
8

1
4

3
4

Radau-II: s = 2

1
3

3
8

−1
24

1 7
8

1
8

3
4

1
4

For order three

Put l, k = 1, 2, 3, in equation (3.1.4) and then take summation over i and j from 1 to s.

For l = 1, k = 1,
∑

i,j

biaij +
∑

i,j

bjaji −
∑

i,j

bibj = 0. (3.1.13)

For l = 1, k = 2,
∑

i,j

biciaij +
∑

i,j

bjajici −
∑

i,j

bicibj = 0. (3.1.14)

For l = 1, k = 3,
∑

i,j

bic
2
i aij +

∑

i,j

bjajic
2
i −

∑

i,j

bic
2
i bj = 0. (3.1.15)

For l = 2, k = 1,
∑

i,j

biaijcj +
∑

i,j

bjcjaji −
∑

i,j

bibjcj = 0. (3.1.16)

For l = 3, k = 1,
∑

i,j

biaijc
2
j +

∑

i,j

bjc
2
jaji −

∑

i,j

bibjc
2
j = 0. (3.1.17)

For l = 2, k = 2,
∑

i,j

biciaijcj +
∑

i,j

bjcjajici −
∑

i,j

bicibjcj = 0. (3.1.18)

For l = 3, k = 3,
∑

i,j

bic
2
i aijc

2
j +

∑

i,j

bjc
2
jajic

2
i −

∑

i,j

bic
2
i bjc

2
j = 0. (3.1.19)
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In order to construct method of order three, the following order conditions (2.2.14), (2.2.15)

and (2.2.16) must satisfy.

s
∑

i=1

bi = 1,

s
∑

i=1

bici =
1

2
,

s
∑

i=1

bic
2
i =

1

3
,

s
∑

i,j=1

biaijcj =
1

6
. (3.1.20)

Using equations (3.1.20) in equations (3.1.13)-(3.1.19) we have

∑

i,j

biaij =
1

2
or

∑

i

bici =
1

2
. (3.1.21)

∑

i,j

biciaij +
∑

i,j

bjajici =
1

2
. (3.1.22)

∑

i,j

bic
2
i aij +

∑

i,j

bjajic
2
i =

1

3
. (3.1.23)

∑

i,j

biaijcj +
∑

i,j

bjcjaji =
1

2
. (3.1.24)

∑

i,j

biaijc
2
j +

∑

i,j

bjc
2
jaji =

1

3
. (3.1.25)

∑

i,j

biciaijcj =
1

8
. (3.1.26)

∑

i,j

bic
2
i aijc

2
j =

1

18
. (3.1.27)

Now for the values of b1, b2 and b3 we consider the following relations respectively.

bi(ci − c2)(ci − c3) = bic
2
i − bicic3 − bicic2 + bic2c3, (3.1.28)

bi(ci − c1)(ci − c3) = bic
2
i − bicic3 − bicic1 + bic1c3,

bi(ci − c1)(ci − c2) = bic
2
i − bicic2 − bicic1 + bic1c2,

In equation (3.1.28) take summation over i from 1 to s, using equations (3.1.20) and

(3.1.21), we have

bi(ci − c2)(ci − c3) = bic
2
i − bicic3 − bicic2 + bic2c3,

b1(c1 − c2)(c1 − c3) =
1

3
− c3

2
− c2

2
+ c2c3,

b1 =
(2− 3(c3 + c2 − 2c2c3))

(6(c1 − c2)(c1 − c3))
.

Similarly we have

b2 =
(2− 3(c3 + c1 − 2c1c3))

(6(c2 − c1)(c2 − c3))
.

b3 =
(2− 3(c1 + c2 − 2c2c1))

(6(c3 − c2)(c3 − c1))
.
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Now for the value of a11 consider the following relation

bi(ci − c2)(ci − c3)aij(cj − c2)(cj − c3) = bic
2
i aijc

2
j − bic

2
i aijcjc3 − bic

2
i aijcjc2 + bic

2
i aijc2c3

− biciaijc
2
jc3 + biciaijcjc3c3 + biciaijcjc3c2 − biciaijc2c3c3 − biciaijc

2
jc2 + biciaijcjc2c3

+ biciaijcjc2c2 − biciaijc2c3c2 + biaijc
2
jc3c2 − biaijcjc3c3c2c3 − biaijcjc3c2c2 + biaijc2c2c3c3.

Take summation over i and j from 1 to s, then using equations (3.1.20) and (3.1.21)-

(3.1.27) we have

b1(c1 − c2)(c1 − c3)a11(c1 − c2)(c1 − c3) =
1

18
− (c2 + c3)

10
+

c2c3
4

− c2 + c3
15

+
(c2 + c3)(c2 + c3)

8

− c2c3(c2 + c3)

6
+

c2c3
12

− c2c3(c2 + c3)

3
+

c2c2c3c3
2

,

a11 =
1
18 − (c2+c3)

10 + c2c3
4 − c2+c3

15 + (c2+c3)(c2+c3)
8 − c2c3(c2+c3)

6 + c2c3
12 − c2c3(c2+c3)

3 + c2c2c3c3
2

b1(c1 − c2)(c1 − c3)(c2 − c1)(c2 − c3)
.

Similarly we have

a12 =
1
18 − (c1+c3)

10 + c1c3
4 − c2+c3

15 + (c1+c3)(c2+c3)
8 − c2c3(c1+c3)

6 + c2c3
12 − c1c3(c2+c3)

3 + c2c3c1c3
2

b1(c1 − c2)(c1 − c3)(c3 − c2)(c3 − c1)
.

a13 =
1
18 − (c1+c2)

10 + c1c2
4 − c2+c3

15 + (c1+c2)(c2+c3)
8 − c2c3(c1+c2)

6 + c2c3
12 − c2c1(c2+c3)

3 + c2c3c2c1
2

b1(c1 − c2)(c1 − c3)(c1 − c2)(c1 − c3)
.

a21 =
1
18 − (c3+c2)

10 + c3c2
4 − c1+c3

15 + (c1+c3)(c2+c3)
8 − c1c3(c3+c2)

6 + c1c3
12 − c2c3(c1+c3)

3 + c1c3c2c3
2

b2(c2 − c1)(c2 − c3)(c1 − c2)(c1 − c3)
.

a22 =
1
18 − (c3+c1)

10 + c3c1
4 − c1+c3

15 + (c1+c3)(c1+c3)
8 − c1c3(c3+c1)

6 + c1c3
12 − c1c3(c1+c3)

3 + c1c3c3c1
2

b2(c2 − c1)(c2 − c3)(c2 − c1)(c2 − c3)
.

a23 =
1
18 − (c2+c1)

10 + c2c1
4 − c1+c3

15 + (c1+c3)(c1+c2)
8 − c1c3(c2+c1)

6 + c1c3
12 − c1c2(c1+c3)

3 + c1c2c1c3
2

b2(c2 − c1)(c2 − c3)(c3 − c1)(c3 − c2)
.

a31 =
1
18 − (c2+c3)

10 + c2c3
4 − c1+c2

15 + (c2+c3)(c1+c2)
8 − c1c2(c2+c3)

6 + c1c2
12 − c3c2(c1+c2)

3 + c2c1c2c3
2

b3(c3 − c1)(c3 − c2)(c1 − c2)(c1 − c3)
.

a32 =
1
18 − (c1+c3)

10 + c1c3
4 − c1+c2

15 + (c1+c3)(c1+c2)
8 − c1c2(c1+c3)

6 + c1c2
12 − c3c1(c1+c2)

3 + c1c2c1c3
2

b3(c3 − c1)(c3 − c2)(c2 − c1)(c2 − c3)
.

a33 =
1
18 − (c1+c2)

10 + c1c2
4 − c1+c2

15 + (c1+c2)(c1+c2)
8 − c1c2(c1+c2)

6 + c1c2
12 − c2c1(c1+c2)

3 + c1c2c1c2
2

b3(c3 − c1)(c3 − c2)(c3 − c1)(c3 − c2)
.
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In this way we get a class of three stages symplectic Runge-Kutta methods by choosing

c1, c2 and c3. We can choose c1, c2 and c3 as the zeros of shifted Legender polynomial.

Gauss: s = 3
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Radau-I: s = 3
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Radau-II: s = 3
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√
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√
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√
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√
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√
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√
6

6+
√
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√
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√
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Lobatto-III: s = 3
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Lobatto-III: s = 4
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3.2 Construction of symplectic partitioned Runge-Kutta meth-

ods

Symplectic partitioned Runge-Kutta methods [7, 11] can be constructed in the same way

as we have constructed symplectic Runge-Kutta methods. By using Vandermonde trans-

formation, we can construct the symplectic partitioned Runge-Kutta methods. For this we

use the pre and post multiplication of Vandermonde matrix with the symplectic condition

for partitioned Runge-Kutta method (2.7.4).

Consider the symplectic condition (2.10.2) of partitioned Runge-Kutta method which is

given as,

biâij + b̂jaji − bib̂j = 0, ∀ i, j = 1, 2 . . . s. (3.2.1)

Consider the Vandermonde matrix V,

V = cj−1
i =















1 c1 c21 . . . cs−1
1

1 c2 c22 . . . cs−1
2

...
...

...
. . .

...

1 cs c2s . . . cs−1
s















Multiply the symplectic conditions of prtitioned Runge-Kutta method (2.7.4) from (3.2.1)

with matrix V as follows,

ĉk−1
i (biâij + b̂jaji − bib̂j = 0)cl−1

j = 0, ∀i, j, k, l = 1, 2...s. (3.2.2)

where c’s are used for that Runge-Kutta methods by which one can solve p′ = f(q) as

well. ĉ’s are used for that Runge-Kutta methods which can be used to solve q′ = g(p).

For order two, put l, k = 1, 2 and take summation over i and j from 1 to s.

For l, k = 1
∑

i,j

biâij + b̂jaji − bib̂j = 0. (3.2.3)

For l = 1, k = 2
∑

i,j

biĉiaij +
∑

i,j

b̂jajiĉi −
∑

i,j

biĉib̂j = 0. (3.2.4)

For l = 2, k = 1
∑

i,j

biâijcj +
∑

i,j

b̂jcjaji −
∑

i,j

bib̂jcj = 0. (3.2.5)

For l, k = 2
∑

i,j

biĉiâijcj +
∑

i,j

b̂jcj âjiĉi −
∑

i,j

b̂jcjbiĉi = 0. (3.2.6)

In order to construct method of order two, then following order conditions, (2.9.10) and

(2.9.11) must satisfy

s
∑

i=1

bi = 1,

s
∑

i=1

b̂i = 1,

s
∑

i=1

b̂ici =
1

2
,

s
∑

i=1

biĉi =
1

2
.

(3.2.7)
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Using equations (3.2.7) in equations (3.2.3)-(3.2.6) we have

∑

i,j

biâij =
1

2
or

∑

i

b̂jaji =
1

2
. (3.2.8)

∑

i,j

biĉiaij +
∑

i,j

b̂jajiĉi =
1

2
. (3.2.9)

∑

i,j

biâijcj +
∑

i,j

b̂jcj âji =
1

2
. (3.2.10)

∑

i,j

biĉiâijcj =
1

8
. (3.2.11)

Now for the values of b2 we consider the relation

bi(ĉi − ĉ1) = biĉi − biĉ1, (3.2.12)

take summation over i from 1 to s and use the equations (3.2.7) we get

∑

i

bi(ĉi − ĉ1) =
∑

i

biĉi −
∑

i

biĉ1,

b2(ĉ2 − ĉ1) =
ĉ1
2

− ĉ1,

b2 =
(12 − ĉ1)

ĉ2 − ĉ1
.

Similarly we have

b1 =
(12 − ĉ2)

ĉ1 − ĉ2
.

Now for b̂2 we consider the following relation

b̂i(ci − c1) = b̂ici − b̂ic1,

take summation over i from 1 to s and use the equations (3.2.7) we get

∑

i

b̂i(ci − c1) =
∑

i

b̂ici −
∑

i

b̂ic1,

b̂2(c2 − c1) =
1

2
− c1,

b̂2 =
(12 − c1)

c2 − c1
.

Similarly we can get

b̂1 =
(12 − c2)

c1 − c2
.

Now to calculate a11 we consider the following relation,

b̂i(ci − c2)aij(ĉj − c2) = b̂iciaij ĉj − b̂iciaij ĉ2 − b̂iaij ĉjc2 + b̂iaijc2ĉ2,
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take the summation over i and j from 1 to s, and use equations (3.2.7), (3.2.8) and (3.2.11)

we have

a11 =
1
8 − ĉ2

3 − c2
6 + c2ĉ2

2

b̂1(c1 − c2)(ĉ1 − ĉ2)
.

Similarly we have

a12 =
1
8 −

ĉ1
3 − c2

6 + c2ĉ1
2

b̂1(c1 − c2)(ĉ1 − ĉ2)
.

a21 =
1
8 − ĉ2

3 − c1
6 + c1ĉ2

2

b̂2(c2 − c1)(ĉ1 − ĉ2)
.

a22 =
1
8 −

ĉ1
3 − c1

6 + c1ĉ1
2

b̂2(c2 − c1)(ĉ2 − ĉ1)
.

Now consider the relation for the value of â11

bi(ĉi − ĉ2)âij(cj − c2) = biĉiâijcj − biĉiâijc2 − biâijcj ĉ2 + biâijc2ĉ2,

take the summation over i and j, and use equations (3.2.7)and (3.2.21) we have

â11 =
1
8 −

c2
3 − ĉ2

6 + c2ĉ2
2

b1(ĉ1 − ĉ2)(c1 − c2)
.

Similarly we have

â12 =
1
8 −

c1
3 − ĉ2

6 + c1ĉ2
2

b1(ĉ1 − ĉ2)(c2 − c1)
.

â21 =
1
8 −

c2
3 − ĉ1

6 + ĉ1c2
2

b2(ĉ2 − ĉ1)(c1 − c2)
.

â22 =
1
8 − c1

3 − ĉ1
6 + c1ĉ1

2

b2(ĉ2 − ĉ1)(c2 − c1)
.

In this we get a class of two stages symplectic partitioned Runge-Kutta methods by choos-

ing c1, c2, ĉ1 and ĉ2. We can choose c1, c2, ĉ1 and ĉ2 as the zeros of shifted Legendre

polynomial.
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Gauss and Radau-I : s = 2
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Gauss and Radua-II : s = 2
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√
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√
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√
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√
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√
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√
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Radau-I and Radau-II: s = 2

0 1
8 −1
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2
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5
8

1
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1
4

1
3

5
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1
8

1 3
8

5
8

1
4

3
4

For order three

Put l, k = 1, 2, 3. in equation (3.2.2) and take summation over i and j from 1 to s

For l, k = 1
∑

i,j

biâij +
∑

i,j

b̂jaji −
∑

i,j

bib̂j = 0. (3.2.13)

For l = 1, k = 2
∑

i,j

biĉiâij +
∑

i,j

b̂jajiĉi −
∑

i,j

biĉib̂j = 0. (3.2.14)

For l = 1, k = 3
∑

i,j

biĉ
2
i âij +

∑

i,j

b̂jajiĉ
2
i −

∑

i,j

biĉ
2
i b̂j = 0. (3.2.15)

For l = 2, k = 1
∑

i,j

biâijcj +
∑

i,j

b̂jcjaji −
∑

i,j

bib̂jcj = 0. (3.2.16)

For l = 3, k = 1
∑

i,j

biâijc
2
j +

∑

i,j

b̂jc
2
jaji −

∑

i,j

bib̂jc
2
j = 0. (3.2.17)

For l, k = 2
∑

i,j

biĉiâijcj +
∑

i,j

b̂jcjajiĉi −
∑

i,j

biĉib̂jcj = 0. (3.2.18)

For l, k = 3
∑

i,j

biĉ
2
i âijc

2
j +

∑

i,j

b̂jc
2
jajiĉ

2
i −

∑

i,j

biĉ
2
i b̂jc

2
j = 0. (3.2.19)

We are constructing method of order three, the following order conditions (2.9.10), (2.9.11)

and (2.9.12) must satisfy,

s
∑

i

bi = 1,
s
∑

i

b̂i = 1,
s
∑

i=1

biĉi =
1

2
,

s
∑

i=1

b̂ici =
1

2
,

s
∑

i=1

biĉ
2
i =

1

3
,

s
∑

i=1

b̂ic
2
i =

1

3
,

s
∑

i,j=1

biâijcj =
1

6
,

s
∑

i,j=1

b̂iaij ĉj =
1

6
. (3.2.20)

Using equations (3.2.20) in equations (3.2.13)- (3.2.19) we have

∑

i,j

b̂jaji =
1

2
or

∑

i

biâij =
1

2
. (3.2.21)
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∑

i,j

biĉiâij +
∑

i,j

b̂jajiĉi =
1

2
. (3.2.22)

∑

i,j

biĉ
2
i âij +

∑

i,j

b̂jajiĉ
2
i =

1

3
. (3.2.23)

∑

i,j

biâijcj +
∑

i,j

b̂jcjaji =
1

2
. (3.2.24)

∑

i,j

biâijc
2
j +

∑

i,j

b̂jc
2
jaji =

1

3
. (3.2.25)

∑

i,j

b̂jcjajiĉi =
1

8
. (3.2.26)

∑

i,j

biĉ
2
i âijc

2
j =

1

18
. (3.2.27)

Now for the values of b1, b2 and b3, we consider the following relations respectively.

bi(ĉi − ĉ2)(ĉi − ĉ3) = biĉ
2
i − biĉiĉ3 − biĉiĉ2 + biĉ2ĉ3, (3.2.28)

bi(ĉi − ĉ1)(ĉi − ĉ3) = biĉ
2
i − biĉiĉ3 − biĉiĉ1 + biĉ1ĉ3,

bi(ĉi − ĉ1)(ĉi − ĉ2) = biĉ
2
i − biĉiĉ2 − biĉiĉ1 + biĉ1ĉ2,

for the value of b1 apply summation on equation (3.2.28) over i from 1 to s and using

equations (3.2.20), we have

bi(ĉi − ĉ2)(ĉi − ĉ3) = biĉ2i − biĉiĉ3 − biĉiĉ2 + biĉ2ĉ3,

b1(ĉ1 − ĉ2)(ĉ1 − ĉ3) =
1

3
− ĉ3

2
− ĉ2

2
+ ĉ2ĉ3,

b1 =
(2− 3(ĉ3 + ĉ2 − 2ĉ2ĉ3)

(6(ĉ1 − ĉ2)(ĉ1 − ĉ3))
.

Similarly we have

b2 =
(2− 3(ĉ3 + ĉ1 − 2ĉ1ĉ3))

(6(ĉ2 − ĉ1)(ĉ2 − ĉ3))
.

b3 =
(2− 3(ĉ1 + ĉ2 − 2ĉ2ĉ1))

(6(ĉ3 − ĉ2)(ĉ3 − ĉ1))
.

To find out the values of b̂1, b̂2 and b̂3 we consider the following relations respectively.

b̂i(ci − c2)(ci − c3) = b̂ic
2
i − b̂icic3 − b̂icic2 + b̂ic2c3, (3.2.29)

b̂i(ci − c1)(ci − c3) = b̂ic
2
i − b̂icic3 − b̂icic1 + b̂ic1c3,

b̂i(ci − c1)(ci − c2) = b̂ic
2
i − b̂icic2 − b̂icic1 + b̂ic1c2,

for the value of b̂1 apply the summation on equation (3.2.29) over i from 1 to s and using

equations (3.2.20) and we have,

b̂i(ci − c2)(ci − c3) = b̂ic
2
i − b̂icic3 − b̂icic2 + b̂ic2c3,

47



b̂1(c1 − c2)(c1 − c3) =
1

3
− c3

2
− c2

2
+ c2c3,

b̂1 =
(2− 3(c3 + c2 − 2c2c3))

(6(c1 − c2)(c1 − c3))
.

Similarly we have

b̂2 =
(2− 3(c3 + c1 − 2c1c3))

(6(c2 − c1)(c2 − c3))
.

b̂3 =
(2− 3(c1 + c2 − 2c2c1))

(6(c3 − c2)(c3 − c1))
.

Now to calculate the value of a11 we consider the following relation,

b̂i(ci − c2)(ci − c3)aij(ĉj − ĉ2)(ĉj − ĉ3) = b̂ic
2
i aij ĉ

2
j − b̂ic

2
i aij ĉj ĉ3 − b̂ic

2
i aij ĉj ĉ2 + b̂ic

2
i aij ĉ2ĉ3

− b̂iciaij ĉ2jc3 + b̂iciaij ĉjc3ĉ3 + b̂iciaij ĉjc3ĉ2 − b̂iciaij ĉ2ĉ3c3 − b̂iciaij ĉ2jc2 + b̂iciaij ĉjc2ĉ3

+ b̂iciaij ĉjc2ĉ2 − b̂iciaij ĉ2ĉ3c2 + b̂iaij ĉ2jc3c2 − b̂iaij ĉjc3ĉ3c2 − b̂iaij ĉjc3ĉ2c2 + b̂iaijc2ĉ2c3ĉ3.

Take summation over i and j from 1 to s, then using equations (3.2.20) and (3.2.21)-

(3.2.27) we have

b̂1(c1 − c2)(c1 − c3)a11(ĉ1 − ĉ2)(ĉ1 − ĉ3) =
1

18
− (ĉ2 + ĉ3)

10
+

ĉ2ĉ3
4

− c2 + c3
15

+
(c2 + c3)(ĉ2 + ĉ3)

8

− ĉ2ĉ3(c2 + c3)

3
+

c2c3
12

− c2c3(ĉ2 + ĉ3)

6
+

c2ĉ2c3ĉ3
2

,

a11 =
1
18 − (ĉ2+ĉ3)

10 + ĉ2ĉ3
4 − c2+c3

15 + (c2+c3)(ĉ2+ĉ3)
8 − ĉ2ĉ3(c2+c3)

3 + c2c3
12 − c2c3(ĉ2+ĉ3)

6 + c2ĉ2c3ĉ3
2

b̂1(c1 − c2)(c1 − c3)(ĉ1 − ĉ2)(ĉ1 − ĉ3)
.

Similarly we have,

a12 =
1
18 − (ĉ1+ĉ3)

10 + ĉ1ĉ3
4 − c2+c3

15 + (ĉ1+ĉ3)(c2+c3)
8 − ĉ1ĉ3(c2+c3)

3 + c2c3
12 − c2c3(ĉ1+ĉ3)

6 + c2ĉ3c3ĉ1
2

b̂1(c1 − c2)(c1 − c3)(ĉ1 − ĉ2)(ĉ1 − ĉ3)
.

a13 =
1
18 − (ĉ1+ĉ2)

10 + ĉ1ĉ2
4 − c2+c3

15 + (ĉ1+ĉ2)(c2+c3)
8 − c2c3(ĉ1+ĉ2)

6 + c2c3
12 − ĉ1ĉ2(c2+c3)

3 + c2ĉ1c3ĉ2
2

b̂1(c1 − c2)(c1 − c3)(ĉ1 − ĉ2)(ĉ1 − ĉ3)
.

a21 =
1
18 − (ĉ3+ĉ2)

10 + ĉ3ĉ2
4 − c1+c3

15 + (c1+c3)(ĉ2+ĉ3)
8 − c1c3(ĉ3+ĉ2)

6 + c1c3
12 − ĉ2ĉ3(c1+c3)

3 + c3ĉ1c2ĉ3
2

b̂2(c2 − c1)(c2 − c3)(ĉ1 − ĉ2)(ĉ1 − ĉ3)
.

a22 =
1
18 − (ĉ3+ĉ1)

10 + ĉ3ĉ1
4 − c1+c3

15 + (c1+c3)(ĉ1+ĉ3)
8 − c1c3(ĉ3+ĉ1)

6 + c1c3
12 − ĉ1ĉ3(c1+c3)

3 + c1ĉ3c3ĉ1
2

b̂2(c2 − c1)(c2 − c3)(ĉ2 − ĉ1)(ĉ2 − ĉ3)
.

a23 =
1
18 − (ĉ2+ĉ1)

10 + ĉ2ĉ1
4 − c1+c3

15 + (c1+c3)(ĉ1+ĉ2)
8 − c1c3(ĉ2+ĉ1)

6 + c1c3
12 − ĉ1ĉ2(c1+c3)

3 + c1ĉ2c3ĉ1
2

b̂2(c2 − c1)(c2 − c3)(ĉ3 − ĉ1)(ĉ3 − ĉ2)
.
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a31 =
1
18 − (ĉ2+ĉ3)

10 + ĉ2ĉ3
4 − c1+c2

15 + (ĉ2+ĉ3)(c1+c2)
8 − c1c2(ĉ2+ĉ3)

6 + c1c2
12 − ĉ3ĉ2(c1+c2)

3 + c1ĉ2c2ĉ3
2

b̂3(c3 − c1)(c3 − c2)(ĉ1 − ĉ2)(ĉ1 − ĉ3)
.

a32 =
1
18 − (ĉ1+ĉ3)

10 + ĉ1ĉ3
4 − c1+c2

15 + (ĉ1+ĉ3)(c1+c2)
8 − c1c2(ĉ1+ĉ3)

6 + c1c2
12 − ĉ3ĉ1(c1+c2)

3 + c2ĉ1c1ĉ3
2

b̂3(c3 − c1)(c3 − c2)(ĉ2 − ĉ1)(ĉ2 − ĉ3)
.

a33 =
1
18 − (ĉ1+ĉ2)

10 + ĉ1ĉ2
4 − c1+c2

15 + (c1+c2)(ĉ1+ĉ2)
8 − c1c2(ĉ1+ĉ2)

6 + c1c2
12 − ĉ2ĉ1(c1+c2)

3 + c1ĉ2c2ĉ1
2

b̂3(c3 − c1)(c3 − c2)(ĉ3 − ĉ1)(ĉ3 − ĉ2)
.

Now for the value of â11 we consider the following relation

bi(ĉi − ĉ2)(ĉi − ĉ3)âij(cj − c2)(cj − c3) = biĉ
2
i âijc

2
j − biĉ2iaijcjc3 − biĉ

2
i âijcjc2 + biĉ

2
i âijc2c3

− biĉiâijc
2
j ĉ3 + biĉiâijcj ĉ3c3 + biĉiâijcj ĉ3c2 − biĉiâijc2ĉ3c3 − biĉiâijc

2
j ĉ2 + biĉiâijcj ĉ2c3

+ biĉiâijcjc2ĉ2 − biĉiâijc2c3ĉ2 + biâijc
2
j ĉ3ĉ2 − biâijcj ĉ3c3ĉ2c3 − biâijcj ĉ3ĉ2c2 + biâijc2ĉ2ĉ3c3.

Take summation over i and j from 1 to s, then using (3.2.20) and (3.2.21)-(3.2.27) we

have,

b1(ĉ1 − ĉ2)(ĉ1 − ĉ3)â11(c1 − c2)(c1 − c3) =
1

18
− (c2 + c3)

10
+

c2c3
4

− ĉ2 + ĉ3
15

+
(c2 + c3)(ĉ2 + ĉ3)

8

− ĉ2ĉ3(c2 + c3)

6
+

ĉ2ĉ3
12

− c2c3(ĉ2 + ĉ3)

3
+

ĉ2c2ĉ3c3
2

,

â11 =
1
18 − (c2+c3)

10 + c2c3
4 − ĉ2+ĉ3

15 + (c2+c3)(ĉ2+ĉ3)
8 − ĉ2ĉ3(c2+c3)

6 + ĉ2ĉ3
12 − c2c3(ĉ2+ĉ3)

3 + ĉ2c3ĉ3c2
2

b1(ĉ1 − ĉ2)(ĉ1 − ĉ3)(c1 − c2)(c1 − c3)
.

Similarly we have

â12 =
1
18 − (c1+c3)

10 + c1c3
4 − ĉ2+ĉ3

15 + (c1+c3)(ĉ2+ĉ3)
8 − ĉ2ĉ3(c1+c3)

6 + ĉ2ĉ3
12 − c1c3(ĉ2+ĉ3)

3 + ĉ2c3ĉ3c1
2

b1(ĉ1 − ĉ2)(ĉ1 − ĉ3)(c1 − c2)(c1 − c3)
.

â13 =
1
18 − (c1+c2)

10 + c1c2
4 − ĉ2+ĉ3

15 + (c1+c2)(ĉ2+ĉ3)
8 − ĉ2ĉ3(c1+c2)

6 + ĉ2ĉ3
12 − c1c3(ĉ2+ĉ3)

3 + ĉ2c1ĉ3c2
2

b1(ĉ1 − ĉ2)(ĉ1 − ĉ3)(c1 − c2)(c1 − c3)
.

â21 =
1
18 − (c3+c2)

10 + c3c2
4 − ĉ1+ĉ3

15 + (ĉ1+ĉ3)(c2+c3)
8 − ĉ1ĉ3(c3+c2)

6 + ĉ1ĉ3
12 − c2c3(ĉ1+ĉ3)

3 + ĉ1c3ĉ3c2
2

b2(ĉ2 − ĉ1)(ĉ2 − ĉ3)(c1 − c2)(c1 − c3)
.

â22 =
1
18 − (c3+c1)

10 + c3c1
4 − ĉ1+ĉ3

15 + (c1+c3)(ĉ1+ĉ3)
8 − ĉ1ĉ3(c3+c1)

6 + ĉ1ĉ3
12 − c1c3(hatc1+ĉ3)

3 + ĉ1c3ĉ3c1
2

b2(ĉ2 − ĉ1)(ĉ2 − ĉ3)(c2 − c1)(c2 − c3)
.

â23 =
1
18 − (c2+c1)

10 + c2c1
4 − ĉ1+ĉ3

15 + (ĉ1+ĉ3)(c1+c2)
8 − ĉ1ĉ3(c2+c1)

6 + ĉ1ĉ3
12 − c1c2(ĉ1+ĉ3)

3 + ĉ1c2ĉ3c1
2

b2(ĉ2 − ĉ1)(ĉ2 − ĉ3)(c3 − c1)(c3 − c2)
.
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â31 =
1
18 − (c2+c3)

10 + c2c3
4 − ĉ1+ĉ2

15 + (c2+c3)(ĉ1+ĉ2)
8 − ĉ1ĉ2(c2+c3)

6 + ĉ1ĉ2
12 − c3c2(ĉ1+ĉ2)

3 + ĉ1c2ĉ2c3
2

b3(ĉ3 − ĉ1)(ĉ3 − ĉ2)(c1 − c2)(c1 − c3)
.

â32 =
1
18 − (c1+c3)

10 + c1c3
4 − ĉ1+ĉ2

15 + (c1+c3)(ĉ1+ĉ2)
8 − ĉ1ĉ2(c1+c3)

6 + ĉ1ĉ2
12 − c3c1(ĉ1+ĉ2)

3 + ĉ2c1ĉ3c1
2

b3(ĉ3 − ĉ1)(ĉ3 − ĉ2)(c2 − c1)(c2 − c3)
.

â33 =
1
18 − (c1+c2)

10 + c1c2
4 − ĉ1+ĉ2

15 + (c1+c2)(ĉ1+ĉ2)
8 − ĉ1ĉ2(c1+c2)

6 + ĉ1ĉ2
12 − c2c1(ĉ1+ĉ2)

3 + ĉ1c2ĉ2c1
2

b3(ĉ3 − ĉ1)(ĉ3 − ĉ2)(c3 − c1)(c3 − c2)
.

In this way we get a class of three stages symplectic partitioned Runge-Kutta methods by

choosing c1, c2 and c3, ĉ1, ĉ2 and ĉ3. We can choose c1, c2 and c3, ĉ1, ĉ2 and ĉ3 as the

zeros of shifted Legendre polynomial.

Gauss and Lobatto-III : s = 3
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Chapter 4

Experiments

4.1 Numerical experiments

This chapter includes the results of those numerical methods which preserve the qualitative

behaviour of the conservative problems for long time. The methods include symplectic im-

plicit Runge-Kutta and symplectic implicit partitioned Runge-Kutta methods constructed

in section 3.1 and 3.2 respectively. Among the symplectic implicit Runge-Kutta methods

we have taken Gauss, Radau-I, Radau-II and Lobatto-III. Among the symplectic implicit

partitioned Runge-Kutta methods we have taken the pairs Gauss and Lobatto-III, Gauss

and Radau-I, Gauss and Radau-II, and Radau-I and Radau-II.

The main purpose of these numerical experiments is to observe the ability of these meth-

ods to provide qualitatively correct numerical results over long time. It should be noted

that we have used a fixed stepsize in all numerical methods. The numerical methods used

here have implicit stages to evaluate. We have used modified Newton iterations.

The absolute value of the difference between total energy of Hamiltonian system at initial

point and at each point of approximated solution is calculated afterwards, that is called

absolute error in the energy conservation of Hamiltonian system and the results are shown

in Figures. In each graph, time is taken along x-axis and absolute error is taken along

y-axis.

4.2 Simple pendulum

Consider a Simple pendulum which has unit mass of bob attached with a rod. The length

of rod is one unit. The equations of motion of the Simple pendulum define a Hamiltonian

system with generalized momenta p and generalized coordinates q and are given as

p′ = −sin(q), q′ = p. (4.2.1)
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The total energy H is given as

H =
p2

2
− cos(q).

We have applied symplectic implicit Runge-Kutta methods on Simple pendulum by using

the initial values p = 0, q = 1. We have taken 100, 000 steps and stepsize h = 0.01. The

absolute error in energy is plotted in Figures 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7 and 4.8.

For s = 2.

Figures 4.1, 4.2 and 4.3 show the energy conservation using two stages Gauss, Radau-

I and Radau-II symplectic implicit Runge-Kutta methods. Gauss symplectic implicit

Runge-Kutta method produces most accurate result as compared to Radau-I and Radau-

II symplectic implicite Runge-Kutta Methods. Now Figures, 4.9, 4.10 and 4.11 represent

the energy conservation using Gauss and Radau-I, Gauss and Radau-II and Radau-I and

Radau-II symplectic implicit partitioned Runge-Kutta methods. These methods produce

approximately same results.

For s = 3.

Figures 4.4, 4.5, 4.6 and 4.7 show the energy conservation using three stages Gauss, Radau-

I, Radau-II and Lobatto-III symplectic Implicite Runge-Kutta methods. Gauss, Radau-I

and Radau-II symplectic implicit Runge-Kutta methods give the approximately same and

much better results as compared to results obtained by the Lobatto-III. Figure, 4.12 repre-

sents the energy conservation using Gauss and Lobatto-III symplectic implicit partitioned

Runge-Kutta methods.

For s = 4.

Figure 4.8 shows the energy conservation using four stages Labatto-III symplectic implicit

Runge-Kutta method.
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Figure 4.1: Absolute error in energy conservation of Simple pendulum with Gauss when

s = 2.
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Figure 4.2: Absolute error in energy conservation of Simple pendulum with Radau-I when

s = 2.
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Figure 4.3: Absolute error in energy conservation of Simple pendulum with Radau-II when

s = 2.
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Figure 4.4: Absolute error in energy conservation of Simple pendulum with Gauss when

s = 3.
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Figure 4.5: Absolute error in energy conservation of Simple pendulum with Radau-I when

s = 3.
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Figure 4.6: Absolute error in energy conservation of Simple pendulum with Radau-II when

s = 3.
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Figure 4.7: Absolute error in energy conservation of Simple pendulum with Lobatto-III

when s = 3.
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Figure 4.8: Absolute error in energy conservation of Simple pendulum with Lobatto-III

when s = 4.

56



Now we have applied symplectic implicit partitioned Runge-Kutta methods on Simple

pendulum by using p = 0, q = 1. We have taken 100, 000 steps and stepsize h = 0.01. The

absolute error in energy is plotted in Figures 4.9, 4.10, 4.11 and 4.12.
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Figure 4.9: Absolute error in energy conservation of Simple pendulum with Gauss and

Radau-I when s = 2.
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Figure 4.10: Absolute error in energy conservation of Simple pendulum with Gauss and

Radau-II when s = 2.
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Figure 4.11: Absolute error in energy conservation of Simple pendulum with Radau-I and

Radau-II when s = 2.
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Figure 4.12: Absolute error in energy conservation of Simple pendulum with Gauss and

Lobatto-III when s = 3.

4.3 Harmonic oscillator

The equations of motion of the Harmonic oscillator defines a Hamiltonian system with

generalized momenta p and generalized coordinates q and are given as

q′ = p, p′ = −q.

The total energy H is given as

H =
p2

2
+

q2

2
.

We have applied symplectic implicit Runge-Kutta methods on Harmonic oscillator by us-

ing p = 0, q = 1. We have taken 100, 000 steps and stepsize h = 0.01 . The absolute error

in energy is plotted in Figures 4.13, 4.14, 4.15, 4.16, 4.17, 4.18, 4.19 and 4.20.

For s = 2.

Figures 4.13, 4.14 and 4.15 show the energy conservation using two stages Gauss, Radau-I

and Radau-II symplectic implicit Runge-Kutta methods. These methods produce an ap-

proximately same and much better results as compared to symplectic implicit partitioned

Runge-Kutta methods.

For s = 3.

Figures 4.16, 4.17, 4.18 and 4.19 represent the energy conservation using three stages

Gauss, Radau-I, Radau-II and Lobatto-III symplectic implicit Runge-Kutta methods.
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These methods produce an approximately same and much better results as compared

to symplectic implicit partitioned Runge-Kutta methods.

For s = 4.

Figure 4.20 also represent the energy conservation using four stages Lobatto-III symplectic

implicit Runge-Kutta method. This method produce much better result.
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Figure 4.13: Absolute error in energy conservation of Harmonic oscillator with Gauss when

s = 2.
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Figure 4.14: Absolute error in energy conservation of Harmonic oscillator with Radau-I

when s = 2.
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Figure 4.15: Absolute error in energy conservation of Harmonic oscillator with Radau-II

when s = 2.
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Figure 4.16: Absolute error in energy conservation of Harmonic oscillator with Gauss when

s = 3.

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x 10
−14

Figure 4.17: Absolute error in energy conservation of Harmonic oscillator with Radau-I

when s = 3.
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Figure 4.18: Absolute error in energy conservation of Harmonic oscillator with Radau-II

when s = 3.
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Figure 4.19: Absolute error in energy conservation of Harmonic oscillator with Lobatto-III

when s = 3.
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Figure 4.20: Absolute error in energy conservation of Harmonic oscillator with Lobatto-III

when s = 4.

Now we have applied symplectic implicit partitioned Runge-Kutta methods on Harmonic

oscillator by using p = 0, q = 1, for 100, 000 steps using stepsize h = 0.01. The absolute

error in energy is plotted in Figures 4.21, 4.22, 4.23 and 4.24. Absolute error is very small

that means the energy is conserved.
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Figure 4.21: Absolute error in energy conservation of Harmonic oscillator with Gauss and

Radau-I when s = 2.
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Figure 4.22: Absolute error in energy conservation of Harmonic oscillator with Gauss and

Radau-II when s = 2.
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Figure 4.23: Absolute error in energy conservation of Harmonic oscillator with Radau-I

and Radau-II when s = 2.
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Figure 4.24: Absolute error in energy conservation of Harmonic oscillator with Gauss and

Lobatto-III when s = 3.
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4.4 Kepler problem

The problem in which the motion of a planet revolving around the sun which is considered

to be fixed at origin is called the Kepler problem. The equations of motion are,

q′1 = p1,

q′2 = p2,

p′1 =
−q1

(q21 + q22)
3

2

,

p′2 =
−q2

(q21 + q22)
3

2

,

where (q1, q2) are the generalized coordinates and (p1, p2) are the generalized momenta.

The total energy of the system is

H =
1

2
(p21 + p22)−

1

(q21 + q22)
1

2

.

The initial conditions are

(q1, q2, p1, p2) = (1− e, 0, 0,

√

1 + e

1− e
),

where 0 ≤ e < 1 is the eccentricity of the elliptic orbits which are formed by the motion

of one body around the other.

We have applied symplectic implicit Runge-Kutta methods on Kepler problem with e = 0

and e = 0.5. We have taken 100, 000 steps and stepsize h = 2π
1000 . The absolute error in

energy is plotted in Figures 4.25, 4.26, 4.27, 4.33, 4.34, 4.35, 4.28, 4.29, 4.30, 4.31 4.32,

4.36, 4.37, 4.38 and 4.39.

When eccentricity e = 0.

For s = 2.

Figures 4.25, 4.26 and 4.27 show the energy conservation using two stages Gauss, Radau-I

and Radau-II symplectic implicit Runge-Kutta methods. These methods give the good

results. Now the Figures, 4.41, 4.42 and 4.43 also represent the energy conservation using

two stages Gauss and Radau-I, Gauss and Radau-II and Radau-I and Radau-II symplectic

implicit partitioned Runge-Kutta methods.

For s = 3.

Figures 4.28, 4.29, 4.30, 4.31 also show the energy conservation using three stages Gauss,

Radau-I, Radau-II and Lobatto-III symplectic implicit Runge-Kutta methods. All of these

methods produce an approximately same and much better results. Now Figure 4.44 repre-

sents the energy conservation using two stages Gauss and Lobatto-III symplectic implicit

partitioned Runge-Kutta method.
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For s = 4.

Figure 4.32 shows the energy conservation using four stages Lobatto-III symplectic im-

plicit Runge-Kutta method.

When eccentricity e = 0.5.

For s = 2.

Figures 4.33, 4.34 and 4.35 represent the energy conservation using two stages Gauss,

Radau-I, Radau-II and Lobatto-III symplectic implicit Runge-Kutta methods. Gauss sym-

plectic implicit Runge-Kutta method produce the most better result as compared to results

obtained by Radau-I and Radau-II symplectic implicit Runge-Kutta methods. Now the

Figures 4.45, 4.46 and 4.47 also show the energy conservation using two stages Gauss and

Radau-I, Gauss and Radau-II and Radau-I and Radau-II symplectic implicit partitioned

Runge-Kutta methods.

For s = 3.

Figures 4.36, 4.37, 4.38 and 4.39 show the energy conservation using three stages Gauss,

Radau-I, Radau-II and Lobatto-III symplectic implicit Runge-Kutta methods. Here Gauss

symplectic implicit Runge-Kutta method give the good result as compared to results ob-

tained by Radau-I and Radau-II symplectic implicit Runge-Kutta methods. Figure 4.48

represents the energy conservation using three stages Gauss and Lobatto-III symplectic

implicit partitioned Runge-Kutta method.

For s = 4.

Figure 4.40 represents the energy conservation using four stages Lobatto-III symplectic

implicit Runge-Kutta method.
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Figure 4.25: Absolute error in energy conservation of Kepler problem (e = 0) with Gauss

when s = 2.
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Figure 4.26: Absolute error in energy conservation of Kepler problem (e = 0) with Radau-I

when s = 2.
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Figure 4.27: Absolute error in energy conservation of Kepler problem (e = 0) with Radau-

II when s = 2.
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Figure 4.28: Absolute error in energy conservation of Kepler problem (e = 0) with Gauss

when s = 3.
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Figure 4.29: Absolute error in energy conservation of Kepler problem (e = 0) with Radau-I

when s = 3.
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Figure 4.30: Absolute error in energy conservation of Kepler problem (e = 0) with Radau-

II when s = 3.
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Figure 4.31: Absolute error in energy conservation of Kepler problem (e = 0) with Lobatto-

III when s = 3.
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Figure 4.32: Absolute error in energy conservation of Kepler problem (e = 0) with Lobatto-

III when s = 4.
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Figure 4.33: Absolute error in energy conservation of Kepler problem (e = 0.5) with Gauss

when s = 2.
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Figure 4.34: Absolute error in energy conservation of Kepler problem (e = 0.5) with

Radau-I when s = 2.
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Figure 4.35: Absolute error in energy conservation of Kepler problem (e = 0.5) with

Radau-II when s = 2.
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Figure 4.36: Absolute error in energy conservation of Kepler problem (e = 0.5) with Gauss

when s = 3.
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Figure 4.37: Absolute error in energy conservation of Kepler problem (e = 0.5) with

Radau-I when s = 3.
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Figure 4.38: Absolute error in energy conservation of Kepler problem (e = 0.5) with

Radau-II when s = 3.
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Figure 4.39: Absolute error in energy conservation of Kepler problem (e = 0.5) with

Lobatto-III when s = 3.
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Figure 4.40: Absolute error in energy conservation of Kepler problem (e = 0.5) with

Lobatto-III when s = 4.
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Now we have applied symplectic implicit partitioned Runge-Kutta methods on Kepler

Problem using e = 0 and e = 0.5. We have taken 100, 000 steps and stepsize h = 2π
1000 .

The absolute error in energy is plotted in Figures 4.41, 4.42, 4.43, 4.44, 4.45, 4.46, 4.47

and 4.48. The absolute error is very small that means the energy is conserved.

0 50 100 150 200 250 300 350
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−14

Figure 4.41: Absolute error in energy conservation of Kepler problem (e = 0) with Gauss

and Radau-I when s = 2.
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Figure 4.42: Absolute error in energy conservation of Kepler problem (e = 0) with Gauss

and Radau-II when s = 2.
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Figure 4.43: Absolute error in energy conservation of Kepler problem (e = 0) with Radau-I

and Radau-II when s = 2.
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Figure 4.44: Absolute error in energy conservation of Kepler problem (e = 0) with Gauss

and Lobatto-III when s = 3.
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Figure 4.45: Absolute error in energy conservation of Kepler problem (e = 0.5) with Gauss

and Radau-I when s = 2.
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Figure 4.46: Absolute error in energy conservation of Kepler problem (e = 0.5) with Gauss

and Radau-II when s = 2.
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Figure 4.47: Absolute error in energy conservation of Kepler problem (e = 0.5) with

Radau-I and Radau-II when s = 2.
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Figure 4.48: Absolute error in energy conservation of Kepler problem (e = 0.5) with Gauss

and Lobatto-III when s = 3.

4.5 Rigid body problem

Rigid bodies are solid objects such that the distance between any two points remain

constant. The mathematical equations governing the motion of a rigid body were derived

by Euler, named as Euler equations. The equations representing the motion of a rigid

body, whose center of mass is at the origin are

y′1 =
ωyy − ωzz

ωxx
y2y3,

y′2 =
ωzz − ωxx

ωyy

y3y2,

y′3 =
ωxx − ωyy

ωzz
y1y2,

where y = (y1, y2, y3)
T are the components of angular velocity around the principal axis

and ωxx, ωyy, ωzz are principal moment of inertia. The initial conditions [4] are

y0 = (cos(1.1), 0, sin(1.1)).

H(y1, y2, y3) =
1

2

(

y21
ω1

+
y22
ω2

+
y23
ω3

)

, (4.5.1)

which represents the total energy. We have applied symplectic implicit Runge-Kutta meth-

ods on Rigid body problem with 100, 000 steps using stepsize h = 0.01. The absolute error

in energy is plotted in Figures 4.49, 4.50, 4.51, 4.52, 4.53, 4.54, 4.55, and 4.56.

81



For s = 2.

Figures, 4.49, 4.50 and 4.51 show the energy conservation using two stages Gauss, Radau-I

and Radau-II symplectic implicit Runge-Kutta methods. All of these methods produce an

approximately same and much better results.

For s = 3.

Figures 4.52, 4.53, 4.54 and 4.55 also represent energy conservation using three stages

Gauss, Radau-I, Radau-II and Lobatto-III symplectic implicit Runge-Kutta Methods.

Here Gauss, Radau-I, Radau-II and Lobatto-III symplectic implicit Runge-Kutta methods

produce an approximately same and much better results.

For s = 4.

Figure 4.56 shows the energy conservation using four stages Lobatto-III symplectic implicit

Runge-Kutta method.
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Figure 4.49: Absolute error in energy conservation of Rigid body motion with Gauss when

s = 2.
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Figure 4.50: Absolute error in energy conservation of Rigid body motion with Radau-I

when s = 2.
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Figure 4.51: Absolute error in energy conservation of Rigid body motion with Radau-II

when s = 2.
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Figure 4.52: Absolute error in energy conservation of Rigid body motion with Gauss when

s = 3.
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Figure 4.53: Absolute error in energy conservation of Rigid body motion with Radau-I

when s = 3.
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Figure 4.54: Absolute error in energy conservation of Rigid body motion with Radau-II

when s = 3.
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Figure 4.55: Absolute error in energy conservation of Rigid body motion with Lobatto-III

when s = 3.
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Figure 4.56: Absolute error in energy conservation of Rigid body motion with Lobatto-III

when s = 4.
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Chapter 5

Conclusions and future work

In this thesis we deal with the numerical integration of system of ODEs having quadratic

invariants with an emphasis on symplectic implicit Runge-Kutta methods and symplec-

tic implicit partitioned Runge-Kutta methods. We have constructed symplectic implicit

Runge-Kutta methods and symplectic implicit partitioned Runge-Kutta methods using

Vandermonde transformation. Among the symplectic implicit Runge-Kutta methods we

have taken Gauss, Radau-I, Radau-II and Lobatto-III. Among the symplectic implicit par-

titioned Runge-Kutta methods we have taken the pairs Gauss and Lobatto-III, Gauss and

Radau-I, Gauss and Radau-II, and Radau-I and Radau-II.

We have applied these methods on the Hamiltonian systems such as Harmonic oscillator,

Simple pendulum, Kepler problem and Rigid body problem. In all experiments we have

used fixed stepsize because we have worked on symplectic methods which must satisfy the

following condition

< pn+1, qn+1 >=< pn, qn >,

where pn+1, qn+1 and pn, qn are the approximate solutions of Hamiltonian system at tn+1

and tn respectively. These methods give good energy conservation results.

In future we can construct symplectic Nystrom Runge-Kutta methods. For this we can

use V-transformation and W-transformation.
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Chapter 6

Appendix

6.1 Symplectic implicit Runge-Kutta methods

Gauss: s = 2

1
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√
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√
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Radau-I: s = 2

0 1
8

−1
8

2
3

7
24

3
8

1
4

3
4

Radau-II: s = 2
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Gauss: s = 3
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Radau-I: s = 3
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Radau-II: s = 3
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Lobatto-III: s = 3
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6.2 Symplectic implicit partitioned Runge-Kutta methods

Gauss and Radau-I : s = 2,
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Gauss and Radua-II : s = 2,
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Radau-I and Radau-II: s = 2,

0 1
8 −1

8

2
3

5
8

1
24

3
4

1
4

1
3

5
24

1
8

1 3
8

5
8

1
4

3
4

Gauss and Lobatto-III : s = 3,
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6.3 Implementation of implicit Runge-Kutta methods

The general form of an implicit Runge-Kutta method is

Yi = yn−1 +

s
∑

j=1

aijhf(Yj), i = 1, 2 . . . s,

yn = yn−1 +

s
∑

i=1

bihf(Yi),

(6.3.1)
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We shall use implicit Runge-Kutta method (6.3.1) to solve the system of ODEs. We shall

use modified Newton iterations as follows,

Yi = yn−1 + ai1hf(Y1) + ai2hf(Y2) + ai3hf(Y3) + . . . + aishf(Ys), i = 1, 2 . . . s,

yn = yn−1 + b1hf(Y1) + b2hf(Y2) + b3hf(Y3) + . . .+ bshf(Ys).

When s = 2,

Y1 = yn−1 + a11hf(Y1) + a12hf(Y2), (6.3.2)

Y2 = yn−1 + a21hf(Y1) + a22hf(Y2), (6.3.3)

yn = yn−1 + b1hf(Y1) + b2hf(Y2). (6.3.4)

Let, Y1 = Y1 + δY1 using in equation (6.3.2) we have

Y1 + δY1 = yn−1 + a11hf(Y1 + δY1) + a12hf(Y2). (6.3.5)

Using taylor series in equation (6.3.5) becomes,

Y1 + δY1 = yn−1 + a11hf(Y1 + ha11δf
′Y1) + a12hf(Y2), (6.3.6)

⇒

δY1 =
yn−1 + a11hf(Y1) + a12hf(Y2)

I − ha11f ′(Y1)
. (6.3.7)

updatedY1 = Y up
1

Y up
1 = Y1 + δY1. (6.3.8)

Similarly we have

δY2 =
yn−1 + a21hf(Y1) + a22hf(Y2)

I − ha22f ′Y2
. (6.3.9)

updatedY2 = Y up
2

Y up
2 = Y2 + δY2. (6.3.10)

Stoping criteria

|(Y up
1 − Y1)& (Y up

2 − Y2)| <
1

250
. (6.3.11)
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Here 1
250

is machine accuracy.

Then

Y1 = Y up
1 (6.3.12)

Y2 = Y up
2 (6.3.13)

After this we use Y1 and Y2 from equations (6.3.12) and (6.3.13) in equation (6.3.4) for

the approximate numerical solution.
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