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Abstract

Spectral graph theory is the study of characteristics of a graph associated with the matrices

and the eigenvalues of that graph. In this thesis, we focus on the properties of a graph

in relation to its adjacency matrix. The energy of a sidigraph S of order n is defined

by E(S) =
∑n

j=1 |Re(λj)|, where Re(λj) is the real part of of the eigenvalue λj, for

j = 1, . . . , n.

In this dissertation, we extend notion of iota energy to sidigraphs such that the Coul-

son’s integral formula remains valid. We compute iota energy formulas for the signed

directed cycles and find extremal iota energies for unicyclic sidigraphs with fixed order.

The set containing n-vertex sidigraphs with cycles each of length h is denoted by Sn,h.

We discuss the increasing property of iota energy over some specific subclasses of the set

Sn,h. We have also found those sidigraphs which give minimum and maximum values of

iota energy among the class of bicyclic sidigraphs which are vertex disjoint.
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Chapter 1

Fundamentals of graph theory

This chapter includes some basic definitions and fundamental concepts that will be used

in this dissertation. In order to clarify any ambiguities, supporting examples have also

been discussed. The main idea is to discuss the properties of graphs, digraphs and signed

digraphs.

1.1 History of graph theory

In our daily life we encounter many problems which can be represented by means of a

graph. Whether the problem is to find the fastest route from one city to another or to

minimize the travelling time of a postman to deliver letters, all such problems can be

expressed by a set of points and the lines connecting certain pair of points. It was the

study of these graphs that gave rise to the idea of graph theory.

The problem that initiated the study of graph theory was Königsberg’s bridge problem.

Königsberg was a city in Russia in which two islands were connected to the main land

by seven bridges. Euler proposed a problem whether all the bridges can be traversed

only once with the extra condition that the trip ends in the same place it began. Euler

solved this problem in the form of a graph by a set of vertices depicting landmarks and

the bridges connecting those landmarks by edges. He concluded that it was only possible
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if every landmark has even number of bridges.

1.2 Introduction to graph

An ordered pair G = (V , E) is called a graph where V is the set of vertices (or nodes) and

is called the vertex set (or node set). The set E contains edges and is called the edge set.

If there is an edge between vertex w1 and vertex w2, we represent it by w1w2 or w2w1 and

the vertices w1 and w2 are called the endpoints of the edge w1w2. If the vertex w1 is the

endpoint of the edge e then e is incident on v. If the vertices w1 and w2 are connected

by an edge then they are said to be adjacent, otherwise non adjacent. Similarly, if two

edges e and f share a commom vertex then they are said to be adjacent. A loop is an

edge whose starting and ending points are same. Multiple edges are those edges which

have same pair of endpoints. A graph without loops and multiple edges is said to be a

simple graph.

The degree of a vertex w1, represented by d(w1), is the number of edges incident on

w1. A vertex for which d(w1) = 0 is known as isolated vertex. The degree of a vertex

increases by two if it has a loop. A graph F = (P ′,Q′) is called a subgraph of G if P ′ ⊆ V

and Q′ ⊆ E .
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Figure 1.1: A graph G = (V , E)
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Example 1.1. The graph G in Fig. 1.1 has vertex set V = {w1, w2, w3, w4, w5, w6, w7, w8}

and edge set E = {p1, p2, p3, p4, p5, p6, p7, p8}. There exist multiple edges between vertices

w1 and w2. Vertex w8 has a loop and vertex w7 is an isolated vertex.

A walk is a finite alternating sequence w1e1w2e2 . . . enwn of vertices and edges such

that the edge ej has endpoints wj and wj+1 for j = 1, 2, . . . , n− 1. It is not necessary for

a walk to have distinct vertices and edges. The total number of egdes in a w1,w2-walk,

with endpoints w1 and w2, is called the length of w1,w2-walk. A walk with no repeated

edge is called a trail. A w1, w2-path on n-vertices with endpoints w1 and w2 is a trail with

no repeated vertex. Number of egdes in a path is the length of path. A trail in which

the first and last vertices are equal is called a circuit. A cycle is a circuit without any

repeated vertex except the first and last vertex. The number of edges in a cycle is called

the length of a cycle.

A graph G is connected if there exists a w1, w2-path for every pair of vertices w1, w2 ∈

V . A simple graph on n-vertices in which vertices are pair-wise ajdacent is known as a

complete graph denoted by Kn. The component of a graph G is the largest connected

subgraph of G. A graph which is either K2 or Cn, n ≥ 3 is called an elementary figure. A

diconnected graph which has elementary figures as its components is called a basic figure.

1.3 Energy of graphs

Gutman [9] introduced the concept of graph energy. It has a vast number of applications

in chemistry which can be studied in [8, 10, 20]. Graph energy is an invariant which is

calculated from the eigenvalues of the graph.

An n× n symmetric matrix, denoted by A(G) = [aij], is called the adjacency matrix

of a simple graph G = (V , E) of order n, such that

aij =

 1 if there exists an edge between vi and vj

0 otherwise.
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Let I be an n× n identity matrix then the polynomial φG(x) = det(xI −A(G)) is called

the characteristic polynomial of the adjacency matrix. The zeros of this polynomial are

considered as the eigenvalues of the graph G. The spectrum of G, denoted by Spec(G),

is the multiset of the eigenvalues of G.

The energy of a simple graph G is given by:

E(G) =
n∑
j=1

| zj |,

where z1, . . . , zn are the eigenvalues of G.

The coefficient theorem for graphs is as follows:

Theorem 1.2 (Cvetković et al. [4]). Let Lk be the set of all k-vertex basic figures L of an

n-vertex graph G, p(L) be the number of components of L and c(L) the set of all cycles

of L. Then the characteristic polynomial of G is as follows:

φG(x) = xn +
n∑
k=1

akx
n−k,

where

ak =
∑
L∈Lk

(−1)p(L)2
|c(L)|

for all k = 1, 2, . . . , n.

1.4 Signed graphs

An ordered pair S = (G,ω) is said to be a signed graph (shortly sigraph), whereG = (V , E)

is the underlying graph and ω : E → {−1, 1} is the signing function. That is, a +1 or

a −1 sign is assigned to each edge of S. An edge which is assigned a +1 sign is called

a positive edge. Similarly, a negative edge is the one which is assigned a −1 sign. In

general, the edges of S are called signed edges. The sets E+ and E− represent the sets of

positive and negative edges of S, respectively. Thus, E = E+ ∪ E−. The product of the

sign of edges in S is called the sign of sigraph S. A sigraph S is positive (respectively,
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negative) if the sign of S is positive (respectively, negative). If all cycles of a sigraph are

positive then it is cycle balanced, otherwise non cycle balanced.

The adjacency matrix, denoted by A(S) = [bmn], of a sigraph S is a matrix of order

n, where

bmn =

 ω(vmvn) if there is an edge between vm and vn

0 otherwise.

The characteristic polynomial φS(x) of sigraph S is the det(xI − A(S)). The roots

of φS(x) = 0 are called the eigenvalues of S. The multiset of the eigenvalues of S is the

spectrum of S, denoted by Spec(S).

The energy in sigraphs was introduced by Germina et. al. [7]. The energy of a sigraph

S is

E(S) =
n∑
j=1

| λj |,

where λ1, . . . , λn are the eigenvalues of S. The coefficient theorem for sigraphs is as

follows:

Theorem 1.3 (Acharya [1]). Let S be an n-vertex sigraph and Lk be the set of all k-

vertex basic figures L. Further, suppose p(L) is the number of components of L and c(L)

and s(Z) denote the set of all cycles of L and the sign of cycle Z, respectively. Then the

characteristic polynomial of S is as follows:

φS(x) = xn +
n∑
k=1

ck(S)xn−k,

where

ck(S) =
∑
L∈Lk

(−1)p(L)2
|c(L)| ∏

z∈c(L)

s(Z)

for all k = 1, 2, . . . , n.

Applications of sigraphs in chemistry can be studied in [11,14].
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1.5 Digraphs and signed digraphs

A directed graph (or briefly digraph) is a pair D = (V ,A), where V represents the vertex

set and A represents set of arcs of D. An ordered pair S = (D,ω) is said to be a signed

digraph (or briefly sidigraph), where D = (V ,A) is said to be the underlying digraph and

ω : A → {−1, 1} represents the signing function. A positive arc of S is an arc with a

+1 sign. Similarly, a negative arc of S is an arc with a −1 sign. Generally, the arcs of

S are called signed arcs. The sets of positive arcs (respectively, negative arcs) of S is

represented by A+(S) (respectively, A−(S)). Thus, A(S) = A+(S) ∪ A−(S) is the set of

signed arcs of S. Similarly, the number of positive arcs (respectively, negative arcs) of S

are denoted by a+ (respectively, a−). Thus, a = a+ + a− is the total number of arcs of S.

w1w2 denotes an arc of S from w1 to w2. A sidigraph on n vertices w1, . . . , wn with

signed arcs wjwj+1 for j = 1, . . . , n−1 is called a signed directed path and is denoted by Pn.

A sidigraph of order n having vertices w1, . . . , wn and signed arcs wjwj+1, j = 1, . . . , n−1

and wnw1 is called a signed directed cycle of length n. The product of sign of arcs of

a sidigraph S is known as the sign of sidigraph S. A sidigraph having positive sign

(respectively, negative sign) is said to be positive (respectively, negative). If each directed

cycle of a sidigraph is positive then it is said to be cycle balanced; otherwise non cycle

balanced. C+
n (respectively, C−n ) denote a positive (respectively, negative) directed cycle of

length n. Thus, a signed directed cycle which is either positive or negative is represented

by Cn.

In a digraph D if for every pair of vertices w1 and w2 there exists a w1, w2-path and

a w2, w1-path then D is called strongly connected digraph. The maximally connected

subdigraphs of a digraph D are its strong components. Strongly connected sidigraphs

and strong components of sidigraphs can be defined analogously. A digraph is unicyclic

if it has a unique directed cycle and the number of vertices equals the number of arcs. A

digraph is bicyclic if it has two directed cycles and the number of vertices is one less than

the number of arcs. If D is unicyclic (respectively, bicyclic) then sidigraph S = (D,ω) is
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unicyclic (respectively, bicyclic).

The total number of arcs entering a vertex w1 is said to be the in-degree of vertex

w1 denoted by d+(w1). Similarly, the total number of arcs leaving the vertex w1 is the

out-degree of vertex w1 denoted by d−(w1). A sidigraph is linear if d+(w1) = d−(w1).

The adjacency matrix of a sidigraph S = (D,ω) with underlying digraph D = (V ,A)

whose vertices are w1, w2, . . . , wn is a matrix A(S) = [amn] of order n, where

amn =

 ω(wmwn) if there is an arc from wm to wn

0 otherwise.
(1.1)

The polynomial φS(x) = det(xI − A(S)) is known as the characteristic polynomial of

S, where I is the identity matrix. The roots of φS(x) = 0 are the eigenvalues of S.

The multiset of these eigenvalues is known as the spectrum of S, denoted by Spec(S).

Two sidigraphs of same order having same spectrum are said to be cospectral; otherwise

non-cospectral.

A sidigraph S is said to be symmetric if an arc w1w2 ∈ A+(S) (respectively, w1w2 ∈

A−(S)) then vu ∈ A+(S) (respectively, vu ∈ A−(S)), where w1, w2 ∈ V .

Let S1 = (D1, ω1) and S2 = (D2, ω2) be two sidigraphs, where D1 = (V1,A1) and D2 =

(V2,A2) are the underlying digraphs of S1 and S2, respectively. The cartesian product

S1×S2 of S1 and S2 is the sidigraph S = (D,ω), where D = (V ,A), V = V1×V2, the arc set

A is A(S1 × S2) = {(v1, w1)(v2, w2) | v1v2 ∈ A1 and w1 = w2 or v1 = v2 and w1w2 ∈ A2},

and the signing function is defined by:

ω((v1, w1)(v2, w2)) =

 ω1(v1v2) if w1 is equal to w2

ω2(w1w2) if v1 is equal to v2.
(1.2)

The concept of graph energy was further extended by Peña and Rada [17] to the energy

of digraphs. It is obvious that eigenvalues of a digraph are not necessarily real. Khan et

al. [12] studied the contribution of imaginary parts of the eigenvalues of a digraph towards

its energy and introduced the notion of iota energy. Later, Pirzada and Bhat [18] defined

the energy formula for sidigraphs.
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1.6 Overview

The sequence of this dissertation is as follows:

In Chapter 2, we discuss some basic results related to energy of digraphs and sidi-

graphs.

In Chapter 3, we define the iota energy for sidigraphs and calculate the iota energy

formulas for signed directed cycles. We also discuss the increasing property of iota energy

over some specific subclasses of the set Sn,h, where Sn,h contains sidigraphs of n vertices

with cycles each of length h.

In Chapter 4, we find sidigraphs with extremal iota energy among the class of vertex

disjoint bicyclic sidigraphs of fixed order.
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Chapter 2

Energy of digraphs and sidigraphs

Peña and Rada [17] extended the idea of graph energy to the energy of digraphs. Germina

et al. [7] introduced the concept of energy in sigraphs which was further extended to

sidigraphs by Pirzada and Bhat [18]. In this chapter we discuss some known results

related to the energy of digraphs and sidigraphs.

2.1 Energy of digraphs

The eigenvalues of a digraph maybe complex as its adjacency matrix is not symmetric.

The energy of a digraph is defined as

E(D) =
n∑
j=1

|Re(λj)|, (2.1)

where λ1, . . . , λn are the eigenvalues of D. The coefficients for the characteristic polyno-

mial of digraphs can be calculated using the following theorem.

Theorem 2.1 (Cvetkovic et al. [4]). Let Lk be the set of all k-vertex linear subdigraphs

L of an n-vertex digraph D and comp(L) be the number of components of L. Then the

characteristic polynomial of D is given by

φD(x) = xn +
n∑
k=1

ckx
n−k,
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where

ck =
∑
L∈Lk

(−1)comp(L)

for all k = 1, 2, . . . , n.

In the next theorem, Peña and Rada [17] gave the extremal energy of unicyclic digraphs

on n vertices.

Theorem 2.2 (Peña and Rada [17]). Let D be a unicyclic digraph on n vertices. Then

smallest energy is attained by digraph D containing cycles of order 2, 3 or 4 and the cycle

of order n has largest energy.

Next theorem establishes a relationship between the energy of digraphs and its strong

components.

Theorem 2.3 (Peña and Rada [17]). Let D be an n-vertex digraph. Then

E(D) =
r∑
j=1

E(Dj),

where D1, . . . , Dr are the strong components of a digraph D.

Coulson’s integral formula is useful in finding the energy of digraphs without calcu-

lating their eigenvalues. Throughout this dissertation, we represent the principal value

of an integral
∞∫
−∞

F (x)dx by p.v
∞∫
−∞

F (x)dx. A polynomial in which leading coefficient is

1 is called a monic polynomial. In the following theorem, Mateljevic et al. [15] gave the

formula to calculate the energy of a polynomial.

Theorem 2.4 (Mateljevic et al. [15]). Let φ be a monic polynomial of degree n and let

λj, j = 1, . . . , n, be its zeros. Then

n∑
j=1

|Re(λj)| =
1

π
p.v

∫ ∞
−∞

(
n− ι̇xφ′(ι̇x)

φ(ι̇x)

)
dx,

where Re(λj) represents the real part of λj.

Next theorem gives the energy of digraphs using Coulson’s integral formula.
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Theorem 2.5 (Peña and Rada [17]). If D is an n-vertex digraph with characteristic

polynomial φD(x) and Re(λk) denotes the real part of the eigenvalue λk, then

E(D) =
n∑
k=1

|Re(λk)| =
1

π
p.v

∫ +∞

−∞

(
n− ι̇xφ′D(ι̇x)

φD(ι̇x)

)
dx.

An immediate consequence of Theorem 2.5 is as follows:

Corollary 2.6 (Peña and Rada [17]). Define γ(t) = tnφ( ι̇
t
). If φ is an n-vertex monic

polynomial with zeros λ1, . . . , λn and Re(λk) is the real part of λk, then

n∑
k=1

|Re(λk)| =
1

π
p.v

∫ +∞

−∞
log |γ(t)|dt

t2
.

In 2016, Khan et al. [12] studied the contribution of imaginary parts of the eigenvalues

of a digraph towards its energy and defined the iota energy of a digraph D as

Ec(D) =
n∑
j=1

|Im(zj)|, (2.2)

where z1, . . . , zn are the eigenvalues of D. The following theorem gives extremal iota

energy of unicyclic sidigraphs with a positive directed cycle.

Theorem 2.7 (Khan et al. [12]). The unicyclic n-vertex digraphs which contain a directed

cycle C+
2 have smallest iota energy among all n-vertex unicyclic digraphs. The directed

cycle C+
n has the largest iota energy among all n-vertex unicyclic digraphs.

2.2 Energy of sidigraphs

Let S be an n-vertex sidigraph. It is not necessary that the eigenvalues of sidigraphs are

real. Thus, the energy of sidigraph S is given by

E(S) =
n∑
j=1

∣∣Re(λj)
∣∣, (2.3)

where λ1, . . . , λn are the eigenvalues of S and Re(λj) is the real part of the eigenvalue

λj [17].

The coefficients for the characteristic polynomial of sidigraphs can be calculated using

the following theorem.
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Theorem 2.8 (Acharya et al. [2]). Let Lk be the set of all k-vertex linear subdigraphs L

of an n-vertex sidigraph S, comp(L) be the number of components of L. Further suppose

that c(L) and s(Z) denote the set of all cycles of L and the sign of cycle Z respectively.

Then the characteristic polynomial of sidigraph S can be calculated by

φS(x) = xn +
n∑
k=1

ckx
n−k,

where

ck =
∑
L∈Lk

(−1)comp(L)
∏

Z∈c(L)

s(Z)

for all k = 1, 2, . . . , n.

Next theorem establishes a relationship between the energy of a sidigraph S and its

strong components.

Theorem 2.9 (Pirzada and Bhat [18]). Let S be a sidigraph on n vertices. Then

E(S) =
r∑
j=1

E(Sj),

where S1, . . . , Sr are the strong components of S.

Spectral criteria for cycle balanced sidigraphs is discussed in the following theorem.

Theorem 2.10 (Acharya [1]). A sidigraph S = (D,ω) is said to be cycle balanced if and

only if S and D are cospectral.

In the following theorem, Khan et al. [12] compared the energy and iota energy of

positive directed cycles.

Theorem 2.11 (Khan et al. [12]). Energy and iota energy of the positive directed cycles

C+
k satisfy the following relations, when k ≥ 2.

(1) E(C+
j ) = Ec(C

+
j ) if and only if j ≡ 0(mod 4),

(2) E(C+
j ) > Ec(C

+
j ) if and only if j ≡ 2(mod 4) or j ≡ 1(mod 2).
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Next theorem gives the Coulson’s integral formula for the energy of sidigraphs

Theorem 2.12 (Pirzada and Bhat [18]). If S is an n-vertex sidigraph with characteristic

polynomial φD(x), then

E(S) =
n∑
k=1

|Re(λk)| =
1

π
p.v

∫ +∞

−∞

(
n− ι̇xφ′D(ι̇x)

φD(ι̇x)

)
dx,

where λ1, . . . , λn are the eigenvalues of S and Re(λk) denotes the real part of the eigenvalue

λk.

Next corollary can be easily deduced from Theorem 2.12.

Corollary 2.13 (Peña and Rada [17]). Let φ be an n-th degree monic polynomial with

zeros λ1, λ2, . . . , λn and define γ(t) = tnφ( ι̇
t
). Then

n∑
k=1

|Re(λk)| =
1

π
p.v

∫ +∞

−∞
log |γ(t)|dt

t2
,

where Re(λk) is the real part of λk.

Let Sn,h be the set of sidigraphs with n vertices such that each sidigraph in Sn,h has

signed directed cycles of length h. In chapter 3, we study the increasing property of energy

and iota energy of sidigraphs in Sn,h. The following results were useful to prove our main

results.

Theorem 2.14 (Pirzada and Bhat [18]). If S ∈ Sn,h then φS(x) = xn+
bn
h
c∑

k=1

(−1)kc∗(S, kh)xn−kh,

where c∗(S, kh) is the number of positive linear subsidigraphs of order kh−number of neg-

ative linear subsidigraphs of order kh, for every k = 1, . . . , bn
h
c.

Pirzada and Bhat [18] defined a quasi-order relation � over a subfamily S1
n,h of Sn,h

as follows:

Definition 2.15. [18] Let S1
n,h = {S ∈ Sn,h | c∗(S, kh) ≥ 0, k = 1, . . . , bn

h
c}. The quasi-

order relation over S1
n,h is given by: Let S1 and S2 be two elements of S1

n,h. Then S1 � S2

if for all k = 1, 2, . . . , bn
h
c, c∗(S1, kh) ≤ c∗(S2, kh). If S1 � S2 and there exists k such that

c∗(S1, kh) < c∗(S2, kh) then S1 ≺ S2. This relation � is reflexive and transitive over S1
n,h.
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The following theorem gives increasing property of energy over the set S1
n,h when

h ≡ 2(mod 4).

Theorem 2.16 (Pirzada and Bhat [18]). The energy of S1
n,h increases with respect to the

quasi-order � relation when h ≡ 2(mod 4). That is, if S1 � S2 then E(S1) ≤ E(S2).

Let c+m denote the number of m-length positive directed closed walks and c−m denote the

number of m-length negative directed closed walks. The following corollary and lemma

will be useful in obtaining the main result of upper bound for the iota energy of sidigraphs.

Corollary 2.17 (Pirzada and Bhat [18]). If z1, ...., zn are the eigenvalues of a sidigraph

S, then
n∑
j=1

zmj = c+m − c−m. (2.4)

Lemma 2.18 (Pirzada and Bhat [18]). Let S be a sidigraph having n-vertices, a arcs and

n eigenvalues namely z1, ..., zn. Then

(1)
n∑
j=1

(Re(zj))
2 −

n∑
j=1

(Im(zj))
2 = c+2 − c−2 .

(2)
n∑
j=1

(Re(zj))
2 +

n∑
j=1

(Im(zj))2 ≤ a.

Recall that a+ and a− represent the number of positive and negative arcs respectively.

Theorem 2.19 (Pirzada and Bhat [18]). Let S be a sidigraph with n vertices and a =

a+ + a− arcs. Further suppose z1, . . . , zn be its eigenvalues. Then

E(S) ≤
√

1

2
n(a+ c+2 − c−2 ).

The equality holds if S = n
2
C+

2 , n is even or S is a skew symmetric sidigraph.

Recall that K2 is a complete graph on two vertices.

Theorem 2.20 (Rada [19]). Let D be a digraph with a arcs and
←→
K 2 be a symmetric

digraph on two vertices. Then E(D) ≤ a. Moreover, E(D) = a if and only if D is a
2

←→
K 2

plus some isolated vertices.
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In the following theorem, Pirzada and Bhat [18] found a sidigraph whose energy is

equal to its number of vertices.

Theorem 2.21 (Pirzada and Bhat [18]). Let S be a sidigraph of order n having eigenvalues

z1, . . . , zn such that |Re(zk)| ≤ 1 for every k = 1, 2, ..., n. Then

E(S × C+
2 ) = 2n.

15



Chapter 3

Iota energy of unicyclic signed

digraphs

Recently, the concept of iota energy of digraphs is introduced. In this chapter, we extend

notion of iota energy to signed digraphs. We compute iota energy formulas for the signed

directed cycles. We find the unicyclic signed digraphs with extremal iota energies among

the class of unicyclic signed digraphs with fixed order such that the Coulson’s integral

formula remains valid for signed digraphs. We also discuss the increasing property of iota

energy over some specific subclasses of the set Sn,h, where the set Sn,h contains n-vertex

signed digraphs with cycles each of length h.

3.1 Iota energy of signed digraphs

Let S be an n-vertex sidigraph with eigenvalues z1, . . . , zn. We define the iota energy of

S as follow:

Ec(S) =
n∑
k=1

|Im(zk)|, (3.1)

where Im(zk) is the imaginary part of the eigenvalue zk.

Example 3.1. Let S be a sidigraph shown in Fig. 3.1. Dotted lines represent the negative

16



Figure 3.1: A sidigraph with both positive and negative directed cycles

arcs and solid lines represent positive arcs. According to Theorem 2.8, the characteristic

polynomial of S is φS(x) = x9 + 2x6 − x5 − 2x2 and the corresponding eigenvalues are 0,

0, ±1, ±ι̇, −2
1
3 , 2

1
3±ι̇2

1
3
√
3

2
. Thus, Ec(S) = 2 + 2

1
3

√
3.

Example 3.2. Let S be an n-vertex acyclic sidigraph. Then by Theorem 2.8, the char-

acterictic polynomial of S is φS(x) = xn. All eigenvalues of S are zero thus Ec(S) = 0.

Example 3.3. Let S be an n-vertex symmetric sidigraph, n ≥ 2. Then all eigenvalues of

the sidigraph S are real as S has symmetric adjacency matrix. Thus, Ec(S) = 0.

Figure 3.2: A sidigraph with four signed directed cycles

Example 3.4. Let S be a sidigraph shown in Fig. 3.2. Dotted lines represent the negative

arcs and solid lines represent positive arcs. By Theorem 2.8, we have φS(x) = x5−2x3+x

and the corresponding eigenvalues are 0, −1, −1, 1 and 1. Thus, Ec(S) = 0.

The following theorem is analogue of the Theorem 2.9.

17



Theorem 3.5. Let S be a sidigraph on n vertices and S1, . . . , Sr be its strong components.

Then

Ec(S) =
r∑

k=1

Ec(Sk).

By Theorem 2.10, we conclude that a directed cycle and a positive directed cycle

are considered cospectral. Hence, we can consider directed cycles to be positive directed

cycles. Using Theorem 2.8, the characteristic polynomial of a positive directed cycle C+
n

is given by:

φC+
n

(x) = xn − 1.

Thus, the eigenvalues of C+
n are given by exp

(
2kπι̇
n

)
, where k = 0, 1, . . . , n− 1. Therefore,

by (2.3) and (3.1), the energy and iota energy of C+
n are given by:

E(C+
n ) =

n−1∑
k=0

∣∣∣∣cos
2kπ

n

∣∣∣∣ , (3.2)

Ec(C
+
n ) =

n−1∑
k=0

∣∣∣∣sin 2kπ

n

∣∣∣∣ . (3.3)

Using (3.2), Pirzada and Bhat [18] calculated the following energy formulas for a positive

directed cycle C+
n , n ≥ 2.

E(C+
n ) =


2 cot π

n
if n ≡ 0(mod4)

2 csc π
n

if n ≡ 2(mod4)

csc π
2n

if n ≡ 1(mod2).

(3.4)

Khan et al. [12] calculated the iota energy formulas for a positive directed cycle C+
n , n ≥ 2.

Ec(C
+
n ) =

 2 cot π
n

if n ≡ 0(mod2)

cot π
2n

if n ≡ 1(mod2).
(3.5)

Again, using Theorem 2.8, the characteristic polynomial of a negative directed cycle C−n

is given by:

φC−n (x) = xn + 1.
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The eigenvalues of C−n are given by exp
(

(2k+1)πι̇
n

)
, where k = 0, 1, . . . , n − 1. Thus, the

energy and iota energy of C−n are computed by:

E(C−n ) =
n−1∑
k=0

∣∣∣∣cos
(2k + 1)π

n

∣∣∣∣ , (3.6)

Ec(C
−
n ) =

n−1∑
k=0

∣∣∣∣sin (2k + 1)π

n

∣∣∣∣ . (3.7)

Using (3.6), Pirzada and Bhat [18] calculated the energy of a negative directed cycle C−n ,

n ≥ 2 as follow:

E(C−n ) =


2 csc π

n
if n ≡ 0(mod4)

2 cot π
n

if n ≡ 2(mod4)

csc π
2n

if n ≡ 1(mod2).

(3.8)

Next, we calculate the iota energy formulas for a negative directed cycle C−n .

Case:1 When n ≡ 0(mod 2). Then (3.7) yields

Ec(C
−
n ) =

n−1∑
k=0

∣∣∣∣sin (2k + 1)π

n

∣∣∣∣
= 2

n
2
−1∑

k=0

∣∣∣∣sin (2k + 1)π

n

∣∣∣∣
= 2

(
sin
(
n
2
− 1 + 1

)
π
n

)2
sin π

n

= 2

(
sin π

2

)2
sin π

n

= 2 csc
π

n
.

Case 2: When n ≡ 1(mod 2). Then from (3.7), we get

Ec(C
−
n ) =

n−1∑
k=0

∣∣∣∣sin (2k + 1)π

n

∣∣∣∣
=

n
2
−1∑

k=1

∣∣∣∣sin kπn
∣∣∣∣ =

sin nπ
2n

sin(n− 1) π
2n

sin π
2n

=
sin
(
π
2
− π

2n

)
sin π

2n

= cot
π

2n
.
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In brief, we can write:

Ec(C
−
n ) =

 2 csc π
n

if n ≡ 0(mod2)

cot π
2n

if n ≡ 1(mod2).
(3.9)

If S is a unicyclic sidigraph on n vertices having a unique directed cycle Cm of length m

(2 ≤ m ≤ n) then Theorem 2.8 gives

φS(x) = xn + (−1)sxn−m

= xn−m(xm + (−1)s)

= xn−mφCm(x).

Thus the iota energy of S is given by

Ec(S) = Ec(Cm). (3.10)

The following theorem gives relationship between energy of positive directed cycle and

negative directed cycles.

Theorem 3.6. Iota energy of positive and negative directed cycles satisfy the following:

(1) Ec(C
+
n ) = Ec(C

−
n ) if and only if n ≡ 1(mod 2),

(2) Ec(C
+
n ) < Ec(C

−
n ) if and only if n ≡ 0(mod 2).

Proof. Proof follows from (3.5) and (3.9).

Next theorem compares the energy and iota energy of negative directed cycles.

Theorem 3.7. Let n ≥ 2, then energy and iota energy of a negative directed cycle C−n

satisfy the following:

(1) E(C−n ) = Ec(C
−
n ) if and only if n ≡ 0(mod 4),

(2) E(C−n ) < Ec(C
−
n ) if and only if n ≡ 2(mod 4),

(3) E(C−n ) > Ec(C
−
n ) if and only if n ≡ 1(mod 2).
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Proof. Proof follows from (3.8) and (3.9).

Combining (3.10) and Theorem 3.7, we get the following corollary.

Corollary 3.8. For a unicyclic sidigraph S on n vertices containing a unique negative

directed cycle C−r , where 2 ≤ r ≤ n, the following hold:

(1) E(S) = Ec(S) if and only if r ≡ 0(mod 4),

(2) E(S) < Ec(S) if and only if r ≡ 2(mod 4),

(3) E(S) > Ec(S) if and only if r ≡ 1(mod 2).

In the following lemma, we show that the iota energy of C−n is twice the energy of C−n
2

when n ≡ 2(mod 4).

Lemma 3.9. Let n be an even integer. Then Ec(C
−
n ) = 2E(C−n

2
) if and only if n ≡

2(mod 4).

Proof. Suppose that Ec(C
−
n ) = 2E(C−n

2
). On contrary, assume that n 6≡ 2(mod 4), that

is, n ≡ 0(mod 4). Then there are two cases: either n
2
≡ 0(mod 4) or n

2
≡ 2(mod 4).

Case 1: If n
2
≡ 0(mod 4) then from (3.8) and (3.9) we get

Ec(C
−
n ) = 2 csc

π

n
,

E(C−n
2
) = 2 csc

2π

n
.

From the above two equations together with the equation Ec(C
−
n ) = 2E(C−n

2
), we obtain

2 csc
π

n
= 4 csc

2π

n
. (3.11)

Simplifying the above equation, we get

sin
π

n

(
cos

π

n
− 1
)

= 0.

If sin π
n

= 0 then π
n

= mπ, where m is an integer. This implies that mn = 1, which is a

contradiction. If cos π
n

= 1 then π
n

= 2mπ, where m is an integer. This gives 2mn = 1,
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which is again not possible.

Case 2: If n
2
≡ 2(mod 4) then from (3.8) and (3.9) we get

Ec(C
−
n ) = 2 csc

π

n
,

E(C−n
2
) = 2 cot

2π

n
.

The above two equations together with the equation Ec(C
−
n ) = 2E(C−n

2
) imply

2 csc
π

n
= 4 cot

2π

n
,

that is,

cos
π

n
= cos

2π

n
.

This is not possible. Thus Case 1 and Case 2 imply that n ≡ 2(mod 4).

Conversely, suppose that n ≡ 2(mod 4). Then n
2
≡ 1(mod 2). By (3.8) and (3.9), we

have

Ec(C
−
n ) = 2 csc

π

n
,

E(C−n
2
) = csc

π

n
.

From the above two equations, we obtain

Ec(C
−
n ) = 2E(C−n

2
).

This completes the proof.

Theorem 3.10. Let S1 be an n-vertex sidigraph with k vertex disjoint negative directed

cycles C−r1 , . . . , C
−
rk

of lengths r1, . . . , rk, respectively, where rj ≡ 2( mod 4), j = 1, 2, . . . , k

Take another n-vertex sidigraph S2 with 2k vertex disjoint negative directed cycles C−r1
2

, C−r1
2

, . . . , C−rk
2

, C−rk
2

of lengths r1
2
, r1

2
, r2

2
, r2

2
, . . . , rk

2
, rk

2
. Then S1 and S2 satisfy the following:

Ec(S1) = E(S2).
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Proof. By Theorem 3.5, we have

Ec(S1) =
k∑
i=1

Ec(C
−
ri

)

Applying Lemma 3.9, we get

k∑
i=1

Ec(C
−
ri

) = 2
k∑
i=1

E(C ri
2

)

= E(S2)

Thus, we have

Ec(S1) = E(S2)

This completes the proof.

The next two lemmas will be helpful to prove a few results.

Lemma 3.11 (Farooq et al. [5]). For z ∈ (0, π
2
], the following inequality holds:

1

z
− 0.429z ≤ cot z ≤ 1

z
− z

3
.

Lemma 3.12 (Khan et al. [13]). Let z, p be real numbers such that z ≥ p > 0 and q > 0.

Then
2zπ

bz2 − π2
≤ 2pπ

qp2 − π2
.

For any real number z with z ∈ (0, π
2
), we have the following inequality:

z − z3

3!
≤ sin z ≤ z. (3.12)

Next theorem gives smallest and largest iota energies of unicyclic sidigraphs with negative

directed cycle.

Theorem 3.13. Among n-vertex unicyclic sidigraphs with negative directed cycle, the

sidigraph containing C−3 has smallest iota energy. Moreover, among all non cycle balanced

sidigraphs on n vertices, C−n has the largest iota energy.
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Proof. We first show that the iota energy of negative directed cycles increases monoton-

ically with respect to their length, where the length is greater than 2. Let r ≥ 3 be an

integer then we have following two cases:

Case 1: Let r ≡ 0(mod 2). Then by using (3.9) and (3.12), we get

Ec(C
−
r ) = 2 csc

π

r
≤ 2

π
r

(
1− π2

6r2

)
=

2r

π
+

2rπ

6r2 − π2
.

Applying Lemma 3.12, we get

Ec(C
−
r ) ≤ 2r

π
+ 0.2918. (3.13)

On the other hand, by using (3.9) and Lemma 3.11, we obtain

Ec(C
−
r+1) = cot

π

2(r + 1)

≥ 2(r + 1)

π
− 0.429

π

2(r + 1)
.

As r ≥ 3, we get

Ec(C
−
r+1) >

2r

π
+ 0.412. (3.14)

Inequalities (3.13) and (3.14) give Ec(C
−
r ) < Ec(C

−
r+1).

Case 2: Let r ≡ 1(mod 2). Then by using (3.9) and Lemma 3.11, we get

Ec(C
−
r ) = cot

π

2r
≤ 2r

π
− π

6r
<

2r

π
. (3.15)

On the other hand, by using (3.12), we obtain

Ec(C
−
r+1) = 2 csc

π

r + 1
≥ 2r

π
+

2

π
>

2r

π
. (3.16)

Inequalities (3.15) and (3.16) imply that Ec(C
−
r ) < Ec(C

−
r+1).

Thus, we observed a monotonic increase in the iota energy of negative directed cycles

with respect to their length when length is greater than 2. Therefore, C−n has the largest

iota energy.

24



From (3.9), it is clear that Ec(C
−
2 ) = 2 and Ec(C

−
3 ) =

√
3. Let S be an n-vertex

unicyclic sidigraph which contains a negative directed cycle C−3 . Then by (3.10), Ec(S) =

Ec(C
−
3 ) =

√
3, which is the smallest iota energy among unicyclic sidigraphs of order n ≥ 2

which contain a negative directed cycle.

Next theorem gives extremal iota energy of unicyclic sidigraphs.

Theorem 3.14. Among the class of n-vertex unicyclic sidigraphs, C+
2 has the smallest

iota energy while C−n has the largest iota energy.

Proof. We see that Ec(C
+
2 ) = 0 and Ec(C

−
3 ) =

√
3. Also, Theorem 3.6 implies that C−n

has the largest iota energy among the class of n-vertex unicyclic sidigraphs. Thus, the

assertion follows from Theorem 2.7 and Theorem 3.13.

3.2 Iota energy of sidigraphs with complex adjacency

matrix

Khan et al. [12] introduced the notion of complex adjacency matrix Ac(D) = [ajk] for a

digraph D = (V ,A) as follows:

ajk =

 −ι̇ if vjvk ∈ A

0 otherwise.

In this section, we define the complex adjacency matrix for sidigraphs. Let S = (D,ω) be

a sidigraph, where D = (V ,A) is known as the underlying digraph and ω : A → {−1, 1}

is called the signing function. We define the complex adjacency matrix Ac(S) = [sjk] of

S by:

sjk =

 ι̇ω(vjvk) if vjvk ∈ A

0 otherwise.
(3.17)

We will use the notation Ac for the complex adjacency matrix throughout this paper.

Ac-eigenvalues are the eigenvalues calculated from the complex adjacency matrix Ac of
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S. The Ac-spectrum of S, denoted by Specc(S), is the set containing Ac-eigenvalues of

S together with their multiplicities. According to (1.1), the adjacency matrix of S is

represented by A. Since Ac = ι̇A, it follows that Specc(S) = ι̇Spec(S). It can be observed

that for every eigenvalue z = x + ι̇y of S, there exists an Ac-eigenvalue ι̇z = −y + ι̇x of

S. That is, |Im(z)| = |Re(ι̇z)|. Let Ac-eigenvalues of the sidigraph S be z1, . . . , zn. Then,

the iota energy of the sidigraph S can also be defined as:

Ec(S) =
n∑
k=1

∣∣Re(zk)
∣∣,

where Re(zk) is the real part of the Ac-eigenvalue zk.

The coefficient theorem for sidigraphs in case of complex adjacency is given in the

following theorem.

Theorem 3.15. Let Lk be the set of all k-vertex linear subdigraphs of an n-vertex sidi-

graph S. The number of components of a subdigraph L of S is denoted by comp(L).

Moreover, c(L) and s(Z) represent the set of all cycles of L and the sign of cycle Z, re-

spectively. Then the characteristic polynomial of S according to complex adjacency matrix

Ac(S) is given by

φcS(x) = xn +
n∑
k=1

ck(ι̇)
kxn−k,

where

ck =
∑
L∈Lk

(−1)comp(L)
∏

Z∈c(L)

s(Z)

for all k = 1, 2, . . . , n.

n [12, 18] the authors gave a scheme to find the energy and iota energy of the corre-

sponding adjacency matrices without finding their eigenvalues. Therefore, it is natural to

study it for iota energy of the sidigraphs. We restate Theorem 2.4 in terms of sidigraphs

as follows.
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Theorem 3.16. Let S be an n-vertex sidigraph having characteristic polynomial φcS(x)

of its complex adjacency matrix Ac(S). Let z1, . . . , zn be the Ac-eigenvalues of S. Then

Ec(S) =
n∑
k=1

|Re(zk)| =
1

π
p.v

∞∫
−∞

(
n− ι̇xφ′cS(ι̇x)

φcS(ι̇x)

)
dx,

where Re(zk) is the real part of zk.

An immediate outcome of Theorem 3.16 is given in following corollary.

Corollary 3.17. Let φ be a monic polynomial of degree n. Let zk, k = 1, 2, . . . , n, be its

roots, and let γ(t) = tnφ( ι̇
t
). Then

n∑
k=1

|Re(zk)| =
1

π
p.v

∫ ∞
−∞

log |γ(t)|dt
t2
,

where Re(zk) is the real part of zk.

Figure 3.3: A sidigraph

Example 3.18. Consider the sidigraph S in Fig. 3.3. Then the characteristic polynomial,

φcs(x) = x4 − x2 + 1. Note that

1

π
p.v

∞∫
−∞

(
4− ι̇xφ′cS(ι̇x)

φcS(ι̇x)

)
dx =

1

π
p.v

∞∫
−∞

(
4− ι̇x(4(ι̇x)3 − 2(ι̇x))

(ι̇x)4 − (ι̇x)2 + 1

)

=
1

π
p.v

∞∫
−∞

(
2x2 + 4

x4 + x2 + 1

)
dx

=
1

π
p.v

 ∞∫
−∞

(
x+ 2

x2 + x+ 1

)
dx+

∞∫
−∞

(
−x+ 2

x2 − x+ 1

)
dx


=

1

π
lim
a→∞

(
1

2
ln
x2 + x+ 1

x2 − x+ 1
+
√

3

(
tan−1

2x+ 1√
3
− tan−1

2x− 1√
3

))
.
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Thus, by Theorem 3.16, we obtain

Ec(S) = 2
√

3.

3.3 Increasing property of energy and iota energy of

sidigraphs

Recall that Sn,h is the set of sidigraphs of order n such that each sidigraph in Sn,h has

signed directed cycles of length h. In this section, we study the increasing property

of energy and iota energy of sidigraphs in Sn,h. The following example shows that the

increasing property of energy (respectively, iota energy) over the set S1
n,h may not hold

when h ≡ 0(mod 4).

S S1 2

Figure 3.4: S1, S2 ∈ S1
14,4

Example 3.19. Consider the sidigraphs S1, S2 ∈ S1
14,4 in Fig. 3.4. Negative arcs are

represented by dotted lines and positive arcs are represented by solid lines. Using Theorem
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2.14, the characteristic polynomials of S1 and S2 are:

φS1(x) = x14 − 4x10 + 3x6 − x2,

φS2(x) = x14 − 4x10 + 4x6 − x2.

One can easily see that c∗(S1, kh) ≤ c∗(S2, kh), k = 1, 2, 3. Also, E(S1) = Ec(S1) = 7.05

and E(S2) = Ec(S2) = 6.1163. This proves that the energy (respectively, iota energy)

may not increase with respect to the quasi-order relation defined over the set S1
n,h when

h ≡ 0(mod 4).

SS3 4

Figure 3.5: S3, S4 ∈ S1
22,6

Example 3.20. Consider the sidigraphs S3 and S4 in Fig. 3.5, where h ≡ 2(mod 4).

The characteristic polynomials of S3 and S4 according to Theorem 2.14 are

φS3(x) = x22 − 4x16 + 4x10 − x4,

φS4(x) = x22 − 2x16 + 2x10 − x4.

Here c∗(S3, kh) ≥ c∗(S4, kh), k = 1, 2, 3. However, Ec(S3) = 10.4816 and Ec(S4) =

11.8785. Clearly Ec(S3) ≤ Ec(S4). Thus the iota energy may not increase with respect

to the quasi-order relation over the set S1
n,h when h ≡ 2(mod 4).
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The following example shows that iota energy does not increase when h ≡ 1(mod 2).

S S
5

6

Figure 3.6: S5, S6 ∈ S1
10,3

Example 3.21. Consider sidigraphs S5 and S6 shown in Fig. 3.6. According to Theorem

2.14, following are the characteristic polynomials of S5 and S6.

φS5(x) = x10 − 2x7 + 3x4 − x,

φS6(x) = x10 − 4x7 + 4x4 − x.

Observe that c∗(S5, kh) ≤ c∗(S6, kh) but Ec(S5) = 5.8367 and Ec(S6) = 5.3759, that is,

Ec(S5) > Ec(S6).

Next, we define a new family S2
n,h of sidigraphs such that each sidigraph in S2

n,h has

negative cycle of length h. Clearly, S2
n,h ⊂ Sn,h. The following theorem gives the charac-

teristic polynomial for the sidigraphs in S2
n,h.

Theorem 3.22. Let S ∈ S2
n,h. Then the characteristic polynomial of S according to the

adjacency matrix A(S) is given by

φS(x) = xn +

bn
h
c∑

k=1

c(S, kh)xn−kh, (3.18)

where c(S, kh) ≥ 0 for every k = 1, . . . , bn
h
c.
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Proof. Let S be a sidigraph of order n. Then using Theorem 2.8, φS(x) = xn+
n∑
k=1

ckx
n−kh,

where ck =
∑
L∈Lk

(−1)comp(L)
∏

Z∈c(L)
s(Z). Since the length of each cycle of S is h, it follows

that L ∈ Lk if and only if k is a multiple of h. As each cycle of S2
n,h is negative so

ckh = c(S, kh), where c(S, kh) denotes the number of linear subsidigraphs of S containing

k cycles of length h. This completes the proof.

A quasi-order relation over S2
n,h is defined as: Let S1 and S2 be two elements of S2

n,h.

Then S1 � S2 if for all k = 0, 1, . . . , bn
h
c, c(S1, kh) ≤ c(S2, kh). If S1 � S2 and there exists

k such that c(S1, kh) < c(S2, kh) then S1 ≺ S2. This relation � is reflexive and transitive

over S2
n,h. The analogue of Theorem 3.22 is as follows:

Theorem 3.23. Let S ∈ S2
n,h. Then the characteristic polynomial of S according to the

complex adjacency matrix Ac(S) is defined by

φcS(x) = xn +

bn
h
c∑

k=1

ι̇khc(S, kh)xn−kh, (3.19)

where c(S, kh) is the number of linear subsidigraphs of order kh.

In the following theorem, we discuss the increasing property of the iota energy of

sidigraphs with respect to the quasi-order relation � defined over S2
n,h when h ≡ 0(mod

2).

Theorem 3.24. The iota energy increases over S2
n,h with respect to the quasi-order rela-

tion when h ≡ 0(mod 2), that is, if S1 � S2 then Ec(S1) ≤ Ec(S2) where S1, S2 ∈ S2
n,h.

Proof. Let S ∈ S2
n,h. Then by Theorem 3.23 the characteristic polynomial of S is given

by:

φcS(x) = xn +

bn
h
c∑

k=1

ι̇khc(S, kh)xn−kh. (3.20)

31



This gives

φcS

(
ι̇

x

)
=

(
ι̇

x

)n
+

bn
h
c∑

k=1

(ι̇)khc(S, kh)

(
ι̇

x

)n−kh

=
ι̇n

xn

(
1 +

bn
h
c∑

k=1

c(S, kh)xkh
)

=
ι̇n

xn

(
1 +

bn
h
c∑

k=1

c(S, kh)xkh
)
.

By using Corollary 3.17, we get

Ec(S) =
1

π
p.v

∫ ∞
−∞

1

x2
log

∣∣∣∣xn ι̇nxn
(

(1 +

bn
h
c∑

k=1

c(S, kh)xkh
)∣∣∣∣dx

=
1

π
p.v

∫ ∞
−∞

1

x2
log

(
(1 +

bn
h
c∑

k=1

c(S, kh)xkh
)
dx.

The last equality is obtained by using 1
π
p.v.

∫∞
−∞ log(ι̇n)dx

x2
= 0. It is easy from the above

iota energy expression that iota energy increases with respect to quasi-order relation �

over S2
n,h.

In the following example it is shown that the assertion of Theorem 3.24 does not hold

when h ≡ 1(mod 2).

Example 3.25. Consider sidigraphs S7, S8 ∈ S2
22,6 shown in Fig. 3.7. By Theorem 3.23

the characteristic polynomials of S7 and S8 are

φS7(x) = x10 + 4x7 + 3x4 + x,

φS8(x) = x10 + 4x7 + 4x4 + x.

Here c(S7, kh) ≤ c(S8, kh) and the iota energy of S7 and S8 are Ec(S7) = 10.9816 and

Ec(S8) = 5.3759. It can easily be seen that Ec(S7) > Ec(S8). Thus, the iota energy does

not possess increasing property with respect to the quasi-order relation defined over S2
n.h

when h ≡ 1(mod 2).
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S S7 8

Figure 3.7: S7, S8 ∈ S2
10,3

3.4 Upper bounds for the iota energy of sidigraphs

Let S be a sidigraph of order n with adjacency matrix A. Then it is shown in [21] that

power of A(S) counts the number of walks in signed manner. An alternating sequence

of vertices and signed edges is called a signed walk. If the sign of the edges is removed

and a direction is assigned to each edge then the resulting walk is called a directed walk.

Recall that the number of m-length positive directed closed walks are denoted by c+m and

the number of m-length negative directed closed walks are denoted by c−m.

Next theorem is analogue of Theorem 2.19. We give upper bound of iota energy of

sidigraphs in this theorem. The proofs of both theorems are almost similar. However, for

the sake of self-containment, we include it.

Theorem 3.26. Let S be a sidigraph having n vertices and a = a+ + a− arcs and let

z1, . . . , zn be its eigenvalues. Then

Ec(S) ≤
√

1

2
n(a− c+2 + c−2 ).

and equality holds if S = n
2
C−2 , n is even or S is any symmetric sidigraph of order n.

Proof. Adding part (1) and (2) of the Lemma 2.18, we get

n∑
j=1

(Re(zj))
2 ≤ 1

2
(a+ c+2 − c−2 ). (3.21)
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Also from part (1) of Lemma 2.18, we obtain

n∑
j=1

(Im(zj))
2 =

n∑
j=1

(Re(zj))
2 − c+2 + c−2 . (3.22)

Using cauchy-schwarz inequality we get

Ec(S) =
n∑
j=1

|Im(zj)|

≤
√
n

√√√√ n∑
j=1

|Im(zj)|2.

Using (3.21) and (3.22), we get

Ec(S) =
√
n

√√√√ n∑
j=1

(Re(zj))2 − c+2 + c−2

≤
√
n

√
1

2
(a+ c+2 − c−2 )− c+2 + c−2

=
√
n

√
1

2
(a)− 1

2
(c+2 ) +

1

2
(c−2 )

≤
√

1

2
n(a− c+2 + c−2 ).

The proof is complete.

Using Theorem 2.10, we see that a symmetric digraph on two vertices is the positive

directed cycle of length 2. We extend Theorem 2.20 for iota energy.

Theorem 3.27. Let a sidigraph S has a arcs then Ec(S) ≤ a with equality if and only if

S = a
2
C−2 plus some isolated vertices.

Proof. Proof is analogue to the proof of Theorem 2.20.

3.5 Equienergetic sidigraphs

Two positive (respectively, negative) sidigraphs are said to be isomorphic if their un-

derlying digraphs are isomorphic. Two sidigraphs having same Ac-spectrum are called
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Ac-cospectral, otherwise non Ac-cospectral. Any two sidigraphs which have same order

and iota energy are called equienergetic sidigraphs. Obviously, two Ac-cospectral sidi-

graphs having same order are always equienergetic. In this section, we are interested to

construct some families of equienergetic Ac-noncospectral sidigraphs. We extend theorem

2.21 for iota energy. It gives a sidigraph whose iota energy is equal to the number of its

vertices.

Theorem 3.28. Let S be a sidigraph of order n having eigenvalues z1, . . . , zn such that

|Im(zj)| ≤ 1 for every j = 1, 2, ..., n. Then

Ec(S × C−2 ) = 2n.

Proof. Let z1, . . . , zm be eigenvalues with non-negative imaginary parts and zm+1, ..., zn

be those with negative imaginary parts, where 1 ≤ m ≤ n. Eigenvalues of the cartesian

product of S × C−2 are z1 ± ι̇, z2 ± ι̇, ..., zm ± ι̇, zm+1 ± ι̇, ..., zn ± ι̇. Therefore

Ec(S × C−2 ) =
m∑
j=1

(|Im(zj) + 1|+ |Im(zj)− 1|) +
n∑

j=m+1

(|Im(zj) + 1|+ |Im(zj)− 1|)

As |Im(zj)| ≤ 1 for all j = 1, 2, ...n, it follows that

Ec(S × C−2 ) =
m∑
j=1

(Im(zj) + 1 + 1− Im(zj)) +
n∑

j=m+1

(1− Im(zj) + Im(zj) + 1)

=
m∑
j=1

2 +
n∑

j=m+1

2

= 2m+ 2(n−m) = 2n.

This completes the proof.

We can easily see that eigenvalues of C+
n and C−n meet the requirement of Theorem

3.28. Moreover 1 + ι̇ ∈ Spec(C+
n × C−2 ) but 1 + ι̇ 6∈ Spec(C−n × C−2 ). Thus we have the

following corollary.

Corollary 3.29. For n ≥ 2, we have

Ec(C
−
n × C−2 ) = Ec(C

+
n × C−2 )
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Moreover, C−n × C−2 and C+
n × C−2 are Ac-noncospectral sidigraphs.

Theorem 3.30. Let S be a sidigraph of order n having eigenvalues z1, . . . , zn such that

|Im(zk)| ≤ 1 for every k = 1, . . . , n then

Ec(S × C+
2 ) = 2Ec(S).

Proof. Proof is parallel to the proof of Theorem 3.28.

We note that Spec(C−n ) = −Spec(C+
n ) and 1 6∈ Spec(C−n ) but 1 ∈ Spec(C+

n ), when

n ≡ 1(mod 2). Thus we have the following corollary of Theorem 3.30.

Corollary 3.31. If n ≡ 1(mod 2) then C−n × C+
2 and C+

n × C+
2 are Ac-noncospectral

equienergetic sidigraphs.
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Chapter 4

Extremal iota energy of bicyclic

signed digraphs

Extremal energy and iota energy of unicyclic signed digraphs is known. In this chapter, we

find sidigraphs with extremal iota energy among vertex disjoint bicyclic signed digraphs

of fixed order.

4.1 Iota energy of bicyclic signed digraphs

The following lemma will be helpful in proving a few results.

Lemma 4.1 (Khan et al. [13]). Suppose z, p, q are real numbers such that z ≥ p > 0 and

q > 0. Then
2zπ

qz2 − π2
≤ 2pπ

qp2 − π2
.

For any real number z the following inequalities are satisfied for 0 < z < π
2

such that

z ∈ R, where R is the set of real numbers.

sin z ≤ z, sin z ≥ z − z3

3!
, cos z ≥ 1− z2

2
(4.1)

cot z ≤ 1

z
, cot z ≥ 1

z
− 0.429z. (4.2)
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In the following lemma, we give lower bounds for the sum of iota energies of two vertex

disjoint directed cycles C−k−2 and C−2 , where k ≥ 8.

Lemma 4.2. If k ≥ 8 then we have the following:

Ec(C
−
k−2) + Ec(C

−
2 ) ≥

 2k
π
− 4

π
+ 2 if k ≡ 0(mod2)

2k
π
− 4

π
+ 2− 0.429π

2(k−2) if k ≡ 1(mod2).
(4.3)

Proof. We know that E(C−2 ) = 2. If k ≡ 0(mod2) then using (3.9) and (4.1), we find:

Ec(C
−
k−2) + Ec(C

−
2 ) = 2 csc

π

k − 2
+ 2

≥ 2

(
1
π
k−2

+ 1

)
=

2k

π
− 4

π
+ 2.

Next, if k ≡ 1(mod2) then (3.9) and (4.2) imply that:

Ec(C
−
k−2) + Ec(C

−
2 ) = cot

π

2(k − 2)
+ 2

≥ 1
π

2(k−2)
− 0.429π

2(k − 2)
+ 2

=
2k

π
− 4

π
+ 2− 0.429π

2(k − 2)
.

This completes the proof.

Next two lemmas give different upper bounds for the sum of iota energies of vertex

disjoint directed cycles.

Lemma 4.3. If k ≡ 0(mod 2) and l, k − l ≥ 2 then we have the following:

(1)

Ec(C
+
k−l) + Ec(C

+
l ) ≤

 2k
π

if l ≡ 0(mod2)

2k
π

if l ≡ 1(mod2).

(2)

Ec(C
+
k−l) + Ec(C

−
l ) ≤

 2k
π

+ 2lπ
6l2−π2 if l ≡ 0(mod2)

2k
π

if l ≡ 1(mod2).
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(3)

Ec(C
−
k−l) + Ec(C

+
l ) ≤

 2k
π

+ 2(k−l)π
6(k−l)2−π2 if l ≡ 0(mod2)

2k
π

if l ≡ 1(mod2).

(4)

Ec(C
−
k−l) + Ec(C

−
l ) ≤

 2k
π

+ 2lπ
6l2−π2 + 2(k−l)π

6(k−l)2−π2 if l ≡ 0(mod2)

2k
π

if l ≡ 1(mod2).

Proof. (1) Let l ≡ 0(mod 2). Then k − l ≡ 0(mod 2). By using (3.5) and (4.2) we get:

Ec(C
+
k−l) + Ec(C

+
l ) = 2 cot

π

k − l
+ cot

π

l

≤ 2
1
π
k−l

+ 2
1
π
l

=
2k

π
.

Next, if l ≡ 1(mod 2) then k − l ≡ 1(mod 2). Using (3.5) and (4.2), we find that:

Ec(C
+
k−l) + Ec(C

+
l ) = cot

π

2(k − l)
+ cot

π

2l

≤ 1
π

2(k−l)
+

1
π
2l

=
2k

π
.

(2) If l ≡ 0(mod 2) then k − l ≡ 0(mod 2). From (3.5) and (3.9) we get:

Ec(C
+
k−l) + Ec(C

−
l ) = 2 cot

π

(k − l)
+ 2 csc

π

l
.

Applying (4.1) and (4.2), we obtain:

2 cot
π

(k − l)
+ 2 csc

π

l
≤ 2

(
1
π
k−l

)
+ 2

(
1

π
l
(1− π2

6l2
)

)

= 2

(
k − l
π

)
+ 2

(
1
π
l

+
lπ

6l2 − π2

)
=

2k − 2l

π
+

2l

π
+

2lπ

6k2 − π2

=
2k

π
+

2lπ

6l2 − π2
.
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Thus

Ec(C
+
k−l) + Ec(C

−
l ) ≤ 2k

π
+

2lπ

6l2 − π2
.

Next, if l ≡ 1(mod 2) then k − l ≡ 1(mod 2). Using (3.5), (3.9) and (4.2), we obtain:

Ec(C
+
k−l) + Ec(C

−
l ) = cot

π

2(k − l)
+ cot

π

2l

≤ 2k

π
.

(3) If l ≡ 0(mod 2) then k − l ≡ 0(mod 2). From (3.5) and (3.9), we get

Ec(C
−
k−l) + Ec(C

+
l ) = 2 csc

π

k − l
+ 2 cot

π

l
.

Using inequalities (4.1) and (4.2), we obtain:

2 csc
π

k − l
+ 2 cot

π

l
≤

(
1

π
k−l(1−

π2

6(k−l)2 )

)
+ 2

(
1
π
l

)

= 2

(
1

π
k−l(1−

π2

6(k−l)2 )

)
+

2l

π

= 2

(
1
π
k−l

+

π
6(k−l)

1− π2

6(k−l)2

)
+

2l

π

=
2k

π
+

2(k − l)π
6(k − l)2 − π2

.

Thus

Ec(C
−
k−l) + Ec(C

+
l ) =

2k

π
+

2(k − l)π
6(k − l)2 − π2

.

Next, if l ≡ 1(mod 2) then using (3.5), (3.9) and (4.2), we have

Ec(C
−
k−l) + Ec(C

+
l ) = cot

π

2(k − l)
+ cot

π

2l

≤ 2k

π
.
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(4) If l ≡ 0(mod 2) then by using (3.9) and (4.1), we obtain

Ec(C
−
k−l) + Ec(C

−
l ) = 2 csc

π

k − l
+ 2 csc

π

l

≤ 2

 1

π
k−l

(
1− π2

6(k−l)2

)
+ 2

(
1

π
l

(
1− π2

6l2

))

=
2(k − l)

π
+

2(k − l)π
6(k − l)2 − π2

+
2l

π
+

2lπ

6l2 − π2

=
2k

π
+

2(k − l)π
6(k − l)2 − π2

+
2lπ

6l2 − π2
.

If l ≡ 1(mod 2) then (3.9) and (4.2) imply that

Ec(C
−
k−l) + Ec(C

−
l ) = cot

π

2(k − l)
+ cot

π

2l

≤ 2k

π
.

This gives the required result.

Lemma 4.4. If k ≡ 1(mod 2) and k, k − l ≥ 2 then we have the following:

(1)

Ec(C
+
k−l) + Ec(C

+
l ) ≤

 2k
π

if l ≡ 0(mod2)

2k
π

if l ≡ 1(mod2).

(2)

Ec(C
+
k−l) + Ec(C

−
l ) ≤

 2k
π

+ 2lπ
6l2−π2 if l ≡ 0(mod2)

2k
π

if l ≡ 1(mod2).

(3)

Ec(C
−
k−l) + Ec(C

+
l ) ≤

 2k
π

if l ≡ 0(mod2)

2k
π

+ 2(k−l)π
6(k−l)2−π2 if l ≡ 1(mod2).

(4)

Ec(C
−
k−l) + Ec(C

−
l ) ≤

 2k
π

+ 2lπ
6l2−π2 if l ≡ 0(mod2)

2k
π

+ 2(k−l)π
6(k−l)2−π2 if l ≡ 1(mod2).
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Proof. (1) Let l ≡ 0(mod 2). Then k − l ≡ 1(mod 2). By using (3.5) and (4.2) we get:

Ec(C
+
k−l) + Ec(C

+
l ) = cot

π

2(k − l)
+ 2 cot

π

l

≤ 1
π

2(k−l)
+ 2

(
1
π
l

)
=

2k

π
.

Next, if l ≡ 1(mod 2) then k − l ≡ 0(mod 2). By (3.5) and (4.2), we see that:

Ec(C
+
k−l) + Ec(C

+
l ) = 2 cot

π

(k − l)
+ cot

π

2l

≤ 2
1
π

(k−l)
+

1
π
2l

=
2k

π
.

(2) If l ≡ 0(mod 2) then k − l ≡ 1(mod 2). From (3.5) and (3.9) we get:

Ec(C
+
k−l) + Ec(C

−
l ) = cot

π

2(k − l)
+ 2 csc

π

l
.

Applying the inequalities (4.1) and (4.2), we obtain

Ec(C
+
k−l) + Ec(C

−
l ) ≤ 2

(
1
π

2(k−l)

)
+ 2

(
1

π
l

(
1− π2

6l2

))
=

2k − 2l

π
+

2l

π
+

2lπ

6l2 − π2

=
2k

π
+

2lπ

6l2 − π2
.

Next if l ≡ 1(mod 2) then k − l ≡ 0(mod 2). From (3.5), (3.9) and (4.2), we get

Ec(C
+
k−l) + Ec(C

−
l ) = 2 cot

π

k − l
+ cot

π

2l

≤ 2k

π

(3) If l ≡ 0(mod 2) then k − l ≡ 1(mod 2). From (3.5), (3.9) and (4.2), we obtain

Ec(C
−
k−l) + Ec(C

+
l ) = cot

π

2(k − l)
+ 2 cot

π

l

≤

(
1
π

2(k−l)

)
+ 2

(
1
π
l

)
=

2k

π
.
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Next if l ≡ 1(mod 2) then (3.5) and (3.9) imply that

Ec(C
−
k−l) + Ec(C

+
l ) = 2 csc

π

k − l
+ cot

π

2l
.

By using inequalities (4.1) and (4.2), we find that:

Ec(C
−
k−l) + Ec(C

+
l ) ≤ 2

 1

π
k−l

(
1− π2

6(k−l)2

)
+

1
π
2l

=
2(k − l)

π
+ 2

(
π(k − l)

6(k − l)2 − π2

)
+

2l

π

=
2k

π
+

2π(k − l)
6(k − l)2 − π2

.

(4) If l ≡ 0(mod 2) then by using (3.9), (4.1) and (4.2), we obtain

Ec(C
−
k−l) + Ec(C

−
l ) = 2 cot

π

2(k − l)
+ 2 csc

π

l

≤ 1
π

2(k−l)
+ 2

(
1

π
l

(
1− π2

6l2

))

=
2(k − l)

π
+

2l

π
+

2lπ

6l2 − π2

=
2k

π
+

2lπ

6l2 − π2
.

If l ≡ 1(mod 2) then by (3.9), (4.1) and (4.2), it holds that

Ec(C
−
k−l) + Ec(C

−
l ) = 2 csc

π

k − l
+ cot

π

2l

≤ 2

 1

π
k−l

(
1− π2

6(k−l)2

)
+

1
π
2l

≤ 2k

π
+

2(k − l)π
6(k − l)2 − π2

.

This completes the proof.

Lemma 4.5. Let l ∈ {2, 3} or k − l ∈ {2, 3} such that k ≥ 4 then following inequalities

hold for vertex disjoint directed cycles:

(1) If k ≡ 0(mod 2) then

Ec(C
−
k−2) + Ec(C

−
2 ) ≥ Ec(Ck−l) + Ec(Cl).

43



(2) If k ≡ 1(mod 2) then

Ec(Ck−2) + Ec(C
+
2 ) ≥ Ec(Ck−l) + Ec(Cl).

Proof. (1). If l ∈ {2, 3} then (3.5) and (3.9) imply

Ec(C
−
2 ) ≥ Ec(Cl). (4.4)

Also k − 2 ≥ k − l. By Theorem 3.13, we obtain

Ec(C
−
k−2) ≥ Ec(Ck−l). (4.5)

By combining inequalities (4.4) and (4.5), we get

Ec(C
−
k−2) + Ec(C

−
2 ) ≥ Ec(Ck−l) + Ec(Cl).

We can similarly get the above inequality if k − l ∈ {2, 3}. Part (2) can be proved

analogously.

Lemma 4.6. For l, k − l ≥ 4, the following inequalities hold for vertex disjoint cycles:

(1) If k ≡ 0(mod 2) then

Ec(C
−
k−2) + Ec(C

−
2 ) ≥ Ec(Ck−l) + Ec(Cl). (4.6)

(2) If k ≡ 1(mod 2) then

Ec(Ck−2) + Ec(C
−
2 ) ≥ Ec(Ck−l) + Ec(Cl). (4.7)

Proof. (1). Let k ≡ 0(mod 2). In this case k − 2 ≥ 6. Using Lemma 4.2 we have

Ec(C
−
k−2) + Ec(C

−
2 ) ≥ 2k

π
− 4

π
+ 2

=
2k

π
+ 0.72. (4.8)

On the other hand, assume that l ≡ 0(mod 2). Then l, k − 4 ≥ 4. Lemma 4.3 implies

Ec(C
+
k−l) + E(C+

l ) ≤ 2k

π
. (4.9)
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Futhermore, applying Lemma 4.3 and Lemma 4.1, we obtain

Ec(C
+
k−l) + Ec(C

−
l ) ≤ 2k

π
+

2lπ

6l2 − π2

≤ 2k

π
+

8π

6(4)2 − π2

=
2k

π
+ 0.29.

(4.10)

Similarly, we obtain

Ec(C
−
k−l) + Ec(C

+
l ) ≤ 2k

π
+ 0.29, (4.11)

Ec(C
−
k−l) + Ec(C

−
l ) ≤ 2k

π
+ 0.59. (4.12)

Then the required inequality (4.6) follows from (4.8)–(4.12).

Next, let l ≡ 1(mod 2). Then l ≥ 5 and k − l ≥ 7. Lemma 4.3 implies that

Ec(Ck−l) + Ec(Cl) ≤
2k

π
. (4.13)

The required inequality (4.6) follows from (4.8) and (4.13)

(2). Let k ≡ 1(mod 2). In this case k − 2 ≥ 7. Using Lemma 4.2 we have

Ec(Ck−2) + Ec(C
−
2 ) ≥ 2k

π
− 4

π
+ 2− 0.429π

2(k − 2)

=
2k

π
+ 0.63.

On the other hand if l ≡ 0(mod 2) then k − l ≥ 5. Lemma 4.4 implies that

Ec(C
+
k−l) + Ec(C

−
l ) ≤ 2k

π
. (4.14)

Furthermore, applying Lemma 4.4 and Lemma 4.1, we obtain

Ec(C
+
k−l) + Ec(C

−
l ) ≤ 2k

π
+

2lπ

6l2 − π2

≤ 2k

π
+

2(5)π

6(5)2 − π2

=
2k

π
+ 0.22.

(4.15)
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Analogously, we can show the following inequalities:

Ec(C
−
k−l) + Ec(C

+
l ) ≤ 2k

π
, (4.16)

Ec(C
−
k−l) + Ec(C

−
l ) ≤ 2k

π
+ 0.22. (4.17)

Inequality (4.7) follows from (4.14)–(4.17).

If l ≡ 1(mod 2) then k − l ≡ 0(mod 2). In this case we have l ≥ 5 and k − l ≥ 4.

Lemma 4.4 gives us:

Ec(C
+
k−l) + Ec(C

+
l ) ≤ 2k

π
. (4.18)

Furthermore, applying Lemma 4.1 and Lemma 4.4, we get

Ec(C
+
k−l) + Ec(C

−
l ) ≤ 2k

π
, (4.19)

Ec(C
−
k−l) + Ec(C

+
l ) ≤ 2k

π
+ 0.22, (4.20)

Ec(C
−
k−l) + Ec(C

−
l ) ≤ 2k

π
+ 0.22. (4.21)

Inequality (4.7) follows from (4.14) and (4.18)– (4.21).

Combining Lemma 4.5 and Lemma 4.6, we get the following theorem.

Theorem 4.7. For k, k − l ≥ 2, the following hold for vertex disjoint directed cycles.

(1) If k ≡ 0(mod 2) then

Ec(C
−
k−2) + Ec(C

−
2 ) ≥ Ec(Ck−l) + Ec(Cl).

(2) If k ≡ 0(mod 2) then

Ec(Ck−2) + Ec(C
−
2 ) ≥ Ec(Ck−l) + Ec(Cl).

We finally give our main theorem.

Theorem 4.8. Let S ∈ Sk with signed directed cycles Cj1 and Cj2, where 2 ≤ j1, j2 ≤ k−2.

(1) S has smallest iota energy when Cj1 = Cj2 = C+
2 .
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(2) If k ≡ 0(mod 2) then S has largest iota energy when Cj1 = C−k−2 and Cj2 = C−2 .

(3) If k ≡ 1(mod 2) then S has largest iota energy when Cj1 = Ck−2 and Cj2 = C−2 .

Proof. Let S ∈ Sk with signed directed cycles Cj1 and Cj2 , where 2 ≤ j1, j2 ≤ k − 2. It

follows from Theorem 2.3 that

Ec(S) = Ec(Cj1) + Ec(Cj2). (4.22)

(1) We know that E(C+
2 ) = 0. Thus (4.22) shows that S has smallest iota energy when

Cj1 = Cj2 = C+
2 .

(2) If k ≡ 0(mod 2) then let Cj1 = C−k−2 and Cj2 = C−2 . We take a sidigraph H ∈ Sk

with signed directed cycles Cm1 and Cm2 , where 2 ≤ m1,m2 ≤ n− 2. Then

Ec(S) = Ec(C
−
k−2) + Ec(C

−
2 ), (4.23)

Ec(H) = Ec(Cm1) + Ec(Cm2). (4.24)

By Theorem 4.7, we find that

Ec(C
−
k−2) + Ec(C

−
2 ) ≥ Ec(Cm1) + Ec(Cm2).

By above inequality, we see that Ec(S) ≥ Ec(H). Thus S has largest iota energy

among all sidigraphs of Sk.

(3) can be obtained analogously.

4.2 Conclusion

In this chapter, we considered a specific class Sk of vertex disjoint bicyclic sidigraphs of

fixed order n ≥ 4. We find sidigraphs with smallest and largest iota energy in Sk. One is

compelled to work on a more general class of bicyclic sidigraphs and find sidigraphs with

extremal iota energy in this general class. We leave this problem to future work.
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