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Abstract 
 
 
 
 
The advancements in technology in recent times have brought a great influx of data. The 

remote sensing image datasets have grown in size and numbers. With this abundance of 

data there comes the problem of retrieving it efficiently for various purposes. Currently, 

substantial endeavors are underway to articulate novel paradigms, techniques, and 

technologies improve this process of retrieval of remote sensing data. The heterogeneity of 

the data and the large semantic gap between text and image modalities makes this an 

inherently challenging task. Standard retrieval techniques are not effective when it comes 

to dealing with multi modal remote sensing data. This thesis introduces a purposefully 

designed framework tailored for the retrieval of targeted images with text query and vice 

versa. The existing techniques in the context of remote sensing text-image retrieval 

predominantly emphasize the utilization of high-level or macro features derived from 

remote sensing (RS) images, consequently resulting in the oversight of pertinent low-level 

or micro features that convey valuable insights into target relationships and saliency. The 

proposed model centers on the extraction of image features, subsequently progressing to 

their cohesive representation dynamic integration. It leverages macro vision features to 

correct micro vision features, additionally macro vision features are enhanced by micro 

vision features of the images. Cutting-edge deep learning methodologies are utilized to 

generate comprehensive representations of both image and text features. After 

successfully representing the image and text queries, their similarity is calculated and the 

results are re-ranked. This re-ranking algorithm leverages the k closest neighbors from the 

retrieval results to conduct a reverse search and, in the process, enhances accuracy through 

the integration of various bidirectional retrieval components. Predictive evaluation metric 

Recall is used to compare results for proposed techniques with conventional technique. 

The proposed solution outperformed on remote sensing datasets: RSICD dataset and 

RSITMD dataset for the text-image retrieval task. 
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Chapter 1 
 

INTRODUCTION 
 
 
 
Remote sensing image datasets have increased exponentially with the advancement in 

satellite or aerial imagery. These images often capture a vast amount of data, and manually 

analyzing them can be time-consuming and error-prone. By using text-image retrieval 

techniques, analysts can quickly identify features of interest, such as land cover types, 

infrastructure, and natural resources. This technique can be useful in a diverse range of 

applications, including environmental monitoring, urban planning, military surveys, and 

disaster response. 

Remote Sensing Cross-Modal Text-Image Retrieval (RSCTIR) is a type of cross-modal 

retrieval that enables rapid and adaptable extraction of information from remote sensing 

(RS) images. RSCTIR is an urgent research hotspot to search for relevant images based on 

query text or RS images provided. With the advancement in technology and the abundance 

of RS data the need has been realized to develop algorithms and systems that allow users to 

search, retrieve, and analyze remote sensing data more effectively, combining the strengths 

of both textual information and image content for various tasks and applications. 

To initiate image retrieval, users are required to input text query to the RSCTIR, depending 

on which related remote sensing image(s) would be sourced from the database. According 

to the kind of such query, the RSCTIR method is systematically categorized into distinct 

classes. User queries may manifest either as images, text, or necessitate concurrent 

processing of both modalities (text and image). This prompts us to categorize RSCTIR into 

distinct classes.  

The first kind of RSCTIR can be based on image query. In this context, the RSCTIR 

system requires users to provide an input image and the aim of the RSCTIR is to retrieve 

most relevant caption(s) from the database. The extraction of image features within this 

category relies exclusively on visual characteristics, encompassing color, texture, contours, 

and shapes. Subsequently, similarity measures are employed to quantify the likeness 
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between the query image and the referenced captions. Similarly, the other kind of RSCTIR 

is based on text query, wherein the user would explain the image in words. The retrieval 

model must comprehend the text query and retrieve the most similar images matching the 

user input. In another type, retrieval is possible both ways i.e., input query text and output 

is image or input query image and output is text. 

There are various approaches to text-image retrieval in remote sensing that exist in the 

literature. One of them is the caption-based method where a caption generator generates RS 

captions and retrieval results are obtained by calculating Bilingual Evaluation Understudy 

(BLEU) [1] score using query text and resultant RS captions. One example of this method 

is remote sensing image captioning model [2] using deep learning and a fully-connected 

convolutional network. Overfitting was a problem in remote sensing image captioning 

which was overcome by the truncated cross-entropy loss [3]. 

In the embedded-based method, feature distance is calculated by projecting the RS image 

and query text into the same high-dimensional space. The issue of multi-scale scarcity and 

redundancy of targets were resolved in the approach Asymmetric Multimodal Feature 

Matching Network (AMFMN) [4]. To resolve the heterogeneity gap by knowledge 

distillation, a fusion-based correlation learning model [5] was proposed. A lightweight and 

faster text-image retrieval model [6] was proposed that used knowledge distillation and 

contrast learning. Many researchers have proposed retrieval frameworks but improvement 

is needed to achieve better retrieval accuracy. 

 

1.1 Motivation and Problem Statement 
 

In Remote Sensing, one of the major issues is the difficulty in identifying and retrieving 

important objects in low-resolution remote sensing images. Target redundancy is an issue 

that needs to be dealt with to reduce computational complexity. In addition to this, large 

targets are described as more probable than small targets. This research minimizes these 

issues by leveraging high-level information to correct low-level information and vice versa. 

It improves the retrieval results by re-ranking the results of bidirectional retrieval. 
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1.2 Objectives 
 
The major objectives of thesis are: - 
 

• To propose a text-image retrieval system that extracts relevant remote sensing 

images efficiently using deep learning. 

 

• To compare proposed algorithm with baseline and recently developed state of the 

art techniques to ensure that our approach outperforms the existing techniques. 

 
 

1.3  Thesis Contribution 
 
To the best of our understanding, the mechanism introduced in this paper has not been 

previously employed or explored in existing literature for remote sensing text-image 

retrieval tasks. 

 

This work makes several noteworthy contributions, outlined as follows: 
 

• We propose a cross-modal text-image retrieval method that includes a sentence 

transformer network to generate text embeddings, Res2Net for macro feature 

extraction of images and GCN for learning relationships between image micro 
features extracted by an object detection model. 

 
• Next, the image high-level features are dynamically fused with low-level features to 

make full use of low-level detailed information of the image. 

 
• Unlike existing work, we employ a post processing step of re-ranking the retrieval 

results in the Similarity Score Matrix. 
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1.4 Thesis Organization 
 
The organizational structure of the thesis is outlined as follows: 
 

• Chapter 1: First chapter is made up of introduction and objectives. It encompasses 

the contributions introduced within the context of this thesis.. 

 

• Chapter 2: In this section, explanation of the background with brief description and 

review of literature along with existing technique and quantitative measures to 

evaluate the proposed technique are discussed in this chapter. 
 

• Chapter 3: In this chapter our proposed remote sensing cross-modal text-image 

retrieval technique is presented. 

 
• Chapter 4: In this chapter, experimentation and analysis of outcomes are given to 

evaluate the standing of our technique with conventionally developed methods. 
 

• Chapter 5: This chapter gives a precise conclusion and impact of our thesis for 

cross-modal text-image retrieval techniques in remote sensing. The future work 
areas are revealed in this chapter. 
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Chapter 2 
 

Preliminaries 
 
 
The rise of multi-modal remote sensing data has spurred research in vision-language tasks 

for remote sensing applications [7]. Advancements in creating more robust image features, 

developing joint embedding spaces, and addressing the semantic gap in multi-modal data 

have the potential to revolutionize tasks like remote sensing cross-modal retrieval, visual 

question answering [8,9] and image captioning [10,11], with wide-ranging applications 

across various domains. 

 

2.1 Text-Image Retrieval Methods 
 
Text-image retrieval is a difficult task attributable to the heterogeneity of the data and the 

large semantic gap among text and image modalities. There have been multiple attempts at 

proposing better retrieval models for natural images which are now benchmark retrieval 

methods [12,13,14]. 

In the field of remote sensing, most of the research has focused on matching similar types 

of data within images, termed as remote sensing image retrieval (RSIR). This is because 

generating textual descriptions for remote sensing images is more intricate in comparison 

to natural images. Additionally, remote sensing images often hold complex and ambiguous 

meanings from a broader perspective [15]. 

Text image retrieval on remote sensing data is an even complex task due to the low 

resolution remote sensing images that cover large areas and contain millions of pixels. 

Following the advent of deep learning, retrieval in the remote sensing domain has also seen 

progress [16]. The different methods of bidirectional text-image retrieval as shown in 

figure 2.1 are namely caption-based retrieval, embedding-based retrieval, attention-based 

retrieval, multi-modal fusion based retrieval, graph-based retrieval, hashing-based retrieval 

with multiple other techniques employed like contrastive learning etc. 
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Figure 2.1: Types of cross-modal bi-directional text-image retrieval methods 

 

2.2 Caption-Based Text-Image Retrieval 
 
Image retrieval based on text descriptions is challenging due to the fundamental difference 

between visual and textual data. In recent computer vision research, significant work has 

been dedicated to addressing this challenge and narrowing the gap between these two 

modalities. Two step caption based retrieval methods are the most widely accepted and first 

used retrieval methods for remote sensing datasets. The captions are first generated by 

caption generators and then query text and generated captions are compared. Image 

captioning collaborates Computer Vision (CV) and Natural Language Processing (NLP) to 

describe images. Attention-based Encoder-Decoder model, which utilizes an attention 

mechanism and LSTM for word generation, is used for image captioning [17]. A mask-

guided transformer network featuring a topic token to improve the accuracy and diversity 

of remote sensing image captioning introduces multi-head attention for feature extraction 

and to capture inter-object relationships, and adds a topic token in the transformer encoder 

to highlight high-level semantic information [18]. 

 
 
2.3 Embedding-Based Text-Image Retrieval 
 
Embedding based methods for retrieval are better than caption based methods since image 

and textual descriptions are mapped into a common embedding space, where their 

similarity measurement can be done based on their Euclidean distance or cosine similarity. 

Unlike caption based methods, Fusion-based Correlation Learning Model (FCLM) 
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improves the performance of image-text matching tasks by learning a common feature 

space and minimizing the disparity between distinct and amalgamated feature 

representations [19]. 

 

2.4 Attention-Based Text-Image Retrieval 
 
The attention based methods of retrieval selectively focus on parts of an image or textual 

description that are most relevant to a given query. Cross-Attention Based Image Retrieval 

(CABIR) utilizes the cross-attention mechanism that facilitates cross-modal information 

interaction, directing the network through textual semantics to assign weights and 

selectively filter out extraneous features in image regions. This process mitigates the 

impact of irrelevant scene semantics on retrieval, enhancing the precision of the system 

[20]. FAAMI model [21] presents an approach for achieving detailed semantic alignment 

by effectively combining information at multiple scales. It utilizes a cross-attention 

network with a limited depth to capture the nuanced semantic connections between image 

regions of various scales and the corresponding textual descriptions. 

 
2.5 Multi-Modal Fusion Based Text-Image Retrieval 
 
Both textual and visual features are encoded into a joint representation space and combined 

to improve the similarity measure used to retrieve relevant images or textual descriptions. 

A single-stage solution for image retrieval by amalgamating both local and global 

information to create concise representations of images, the Deep Orthogonal Local and 

Global (DOLG) architecture, which does local representation extraction using multi-atrous 

convolutions and self-attention. Orthogonal components are subsequently derived from the 

local data and concatenated with the global representation to generate the final image 

representation [22]. MTGFE model [23] consists of a unimodal encoder comprising of ViT 

[24] and BERT [25] transformer models for images and texts respectively and a 

multimodal fusion encoder composed of six Transformer layers, leveraging detailed 

features like image segments and text tokens. 
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2.6 Graph-Based Text-Image Retrieval 
 
Knowledge-aware Cross-modal Retrieval (KCR) method for remote sensing cross-modal 

text-image retrieval, addresses the challenge of information asymmetry between texts and 

images by extracting pertinent information from an external knowledge graph [26]. Graph 

neural networks are also being applied in the field of remote sensing text image retrieval 

[27]. Yao et al. introduced a macro hypergraph network and a micro hypergraph network to 

characterize the inter-object relationships in remote sensing images at varying scales [28]. 

 

2.7 Hashing-Based Text-Image Retrieval 
 
A Deep Unsupervised cross-modal Contrastive Hashing model comprises of a feature 

extraction block and a hashing block, incorporating contrastive objectives, adversarial 

objectives, and binarization objectives to produce cross-modal binary hash codes [29]. An 

advanced convolutional neural network framework for deep hashing, rooted in supervised 

contrastive learning, developed to enhance the discrimination of image features. The 

framework encompasses a module dedicated to fusing global and local features, a spatial 

attention mechanism, and a supervised contrastive learning approach [30]. 

 

2.8 General Text-Image Retrieval Methods 
 

Scale-Semantic Joint Decoupling Network (SSJDN) for text-image retrieval in remote 

sensing, combines the ideas of "scale decoupling" and "semantic decoupling" to boosts 

representation capability [31]. End-to-End Framework Based on Vision-Language Fusion 

(EnVLF) consists of two separate uni-modal encoders for image and text, and a multi-

modal encoder for fusion. The framework utilizes a vision transformer module is employed 

for capturing image local features, in lieu of utilizing a pre-trained object detection model, 

bridging the disparity in training performance between the object detector and retrieval 

model. The multi-modal encoder improves the ranking performance after retrieval 

processing [32]. MCRN achieves competitive outcomes through implementation of 

multitask learning for semantic alignment [33]. Parameter-Efficient Transfer Learning 

(PETL) model [34], transfers knowledge in the domain of visual and language 

understanding transitioning from the natural domain to the remote sensing (RS) domain, 
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particularly for the task of text-image retrieval. RemoteCLIP [35] undertakes a process of 

continuous pretraining, where the CLIP model is tailored to be domain-specific, focusing 

on the remote sensing domain. Hypersphere-Based Visual Semantic Alignment framework 

[36], integrated with Curriculum Learning focuses on aligning remote sensing image-text 

pairs in a progressive manner, advancing to more challenging cases. Feature uniformity 

strategy minimizes instances of feature mismatches. Key-Entity Attention mechanism 

mitigates information imbalances among different modalities. 

 

2.9 Text Feature Extraction 
 
Sequential modeling networks like RNN and LSTM brought a revolution in the domain of 

Natural Language Processing. Word embedding generation made a significant impact on 

text feature extraction accuracy. BERT [25] is build upon transformer encoders able to 

understand the text semantics. Sentence transformer models further improved the text 

embedding generation. The IEFT leverages the transformer-based models and self-attention 

mechanism to learn images features and textual representations simultaneously, ensuring 

semantic consistency [37]. A composite embedding model, comprising language and vision 

transformer encoders, is designed to align the visual representations of remote sensing (RS) 

images with their corresponding textual descriptions [38]. TBFDR addresses this issue by 

segregating features into modal-invariant and modal-heterogeneous components, and then 

reconstructing the representations to preserve the information [39]. 

 

2.10 Vision Feature Extraction 
 
The Deep Learning domain revolutionized with the arrival of the AlexNet algorithm [40] in 

2012. Since then many deep convolutional network networks have improved the image 

feature extraction like VGGNet [41] and ResNet [42]. The introduction of vision 

transformers has made a significant impact in computer vision and image processing [24]. 

These transformer networks originally made for natural language processing tasks have 

made their way into vision applications too. 
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Chapter 3 
 

 
 

RS Cross-Modal Text-Image Retrieval 
 
 
 

3.1 Proposed Methodology 
 
This chapter describes the proposed algorithm to achieve text-image retrieval with accurate 

predictions and high performance. In literature high-level vision feature based techniques 

are used but the drawback of macro vision feature based is that it does not acknowledge the 

object level relationships of targets in the visual data. Contrary to present literature our 

approach utilizes high-level information to supplement low-level information and low-level 

information to supplement high-level information. We apply state-of-the-art text and image 

feature extraction networks to our research.  

The proposed model integrates denoised micro vision features extracted by graphical 

convolution and macro vision features extracted via residual convolution framework in 

Multi-Grade Dynamic Feature Integration (MDFI) block rectifying macro vision features 

with micro vision features and vice versa. Siamese and triplet network architectures yield 

sentence embeddings that capture semantically meaningful information. Sentence and 

image similarity are calculated and the retrieval results are re-ranked as a final step. 

Looking at the literature review of RSCTIR above, RSCTIR is a research hotspot in the 

field of retrieval systems. The improvement of bi-directional RSCTIR systems necessitates 

continued efforts on the behalf of the researchers. In bi-directional cross-modal text-image 

retrieval systems it all comes down to creating meaningful relationships between text 

descriptions and image features, as shown in Figure 3.1. 
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Figure 3.1: Typical bidirectional text-image retrieval system 

 

This section elucidates the conceptual alignment of the proposed framework, wherein 

Res2Net serves as the tool for extracting image macro features, Graph Convolution 

Network (GCN) for extracting image micro features, while cutting-edge natural language 

processing techniques, specifically SBERT, are employed for the formulation of text 

embeddings. 

Figure 3.2 offers a thorough illustration, providing both a comprehensive overview and a 

justified rationale for the incorporation of deep learning techniques within the proposed 

framework, aligning with the objectives of achieving dual modality goals. The main 

objective of the proposed framework is to generate a dynamically integrated visual feature 

containing both the micro and macro level information of the image and semantically 

significant text descriptions then do similarity calculation between image query and text 

description in the dataset and if query is text then with image in database. 
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Figure 3.2: Overview of suggested framework 

 

It comprises of three major sub-sections: (1) image features extraction (2) generation of 

text embedding, and (3) similarity of text and image features. In this research, we employ 

Res2Net to enhance the extraction of image macro features, graph convolution for learning 

relationship of image micro features. Subsequently, we utilize transformer-based 

representations to generate embeddings for text queries. Finally, we introduce a dynamic 

integration technique to fuse the image features and obtain a unified representation before 

calculating similarity with the text features. Table 3.1 records all the notations mentioned in 

the thesis. 

 

Table 3.1: Notations Table 
Symbols Description 

DS Extent of similarity 
imac Macro visual features 
imic Micro visual features 
Α CNN model for macro visual feature extraction 
Β GCN for micro vision feature extraction 
O Set of objects or micro features detected in images 

𝑑𝑑𝐴𝐴(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑1, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑2 ) Distance between image co-ordinates 
Σ Sigmoid Activation Function 
A Adjacency Matrix 
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D Degree Matrix of A 
T Text Features 
Γ SBERT model for text embedding generation 
𝑖𝑖𝑚𝑚𝑚𝑚𝑐𝑐𝑆𝑆𝐴𝐴  Self-attended macro vision features 
𝑖𝑖𝑚𝑚𝑖𝑖𝑐𝑐𝑆𝑆𝐴𝐴  Self-attended micro vision features 
SA Self attention block 
GA Guided attention block 
𝑖𝑖𝑚𝑚𝑚𝑚𝑐𝑐𝑆𝑆𝑆𝑆𝐴𝐴  Self-guided vision macro feature 
𝑖𝑖𝑚𝑚𝑖𝑖𝑐𝑐𝑆𝑆𝑆𝑆𝐴𝐴  Self-guided vision micro feature 
𝑖𝑖𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚𝑎𝑎𝑎𝑎  Attended  macro vision feature 
𝑖𝑖𝑚𝑚𝑖𝑖𝑐𝑐𝑚𝑚𝑎𝑎𝑎𝑎  Attended  micro vision feature 
icomb Combination of Attended vision feature 

𝜔𝜔1,𝜔𝜔2  Learnable Dynamic Weights 
I Vision Features after MFDI block 

L(T,I) Triplet Loss 
 
 
 
 

3.2 Vision Features Generation 
 

The proposed method extracts the query image macro features via Res2Net which is used 

as backbone in the framework. Res2Net [43] is a version of convolutional neural network 

model presented in 2021 for visual features extraction. Unlike the usual layered layout of 

convolutional neural networks, it has revolutionized deep learning by establishing a 

hierarchical network of residual-like connections encapsulated within a singular residual 

block. The residual-like connections within residual blocks increase receptive fields of the 

neural network layers. Res2Net shines on segmentation types of tasks that capture different 

levels of scale within the image at a more fine-grained level. The Res2Net introduces a 

novel dimension, referred to as "scale," which proves to be a crucial and more impactful 

factor, complementing the established dimensions of depth, width, and cardinality. Because 

of its enhanced multi-scale capability, Res2Net generates activation maps that exhibit a 

tendency to encompass the entirety of objects, in contrast to ResNet, where activation maps 

typically focus on specific parts or regions of objects. Validation losses plummet when data 

is fed to Res2Net after substantial data augmentation. The relationship between micro 

targets in images are modeled using Graph Convolutional Network (GCN) extracted using 

an object detector. 
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3.3 Text Features Generation 
 
The proposed method operates on dual modalities, comprising both images and textual 

queries.  Consequently, alongside the extraction of image features, the model must also 

process the input text query. The textual query encapsulates the conceptual elucidation of 

the user input image. Simultaneously with image feature extraction, we utilized 

transformation-based techniques to extract text features for inputting image queries. 

SBERT, as described in [44], is implemented as SBERT client on a host machine 

transforming encoding of sentences of varying lengths into a fixed-length feature vector. 

SBERT is founded upon the transformer's encoder architecture, enabling it to effectively 

capture the linguistic semantics and contextual meanings. SBERT is trained on SNLI [45] 

and Multi-Genre NLI [46] corpus for around 570K and 430K sentence-pairs with 

entailment, contradiction and neutral labels. SBERT incorporates a pooling operation into 

the output of BERT [25] or RoBERTa [47] in order to generate a sentence embedding of a 

consistent, fixed size. Siamese and triplet networks [48], introduced in 2015, are employed 

in SBERT to refine BERT or RoBERTa output. SBERT is well known for being applied in 

scenarios characterized by computationally intensive tasks to be computed using BERT. 

 

3.4 Dynamic Fusion of Multi-level Features 
 

Once enriched features at each high and low level of the individual image have been 

obtained, the next step involves combining these features to obtain a meaningful combined 

learned vision feature representation. Various techniques exist for creating a joint 

representation of multi-level vision features, such as concatenation, element-wise addition, 

or multiplication, and attention mechanisms. Our approach makes use of all these 

approaches for dynamic integration of the vision features. The proposed Multi-Grade 

Dynamic Feature Integration (MDFI) block can be broken down into two key stages: 

feature reconstruction and dynamic integration. In the first stage, MDFI employs SA (Self 

Attention) and GA (Guided Attention) modules to transfigure the micro and macro vision 

features. The SA mechanism assesses internal similarity of the macro and micro vision 

features. Subsequently, in the second stage, it leverages high-level information to enhance 
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low-level information and utilizes the latter to refine and improve the former by learnable 

weights obtained by linear transformation of dynamic addition of both level features. 

 

3.5 Multimodal Rerank of Bi-directional Retrieval Results 
 

In the context of retrieval tasks, a post-processing step has been introduced to enhance 

retrieval results. This method optimizes the results via amalgamating information regarding 

multiple variables through an additional sorting step. In a typical retrieval task, the 

calculation of similarity among M textual queries and N visual queries results in a 

similarity score matrix. The top-k outcomes or leading k images retrieved for a given text 

query within the complete dataset is the goal. This retrieval approach remains consistent 

when employing reverse search for text retrieval using images. Nonetheless, while the 

accuracy of this retrieval model is indisputable, it overlooks the inherent connection among 

bidirectional retrieval that plays a pivotal role in enhancing retrieval accuracy. Specifically, 

the bidirectional retrieval process should ensure that when a text and an image correspond, 

they are mutually retrievable. Cross-modal rerank algorithm employs the top-k positions to 

conduct a reverse search, the ultimate outcome of the retrieval process is determined based 

on the ranking placement within the reverse retrieval outcomes. While the algorithm for 

Reranking in Cross-Modal Retrieval offers some improvement in retrieval performance, it 

does not completely exploit the knowledge contained within the similarity score matrix, 

leaving room for further enhancement which is proposed here to employ candidates for 

reverse search and enhance retrieval outcomes by taking into account various ranking 

factors. 
 

3.6 Mathematical Illustration 
 
Following the detailed description of feature extraction for each modality, this section will 

provide a mathematical exposition of the suggested framework. In the cross-modal text 

image retrieval process, similarity is calculated between query text tq and database images 

I= [ i1, i2, i3,..., in ]. Consequently, the most similar image from database is is retrieved. As 

is the case with most retrieval problems, our objective is to have the model retrieve desired 
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images that are relevant to the text queries given as input and vice versa. This process can 

be depicted mathematically as: 

 𝐷𝐷𝑆𝑆  = cos(𝑖𝑖, 𝑎𝑎) (1)  

Here Degree of Similarity (DS) is represented as cosine similarity of image i and text t. 

In the context of macro vision feature generation, our proposed model relies on Res2Net as 

its foundational backbone. The input query image, initially sized at 256x256, undergoes 

several pre-processing transformations as an integral part of our data augmentation 

technique. Res2Net is a residual network design consisting of hierarchical residual 

connections within residual blocks. In Res2Net the bottleneck block of the common ResNet 

architecture standard 3x3 filter is replaced with 3x3 convolution of n number of feature 

subsets split after 1x1 convolution. The equation below expresses how macro visual 

features for the ith image are generated: 

 𝑖𝑖𝑚𝑚𝑚𝑚𝑐𝑐 = 𝛼𝛼(𝑖𝑖𝑖𝑖) (2)  

Here imac shows the macro vision features of the input image query and Res2Net block is 

shown using α. To enhance reader comprehension, we have included an architectural 

diagram of the backbone used for macro vision feature extraction in our proposed model; 

this is shown in figure 3.3 

. 

 
Figure 3.3: Res2Net Architecture Diagram 

 

The relationship between the micro vision features in the image is learnt via graph 

convolution of the targets extracted using an object detection model trained using the 
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DOTA [49] dataset. The objects are represented as vertices of the graph and the 

relationship among them is represented by their corresponding edges. The equation below 

shows how micro vision features Imic for the ith image are generated: 

 𝑂𝑂 = Detect(𝑖𝑖𝑖𝑖) (3)  

Here O = { Obj1, Obj2,...,Objn} is denoted as the set of n number of objects detected by the 

object detector in the ith image. 

 𝑖𝑖𝑚𝑚𝑖𝑖𝑐𝑐  = β(𝑂𝑂) (4)  

For the resultant X at the (l+1)th layer of the Graph Convolutional Network (GCN) denoted 

by β, we establish the following definition: 

 𝑋𝑋(𝑙𝑙+1)  =  𝜎𝜎(𝐷𝐷−1
2(𝐴𝐴 + 𝐼𝐼)𝐷𝐷−1

2𝑋𝑋(𝑙𝑙)𝑊𝑊(𝑙𝑙) (5)  

We define W(l) as the weight matrix that can be learned for the lth layer, and σ represents 

the Sigmoid activation function. The input features X(l) for the GCN are derived from 

various attributes of the target within the remote sensing  image, including its position, 

category, probability, and area size. The normalization of matrix A is achieved through the 

utilization of its Degree Matrix, denoted as D. The construction of the adjacency matrix A 

relies on the inter-target distances observed in the remote sensing image, while I denotes 

the identity matrix. 

The distance dA between two objects in an image with coordinates coord1 and coord2 

should be utilized to strengthen relationship between close targets and is represented by the 

following equation: 

 𝑑𝑑𝐴𝐴(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑1, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑2)  = e −∥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑 1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑 2∥2
2 (1−∥ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑2 ∥2

2) (6)  

In addition to extracting visual features from the query image, our proposed model 

simultaneously incorporates the textual input query. To achieve our ultimate objective, it is 

imperative to extract comprehensive features from the query text. To fulfill this role, we 

employ a transformer based model Siamese Bidirectional Encoder Representation from 

Transformer (SBERT) [44], as it excels in capturing linguistic nuances and contextual 

information. SBERT eliminates the need for local implementation and saves computational 

resources. In mathematical terms, the formulation of text query features can be represented 

as follows: 

 𝑎𝑎 = γ(𝑎𝑎𝑖𝑖) (7)  
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Here t represents a text query feature having dimension dependent on the SBERT model. In 

the case of "all-MiniLM-L6-v2" model the embedding dimension is 384. The schematic 

representation of our linguistic model is depicted in the figure 3.4. 

 

 
Figure 3.4: SBERT Architecture Diagram 

 

Following the extraction of features from both individual modalities, the next step is to 

combine the micro and macro vision features. The micro vision features influence macro 

vision features, reflecting the details in the visual domain. Various techniques in the 

literature, such as element-wise multiplication, concatenation, and dynamic addition, are 

commonly used to merge vision features. However, our approach explores an attention 

based feature integration mechanism for this fusion. We employ a two step process 

involving attention mechanisms and dynamic integration of multi-level vision features. Self 

attention is applied on micro and macro features individually by internal similarity 

calculation and then guided attention is used to learn information by similarity calculation 

of the multi-level vision features. Then the transformed vision features are superimposed 

and learnable weights are obtained by linear transformation. The initial step involves 

passing the vision features through SA block, as defined by the equation: 

 𝑖𝑖𝑚𝑚𝑚𝑚𝑐𝑐𝑆𝑆𝐴𝐴  = SA(𝑖𝑖𝑚𝑚𝑚𝑚𝑐𝑐 ), 𝑖𝑖𝑚𝑚𝑖𝑖𝑐𝑐𝑆𝑆𝐴𝐴  = SA(𝑖𝑖𝑚𝑚𝑖𝑖𝑐𝑐 ), (8)  
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Now the self-attended vision features are passed through GA block resulting in self-guided 

vision features shown as: 

 𝑖𝑖𝑚𝑚𝑚𝑚𝑐𝑐𝑆𝑆𝑆𝑆𝐴𝐴  = GA�𝑖𝑖𝑚𝑚𝑚𝑚𝑐𝑐𝑆𝑆𝐴𝐴 , 𝑖𝑖𝑚𝑚𝑖𝑖𝑐𝑐𝑆𝑆𝐴𝐴 � , 𝑖𝑖𝑚𝑚𝑖𝑖𝑐𝑐𝑆𝑆𝑆𝑆𝐴𝐴  = GA�𝑖𝑖𝑚𝑚𝑖𝑖𝑐𝑐𝑆𝑆𝐴𝐴 , 𝑖𝑖𝑚𝑚𝑚𝑚𝑐𝑐𝑆𝑆𝐴𝐴 � (9)  

Approaching the end of the first step of the dynamic feature integration block information 

interaction between micro and macro features is carried out as: 

 𝑖𝑖𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚𝑎𝑎𝑎𝑎  = 𝑖𝑖𝑚𝑚𝑚𝑚𝑐𝑐  
𝑆𝑆𝑆𝑆𝐴𝐴 ⨂ 𝑖𝑖𝑚𝑚𝑖𝑖𝑐𝑐𝑆𝑆𝑆𝑆𝐴𝐴 , 𝑖𝑖𝑚𝑚𝑖𝑖𝑐𝑐𝑚𝑚𝑎𝑎𝑎𝑎  = 𝑖𝑖𝑚𝑚𝑖𝑖𝑐𝑐  

𝑆𝑆𝑆𝑆𝐴𝐴 ⊕  𝑖𝑖𝑚𝑚𝑚𝑚𝑐𝑐𝑆𝑆𝑆𝑆𝐴𝐴  (10)  

While multi-level features exhibit improved performance following interaction, there 

remains a requirement to obtain a joint representation of image features. To achieve this, 

we initially combine these two level features to create a unified vision information 

representation, denoted as icomb. Subsequently, we derive learnable dynamic weights, 

denoted as ω through a linear transformation applied to icomb. These dynamic weights are 

then employed to produce the fused feature representation, denoted as i. 

 𝑖𝑖𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐  = 𝑖𝑖𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚𝑎𝑎𝑎𝑎  ⊕  𝑖𝑖𝑚𝑚𝑖𝑖𝑐𝑐𝑚𝑚𝑎𝑎𝑎𝑎  (11)  

 𝜔𝜔1,𝜔𝜔2  = Softmax(𝜎𝜎(𝑖𝑖𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐 𝑊𝑊𝑥𝑥 )𝑊𝑊𝑦𝑦 ) (12)  

 𝑖𝑖 = (𝜔𝜔1 ⨂ 𝑖𝑖𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚𝑎𝑎𝑎𝑎 )  ⊕  (𝜔𝜔2 ⨂ 𝑖𝑖𝑚𝑚𝑖𝑖𝑐𝑐𝑚𝑚𝑎𝑎𝑎𝑎 ) (13)  

In the given context, where Wx and Wy represent weight matrices and Softmax activation 

function is applied to activate the resultant fused vision feature as a result of the MDFI 

module proposed in this study vision features masked by information at micro level and 

macro level information is guided by micro level features of the images. 

For the post-processing re-ranking method, i2t and t2i ranking information is fused in the 

primary similarity score matrix in addition to a crucial component to improve reranking 

performance. In the i2t case, Ri2t(i, k) is established as a query within the primary similarity 

score matrix Sp, where i and k refer to the selection of the top k closest neighbors. 

 𝑎𝑎1, … , 𝑎𝑎𝑚𝑚 , . . . , 𝑎𝑎𝑘𝑘  =  𝑅𝑅𝑖𝑖2𝑎𝑎(𝑖𝑖, 𝑘𝑘) (14)  

Here, tm represents the text that exhibits the mth level similarity to the query image. Here 

ranking position P is initially acquired for each candidate text, where P falls within the 

range of (0, 1, ..., M). To effectively harness this ranking information, we introduce the i2t 

component, denoted as ci2t, to make full use of this valuable data. 

 𝑐𝑐𝑖𝑖2𝑎𝑎  = 𝑒𝑒−ξ(P+1) (15)  

The parameter ξ represents the ranking coefficient. The primary objective concerning this 

operation is standardizing the ranking statistics in the image-to-text (i2t) direction, where 
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the highest-ranked text candidates receive a top i2t component. Subsequently, utilize the 

candidates identified in the preceding part for reverse searching. When conducting a query 

using a specific text, denoted as tm, we define Rt2i(tq, k) as the querying process within the 

similarity score matrix SP using tm. 

 𝑖𝑖1, … , 𝑖𝑖𝑛𝑛 , . . . , 𝑖𝑖𝑘𝑘  =  𝑅𝑅𝑎𝑎2𝑖𝑖(tm , 𝑘𝑘) (16)  

Where k denotes the first k closest neighbors, and in is the closest neighbor image. For each 

retrieved image, the k closest neighbor text is identified, and consequently, the k closest 

neighbor image through reverse retrieval approach is determined. Simultaneously, the 

position Lq of the query image Iq within the k closest neighbor images is established. 

Accordingly, we formally define the t2i component as follows: 

 𝑐𝑐𝑎𝑎2𝑖𝑖  = �𝑒𝑒
−ξ(P+1), 𝑖𝑖 𝑖𝑖𝑛𝑛 𝑅𝑅𝑎𝑎2𝑖𝑖(tm , 𝑘𝑘)

1, 𝑐𝑐𝑎𝑎ℎ𝑒𝑒𝑐𝑐
� (17)  

The term ct2i denotes the secondary similarity confirmation that comes into play during the 

process of reverse retrieval. Its primary function is to serve as a corrective factor for ci2t. 

Additionally, we introduce the concept of "significance components" denoted as cS to 

quantitatively assess the level of confirmation regarding the predicted similarity by our 

model. In the context of reverse retrieval, when evaluating a candidate text tq, a higher 

degree of certainty is associated with a greater proportion of similarity between this text 

and the images compared to the overall similarity with all images. To operationalize this 

notion, we compute the relevant ratio and interpret it as a confidence-indicating 

component. 

 
𝑐𝑐𝑃𝑃  =

cos(tm , 𝑖𝑖𝑛𝑛)
∑ cos(tm , 𝑖𝑖𝑛𝑛)𝑁𝑁
𝑛𝑛=0

 (18)  

A confidence score cP is computed to gauge the model's confidence in the primary 

similarity. This cP is then employed as a weighting factor in the computation of the final 

similarity score. Ultimately, we combine and adjust the contributions of the three reranking 

components to derive the similarity score denoted as multi-modal rerank Smr. 

 𝑆𝑆𝑚𝑚𝑐𝑐  = ci2t +  ωc1ct2i + ωc2cP  (19)  

Smr is thus the result of the secondary re-ranking of the similarity score matrix. 
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3.7 Learning Methodology 
 
The key objective of our proposed method is to effectively retrieve highly similar images 

from a stored image database. This retrieval process is performed in response to a query 

that integrates both visual and text features. To improve the model's performance, we 

update its weights based on a loss value. Specifically, we employ the triplet loss method as 

in [50] to quantify the similarity in the characteristics between the textual features of the 

query and the visual features of the target image. or query image and target caption within 

the dataset. As implied by its name, computing the triplet loss value, which quantifies 

similarity, necessitates three key components. These components are: the positives, the 

negatives and the anchor. The negatives are mismatched samples from the dataset and the 

positives are the most similar ones to the query in the dataset. The anchor is the query and 

the goal is to decrease its distance from positive samples and increase from negative 

samples. In summary, the triplet loss in our proposed model, computed during the training 

phase, can be expressed as shown: 

 𝐿𝐿(𝑇𝑇, 𝐼𝐼) = �[ε+ S(I, Tn ) − S(I, T)]+
Tn

+ �[ε + S(In , T) − S(I, T)]+
In

 (20)  

Here, L(T,I) is the triplet loss of paired sample pairs of text T and image I. ε is the 

minimum margin which is the minimum separation that is ideal between the positive and 

negative samples in the dataset. [x]+= max(x,0). The negative sample pairs are In and Tn 

and the aim is to make anchor sample points farther from the negative samples and closer 

to the positive samples. The initial summation encompasses all negative text Tn with 

respect to a particular image I, while the following summation accounts for all negative 

images In concerning a particular text T. If the joint embedding space positions I and T in 

closer proximity to each other than any negative pairs by a margin of ε, the hinge loss 

becomes zero. In practical implementation in consideration of computational efficiency, the 

approach involves not performing summation across all negative samples; the focus is 

typically placed on the challenging negative instances within a mini-batch during stochastic 

gradient descent. 
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Chapter 4 
 

 
 

Experimental Results and Analysis 
 
 
 
 

4.1 Implementation Details 
 
Experimentations are carried out using a NVIDIA GPU. To keep the image size uniform 

across both datasets we uniformly scale them to 256x256 pixels. Some data augmentation 

steps like rotation and flip are also performed on images to improve the variation of images 

consequently the model robustness. The training epochs are set to 70. The optimizer used is 

Adam optimizer with triplet loss. The critical threshold of similarity is 0.8 and the 

relationship boost factor is 1.15 for adjacency matrix optimization. The text vector 

representation dimension is 384 and common text and image embedding space is 512. The 

training batch size is configured to 100 and validation batch size is configured to 70. The 

initial learning rate is configured to 0.0002 which drops by 0.7 after every 20 epochs and 

margin for triplet loss is 0.2. 

 

 
Figure 4.1: Samples from RSICD and RSITMD datasets and their five corresponding 

captions 
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4.2 Dataset Description 
 
Table 4.1 illustrates the numerical analytics of the two remote sensing datasets employed 

for both the training and testing phases in the evaluation of the proposed framework. The 

Remote Sensing Image Captioning Dataset is composed of 10921 remote sensing images 

and 5 captions per image. The RSICD dataset comprises imagery sourced from Google 

Earth, Baidu Map, Tianditu and MapABC. The image dimension size is 224x224 pixels. 

The Remote Sensing Image-Text Match Dataset contributed by Yuan et al. is composed of 

4743 remote sensing images and 5 captions per image. The RSITMD dataset is comprises 

imagery sourced from Google Earth and the RSICD dataset. The image size is 256x256 

pixels. The RSITMD dataset contains one to five keywords for each image which can 

provide a finer grained dataset for retrieval. Sample images and their corresponding 

captions of RSITMD and RSICD datasets are shown in figure 4.1. 

 

Table 4.1: Details of Datasets 

Datasets RSITMD Dataset RSICD Dataset 

Composition 
Images,  Sentences, 

Keywords 
Images,  Sentences 

Image Sources 
RSICD dataset, Google 

Earth 

Google Earth, Baidu Map, 

MapABC, Tianditu 

Total no. of Images 4743 10921 

Total no. of Captions 23,715 54,605 

No. of captions  

per image 
5 5 

Average Length of Texts 10.25 10.55 

Maximum Length of Texts 34 34 

Image pixels 256x256 224x224 
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4.3 Quantitative Analysis 
 

Consistent with prior academic research endeavors in the literature, the proposed model 

underwent evaluation with a focus on the recall metric concerning the retrieval of top-k 

images. It is represented by R@K. According to the text image retrieval method, recall at k 

denotes the percentage of images effectively retrieved in response to a dual-modality 

search. Recall is defined as the ratio of correctly identified images to the total number of 

images that were successfully retrieved during the entire retrieval process. 

 𝑅𝑅@𝑘𝑘 =
(number of retrieved items among the top k that are relevant) 

(total number of relevant items)  (21)  

Mean recall denoted by mR represents the mean of multiple recall at k (R@k) values, 

providing a more intuitive reflection of the overall model performance. 

 𝑚𝑚𝑅𝑅 = (
1
𝑘𝑘) ∗�(𝑅𝑅@𝑖𝑖), 𝑖𝑖 = 1 𝑎𝑎𝑐𝑐 𝑘𝑘 (22)  

Here, k represents the number of values of k at which Recall is calculated, typically k=1, 5, 

and 10. R@i represents the Recall value obtained at the ith value of k. 

 

4.4 Compared Methods 
 
Following the selection of the evaluation metric, we performed a quantitative comparison 

between the proposed framework and the present baseline within the domain of RSCTIR. 

The operational approach of the foundational frameworks is elucidated here to the best of 

our comprehension: 

 

• VSE++ [12]: VSE++ uses GRU to extract text features and CNN for image feature 

extraction. Triplet loss was used as an optimization method. 

 

• CAMP [13]: CAMP calculates similarity after implementation of a cross modal 

message passing mechanism to monitor the text-image association. 

 

• SCAN [50]: SCAN discovers the full latent alignments between images and texts. 
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• LW-MCR [51]: LW-MCR improves inference time by knowledge distillation and 
contrast learning. 
 

• MTFN [14]: MTFN proposes a fusion based model to calculate the similarity for 

the cross modal data. 

 

 

4.5 Results 
 

The numerical results obtained from the proposed method, quantifying its performance as 

recall at k R@K and mean recall mR for the RSITMD dataset is recorded in table 4.2 and 

for the RSICD dataset it is presented in table 4.3 and compared with baseline approaches. 

The model rankings highlighted in red, signify the highest-ranked model retrieval results 

and in blue color represents the retrieval performance ranked as the second-best. 

Table 4.2 shows that the proposed approach works best for recall at k=5 and 10 for image-

text retrieval and recall at k=1 text-image retrieval for RSITMD dataset. Table 4.3 depicts 

that the proposed approach works best for recall for text-image retrieval and image-text 

retrieval for the RSICD dataset except for recall at k=10 for image-text retrieval where 

SCAN performs the best and second-best in retrieval performance when k=5 in text-image 

retrieval. 

 

Table 4.2: Comparison of R@K and mR of baseline approaches with proposed method on 

RSITMD dataset 

Framework Image-Text Retrieval Text-Image Retrieval mR 

R@1 R@5 R@10 R@1 R@5 R@10 

VSE++ 7.20 20.22 33.40 5.50 16.33 34.16 19.46 

CAMP 9.31 24.98 37.01 7.99 26.01 33.66 23.16 

SCAN 10.22 25.91 36.73 5.26 23.43 31.24 22.13 

LW-MCR 5.09 21.68 35.62 6.06 24.75 31.42 20.77 

MTFN 8.60 23.65 38.28 6.79 19.57 32.85 21.62 

Proposed 

Method 

9.06 28.74 42.18 9.82 21.77 32.90 24.07 
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Table 4.3: Comparison of R@K and mR of baseline approaches with proposed method on 

RSICD dataset 

Framework Image-Text Retrieval Text-Image Retrieval mR 

R@1 R@5 R@10 R@1 R@5 R@10 

VSE++ 3.38 9.51 17.46 2.82 11.32 18.10 10.43 

CAMP 3.42 8.12 19.25 4.33 18.06 28.64 13.63 

SCAN 3.85 6.89 19.84 3.71 16.40 26.73 12.90 

LW-MCR 5.59 5.20 16.44 2.30 15.32 26.24 11.84 

MTFN 4.02 9.52 19.74 3.90 17.17 26.49 13.47 

Proposed 

Method 

5.90 10.40 16.90 5.90 17.60 29.00 14.28 

 

The figure 4.2 clearly shows that the proposed method works best for text-image retrieval 

at k=1 and best for image-text retrieval at k=5. The figure 4.3 makes it obvious that the 

proposed method works best for text-image retrieval at k=1 and best for image-text 

retrieval at k=10. 

 

 
Figure 4.2: Comparison of recall at k (k=1,5 and 10) text-image retrieval and image-text 

retrieval results for RSICD dataset 
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Figure 4.3: Comparison of recall at k (k=1,5 and 10) text-image retrieval and image-text 

retrieval results for RSITMD dataset 

 

It can be observed in figure 4.4 the superior performance of the proposed method in 

comparison to previous approaches in terms of mean recall for both the datasets. Previous 

approaches used high-level vision features only for retrieval and the utilization of low-level 

vision features besides the high-level features has shown the improvement in the overall 

mean recall consistently for both the remote sensing datasets. 

 

 
Figure 4.4: Comparison of mean recall text-image retrieval and image-text retrieval results 

for RSITMD dataset and RSICD dataset 
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4.5.1 Time Consumption Analysis 
 
In the present subsection, we conduct a comparative analysis of the retrieval performance 

of our proposed model in relation to other methods. To facilitate a meaningful time-based 

comparison, we employ a key evaluation metric namely evaluation time (ET). In this 

context, ET represents the time taken to calculate the similarity between all the images and 

the texts within different remote sensing data test sets. It is imperative to highlight that 

these experiments are carried out under conditions of minimal system load, ensuring 

equitable and unbiased results. 

Table 4.4 presents a comparison of individual methods concerning evaluation time. The 

proposed approach excels in terms of computational efficiency than other methods except 

for LW-MCR being a light weight model demonstrates notable advantages in terms of 

retrieval time but lags significantly behind the proposed model assessed in terms of its 

overall performance. 

 

Table 4.4: Time Consumption comparison of the proposed method with previous methods 

Time Consumption VSE++ CAMP SCAN LW-MCR MTFN Proposed 

Method 

Evaluation Time  of 

RSICD (s) 

22.81 29.35 64.15 18.29 45.96 20.43 

Evaluation Time  of 

RSITMD (s) 

4.38 6.72 11.69 4.12 8.55 5.24 
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Chapter 5 
 
 

Conclusion and Future Work 
 
 
Remote sensing image-text retrieval is a task that involves complex understanding of image 

and text semantics. Our approach attains state-of-the-art retrieval performance in 

comparison to other retrieval frameworks in remote sensing. Contrary to previous work in 

this field our method employs micro level visual features to supplement the higher level 

visual features in the remote sensing datasets not solely the macro level visual features. The 

proposed framework employs residual network Res2Net for visual data features extraction 

at a macro level and graph convolution to understand the relationship between targets at the 

micro level in the visual data. These both level visual data are later dynamically fused to 

provide a vision feature consisting of quality visual information. The utilization of micro 

features for supplementation of macro features and similarly the usage of macro features 

for guiding micro features improves the model performance significantly. Moreover 

following the popularity of transformer architectures the proposed model utilizes sentence 

transformer SBERT framework to understand the text semantics. Further retrieval results 

are re-ranked in the similarity matrix. The proposed technique is compared against Recall 

scores on the RSITMD and RSICD remote sensing datasets. The effectiveness of the 

proposed framework has been validated on real-world datasets considering prediction 

quality. 

 

In the context of forthcoming research endeavors, we intend to: 

● Incorporate cutting-edge methodologies for image feature extraction, such as 

leveraging vision transformers for vision feature extraction. 

● Evaluate the proposed system on other datasets including natural image datasets and 

remote sensing datasets. 

● Improve retrieval accuracy further by employing an improved retrieval model. 



 

31 
 

 
 

References 
 
[1] K. Papineni, S. Roukos, T. Ward, and W. J. Zhu, “BLEU: A method for 

automatic evaluation of machine translation,” in Proc. 40th Annu. Meeting 

Assoc. Comput. Linguistics, Jul. 2002, pp. 311–318. 

 
[2] Z. Shi and Z. Zou, “Can a machine generate humanlike languagedescriptions 

for a remote sensing image?” IEEE Trans. Geosci. RemoteSens., vol. 55, no. 6, 

pp. 3623–3634, Jun. 2017. 

 
[3] X. Li, X. Zhang, W. Huang, and Q. Wang, “Truncation crossentropy loss for 

remote sensing image captioning,” IEEE Trans.Geosci. Remote Sens., vol. 59, 

no. 6, pp. 5246–5257, Jun. 2021, doi:10.1109/TGRS.2020.3010106. 

 
[4] Z. Yuan et al., “Exploring a fine-grained multiscale method for crossmodal 

remote sensing image retrieval,” IEEE Trans. Geosci. RemoteSens., vol. 60, pp. 

1–19, 2022, doi: 10.1109/TGRS.2021.3078451. 

 
[5] Y. Lv, W. Xiong, X. Zhang, and Y. Cui, “Fusion-based correlation learning 

model for cross-modal remote sensing image retrieval,”IEEE Geosci. Remote 

Sens. Lett., vol. 19, pp. 1–5, 2022, doi:10.1109/LGRS.2021.3131592. 

 
[6] Z. Yuan, “A lightweight multi-scale crossmodal text-image retrieval method in 

remote sensing,” IEEE Trans. Geosci. Remote Sens., vol. 60,2021, Art. no. 

5612819, doi: 10.1109/TGRS.2021.3124252. 

 

[7] C. Wen, Y. Hu, X. Li, Z. Yuan, X. X. Zhu, Vision-language models in remote 

sensing: Current progress and future trends, arXiv preprint arXiv:2305.05726 

(2023). 

 

[8] Y. Bazi, M. M. Al Rahhal, M. L. Mekhalfi, M. A. Al Zuair, F. Melgani, Bi-

modal transformer-based approach for visual question answering in remote 



 

32 
 

sensing imagery, IEEE Transactions on Geoscience and Remote Sensing 60 

(2022) 1–11. 

 

[9] C. Chappuis, V. Mendez, E. Walt, S. Lobry, B. Le Saux, D. Tuia, Language 

transformers for remote sensing visual question answering, in: IGARSS 2022-

2022 IEEE International Geoscience and Remote Sensing Symposium, IEEE, 

2022, pp. 4855–4858. 

 

[10] W. Nanal, M. Hajiarbabi, Captioning remote sensing images using transformer 

architecture, in: 2023 International Conference on Artificial Intelligence in 

Information and Communication (ICAIIC), IEEE, 2023, pp. 413–418. 

 

[11] Z. Ren, S. Gou, Z. Guo, S. Mao, R. Li, A mask-guided transformer network 

with topic token for remote sensing image captioning, Remote Sensing 14 (12) 

(2022) 2939. 

 

[12] F. Faghri, D. J. Fleet, J. R. Kiros, S. Fidler, Vse++: Improving visual-semantic 

embeddings with hard negatives (2018). arXiv:1707.05612. 

 

[13] Z. Wang, X. Liu, H. Li, L. Sheng, J. Yan, X. Wang, J. Shao, Camp: Cross-

modal adaptive message passing for text-image retrieval (2019). 

arXiv:1909.05506. 

 

[14] T. Wang, X. Xu, Y. Yang, A. Hanjalic, H. T. Shen, J. Song, Matching images 

and text with multi-modal tensor fusion and re-ranking (2020). 

arXiv:1908.04011. 

 

[15] T. Abdullah, L. Rangarajan, Towards multimodal data retrieval in remote 

sensing (2020). 

 

[16] W. Zhou, H. Guan, Z. Li, Z. Shao, M. R. Delavar, Remote sensing image 

retrieval in the past decade: Achievements, challenges, and future directions, 



 

33 
 

IEEE Journal of Selected Topics in Applied Earth Observations and Remote 

Sensing (2023). 

 

[17] W. Nanal, M. Hajiarbabi, Captioning remote sensing images using transformer 

architecture, in: 2023 International Conference on Artificial Intelligence in 

Information and Communication (ICAIIC), IEEE, 2023, pp. 413–418. 

 

[18] Z. Ren, S. Gou, Z. Guo, S. Mao, R. Li, A mask-guided transformer network 

with topic token for remote sensing image captioning, Remote Sensing 14 (12) 

(2022) 2939. 

 

[19] Y. Lv, W. Xiong, X. Zhang, Y. Cui, Fusion-based correlation learning model 

for cross-modal remote sensing image retrieval, IEEE Geoscience and Remote 

Sensing Letters 19 (2021) 1–5. 

 

[20] F. Zheng, W. Li, X. Wang, L. Wang, X. Zhang, H. Zhang, A cross- attention 

mechanism based on regional-level semantic features of images for cross-modal 

text-image retrieval in remote sensing, Applied Sciences 12 (23) (2022) 12221. 

 

[21] F. Zheng, X. Wang, L. Wang, X. Zhang, H. Zhu, L. Wang, H. Zhang, A fine-

grained semantic alignment method specific to aggregate multiscale information 

for cross-modal remote sensing image retrieval, Sensors 23 (20) (2023) 8437. 

 

[22] M. Yang, D. He, M. Fan, B. Shi, X. Xue, F. Li, E. Ding, J. Huang, Dolg: 

Single-stage image retrieval with deep orthogonal fusion of local and global 

features, in: Proceedings of the IEEE/CVF International conference on 

Computer Vision, 2021, pp. 11772–11781. 

 

[23] X. Zhang, W. Li, X. Wang, L. Wang, F. Zheng, L. Wang, H. Zhang, A fusion 

encoder with multi-task guidance for cross-modal text–image retrieval in 

remote sensing, Remote Sensing 15 (18) (2023) 4637. 

 



 

34 
 

[24] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. 

Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, N. 

Houlsby, An image is worth 16x16 words: Transformers for image recognition 

at scale (2021). arXiv:2010.11929. 

 

[25] J. Devlin, M. Chang, K. Lee, K. Toutanova, BERT: pre-training of deep 

bidirectional transformers for language understanding, CoRR abs/1810.04805 

(2018) p. 4171–4186. arXiv:1810.04805. URL http://arxiv.org/abs/1810.04805 

 

[26] L. Mi, S. Li, C. Chappuis, D. Tuia, Knowledge-aware cross-modal text-image 

retrieval for remote sensing images, in: Proceedings of the Second Workshop 

on Complex Data Challenges in Earth Observation (CDCEO 2022), 2022. 

 
[27] H. Yu, F. Yao, W. Lu, N. Liu, P. Li, H. You, X. Sun, Text-image matching for 

cross-modal remote sensing image retrieval via graph neural network, IEEE 

Journal of Selected Topics in Applied Earth Observations and Remote Sensing 

16 (2022) 812–824. 

 

[28] F. Yao, X. Sun, N. Liu, C. Tian, L. Xu, L. Hu, C. Ding, Hypergraph-enhanced 

textual-visual matching network for cross-modal remote sensing image retrieval 

via dynamic hypergraph learning, IEEE Journal of Selected Topics in Applied 

Earth Observations and Remote Sensing 16 (2022) 688–701. 

 

[29] G. Mikriukov, M. Ravanbakhsh, B. Demir, Deep unsupervised contrastive 

hashing for large-scale cross-modal text-image retrieval in remote sensing, 

arXiv preprint arXiv:2201.08125 (2022). 

 

[30] M. Huang, L. Dong, W. Dong, G. Shi, Supervised contrastive learning based on 

fusion of global and local features for remote sensing image retrieval, IEEE 

Transactions on Geoscience and Remote Sensing (2023). 

 

[31] C. Zheng, N. Song, R. Zhang, L. Huang, Z. Wei, J. Nie, Scale-semantic joint 

decoupling network for image-text retrieval in remote sensing, ACM 



 

35 
 

Transactions on Multimedia Computing, Communications and Applications 20 

(1) (2023) 1–20. 

 

[32] L. He, S. Liu, R. An, Y. Zhuo, J. Tao, An end-to-end framework based on 

vision-language fusion for remote sensing cross-modal text-image retrieval, 

Mathematics 11 (10) (2023) 2279. 

 

[33] Z. Yuan, W. Zhang, C. Tian, Y. Mao, R. Zhou, H. Wang, K. Fu, X. Sun, Mcrn: 

A multi-source cross-modal retrieval network for remote sensing, International 

Journal of Applied Earth Observation and Geoinformation 115 (2022) 103071. 

 

[34] Y. Yuan, Y. Zhan, Z. Xiong, Parameter-efficient transfer learning for remote 

sensing image-text retrieval, IEEE Transactions on Geoscience and Remote 

Sensing (2023). 

 

[35] F. Liu, D. Chen, Z. Guan, X. Zhou, J. Zhu, J. Zhou, Remoteclip: A vision 

language foundation model for remote sensing, arXiv preprint 

arXiv:2306.11029 (2023). 

 

[36] W. Zhang, J. Li, S. Li, J. Chen, W. Zhang, X. Gao, X. Sun, Hypersphere-based 

remote sensing cross-modal text-image retrieval via curriculum learning, IEEE 

Transactions on Geoscience and Remote Sensing (2023). 

 

[37] X. Tang, Y. Wang, J. Ma, X. Zhang, F. Liu, L. Jiao, Interacting enhancing 

feature transformer for cross-modal remote sensing image and text retrieval, 

IEEE Transactions on Geoscience and Remote Sensing (2023). 

 

[38] M. M. A. Rahhal, M. A. Bencherif, Y. Bazi, A. Alharbi, M. L. Mekhalfi, 

Contrasting dual transformer architectures for multi-modal remote sensing 

image retrieval, Applied Sciences 13 (1) (2022) 282. 

 



 

36 
 

[39] H. Zhang, Y. Sun, Y. Liao, S. Xu, R. Yang, S. Wang, B. Hou, L. Jiao, A 

transformer-based cross-modal image-text retrieval method using feature 

decoupling and reconstruction, in: IGARSS 2022-2022 IEEE International 

Geoscience and Remote Sensing Symposium, IEEE, 2022, pp. 1796–1799. 

 

[40] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with deep 

convolutional neural networks, in: F. Pereira, C. Burges, L. Bottou, K. 

Weinberger (Eds.), Advances in Neural Information Processing Systems, Vol. 

25, Curran Associates, Inc., 2012, pp. 1106–1114. 

 

[41] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale 

image recognition, in: International Conference on Learning Representations, 

2015. 

 

[42] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, 

CoRR abs/1512.03385 (2015) p.770 – 778. arXiv:1512.03385. URL 

http://arxiv.org/abs/1512.03385 

 

[43] S.-H. Gao, M.-M. Cheng, K. Zhao, X.-Y. Zhang, M.-H. Yang, P. Torr, Res2net: 

A new multi-scale backbone architecture, IEEE transactions on pattern analysis 

and machine intelligence 43 (2) (2019) 652–662. 

 

[44] N. Reimers, I. Gurevych, Sentence-bert: Sentence embeddings using siamese 

bert-networks, CoRR abs/1908.10084 (2019). arXiv:1908.10084. URL 

http://arxiv.org/abs/1908.10084 

 

[45] S. R. Bowman, G. Angeli, C. Potts, C. D. Manning, A large annotated corpus 

for learning natural language inference, in: Proceedings of the 2015 Conference 

on Empirical Methods in Natural Language Processing, Association for 

Computational Linguistics, Lisbon, Portugal, 2015, pp. 632–642. 

doi:10.18653/v1/D15-1075. URL https://aclanthology.org/D15-1075 

 

https://aclanthology.org/D15-1075


 

37 
 

[46] A. Williams, N. Nangia, S. Bowman, A broad-coverage challenge corpus for 

sentence understanding through inference, in: Proceedings of the 2018 

Conference of the North American Chapter of the Association for 

Computational Linguistics: Human Language Technologies, Volume 1 (Long 

Papers), Association for Computational Linguistics, New Orleans,31 Louisiana, 

2018, pp. 1112–1122. doi:10.18653/v1/N18-1101. URL 

https://aclanthology.org/N18-1101 

 

[47] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. 

Zettlemoyer, V. Stoyanov, Roberta: A robustly optimized BERT pretraining 

approach, CoRR abs/1907.11692 (2019). arXiv:1907.11692. URL 

http://arxiv.org/abs/1907.11692 

 

[48] F. Schroff, D. Kalenichenko, J. Philbin, Facenet: A unified embedding for face 

recognition and clustering, CoRR abs/1503.03832 (2015). arXiv:1503.03832. 

URL http://arxiv.org/abs/1503.03832 

 

[49] G.-S. Xia, X. Bai, J. Ding, Z. Zhu, S. Belongie, J. Luo, M. Datcu, M. Pelillo, L. 

Zhang, Dota: A large-scale dataset for object detection in aerial images, in: 

2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 

2018, pp. 3974–3983. doi:10.1109/CVPR.2018.00418. 

 

[50] K.-H. Lee, X. Chen, G. Hua, H. Hu, X. He, Stacked cross attention for image-

text matching (2018). arXiv:1803.08024. 

 

[51] Z. Yuan, W. Zhang, X. Rong, X. Li, J. Chen, H. Wang, K. Fu, X. Sun, A 

lightweight multi-scale crossmodal text-image retrieval method in remote 

sensing, IEEE Transactions on Geoscience and Remote Sensing 60 (2021) 1–

19. 

 
 

 
 
 

https://aclanthology.org/N18-1101


 

38 
 

 
      
 
      
 
      
 
      
 
 
 
 
 

 
 

 
 

 
 
 

 
 
38 

 
 
38 

 
 
      
 
      
 
      
 
      
 
 
 
 
 

 
 

 
 
 
 

 
 

 


	INTRODUCTION
	1.1 Motivation and Problem Statement
	Objectives
	Thesis Contribution
	Thesis Organization

	Preliminaries
	Conclusion and Future Work
	38
	38

