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Abstract

In this thesis, we study the variable fluid properties of a boundary layer flow on a moving flat

plate in a parallel free stream and the MHD stagnation-point flow and heat characteristics

are studied for the stretching sheet case. For a viscous fluid, the MHD boundary layer flow

and heat transfer with variable viscosity using power law is also discussed. The numerical

solutions for the MHD flow are applied. Constant fluid properties, the variable viscosity,

and the exponential temperature dependent cases are considered for the solutions of the flow

problems.

We reduced the system of governing nonlinear partial differential equations (PDEs) into non-

linear coupled ordinary differential equations (ODEs) by using the similarity transformations.

Results for the solutions are computed by using the shooting technique and are compared

with the bvp4c, a built-in solver of MATLAB. The numerical results for the variation of

different values of velocity, temperature, skin friction coefficient, and the Nusselt number are

analyzed. The effects for the different values of the parameters on the velocity and temper-

ature profiles are plotted and discussed in tabular form as well. Results of the fluid that are

obtained with the variable properties are different when compared with the constant fluid

properties.



Preface

This thesis constitutes five chapters. In the first chapter the basic concepts, definitions, and

terminologies related to fluids are presented. A brief description of the shooting method and

bvp4c is included. The literature review is presented as well.

The second chapter deals with the review of an article by Bachok et al. [27]. It presents

the boundary layer flow and heat transfer of a viscous fluid over a moving flat plate with

variable fluid properties. The system of governing equations has been solved by the shooting

technique. The influence of the parameters has been discussed graphically. The numerical

results computed are being compared by the previous data in a tabular form.

In the third chapter, the steady two-dimensional MHD flow has been considered over a

stretching sheet in the presence of a magnetic field. Special cases have been discussed to

examine the MHD boundary layer flow and the heat transfer characteristics. The governing

boundary layer PDEs are transformed into ODEs by means of similarity transformations.

The velocity and temperature distributions are computed by an efficient numerical approach

known as the shooting method along with the bvp4c as well. Various graphs have been plot-

ted to examine the behaviour of the momentum and thermal boundary layers.

In the fourth chapter, the MHD boundary layer flow and heat transfer over a stretching sheet

has been investigated. Three special cases namely, the constant fluid properties, the variable,

and exponential fluid properties dependence on temperature are discussed. The variable vis-

cosity fluid as a function of temperature has been studied for the MHD flow and the heat

transfer analysis. The similarity transformation has been used to reduce PDEs into ODEs.

Results are presented in graphical and tabular form. Tables have been shown for important

parameters like the Nusselt number and results have been compared with the literature.

The fifth chapter is about the concluding remarks of the research work included in this thesis

along with the future recommendations. The results drawn out in the present thesis have

been discussed in this chapter. Some ideas related to the future is given and how to further

this work can be extended is described as well. Moreover, some open problems for further

study in this area of research are also included.
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Chapter 1

Introduction

In this chapter, literature review and some basic definitions related to this research work will

be presented. These includes boundary layer equations, some pertinent definitions in fluid

mechanics, and explanation of numerical methods.

In Section 1, a literature review is presented. In Section 2, some basic concepts, definitions

and terminologies of fluid mechanics are introduced which will be used throughout this dis-

sertation. The governing equations of momentum and thermal boundary layer are discussed

in Section 3. Explanation of numerical methods is presented in Section 4.

1.1 Literature Review

The study of flow of the boundary layer and the heat transfer on a moving flat plate and

over a stretching sheet in the presence of a magnetohydrodynamics MHD with variable fluid

properties of a viscous fluid is considered in the present work. Sakiadis [5] studied the incom-

pressible flow of the boundary layer on a flat plate in a continuous motion. Different from

Blasius [12], who considered flow over a fixed plate, Sakiadis [5] investigated the flow of a

movable plate in a stationary ambient fluid. The boundary layer problem was first studied

by Sakiadis [5] on continuous solid surfaces. Andersson and Aarseth [15] examined the ef-

fects of physical fluid properties depending on a temperature in the Sakiadis flow problem.

Elbashbeshy and Bazid [6] considered the variable viscosity effects on heat transfer analysis
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over a continuous stretching surface.

A numerical investigation of MHD boundary layer flow over a heated stretching sheet with

variable viscosity was analyzed by Pantokratoras [3]. Bachok et al. [27] presented the influ-

ence of variable viscosity on the flow of the boundary layer and the transfer of heat from

a flat plate in a continuous motion. Ali et al. [10] have investigated the effect of induced

magnetic field over a vertical flat plate of the MHD mixed convection stagnation point flow

of a viscous fluid. Recently, Agbaje et al. [31] analyzed the effects of MHD stagnation point

flow and heat transfer towards a stretching sheet.

Magnetohydrodynamics (MHD) is the study of the magnetic properties of the fluid which is

electrically conductive. A number of applications were found in the study of MHD conductive

fluid, including various problems of astrophysics and geophysics. Mukhopadhyay et al. [29]

presented some important investigations on the flow and heat transfer over a stretching sheet,

including variable viscosity effects in different physical conditions. The heat transfer from a

stretching sheet with variable surface temperature was presented by Afzal [26]. Pavlov [18]

studied the MHD boundary layer flow and obtained an exact similarity solution of an elec-

trically conducting fluid due to the stretching of a plane elastic surface in the presence of a

uniform transverse magnetic field.

The flow field of a stretching wall with a power-law velocity variation was discussed by Ali [22].

Prasad et al. [19] investigated the effects of variable fluid properties on the hydromagnetic

flow and heat transfer over a nonlinear stretching sheet. Andersson et al. [14] investigated

the MHD flow of an electrically conducting power-law fluid over a stretching sheet in the

presence of a uniform transverse magnetic field by using similarity transformation obtained

an analytical solution of the magneto-hydro-magnetic flow using a similarity transformation

for the velocity and temperature fields. The momentum boundary layer for a linear stretch-

ing sheet in the cooling fluids was studied by Crane [20], whereas Afzal and Varshney [25]

described the power law stretching. Andersson and Dandapat [13] extended the Newtonian

boundary layer flow problem obeying the power-law model considered by Crane [20].

In Chapters 2, 3 and 4 of this thesis, the constant fluid properties, the variable viscosity

and exponential temperature dependency cases are discussed. In the current work, Chapter

2 includes the flow of the boundary layer on a flat plate moving with variable viscosity in

3



a parallel free stream. Chapters 3 and 4 deal with the properties of the constant and vari-

able fluid of the MHD flow and heat transfer over a linear and nonlinear stretching surfaces,

respectively. Conclusion is drawn in Chapter 5.

1.2 Preliminaries and Basic Definitions

1.2.1 Fluid

A fluid is a substance that deforms continuously under an applied shear stress, no matter

how small that shear stress may be. The fluids flow easily and conform to the shape of their

container.

The fluids are generally divided into two groups, namely, the liquids and the gases. A state

of matter, such as liquid or gas, wherein the components of particles can move past each

other and which can move, has no fixed shape and offers little resistance to external stress.

1.2.2 Newton’s Law of Viscosity

The viscosity of a fluid is a measure of its resistance between layers. Fluid’s viscosity depends

on its temperature. The viscosity of a liquid decreases with an increasing temperature, but

the viscosity of gases increase with the increasing temperature.

Newton’s law of viscosity defines the relationship between the shear stress and the shear rate

of a fluid subject to a mechanical stress. Mathematically we write

τ = µ
du

dy
.

which is known as Newton’s law of viscosity. All fluids that obey Newton’s law of viscosity

are called Newtonian fluids.

1.2.3 Kinematic Viscosity

The kinematic viscosity is the ratio of dynamic viscosity and the density. Mathematically

4



ν =
µ

ρ
.

1.2.4 Density

The fluid density is defined as the mass per unit volume and it is expressed as

ρ =
m

V
.

The density is said to be uniform if it is identical at every point of the fluid.

1.2.5 Shear Stress

Shear stress is the force per unit area. Mathematically we write

τ =
F

A
,

where τ is the shear stress , F is the applied force, A is the cross sectional area. The friction

force per unit area at the wall is called the wall shear stress. The wall shear stress, τw is

defined as

τw = µ

(
∂u

∂y

)
y=0

,

where µ is the dynamic viscosity, u is the flow velocity and y is normal to the wall.

1.2.6 Heat Flux

Heat flux is defined as the amount of heat transferred per unit area per unit time to or from

a surface. Heat flux is the rate of thermal energy that passes through a surface. The induced

heat flux always flows from the hot to the cold side.

If the flow is laminar, heat and temperature gradient are related by Fourier’s law, which is

written as,

~q = −k~∇T,

where the vector ~q is the heat flux W
m2 , k is the thermal conductivity, T is the temperature.
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1.2.7 Specific Heat Capacity

Specific heat capacity is the heat or thermal energy needed to increase the temperature of a

unit quantity of a substance from a single unit. Specific heat capacity Cp is a property that

indicates the amount of energy stored in a material per unit mass per unit of temperature.

The specific heat is the ability to maintain a particular amount of heat. All conductors have

a relatively low specific heat capacity, but non-conductors have a high value for the specific

heat capacity. The SI unit is J
kgK

.

1.2.8 Thermal Conductivity

The thermal conductivity is the property of a material that indicates its ability to conduct

heat. The thermal conductivity of a substance is the heat flow rate per unit area of the cross

section of the unit temperature gradient. SI unit of thermal conductivity is W
mK

.

1.2.9 Prandtl Number

The Prandtl number Pr is a dimensionless parameter representing the ratio of diffusion of

momentum to heat diffusion in a fluid. The Prandtl number is given as follows:

Pr =
ν

α
=

viscous diffusion rate
thermal diffusion rate

=
µ/ρ

k/Cpρ
=
Cpµ

k

The heat diffuses rapidly compared to the velocity when Pr is small. For small values of the

Prandtl number Pr � 1 the thermal diffusivity dominates, whereas with large values Pr �1

the viscous diffusivity dominates. The Prandtl number controls the relative thickness of the

momentum and thermal boundary layers in the heat transfer problems.

The Prandtl number is a characteristic of the fluid only. The most common gases have similar

values. The Prandtl number Pr for air at room temperature is 0.71. Liquids generally have

a high Prandtl number, with values as high as 105 for some oils.
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1.2.10 Nusselt Number

Nusselt number is the ratio of convection to transfer heat by conduction through the normal

to the boundary. It is denoted by Nu:

NuL =
Convection heat transfer
Conductive heat transfer

=
hL

k
,

where h is the convective heat transfer coefficient of the flow, L is the characteristic length, k

is the thermal conductivity of the fluid. A Nusselt number having convection and conduction

of similar magnitude close to one, is a characteristic of a laminar flow. A large Nusselt

number means very efficient convection.

1.2.11 Skin Friction Coefficient

Skin friction occurs when a fluid flows over a solid surface. The fluid is in contact with the

body surface, resulting in a frictional force exerted on the surface. The skin friction coefficient

Cf is defined by:

Cf ≡
τw

1
2
ρU2
∞
,

where τw is the local wall shear stress, ρ is the density of the fluid, and U∞ is the free stream

velocity. The dimensionless skin-friction is called the local skin-friction coefficient.

1.2.12 Magnetohhydrodynamics (MHD)

Magnetohydrodynamics (MHD) is the study of the magnetic properties of electrically con-

ductive fluids. Examples of such magneto-fluids include plasmas, liquid metals, and salt

water or electrolytes. The fundamental concept behind MHD is that magnetic fields may

induce currents in the conductive fluid in motion, which biases the fluid and reciprocally

changes the magnetic field itself.
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1.2.13 Stagnation Point Flow

In fluid dynamics, a stagnation point is a point in a flow field where the local fluid velocity

is zero. Stagnation points exist at the surface of objects in the flow field, where the fluid is

brought to rest by the object.

1.2.14 Boundary Layer Flows

A boundary layer is a layer of fluid in the immediate vicinity of a bounding surface where

the viscosity effects are significant.

A boundary layer is formed by the thin region of flow adjacent to a surface, the layer in which

the flow is influenced by the friction between the solid surface and the fluid. The analysis

of the boundary layer helps to simplify the Navier-Stokes equations in order to solve these

equations easily. In general, when a fluid flows past an object, the flow region can be divided

into two parts. The larger part is related to a free stream of fluid i.e. outside the boundary

layer where the viscous effects are not significant. In the thin region called boundary layer,

where the effects of viscosity are important.

Figure 1.1: Geometrical interpretation of a boundary layer flow [11].
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1.3 Governing Equations

The governing equations for fluid flow and heat transfer includes the continuity equation, the

conservation of momentum, and the conservation of energy. Most of the fluid flow problems

can be explained mathematically by these three equations.

1.3.1 Continuity Equation

The law of conservation of mass deals with the continuity equation.

∂ρ

∂t
+ ~∇.(ρ~v) = 0, (1.3.1)

which is the equation of continuity for a compressible fluid. For steady flow

∂ρ

∂t
= 0.

Then the above Eq. (1.3.1) becomes

~∇.(ρ~v) = 0.

This is called a continuity equation or conservation equation of mass. If density ρ = constant

then we get
~∇.~v = 0.

1.3.2 Conservation of Momentum

The conservation of momentum is based on the law of conservation of linear momentum.

ρ(
d~v

dt
) = −~∇ · π + ρ~g. (1.3.2)

The surface forces occurred due to the stresses which are the summation of the viscous

stresses τij plus the hydrostatic pressure on the sides of control surface that comes from the

motion of the velocity gradients. i.e.

πij = −pδij + τij.
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So,
~∇ · π = −~∇p+ ~∇ · τ.

Hence after substituting the above relation in equation (1.3.2), we get

ρ(
d~v

dt
) = −~∇p+ ~∇ · τ + ρ~g. (1.3.3)

1.3.3 Conservation of Energy

The conservation of energy is based on the first law of thermodynamics.

According to the first law of thermodynamics, the rate of change in energy equals the sum

of the rate of heat addition to and work done on fluid particles.

ρ
dÛ

dt
= −~∇ · ~q − ~∇ · (π · ~v) + (~∇ · π) · ~v (1.3.4)

1.4 Numerical Methods

Numerical methods for ordinary differential equations (ODEs) are the methods used to find

numerical approximations to the solutions of ODEs. To solve boundary value problems for the

numerical study there exists some methods like, shooting method,bvp4c and finite difference

method. In this dissertation, two numerical algorithms are used for the computational results,

a shooting technique and a bvp4c, a built-in solver in MATLAB. The governing system of

partial differential equations (PDEs) are transformed into an ordinary differential equations

by means of similarity transformations. These numerical algorithms are explained below.

1.4.1 Shooting Method

In numerical analysis, the shooting method is a method for solving a boundary value problem

BVP by reducing it to the solution of an initial value problem IVP. Shooting method can be

used for both linear and non-linear ODEs. The basic algorithm of the shooting method is the

supposition of trial value. The solution begins at one end of the boundary value problem and

shoot to the other end with an initial value solver until the boundary condition at the other
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end converges to its true value. The advantage of the shooting method is that the speed and

adaptivity of initial value problems of methods are considered.

Consider the second order two point BVP subject to the boundary conditions that is written

in the form as

y′′ = f(x, y, y′), y(a) = α, y(b) = β, (1.4.1)

where (α , β) are unknowns.

The Eq. (1.4.1) is converted into IVP by the following procedure:

Consider the IVP

y′′ = f(x, y, y′), y(a) = α, y′(a) = λ. (1.4.2)

Now from the above Eq. (1.4.2) we need to find the λ which will give the value of y(b) = β.

The procedure for both the linear and nonlinear shooting method is similar to solve the IVPs

except for few cases. The solution to nonlinear problems is same as linear problem except

that the base solution cannot be expressed as a linear combination of each other. Moreover

in a nonlinear case, we have an iterative procedure rather than a simple formula to combine

the solutions of two IVPs. For a nonlinear BVP, we need to find a zero of the function

representing the error i.e. the amount by which the solution to the IVP fails to satisfy the

boundary condition at x = b. In other words the amount by which y(b, λ) misses the target

value β. This error is actually a function of the initial slope of our own choice so it is denoted

as F (λ). For different choices of λ, we get different errors, so we define

F (λ) = y(b, λ)− β = 0. (1.4.3)

When y′(a) = λ∗ has been found then the desired solution is y(x, λ∗).

Now two different approaches can be used to find the zero of the error function. One approach

is we can use the secant method and the second approach is based on Newton’s method. Here

we described only the Newton’s method.

In order to use Newton’s method, we have to calculate the derivative of the function whose

zero is required, namely, F (λ). To choose the value of λ∗ such that equation (1.4.3) holds.

Then
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λ∗ = y′(a) =
y(b)− y(a)

b− a
(1.4.4)

λ∗ =
β − α
b− a

(1.4.5)

Newton’s method is used to approximate the solution of y(b, λ)−β = 0 and find a next guess

λk+1.

λk+1 = λk −
y′(b, λk)− β
y′(b, λk)

. (1.4.6)

1.4.2 bvp4c

To solve BVP directly we take help from bvp4c. Programming in MATLAB requires an

estimate to solve BVP. The bvp4c is such an efficient solver to solve BVP’s. bvp4c is based

on collocation and solution begins with the initial estimate provided initial mesh points. As

BVPs are much difficult to resolve in this respect, bvp4c is an efficient solver. Contrary to

the shooting method, the solution is approximated on the entire interval and the boundary

conditions are considered all times [21]. To represent the solution to the specified accuracy,

the number of mesh points are needed as the cost of solving a BVP with bvp4c depends

strongly on these numbers so, it tries to minimize this number.
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Chapter 2

Numerical Solution of Boundary Layer

Flow and Heat Transfer with Variable

Viscosity on a Moving Flat Plate in a

Parallel Free Stream

This chapter concerns with the boundary layer flow and heat transfer analysis along with

variable fluid properties on a moving flat plate in a parallel free stream. It also includes the

variation of fluid viscosity with temperature. This chapter is the literature review of Bachok

et al. [27]. The boundary layer problem has been first studied by Sakiadis [5] on continuous

solid surfaces. Pop et al. [16] and Andersson [15] have considered the boundary layer flow

problems, including the variation of fluid viscosity with temperature. Bachok et al. [27] have

considered the first case of steady boundary layer flow and heat transfer with variable fluid

properties in a parallel free stream on a moving plate.

In this study, two special cases of constant fluid properties and variable fluid properties are

discussed for boundary layer flow and heat transfer analysis. Numerical results obtained by

using bvp4c and shooting method technique for various values of free stream parameter and

the Prandtl number.

This chapter is organized as follows. Section 1 deals with the mathematical formulation, in

13



Section 2 special cases are discussed, Section 3 is about the details of numerical methods

that we used for the numerical computations, Section 4 deals with results and discussions.

2.1 Problem Formulation

Consider a steady, two-dimensional boundary layer flow of a viscous fluid on a moving flat

plate in a parallel free stream. Let the plate is moving with a constant velocity Uw and free

stream velocity is U0. The moving plate is kept at constant temperature Tw and the ambient

fluid has constant temperature T0.

Under the boundary layer assumptions, the equations governing the flow and heat transfer

are given by Andersson and Aarseth [15],

∂(ρu)

∂x
+
∂(ρv)

∂y
= 0, (2.1.1)

ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
=

∂

∂y

(
µ
∂u

∂y

)
, (2.1.2)

ρCp

(
u
∂T

∂x
+ v

∂T

∂y

)
=

∂

∂y

(
k
∂T

∂y

)
, (2.1.3)

subject to the following boundary conditions

u = Uw, v = 0, T = Tw at y = 0,

u→ U0, T → T0 as y →∞. (2.1.4)

Here u and v denotes the components of velocity along the x and y directions respectively,

T is the fluid temperature, Cp is the specific heat at constant temperature, ρ is the fluid

density, µ is the dynamic viscosity and k is the thermal conductivity.
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The following transformation is considered to examine the flow as mentioned in Andersson

and Aarseth [15].

η =

√
U

aν0x

∫
ρ

ρ0
dy, ψ = ρ0

√
aν0xUf(η), (2.1.5)

θ(η) =
T − T0
Tw − T0

, (2.1.6)

where U = Uw + U0, a is a dimensionless positive constant. Further ρ0, ν0, µ0, k0 and Cp0
are the values of ambient fluid at temperature T0.

A stream function ψ(x, y) is defined as

ρu =
∂ψ

∂y
, ρv = −∂ψ

∂x
. (2.1.7)

And the velocity components are given as follows:

u = Uf ′(η), v =
ρ0
2

√
aUν0
x

(ηf ′(η)− f), (2.1.8)

By using the transformations given in Eqs. (2.1.5-2.1.8), the PDEs (2.1.1-2.1.3) can be

transformed into the following ODEs

2

a

(
f ′′

µρ

µ0ρ0

)′
+ ff ′′ = 0, (2.1.9)

(
kρ

k0ρ0
θ′
)′

+
Cpa

2Cp0
Pr0fθ

′ = 0, (2.1.10)

where Pr0 is the constant Prandtl number of the ambient fluid. It can be expressed as:

Pr0 = µ0Cp0/k0.

The transformed boundary conditions (2.1.4) become

f(0) = 0, f ′(0) = 1− ε, θ(0) = 1,

f ′(η) = ε, θ(η) = 0 as η →∞, (2.1.11)
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where ε is the free stream parameter since it gives the relative importance of free stream

velocity. It is defined as:

ε =
U0

U
=

U0

U0 + Uw

The free stream parameter for different values correspond to different type of flows, such

as a free stream velocity becomes equal to the moving plate velocity for ε=1/2, for ε=1

corresponds to the classical Blasius flow, and ε=0 is for the case of a moving flat plate in

a quiescent fluid (Sakiadis flow). For 0 < ε < 1, it corresponds to the case where both the

velocities of free stream and plate are in the same direction.

While for ε > 1, the free stream is directed towards positive x-axis while plate moves towards

the negative x-axis. If ε < 0, then the free stream is directed towards the negative x-axis

while plate moves towards positive x-direction see Afzal et al. [26]. For our analysis, we

consider only the case where the free stream is fixed and have positive-direction i.e. ε ≥ 0.

The surface shear stress τw and the surface heat flux qw, which are defined as follows:

τw = µw(

√
U3

aν0x
f ′′(0), qw = µwCp0∆TPr

−1
0

√
U

aν0x
[−θ′(0)]. (2.1.12)

2.2 Special Cases

2.2.1 Case A : Constant Fluid Properties

For Case A, the similarity variable η and stream function ψ simplifies to the Blasius [12]

variable and are defined as

η =

√
U

aν0x
y, ψ =

√
aUν0xf(η). (2.2.1)

Eqs. (2.1.9) and (2.1.10) reduce to

2

a
f ′′′(η) + ff ′′(η) = 0, (2.2.2)

16



θ′′(η) +
a

2
Pr0f(η)θ′(η) = 0. (2.2.3)

The case for ε= 1 was discussed by Fang [30], the Eq. (2.2.2) is an extended Blasius equation,

where the solution of these equations is subjected to the same boundary conditions as given

in Eq. (2.1.11).

2.2.2 Case B: Variable Fluid Properties

For Case B, we consider only the viscosity as a function of the temperature, while all the

other fluid properties remained as constant.

(
µ

µ0

f ′′
)′

+ f(η)f ′′(η)− f ′2(η) = 0. (2.2.4)

Pop et al. [16] and Andersson and Aarseth [15] followed the assumption that viscosity is an

inverse linear function of temperature investigated by Lai and Kulacki [8] is given by the

following equation;

µ(T ) ≈ µref
[1 + γ(T − T0)]

, (2.2.5)

here γ is a fluid property that depends on the reference temperature Tref .

Generally viscosity has an inverse relation with temperature for liquids as with an increase in

temperature the viscosity of liquids decreases (γ >0), whereas for gases it increases (γ <0).

If the reference temperature Tref≈T0, the formula (2.2.5) can be expressed as

µ =
µ0

1− T−T0
θref (Tw−T0)

, (2.2.6)

where θref is defined as

θref =
−1

(Tw − T0)γ
,

which is a dimensionless constant and ∆T is the operating temperature difference (Tw−T0).

Substituting the above formula (2.2.6) in Eq. (2.2.4) we get
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f ′′′ +
θ′

θref − θ
f ′′ +

a

2
(
θref − θ
θref

)ff ′′ = 0. (2.2.7)

The thermal energy boundary layer equation remains the same as in Eq. (2.2.3).

2.3 Numerical Methods

The numerical approach is used to find the numerical solutions of boundary layer problems.

Numerical solutions of the governing equations are obtained by using the shooting method

with fifth order Runge-Kutta integration method and MATLAB built-in solver bvp4c. The

non-linear ordinary differential equations (ODEs) along with boundary conditions are solved

by a numerical technique known as shooting method. The results are compared with those

of bvp4c.

For Case A: The equation of momentum Eq. (2.2.2) becomes,

y′3 = −a
2
y1y3 (2.3.1)

For Case B: The equation of momentum Eq. (2.2.7) becomes,

y′3 =
y3y5

0.25 + y4
− ay1y3

0.50
(0.25 + y4). (2.3.2)

While the thermal energy equation Eq. (2.2.3) remains the same for both the Cases A and

B. The Eq. (2.2.3) becomes

y′5 = −a
2
Pr0y1y5. (2.3.3)

2.4 Results and Discussions

In this section, numerical results are presented in tabular and graphical forms. The solution

of boundary value problems of Eqs. (2.2.2-2.2.4) is a two-parameter problem that depends
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on T0, Pr0 and (Tw − T0), where the Prandtl number Pr0 is related to T0. Bachok et al. [27]

focus on the effects of a temperature dependent viscosity while assuming all other physical

properties constant. Two different cases are observed to describe the effect of a temperature-

dependent viscosity. Fluid is considered at temperature T0 = 278 K as an ambient fluid and

the temperature of the surface is Tw = 358 K where the operating temperature difference

∆T = Tw − T0 is 80 K at Pr0 = 10 and 1. In Table 2.1 numerical results of skin friction

coefficient f ′′(0) and temperature gradient θ′(0) are obtained and compared with the results

of Bachok et al. [27] by using bvp4c and shooting method. Comparison of results of constant

fluid properties with the variable fluid properties at Pr0 = 10 and 1 is shown and θref = -0.25

is set for water at T0 = 278 K. For liquids, θref is taken as negative and for the gasses it is

taken as positive as mentioned in Ling and Dybbs [17].

Table 2.1: Values of the reduced skin friction coefficient −f ′′(0) and reduced temperature

gradient −θ′(0) for Pro = 1 and 10 in both Cases A and B.

Bachok Present results Present results

et al. [27] using bvp4c by shooting method

ε Pro a - f
′′
(0) -θ

′
(0) -f

′′
(0) -θ

′
(0) -f

′′
(0) -θ

′
(0)

0 10 1

Case A 0.4437 1.6803 0.4437 1.6802 0.4437 1.6803

Case B 1.3006 1.5292 1.3006 1.5292 1.3005 1.5292

0 1 1

Case A 0.4437 0.4437 0.4437 0.4437 0.4437 0.4437

Case B 1.0381 0.3181 1.0381 0.3181 1.0381 0.3181
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The values of f ′′(0) and θ′(0) are in very good correspondence with the results calculated by

Andersson and Aarseth [15]. Therefore, this numerical approach can be used for the better

approximation in order to validate the accuracy of the technique.

The reduced velocity profiles f ′(η) near the moving surface for Case B as compared with the

case A is shown in Fig. (2.1). The moving surface heats the adjacent surface and reduces

its viscosity. The temperature profile shows a higher temperature near the surface due to

reduced viscosity for case B as shown in Fig. (2.2).

A necessary condition is analyzed by Andersson and Aarseth [15] that the integration length

is sufficient long to satisfy f ′′(0)→0 and θ′(0)→0 therefore the results obtained in Figs.

(2.1) and (2.2) are produced at η0 = 25. The momentum boundary layer and thermal

boundary layer thickness decreases with an increase in the Prandtl number and free stream

velocity. As compared to variable viscosity the constant fluid properties shows drag reduction

characteristics.
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Chapter 3

Numerical Solution of MHD Boundary

Layer Flow and Heat Transfer over a

Stretching Sheet with Variable Fluid

Properties

This chapter is the extension work of Bachok et al. [27] presented in Chapter 2. In this chap-

ter MHD boundary layer flow and heat transfer over a stretching sheet with variable fluid

properties in a parallel free stream is investigated. The variation of viscosity on temperature

is taken into account. The stretching sheet is moving with the non-uniform velocity. The

stagnation point flow and heat transfer characteristics over a stretching sheet in the presence

of a uniform magnetic field are studied.

Three special cases of constant fluid properties and variable fluid properties along with ex-

ponentially temperature dependence are discussed for boundary layer flow and heat transfer

analysis. The effects of different parameters on the flow field and heat transfer characteristics

are analyzed by using a shooting technique and bvp4c, a built-in solver in MATLAB.

This chapter is organized into different sections. Section 1 is related to introduction. Section

2 deals with the mathematical formulation. In Section 3 special cases are discussed. Section

4 is about the details of numerical methods that we used for the numerical computations.
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Section 5 deals with results and discussions and Section 6 is about the conclusion.

3.1 Introduction

Magnetohydrodynamics (MHD) is the study of the magnetic properties of electrically con-

ducting fluids. A number of applications have been found in the study of magnetohydro-

dynamics of a conducting fluid including various problems of astrophysics and geophysics.

Makinde et al. [28] investigated the steady state mixed convection flow of a chemically re-

acting variable viscosity incompressible radiating and conducting fluid past a vertical porous

convectively permeable plate in a porous medium in the presence of thermophoresis and a

magnetic field. Lai and Kulacki [8] considered the effects of variable viscosity on convective

heat transfer along a vertical surface in a porous medium. Ishak et al. [4] analyzed the un-

steady MHD flow and heat transfer over a stretching plate and gave the numerical solution

using similarity transformation technique. Bachok et al. [27] presented the influence of vari-

able viscosity on boundary layer flow and heat transfer due to a continuously moving flat

plate.

3.2 Mathematical Formulation

We consider a steady, two-dimensional magnetohydrodynamic laminar boundary layer flow

of a viscous fluid near the stagnation point towards a stretching sheet. The velocity of the

stretching surface Uw(x) = ax and the free stream velocity Uo(x) = bx, are assumed to be

linearly varying with x, distance from the stagnation point, where a and b are constants

with a > 0 and b > 0. The uniform ambient fluid temperature is taken as To, while the

temperature of the sheet is subjected to a prescribed temperature Tw(x) = To + cxn, where

c and n are constants with c > 0. A magnetic field of uniform strength Bo is applied along

y-direction normal to the stretching sheet. All fluid properties are assumed to be constant
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except for the viscosity which varies with temperature in the momentum equation. The

governing equations for the MHD boundary layer flow and heat transfer of a steady laminar

and compressible viscous fluid takes the form as:

∂(ρu)

∂x
+
∂(ρv)

∂y
= 0, (3.2.1)

ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
= U0

dU0

dx
+

∂

∂y

(
µ
∂u

∂y

)
+ σB2

0(U0 − u), (3.2.2)

ρCp

(
u
∂T

∂x
+ v

∂T

∂y

)
=

∂

∂y

(
k
∂T

∂y

)
, (3.2.3)

where u and v are the velocities in x and y-directions, respectively. Further ρ, µ, k, Cp,

T and B0 is the fluid density, dynamic viscosity, thermal conductivity, specific heat, fluid

temperature and an applied magnetic field strength, respectively.

The appropriate boundary conditions are written as

u = Uw(x) = ax, v = 0, T = Tw(x) = T0 + cxn at y = 0, (3.2.4)

u→ U0(x) = bx, T → T0 as y →∞.

The momentum and energy equations can be transformed into the ODEs by using the fol-

lowing similarity transformation [4]

η =

√
a

ν0

∫
ρ

ρ0
dy, ψ = ρ0

√
aν0xf(η), θ(η) =

T − T0
Tw − T0

, (3.2.5)

where ρ0 and ν0 are the values of ambient fluid at temperature T0. ψ is the stream function

defined as

ρu =
∂ψ

∂y
, ρv = −∂ψ

∂x
, (3.2.6)

which satisfies the continuity equation Eq. (3.2.1) under condition (3.2.6) and the velocity

components are given as follows:

u = axf ′(η), v = −ρ0
√
aν0f(η). (3.2.7)

Substituting Eqs. (3.2.5), (3.2.6) and (3.2.7) into Eqs. (3.2.1), (3.2.2) and (3.2.3) the gov-

erning equation are obtained as;

(f ′′
µρ

µ0ρ0
)′ + ff ′′ − f ′2 +M(ε− f ′) + ε2 = 0, (3.2.8)
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(
kρ

k0ρ0
θ′
)′
− (nf ′θ − fθ′)Pr0

Cp
Cp0

= 0, (3.2.9)

with the boundary conditions transformed into the following form:

f(0) = 0, f ′(0) = 1, θ(0) = 1,

f ′(η) = ε, θ(η) = 0 as η →∞, (3.2.10)

where f ′ and θ are the dimensionless velocity and temperature respectively. The other

quantities are

Pr0 = µ0Cp0/k0 is the Prandtl number

M = σB2
0

ρa
is the magnetic parameter

ε = b
a
is the velocity ratio parameter.

The surface shear stress τw and the surface heat flux qw are the physical quantities of the

main interest. These are defined as follows:

τw = µw

(
∂u

∂y

)
|y=0, qw = −kw

∂T

∂y
|y=0, (3.2.11)

Using Eq.(3.2.11) takes and take the following form:

τw = µwx

√
a3

ν0
f ′′(0), qw = µwCp0∆TPr

−1
0

√
a

ν0
[−θ′(0)]. (3.2.12)

3.3 Special Cases

3.3.1 Case A : Constant Fluid Properties

For Case A, the similarity variable η and stream function ψ reduces to the Blasius [12]

variable

η =

√
a

ν0
y, ψ =

√
aν0xf(η), (3.3.1)

and Eqs. (3.2.8) and (3.2.9) reduce to

f ′′′ + ff ′′ − f ′2 +M(ε− f ′) + ε2 = 0, (3.3.2)
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θ′′ − (nf ′θ − fθ′)Pr0 = 0. (3.3.3)

These equations are subject to same boundary conditions given in Eq. (3.2.10) of Ishak et

al. [4].

3.3.2 Case B: Variable Fluid Properties

In this case, we emphasize to study the variation of viscosity which varies with temperature

while all the other fluid properties remainedconstant. Followed by Pop et al. [16], Andersson

and Aarseth [15] and Elbashbeshy and Bazid [6] considered viscosity as a function of tem-

perature and other properties as constant.

In this case the momentum boundary layer Eq. (3.2.8) becomes

(f ′′
µ

µ0

)′ + ff ′′ − f ′2 +M(ε− f ′) + ε2 = 0. (3.3.4)

For a viscous fluid, Bachok et al. [27] followed Ling and Dybbs [17] and assumed that the

viscosity is an inverse linear function of temperature µ(T ) proposed by Lai and Kulachi [8]

given by the following equation

µ(T ) =
µref

[1 + γ(T − Tref )]
. (3.3.5)

Here γ is a fluid property that depends on the reference temperature Tref . If the reference

temperature Tref ≈ T0, the formula (15) can be written as follows

µ =
µ0

1− T−T0
θref (Tw−To)

=
µ0

1− θ(η)
θref

. (3.3.6)

where

θref ≡ −1
(Tw−T0)γ

and (Tw − T0) is the operating temperature difference ∆T.

Using above formula (3.3.6) in Eq. (3.3.2) we get the momentum boundary equation for this

case as

f ′′′ =
f ′′θ′

0.25 + θ
− 0.25 + θ

0.25
[ff ′2 − f ′2 −Mf ′ + ε2 +Mε]. (3.3.7)
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3.3.3 Case C: Exponential Temperature Dependency

For Case C, the formula for the variation of the dynamic viscosity of the fluid with temper-

ature is given by [9]

ln(
µ

µref
) ≈ −2.10− 4.45

Tref
T

+ 6.55(
Tref
T

)2, (3.3.8)

and the momentum equation Eq. (3.3.4) after using above formula (3.3.8) for this case

becomes,

f ′′′ = (f ′2 − ff ′2 − ε2 −Mε+Mf ′)(
µ0

µ
)− f ′′θ′(Tw − T0)(4.45

Tref
T 2
− 13.1

T 2
ref

T 3
). (3.3.9)

here

µref = 0.00179 kg/ms and Tref = 273 K.

3.4 Numerical Methods

Numerical results are obtained by using shooting method. In shooting method, Newton-

Raphson method has been used for root finding. The Runge-Kutta fifth order method has

been utilized to find the solution of the reduced IVP. These results are verified by using

MATLAB built-in solver bvp4c, which employs collocation technique in the background. To

convert boundary value problems into an initial value problems we define new variables as,

y = f=y1,

f ′=y′1=y2,

f ′′=y′2=y3,

θ=y4 ,

θ′=y′4 = y5 .
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The following strategy has been used to find solutions for the cases A, B, and C.

(a) For Case A: The equation of momentum (3.3.4) becomes,

y′3 = −y1y3 +My2 −Mε− ε2 + y22 (3.4.1)

y′5 = −Pr0(y1y5 − ny2y4). (3.4.2)

(b) For Case B: The equation of momentum (3.3.7) becomes,

y′3 =
y3y5

0.25 + y4
− 0.25 + y4

0.25
(y22 +My2 − y1y22 − ε2 −Mε). (3.4.3)

(c) For Case C: The equation of momentum (3.3.9)becomes,

y′3 = −y1y5(Tw − T0)(4.45
Tr
T 2
− 13.1

T 2
r

T 3
) +

µ0

µ
(y22 +My2 − y1y22 − ε2 −Mε). (3.4.4)

here
µ

µ0

=
µref
µ0

exp(−2.10− 4.45(
Tref
T

) + 6.65(
Tref
T

)2). (3.4.5)

3.5 Results and Discussions

In this section, the numerical results are depicted in tabular and graphical forms. The

system of non-linear ODEs is solved numerically by using shooting technique along with

Runge-Kutta fifth order integration technique. The resulting system of differential equations

is then compared those results with MATLAB bvp4c. The computations are performed

to study the effects of variation of magnetic parameter M , Prandtl number Pr, velocity

ratio parameter ε, temperature index parameter n. The behaviour of skin friction coefficient

−f ′′(0) and temperature gradient −θ′(0) with the variation in physical parameters are shown

in Tables (3.1-3.4). By increasing the values of Prandtl number Pr, the temperature index n,

and velocity ratio parameter ε, the temperature gradient increases while having a decreasing

effect on the skin friction coefficient for the variation of velocity ratio parameter and it shows

no change for the Prandtl number and temperature index parameter as shown in Tables 3.1
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and 3.3. The influence of the variation of magnetic parameter has an increasing effect on

the skin friction coefficient but there is a decrease in the temperature gradient for case A

and case B as shown in Tables 3.1 and 3.2. Comparison of three cases have been depicted

in Table 3.4 where the skin friction coefficient decreases for Case A and C as compared to

case B and the temperature gradient increases for all cases with an increase of the Prandtl

number.

Table 3.1: Comparison of values of −f ′′(0) and −θ′(0) for the variation of different parameters

for Case A.

bvp4c shooting method

Pr M ε n −f ′′(0) −θ′(0) −f ′′(0) −θ′(0)

0.7 0.1 0.1 1 1.0098928 0.81215822 1.0098933 0.81215098

1 - - - 1.0098928 1.0127478 1.0098933 1.0127415

3 - - - 1.0098928 1.9267086 1.0098933 1.9268326

7 - - - 1.0098928 3.0726765 1.0098933 3.0727008

10 - - - 1.0098928 3.7204164 1.0098933 3.7204954

0.7 0.2 - - 1.0489058 0.80470808 1.048906 0.80470549

- 0.3 - - 1.0865699 0.79764357 1.0865705 0.79764053

- 0.4 - - 1.1230104 0.79092717 1.1230112 0.79092368

- 0.5 - - 1.1583345 0.78452983 1.1583357 0.78452608

10 0.5 0.5 0 0.75401486 2.3769594 0.75401494 2.3769408

- - - 1 0.75401485 3.7947678 0.75401495 3.7947635

- - - 2 0.75401485 4.8705287 0.75401495 4.8705389

- - - 3 0.75401485 5.7661056 0.75401495 5.7661056

- - - 4 0.75401485 6.5476536 0.75401495 6.5476536

1 0.1 0.1 1 1.0098928 1.0127478 1.0098933 1.0127415

- - 0.2 - 0.95185881 1.0396127 0.95185917 1.0396145

- - 0.3 - 0.87735782 1.0669778 0.87735595 1.0669733

- - 0.4 - 0.78812365 1.0944243 0.78812105 1.0944921

- - 0.5 - 0.68543881 1.1217327 0.68543828 1.1217059
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Table 3.2: Comparison of values of −f ′′(0) and −θ′(0) with different values of M at ε=0.1

for Case B.

bvp4c shooting method

M Pr ε n −f ′′(0) −θ′(0) −f ′′(0) −θ′(0)

0.1 1 0.1 1 1.9676843 0.9682156 1.9663873 0.9681393

0.2 - - - 2.0233129 0.9363979 2.0234264 0.9367586

0.3 - - - 2.1398691 0.9104215 2.1389705 0.9103190

0.4 - - - 2.2461303 0.8878961 2.2457508 0.8876009

0.5 - - - 2.3446827 0.8694642 2.3445932 0.8693543

Table 3.3: Comparison of values of −f ′′(0) and −θ′(0) with different values of ε at Pr = 1

for Case C.

bvp4c shooting method

ε n M Pr −f ′′(0) −θ′(0) −f ′′(0) −θ′(0)

0.1 1 5 1 2.1441991 0.8317945 2.1441586 0.8317140

0.2 - - - 1.9202611 0.9134659 1.9202279 0.9134622

0.3 - - - 1.6885735 0.9783565 1.6885469 0.9783545

0.4 - - - 1.4486799 1.0345052 1.4486621 1.0345038

0.5 - - - 1.1995993 1.0860253 1.1970435 1.0842147
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Table 3.4: Comparison of values of −f ′′(0) and −θ′(0) with different Prandtl numbers at

M= ε=0.1 and n=1.

bvp4c shooting method

Cases ε Pr −f ′′
(0) −θ′

(0) −f ′′
(0) −θ′

(0)

0.1 0.7

CaseA 1.0098928 0.81215822 1.0098933 0.81215098

CaseB 1.8661448 0.77697376 1.8661449 0.77697370

CaseC 1.0207258 0.9304605 1.0207252 0.93046040

0.1 1

CaseA 1.0098928 1.0127478 1.0098933 1.0127415

CaseB 1.9799072 0.86476828 1.9799070 0.86476819

CaseC 0.7253066 1.1012004 0.7253043 1.1012091

0.1 10

CaseA 1.0098928 3.7204164 1.0098933 3.7204964

CaseB 2.8841258 3.3669161 2.8841248 3.3669159

CaseC 0.7217002 3.8027996 0.7217190 3.8027980

Three cases have been considered to illustrate the effect of temperature-dependent viscosity.

The surface temperature is taken as Tw = 358K. The ambient fluid is considered at tem-

perature T0 = 278K. Figs. 3.1 and 3.2 show the velocity and temperature profiles for three

different cases A, B, and C. The temperature profile shows the reduction in Case C near the

moving surface as compared to the other two cases A and B in Fig.3.2.

The influence of magnetic parameter M on velocity and temperature profiles is shown in

Figs. 3.3-3.7. The presence of a magnetic field to an electrically conducting fluid give rise to

a resistive force called the Lorentz force. This force can slow down the motion of the fluid.

As the values of magnetic parameter M increases, Lorentz force increases and as a result the

motion of the fluid decreases and the thickness of momentum boundary layer decreases. The

increase in M causes an increase in the thickness of thermal boundary layer while decreases

the thickness of momentum boundary layer for all cases. Figs. 3.8-3.10 shows the reduction

in the thickness of thermal boundary layer due to an increase in temperature index parameter

n and an increasing effect is shown for the velocity profile for case B.
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The Prandtl number is the ratio of viscous diffusivity to the thermal diffusivity. Raising

Prandtl number depicts the decrease in thermal boundary layer thickness while shows no

change in the momentum boundary layer. The effect of Prandtl number on temperature

profile which decreases with the increase in Prandtl number in Fig. 3.12 but the increase in

Prandtl number has no such effect on velocity profile, at different values for Pr it gives the

same result for case A , as shown in Fig. 3.11. While in Figs. 3.13-3.14 for case B there is an

increase in the thickness of momentum boundary layer and decrease in the thermal boundary

layer thickness with an increase in Prandtl number. The effect of variation of ε parameter

is shown in Figs. 3.15-3.18, for case C and case A. The velocity profile increases, while the

temperature profile decreases with an increase in the free stream parameter.
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Figure 3.1: Velocity profiles for different cases

at Pr = 0.7, n = 1 and M = ε = 0.1.
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Figure 3.2: Temperature profiles for different

cases at Pr = 0.7, n = 1 and M = ε = 0.1.
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Figure 3.3: Velocity profiles for different values

of magnetic parameter M with n = 1, ε = 0.1 and

Pr=0.7.
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Figure 3.4: Temperature profiles for different

values of magnetic parameter M with n = 1, ε =

0.1 and Pr=0.7.
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Figure 3.5: Velocity profiles for different values

of magnetic parameter M with n = 2, ε = 0.1 and

Pr=1.
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Figure 3.6: Temperature profiles for different

values of magnetic parameter M with n = 2, ε =

0.1 and Pr=1.
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Figure 3.7: velocity profiles for different values

of magnetic parameter M with n = 1, ε = 0.5 and

Pr=10.

0 0.5 1 1.5 2 2.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

θ(
η

)
η

Case A

n = 3, 5, 10, 15, 20

Figure 3.8: Temperature profiles for different

values of temperature index parameter n with M

= 0.1, ε = 0.5 and Pr=10.
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Figure 3.9: Velocity profiles for different values

of n with M = 5, ε = 0.1 and Pr=1.
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Figure 3.10: Temperature profiles for various

values of n with M = 5, ε = 0.1 and Pr=1.
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Figure 3.11: Velocity profiles for different val-

ues of Prandtl number Pr at M=0.1.
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Figure 3.12: Temperature profiles for different

values of Prandtl number Pr at M=0.1.
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Figure 3.13: Velocity profiles for different val-

ues of Prandtl number Pr at M =5.
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Figure 3.14: Temperature profiles for different

values of Prandtl number Pr at M=5.
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Figure 3.15: Velocity profiles for different val-

ues of ε with M= 0.1, n=1 and Pr=0.7.
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Figure 3.16: Temperature profiles for various

values of ε with M= 0.1, n=1 and Pr=0.7.
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Figure 3.17: Velocity profiles for different val-

ues of ε with M= 0.5, n=1 and Pr=0.7.

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

η

θ(
η

)

Case A

ε = 0.1, 0.2, 0.3, 0.4, 0.5

Figure 3.18: Temperature profiles for different

values of ε with M= 0.5, n=1 and Pr=0.7.

3.6 Concluding Remarks

The increase in MHD parameter resulted in an increase in the skin friction coefficient and in

the thermal boundary layer thickness while decreases the thickness of momentum boundary

layer as well as the wall temperature. The velocity ratio parameter ε caused an increasing

effect in the thickness of momentum boundary layer and in the temperature gradient and

reduced the thickness of the thermal boundary layer and the skin friction coefficient. It
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is observed, the thermal boundary layer thickness decreases for all cases but the thickness

of momentum boundary layer increases for case B and shows no effect for case A with an

increase in the values of the Prandtl number while both the skin friction coefficient and the

temperature gradient increases. The increase in temperature index parameter n resulted in an

increase in the thickness of momentum boundary layer and the wall temperature while shows

the opposite result for the skin friction coefficient and thermal boundary layer thickness.
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Chapter 4

Numerical Solution of MHD Boundary

Layer Flow and Heat Transfer over a

Non-Linear Stretching Sheet with

Variable Fluid Properties

The steady two-dimensional MHD boundary layer flow and heat transfer for a viscous fluid

over a nonlinear stretching sheet with variable fluid properties is investigated. Three cases of

constant fluid properties, variable temperature-dependency and exponentially temperature-

dependency on the MHD boundary layer flow and heat transfer over a nonlinear stretching

sheet have been investigated. The case of fluid viscosity vary as an inverse function and

linear function of temperature is studied. The effect of various governing parameters on the

velocity and temperature profiles and heat transfer characteristics are studied such as Prandtl

number Pr, velocity exponent m, temperature index parameter n, the magnetic parameter

M, and the stretching parameter β.

The governing nonlinear partial differential equations are transformed into non-linear ordi-

nary differential equations by using the similarity transformation and are solved numerically

by the shooting technique and bvp4c, a built-in solver of MATLAB. The numerical results

for the velocity, temperature, skin friction coefficient, and the Nusselt number are obtained
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and presented graphically and in tabular form for different values of the parameters.

4.1 Introduction

The current study pursues the work by Andersson and Aarsaeth [15]. In this work we study

MHD boundary layer flow and heat transfer over a non-linear stretching sheet with vari-

able fluid properties. Therefore to predict the flow and heat transfer rates, the variable

fluid properties are taken into account. In view of this, the problem studied here extends

the work of Andersson and Aarseth by considering the temperature-dependent variable fluid

properties. The present work deals with numerical solutions for specific values of stretching

parameter and the Prandtl number of flow behaviour and heat transfer characteristics. The

coupled nonlinear partial differential equations governing the problem are transformed to a

system of coupled nonlinear ordinary differential equations by applying a suitable similarity

transformation. These non-linear coupled differential equations are solved numerically by the

shooting method and bvp4c, a built-in solver of MATLAB for different values of the physical

parameters.

This paper is organized as follows. In Section 2 we present model and mathematical for-

mulation. Special cases are discussed in Section 3. Section 4 is related to the details of the

numerical solution. Results and discussions are presented in Section 5 and Section 6 deals

with the conclusion.

4.2 Mathematical Formulation

Consider a steady, two-dimensional magnetohydrodynamic (MHD) laminar boundary layer

flow of a viscous fluid over a nonlinear stretching sheet in the presence of a transverse magnetic

field. The sheet is moving with a non-uniform velocity U(x) in an ambient fluid at rest. The

stretching velocity of the sheet is of the form Uw(x) = axm, where a is a positive constant

and m is an exponent. The ambient temperature of the fluid is taken as T0 while the

temperature of the sheet is subjected to a form Tw(x) = To + cxn with c> 0, where c and n
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behaves as a constant. Along the normal to the stretching sheet, a uniform magnetic field

of strength B0 is applied. The viscous dissipation and the induced magnetic field produced

by an electrically conducting fluid are negligible. The laminar boundary layer equations for

continuity, momentum and thermal energy for MHD flow are written as follows:

∂(ρu)

∂x
+
∂(ρv)

∂y
= 0, (4.2.1)

ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
=

∂

∂y

(
µ
∂u

∂y

)
− σB2

0u, (4.2.2)

ρCp

(
u
∂T

∂x
+ v

∂T

∂y

)
=

∂

∂y

(
k
∂T

∂y

)
, (4.2.3)

with corresponding boundary conditions,

u = Uw(x) = axm, v = 0, T = Tw(x) = T0 + cxn at y = 0, (4.2.4)

u→ 0, T → T0 as y →∞.

where u and v are the fluid velocities, ρ is the density of fluid, Bo is an applied magnetic

field strength. µ is the dynamic viscosity, Cp is the specific heat, T is the fluid temperature

and k is the thermal conductivity of the fluid. Uw is the velocity at the sheet, Tw is the wall

temperature.

We introduce the following dimensionless variables mentioned in Ali [23].

η =

√
(1 +m)U(x)

2νx

∫
ρ

ρ0
dy, ψ = ρ0

√
2νxU(x)

1 +m
f(η), θ(η) =

T − T0
Tw − T0

. (4.2.5)

And ψ is the stream function defined as:

ρu =
∂ψ

∂y
, ρv = −∂ψ

∂x
(4.2.6)

The relation of stream function ψ is introduced here to evaluate the velocity components,

which are given as,

u = axmf ′(η), v = −ρ0
√

2νa

1 +m
x

m−1
2

(
m+ 1

2
f(η) + η

m− 1

2
f ′(η)

)
, (4.2.7)
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The following dimensionless quantities are introduced into the governing momentum and

thermal energy equations,

Pr = µCp/k is the Prandtl number

M = 2σB2
0

ρa(1+m)xm−1 is the magnetic parameter

β = 2m
1+m

is the velocity ratio parameter.

By using Eqs. (4.2.5-4.2.7) into Eqs. (4.2.1-4.2.3) we get,

(f ′′
µρ

µ0ρ0
)′ + ff ′′ − βf ′2 −Mf ′ = 0, (4.2.8)

(
kρ

k0ρ0
θ′
)′

+ Pr(fθ′ − 2n

1 +m
f ′θ) = 0, (4.2.9)

and the boundary conditions becomes,

f(0) = 0, f ′(0) = 1, θ(0) = 1,

f ′(η) = 0, θ(η) = 0 as η →∞, (4.2.10)

here f ′ is the dimensionless velocity and θ is the dimensionless temperature.

The physical quantities of main interest are the surface shear stress τw and the surface heat

flux qw, which are defined as follows:

τw = µwx
m+1

2 y

√
a3(1 +m)

2ν
f ′′(0), qw = µwCp∆TPr

−1

√
a(1 +m)

2ν
[−θ′(0)]. (4.2.11)

4.3 Special Cases

4.3.1 Case A : Constant Fluid Properties

We have taken all the fluid properties to be constant except the viscosity variation with

temperature. In the first case, fluid properties are treated as constant. For Case A, the

dimensionless variables η and stream function ψ reduces to a form

η =

√
a

ν0
y, ψ =

√
aν0xf(η), (4.3.1)
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and Eqs. (4.2.8) and (4.2.9) under the above similarity transformation reduces to,

f ′′′ + ff ′′ − βf ′2 −Mf ′ = 0, (4.3.2)

θ′′ + Pr(fθ′ − 2n

1 +m
f ′θ) = 0, (4.3.3)

along with the same boundary conditions given in Eq. (10). of Prasad et al. [19]. It should

be noted here that by setting M = 0 in Eqs.(4.3.2) and (4.3.3) one can get a form of Eqs.

(7-8) of N. Afzal [26] and Eqs. (14-17) of Prasad et al. [19] but here these set of equations

are in simplest form.

4.3.2 Case B: Variable Fluid Properties

In the second case, we consider only the viscosity variation with temperature while taking all

other fluid properties as constant. For Case B, variable fluid properties are considered. This

is done by following Andersson and Aarseth [15], Elbashbeshy and Bazid [6] and Bachok et

al. [27].

The momentum boundary layer Eq. (4.2.8) for this case becomes

(f ′′
µ

µ0

)′ + ff ′′ − βf ′2 −Mf ′ = 0. (4.3.4)

For a viscous fluid, the formula for the inversely linear temperature-dependence proposed by

the following Lai and Kulachi [8], Ling and Dybbs [17] and Pop et al. [16] is given by the

following equation

µ(T ) =
µref

[1 + γ(T − Tref )]
. (4.3.5)

Here γ is a fluid property that depends on the reference temperature Tref . Under the condition

that if the reference temperature Tref ≈ T0, the above formula (4.3.5) can be written as follows

µ =
µ0

1− T−T0
θref (Tw−T0)

=
µ0

1− θ(η)
θref

, (4.3.6)

where θref ≡ −1
(Tw−T0)γ and (Tw − T0) is the operating temperature difference ∆T.

By substituting the formula (4.3.6) in Eq. (4.3.4), the following equation becomes

f ′′′ +
θ′

θref − θ
f ′′ + (

θref − θ
θref

)(ff ′′ −Mf ′ − βf ′2) = 0. (4.3.7)
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4.3.3 Case C: Exponential Temperature Dependency

For Case C, the formula for the variation of the dynamic viscosity of the fluid with temper-

ature was recommended by [9]

ln(
µ

µref
) ≈ −2.10− 4.45

Tref
T

+ 6.55(
Tref
T

)2, (4.3.8)

and the momentum boundary equation for Case C after substituting the above formula (4.3.8)

becomes

f ′′′ = −f ′′θ′cxn(4.45
Tref
T 2
− 13.1

T 2
ref

T 3
) +

µ0

µ
(βf ′2 − ff ′′ +Mf ′). (4.3.9)

4.4 Numerical Methods

The non-linear ordinary differential equations (ODEs) along with boundary conditions are

solved numerically by the shooting technique. Newton Raphson method has been used for

root finding. To find the solution of the reduced IVP, the Runge-Kutta fifth order method

has been utilized. These computed results were verified by using MATLAB built-in solver

bvp4c. By using the following strategy the momentum equation for Case A becomes,

(a) For case A:

y′3 = −y1y3 + βy22 +My2, (4.4.1)

y′5 = Pr(
2n

1 +m
y2y4 − y1y5) = 0. (4.4.2)

(b) For case B: The equation of momentum becomes,

y′3 =
y3y5

0.25 + y4
− 0.25 + y4

0.25
(βy22 +My2 − y1y3). (4.4.3)

(c) For case C: The equation of momentum becomes,

y′3 = −y3y5cxn(4.45
Tref
T 2
− 13.1

T 2
ref

T 3
) +

µ0

µ
(βy22 +My2 − y1y3). (4.4.4)

here
µ

µ0

=
µref
µ0

exp(−2.10− 4.45(
Tref
T

) + 6.65(
Tref
T

)2). (4.4.5)

µref = 0.001792 kg/ms, µ0 = 0.001520 kg/ms and Tref = 273K , T0 = 278K .
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4.5 Results and Discussions

In this section, the numerical results obtained for the dimensionless velocity and temperature

profiles for the variation of different physical parameters magnetic parameterM , velocity ex-

ponent m, stretching parameter β, temperature index parameter n are presented in tabular

and graphical forms. The behaviour of skin friction coefficient −f ′′(0) and temperature gra-

dient −θ′(0) with the variation in physical parameters is shown in Tables (4.1-4.6). In Tables

4.2 and 4.3 the results are obtained for the Nusselt number and verified with the previous

results obtained by Mustafa [24] and Ali [23] and in Tables 4.1 and 4.5, results are computed

for the various values of Prandtl numbers Pr 0.72, 1, 3, and 10. From Tables 4.1, 4.4, 4.5

and 4.6 it can be seen that the effect of the magnetic parameter M is to reduce the wall

temperature gradient and enhances the skin friction coefficient. While the temperature in-

dex parameter n and the Prandtl number enhances the wall temperature gradient for case

A and even in the exponential temperature dependency case and shows a slight change in

skin friction coefficient. The effect of the stretching parameter β is to enhance both the skin

friction coefficient and the temperature gradient as shown in Table 4.1. Numerical solutions

of the skin friction coefficient and the heat transfer rate are compared for all the three cases

by raising the Prandtl number, for Case B there is an increase in skin friction coefficient while

for cases A and C there shows a slight change in the skin friction coefficient but enhances

the wall temperature for all cases as shown in table 4.6.
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Table 4.1: Comparison of values of -f ′′(0) and −θ′(0) for the variation of different parameters

for Case A.

bvp4c shooting method

Pr M β m n −f ′′(0) −θ′(0) −f ′′(0) −θ′(0)

0.7 0.5 1 1 1.2247449 0.7359575 1.2247449 0.7359598

1 - - - - 1.2247449 0.9408995 1.2247449 0.9408999

3 - - - - 1.2247449 1.8655052 1.2247449 1.8655089

7 - - - - 1.2247449 3.0156515 1.2247449 3.0156577

10 - - - - 1.2247449 3.6645705 1.2247449 3.6645536

0.7 0.1 - - - 1.0488089 0.7809371 1.0488089 0.7809368

- 0.2 - - - 1.0954451 0.7688642 1.0954451 0.7688642

- 0.3 - - - 1.1401754 0.7573781 1.1401754 0.7573781

- 0.4 - - - 1.1832161 0.7464244 1.1832161 0.7464243

10 0.5 0 0 - 0.6572368 3.3980941 0.6572367 3.3980357

- - 1 1 - 1.2247449 3.6645705 1.2247449 3.6645536

- - 1.33 2 - 1.6042809 3.9535492 1.6042811 3.9535557

- - 1.6 4 - 2.1732846 4.5054108 2.1732853 4.5054342

- - 1.75 7 - 2.8192844 5.2449479 2.8192858 5.2449926

1 0.1 1 1 0 1.0488089 0.57191609 1.0488089 0.57191671

- - - - 1 1.0488089 0.98710818 1.0488089 0.98710822

- - - - 2 1.0488089 1.3196013 1.0488089 1.3196031

Table 4.2: Values of skin friction coefficient Re1/2x Cfand Re
−1/2
x Nux when Pr=1 compared

with previous data.

m Mustafa [24] Present results

Re
1/2
x Cf Re

−1/2
x Nux Re

1/2
x Cf Re

−1/2
x Nux

0 -0.44375 0.44375 -0.44376 0.44376

1 -1.00000 1.00000 -1.00000 1.00000

2 -1.34845 1.34845 -1.34845 1.34845
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Table 4.3: Comparison of Re−1/2x Nux for m = 0, n = 0, M = 0, and for various Prandtl

numbers to previously published data.

Pr Jacobi [1] Tsou et al. [7] Ali [23] Present results

(1993) (1969) (1975) using bvp4c

0.7 0.3492 0.3492 0.3476 0.3492

1 0.4438 0.44378 0.4416 0.4437

10 1.6790 1.6804 1.6713 1.6803

Table 4.4: Comparison of values of −f ′′(0) and −θ′(0) with different values of M at β=1 for

Case B.

bvp4c shooting method

M Pr β n −f ′′(0) −θ′(0) −f ′′(0) −θ′(0)

0.1 1 1 1 2.5319107 1.2911665 2.5319246 1.2911872

0.2 - - - 2.6345052 1.2592202 2.6345262 1.2592542

0.3 - - - 2.7320985 1.2297405 2.7321026 1.2297436

0.4 - - - 2.8255608 1.2023007 2.8256027 1.2023801

0.5 - - - 2.9154891 1.1766242 2.9155451 1.1767366
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Table 4.5: Comparison of values of −f ′′(0) and −θ′(0) with different values ofM and Prandtl

number Pr at for Case C.

bvp4c shooting method

Pr M β m n −f ′′(0) −θ′(0) −f ′′(0) −θ′(0)

0.7 0.5 1 1 1 1.2253691 1.2372159 1.2253668 1.2372304

1 - - - - 1.2250073 1.5498779 1.2250082 1.5498708

3 - - - - 1.2237208 2.9396428 1.2237234 2.9396226

7 - - - - 1.2226723 4.6632446 1.2226727 4.6632535

10 - - - - 1.2222433 5.6359834 1.2222438 5.6360153

0.7 0 - - - 1.0012876 1.3036164 1.0012864 1.3036246

- 0.2 - - - 1.0964924 1.2755373 1.0964911 1.2755469

- 0.4 - - - 1.1839853 1.2495475 1.1839836 1.2495583

- 0.5 - - - 1.2253668 1.2372304 1.2253687 1.2372192

- 1 - - - 1.4140959 1.1810374 1.4140974 1.1810246
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Table 4.6: Comparison of values of −f ′′(0) and −θ′(0) with different Prandtl numbers at

M=0.1, and n=1.

bvp4c shooting method

Cases M Pr −f ′′(0) −θ′(0) −f ′′(0) −θ′(0)

0.1 0.7

CaseA 1.0488089 0.7809371 1.0488089 0.7809368

CaseB 2.4815005 0.9823335 2.4815331 0.9824429

CaseC 1.0499816 1.2892992 1.0499833 1.2892871

0.1 1

CaseA 1.0488089 0.98710818 1.0488089 0.98710822

CaseB 2.5319127 1.2911679 2.5319324 1.2911909

CaseC 1.0495539 1.6009485 1.0495531 1.6009555

0.1 10

CaseA 1.0488088 3.7084904 1.0488088 3.7084992

CaseB 3.1938761 5.5.2855821 3.1938595 5.285655

CaseC 1.0467705 5.6811359 1.0467682 5.6811186
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Three cases have been discussed to study the effect of temperature-dependent viscosity. The

ambient fluid is considered at temperature T0 = 278K and the surface temperature is taken

as Tw = 358K. Figs. 4.1 and 4.2 show the effect of Prandtl number for three different

cases A, B and C. The velocity profile in Fig. 4.1 is reduced near the moving surface for

case B as compared to the other two cases A and B which gave the exact same result for

the momentum boundary layer thickness. The surface heats the adjacent fluid and thereby

reduces its viscosity. The temperature profile in Fig. 2 is reduced near the moving surface for

case A and case C as compared to case B. The influence of magnetic parameterM on velocity

and temperature profiles is shown in Figs. 4.3-4.8. The increase in M causes an increase in

temperature profile while shows the reduction in the thickness of momentum boundary layer

due to increase in M parameter for all cases.

The effect of the stretching parameter β on the velocity profile in the presence of the magnetic

parameter M is depicted in Figs. 4.9-4.13. It is observed that an increase in the stretching

parameter β reduces the momentum boundary layer thickness, whereas the thermal boundary

layer also reduces for cases A and C but for the case B it increases. Physically, β > 0

implies the surface accelerating case. Figs. (4.14-4.16) shows samples of the dimensionless

velocity and temperature profiles as a function of the similarity variable η for various values

of temperature index parameter n. The increase in n parameter causes a decrease in the

thickness of thermal boundary layer for case A and C while there is an increasing effect

in the momentum boundary layer thickness for case B. The effect of variation of Prandtl

number is shown in Figs. (4.17-4.20). In Fig. 4.19, for case B there is an increase in the

momentum boundary layer with an increase in Prandtl number while the thermal boundary

layer thickness for all cases reduces by raising the Prandtl number but has no such effect on

velocity profile for case C.
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Figure 4.1: Velocity profile for different cases

(A, B and C) at Pr = 0.7,n = 1 and M , ε = 0.1.
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Figure 4.2: Temperature profiles for different

cases (A, B and C) at Pr = 0.7,n = 1 and M , ε

= 0.1.
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Figure 4.3: Velocity profiles for different values

of magnetic parameter M with n = 1, β=1 and

Pr=0.7.
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Figure 4.4: Temperature profiles for different

values of magnetic parameter M with n = 1, β=1

and Pr=0.7.
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Figure 4.5: Velocity profiles for different values

of magnetic parameter M with n = 1, β=1 and

Pr=0.7.
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Figure 4.6: Temperature profiles for different

values of magnetic parameter M with n = 1, β=1

and Pr=0.7.
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Figure 4.7: Velocity profiles for different values

of magnetic parameter M with n = 1, β=1 and

Pr=0.7.
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Figure 4.8: Temperature profiles for different

values of magnetic parameterM with n = 1, β=1

and Pr=0.7.
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Figure 4.9: Velocity profiles for different values

of parameter β with n = 1, M = 0.5 and Pr=0.7.

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

θ(
η

)

η

Case A

β = 0, 1, 1.33, 1.6, 1.75
     m = 0, 1, 2, 4, 7

Figure 4.10: Temperature profiles for different

values of parameter β with n = 1, M = 0.5 and

Pr=10.
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Figure 4.11: Temperature profiles for different

values of parameter β with n = 1, M = 0.5 and

Pr=10.
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Figure 4.12: Temperature profiles for different

values of parameter β with n = 1, M = 0.5 and

Pr=0.7.
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Figure 4.13: Velocity profiles for different val-

ues of parameter β with n = 1, M = 0.5 and

Pr=0.7.
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Figure 4.14: Temperature profiles for different

values of temperature index parameter n withM

= 0.1, m = 1 and Pr=1.
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Figure 4.15: Velocity profiles for different val-

ues of temperature index parameter n with M =

0.1, m = 1 and Pr=10.
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Figure 4.16: Temperature distribution for vari-

ous values of temperature index parameter n with

M = 0.1, m = 1 and Pr=0.7.
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Figure 4.17: Temperature profiles for different

values of Pr at M =0.1.
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Figure 4.18: Velocity profiles for different val-

ues of Pr at M=0.1.
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Figure 4.19: Temperature profiles for different

values of Pr at M =0.5.
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Figure 4.20: Velocity profiles for different val-

ues of Pr at M =0.5.

4.6 Concluding Remarks

The effect of the magnetic parameter is to increase the skin friction coefficient and the thermal

boundary layer thickness and reduces the velocity profile and the wall temperature. The

momentum and thermal boundary layer thickness are reduced by the stretching parameter

β for the cases, but for the case B, the thermal boundary layer increases. While the effects

of stretching parameter are to increase the both skin friction coefficient and the temperature

gradient. It is observed, the effect of Prandtl number shows a slight change in the skin friction
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and momentum boundary layer thickness but enhances the wall temperature and shows

an increasing effect in momentum boundary layer thickness for variable viscosity case. By

raising the Prandtl number, it reduces the thermal boundary layer thickness. The increase in

temperature index parameter n resulted in a decrease in momentum boundary layer thickness

as well as in the thickness of thermal boundary layer but for variable viscosity case the

momentum boundary layer thickness and the wall temperature increases.
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Chapter 5

Conclusion and Outlook

In this chapter, we have drawn the conclusion of all the results that have been computed in

the previous chapters and also discussed the work that can be further extended in future.

In this dissertation, we have studied the variable fluid properties. We have mainly focused

on the phenomenon of viscosity as a function of temperature. The MHD boundary layer flow

and heat transfer of a viscous fluid over a linear and nonlinear stretching sheet with variable

fluid properties are also presented. In our study, various cases are discussed including the

constant properties of the fluid and the variable viscosity along with the exponential case

on a temperature dependency of the fluids to analyze the MHD flow and the transfer of

heat characteristics over the stretching surface. The surface is stretched linearly as well as

nonlinearly to analyze the MHD boundary layer flow.

The effects of different parameters such as magnetic parameterM , velocity exponent m, tem-

perature index parameter n, stretching parameter β, velocity ratio parameter ε, and Prandtl

number Pr on the MHD flow and heat transfer characteristics are investigated. The various

numerical results for different parametric conditions are obtained graphically for the velocity

and temperature profiles. The system of the governing boundary layer equations developed

along with the boundary conditions. A special type of transformations is used known as the

similarity transformation to reduce the system of the governing boundary layer equations

into a coupled system of nonlinear ODEs. Different numerical results have been computed

by using the shooting method. These computed results are compared with literature and
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some new results are presented.

In future, we can further extend this work by taking into account not only the density but

also the thermal conductivity as a linear function of temperature. As in our case, we focus

on the viscosity as a temperature dependent only. One can pursue this work by considering

the temperature dependent fluid properties like density etc. This work can also be extended

for an exponential stretching sheet

As we used the shooting technique and bvp4c algorithms to solve the BVPs, one can try other

numerical algorithms like FDM, to compute the results. In practical applications the usage of

the shooting technique to solve the BVP is quite beneficial as the error found by this method

is very small as compared to other numerical schemes, and it also gives approximately the

same result.
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