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Abstract

This dissertation focuses on the objective of sandpile group of cartesian product

of some graphs. We aim to explore the algebraic structure, combinatorical structure

and algebraic geometry of abelian sandpile models.

To determine the structure of sandpile group, one can relate an abelian group

known as sandpile group to every connected graph. The structure of sandpile group

associated to any graph can be expressed as the direct sum of four of five cyclic

groups. It is concluded that order of sandpile group associated to any graph is the

number of spanning trees of the graph.
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Chapter 1

Group Theory

This chapter covers some fundamental definitions of abstract algebra. The aim of

this chapter is to recall the basic concepts that are essential to know in order to solve

complex problems in the further chapter coming ahead. For futher studies [2,5,6,12]

can be pursued.

1.0.1 Groups

Binary operation

For a non-empty set A, a mapping from A × A into A is called a binary operation

in A.

Group

Let A be a non-empty set. A group is a pair (A, ?) that comprises a non-empty set

A accompanied by a binary operation ? that satisfies the following axioms:

� Associativity: (A, ?) is associative if for all ϑ1, ϑ2, ϑ3 ∈ A we have

(ϑ1 ? ϑ2) ? ϑ3 = ϑ1 ? (ϑ2 ? ϑ3).
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� Identity Element: There exists an element ẽ (neutral element) in A such

that for every ϑ ∈ A we have

ϑ ? ẽ = ẽ ? ϑ = ϑ.

ẽ is known as the identity element of A.

� Inverse Element: If for every ϑ ∈ A there exists ϑ′ such that

ϑ′ ? ϑ = ϑ ? ϑ′ = ẽ.

Both ϑ and ϑ′ are inverses of each other. ϑ′ is usually denoted by ϑ−1. All the

three axioms ensure the existence of a group.

Some Important Results

� There exists only one identity element in a group.

� There exists a unique inverse for every element in a group..

� For all ϑ ∈ A, (ϑ−1)−1 = ϑ.

� For all ϑ1, ϑ2 ∈ A, (ϑ1 ? ϑ2)−1 = ϑ−1
2 ? ϑ−1

1 .

� Concellation laws hold in groups, that is for all ϑ, b, c ∈ A we have ϑ1 ? ϑ2 =

ϑ3 ? ϑ2 =⇒ ϑ1 = ϑ3 and ϑ2 ? ϑ1 = ϑ2 ? ϑ3 =⇒ ϑ1 = ϑ3

Abelian group

A group (A, ?) that satisfies the commutative property is abelian. For all ϑ1, ϑ2 ∈ A,

ϑ1 ? ϑ2 = ϑ2 ? ϑ1.
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Order of element

Let (A, ?) be a group, for ϑ ∈ A, the least positive integer n such that ϑ ? ϑ ? · · · ? ϑ︸ ︷︷ ︸
n-times

=

ẽ (the identity element) is the order of an element ϑ in a group. It is denoted by

| ϑ |. If such specific n for ϑ cannot be found then | ϑ | is infinite.

Order of group

The cardinality (the number of elements) in a group (A, ?) denoted as | A | is the

order of a group. The trivial group A = {ẽ} is a group with | A |= 1.

Subgroup

Let A be a group under binary operation ?. A non-empty subset I is the subgroup

of group A if it itself satisfies the axioms of a group under the same binary operation

? as defined in A. {ẽ} and A are obviously subgroups of A. The remaining existing

subgroups are the proper subgroups of A.

Theorem 1.0.1. Let (A, ?) be a group and I ⊆ A. Then I is a subgroup of A if

and only if for every i, j ∈ I we have i ? j−1 ∈ I.

Product of subgroups

Let (A, ?) be a group and I and J be any subgroups of A. We define the product

IJ of A as follow,

I ? J = {i ? j} | ǐ ∈ I, j ∈ J}.

The product IJ is not necessarily a subgroup of A.

Theorem 1.0.2. The product of subgroups I and J is a subgroup if and only if

IJ = JI.
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Lagrange Theorem

Let (I, ?) be a subgroup of finite group (A, ?). Then for a subgroup I of finite group

A, | I | divides | A |.

Corollary 1.0.1. Let (A, ?) be a finite group. Then for all ϑ ∈ A, | a | divides

| A |.

Homomorphism

Let (A, ?) and (A′, ◦) be two groups. A homomorphism from the group (A, ?) to

(A′, ◦) is a mapping α : A→ A′; satisfying

α(ϑ ? ϑ′) = α(ϑ) ◦ α(ϑ′).

Isomorphism

A bijective (one-one and onto) homomorphism is termed as isomorphism denoted

by (A, ?)∼= A′, ◦) or A ∼= A′; where (A, ?) and (A′, ◦) are two groups.

Cyclic Group

A group (A, ?) turns out to be a cyclic group if a single element in A is capable of

generating the entire group. If there exists ϑ ∈ A such that A = {ϑn : n ∈ Z}. In

this case we write A =< ϑ >. A cyclic group with order n is denoted by Cn. Hence

we have

Cn =< ϑ >= {ẽ, ϑ, ϑ ? ϑ, · · · , ϑ ? ϑ ? ϑ ? · · · ? ϑ︸ ︷︷ ︸
(n−1)-times

}.

with ϑ ? ϑ · · · ? ϑ︸ ︷︷ ︸
n-times

= ẽ. Cyclic groups are always abelian. A cyclic group of finite

order n is found out to be isomorphic to Zn (where Zn additive group of integers

modulo n).
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Remark 1.0.1. If (A, ?) and (A′, ◦) are cyclic groups of same order then they are

isomorphic.

Remark 1.0.2. Cyclic groups have cyclic subgroups.

Coset

Let (A, ?) has subgroup (I, ?). For subgroup I of group A and for ϑ ∈ A, we have;

I ? ϑ = {i ? ϑ; i ∈ I}.

ϑ ? I = {ϑ ? i; i ∈ I}.

I ? ϑ is called the right coset and ϑ ? I is called the left coset of I in A.

Theorem 1.0.3. For a subgroup (I, ?) of a group (A, ?), the left respectively the

right cosets partition A.

Index

Consider the subgroup (I, ?) of a group (A, ?). Then the number of left respectively

the right cosets of I formed in A is called the index, denoted by [A:I].

Lemma 1.0.1.1. The order of the two left respectively the right cosets of subgroup

I in the group A is the same.

Normal Subgroup

Let (A, ?) be a group. A subgroup N of a group A is a normal subgroup (also

known as invariant subgroup) if for all ϑ ∈ A we have,

ϑ ? N ? ϑ−1 = N.

The normal subgroup N of A is denoted by N � A.
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Proposition 1.0.1. A necessary and sufficient condition for a subgroup (N , ?) of

group (A, ?) to be normal is that the left coset also appears to be the right coset of

N in A, that is for all ϑ ∈ A,

N ? ϑ = ϑ ? N.

Remark 1.0.3. Every subgroup pertaining to index 2 is normal.

Remark 1.0.4. If (A, ?) is an abelian group, then its every subgroup is normal.

Since (N , ?) is a subgroup of (A, ?), then for ϑ ∈ A and n ∈ N

ϑ ? n ? ϑ−1 = ϑ ? ϑ−1 ? n = n ∈ N.

But the converse may not be true.

Proposition 1.0.2. The product of normal subgroups is normal in a group.

Kernel

The kernel of homomorphism α : A→ A′ is

ker(α) = {ϑ ∈ A : α(ϑ) = ẽ}.

The kernel of homomorphisms is a normal subgroup of a group.

Quotient Group

Let (N , ?) be any normal subgroup of a group (A, ?), then the quotient group A/N

(A over N) is actually the set of distinct cosets (left or right) of normal subgroup

N in the group A.

A/N = {ϑ ? N : ϑ ∈ A}.

Example 1.0.1. Z/nZ is an example of quotient group. For n ∈ Z, let (Z, +) be

a group and nZ be its subgroup. Since (Z,+) is abelian so its every subgroup is
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normal. Thus nZ is normal. For all (z1 + nZ), (z2 + nZ) ∈ Z/nZ we have

(z1 + nZ) ? (z2 + nZ) = (z1 + z2) + nZ.

So Z/nZ ∼= Zn.

Proposition 1.0.3. � An infinite cyclic group is isomorphic to Z.

� A finite cyclic group of order n is isomorphic to Z/nZ.

Normalizer of a subgroup

Let (A, ?) be a group and I be its any subgroup such that I 6= ∅. The normalizer

of I in A is defined as

NA(I) = {ϑ ∈ A | ϑ ? I ? ϑ−1 = I}.

1.0.2 Theorems of Isomorphisms

First theorem of Isomorphism

Theorem 1.0.4. Let α : A → A′ be a group homomorphism and K be the kernel

of α. Then

A/K ∼= α(A).

Second Theorem of Isomorphism

Theorem 1.0.5. Consider (A, ?) be a group. I and J are subgroups of A and

assume I ≤ NA(J). Then IJ is a subgroup of A, J � IJ and I ∩ J � I. Then

I/I ∩ J ∼= I ? J/J.
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Third Theorem of Isomorphism

Theorem 1.0.6. Consider (A, ?) be a group and let I and J are normal subgroups

of A with I ≤ J . Then (J/I) � (A/I) and (A/I)/(J/I) ∼= A/J.

1.0.3 Direct Products

Let (I, ?1) and (J , ?2) be two groups, then (A, ?) is a group formed by the Cartesian

product of I and J with binary operation defined component wise.

A = I × J = {(i, j)|i ∈ I, j ∈ J},

For (i1, j1), (i2, j2) ∈ I × J with binary operation ?1 and ?2 then the direct product

is given as

(i1, j1) ? (i2, j2) = (i1 ?1 i2, j1 ?2 j2) ∈ I × J.

A = I × J is a group since it satisfies all the axioms of a group.

Direct product is the collection of smaller groups, which results in the formation of

larger groups. If I1, I2, I3, · · · , Ik are the groups under binary operation ?1, ?2, · · · ,

?k respectively then the direct product I1 × I2 × I3 × · · · × Ik of the groups Ii’s is a

group endowed with the binary operations ? can be given as

(i1, i2, · · · , ik) ? (j1, j2, · · · , jk) = (i1 ?1 j1, i2 ?2 j2, · · · , ik ?k jk).

Example: Consider I = R and J = R then the direct product I × J = R × R

under the operation

(i1, i2) + (j1, j2) = (i1 + j1, i2 + j2).

The direct product is R2, which is also abelian.
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Proposition 1.0.4. For the groups I1, I2, I3, · · · , Ik their direct product appears

to be a group whose order is equal to | I1 |.| I2 |.| I3 | · · · | Ik |. If any Ii is infinite

so is the direct product group.

1.0.4 Finitely Generated Abelian Groups

Finitely Generated Abelian Groups

An abelian group A is finitely generated if there exists a finite subset B of A such

that B generates the entire group A. Mathematically A =< B >.

Free Abelian Groups

The direct product of n copies of Z given as Zn ∼= Z⊕Z⊕ · · · ⊕Z is called the free

abelian group of rank n where n ∈ Z with n ≥ 0 and Z0=1.

1.0.5 Fundamental Theorem of Finitely Generated Abelian

Groups

Theorem 1.0.7. If A is a finitely generated abelian group, then the decomposition

is as follow

A = Zn ⊕ Zt1 ⊕ Zt2 ⊕ · · · ⊕ Ztr ,

for some integer n, t1 ≥ · · · ≥ ti ≥ 2 such that n ≥ 0 and ti+1 | ti. Moreover this

expression is unique.

Free rank or Betti number

The integer n in the decomposition of finitely generated abelian groups is called the

free rank or Betti number.
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Invariant factors

The integers t1, t2, · · · , ti are called the invariant factors of A, where as the descrip-

tion is termed as invariant factor decomposition.

Remark 1.0.5. [5] Any two finitely generated abelian groups are isomorphic if and

only if they have same rank and same list of invariant factores.

Remark 1.0.6. [5] A finitely generated group is a finite group if and only if the

free rank is zero.

Remark 1.0.7. [5] The order of finite abelian group is just the product of its

invarient factors.

Corollary 1.0.2. Every subgroup of finitely generated abelian group is also finitely

generated.

Remark 1.0.8. By calculating all finite sequence of integers t1, t2, · · · , tr all finite

abelian groups of a given order t are obtained where

1. tj ≥ 2,

2. ti+1 | ti,

3. t1 · t2 · · · tr = t.

4. Every prime divisor of t must divide t1.

Corollary 1.0.3. If A is an abelian group with order n equal to the product of

distinct primes then A is isomorphic to Zn the cyclic group of order n.

Theorem 1.0.8. Let A be a finite abelian group with order t = pr11 · pr22 · · · p
rk
k ,

where all pi’s are primes and all ri’s are natural numbers then

A ∼= Zn ⊕ Zp1
r1 ⊕ Zp2

r2 ⊕ · · · ⊕ Zpkrk .
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Elementary divisors

The integers pj
rj in the above theorem are called elementary divisors.

Lemma 1.0.5.1. Zmn ∼= Zm ⊕ Zn iff gcd(m,n) = 1.
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Chapter 2

Graph Theory and Combinatorics

This chapter deals with graph theory and combinatorics that are relevant to the

research being carried out. Basic definitions that comprises graph, different kinds

of graph in graph theory and recurrence relation and different kinds of recurrence

relations in combinatorics are taken into account. Detail of the subject in hand is

available in [6, 8, 9].

2.1 Graph Theory

2.1.1 Graphs

Graph

A graph G is basically collection of two sets, the vertex set V (G) and the edge set

E(G), where

� The members of vertex set V (G) are the vertices or nodes of graph G.

� The edge set E(G) formed by pair of vertices defines an assocaition between

two vertices.
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The graph G is symbolically represented as G(V,E). The most common represen-

tation of a graph is through diagram where the edges act as line segments joining

the vertices represented by points. If a and b are any two vertices of graph G and e

is an edge, then e joins a and b.

Order and size of the graph

The number of vertices is the order in a graph, whereas the size of the graph is

related to the number of its edges.

Degree of vertex

In a graph G, d(v) is the degree of vertex v which is the number of edges of graph

G incident to v.

Proposition 2.1.1. (Degree-sum formula) In a graph G
∑n

k=1 d(vi) = 2e that is

the summation of degrees of all the vertices of graph G count twice the number of

all the edges of graph G.

Basic Terminologies: We have the following terminologies:

� The edge (a, b) has two end vertices a and b.

� A loop is an edge (a, a).

� A multigraph has parallel edges.

� Parallel edges are those edges with same end vertices.

� A tirvial graph has one vertex.

� In a null graph, the graph has no verterx.

� A graph with no edges is empty.
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� Adjacent edges share a common end vertex.

� A loop counts twice.

� Two vertices say a and b are adjacent if there lies an edge between them. The

pair (a, b) represents an edge.

� For any pair of vertices, (a, b) = (b, a)

� A vertex with degree 1 is known as pendant vertex.

� d(a) represents the degree of a vertex a which is basically the number of edges

with a as an end point. A loop is always counted twice and parallel edges

once.

� A vertex with degree is 0 is an isolated vertex.

Simple Graph

A loop-less graph which has no parallel edges is a simple graph.

Connected and Disconnected graphs

A graph is connected if its every vertex is reachable by any other vertex through an

edge, otherwise disconnected.

Proposition 2.1.2. Every connected graph G with n vertices has atleast n − 1

edges.

Corollary 2.1.1. Every graph has an even number of vertices of odd degree.

Subgraph

The graph H is a subgraph of a graph G if the vertex set and edge set of H are the

subsets of vertex set and edge set of G. One can obtain a subgraph of G by deleting

its vertices and edges.
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� Every graph is the subgraph of itself.

� A single vertex can be the subgraph of any graph.

Path

A path is a simple graph in which no vertex appears more than once or there is no

repetition in vertices.

Walk

A walk starts with vertex consisting of finite alternating sequence of vertices and

edges.

Cyclic and acyclic graph

An undirected simple graph that contains a cycle is a cyclic graph. It is a closed

path that cannot be defined for a graph with vertices less than 3, where each vertex

must have degree atleast 2. A cycle graph is basically set of consecutive vertices,

having the same first and last vertex. A graph with no cycle is acyclic graph.

Lemma 2.1.1.1. A graph contains a cycle if each of its vertex has degree atleast 2.

Regular graph

If each vertex in a simple graph has same degree then it is a regular graph. Regular

graph is k − regular graph if the degree of each of its vertex is k.

Complete graph

A complete graph denoted by Kn is a simple graph with n vertices where each vertex

is connected to every other vertex by an edge.
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Bipartite graph

A simple graph is said to be bipartite graph if its vertices can be partitioned into

two vertex sets say V1 and V2 such that every edge of the graph connects a vertex

in V1 to one vertex in V2 and there is no edge between vertices of same set.

Complete bipartite graph

A bipartite graph, denoted by Km,n if there is an edge from every m vertices of V1

to every n vertices of V2.

2.1.2 Trees

Tree

A connected and acyclic graph is known as tree.

Forest

A graph with no cycle is a forest. A forest is a disjoint collection of trees. Singleton

graph, empty graph and trees are all example of forest.

Since acyclic graph is forest thus its each component is considered as a tree and any

tree is considered to be a connected forest.

Theorem 2.1.1. A graph is a tree if and only if a single path exists between every

two vertices.

Remark 2.1.1. Path is a special case of tree.

Theorem 2.1.2. If T is a tree with n vertices, then E(T ) = n− 1 .

Theorem 2.1.3. A connected graph is a tree if it has n vertices and n− 1 edges.

Conclusion 2.1.1. From different definitions we concluded that a graph on n ver-

tices is a tree if

16



� It is acyclic and connected.

� It is acyclic and has n− 1 edges.

� It is connected and has n− 1 edges

� There is exactly one path connecting each pair of vertices.

Theorem 2.1.4. In any non-trivial tree there exists at least two leaves (end ver-

tices).

Remark 2.1.2. � Only one cycle is formed if an edge is added to an acyclic

graph.

� Every tree is bipartite.

Spanning tree

In a connected graph G, a subtree T ′ is a spanning tree of G if

� T ′ itself is a tree.

� T ′ is a subgraph of G (it contains all vertices of G).

Theorem 2.1.5. A connected graph G with m edges and n vertices has atleast one

spanning tree.

Remark 2.1.3. The subgraph T ′ of graph G with m edges and n vertices is a

spanning tree if it follows the following axioms:

� T ′ has same vertices as G that is n.

� T ′ must be connected and acyclic.

� T ′ has edges m = n− 1.

Theorem 2.1.6. T ′ is a spanning tree of G if and only if G is connected.

Remark 2.1.4. If a graph is connected and acyclic, then it is itself a spanning tree.
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Direct product

Tensor product, also called direct product of any two simple graphsG andG′ denoted

by G×G′ is the graph such that

� Vertex set is the cartesian product (g, g′) ∈ V (G)× V (G′).

� Any pair of vertices say (g1, g
′
1).(g2, g

′
2) ∈ V (G)×V (G′) are adjacent if g1g2 ∈

E(G) and g′1g
′
2 ∈ E(G′).

Remark 2.1.5. Direct product is commutative as well as associative.

2.2 Combinatorics

2.2.1 Recurrence Relation (R̂.R̂)

For a sequence an the R̂.R̂ is an equation expressed using earlier terms of the se-

quence together with certain initial condition.

a0, a1, · · · , an are the terms that define a R̂.R̂ for an. It means we can find each

subsequent term if previous term in a sequence along with some initial conditions

are known. If the earlier terms an, an+1, · · · , an+k of R̂.R̂ of order k are linear then

it is termed as linear R̂.R̂ otherwise non-linear. A linear R̂.R̂ of order k is a sequence

satisfying

a(n) = A1a
n−1 + A2a

n−2 + · · ·+ Aka
n−k.

Solution of R̂.R̂

A function fully satisfying the R̂.R̂ is said to be the solution of R̂.R̂.

Order of R̂.R̂

The order of R̂.R̂ is the difference of its higher and lower superscripts of the members

in the equation.
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Remark 2.2.1. The required number of initial conditions depends on the order of

R̂.R̂.

Examples:

� an = an+1 + 2 is a R̂.R̂ of order 1.

� 2(an)2 + (an+1)5 = 2 is a R̂.R̂ of order 1.

� an = 2an+4 + an+1 is a R̂.R̂ of order 4.

� (an+2 + an)1/2 = 1 is a R̂.R̂ of order 2.

Homogeneous recurrence relation Ĥ.R̂.R̂

A linear R̂.R̂ of order k of the form

A0x
n + A1x

n+1 + · · ·+ Akx
n+k = 0,

is called a Ĥ.L̂.R̂.R̂ where A0, A1, · · · , Ak are constant.

Non-homogeneous recurrence relation N̂ .Ĥ.R̂.R̂

A linear R̂.R̂ of order k of the form

A0x
n + A1x

n+1 + · · ·+ Akx
n+k = A(n),

is called a N̂ .Ĥ.L̂.R̂.R̂ where A(n) 6= 0 and A0, A1, · · · , Ak serve as constants.

2.2.2 Homogeneous Linear Recurrence Relation Ĥ.L̂.R̂.R̂

Solution to a Ĥ.L̂.R̂.R̂

Consider a Ĥ.L̂.R̂.R̂

xn = a1xn−1 + a2xn−2,
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where a1 and a2 can be any real numbers. The characteristic equation of the

Ĥ.L̂.R̂.R̂ is

γ2 = a1γ + a2,

γ2 − a1γ − a2 = 0.

On the basis of characteristic equation the following cases may occur:

� Case 1 : From the characteristic equation γ2−a1γ−a2 = 0, if (γ−γ1)(γ−γ2) =

0 appears to be the factors and γ1 6= γ2 two distinct roots then solution of

Ĥ.L̂.R̂.R̂ according to the distinct roots is

xn = c1γ
n
1 + c2γ

n
2 .

� Case 2 : From the characteristic equation γ2 − a1γ − a2 = 0 if (γ − γ1)2 = 0

appears to be the factors and γ1 a single real root, then the solution of Ĥ.L̂.R̂.R̂

according to the single real root is

xn = c1γ
n
1 + c2nγ

n
2 .

� Case 3 : From the characteristic equation γ2−a1γ−a2 = 0 if (γ−γ1)(γ−γ2) =

0 appears to be the factors, and γ1 = a + ιb(θ) and γ2 = a − ιb(−θ) are two

distinct complex roots then solution of Ĥ.L̂.R̂.R̂ according to the distinct

complex roots is

xn = an(c1cos(nθ) + c2sin(nθ)).

Example 1. Find the solution of the R̂.R̂ ak − 4ak−2 = 0 with initial conditions

a0 = 1 and a1 = 1.
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Solution: The above R̂.R̂ has characteristic equation,

r2 − 4 = 0.

By factoring the characteristic equation, we get two distinct roots r1 = 2 and r2 =

−2. Thus general solution of the sequence is,

ak = c1(2)k + c2(−2)k.

Using the given initial values of ak to find c1 and c2 we get,

c1 + c2 = 1,

2c1 − 2c2 = 1.

Upon solving we get c1 = 3
4

and c2 = 1
4
. Substituting values of c1 and c2 in general

solution resulting formula is,

ak =
3

4
(2)k +

1

4
(−2).

Example 2: Solve the R̂.R̂ ak = 4ak−1 − 4ak−2, for all integers k ≥ 2, with initial

conditions a0 = 1, a1 = 3.

Solution: Constructing characteristic equation for the R̂.R̂ ak = 4ak−1 − 4ak−2,

which is,

r2 − 4r + 4 = 0.

So its only root is 2 with multiplicity 2. It follows that R̂.R̂ has a general solution,

ak = c1(2)k + c2k(2)k.
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Finding values arbitrary constants c1 and c2. Using initial conditions, we get c1 = 1

and c2 = 1
2
. Hence, solution to the R̂.R̂ based on initial values appears to be,

ak = (2)k +
1

2
k(2)k.

Example 3: Consider a R̂.R̂ xk = 2xk−1 − 2xk−2 with initial conditions, x0 = 1

and x1 = 1. Solve it using characteristic equation.

Solution: The characteristic polynomial r2 − 2r + 2 = 0 cannot be factored. We

get eigen values 1+ ι and 1− ι. For complex roots the general solution of recurrence

is

xk = c1(1)kcos(k) + c2(1)ksin(−k).

We need to determine the arbitrary constants c1 and c2 from initial conditions. Thus

using initial conditions,

x0 = 1 = c1cos(0) + c2sin(0),

x1 = 1 = c1cos(1) + c2sin(1).

So we get c1 = 1 and c2 = 1. Thus solution the of R̂.R̂ is,

xk = cos(k)− sin(k)

2.2.3 Non-Homogeneous Linear Recurrence Relation N̂ .Ĥ.L̂.R̂.R̂

Solution to a N̂ .Ĥ.L̂.R̂.R̂

Consider a N̂ .Ĥ.L̂.R̂.R̂ ,

xn = a1x
n−1 + a2x

n−2 + · · ·+ akx
n−k + F (n),
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where F (n) is the N̂ .Ĥ part.

The general solution of N̂ .Ĥ.L̂.R̂.R̂ is the sum of general solution of the homo-

geneous Ĥ part a
(n)
h and particular solution of the non-homogeneous N̂ .Ĥ part a

(n)
p .

So general solution for N̂ .Ĥ problem would be an = a
(n)
h + a

(n)
p . The initial condi-

tions are later on considered in order to find the arbitrary constants. The general

solution of Ĥ problem is in a manner as discussed earlier; however, for particular

solution of the N̂ .Ĥ problem we consider the following cases.

If the N̂ .Ĥ part F (n) is of the form

F (n) = (crn
r + cr−1n

r−1 + · · ·+ c1n+ c0) · tn,

where c0, · · · , cr and m are real numbers.

� Case 1: The particular solution for the N̂ .Ĥ problem takes the form

(βrn
r + βr−1n

r−1 + · · ·+ β1n+ β0) · tn.

If t does not appear to be the characteristic root.

� Case 2: The particular solution for the N̂ .Ĥ problem takes the form

(βrn
r + βr−1n

r−1 + · · ·+ β1n+ β0) · tn · nm.

If t appears to be the characteristic root with multiplicity m.

Example: Solve the N̂ .Ĥ.R̂.R̂ ak = 2ak−1 + 3k with initial condition a1 = 5.

Solution: Consider the Ĥ.R̂.R̂ problem ak = 2ak−1. Characteristic equation for

the R̂.R̂ is r − 2 = 0 and the characteristic root is 2. Hence, general solution is

ak(h) = c12k. Now proceeding towards N̂ .Ĥ part which is F (k) = 3k. Thus particular

solution appears to be ak(p) = c.3k, which implies c.3k = 2c.3k−1 +3k. So c = 3 which

follows a
(p)
k = 3.3k = 3k+1.
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The general solution is Ĥ solution sums the particular solution.

ak = c12k + 3k+1.

Using initial condition a1 = 5,

5 = c121 + 31+1,

5 = 2c1 + 9,

c1 = −2.

The required solution of the N̂ . Ĥ. L̂.R̂.
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Chapter 3

Abelian Sandpile Model

This chapter envisages background of abelian sandpile apart from the basic concepts

and definition of sandpile group. Detail of the subject in question can be search

in [1, 3, 4, 10,13].

3.1 Abelian Sandpile Model

3.1.1 Background

The Abelian Sandpile Model abbreviated as ASM was classically proposed by Bak,

Tang and Wiesenfled [10], using theory displaying self-organized criticality (SOC).

The concept of SOC has been invoked to describe abelian sandpile model that is cer-

tainly the most simplest theoretical model of SOC. Later on, it was mathematically

described by Dhar [3]. By linking an abelian group S(G) to a finite connected graph

Lionel Levine and James Propp concluded that abelian group is an isomorphism

invariant of the finite connected graph, some sort of combinatorial properties can

also be known about the graph. The abelian group features a finite abelian group

generated by the operators corresponding to particle added up at several sites. Chip

firing game in computer science and dollar-game is identical to ASM.
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3.1.2 Abelian Sandpile

Abelian sandpile consists of a sandpile graph that is a finite connected multigraph

(or a finite directed multigraph) with vertices known as ordinary vertices such that

each vertex is assigned non-negative integer value and a distinguishable single vertex

termed as sink vertex accessible from all other ordinary vertices. The integer-value

assigned to each vertex is the degree of each vertex, which is actually the number

of particles (or sand grains or chips) present at each vertex and each vertex is a site

accommodating the particles. We say two vertices are adjacent if there is atleast

one edge that connects both of them.

All non-sink vertices are allowed to have required quantity of particles. The sink

collects the particles arriving at it and are lost. The track of ignored particles falling

off the sink is not kept.

3.1.3 Configuration

A configuration is assigning an integer value to each ordinary vertex, which is in

actual the number of particles being placed at the non sink vertices.

Stable Configuration

In a stable configuration each ordinary vertex holds a required amount of particles

and does not exceeds the limit.

Unstable Configuration

If any of non-sink vertex exceeds the required number of particles then it is charac-

terized to be unstable configuration. It suggests that any of the vertex that holds an

integer value exceeds the required limit. In order to make the unstable configuration,

a stable configuration the unstable vertices need to topple.
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3.1.4 Toppling

In order to make unstable vertices stable toppling occurs. Toppling is the basic

rule to stabilized an unstable configuration. In toppling unstable vertices lose some

particles, which either fall off the system or are either added to the neighboring

sites. The unstable vertex loses one particle each to every vertex adjacent to it. An

unstable vertex can be created due to toppling. If the previous toppling results in

the unstability of another site then toppling process continues until the time all the

unstable vertices become stable. Toppling rule is applied to all vertices except single

out sink vertex.

The toppling process does not depend on the sequence it is carried out since

the final configuration is the same, irrespective of the sequence carried out in order

to stabilize an unstable configuration. That is why the model is termed as abelian

sandpile model. Sending particles to neighbouring vertices may reduce the quantity

of particles, since there is an edge between every ordinary vertex and a sink vertex.

The toppling process stops after certain finite toppling. The choice of which vertex

to topple first does not effect the process of toppling. For further specification

consider a map for sandpile:

ξ : V → {0, 1, 2, · · · }.

Let v be any vertex, ξ can only be stable at v if ξ(v) <deg(v) otherwise ξ is unstable

and v will topple by sending one particle to each incident vertex. On toppling vertex

v, the particles will redistributed as follows:

ξ(v)→ ξ(v)− deg(v)

ξ(u)→ ξ(u) + αuv ,where u ∈ V and u 6= v

where αvu is the number of edges between v and u [1].
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Toppling matrix

When a vertex v is topple and ξ to be a row vector, one can write

ξ = ξ −∆vu,

where

∆vu =


deg(v), if v = u ∈ V ;

−αvu, if v 6= u, v, u ∈ V ;

0, otherwise.

∆ is the Reduced Laplacian, since row and column of sink vertex is eliminated. ∆

(Laplacian) can be given as,

L = D − A.

where D is the degree matrix and A is the adjacency matrix of vertices, which is

zero in case of no edges between vertices.

3.1.5 Avalanche

The addition of particles to the pile that leads to a collection of rapid topplings that

occur in order to stabilize the unstable system is called the avalanche. Different

factors can be taken into an account to measure the strength of an avalanche. These

factors involve

� time of an avalanche

� area cover by the avalnche

� the total count of topplings
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� The count of different size toppled

3.1.6 The Sandpile Group

One can relate an abelian group known as sandpile group to every finite connected

graph. A commutative monoid is formed as a result of set of stable states (config-

uration) under operation of an ordinary addition followed by stabilization. Let this

operation be denoted by ⊕ and hi, hj be any two configuration such that

hi ⊕ hj = ξ(hi + hj).

(ξ(h) is unique stabilization for any configuration h). This commutative monoid

is sandpile monoid. For any two configuration say a and b: if a ⊕ b = c (also a

configuration) then it is called recurrent Configuration. A configuration that belongs

to a cycle is said to be recurrent. Thus, one can say recurrent configuration is the

one in which a stable configuration is accesssible from every configuration otherwise

transient. According to W.Chen T.Schedler [13] and Dhar [4] defined these recurrent

configuration to be stable configuration forming an abelian group under ⊕ called

the sandpile group S(G).

Fixing order for all ordinary vertices say n =| V | −1 (sink vertex is eliminated)

we take into account subgroup of Zn. The elements of Zn may be considered as

configuration in which number of grains of sand (particles) in each cell (site) may

be positive or negative. The subgroup is generated by n elements expressing the

toppling rule [11]. The quotient of Zn by this subgroup is abelian group, which is

the sandpile group. The abstract group structure for this sandpile group S(G) can

be given as

S(G) ≈ Zn/∆Zn

where ∆ is the Reduced Laplacian whose det gives order of sandpile group; which,
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according to Matrix-tree theorem, is the number of spanning trees of the graph.
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Chapter 4

On the sandpile group of the

graph K3 × Cn

4.1 On the Sandpile Group of the Graph K3 × Cn

The abelian group model was introduced by Bak et al. in [10], based on the concept

of self-organized criticality. A finite connected multi-graph G = (V,E) on n vertices

is considered and by determining its Laplacian matrix L = D − A where D is the

degree matrix and A is the adjacency matrix, one can define a finite abelian group

known as sandpile group.

Let vr be a vertex (call root) of the graph G with n vertices, then the sandpile

group S(G) on the graph G with n vertices is the quotient of Zn by the subgroup

spanned by n−1 elements expressing the toppling rule (that is, if vi 6= vr is a vertex

of degree di, a generator of this subgroup is

∆i = dixi −
∑

vi is adjacent vi

aijxj,

where aij is the number of edges between vertices vi and vj, and xi = (0, · · · , 0, 1, 0, · · · , 0) ∈
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Zn, whose unique non-zero is in the position i and the element xr, that is, S(G) ∼=

Zn/span(∆1, · · · ,∆r−1, xr,∆r+1, · · · ,∆n) [14].

This paper focuses on the objective of determining the structure of the sandpile

group on the graph of C3 × Cn, the cartesian product of C3 and Cn. The main

tool is the computation of Smith normal (SNF ) form of an integer matrix say A,

which is the unique diagonal matrix S(A) = diag(S11,S22, · · · ,Snn) whose entries

are nonnegative and Sii divides Si+1,i+1, and for each i, the product S11S22, · · · ,Sii
is the greatest common divisor (GCD) of all i× i minor determinants of A [15].

Here sandpile group on the graph K3 × Cn is determined which is the direct

product of four or five cyclic groups. Same method can be applied to figure out

sandpile groups of K4 × Cn and K5 × Cn.

4.1.1 The Relations Matrix for Generators of K3 × Cn

In order to obtain a relation matrix for K3 × Cn, consider vertex set of K3 that is

Vk = {0, 1, 2} and Cn which is Vc = {0, 1, 2, · · · , n − 1}. Then the vertex set of

K3×Cn is the Cartesian product Vk×Vc, where Vk×Vc = {(k, c) | k = {0, 1, 2}, c =

{0, 1, 2, .., n − 1}}. The pair (k, c) can be adjacent only to (k, (c + 1) mod n),

(k, (c − 1) mod n), ((k + 1) mod 3, c) and ((k − 1) mod 3, c). Obtaining system

of equations by applying toppling rule

∆i = dixi −
∑

0≤j≤n−1

eijxj
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Figure 4.1: The graph of K3 × Cn.

∆x0 = 4x0 − x1 − xn−1 − y0 − z0,

∆y0 = 4y0 − x0 − y1 − yn−1 − z0,

∆z0 = 4z0 − x0 − y0 − zn−1 − z1,

∆x1 = 4x1 − x0 − x2 − y1 − z1,

∆y1 = 4y1 − x1 − y0 − y2 − z1,

∆z1 = 4z1 − x1 − y1 − z0 − z2.

...

∆xn−2 = 4xn−2 − xn−1 − xn−3 − yn−2 − zn−2,

∆yn−2 = 4yn−2 − yn−1 − yn−3 − xn−2 − zn−3,

∆zn−2 = 4zn−2 − zn−1 − zn−3 − xn−2 − yn−2,

∆xn−1 = 4xn−1 − x0 − xn−2 − yn−1 − zn−1,

∆yn−1 = 4yn−1 − y0 − yn−2 − xn−1 − zn−1,

∆zn−1 = 4zn−1 − z0 − zn−2 − xn−1 − yn−1.
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By equating all the equations, we get

4x0 − x1 − xn−1 − y0 − z0 = 0,

4y0 − x0 − y1 − z0 − yn− 1 = 0,

4z0 − x0 − y0 − z1 − zn−1 = 0,

4x1 − x0 − x2 − y1 − z1 = 0,

4y1 − x1 − y0 − y2 − z1 = 0,

4z1 − x1 − y1 − z0 − z2 = 0.

...

4xn−2 − xn−1 − xn−3 − yn−2 − zn−2=0,

4yn−2 − yn−1 − yn−3 − xn−2 − zn−3=0,

4zn−2 − zn−1 − zn−3 − xn−2 − yn−2 = 0,

4xn−1 − x0 − xn−2 − yn−1 − zn−1 = 0,

4yn−1 − y0 − yn−2 − xn−1 − zn−1 = 0,

4zn−1 − x0 − zn−2 − xn−1 − yn−1 = 0.

let xr = (0, r), yr = (1, r) and zr = (2, r), r = 0, 1, 2, · · · , n − 1 and the image of

xr, yr and zr in the cokernal Z3n/ImL(K3 × Cn) be xr, yr and zr, respectively. We

have:

x̄r = 4x̄r−1 − x̄r−2 − ȳr−1 − z̄r−1,

ȳr = 4ȳr−1 − ȳr−2 − z̄r−1 − x̄r−1,

z̄r = 4z̄r−1 − z̄r−2 − x̄r−1 − ȳr−1.
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For r ≥ 2, we get a system of at most six generators for the cokernel Z3n/ImL(K3×

Cn). All xr, yr and zr can be expressed in terms of x0, y0, z0, x1, y1 and z1.

x̄0 = 4x̄n−1 − x̄n−2 − ȳn−1 − z̄n−1,

ȳ0 = 4ȳn−1 − ȳn−2 − z̄n−1 − x̄n−1,

z̄0 = 4z̄n−1 − z̄n−2 − x̄n−1 − ȳn−1,

x̄1 = 4x̄0 − x̄n−1 − ȳ0 − z̄0,

ȳ1 = 4ȳ0 − ȳn−1 − z̄0 − x̄0,

z̄1 = 4z̄0 − z̄n−1 − x̄0 − ȳ0.

For 2 ≤ r ≤ n− 1, ar, br, cr, dr, er and fr are defined as

x̄r = arx̄1 − brx̄0 − crȳ1 + drȳ0 − erz̄1 + frz̄0, (4.1)

ȳr = arȳ1 − brȳ0 − crz̄1 + drz̄0 − erx̄1,+frx̄0, (4.2)

z̄r = arz̄1 − brz̄0 − crx̄1 + drx̄0 − erȳ1 + frȳ0. (4.3)

Equating equations

x̄r = 4x̄r−1 − x̄r−2 − ȳr−1 − z̄r−1 (4.4)

and

x̄r = 4x̄r−1 − x̄r−2 − ȳr−1 − z̄r−1 (4.5)

we get

4x̄r−1 − x̄r−2 − ȳr−1 − z̄r−1 = arx̄1 − brx̄0 − crȳ1 + drȳ0 − erz̄1 + frz̄1.
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putting values of x̄r−1, x̄r−2, ȳr−1 and z̄r−1 by using equation 4.1, 4.2 and 4.3,

4(ar−1x̄1−br−1x̄0−cr−1ȳ1+dr−1ȳ0−er−1z̄1+fr−1z̄0)−(ar−2x̄1−br−2x̄0−cr−2ȳ1+dr−2ȳ0−er−2z̄1+fr−2z̄0)

−(ar−1ȳ1−br−1ȳ0−cr−1z̄1+dr−1z̄0−er−1x̄1+fr−1x̄0)−(ar−1z̄1−br−1z̄0−cr−1x̄1+dr−1x̄0−er−1ȳ1+fr−1ȳ0)

= arx̄1 − brx̄0 − crȳ1 + drȳ0 − erz̄1 + frz̄r

Comparing the coefficients we get

ar = 4ar−1 − ar−2 + er−1 + cr−1,

br = 4br−1 − br−2 + fr−1 + dr−1,

cr = 4cr−1 − cr−2 + ar−1 − er−1, (4.6)

dr = 4dr−1 − dr−2 + br−1 − fr−1,

er = 4er−1 − er−2 − cr−1 + ar−1,

fr = 4fr−1 − fr−2 − dr−1 + br−1.

Since, we have

x̄r = arx̄1 − brx̄0 − crȳ1 + drȳ0 − erz̄1 + frz̄0.

Putting r = 0 and comparing the coefficients, we get a0 = 0, b0 = −1, c0 = 0, d0 =

0, e0 = 0, f0 = 0, and for r = 1 we get a1 = 1, b1 = 0, c1 = 0, d1 = 0, e1 = 0, e1 = 0.
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For r = 2, substituting all the above values in equation 4.6:

a2 = 4a1 − a0 + e1 + c1,

b2 = 4b1 − b0 + f1 + d1,

c2 = 4c1 − c0 + a1 − e1,

d2 = 4d1 − d0 + b1 − f1,

e2 = 4e1 − e0 − c1 + a1,

f2 = 4f1 − f0 − d1 + b1.

we get a2 = 4, b2 = 1, c2 = 1, d2 = 0, e2 = 1, f2 = 0. Similarly, for r = 3 we have

a3 = 17, b3 = 4, c3 = 7, d3 = 1, e3 = 7, f3 = 1 and so on. The final result shows



ar = 4ar−1 − ar−2 + er−1 + cr−1,

br = 4br−1 − br−2 + fr−1 + dr−1,

cr = 4cr−1 − cr−2 + ar−1 − er−1,

br = ar−1,

dr = cr−1,

er = cr,

fr = dr.

with the initial values a2 = 4, a3 = 17, b2 = 1, c2 = 1 and c3 = 7 and concluded that

br, dr, er, can be written in terms of ar, cr and fr can be written in terms of dr.

Lemma 4.1.1.1. For all r ≥ 2, we have ar − 2cr = r and cr = 5cr − cr−2 + r − 1.
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Proof. Since

ar = 4ar−1 − ar−2 + er−1 + cr−1,

cr = 4cr−1 − cr−2 + ar−1 − er−1.

Then we have

ar − 2cr =4ar−1 − ar−2 + er−1 + cr−1 − 2(4cr−1 − cr−2 + ar−1 − er−1),

=4ar−1 − ar−2 + er−1 + cr−1 − 8cr−1 + 2cr−2 − 2ar−1 + 2er−1,

=2ar−1 − ar−2 + 3er−1 − 7cr−1 + 2cr−2.

Since er−1 = cr−1,

ar − 2cr =2ar−1 − ar−2 + 3cr−1 − 7cr−1 + 2cr−2.

=2ar−1 − ar−2 − 4cr−1 + 2cr−2,

=2(ar−1 − 2cr−1)− (ar−2 − 2cr−2).

Using initial values of a2 and c2 so we have a2 − 2c2 = 4− 2 = 2 =⇒ ar − 2cr = r;

hence, we get

ar − 2cr = 2(r − 1)− (r − 2) = r.

Hence proved.

Now consider,

cr = 4cr−1 − cr−2 + ar−1 − er−1,
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as er−1 = cr−1

cr =4cr−1 − cr−2 + ar−1 − cr−1,

Since ar − 2cr = r then ar−1 − 2cr−1 = r − 1. Thus we get

cr = 4cr−1 − cr−2 + ar−1 − 2cr−1 + cr−1,

=⇒ cr = 5cr−1 − cr−2 + r − 1.

Using c−1 = c0 = 0 and c1 = 0 for n ≥ 2, the sequence cn can be extended.

For all r ≥ 0, define Jr = cr − cr−1. Then for r ≥ 2, we have Jr = 5Jr−1 − Jr−2 + 1,

such that J0 = J1 = 0. Also 3cn + n = Jn+1 − Jn

cr = 5cr−1 − cr−2 + r − 1,

= cr−1 − cr−2 + 4cr−1 + r − 1

= Jr−1 + cr−1 + (3cr−1 + r − 1),

= Jr−1 + cr−1 + Jr − Jr−1,

=⇒ Jr = Jr.

Theorem 4.1.1. Let n ≥ 3. The relation matrix between the generators x̄0, x̄1, ȳ0,

ȳ1, z̄0, z̄1 of the cokernel Z3n/ImL(K3 × Cn) is equivalent to
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n 0 0 0 0 0

cn Jn Jn+1 0 0 0

cn+1 Jn+1 Jn+2 − 1 0 0 0

0 0 0 Jn+1 − Jn Jn − Jn−1 + 1 0

0 0 0 3Jn+1 3Jn 0

0 0 0 0 0 0


=

An 0

0 0



. Alternatively, for n ≥ 3, we have S(K3 × Cn) ∼= Z5/AnZ5.

Proof. Since,

x̄r =4x̄r−1 − x̄r−2 − ȳr−1 − z̄r−1,

x̄r =arx̄1 − brx̄0 − crȳ1 + drȳ0 − erz̄1 + frz̄0,

Replacing r by n in above equations, we get

x̄n = 4x̄n−1 − x̄n−2 − ȳn−1 − z̄n−1, (4.7)

x̄n = anx̄1 − bnx̄0 − cnȳ1 + dnȳ0 − enz̄1 + fnz̄0, (4.8)

Also x̄0 = 4x̄n−1 − x̄n−2 − ȳn−1 − z̄n−1. (4.9)

Using equation 4.7 and substituting all the values in the above equation

anx̄1 − bnx̄0 − cnȳ1 + dnȳ0 − enz̄1 + fnz̄0 = 4x̄n−1 − x̄n−2 − ȳn−1 − z̄n−1

= 4(an−1x̄1 − bn−1x̄0 − cn−1ȳ1 + dn−1ȳ0 − en−1z̄1 + fn−1z̄0)

− (an−2x̄1 − bn−2x̄0 − cn−2ȳ1 + dn−2ȳ0 − en−2z̄1 + fn−2z̄0)

− (an−1ȳ1 − bn−1ȳ0 − cn−1z̄1 + dn−1z̄0 − en−1x̄1,+fn−1x̄0)

− (an−1z̄1 − bn−1z̄0 − cn−1x̄1 + dn−1x̄0 − en−1ȳ1 + fn−1ȳ0)
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Comparing the coeffients,

an = 4an−1 − an−2 + en−1 + cn−1,

bn = 4bn−1 − bn−2 + fn−1 − dn−1,

cn = 4cn−1 − cn−2 + an−1 − en−1,

dn = 4dn−1 − dn−2 + bn−1 − fn−1,

en = 4en−1 − en−2 − cn−1 + an−1,

fn = 4fn−1 − fn−2 − dn−1 + bn−1.

Consider equation 4.8

x̄0 = 4x̄n−1 − x̄n−2 − ȳn−1 − z̄n−1,

By using equation 4.7 substituting values of x̄n−1, x̄n−2, ȳn−1, z̄n−1

x̄0 =4(an−1x̄1 − bn−1x̄0 − cn−1ȳ1 + dn−1ȳ0 − en−1z̄1 + fn−1z̄0)

− (an−2x̄1 − bn−2x̄0 − cn−2ȳ1 + dn−2ȳ0 − en−2z̄1 + fn−2z̄0)

− (an−1ȳ1 − bn−1ȳ0 − cn−1z̄1 + dn−1z̄0 − en−1x̄1,+fn−1x̄0)

− (an−1z̄1 − bn−1z̄0 − cn−1x̄1 + dn−1x̄0 − en−1ȳ1 + fn−1ȳ0)

= (4an−1 − an−2 + en−1 + cn−1)x̄1 − (4bn−1 − bn−2 + fn−1

− dn−1)x̄0 − (4cn−1 − cn−2 + an−1 − en−1)ȳ1 + (4dn−1−

dn−2 + bn−1 − fn−1)ȳ0 − (4en−1 − en−2 − cn−1 + an−1)

z̄1 + (4fn−1 − fn−2 − dn−1 + bn−1)z̄0.
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Thus,

x̄0 = anx̄1 − bnx̄0 − cnȳ1 + dnȳ0 − enz̄1 + fnz̄0.

Similarly, for ȳ0, z̄0, x̄1, ȳ1, z̄1. Thus we deduced a new system of relations.

x̄0 = anx̄1 − bnx̄0 − cnȳ1 + dnȳ0 − enz̄1 + fnz̄0,

ȳ0 = anȳ1 − bnȳ0 − cnz̄1 + dnz̄0 − enx̄1 + fnx̄0,

z̄0 = anz̄1 − bnz̄0 − cnx̄1 + dnx̄0 − enȳ1 + fnȳ0,

x̄n+1 = an+1x̄1 − bn+1x̄0 − cn+1ȳ1 + dn+1ȳ0 − en+1z̄1 + fn+1z̄0,

ȳn+1 = an+1ȳ1 − bn+1ȳ0 − cn+1z̄1 + dn+1z̄0 − en+1x̄1 + fn+1x̄0,

z̄n+1 = an+1z̄1 − bn+1z̄0 − cn+1x̄1 + dn+1x̄0 − en+1ȳ1 + fn+1ȳ0.

For x̄0, ȳ0, z̄0, x̄1, ȳ1, z̄1, the relation matrix can be given as:

Bn =



an −(bn + 1) −cn dn −en fn

−en fn an −(bn+1) −cn dn

−cn dn −en fn an −(bn + 1)

an+1 − 1 −bn+1 −cn+1 dn+1 −en+1 fn+1

−en+1 fn+1 an+1 − 1 −bn+1 −cn+1 dn+1

−cn dn+1 −en fn+2 an+1 − 1 −bn+1
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Using identities of Lemma 4.1.1.1 we get

Bn =



2cn + n −(2cn−1 + n) −cn cn−1 −cn cn−1

−cn cn−1 2cn + n −(2cn−1 + n) −cn cn−1

−cn cn−1 −cn cn−1 2cn + n −(2cn−1 + n)

2cn+1 + n −(2cn + n) −cn+1 cn −cn+1 cn

−cn+1 cn 2cn+1 + cn −(2cn + n) −cn+1 cn

−cn+1 cn −cn+1 cn 2cn+1 + n −(2cn + n)


Adding all columns to the last column,

Bn =



2cn + n −(2cn−1 + n) −cn cn−1 −cn 0

−cn cn−1 2cn + n −(2cn−1 + n) −cn 0

−cn cn−1 −cn cn−1 2cn + n 0

2cn+1 + n −(2cn + n) −cn+1 cn −cn+1 0

−cn+1 cn 2cn+1 + cn −(2cn + n) −cn+1 0

−cn+1 cn −cn+1 cn 2cn+1 + n 0


Add row 2 times 2 to row 1, subtract row 2 from row 3, add 2 times row 5 to row 4

and subtract row 6 from row 5.

Bn ∼



n −n 3cn + 2n −cn−1 − 2n −3cn 0

−cn cn−1 2cn + n −(2cn−1 + n) −cn 0

0 0 −3cn − n 3cn−1 3cn + n 0

n −n 3cn+1 + 2n −3cn − 2n −3cn + 1 0

0 0 3cn+1 + n −3cn − n −3cn − n 0

−cn+1 cn −cn+1 cn 2cn+1 + n 0


Subtract column 1 from column 3, add column 1 to column 4 and add 2 times
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column 1 to column 5.

Bn ∼



n −n 3cn + n −3cn−1 − n −3cn + 2n 0

−cn cn−1 3cn + n −(3cn−1 + n) −3cn 0

0 0 −3cn − n 3cn−1 + n 3cn + n 0

n −n 3cn+1 + n −3cn − n −3cn+1 + 2n 0

0 0 3cn+1 + n −3cn − n −3cn − n 0

−cn+1 cn 0 0 n 0


Multiply 0 to row 1, interchang row 3 and row 6, then interchange row 6 and row 4.

Bn ∼



0 0 0 0 0 0

−cn cn−1 3cn + n −(3cn−1 + n) −3cn 0

−cn+1 cn 0 0 n 0

0 0 −3cn − n 3cn−1 + n 3cn + n 0

0 0 3cn+1 + n −3cn − n −3cn − n 0

n −n 3cn+1 + n −3cn − n −3cn+1 + 2n 0


Add row 4 to row 2 and subtract row 5 from row 6.

Bn ∼



0 0 0 0 0 0

−cn cn−1 0 0 n 0

−cn+1 cn 0 0 n 0

0 0 −3cn − n 3cn−1 + n 3cn + n 0

0 0 3cn+1 + n −3cn − n −3cn+1 − n 0

n −n 0 0 3n 0


Interchange column 4 and column 5, then interchange row 4 and row 6, and finally
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interchange row 5 and row 6.

Bn ∼



0 0 0 0 0 0

−cn cn−1 0 n 0 0

−cn+1 cn 0 n 0 0

n −n 0 3n 0 0

0 0 −3cn − n 3cn + n 3cn−1 + n 0

0 0 3cn+1 + n −3cn+1 − n −3cn − n 0


Add row 4 to row 2 and take - times row 6.

Bn ∼



0 0 0 0 0 0

−cn cn−1 n n 0 0

−cn+1 cn n n 0 0

n −n 3n 3n 0 0

0 0 0 3cn + n 3cn−1 + n 0

0 0 0 3cn+1 + n 3cn + n 0


Interchange R2 ⇐⇒ R4, R3 ⇐⇒ R4 and take - times column 1.

Bn ∼



0 0 0 0 0 0

−n −n 3n 3n 0 0

cn cn−1 n n 0 0

cn+1 cn n n 0 0

0 0 0 3cn + n 3cn−1 + n 0

0 0 0 3cn+1 + n 3cn + n 0
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Subtract column 3 from column 4:

Bn ∼



0 0 0 0 0 0

−n −n 3n 0 0 0

cn cn−1 n 0 0 0

cn+1 cn n 0 0 0

0 0 0 3cn + n 3cn−1 + n 0

0 0 0 3cn+1 + n 3cn + n 0


Add 3 times column 1 to column 3 and take - times column 2:

Bn ∼



0 0 0 0 0 0

−n n 0 0 0 0

cn −cn−1 3cn + n 0 0 0

cn+1 −cn 3cn+1 + n 0 0 0

0 0 0 3cn + n 3cn−1 + n 0

0 0 0 3cn+1 + n 3cn + n 0


Add column 1 to column 2 and take -times row 2:

Bn ∼



0 0 0 0 0 0

n 0 0 0 0 0

cn cn − cn−1 3cn + n 0 0 0

cn+1 cn+1 − cn 3cn+1 + n 0 0 0

0 0 0 3cn + n 3cn−1 + n 0

0 0 0 3cn+1 + n 3cn + n 0
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Using identities of Lemma 4.1.1.1:

Bn ∼



n 0 0 0 0 0

cn Jn Jn+1 0 0 0

cn+1 Jn+1 Jn+2 − 1 0 0 0

0 0 0 Jn+1 − Jn Jn − Jn−1 + 1 0

0 0 0 3Jn+1 3Jn 0

0 0 0 0 0 0



=

An 0

0 0

 .

.

4.1.2 Two Sequences Related to the Number of Spanning

Trees of S(K3 × Cn)

In this section, the SNF of matrix An is computed in the pursuance to adjudge the

group structure S(K3 × Cn). Consider

An =



n 0 0 0 0

cn Jn Jn+1 0 0

cn+1 Jn+1 Jn+2 − 1 0 0

0 0 0 Jn+1 − Jn Jn − Jn−1 + 1

0 0 0 3Jn+1 3Jn



Let Pn =

Jn+1 − Jn Jn − Jn−1 + 1

3Jn+1 3Jn

 , Qn =


n 0 0

cn Jn Jn+1

cn+1 Jn+1 Jn+2 − 1

 .
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Then An =

Qn 0

0 Pn

 = Qn

⊕
Pn. It is thus, clear that for each n we have JnJn+2+

Jn+1 = J2
n+1. Hence, detPn can be deduced as

detPn = 3Jn(Jn+1 − Jn)− 3Jn+1(Jn − Jn−1 + 1)

= 3JnJn+1 − 3J2
n − 3Jn+1Jn − 3Jn+1Jn−1 − 3Jn+1

= −3J2
n + 3Jn+1Jn−1 − 3Jn+1.

As

JnJn+2 + Jn+1 = J2
n+1

Jn−1Jn+1 + Jn = J2
n

J2
n + Jn−1Jn+1 = −Jn.

=⇒ detPn = −3(Jn + Jn+1).

Similarly,

detQn = n(Jn(Jn+2 − 1)− J2
n+1)

= n(JnJn+2 − Jn − J2
n+1)

= n(−Jn − Jn+1)

detQn = −n(Jn − Jn+1).

Thus, the number of spanning trees of K3 × Cn is detAn=detQn·detPn = 3n(Jn +

Jn+1)2.

To quantify the SNF of the matrices Pn and Qn; hence An, some divisibility prop-

erties about Jn are required. For proving Lemmas, let wn = Jn + Jn+1.
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Lemma 4.1.2.1. For n = 2i+ 1 odd, ŵn = J2i+1 +J2i+2 = µ̌2
i , where µ̌i is given as;

µ̌i = 5µ̌i−1 − µ̌i−2,

µ̌0 = 1,

µ̌1 = 6.

For n = 2i even, ŵn = J2i + J2i+1 = 7ϑ̌2
i , where ϑ̌i is given as

ϑ̌i = 5ϑ̌i−1 − ϑ̌i−2,

ϑ̌0 = 0,

ϑ̌1 = 1.

Proof. The above results can be proved by induction. Since we know ŵ = Jn +

Jn+1 = µ̌2
i , so dealing with he odd case first.

For n = 2i+1, ŵn = Ji+Ji+1 = µ̌2
i becomes ŵ2i+1 = J2i+1 +J2i+2 = µ̌2

i . Considering

different values for i, we have

For i = 0, ŵ1 = J1 + J2 =⇒ c1 − c0 + c− c2 = 1 = ŵ1

For i = 1, ŵ3 = J3 + J4 =⇒ c3 − c2 + c4 − c3 = 36 = ŵ3

For i = 2, ŵ5 = J5 + J6 =⇒ c5 − c4 + c6 − c5 = 841 = ŵ5

For i = 3, ŵ7 = J7 + J8 =⇒ c7 − c6 + c8 − c7 = 1932 = ŵ7

Clearly,

ŵ1 = (1)2 = µ̌2
0 =⇒ µ̌0 = 1

ŵ3 = (6)2 = µ̌2
1 =⇒ µ̌1 = 6

ŵ5 = (29)2 = µ̌2
2 =⇒ µ̌2 = 29

ŵ7 = (139)2 = µ̌2
3 =⇒ µ̌3 = 139

As a result, generalized form is deduced as ŵn = µ̌2
i . Also, µ̌2 = 5µ̌1 − µ̌0,

µ̌3 = 5µ̌2 − µ̌1 =⇒ µ̌i = 5µ̌i−1 − µ̌i−2.
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Thus, 
µ̌i = 5µ̌i−1 − µ̌i−2,

µ̌0 = 1,

µ̌1 = 6.

Now consider the even case:

For n = 2i, ŵn = Ji + Ji+1 = 7ϑ̌2
i becomes ŵ2i = J2i + J2i+1 = 7ϑ̌2

i .

For i = 0, ŵ0 = J0 + J1 =⇒ c0 − c−1 + c1 − c0 = 0 = ŵ0

For i = 1, ŵ2 = J2 + J3 =⇒ c2 − c1 + c3 − c2 = 7 = ŵ2

For i = 2, ŵ4 = J4 + J5 =⇒ c4 − c3 + c5 − c4 = 175 = ŵ4

For i = 3, ŵ6 = J6 + J7 =⇒ c6 − c5 + c7 − c6 = 4032 = ŵ6

Clearly,

ŵ0 = 0 = 7(0)2 = ϑ̌2
0 = 7(ϑ̌0)2

ŵ2 = 7 = 7(1)2 = ϑ̌2
1 = 7(ϑ̌1)2

ŵ4 = 175 = 7(5)2 = ϑ̌2
2 = 7(ϑ̌2)2

ŵ6 = 4032 = 7(24)2 = ϑ̌2
3 = 7(ϑ̌3)2

As a result, generalized form is deduced as ŵn = 7ϑ̌2
i . It can be further noted that,

ϑ̌4 = 5ϑ̌3 − ϑ̌2, ϑ̌3 = 5ϑ̌2 − µ̌1 =⇒ ϑ̌i = 5ϑ̌i−1 − ϑ̌i−2. It can be generalized as

µ̌i = ϑ̌i + ϑ̌i+1.

Thus in general, 
ϑ̌i = 5ϑ̌i−1 − ϑ̌i−2,

ϑ̌0 = 0,

ϑ̌1 = 1.
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Now,

µ̌2
i−1µ̌

2
i = ŵ2(i−1)+1ŵ2i+1

= (J2(i−1)+1 + J2(i−1)+2)(J2i+1 + J2i+2)

= (J2i−1 + J2i)(J2i+1 + J2i+2)

= J2i−1J2i+1 + J2iJ2i+1 + J2i−1J2i+2 + J2iJ2i+2.

Since,

JnJn+2 + Jn+1 = J2
n+1

J2i−1J2i+1 = J2
2i − J2i

J2iJ2i+2 = J2
2i+1 − J2i+1

Jm = 5Jm−1 − Jm−2 + 1

J2i+1 = 5J2i − J2i−1 + 1

J2i+2 = 5J2i+1 − J2i + 1.

Using the above values, we get:

µ̌2
i−1µ̌

2
i = J2iJ2i+1 + J2i−1J2i+2 + J2

2i − J2i + J2
2i+1 − J2i+1

= J2iJ2i+1 + J2i−1J2i+2 + J2
2i + J2

2i+1 − (J2i+1 + J2i)

= J2iJ2i+1 + J2i−1(5J2i+1 − J2i + 1) + J2
2i + J2

2i+1 − (J2i+1 + J2i)

= J2iJ2i+1 + 5J2i−1J2i+1 − J2i−1J2i + J2i−1 + J2
2i + J2

2i+1 − (J2i+1 + J2i)

= J2iJ2i+1 + 5J2i−1J2i+1 − J2i−1J2i + J2
2i + J2

2i+1 − (J2i+1 + J2i − J2i−1)

= J2iJ2i+1 − (J2i+1 + J2i − J2i−1) + J2i+1J2i + J2
2i + J2

2i+1 + 5(J2
2i − J2i)

= J2iJ2i+1 − (J2i+1 + J2i − J2i−1) + J2i+1J2i + 6J2
2i + J2

2i+1 − 5J2i

= J2iJ2i+1 − (J2i+1 − J2i−1) + J2i+1J2i + 6J2
2i + J2

2i+1 − 6J2i
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As Jn = 5Jn−1−Jn−2 +1 =⇒ J2i+1 = 5J2i−J2i−1 +1 =⇒ J2i−1 = 5J2i−J2i+1 +1.

Putting the value in above equation, we get:

µ̌2
i−1µ̌

2
i = J2iJ2i+1 − J2i−1J2i − J2i+1 + 5J2i − J2i+1 + 1 + 6J2

2i + J2
2i+1 − 6J2i

= J2iJ2i+1 − J2i(5J2i − J2i+1 + 1)− J2i+1 + 5J2i − J2i+1 + 1 + 6J2
2i + J2

2i+1 − 6J2i

= J2iJ2i+1 − 5J2
2i − J2iJ2i+1 − J2i + 5J2i − J2i+1 + 1 + 6J2

2i + J2
2i+1 − 6J2i

= 2J2iJ2i+1 + J2
2i + J2

2i+1 − 2J2i − 2J2i+1 + 1

= (J2i + J2i+1)2 − 2(J2i − J2i+1) + 1

= (ŵ2i)
2 − 2ŵ2i + 1

µ̌2
i−1µ̌

2
i = (ŵ2i − 1)2

µ̌i−1µ̌i = ŵ2i − 1.

Similarly, it can be easily shown that 7ϑ̌2i−1ϑ̌i = ŵ2i+1 − 1.

Proposition 4.1.1. For each i, n ≥ 1 we have

ϑ̌i+n = ϑ̌i+1ϑ̌n − ϑ̌iϑ̌n−1 and pi+n = ϑ̌i+1µ̌n − ϑ̌iµ̌n−1.

Proof. From above proposition, the following identities are deduced that will be

used in Lemma 4.1.2.4

ϑ̌3n = ϑ̌n(3ϑ̌2
n−1 − 15ϑ̌nϑ̌n−1 + 24ϑ̌2

n),

ϑ̌3n−1 = ϑ̌3
n−1 − 3ϑ̌2

nϑ̌n−1 + 5ϑ̌3
n,

ϑ̌3n+1 = 115ϑ̌n − ϑ̌3
n−1 + 15ϑ̌nϑ̌

2
n−1 − 92ϑ̌2

nϑ̌n−1.

Moreover, if we extend the sequence ϑ̌n by Q−n = −ϑ̌n then we have

Lemma 4.1.2.2. For all integers i, n and j, we have

ϑ̌in+j =
ı∑

k=0

(−1)i−k
(
i

j

)
ϑ̌knϑ̌

i−k
n−1ϑ̌j+k.
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proof 4.1.1. Let γ be the root of y2− 5y+ 1. Then γn = γϑ̌n− ϑ̌n−1 is verified by

induction on n.

For n = 1,

γ = γϑ̌1 − ϑ̌0

γ = γ.

For n = 2,

γ2 = γϑ̌2 − ϑ̌1

γ2 = 5γ − 1

γ2 − 5γ + 1.

For n = 3,

γ3 = γϑ̌3 − ϑ̌2

γ3 = 24γ − 5

γ.γ2 = 24γ − 5

γ(5γ − 1) = 24γ − 5

5γ2 − γ = 24γ − 5

γ2 − 5γ + 1 = 0.

Suppose the equality is true for n = k:

γk = γϑ̌k − ϑ̌k−1. (4.10)
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For n = k + 1,

γk+1 = γϑ̌k+1 − ϑ̌k

γk.γ = γϑ̌k+1 − ϑ̌k

γ(γϑ̌k − ϑ̌k−1) = γϑ̌k+1 − ϑ̌k

γ2ϑ̌k − γϑ̌k−1 = γϑ̌k+1 − ϑ̌k.

Multiplying 4.10 by γ, we get

γ.γk = γ2ϑ̌k − γϑ̌k−1

γk+1 = γ2ϑ̌k − γϑ̌k−1

=⇒ γk+1 = γϑ̌k+1 − ϑ̌k.

Hence γn = γϑ̌n − ϑ̌n−1 holds by induction. Now consider:

γin+j = (γn)iγj

= γj(γϑ̌n − ϑ̌n−1)i Binomial expansion

= (γϑ̌j − ϑ̌j−1)

[ ı∑
k=0

(
i

k

)
γkϑ̌kn(−1)i−kϑ̌i−kn−1

]
= (γϑ̌j − ϑ̌j−1)

[ ı∑
k=0

(
i

k

)
(γϑ̌k − ϑ̌k−1)ϑ̌kn(−1)i−kϑ̌i−kn−1

]
=

ı∑
k=0

(−1)i−k
(
i

k

)
ϑ̌knϑ̌

i−k
n−1(γϑ̌j+k − ϑ̌j+k−1),

γin+j = γϑ̌in+j − ϑ̌in+j−1 and the irrationality ofγ, Lemma 4.1.2.2 holds.

Lemma 4.1.2.3. For a | b, ϑ̌a divides ϑ̌b. Moreover, if a | b implies det(Aa) divides

det(Ab)..
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Proof. Let b = ac, then from Lemma 4.1.2.2

ϑ̌b = ϑ̌ac =
∑
i=0

(−1)c−i
(
c

i

)
ϑ̌iaϑ̌

c−i
a−1ϑ̌i.

i.e. if a | b then ϑ̌a | ϑ̌b. First consider if we put n = i + 1, then Proposition 4.1.1

becomes ϑ̌2i+1 = ϑ̌2
i+1 − ϑ̌2

i .

Now suppose if 2a + 1 divides 2b + 1, then one can show that µ̌a divides µ̌b. By

definition of divisibility, if 2a + 1 divides 2b + 1 then (2b + 1) = (2a + 1)(2c + 1).

Thus b = 2ac+ a+ c.

The statement µ̌a | µ̌b = µ2ac+a+c can be proved by using induction on c. It is true

if c = 0, since then b = a =⇒ µ̌a = µ̌b and µ̌a | µ̌a.

For c = c + 1, b = 2a(c + 1) + a + (c + 1), then µ̌2a(c+1)+a+(c+) = µ̌(2a+1)+(2ac+a+c).

Using property pi+n = ϑ̌i+1µ̌n − ϑ̌iµ̌n−1, we get;

µ̌(2a+1)+(2ac+a+c) = ϑ̌2a+2µ̌2ac+a+c − ϑ̌2a+1µ̌2ac+a+c−1.

The first term ϑ̌2a+2µ̌2ac+a+c is multiple of µ̌a; since by inductive hypothesis µ̌a |

µ̌2ac+a+c, so it is divisible by µ̌a. Also by Proposition 4.1.1, ϑ̌2a+1 = ϑ̌2
a+1 − ϑ̌2

a =

(ϑ̌2a+1− ϑ̌a)(ϑ̌2a+1 + ϑ̌a) which gives ϑ̌2a+1 = µ̌a(ϑ̌a+1− ϑ̌a), (since as µ̌a = ϑ̌a+1 + ϑ̌a)

that is also a multiple of µ̌a. Hence second term is also divisible by µ̌a.

Now if 2a + 1 divides 2b, then µ̌a divides ϑ̌b. Let 2b = (2a + 1)2c by definition of

divisibility, then b = (2a+ 1)c. We need to show that µ̌a | ϑ̌b = ϑ̌(2a+1)c. Previously,

µ̌a divides ϑ̌2a+1 and ϑ̌2a+1 divides ϑ̌(2a+1)c then by transitivity of divisibilty µ̌a

divides ϑ̌(2a+1)c.

Lemma 4.1.2.4. For Q ≥ 1, we have ϑ̌3Q = 2.3Q mod 3Q+1, ϑ̌3Q−1 = 2.3Q − 1

mod 3Q+1, ϑ̌3Q+1 = 2.3Q + 1 mod 3Q+1, ϑ̌2·3Q ≡ 3Q mod 3Q+1.

Proof. The identities ϑ̌3Q = 2.3Q mod 3Q+1, ϑ̌3Q−1 = 2.3Q − 1 mod 33Q+1 can be

proved by induction on Q. Thus for Q = 1 we have, ϑ̌3 = 5ϑ̌2− ϑ̌1 = 24 ≡ 6 mod 9
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that can be written as ϑ̌3 = 2.3 mod 31+1 and ϑ̌2 = 5ϑ̌1 − ϑ̌0 = 5 ≡ 5 mod 9, that

can be written as ϑ̌2 = 2.31 − 1 mod 31+1, which is true. Let the result also holds

for Q ≥ 1 that is ϑ̌3Q = 2.3Q + x3Q+1, ϑ̌3Q−1 = 2.3Q − 1 + y33Q+1 for some integers

x and y.

ϑ̌3
3Q = (2.3Q + x.3Q+1)3

= (2.3Q)3 + 3(2.3Q)2(x.3Q+1) + 3(2.3Q)(x.3Q+1)2 + (x.3Q+1)3

= (23.32Q−2)3Q+2 + (x.22.32Q)3Q+2 + (x2.2.32Q+1)3Q+2 + (x3.32Q+1)3Q+2

≡ 0 mod 3Q+2.

3ϑ̌3Qϑ̌
2
3Q−1 = 3(2.3Q + x.3Q+1)(2.3Q − 1 + y.3Q+1)2

= 3(2 · 3Q + x.3Q+1)[(2 · 3Q)2 + (−1)2 + (y · 3Q+1)2 + 2(2 · 3Q(−1) + y · 3Q+1(−1) + (y · 3Q+1)

· 2 · 3Q]

= 3[(2 · 3u)3 + x · 3Q+1(2 · 3Q)2 + 2 · 3Q + x · 3Q+1 + 2 · 3Q(y · 3Q+1)2 + x · y2(3Q+1)3 + 22 · 3Q

(−2 · 3Q − y · 3Q+1 + (y · 3Q+1) · 2 · 3Q) + x · 2 · 3Q+1(−2 · 3Q − y · 3Q+1 + (y · 3Q+1) · 2 · 3Q)]

= (2 · 32Q−1)3Q+2 + x · (2 · 3Q)23Q+2 + 2 · 3Q+1 + x · 3Q+2 + (y.32Q+1)3Q+2 + (x · y2 · 32u+2)3Q+2

+ 22(−2 · 3Q−1 − y · 3Q + y.2.32Q)3Q+2 + x · 2(−2 · 3Q − y · 3Q+1 + y · 2 · 32Q+1)3Q+2

≡ 2 · 3Q+1 mod 3Q+2.
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ϑ̌2
3Qϑ̌3Q−1 = 3(2 · 3Q + x · 3Q+1)2(2 · 3Q − 1 + y · 3Q+1)

= ((2 · 3Q)2 + 2(2 · 3Q)(x · 3Q+1) + (x · 3Q+1)2)(2 · 3Q − 1 + y · 3Q+1)

= (2 · 3Q)3 − (2 · 3Q)2 + (2 · 3Q)2(y · 3Q+1) + 2(2 · 3Q)2(x · 3Q+1)− 2(2 · 3Q)(x · 3Q+1) + x · y · 2(2 · 3Q)(3Q+1)2

+ (2 · 3Q)(x · 3Q+1)2 − (x · 3Q+1)2 + x2 · y(3Q+1)3

= (23 · 32Q−2)3Q+2 − (22 · 3Q−2)3Q+2 + (y · 22 · 32Q−1)3Q+2 + (x · 23 · 32Q−1)3Q+2 − (a · 22 · 3Q−1)3Q+2

+ (x · y · 22 · 32Q)3Q+2 + (· · 2 · 32Q)3Q+2 − (x2 · 3Q)3Q+2 + (x2 · y · 32Q+1)3Q+2

≡ 0 mod 3Q+2.

The identities from proposition,

ϑ̌3Q+1 = ϑ̌3·3Q = ϑ̌3Q(3ϑ̌2
3Q−1 − 15ϑ̌3Qϑ̌3Q−1 + 24ϑ̌2

3Q),

ϑ̌3Q+1−1 = ϑ̌3Q·3Q−1 = ϑ̌3
3Q−1 − 3ϑ̌2

3Qϑ̌3Q−1 + 5ϑ̌3
3Q .

can be used to prove the remaining identities. Thus we have,

ϑ̌3Q+1 = ϑ̌3.3Q = ϑ̌3Q3ϑ̌2
3Q−1 − 15ϑ̌2

3Qϑ̌3Q−1 + 24ϑ̌3
3Q

= ϑ̌3Q3ϑ̌2
3Q−1 mod 3Q+2 − 15ϑ̌2

3Qϑ̌3Q−1 mod 3Q+2 + 24ϑ̌3
3Q mod 3Q+2

≡ ϑ̌3Q3ϑ̌2
3Q−1 mod 3Q+2 − 0 mod 3Q+2 + 0 mod 3Q+2

≡ ϑ̌3Q3ϑ̌2
3Q−1 mod 3Q+2

≡ 2 · 3Q+1 mod 3Q+2.
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Also,

ϑ̌3Q+1−1 = ϑ̌3
3Q−1 − 3ϑ̌2

3Qϑ̌3Q−1 + 5ϑ̌3
3Q

= ϑ̌3
3Q−1 mod 3Q+2 − 3ϑ̌2

3Qϑ̌3Q−1 mod 3Q+2 + 5ϑ̌3
3Q mod 3Q+2

≡ ϑ̌3
3Q−1 mod 3Q+2 − 0 mod 3Q+2 + 0 mod 3Q+2

≡ (2 · 3Q − 1 + y · 3Q+1)3 mod 3Q+1

≡ [(2 · 3Q)3 + 3(2 · 3Q)2(−1) + 3(2 · 3Q)(−1)2 + 6(2 · 3Q)(−1)(y · 3Q+1) + 3(2 · 3Q)2(y · 3Q+1) + (−1)3

+ 3(−1)2(y · 3Q+1) + 3(−1)(y · 3Q+1)2 + (y · 3Q+1)3] mod 3Q+2

≡ 3(2 · 3Q)− 1 mod 3Q+2

≡ 2 · 3Q+1 − 1 mod 3Q+2.

Similarly,

ϑ̌3Q+1+1 = ϑ̌3.3Q+1 = 115ϑ̌3
3Q − ϑ̌

3
3Q−1 + 15ϑ̌3Qϑ̌

2
3Q−1 − 92ϑ̌2

3Qϑ̌3Q−1

= 115ϑ̌3
3Q mod 3Q+2 − ϑ̌3

3Q−1 mod 3Q+2 + 15ϑ̌3Qϑ̌
2
3Q−1 mod 3Q+2 − 92ϑ̌2

3Qϑ̌3Q−1

mod 3Q+2

≡ 0 mod 3Q+2 − ϑ̌3
3Q−1 mod 3Q+2 + 5 · 3ϑ̌3Qq

2
3Q−1 mod 3Q+2 − 0 mod 3Q+2

≡ −2 · 3Q+1 − 1 mod 3Q+2 + 5 · 2 · 3Q+1 mod 3Q+2

≡ 8 · 3Q+1 mod 3Q+2 + 1 mod 3Q+2

≡ (6 + 2)3Q+1 mod 3Q+2 + 1 mod 3Q+2

≡ 2 · 3Q+2 mod 3Q+2 + 2 · 3Q+1 mod 3Q+2 + 1 mod 3Q+2

≡ 2 · 3Q+1 + 1 mod 3Q+2.
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also,

ϑ̌2·3Q = ϑ̌3Q+3Q = ϑ̌3Q(ϑ̌3Q+1 − ϑ̌3Q−1)

= (2 · 3Q + x · 3Q+1)(2 · 3Q + 1 + z · 3Q+1 − 2 · 3Q + 1− y · 3Q+1)

= 22 · 3Q + 2 · 3Q(z − y)3Q+1 + x · 2 · 3Q+1 + x(z − y) · (3Q+1)2

= 22 · 3Q + (2 · 3Q(z − y))3Q+1 + (x · 2)3Q+1 + (x(z − y) · 3Q+1)3Q+1

≡ 22 · 3Q mod 3Q+1

≡ (3 + 1)3Q mod 3Q+1

≡ 3Q+1 mod 3Q+1 + 3Q mod 3Q+1

≡ 3Q mod 3Q+1.

Let pk(h) be the period of the sequence ϑ̌n modulo h. Then we have some quick

results:

ϑ̌n ≡ ϑ̌n+s·pk(h) mod h,

ϑ̌pk(h) ≡ 0 mod h.

Lemma 4.1.2.5. If h1|h2, then pk(h1)|pk(h2).

Proof. Let π = pk(h2) be the period of sequence ϑ̌i modulo h2. Since h1|h2, to prove

pk(h1)|pk(h2), it is required to show that ϑ̌n(mod h1) repeats in blocks of length π.

It is possible by showing ϑ̌n ≡ qn+π mod h1 for each n. Clearly, ϑ̌n ≡ qn+π mod h2.

Then for some 0 ≤ s ≤ h2, it follows, ϑ̌n = s+ h2x and ϑ̌n = s+ h2y.

Now, since h1|h2, by definition of divisibility h2 = h1t. By substitution, ϑ̌n =

s + hitx and ϑ̌n = s + h1ty. As h2 ≥ h1, for some 0 ≤ s′ ≤ h1, we can have

s = s′ + h1α. Finally by substituting value of s we get ϑ̌n = s′ + h1(α + tx) and

ϑ̌n = s′ + h1(α + ty). This implies ϑ̌n = qn+π( mod h1)(i.e. ϑ̌n repeats in blocks of

length π); hence, the required result.
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Lemma 4.1.2.6. LetQ ≥ 1. If 3Q|n.then3Q|ϑ̌n, and if 7Q|n then 7Q|ϑ̌n. If 3Q|2i+1,

then 3Q|µ̌i.

Proof. In order to have explicit formula for ϑ̌n and µ̌n, the recurrence relations are

needed to be solved, respectively:

The solution to recurrence relation ϑ̌n = 5ϑ̌n−1 − ϑ̌n−2 with ϑ̌0 = 0 and ϑ̌1 = 1 can

be find as under.

The characteristic equation for this recurrence is r2 − 5r + 1 = 0, which has roots

r1 = 5−
√

21
2

and r2 = 5+
√

21
2

.Thus ϑ̌n = α(5−
√

21
2

)n+β(5+
√

21
2

)n. The constants can be

solved by using initial conditions. Thus, we have:

ϑ̌n =
1√
21

(
5−
√

21

2
)n − 1√

21
(
5 +
√

21

2
)n

=
1

2n

∑
1≤2k+1≤n

(
n

2k + 1

)
5n−2k−121k

Hence ,if 3Q|n, then 3Q|ϑ̌n, and if 7Q|n then 7Q|ϑ̌n. For example, for Q = 1 and

n = 3 , 3|3 and 3|ϑ̌3 that is 24. Similarly, for n = 7, 7|7 and 7|q7 = 12649.

Now the solution to recurrence relation µ̌i = 5µ̌i−1 − µ̌i−2 with µ̌0 = 1 and µ̌1 = 6

can be given as:

The characteristic equation is r2 − 5r + 1 = 0, which has roots r1 = 5−
√

21
2

and

r2 = 5+
√

21
2

.Thus µ̌i = α(5−
√

21
2

)i + β(5+
√

21
2

)i. We can find the constants from the

60



initial values we know. Thus,

µ̌i = (
3 +
√

21

6
)(

5 +
√

21

2
)i + (

3−
√

21

6
)(

5−
√

21

2
)i

= (
3 +
√

21

6
)(

√
3 +
√

7

2
)2i + (

3−
√

21

6
)(

√
3−
√

7

2
)2i

= (

√
3 +
√

7

2
√

3
)(

√
3 +
√

7

2
)2i + (

√
3−
√

7

2
√

3
)(

√
3−
√

7

2
)2i

=
1√
3

(

√
3−
√

7

2
)2i+1 +

1√
3

(

√
3 +
√

7

2
)2i+1

=
1

22i

i∑
k=0

(
2i+ 1

2k + 1

)
7i−k3k.

So, if 3Q|2i+ 1 then 3Q|µ̌i.

Corollary 4.1.1. Let i ≥ 1. Then (2i, 7ϑ̌i) = (2i, ϑ̌i).

Lemma 4.1.2.7. pk(3Q) = 3Q

Proof. From Lemma 4.1.2.4 we have ϑ̌3Q ≡ 0 (mod 3Q) and ϑ̌3Q+1 ≡ 1(mod3Q) for

all u. Using Lemma 4.1.2.4, we have pk(3Q) = 3Q|3Q for all u.

Using induction on u to show 3Q|pk(3Q). This is true for u = 1 since ϑ̌pk(3) ≡ 0(

mod 3). By induction hypothesis suppose it is true for u i.e. 3Q|pk(3Q). Now

for u = u + 1, as we know that pk(3Q)|pk(3Q+1); also, 3Q|pk(3Q) (by induction

hypothesis) this implies 3Q|pk(3Q+1). From Lemma 4.1.2.6, it follows pk(3Q+1)|3Q+1.

This shows that pk(3Q+1) is either 3Q or 3Q+1. But the facts from Lemma4.1.2.4,

proved that ϑ̌3Q = 2.3Q mod 3Q+1 6≡ 0 mod 3Q+1 hence clearly, 3Q+1|3Q+1 which

implies pk(3Q+1) = 3Q+1; hence the required proof.

Lemma 4.1.2.8. If 3Q|n and 3Q+1 - n. Then 3Q−1| ϑ̌n−n
3

and 3Q - ϑ̌n−n
3

.

Proof. By definition of divisibility if 3Q divides n then n = 3i also 3 must not divide

i, then we can have i = 3b+ a, where a can either be 1 or 2. S ubstituting value of
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i, we get;

n = 3Q(3b+ a) =⇒ n = a · 3Q + b · 3Q+1 ≡ a · 3Q mod 3Q+1.

a · 3Q mod 3Q+1 =

3Q mod 3Q+1, a = 1,

2 · 3Q mod 3Q+1, a = 2.

Also, ϑ̌n = ϑ̌a.3Q+b.3Q+1 ≡ ϑ̌a.3Q mod 3Q+1

ϑ̌a·3Q mod 3Q+1 =

2 · 3Q mod 3Q+1, a = 1,

3Q mod 3Q+1, a = 2.

(Since when a = 2, then we get 2 · 2 · 3Q mod 3Q+1 = (3 + 1)3Q mod 3Q+1, upon

solving we finally have 3Q mod 3Q+1). From the above properties, we get:

ϑ̌n − n =

3Q mod 3Q+1, a = 1,

2 · 3Q mod 3Q+1, a = 2.

(When a = 2 we get −3Q mod 3Q+1 = (−3 + 2)3Q mod 3Q+1, by property of mod

finally we are left with 2 · 3Q mod 3Q+1).

Hence proved that 3Q−1| ϑ̌n−n
3

and 3Q - ϑ̌n−n
3

.

Lemma 4.1.2.9. For all n ≥ 2, we have (µ̌n, µ̌n−1) = (ϑ̌n, ϑ̌n−1) = 1 and (µ̌n −

µ̌n−1, µ̌n+1 − µ̌n) = (ϑ̌n − ϑ̌n−1, ϑ̌n+1 − ϑ̌n) = 1

We list some other relationships linking µ̌n, ϑ̌n and Jn

� Jn+1 − Jn = ϑ̌n.

� J2i+1 = µ̌iϑ̌i.

� J2i+2 = µ̌iϑ̌i+1.
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� (J2i, J2i+1) = ϑ̌i, (J2i+1, J2i+2) = µ̌i.

4.1.3 The Smith Normal Form (SNF ) An

With the help of SNF of Pn and Qn, the SNF of An can be computed.

4.1.4 Computation of the SNF of Pn

Since Pn =

Jn+1 − Jn Jn − Jn−1 + 1

3Jn+1 3Jn

. As Jn+1−Jn = ϑ̌n If n = 2i+ 1, then we

have:

J2i+2 − J2i+1 = ϑ̌2i+1 = µ̌i(ϑ̌i+1 − ϑ̌i)

,

Jn − Jn−1 + 1 = J2i+1 − (J2i − 1)

= J2i+1 − 5J2i+1 + J2i+2

= J2i+2 − 4J2i+1

= µ̌iϑ̌i+1 − 4µ̌iϑ̌i

= µ̌i(ϑ̌i+1 + 4ϑ̌i)

= µ̌i(ϑ̌i+1 − 5ϑ̌i + ϑ̌i)

= µ̌i(ϑ̌i − ϑ̌i−1).

Thus, the GCD of all entries of Pn for n = 2i+ 1 is

(Jn+1 − Jn, Jn − Jn−1 + 1, 3Jn+1, 3Jn) = (J2i+2 − J2i+1, J2i+1 − J2i + 1, 3J2i+2, 3J2i+1)

= (µ̌i(ϑ̌i+1 − ϑ̌i), µ̌i(ϑ̌i − ϑ̌i−1), 3µ̌iϑ̌i, 3µ̌iϑ̌i+1)

= µ̌i(ϑ̌i+1 − ϑ̌i, ϑ̌i − ϑ̌i−1, 3ϑ̌i, 3ϑ̌i+1)

= µ̌i.
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Since (ϑ̌n − ϑ̌n−1, ϑ̌n+1 − ϑ̌n) = 1 and (ϑ̌n, ϑ̌n−1) = 1, now consider∣∣∣∣∣∣Jn+1 − Jn Jn − Jn−1 + 1

3Jn+1 3Jn

∣∣∣∣∣∣ =3Jn(Jn+1 − Jn)− 3Jn+1(Jn − Jn−1 + 1)

=3JnJn+1 − 3J2
n − 3Jn+1Jn−1 − 3Jn+1

=− 3J2
n + 3Jn+1Jn−1 − 3Jn+1

=− 3(Jn + Jn+1).

When n = 2i+ 1;

−3(Jn + Jn+1) =− 3(J2i+1 − J2i+2)

=− 3(µ̌2
i ).

Thus we can have

Jn+1 − Jn Jn − Jn−1 + 1

3Jn+1 3Jn

=

J2i+2 − J2i+1 J2i+1 − J2i + 1

3J2i+2 3J2i+1


∼

µ̌i 0

0 3µ̌i


Now if n = 2i, then Jn+1 − Jn = q2i = J2i+1 − J2i = ϑ̌i(µ̌i − µ̌i−1) (since J2(i−1)+2 =

µ̌i−1ϑ̌i),

Jn − Jn−1 + 1 = J2i − J2i−1 + 1

= J2i − 5J2i + J2i+1

= J2i+1 − 4J2i

= µ̌iϑ̌i − 4µ̌i−1ϑ̌i

= ϑ̌i(µ̌i + 4µ̌i−1)

= ϑ̌i(µ̌i − 5µ̌i−1 + µ̌i−1)

= ϑ̌i(µ̌i−1 − µ̌i−2).
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Thus, the GCD of all items of Pn for n = 2i is

(Jn+1 − Jn, Jn − Jn−1 + 1, 3Jn+1, 3Jn) = (J2i+1 − J2i, J2i − J2i−1 + 1, 3J2i+1, 3J2i)

= (ϑ̌i(µ̌i − ϑ̌i−1), ϑ̌i(µ̌i−1 − µ̌i−2), 3µ̌iϑ̌i, 3µ̌i−1ϑ̌i)

= ϑ̌i(µ̌i − ϑ̌i−1, µ̌i−1 − µ̌i−2, 3µ̌i, 3µ̌i−1)

= ϑ̌i.

Now, ∣∣∣∣∣∣Jn+1 − Jn Jn − Jn−1 + 1

3Jn+1 3Jn

∣∣∣∣∣∣ =3Jn(Jn+1 − Jn)− 3Jn+1(Jn − Jn−1 + 1)

=3JnJn+1 − 3J2
n − 3Jn+1Jn−1 − 3Jn+1

=− 3J2
n + 3Jn+1Jn−1 − 3Jn+1

=− 3(Jn + Jn+1).

When n = 2i, then

−3(Jn + Jn+1) =− 3(J2i − J2i+1)

=− 3(7ϑ̌2
i )

=− 21ϑ̌2
i .

Thus, we can have

Jn+1 − Jn Jn − Jn−1 + 1

3Jn+1 3Jn

=

J2i+1 − J2i J2i − J2i−1 + 1

3J2i+1 3J2i


∼

ϑ̌i 0

0 21ϑ̌i
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4.1.5 Computation of the Smith Normal Form of Qn

The SNF of the matrix Qn =


n 0 0

cn Jn Jn+1

cn+1 Jn+1 Jn+2 − 1

 with determinant n(Jn(Jn+2−

1) − J2
n+1) = n(−Jn − Jn+1) = −n(Jn − Jn+1) can be computed by calculating the

GCD of all i× i minor determinants of Qn.

Computation of H11

H11 is the GCD of all 1 × 1 minor determinants of Qn. The non negative integer
entries of H11 are

H11 = (0, n, cn, cn+1, Jn, Jn+1, Jn+2 − 1).

Since we have 3cn +n = Jn+1− Jn, by some computation and Jn = cn− cn−1 for
all n ≥ 0. Thus cn = Jn+1−Jn−n

3
and cn+1 = Jn+1 + cn. This follows,

H11 = (n, Jn, Jn+1,
Jn+1−Jn−n

3
).

If n = 2i + 1 by relationship of Jn and µ̌n we have (J2i+1, J2i+2) = µ̌i. This
implies H11 = (2i+ 1, µ̌i,

J2i+2−J2i+1−2i−1
3

). Also J2i+2 = µ̌iϑ̌i+1 and J2i+1 = µ̌iϑ̌i. By
substituting, we get:

H11 = (2i+ 1, µ̌i,
µ̌i(ϑ̌i+1−ϑ̌i−2i−1)

3
).

Now for n = 2i + 1 if 3 - n, then by Lemma 4.1.2.8, 3| ϑ̌n−n
3

then H11 = (2i +

1, µ̌i,
µ̌i(ϑ̌i+1−ϑ̌i−2i−1)

3
) = (2i+ 1, µ̌i).

For n = 2i + 1 if 3|n then by Lemma 4.1.2.8, 3 - ϑ̌n−n
3

then H11 = (2i +

1, µ̌i,
µ̌i(ϑ̌i+1−ϑ̌i−2i−1)

3
) = (n, µ̌i,

ϑ̌n−n)
3

) = (2i+1,µ̌i)
3

.

Consider the case when n = 2i, then H11 becomes

H11 = (2i, J2i, J2i+1,
J2i+1−J2i−2i

3
).

By relationship (J2i, J2i+1) = ϑ̌i andJ2i+1 = µ̌iϑ̌i, J2i = ϑ̌iµ̌i−1. This implies H11 =
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(2i, ϑ̌i,
ϑ̌i(µ̌i−µ̌i−1)−2i

3
).

Similarly, for n = 2i if 3 - n then 3| ϑ̌n−n
3

; hence, H11 = (2i, ϑ̌i,
ϑ̌i(µ̌i−µ̌i−1)−2i

3
) =

(2i, ϑ̌i,
ϑ̌n−n

3
) = (2i, ϑ̌i). On the same lines, if 3|n then 3 - ϑ̌n−n

3
; hence H11 =

(2i, ϑ̌i,
ϑ̌i(µ̌i−µ̌i−1)−2i

3
) = (2i, ϑ̌i,

ϑ̌n−n
3

) = (2i,ϑ̌i)
3

.

Computation of H22

In order to compute H22 the entities involved in computation of H11 must be kept
under consideration. H11H22 is the GCD of all 2× 2 minor determinants. Thus, for

Qn =

 n 0 0
cn Jn Jn+1

cn+1 Jn+1 Jn+2 − 1

. All 2× 2 minor determinants are:

Q11 =

∣∣∣∣ Jn Jn+1

Jn+1 Jn+2 − 1

∣∣∣∣ = Jn(Jn+2 − 1)− J2
n+1

= JnJn+2 − J2
n+1 − Jn

= −(Jn+1 + Jn).

Q12 =

∣∣∣∣ cn Jn+1

cn+1 Jn+2 − 1

∣∣∣∣ = cn(Jn+2 − 1))− Jn+1cn+1)

= cn(Jn+2 − 1)− Jn+1(cn + Jn+1)

= cn(Jn+2 − Jn+1 − 1)− J2
n+1

= cn(5Jn+1 − Jn − Jn+1 + 1− 1)− J2
n+1

= cn(4Jn+1 − Jn)− J2
n+1.

Q13 =

∣∣∣∣ cn Jn
cn+1 Jn+1

∣∣∣∣ = cnJn+1 − Jncn+1

= cnJn+1 − Jn(cn + Jn+1)

= cn(Jn+1 − Jn)− JnJn+1.

Q21 =

∣∣∣∣ 0 0
cn+1 Jn+2 − 1

∣∣∣∣ = 0.
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Q22 =

∣∣∣∣ n 0
cn+1 Jn+2 − 1

∣∣∣∣ = n(Jn+2 − 1).

Q23 =

∣∣∣∣ n 0
cn+1 Jn+1

∣∣∣∣ = nJn+1.

Q31 =

∣∣∣∣ 0 0
Jn Jn+1

∣∣∣∣ = 0.

Q32 =

∣∣∣∣n 0
cn Jn+1

∣∣∣∣ = nJn+1.

Q33 =

∣∣∣∣n 0
cn Jn

∣∣∣∣ = nJn.

Thus

H11H22 =

( ∣∣∣∣ Jn Jn+1

Jn+1 Jn+2 − 1

∣∣∣∣, ∣∣∣∣ cn Jn+1

cn+1 Jn+2 − 1

∣∣∣∣, ∣∣∣∣ cn Jn
cn+1 Jn+1

∣∣∣∣, ∣∣∣∣ 0 0
cn+1 Jn+2 − 1

∣∣∣∣, ∣∣∣∣ n 0
cn+1 Jn+2 − 1

∣∣∣∣, ∣∣∣∣ n 0
cn+1 Jn+1

∣∣∣∣,∣∣∣∣n 0
cn Jn+1

∣∣∣∣, ∣∣∣∣n 0
cn Jn+1

∣∣∣∣, ∣∣∣∣n 0
cn Jn

∣∣∣∣).
H11H22 =

(
0, nJn, nJn+1, n(Jn+2 − 1), Jn + Jn+1, cn(4Jn+1 − Jn)− J2

n+1, cn(Jn+1 − Jn)− JnJn+1

)
,
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For n = 2i+ 1, then
(Jn, Jn+1) = (J2i+1, J2i+2) = µ̌i and Jn + Jn+1 = J2i+1 + J2i+2 = µ̌2

i also cn = ϑ̌n−n
3

cn(4Jn+1 − Jn)− J2
n+1 =

ϑ̌n − n
3

(4J2i+2 − J2i+1)− J2
2i+2

=
ϑ̌n − n

3
(4µ̌iϑ̌i+1 − µ̌iϑ̌i)− µ̌2

i
ˆq2
i+1

=
ϑ̌n − n

3
µ̌i(4ϑ̌i+1 − ϑ̌i)− µ̌2

i
ˆq2
i+1

=
ϑ̌n − n

3
µ̌i(5ϑ̌i+1 − ϑ̌iϑ̌i+1)− µ̌2

i
ˆq2
i+1

=
ϑ̌n − n

3
µ̌i(ϑ̌i+2 − ϑ̌i+1)− µ̌2iϑ̌2

i+1.

cn(Jn+1 − Jn)− JnJn+1 =
ϑ̌n − n

3
(J2i+2 − J2i+1)− J2i+1J2i+2

=
ϑ̌n − n

3
(µ̌iϑ̌i+1 − µ̌iϑ̌i)− µ̌iϑ̌iµ̌iϑ̌i+1

=
ϑ̌n − n

3
µ̌i(ϑ̌i+1 − ϑ̌i)− µ̌2

i ϑ̌iϑ̌i+1,

H11H22 =
(
nµ̌i, µ̌

2
i ,
ϑ̌n − n

3
µ̌i(ϑ̌i+2 − ϑ̌i+1)− µ̌2

i ϑ̌
2
i+1,

ϑ̌n − n
3

µ̌i(ϑ̌i+1 − ϑ̌i)− µ̌2
i ϑ̌iϑ̌i+1

)
= µ̌i

(
n, µ̌i,

ϑ̌n − n
3

(ϑ̌i+2 − ϑ̌i+1),
ϑ̌n − n

3
(ϑ̌i+1 − ϑ̌i)

)
= µ̌i

(
n, µ̌i,

ϑ̌n − n
3

(ϑ̌i+2 − ϑ̌i+1, ϑ̌i+1 − ϑ̌i)
)

= µ̌i
(
n, µ̌i,

ϑ̌n − n
3

(1)
)

= µ̌i
(
n, µ̌i,

ϑ̌n − n
3

)
.

Thus H22 = µ̌i since, H22 =
µ̌i

(
n,µ̌i,

ϑ̌n−n
3

)
H11

.
Now for n = 2i:
H11H22 =

(
0, nJn, nJn+1, n(Jn+2−1), Jn+Jn+1, cn(4Jn+1−Jn)−J2

n+1, cn(Jn+1−Jn)−
JnJn+1

)
, becomes, (Jn, Jn+1) = (J2i, J2i+1) = ϑ̌i and Jn + Jn+1 = J2i + J2i+1 = 7ϑ̌2

i .
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Also cn = ϑ̌n−n
3
.

cn(Jn+2 − Jn+1 − 1)− J2
n+1 =

ϑ̌n − n
3

(4J2i+1 − J2i)− J2
2i+1

=
ϑ̌n − n

3
(4µ̌iϑ̌i − µ̌i−1ϑ̌i)− µ̌2

i ϑ̌
2
i

=
ϑ̌n − n

3
ϑ̌i(4µ̌i − µ̌i−1)− µ̌2

i ϑ̌
2
i

=
ϑ̌n − n

3
µ̌i(5µ̌i − µ̌i−1 − µ̌i)− µ̌2

i ϑ̌
2
i

=
ϑ̌n − n

3
ϑ̌i(µ̌i+1 − µ̌i)− p2iϑ̌2

i .

cn(Jn+1 − Jn)− JnJn+1 =
ϑ̌n − n

3
(J2i+1 − J2i)− J2iJ2i+1

=
ϑ̌n − n

3
(µ̌iϑ̌i − µ̌i−1ϑ̌i)− µ̌i−1µ̌iϑ̌i

=
ϑ̌n − n

3
ϑ̌i(µ̌i − µ̌i−1)− µ̌iµ̌i−1ϑ̌

2
i .

H11H22 =
(
nϑ̌i, 7ϑ̌

2
i ,
ϑ̌n − n

3
ϑ̌i(µ̌i+1 − µ̌i)− p2

i ϑ̌
2
i ,
ϑ̌n − n

3
ϑ̌i(µ̌i − µ̌i−1)− µ̌iµ̌i−1ϑ̌

2
i

)
= ϑ̌i

(
n, 7ϑ̌i,

ϑ̌n − n
3

(µ̌i+1 − µ̌i)− p2
i ϑ̌i,

ϑ̌n − n
3

(µ̌i − µ̌i−1)− µ̌iµ̌i−1ϑ̌i
)

= ϑ̌i
(
n, ϑ̌i,

ϑ̌n − n
3

(µ̌i+1 − µ̌i)− µ̌2
i ϑ̌i,

ϑ̌n − n
3

(µ̌i − µ̌i−1)− µ̌iµ̌i−1ϑ̌i
)

= ϑ̌i
(
n, ϑ̌i,

ϑ̌n − n
3

(µ̌i+1 − µ̌i, µ̌i − µ̌i−1)
)

= ϑ̌i
(
n, ϑ̌i,

ϑ̌n − n
3

(1)
)

= ϑ̌i
(
n, ϑ̌i,

ϑ̌n − n
3

)
.

Here, for n = 2i H22 = ϑ̌i, since H22 =
ϑ̌i

(
n,ϑ̌i,,

ϑ̌n−n
3

)
H11
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Computation of H33

Since H33 = |det(Qn)|
H11H22

. Then:

detQn =

∣∣∣∣∣∣
n 0 0
cn Jn Jn+1

cn+1 Jn+1 Jn+2 − 1

∣∣∣∣∣∣
= n(Jn(Jn+2 − 1)− J2

n+1)

= n(JnJn+2 − Jn − J2
n+1)

= n(−Jn − Jn+1)

= −n(Jn − Jn+1).

This implies H33 = n(Jn−Jn+1)
H11H22

. For n = 2i+ 1, H33 = n(J2i+1−J2i+2)
H11H22

= nµ̌i
H11H22

and

for n = 2i, H33 = n(J2i−J2i+1)
H11H22

= 7nϑ̌i
H11H22

.

Now, the SNF of matrix Qn is

� For n = 2i+ 1 and 3 - nH11 0 0
0 H22 0
0 0 H33

=

(n, µ̌i) 0 0
0 µ̌i 0
0 0 nµ̌i

(n,µ̌i)

.

� For n = 2i+ 1 and 3 | nH11 0 0
0 H22 0
0 0 H33

=

 (n,µ̌i)
3

0 0
0 µ̌i 0
0 0 3nµ̌i

(n,µ̌i)

.

� For n = 2i and 3 - nH11 0 0
0 H22 0
0 0 H33

=

(n, ϑ̌i) 0 0

0 ϑ̌i 0

0 0 7nϑ̌i
(n,ϑ̌i)

.

� For n = 2i and 3 | nH11 0 0
0 H22 0
0 0 H33

=


(n,ϑ̌i)

3
0 0

0 ϑ̌i 0

0 0 21nϑ̌i
(n,ϑ̌i)

.

Note that we can calculate the Smith normal of An =

(
Qn 0
0 Pn

)
with the help of

SNF calculated for Qn and Pn.
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Theorem 4.1.2. For n = 2i+1(odd) and 3 - n S(K3×Cn) = Z(n,µ̌i)⊕(Zµ̌i)3⊕Z nµ̌i
(n,µ̌i)

and when 3 | n then, S(K3 × Cn) = Z (n,µ̌i)

3

⊕ (Zµ̌i)2 ⊕ (Z3µ̌i)⊕ Z 3nµ̌i
(n,µ̌i)

.

For n = 2i(even) and 3 - n then S(K3 × Cn) = Z(n,ϑ̌i)
⊕ (Zϑ̌i)

2 ⊕ Z7ϑ̌i
⊕ Z 7nϑ̌i

(n,ϑ̌i)

.

Similarly, when 3 | n S(K3 × Cn) = Z (n,ϑ̌i)

3

⊕ (Zϑ̌i)
2 ⊕ (Z21ϑ̌i

)⊕ Z 21nϑ̌i
(n,ϑ̌i)

,

Proof. � Forn = 2i+ 1(odd) and 3 - n

(
Qn 0
0 Pn

)
=


(n, µ̌i) 0 0 0 0

0 µ̌i 0 0 0
0 0 nµ̌i

(n,µ̌i)

0 0 0 µ̌i 0
0 0 0 0 3µ̌i

.

S(K3 × Cn) = Z(n,µ̌i) ⊕ (Zµ̌i)3 ⊕ Z nµ̌i
(n,µ̌i)

� For n = 2i+ 1(odd) and 3 | n.

(
Qn 0
0 Pn

)
=


(n,µ̌i)

3
0 0 0 0

0 µ̌i 0 0 0
0 0 3nµ̌i

(n,µ̌i)
0 0

0 0 0 µ̌i 0
0 0 0 0 3µ̌i

.

S(K3 × Cn) = Z (n,µ̌i)

3

⊕ (Zµ̌i)2 ⊕ (Z3µ̌i)⊕ Z 3nµ̌i
(n,µ̌i)

.

� For n=2i(even) and 3- n

(
Qn 0
0 Pn

)
=


(n, ϑ̌i) 0 0 0 0

0 ϑ̌i 0 0 0

0 0 7nϑ̌i
(n,ϑ̌i)

0 0

0 0 0 ϑ̌i 0

0 0 0 0 21ϑ̌i

.

S(K3 × Cn) = Z(n,ϑ̌i)
⊕ (Zϑ̌i)

2 ⊕ Z21ϑ̌i
⊕ Z 7nϑ̌i

(n,ϑ̌i)

.

� For n = 2i(even) and 3 | n

(
Qn 0
0 Pn

)
=


(n,ϑ̌i)

3
0 0 0 0

0 ϑ̌i 0 0 0

0 0 21nϑ̌i
(n,ϑ̌i)

0 0

0 0 0 ϑ̌i 0

0 0 0 0 21ϑ̌i


S(K3 × Cn) = Z (n,ϑ̌i)

3

⊕ (Zϑ̌i)
2 ⊕ (Z21ϑ̌i

)⊕ Z 21nϑ̌i
(n,ϑ̌i)

.
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