

INCIDENT RESPONSE MODEL FOR PROACTIVE

MALWARE DETECTION IN SMART DEVICES

By

Amna Hameed

Fall 2021 – MS (IS) - 00000364734

Supervisor

Dr. Mehdi Hussain

Department of Computing

A thesis submitted in partial fulfillment of the requirements for the degree of Master of

Science in Information Security (MS IS)

In

School of Electrical Engineering and Computer Science,

National University of Sciences and Technology (NUST),

Islamabad, Pakistan.

(December 2023)

i

ii

iii

Dedication

I dedicate this thesis to my Parents and Siblings for their endless prayers, love, and

encouragement.

iv

v

Acknowledgment

First of all, I would like to thank Allah, the Almighty for giving me the ability and strength to

carry out this research. My deepest gratitude to my supervisor Dr. Mehdi Hussain for his

continuous support and guidance during my thesis. I could not have imagined having a better

supervisor and mentor for my master’s degree. I am also thankful to my teachers for providing

me with an academic base, which enabled me to complete this thesis.

I am thankful to all my fellows and friends for their support and motivation. Last but not least,

I would like to thank my parents for their endless prayers and support throughout.

vi

Table of Contents

1. Introduction ... 1

1.1. Overview ... 1

1.2. Thesis Motivation ... 3

1.3. Research Objectives .. 3

1.4. Research Questions ... 4

1.5. Problem Statement .. 5

1.6. Solution Definition/Description .. 5

1.7. Thesis Contribution ... 6

1.8. Thesis Organization .. 6

1.9. Summary ... 7

2. Literature Review.. 8

2.1. Overview of Malwares .. 8

2.2. General Malware Detection Approaches .. 10

2.3. Smart-device Malware Detection Approaches ... 12

2.4. Smart Device Forensic Frameworks ... 13

2.5. Related Work .. 16

2.6. Research Gap .. 21

2.7. Summary ... 22

3. Research Methodology ... 23

3.1. Introduction ... 23

3.2. Thesis Research Methodology .. 25

3.2.1. Acquire .. 32

3.2.2. Extract ... 33

3.2.3. Detection of installed APKs .. 33

vii

3.2.4. Investigate ... 34

3.2.5. Validate ... 35

3.3. Summary ... 35

4. Experimental Setup ... 36

4.1. Overview ... 36

4.2. Setting up Environment .. 36

4.3. Malicious and benign APK Sample collection ... 37

4.4. Setting up the Android device... 38

4.5. Pre-requisite Software Installation .. 40

4.6. Summary ... 41

5. Experimental Results .. 42

5.1. Overview ... 42

5.2. Important Forensic Artifacts ... 42

5.3. Evaluating Research Effectiveness ... 51

5.4. Summary ... 56

6. Discussion and Analysis ... 57

6.1. Overview ... 57

6.2. Validation with Cuckoo Sandbox ... 65

6.3. Discussion ... 73

6.4. Comparison with Benchmark Approach ... 75

6.5. Summary ... 78

7. Conclusion & Future Work ... 79

7.1. Conclusion .. 79

7.2. Limitation & Future Work .. 80

Bibliography .. 81

Appendix 1... 87

Appendix 2... 88

viii

List of Tables

Table 1: Target artifacts and paths for analysis ... 30

Table 2: System Specification .. 37

Table 3: Smart device specification ... 37

Table 4: Malware Samples ... 38

Table 5: Targeted Forensic artifacts and paths ... 45

Table 6: Analysis of forensic image based on table 1. ... 48

Table 7: Analysis of forensic image based on proposed forensic investigation methodology 55

Table 8:User-installed applications .. 59

Table 9: System permissions required by APKs .. 64

Table 10: Summarized results of validation by Cuckoo sandbox .. 73

Table 11: Comparison table proposed VS existing method ... 78

Table 12: Applications downloaded from google playstore .. 87

Table 13: All applications, package name and APK path .. 88

x

List of Figures

Figure 1: Digital Forensic Investigation Framework for IoT [11] ... 14

Figure 2: Integrated Digital Forensic Investigation Framework for IoT [12] 15

Figure 3: Fog-based Digital Forensic Investigation Framework for IoT [13] 16

Figure 4: Forensic investigation Steps Overview .. 24

Figure 5: Proactive process phase-Digital forensic preparation .. 26

Figure 6: Reactive process phase-Defined steps to perform digital Forensic. 26

Figure 7: Proposed Model for Incident response using Digital Forensic Investigation for smart

device. .. 27

Figure 8: Smart device Investigation Process .. 34

Figure 9: Fastboot flash recovery process on ADB ... 39

Figure 10: ADB to connect with mobile device and getting root access. 40

Figure 11: External.db database artifacts ... 48

Figure 12: Installqeue.db database artifacts ... 49

Figure 13: Local_appstate.db database artifacts .. 49

Figure 14: Frosting.db database artifacts ... 50

Figure 15: investigate application permissions from package_cache path. 50

Figure 16: Cuckoo Sandbox suspicious APK score validation of APK1 65

Figure 17: Validation score of APK2 by Cuckoo Sandbox ... 66

Figure 18: Cuckoo Sandbox Validation of APK3 ... 66

Figure 19: Cuckoo Sandbox validation of APK4 as malicious ... 67

Figure 20: APK5 identified suspicious by Cuckoo Sandbox ... 67

Figure 21: APK6 validation by Cuckoo Sandbox .. 68

Figure 22: Validation of APK7 by Cuckoo Sandbox .. 68

Figure 23: Validation by Cuckoo Sandbox for APK8 ... 69

Figure 24: APK9 validated by Cuckoo Sandbox ... 70

Figure 25: Validation of APK10 by Cuckoo Sandbox .. 70

Figure 26: APK11 Cuckoo Sandbox validation ... 71

xi

Figure 27: APK12 validated by Cuckoo Sandbox ... 71

Figure 28: Cuckoo Sandbox Validation of APK13 ... 72

Figure 29: APK14 Validation by Cuckoo Sandbox ... 72

xii

Abstract

Extensive usage of the Internet is increasing the risk of malware attacks on smart devices.

Implementing security controls in these devices is challenging due to their limited processing

and computation power. Different methods detect malware in smart devices through live

forensics, memory analysis, and timeline reconstruction. However, these solutions provide

only a limited number of artifacts and techniques. There is a need for a forensic investigation

model that identify the most suitable set of paths and artifacts to detect the malware presence

effectively. This study proposed an incident response model for detecting malware by

employing a digital forensic methodology. The proposed model consists of three phases:

proactive, reactive, and forensic process. The study extends the smart device forensic process

into four modules (1) acquire & extract, (2) detect, (3) investigate and, (4) validate & report.

The experiments are conducted on Android devices with the latest APKs malware. The

proposed model carefully examined and identified 11 different folder paths such as /data/data,

/data/app, /system/app, /system/data. These paths contain useful artifacts for investigation. The

systematic examination of paths and corresponding artifacts helps to construct the timeline of

APK download URI, installation, traces, activity, intent, and system permissions acquired by

user-installed applications. The proposed model also correlates the changes in system paths

and files made by different user-installed applications. Similarly, the proposed system is

capable to identify the user-installed malware and benign applications. To prove the

effectiveness of results these suspicious applications are verified by Cuckoo Sandbox for

validation purposes.

1

Chapter 1

1. Introduction

This chapter elaborates the overview of basic concepts, significance, and history of

research work. This chapter describes the road map of the thesis and briefly highlights the

further organization and structure of the thesis. This chapter explains the motivation for

carrying out the research work. This chapter also gives an idea about the vital contributions,

prominent benefits, scope of the work, and key objectives of the thesis.

1.1. Overview

The term "Smart Devices” typically refers to hardware and other items that could potentially

read, recognized, located, addressed, and/or controlled online. Over thirty billion smart devices

associations, over four smart devices per person on a typical basis, and trillions of sensors

linking and communicating on these devices anticipated by 2025. Each second, 127 new

gadgets link to the internet, reports The McKinsey Global Institute. There are more than

thousands of smart devices in existence, and defending a system with such huge attack surface

is not a simple task—especially given the wide range of device kinds and standards of security.

Regarding those billions of smart devices, the consensus from an information security

operations perspective is that everything connected can be exploited1.

Every smart device is a potential attack surface via which attackers might access data. Malware

that targets smart devices or other connected devices is on the rise because these devices are

CHAPTER 1. INTRODUCTION

2

constantly linked to mobile smartphones or other computing gadgets through the Internet.

According to a recent study2, the most susceptible gadgets involve video-streaming devices,

linked cameras, PCs, cellphones, and tablets.

Additionally, the majority of smart devices have lower storage and processing capacities than

smartphones and laptops. Because of this, using firewalls, anti-virus software, and various

other security tools that may help safeguard them is challenging. Edge computing also makes

local data an attractive target for skilled threat actors by aggregating it.

In addition to the hardware of smart devices, ransomware may attack apps and data. According

to Check Point Studies, the typical daily amount of ransomware assaults rose by 50% in the

third quarter of 2020 compared to the first half of the year3.

Smart device botnets are an illustration of how vulnerabilities in devices affect users and how

hackers have learned to exploit them. Mirai is well-known smart device botnet malware strains,

hacked home smart devices network to launch a distributed denial of service (DDoS) operation.

The introduction of smart gadgets into the home might create new entry points into a setting

with questionable security, exposing staff to viruses and assaults that can infiltrate a company's

network. When establishing work-from-home and BYOD policies, it is an important factor to

consider.

Smart devices with known flaws can potentially be used by attackers to access inside networks.

These dangers vary from DNS rebinding attacks, which enable the collecting and exfiltration

of data from private networks to fresh side channel assaults, such infrared laser-initiated attacks

targeting smart devices in residential and commercial settings4.

1: Daunting challenge of securing IOT: https://www.forbes.com/sites/chuckbrooks/2021/02/07/cybersecurity-threats-the-daunting-

challenge-of-securing-the-internet-of-things/

2: Report on threats found in IOT: https://www.techrepublic.com/topic/security/

3: IOT security trends: https://www.itprotoday.com/iot/iot-security-trends-2021-covid-19-casts-long-shadow

4: How IOT device vulnerabilities effect users: https://www.trendmicro.com/vinfo/us/security/news/internet-of-things

https://www.techrepublic.com/topic/security/
https://www.itprotoday.com/iot/iot-security-trends-2021-covid-19-casts-long-shadow

CHAPTER 1. INTRODUCTION

3

1.2. Thesis Motivation

This research is focused on malware detection using forensic investigation

methodology. In literature, different malware detection approaches are employed by the

various techniques [1-9, 11-14, 17-18] with their merits and demerits but there is research gap

for detection of malware in smart devices. Security measures and detecting malware might,

however, be difficult at times. Dohyun Kim et. al. proposed an incident response framework

for smart device malware detection through digital forensic investigation [1].

The motivation behind this work is to improve the efficiency of forensic methodology by

identifying useful artifacts and paths to detect malware among other benign applications.

Further, the suspicious applications are validated based by cuckoo sandbox.

The proposed research aims to provide two significant perspectives. First, a method to identify

and analyze multiple latest malwares by digital forensic investigation. Secondly, to suggest

new artifacts and paths useful for forensic investigation for smart devices.

1.3. Research Objectives

In this study, we perform an in-depth analysis of artifacts and paths of android

applications to create new insights and explore malicious behaviors. The main objectives of

this research are as follows:

1. To study the existing smart device-based malwares and its forensic artifacts

2. To propose an incident response investigation forensic model for smart device.

3. Detect multiple malwares in real-time smart devices.

CHAPTER 1. INTRODUCTION

4

1.4. Research Questions

 This section describes the research questions listed here are devised to perform this

study:

• Why is this research required?

Smart device ecosystem is continuously being threatened by malware which

poses many security risks to the user’s data. Since this data is usually of great value to

the users, the users wanted to protect it.

There already exists several detection methodologies, each providing their own

benefits to the community. There is a need to investigate whether these can be employed

with the latest or modern smart device-based devices for the detection of malware.

• How much importance does studying have? And what procedures are followed in

the study?

This study highlights the importance of malware detection in smart devices. The

purpose of the study is to classify malicious applications from benign applications using

forensic artifacts. It will help malware analysts and the research community to quickly

identify the malicious applications. The study performs qualitative as well as

quantitative detection of malwares. We have essentially split our process into the

following four phases to conduct the study:

1. Collection of the most recent benign and malicious samples and design

environmental setup

2. Obtain a forensic image of a smart device.

3. Analyzing and detecting forensic paths and artefacts by autopsy.

4. Verification of suspicious applications as malware using cuckoo sandbox.

CHAPTER 1. INTRODUCTION

5

What are the aims of this study?

The mainly focused aims are as follows:

a) Proposing forensic investigation model to identify the latest malware from

benign applications.

b) Identifying the newer artifacts and paths useful for efficient malware detection.

1.5. Problem Statement

 In literature, most of the existing techniques detected the malware through the digital

forensic investigation in the smart devices. However, existing techniques are unable to identify

multiple and latest malicious applications along with other benign applications. In addition, the

existing investigation techniques are based on conventional and limited number of artifacts.

There is a need for research to propose a comprehensive incident response model to readily

detect the malicious applications in smart devices. The model correlates the changes in the

system paths and artifacts made by malicious and benign applications in smart devices.

1.6. Solution Definition/Description

The research provides an efficient malware detection approach using forensic

investigation of smart devices. In this research, the physical image of smart device is extracted

and analyzed by various tools i.e. Autopsy. Furthermore, the artifacts are collected from

targeted paths such as application data paths, and system data paths. This model is used to trace

malware presence and distinguish them from benign application. The suspicious applications

detected by this methodology are verified by Cuckoo sandbox.

CHAPTER 1. INTRODUCTION

6

1.7. Thesis Contribution

The proposed research methodology successfully explored and improved the detection

of malware by introducing new artifacts and paths. The contributions of the proposed

methodology are as follows:

➢ To detect the presence of multiple malwares installed in real-time smart devices.

➢ Proposes most suitable forensic artifacts and paths for effective investigation of

malware activities in smart devices.

➢ The study will correlate the changes in the paths and directories of smart devices by

comparing benign and malicious applications.

1.8. Thesis Organization

The thesis organization is presented as follows. Chapter 2 throws light on previous work

done related to detection of malware applications. In chapter 3, the research methodology

followed during the research has been discussed. The experimental setup is discussed in

Chapter 4. Chapter 5 showcases the result of the experiment. This section also discusses the

activities/events performed during the results collection. Chapter 6 is dedicated towards the

discussion and analysis of the experimentation results. Lastly, chapter 7 sheds light on the

conclusion with possible directions for the future.

CHAPTER 1. INTRODUCTION

7

1.9. Summary

In this chapter, basic concepts are discussed regarding malware analysis by digital

forensic investigation for the detection of malicious applications. It provides an overview of

the aim and scope of the thesis and presents the objectives of the research work with the overall

thesis organization. In the next chapter, we will look at the literature review that has been

conducted.

8

Chapter 2

2. Literature Review

Chapter 2 discusses the related work and terminologies. The related work is the research

carried out by different researchers over the years which is related to the work done in this

thesis and contributed towards making a new solution.

2.1. Overview of Malwares

 The biggest danger to smart devices is malware, which has the potential to either

damage the gadget or, in some situations, transform the system into one that is privileged and

controlled by the attacker [2]. Such viruses can open a backdoor for other assaults because of

their ability to function independently. Grayware and Madware both provide serious security

risks in a similar way. Grayware, which among other infections include dialers and adwares,

cannot be deemed harmful but can nevertheless carry out undesirable acts that impair the

functionality of the device. Madware, on the opposite hand, utilizes aggressive and targeted

pop-up advertisements to gather data from a user's device [2]. According to data on

cyberattacks, financial malware, rootkits, logic bombs, ransomware, bots, worms, viruses, and

trojans are the most well-known types of malwares. A rootkit is a form of malware that an

attacker may gradually access with the aim of taking control of the system. In order to eradicate

the present infection, ransomware viruses might lock the user's device or software and demand

payment from them. The "screen locker ransomware" mentioned before may disable an

CHAPTER 2. LITERATURE REVIEW

9

Android-based smart TV. Bots are intended to infiltrate a device and are a sort of malware that

spreads itself. These malware threats then establish a connection with a server, commonly

referred to as a "bot master," which serves as the main command and control center for infected

devices. Financial malware attempts to gather details about an account from a device or through

faulty banking websites. Code blocks inserted by an intruder into a network are known as logic

bombs. These programmed operations have the potential to damage the system when they are

activated, either by erasing data or by causing circumstances that might lead to the system's

total demise. Software that runs on computers is how virus and malware software spreads and

can destroy a system. The user's activity is required for a malicious program to be installed and

propagated on a device (by initiating it through an executive program). In contrast to viruses,

worms may propagate without the user's involvement and can function on their own. Worms,

on the contrary hand, spread through networks. Trojans are a category of malware that enters

the computer system by compromising user information and identity [3]. Uapush.A,

Kasandra.B, and SMSTracker are three of the mobile phones malware that are most often

installed in mobile devices [4]. A mobile device's data can be stolen by the malware Uapush.A

via an SMS. Another virus that resembles a security program is Kasandra.B. A mobile phone's

sensitive data, such as logs, passwords, history, etc., can be accessed by Kasandra.B. With the

help of the Android software SMSTracker, hackers may fully observe all of a mobile device's

traffic-related features, including SMS, phone calls, and other communications. A "screen

locker ransomware" has also been reported to have the ability to disable an Android-based

smart TV [4]. Finally, a virus known as "Mirai" has been found to have compromised a large

number of smart devices, including routers, IP cameras, printers, DVRs, etc. By scanning the

default usernames and passwords, it targets smart devices. [5]

CHAPTER 2. LITERATURE REVIEW

10

2.2. General Malware Detection Approaches

Over the years smart devices have become a popular ecosystem. Owing to their

extensive use and popularity, smart devices has previously been a subject of many studies from

different perspectives including security research like malware detection. There is enormous

literature for malware detection using different techniques, but the research lacks the detection

of malware from digital forensic investigation. In this section, we will examine the currently

available literature of malicious app detection under such analysis schemes.

Malicious application detection methods are mainly categorized into three types:

static analysis, dynamic analysis, and hybrid analysis.

a) Static Analysis

Static analysis is carried out in a non-runtime context and focuses on looking at the

source code, byte code, or application binaries, as well as on looking at the meta data and

supplementary information for any indications of security flaws [10]. A wide range of

methodologies and approaches are used in static analysis to identify a software's runtime

characteristics before it is executed. In a security setting, the goal is obviously to separate out

dangerous or repackaged programs before they are installed and used.

Since it requires far fewer resources and time, static analysis is frequently used as a

malware detection method and is seen as an effective mechanism for market protection. The

design is a fairly quick detection approach that is advantageous for Android smartphones with

limited resources [50].

b) Dynamic Analysis

CHAPTER 2. LITERATURE REVIEW

11

The study's dynamic component examines how programs behave during their execution

phases when tested against certain test cases. The study seeks to spot harmful actions that occur

after applications are deployed and run on actual or simulated devices. The hidden goals of

malware software can be retrieved through dynamic analysis. To differentiate among

dangerous and benign applications, this analysis frequently necessitates some human or

automated engagement with apps and gathers data on network activity, processor execution,

system calls, SMS sent/received, phone calls, etc.

The data obtained through dynamic analysis accurately reflects the real purposes of the

program. Nevertheless, although being a useful tool, the execution of dynamic analysis

consumes extensive resources [50].

c) Hybrid Analysis

Hybrid Analysis utilizes the mixture of static analysis and dynamic to perform the study

thereby increasing the detection accuracy. Given that it examines both the installation files and

the behaviors of the apps, it is regarded as the most thorough analysis since it combines the

benefits and drawbacks of both analysis kinds. However, like dynamic analysis, hybrid analysis

is also subjected to extensive resource utilizations.

Static analysis is beneficial for time and resource constrained environments. On the other hand,

although accurate for detection, the dynamic methodology requires extensive application study

and has a significant processing cost. Furthermore, unlike the static technique, the analysis is

done after the APKs have been run. For this purpose, static analysis is quicker and useful in

creating a preliminary understanding of the APKs depending on their anticipated behaviors.

CHAPTER 2. LITERATURE REVIEW

12

2.3. Smart-device Malware Detection Approaches

Forensic investigation methodologies are followed to detect malware from desktops,

mobile and smart device. In [1] authors aimed to develop a digital forensic incident response

framework for the detection and analysis of the malwares (i.e., phishing, smishing, vishing or

APT attack) for Android. The experiment is carried out to investigate Malware of Smishing

and Vishing and Malware of Phishing and APT. Targeted activates include detection of

Malware, invade method of malware, malicious activities performed by the malwares and their

command-and-control server. List of Devices used are IPhone 6, Samsung galaxy S3, wireless

router and, List of OS used are Linux, android, IOS. List of Malwares investigated are

SPAp.APK GMS.APK, V3Plus.APK, 23983JJF.APK Tools: Taig, Clutch. iTools, JEB, IDA

ProAndroid image extractor.

In [9], authors targeted to examine the Mirai botnet server through forensic examination

while acquiring the remote access of the server. The investigators set up the Mirai botnet

network architecture to retrieve the list of the infected IoT devices, the past statistics for the

DDoS attacks, and retrieved as numerous login credentials as possible. It was required to gather

the forensic artefacts left on the attacker's terminal, scan receiver, database server, loader

command and control (CNC) server, as well as the network packets. Therefore, disk and

memory image were acquired and also the author reverse engineered the live processes and

service executable from the control servers of the Mirai botnet. This study outlined how a

forensic investigator can access these artefacts remotely and to gather artefacts which target

machine can provide beneficial information. The forensic examination of compromised IoT

devices and DDoS attack victims is out of scope of this study. Instead, they concentrate on the

attacker’s-controlled devices. 'Vulnerable IoT device' and 'Infected IoT device' models are

created on Raspberry Pi 3 Model B computers. The operating system is a forensic workstation

CHAPTER 2. LITERATURE REVIEW

13

running 64-Bit Kali Linux. For acquisition and analysis of memory (RAM), the forensic tool

Linux Memory Extractor (LiME) and Volatility 2.6 were used, respectively. DD 8.3 was used

to obtain the disk image. Data recovery and file system analysis were enabled in Autopsy

4.11.0. PCAP analysis and monitoring of network traffic was carried out with Wireshark 3.0.3.

To extract network packets from the RAM dump, Bulk Extractor was used. The executable

files are reverse engineering by using the Ghidra 9.0.4 tool from the National Security Agency

(NSA).

2.4. Smart Device Forensic Frameworks

Kebande et al. [11] have proposed a general-purpose, ISO/IEC 27043: 2015-based

Digital Forensic Investigation Framework for the Internet of Things (DFIF-IoT) that may

reasonably accommodate emerging IoT investigative capabilities. Three separate components

are combined into the framework, and they comprise: (1) “Proactive process” which deals with

activities aimed at rendering the environment of IoT forensically prepared to use. (2) “Reactive

process” is represented by the digital forensic investigation process which could be initiated

after a potential security incident becomes apparent. The (3) “IoT forensics” represents various

forensic strategies where IoT evidence can be obtained.

CHAPTER 2. LITERATURE REVIEW

14

Figure 1: Digital Forensic Investigation Framework for IoT [11]

 Kebande et al. [12] proposed an IoT-based ecosystem Integrated Digital Forensic

framework which can analyze IOT Digital Evidence and in addition to it, this framework

defines IOT management platform. It defines IOT policies and standards from organizational

aspect. The generic Digital Forensic Investigation Framework for IoT environment (DFIF-

IoT), which was first presented, is expanded upon in the IDFIF-IoT framework. In figure 3,

IDFIF-IoT has been shown utilizing nine different subprocesses, including, Things (1), Device

Connectivity and Communication Network (2), Readiness Process Groups (3), IoT Forensics

CHAPTER 2. LITERATURE REVIEW

15

(4), Digital Investigation Process (5), Concurrent Processes (6), IoT Management Platform (7),

IoT Policy (8) and IoT Standards (9). The DFIF-IoT and IDFIF-IoT differ primarily in that the

earlier one was universal and governed by the ISO/IEC 27043 international standard, whereas

the latter has integration of organizational aspects. IDFIF-IoT is also more policy-oriented

because post-event response processes, readiness, and the "things" themselves are all direction

oriented.

Figure 2: Integrated Digital Forensic Investigation Framework for IoT [12]

In [13], to deal with the primary problems with digital IoT forensics, Al-Masri et al.

presented the fog based IoT forensic framework (FoBI). Fog based IOT forensic framework

makes use of the IOT utilizing the fog computing paradigm, which aids in pushing intelligence

to the outer edges of a network through a gateway. Fog-based computing is appropriate for IoT

CHAPTER 2. LITERATURE REVIEW

16

systems with lots of installed IoT devices and high data volumes. Such a fog node may save

the last known position of a connected device, the framework can extract log files linked to the

broken device, and the fog node will alert other Internet of Thing’s devices or networks of a

potential danger. Then, using FoBI, it is feasible to recover forensic evidence.

Figure 3: Fog-based Digital Forensic Investigation Framework for IoT [13]

2.5. Related Work

These days, system log analysis is used to undertake numerous investigations and

research in a variety of sectors. Designers and investigators can determine the current state of

the system and identify any odd conditions by analyzing the logs. For analyzing the Android

CHAPTER 2. LITERATURE REVIEW

17

log, utilize Logcat [14]. Even while the Logcat has the benefit of being simple to use, it has the

drawback of just being able to inspect the basic logs that the Logcat provides. In this article,

we demonstrate the examination of Application Installation Log files on Android Systems and

create an installation log management solution. Using Python and Android Debug Bridge

(ADB), the setup of the log management program gathers log files that are kept locally and can

only be accessed by root users. Important forensic artifacts found are androidMenifest.xml file

to get installation information about the APK, Localappstate.db: records information of all

installed apps, Library.db contains ownership of installed apps and Frosting.db does not detect

the installation time but contains traces of APK. When a normal app and malicious app is

installed the change in APK path can be clearly seen in frosting.db record.

The researchers [15] presented a thorough forensic examination of Cisco WebEx, one

of the top three videoconferencing programs on the market right now. More specifically, we

provide the findings of the forensic examination of the web, Android, and Cisco WebEx

desktop client apps. Memory, disc space, and network forensics are the three elements of digital

forensics that we concentrate on. It is clear from the collected artefacts that useful user data

may be obtained from many data locations. The Advanced Encryption Standard (AES) keys,

contact information, emails, user IDs, profile images, chat messages, shared media, meeting

information, including meeting passwords, keywords searches, timestamps, and phone logs are

among them. We use the retrieved artefacts as the foundation for creating a memory

interpreting tool for Cisco WebEx. The anti-forensic artefacts we find also include deleted

conversation messages. Despite the fact that network connections are encrypted, researchers

are able to gain access to important artefacts such the IP addresses of host devices and server

domains as well as message/event timestamps. Andriller CE tool is used to conduct analysis

and important artifacts found are SQLite database. \data\apps\com.android.vending\db folder

contains frosting.db which has the APK path, other SQLite databases including

CHAPTER 2. LITERATURE REVIEW

18

install_source.db, install_queue.db, suggestions.db, localappstate.db, verify_apps.db, and

xternal_referrer_status.db, provided some digital evidence of application’s usage.

\data\apps\com.android.vending\db folder also contains library.db which lists the email

address against WebEx Meetings and the certifcate hash of the application.

\data\apps\com.google.android.googlequicksearchbox\r\app_webview folder contains

Cookies.db that contains the WebEx meetings web cookies.

\data\apps\com.android.vending\db folder also contains SQLite databases like auto_update.db,

and data_usage.db which indicates traces of usage/installation.

To address the security threats brought on by the widespread distribution of smishing

malware, multiple studies have been carried out. Some of them employed the Naive Bayesian

classifier [16, 17], which analyzes the properties of smishing characters and finds smishing

characters employing rule-based techniques [18]. Additionally, research was done to identify

malware using app network traffic analysis [19] and integrating API call and authorization

information [20]. Taint analysis has been used in studies to proactively identify malware using

Android malware [22, 23, 24]. Similar research has been done to identify malware by

examining an app's behavior using data flow analysis [25, 26, 27]. Another study [28]

compared the investigation's findings of the previous data flow analysis. PACE has been

offered as a comprehensive solution for malware analysis that offers machine learning-based

Android malware detection technologies via REST API, web interface, and ADB interface

[29]. Additionally, experiments on dynamic analysis utilizing machine learning for malware

detection on actual devices were undertaken [30], [31], to address the drawbacks of malware

detection in Android emulators. Studies have suggested a way of identifying malware that

combines a signature-based, motion-based detection with data mining approaches [32].

Another research detected the malware by analyzing android system permissions required by

CHAPTER 2. LITERATURE REVIEW

19

malicious applications [33]. Significant Permission Identification (SigPID) was created in this

investigation. Because of the tests, SigPID efficiently identifies new malware by mining

permissions data to identify malware.

Additionally, a study that combined features of static analysis and dynamic analysis of

Android apps with deep learning technology created an engine called DroidDetector that

enhances the ability to identify about malware through a successful extraction of specific

features of malware [34]. Additionally, research named ToR-SIM Platform [35] proposed a

mobile forensic platform for Android malware analysis and detection.

Similarly, Nisha et al. [36] suggested utilizing mutual information and chi-square

approaches for the identification of characteristics to identify repackaged Android malware.

Random forest classifier, among other used classifiers, was able to attain the best accuracy of

91.76% for assessment. The 88 uniquely recognized permissions for the study are the primary

goal of their approach, which may be further condensed to include harmful ones.

Sandeep HR [37] did exploratory data analysis (EDA) and extracted data from the apps.

The suggested method concentrated on employing deep learning techniques to detect malware

during installation. Their detection architecture made use of a variety of tools, including

permissions, to mimic the actions taken by the programs. They are successful in classifying

with 94.6% accuracy using Random Forest. Their method excludes mimicry attacks, cloning

of apps, and adware and instead employs 331 characteristics for categorization that may be

further optimized.

In Multilevel Permission Extraction (MPE) technique, Zhen Wang et al. [38]

concentrated on finding the permissions automatically that aids in differentiating among the

good and bad apps. Their dataset consisted of 9736 apps from each of the sets of categories,

malicious and benign, and experimental findings indicate that the detection rate of 97.88% is

CHAPTER 2. LITERATURE REVIEW

20

reached. In a different study, Ming Fan et al. [39] developed a method for creating frequent

subgraphs, or "fregraphs," to describe the typical behaviors of viruses from the same family.

They suggested FalDroid, a technique for fregraphs based detection. As per preliminary

findings from their testing, FalDroid can categorize samples of malware up-to 94.2% of into

the appropriate categories in approximately per program with 4.6 seconds. Without an

objection, both of these methods accomplish the ultimate objective well, but at a considerable

cost in terms of more computations as well as the time required.

Wang et. al. [40] designed a permission-based detection approach which uses

contrasting permission patterns to differentiate malicious and benign applications. They extract

information regarding required and used permissions for mining permission patterns which

they later use to detect Android Malwares. The dataset used by Wang et. al. consisted of 2454

Android applications (1227 applications for each malicious and benign class) comprising of

different application categories such as games, entertainment etc. With their analysis, they were

able to achieve a high accuracy of 94%, with 5% false positives and 1% false negatives.

By evaluating the behavior of the virus and utilizing the cuckoo sandbox to investigate

its behavior, this sandboxing technique can identify malware samples whose source code is not

trusted. A malicious code examination tool called Cuckoo looks at malware in greater depth

and offers thorough results depending on the tests it runs. Its objective is to offer a method for

automatically analyzing files and to present all of the links between the system and the files

being analyzed. Windows executables, PDF files, DLL files, Internet URLs, Office documents,

and Java files are the primary targets. [43]

For the research's categorization of harmful programs, most of the approaches used a

collection of permission-based characteristics. Since they offer quick and almost precise

detection, permissions-based approaches are typically used for the detection of maliciousness.

CHAPTER 2. LITERATURE REVIEW

21

Since the examination is done before the app is installed, there is no risk of the device being

harmed. For this reason, permissions may play a crucial part in the quicker identification of

malware. Additionally, minimizing useless permission characteristics might simplify

computations.

To apply a computation-effective and rapid detection strategy, a solution that makes

use of android system permissions is provided.

2.6. Research Gap

The literature review demonstrates that considerable advancements have been achieved

in the creation of frameworks and approaches [18-20] for malware detection on various smart

devices. However, there is still room for improvements that must be addressed. Most of the

study targeted the analysis and detection of malware on certain smart devices, such as Mirai

botnet servers and Android smartphones. There is no generic framework or approach for the

diverse nature of smart platforms and devices. Numerous studies use smart environments that

are emulated or simulated, which could not accurately reflect the richness and diversity of smart

device ecosystems in the real world. Validating forensic methodologies requires running

experiments on real smart devices. The majority of existing methods concentrate on static

malware analysis. The identification and analysis of malware that might not leave traces in

memory might be improved by using dynamic analysis approaches. The acquisition and

analysis of forensic artefacts from smart devices requires the development of more effective

forensic investigation techniques. A study is required to recreate the sequence of events and

pinpoint the underlying causes of breaches of privacy in smart networks. In order to maintain

the privacy and security of smart devices and ecosystems, the proposed study would address a

few of these gaps such as: physical mobile device investigation, identifying multiple real time

malwares from a bunch of other benign applications, propose a comprehensive incident

CHAPTER 2. LITERATURE REVIEW

22

response model using forensic investigation methodology. The proposed forensic investigation

methodology comprises of the most suitable artifacts and paths to provide efficient output.

Summary

This chapter covers the background and the related work of the smart malware detection

approaches. The related literature has been presented along with a critical analysis of the

studies. Existing research work and schemes used in literature help in formulating the solution

to the identified problem.

23

Chapter 3

3. Research Methodology

This research methodology will be explained that is followed to carry out this thesis

research. A brief description of the methods that are used in our research methodology along

with the phases followed in the research process, i.e., acquiring digital image of smart device,

investigating the artifacts and paths, and malware detection using digital forensic investigation

are given in this chapter.

3.1. Introduction

Here is a brief overview of research methodology that improved Dohyun Kim et. al. [9]

malware detection methodology by identifying the artifacts and new location that are useful

and beneficial for malware detection investigation.

To meet the research objectives the proposed methodology studied the generic Digital Forensic

Investigation Framework for IoT (DFIF-IoT) based on the ISO/IEC 27043: 2015 and added

the research contribution to design incident response methodology by only extending the smart

forensics phase of above framework. The overview of proposed model to conduct smart device

forensic is below:

CHAPTER 3. RESEARCH METHODOLOGY

24

Figure 4: Forensic investigation Steps Overview

The steps how forensic investigation will be carried out is below:

A. Using the ADB bridge and DD to obtain the physical image of a smart device.

B. Forensic image examination of the devices and autopsy-based artifact discovery.

C. Based on findings, construct the methodology that contains the most suitable artifacts

and path for malware detection.

D. Analyzing the applications of device by following constructed methodology.

E. Comparing the benign and suspicious applications to see changes in the paths and

artifacts.

F. After comparison identify vital paths and artifacts that can be useful for forensic

investigation

G. Analyzing all device applications by the newly identified paths

H. Final suspicious applications are validated by the cuckoo sandbox to verify if the

identified applications are real malware.

CHAPTER 3. RESEARCH METHODOLOGY

25

After performing the stages, a report of the malware detection summary is generated which

can then, later, be used to carry out further evaluations.

3.2. Thesis Research Methodology

The system architecture of the methodology is shown in Figure 4. It depicts the

proactive, reactive and smart device forensics process. In this research we are extending only

the smart device forensic process part. The NIST framework based forensic process is being

followed and steps are acquired, extract, investigate and detect. These processes are mapped to

smart device forensics and steps are defined for each phase. It depicts an abstract level view of

proposed methodology to detect malware at device level evaluation process. How APKs will

be evaluated by forensic investigation to distinguish benign and malicious. The key

components are discussed in the below topics.

For efficient incident response, the research proposed incident response framework that can

filter the benign and malicious applications and it can detect multiple malwares at the same

time. The proposed incident response framework methodology is shown in Fig. 4, and that

comprises of three phases:

(1) Proactive

In the proactive phase the steps are defined prior to performing the smart device forensic.

While, in reactive phase when real time forensic examination is started.

CHAPTER 3. RESEARCH METHODOLOGY

26

Figure 5: Proactive process phase-Digital forensic preparation

(2) Reactive

The steps of reactive phase are mapped to smart device forensic phase.

Figure 6: Reactive process phase-Defined steps to perform digital Forensic.

(3) Smart device forensics

The smart device forensic phase is following the reactive process to detect the malware by

performing several steps like path traversal, examining invade method of malware, detection,

and reporting.

CHAPTER 3. RESEARCH METHODOLOGY

27

Figure 7: Proposed Model for Incident response using Digital Forensic Investigation for

smart device.

When analyzing Android device digital forensic image suspected of being infected with

malware, there are several important paths and artifacts that investigators should look for. Some

of the key areas to focus on include:

1. Application data and logs: Malware typically leaves traces of its activities in application

data and logs. Investigate the data and logs of installed applications, attentions required to

suspicious or abnormal behavior, such as excessive network connections or unusual file

activity.

2. System logs: System logs contain information about the device's operation and can be a

valuable source of information when investigating malware. Check the system logs for any

unusual activity or errors, such as repeated crashes, unusual network activity, or unexpected

changes to system files.

CHAPTER 3. RESEARCH METHODOLOGY

28

3. File system artifacts: Malware often creates files or modifies existing files on the device.

Investigate the file system for any files that look suspicious, such as executables, hidden files,

or files with unusual names.

4. Malware binaries: If it is suspected that the device is infected with malware, then extract

the binary files of the malware and analyze them further. These files can often be found in the

application data or system directories of the device.

For evaluation, the following directories should be investigated to find useful forensic

artifacts:

1. /system/app: Contains system apps that are pre-installed on the device. Malware may

be disguised as a legitimate system app, therefore it's important to check for any

suspicious apps that may have been added.

2. /data/app: Contains user-installed apps. Malware may be installed as a legitimate-

looking app, so it's important to check for any unfamiliar or suspicious apps.

3. /sdcard: Contains user data, including photos, videos, and files. Malware may be

disguised as a file, such as a PDF or document, so it's important to scan for any

suspicious files.

4. /data/data: User-installed application data, including databases and cache files.

Malware may store data here, so it's important to check for any suspicious data

associated with unfamiliar or suspicious apps.

CHAPTER 3. RESEARCH METHODOLOGY

29

No Paths Description Artifacts

D1 Android/providers/media/external.db SD card Filesystem

Information

Data, size, format,parent,

data_addded, data_modified,

Mime_type, Title, bucket_id,

bucket_display_name,

media_type, storage_id,

D2 Android/vending/databases/installqeue.db Google play store

App Trace

Reason,package

D3 Android/vending/databases/library.db Certificate hash of

the application

Account, doc_id,

document_hash,

app_certificate_hash

D4 Android/vending/databases/localappstate.db Information of all

installed apps

Package name, download uri,

account, title, download and

update timestamp, app name

D5 Android/vending/databases/frosting.db All APK paths and

pkg names

Apk_path, package name

D6 Android/providers/media/internal.db Contains data of

internal system

Data added or modified time,

app name, title, size

D7 Android/vending/databases/ verifyapp.db Contains only APK

name

APK name

D8 Android/vending/databases/autoupdate.db Information about

the auto update of

apps

Package name

CHAPTER 3. RESEARCH METHODOLOGY

30

Table 1: Target artifacts and paths for analysis

Table 1. contains the targeted paths and directories which are traversed from D1 to D11 to

analyze the necessary information about the device applications.

• D1(external.db): This file resides in the internal memory of a device. It contains the

file system metadata for all existing files in the /sdcard area. After invading into the

device through smishing or phishing, the malicious applications download its

configuration files to the /sdcard area.. Therefore, to check the app installation items in

the /sdcard directory, this file is necessary. This pertains to the file that is linked to D1

in Table 1.

• D2 (installqeue.db): The file corresponding to D2 in Table 1, contains forensic

information related to app installation and update activities on Android devices. This

information may include package names, installation timestamps, update version

numbers, and installation source details. It can be useful for digital forensics

investigations to track app installation history and identify potential malicious or

unauthorized installations.

• D3 (library.db): File corresponding to D3 in Table 1. contains ownership of installed

apps, lists the email address against installed apps, and the certificate hash of the

D9 /system/app/* Pre-installed system

apps on the device

System installed apps

metadata

D10 data/system/package_cache/1 System permissions

for all installed apps

Intent, activity and APK

permissions

D11 Data/app/ Contains data of

user-installed apps

User-installed apps metadata

CHAPTER 3. RESEARCH METHODOLOGY

31

application. This file is required to verify the authenticity and hash of installed

applications.

• D4 (localappstate.db): A file storing the app installation metadata on smart devices.

The file that relates to D4 in Table 1 for Android includes details on the application.

These details include its name, latest update date, installation date, package name, and

Google play account used to download the app.

• D5 (frosting.db): The file corresponding to D5 in Table 1. does not detect the

installation time but contains traces of APK. When a normal app and malicious app is

installed the change in APK path is detected.

• D6 (internal.db): The file corresponding to D6 in Table 1. contains the application

data downloaded from official vendors or Google play store. Its analysis is necessary

for classification and comparison of behavior among user-installed apps from third

party or Google play store.

• D7 (verifyapp.db): The file corresponding to D7 in Table 1. contains forensic

information related to app verification and licensing on Android devices. This

information may include app package names, version numbers, licensing status,

timestamps of app installations, and verification tokens. It can be valuable for digital

forensics investigations and analyzing app usage patterns on a device.

• D8 (autoupdate.db): The file corresponding to D8 in Table 1. contains traces of apps

packages which are downloaded from official vendors like Google play store and

contain information about the automatic update of apps. It is necessary to analyze this

file to figure out which app gets update from Google play store even after installation

as some apps downloaded from Google play store also contains malicious codes.

CHAPTER 3. RESEARCH METHODOLOGY

32

• D9 (/system/app): The files corresponding to D9 in Table 1. contains system apps that

are pre-installed on the device. Malware may be disguised as a legitimate system app,

so it's important to check for any suspicious apps that may have been added.

• D10 (/package_cache/1): The file corresponding to D10 in Table 1. contains the

installation package of all apps, and permissions in system for all installed apps.

• D11 (/Data/app): All user-installed app installation files are located inside the IOT

device. From among the files suspected of being harmful, the investigator chooses and

carefully examines the files matched to D11 of Table 1.

Only the smart device forensic process part of Fig. 1 has been extended to achieve research

outcomes. The NIST framework based forensic process is being followed and steps are

acquired, extract, detect, investigate, and validate. Fig. 2 depicts the technical perspective of

proposed methodology for device level forensic to detect multiple malwares at the same time,

it shows how APKs will be evaluated by forensic investigation to distinguish between benign

and malicious applications. Smart device forensic phase comprises of following steps as

depicted in Figure 4:

3.2.1. Acquire

 An Android-based device's root-privilege shell may be opened with the use of the Android

Debug Bridge (ADB) and a rootkit. From there, a trusted 'dd' software can be run to capture an

image of the device's memory, both removable and internal [40]. Throughout this work, the

"rootkit method"—a technique employed by several professional mobile phone forensics

programs—will be referred to. Installing a rootkit requires some sort of modification to the

device, even if it's just a very little one. The most valuable digital evidence is likely to exist on

the user data partition, hence Vidas et al. advise against modifying it and instead recommend

CHAPTER 3. RESEARCH METHODOLOGY

33

re-flashing the recovery partition of the smartphone and replacing it with a forensic acquiring

setting [41]. Restarting the device into "recovery mode" results in the collection of a picture

utilizing the reliable forensic acquisition platform. In this study, this tactic is known as the

"recovery mode" technique. [42]

3.2.2. Extract

It refers to the artifact finding stage. The forensic image acquired in first phase is loaded into

sleuth kit autopsy. Forensic image is then analyzed to find forensic artifacts and directories by

traversing through the paths comprising of application data and logs, system data and logs,

filesystem artifacts and malware binaries. The path traversal helped into the detailed insights

of the system data and artifacts. In this phase, changes have been detected into the system paths

made by the applications and forensically useful paths were identified. Based on findings, the

forensic investigation methodology has been constructed that contains targeted artifacts and

paths for malware detection as mentioned in Table 1.

3.2.3. Detection of installed APKs

It is important to detect the presence of applications as the first step of investigation. The

applications usually present are user installed apps and system installed apps. The user-

installed apps are downloaded from Google play store or from untrusted source or third-party.

The presence of user installed APKs are detected at the D1 and D6 paths. The basic information

about APKs e.g., the download method, URI, installation timing etc. are gathered. This

information is useful only when these APKs are installed in the device. To detect the installed

applications D9 and D11 paths are analyzed. Forensic artifacts for the installed applications

CHAPTER 3. RESEARCH METHODOLOGY

34

e.g., APK path, package name, installation files etc. are found which is useful to move forward

with forensic investigation for malware detection.

3.2.4. Investigate

The installed applications of device can be analyzed and investigated by following constructed

methodology. Installed applications are investigated by traversing through all the paths

mentioned in Table 1. During the path traversal important artifacts are collected and

applications are evaluated based on these artifacts. After evaluation, the applications are

classified as benign and malicious. These benign and suspicious applications are compared to

detect changes in the system files e.g., the installation files and paths, application packages,

application behaviors, intent, activities, system permissions required by benign and malicious

APKs etc.

Figure 8: Smart device Investigation Process

CHAPTER 3. RESEARCH METHODOLOGY

35

3.2.5. Validate

The suspicious applications which are filtered out as a result of investigation are fed into the

cuckoo sandbox to verify whether the detected suspicious APKs are real malware or benign.

This step proves the effectiveness of the methodology that is proposed and verifies the results

of investigation by identifying all suspicious applications as dangerous APKs. At the final step,

the results are reported.

3.3. Summary

In this chapter, we have discussed different methodologies that have been used in the

research and can be followed to achieve similar results. The overall view involves are acquired,

extract, investigate and detect to detect malware by forensic investigation. In the next chapter,

we will look at the experimental setup designed to perform this specific analysis.

36

Chapter 4

4. Experimental Setup

This chapter explains the experimental setup that has been designed to create and

set up an environment to conduct the research. This chapter also justifies why some of the

processes have been followed. System configurations are also provided in this chapter.

4.1. Overview

The experimental setup includes an Android Redmi Go device consisting of

malicious and benign applications and a PC for consisting of tools like ADB Bridge,

Autopsy and Cuckoo sandbox to acquire the physical image of device, to analyze the

forensic image for filtering benign and malicious applications and validate the malicious

applications as malwares respectively.

4.2. Setting up Environment

 For carrying out experimentation, a windows-based machine has been used. The

specifications of the system have been shown in below table 1.

CHAPTER 4. EXPERIMENTAL SETUP

37

Property Description

Manufacturer HP

Model Pavillion

Architecture x64 based

Operating System Windows 11

Processor Intel(R) Core (TM) i7-8550U CPU

@ 1.80GHz 1.99 GH GHz

RAM 8 GB

Storage 1 TB

Table 2: System Specification

Property Description

Manufacturer Redmi

Model Redmi Go

OS Android 8.1 Oreo

Processor Quad-core 1.4 GHz Cortex-A53

RAM 1 GB

Storage 16 GB

Table 3: Smart device specification

4.3. Malicious and benign APK Sample collection

To construct the dataset, we have collected different samples of Android applications

containing applications from two distinct sets of android families i.e., malicious and benign.

Both types of samples were collected from different sources. Benign samples were collected

CHAPTER 4. EXPERIMENTAL SETUP

38

from the official Play Store. The collected benign samples represent applications from different

application categories such as business, entertainment, Finance, and games, etc. to provide as

much diversity as possible to the samples.

While for the malicious samples, we have collected from GitHub Android malware

database. The samples on GitHub are available in the form of zip files and can be downloaded

[44].

Malware Quantity

Rootnik:

E5E22B357893BC15A50DC35B702DD5FCDFEAFC6FFEC7DAA0D313C724D72EC854.APK

1

Krept banking: krep.itmtd.ywtjexf-1.APK 1

Candycorn: 14d9f1a92dd984d6040cc41ed06e273e.APK 1

Nimaz ka waqt: 1514376339e4a0b4727c6897640c7c3e.APK 1

Xbot: 1264C25D67D41F52102573D3C528BCDDDA42129DF5052881F7E98B4A9 1

Zip extractor: com.zip.unzip.zipextractor.raropener.zipfile 1

Rubbish cleaner: com.snt.rubbishcleaner 1

Photo processing: 263b0851156f7d77fb43368ce13bede1 1

Lockkeeper: 0e8805b683bc0fd8a6d49b07205f1a4b 1

Oscorp: 20230307/f73ebc6f645926bf8566220b14173df8.APK 1

Table 4: Malware Samples

4.4. Setting up the Android device

• Redmi Phone with Andriod version 8.1 is used for this process.

• Rooting of device was performed using TWPR & Magisk

• Download TWPR for Redmi Phone & Magisk installer

CHAPTER 4. EXPERIMENTAL SETUP

39

• Copy the Magisk through MTP/file transfer on Phone internal storage.

• Reboot into the bootloader

• Flash TWPR through Fastboot mode

• Boot the phone in RWPR recovery mode (fastboot reboot)

• Install the Magisc from the phone internal storage

• After Magisc installation rebooted the phone

• After reboot Magisc Manager App was there, simply run it to verify Magisc has

been installed.

• Magisc Manager will control the root access, Magisc will monitor the root access

for every app and will allow or deny the access.

• Installed “Root Checker” to verify rooting status

Figure 9: Fastboot flash recovery process on ADB

Installed BusyBox on Phone, it requires root privileges for installation. BusyBox was installed

to have “dd” utility. We used “dd method” for physical image acquisition.

Installed “Netcat” on PC, this utility is used for network connection through TCP.

Establishing ADB connection to phone from PC and switched to phone root access and viewed

all the disks & partitions details in the in “/proc/partitions”

CHAPTER 4. EXPERIMENTAL SETUP

40

Figure 10: ADB to connect with mobile device and getting root access.

4.5. Pre-requisite Software Installation

 Following Software need to be installed before the experimentation process in windows

can be followed:

1. An Archiving tool such as WinRAR; for extracting the application samples [45]

2. Installing the ADB bridge; for connecting with android and for logical and physical

device image acquisition [46]

3. Netcat; to start a connection in PC that can connect with the android device with TCP

based connection at port ‘P’ [47]

4. Autopsy: for device logical & physical analysis of the acquired image to find forensic

artifacts and paths [48]

Following Software need to be installed before the experimentation process in Ubuntu 18.04

can be followed.

5. Cuckoo sandbox: It is the leading open-source sandbox to automat malware analysis

system for Windows, Linux, Mac or android [49]

CHAPTER 4. EXPERIMENTAL SETUP

41

4.6. Summary

In this chapter, we have covered the experimental setup that has been proposed to

carry out the analysis. The process of collecting the required applications sample and

setting the necessary environment and the related tools has been discussed in the chapter.

Moreover, details about the installation of pre-requisite software for the analysis process

and their sources have also been provided in this section.

42

Chapter 5

5. Experimental Results

This chapter explains the achieved results and their analysis in the form of detection

results. The results are compared with the benchmark approach [9] and their achievements

have been discussed in this chapter.

5.1. Overview

Android applications use permissions to provide the functionality to the users, which are

exploited by malware developers for conducting cybercrimes. In this study, extensive analysis

has been carried out on an Android application representing benign and malicious applications.

We further investigated different forensic artifacts while performing the analysis to measure

the effectiveness of the approach.

5.2. Important Forensic Artifacts

As described in methodology the useful forensic artifacts which are suggested:

43

1. Android/providers/media/external.db

Description Traces to SD card used in the device. This is stored on

the phone. But the device doesn’t have SD card, the

apps downloaded without google play store save their

installation files here.

Artifacts Data, size, format, parent, data_addded,

data_modified, Mime_type, Title, bucket_id,

bucket_display_name, media_type, storage_id

2. Android/vending/databases/installqeue.db

Description Traces of apps package which are downloaded from

official vendors like google playstore and contain

information about the auto update of apps.

Artifacts Reason,package

3. Android/vending/databases/library.db

Description Library.db contains ownership of installed apps and

lists the email address against installed apps, and the

certifcate hash of the application

Artifacts Account, doc_id, document_hash,

app_certificate_hash

4. Android/vending/databases/localappstate.db

Description Records information of all installed apps

44

Artifacts Package name, download uri, account, title, download

and update timestamp, app name

5. Android/vending/databases/frosting.db

Description Does not detect the installation time but contains

Traces of APK. When a normal app and malicious app

is installed the change in APK path is detected in

frosting.db

Artifacts APK_path, package name

6. Android/providers/media/internal.db

Description Contains data of internal system

Artifacts Data added or modified time, app name, title, size

7. Android/vending/databases/veifyapp.db

Description Contains Google play store downloaded APKs

Artifacts APK package name

8. Android/vending/databases/autoupdate.db

Description Contains Google play store downloaded APKs

Artifacts APK package name

9. /system/app

45

Description Contains system apps that are pre-installed on the

device. Malware may be disguised as a legitimate

system app, so it's important to check for any

suspicious apps that may have been added

Artifacts APK package name

10. data/system/package_cache/1

Description Contains permissions in system for malicious activities

Artifacts APK package name

11. Data/app/

Description Contains the installation package of all apps

Artifacts APK package name

 Table 5: Targeted Forensic artifacts and paths

The forensic image which was acquired is analyzed on the basis of above table and paths are

compared on the basis of found evidence to filter out more useful artifacts and figure out which

type of applications are found in different paths.

46

1. Android/ providers/ media/ external.db

Artifacts Data, size, format, parent, bucket_display_name,

data_addded, data_modified, Mime_type, Title,

bucket_id, media_type, storage_id

Found evidence List all of the APK files are obtained without using the

Google Play Store as in figure 8

2. Android/ vending/ databases/ installqeue.db

Artifacts Reason,package

Found evidence As seen in figure 9, the APK packages located in

external.db are absent from installqeue.db.

3. Android/ vending/ databases/ library.db

Artifacts Account, doc_id, document_hash,

app_certificate_hash

Found evidence Figure 8 shows that does not include the hash

certificate of the discovered APKs.

4. Android/vending/databases/localappstate.db

Artifacts Package name, download uri, account, title, download

and update timestamp, app name

Found evidence Figure 10 shows that does not include the package

names of the discovered APKs.

47

5. Android/ vending/ databases/ frosting.db

Artifacts APK_path, package name

Found evidence discovered the package names and APK paths for

every program, whether it had been downloaded

through Google or another source. Some potentially

suspicious package names were discovered, and the

path for these APKs was data/app/, as seen in figure

11.

6. Android/providers/media/internal.db

Artifacts Data added or modified time, app name, title, size

Found evidence Found no information on APKs obtained outside of

the Google Play Store; just APKs installed on the

system

7. Android/ vending/ databases/ veifyapp.db

Artifacts Application package name

Found evidence Only contain APK names that are found in

figure 8

8. Android/vending/databases/autoupdate.db

Artifacts APK package name

Found evidence Can’t find APK data

48

9. /system/app

Artifacts APK package name

Found evidence Can’t find APK data

10. data/system/package_cache/1

Artifacts APK package name

Found evidence Can’t find APK data

11. Data/app/

Artifacts APK package name

Found evidence Can’t find APK data

Table 6: Analysis of forensic image based on table 1.

Figure 11: External.db database artifacts

49

Figure 12: Installqeue.db database artifacts

Figure 13: Local_appstate.db database artifacts

50

Figure 14: Frosting.db database artifacts

From the above analysis it was figured out that external.db only contains the application

information which is downloaded from third party and without google play store. While the

internal.db comprises of that list of APKs which are downloaded from official vendor or

google play store. As from the above defined paths we cannot label applications as malicious

or benign so there is a need to find artifacts about the permissions required by the applications

and their intent, so more artifacts are found in this case.

Path to find intent and permission of these apps:

Figure 15: investigate application permissions from package_cache path.

 /img_mobileimage1.dd/vol_vol55/system/package_cache/1/

51

5.3. Evaluating Research Effectiveness

To evaluate the effectiveness of the research, we have employed various forensic

investigation phases and concluded the most useful forensic artifacts and paths to illustrate the

generality of the research. In experiments, from the prospect of suspicious application

detection, the forensic investigation technique is employed. The benign and malicious

applications was compared. The final paths and artifacts are displayed in table below that we

will use to conduct forensic investigation.

Based on above framework, the forensic image is acquired, and findings are below:

Paths Found artifact

Android/providers/me

dia/external.db

1. /storage/emulated/0/WhatsApp/Media/WhatsApp

Documents/Sent/1514376339e4a0b4727c6897640c7c3e.APK

2. /storage/emulated/0/Download/14d9f1a92dd984d6040cc41ed0

6e273e.APK

3. /storage/emulated/0/Download/1264C25D67D41F52102573D

3C528BCDDDA42129DF5052881F7E98B4A90F61F23.APK

4. /storage/emulated/0/Download/krep.itmtd.ywtjexf-1.APK

5. /storage/emulated/0/Download/E5E22B357893BC15A50DC3

5B702DD5FCDFEAFC6FFEC7DAA0D313C724D72EC854.

APK

6. /storage/emulated/0/Download/CEE6584CD2E01FAB5F075F

94AF2A0CE024ED5E4F2D52E3DC39F7655C736A7232.AP

K

52

7. /storage/emulated/0/Download/E2BDCFE5796CD377D41F3D

A3838865AB062EA7AF9E1E4424B1E34EB084ABEC4A.A

PK

8. /storage/emulated/0/CMA_Zip/Decompressed/janOscorp_2023

0307/f73ebc6f645926bf8566220b14173df8.APK

9. /storage/emulated/0/Download/julyFacebookCredSteal.zip

Android/vending/data

bases/installqeue.db

The packages for APK which are found in external.db are not

present in installqeue.db

1. com.google.android.apps.youtube.mango

2. com.prisbank.app

3. com.gamma.scan2

4. com.winzip.android

5. com.whatsapp

6. com.zip.unzip.zipextractor.raropener.zipfile

Android/vending/data

bases/library.db

It does not contain hash certificate of found APKs, it contains the

APKs:

1. com.google.android.apps.youtube.mango

2. com.prisbank.app

3. com.gamma.scan2

4. com.winzip.android

5. com.whatsapp

6. com.zip.unzip.zipextractor.raropener.zipfile

but there is same pkg of com.gamma.scan2 again at the last but it

doesnot contain hash

53

Android/vending/data

bases/localappstate.d

b

It does not contain discovered applications packages APKs in

appendix 1

Android/vending/data

bases/frosting.db

discovered the package names and APK locations for every

program, whether it had been downloaded through Google or

another source. Some potentially suspicious package names were

discovered, and the path for these APKs was data/app/.

Android/providers/me

dia/internal.db

Cant find any data for APKs found in media/external.db

Android/vending/data

bases/ verifyapp.db

krep.itmtd.ywtjexf

com.web.sdfile

com.oyws.pdu

com.br.srd

org.merry.core

com.tos.salattime.pakistan

com.prisbank.app

com.gamma.scan2

com.zip.unzip.zipextractor.raropener.zipfile

com.whatsapp

com.pcnts.splicingpp

com.facebook.system

com.enab.lockkeep

com.cosmos.starwarz

com.facebook.appmanager

se.dirac.acs

54

Android/vending/data

bases/autoupdate.db

com.google.android.apps.youtube.mango

com.whatsapp

com.winzip.android

com.zip.unzip.zipextractor.raropener.zipfile

com.gamma.scan2

com.prisbank.app

/system/app/* facebook-appmanager

YouTubeGo

Application not found there proves that these APKS not disguised

as legitimate app

data/system/package_

cache/1

Appendix 2

/data/app/<applicatio

n package name>

com.br.srd-wd9DupMc6MqQxWil0h8j2A==

com.cosmos.starwarz-2IB61gP3toiK44zR21mgoQ==

com.enab.lockkeep-Y6AzdXU071I5NTKMgb0YWA==

com.facebook.appmanager-AbEIncHcjzUsEhHY9bQ2wA==

com.facebook.lite-m0tYZsnbkAK52Z_anlyvrg==

com.facebook.services-gdIEIrF8IA-mm2Mu682-0g==

com.facebook.system-eKOkZWxhXApD6zJ6YPMqLg==

com.gamma.scan2-ckccwYHzKBUdNhuZeyqqtQ==

com.oyws.pdu-T8mJZ8THM_48wsn1zaat7g==

com.pcnts.splicingpp-TxJngHz3tzdzRsNPCWNcsg==

com.prisbank.app-TyIM70hfj_oC2C3kDtC8ZA==

com.tos.salattime.pakistan-t5s0eEUxxfs8oHEqqWI-DA==

55

com.web.sdfile-k-J7EiTfXQlECfkTH4lwVw==

com.whatsapp-eHcCvC4QGycO4kAifNvs9g==

com.zip.unzip.zipextractor.raropener.zipfile-

Wbu8XTlljC7VoMSRwCc-FQ==

krep.itmtd.ywtjexf-gsDSrpELqvys6u-CR4dEuQ==

org.merry.core-c9kJMr666FcViVSc--dp8w==

Table 7: Analysis of forensic image based on proposed forensic investigation methodology

For the forensic investigation of android mobile device, the total number of apps are checked

in the system. The data/app/ directory contains all the apps and their paths information, there

are 41 apps installation files. Now we are interested that how many apps are installed from

google play store or third party or downloaded directly from internet and how many are system

app. To analyze the apps which are downloaded from google playstore lets check the

Android/vending/databases/installqeue.db so out of 41 apps only 6 are downloaded from

google playstore. In order to find out the download source of rest of the apps

Android/providers/media/external.db is analyzed and it was revealed that 9 apps were

downloaded from the internet directly and source of download was chrome browser. To verify

the user- installed in the system analyze the Android/vending/databases/verifyapp.db. The

package names of installed apps can be found there. Now check the

Android/providers/media/internal.db to verify the system-installed apps, so it was verified that

these 15 apps are not internal system apps. In order to validate whether the apps are legitimate

we have to verify the hash certificate of application. Therefore,

Android/vending/databases/library.db path is analyzed. The apps like Youtube, prisbank,

barcode scanner, Whatsapp, winzip and rar opener has the verified hash certificates. And in the

Android/vending/databases/autoupdate.db it can be verified that these packages can update

56

from google playstore. The total installed apps found from verifyapp.db has only 6 apps that

have verified certificates and auto-update from google playstore but rest of the 9 apps are still

questionable. We can classify these 9 apps as suspicious apps and its necessary to analyze the

/system/app/* because Contains system apps that are pre-installed on the device. Malware may

be disguised as a legitimate system app, so it's important to check for any suspicious apps that

may have been added. After the analysis of this path, it was turned out that only facebook and

YouTube are system apps and out of these 9 APKs none of them has disguised as legitimate

app.

 These suspicious 9 APKs are further investigated on the basis of required android system

permission to detect the malwares out of these applications.

5.4. Summary

In this chapter analysis and results achieved during the research is discussed. In the

following chapter validation and verification of the achieved results are provided.

57

Chapter 6

6. Discussion and Analysis

The validation and verification of the data obtained during the experimentation against

the suggested framework are covered in this chapter. The cuckoo sandbox is used throughout

the investigation to validate the suspicious programs that were filtered out as previously

indicated in the chapter. to verify if the apps in our findings are indeed malicious and to assess

the efficacy and efficiency of the suggested technique. The outcomes are then contrasted with

the benchmark method.

6.1. Overview

This section assesses the efficacy of the studies conducted to identify malware in Internet

of Things devices. The device's forensic picture has been obtained and examined using

autopsy. The suggested technique was used for the analysis. Nine apps have been eliminated

for analysis because of the trial. Ultimately, Table 8's filtered-out programs may be identified

from one another by their obtained system permissions. The system permission acquired by

malicious and benign malware are different and the study in this paper H. J. Zhu et al. [9]

conducted the research on the system permissions acquired by malicious applications. The

dangerous system permissions required by the malicious applications are marked in red font.

Based on findings of this research paper the applications that have malicious behavior can be

separated from benign ones.

58

APK

No.

Package name APK path

APK1 com.web.sdfile /data/app/com.web.sdfile-k-

J7EiTfXQlECfkTH4lwVw==/base.apk

APK2 com.br.srd /data/app/com.br.srd-

wd9DupMc6MqQxWil0h8j2A==/base.apk

APK3 com.oyws.pdu /data/app/com.oyws.pdu-

T8mJZ8THM_48wsn1zaat7g==/base.apk

APK4 krep.itmtd.ywtjexf /data/app/krep.itmtd.ywtjexf-gsDSrpELqvys6u-

CR4dEuQ==/base.apk

APK5 org.merry.core /data/app/org.merry.core-c9kJMr666FcViVSc--

dp8w==/base.apk

APK6 com.tos.salattime /data/app/com.tos.salattime.pakistan-t5s0eEUxxfs8oHEqqWI-

DA==/base.apk

APK7 com.facebook.system /data/app/com.facebook.system-

eKOkZWxhXApD6zJ6YPMqLg==

APK8 com.enab.lockkeep /data/app/com.enab.lockkeep-

Y6AzdXU071I5NTKMgb0YWA==/base.apk

APK9 com.pcnts.splicingpp /data/app/com.pcnts.splicingpp-

TxJngHz3tzdzRsNPCWNcsg==/base.apk

59

APK10 com.snt.rubbishcleaner /data/app/com.snt.rubbishcleaner

APK11 com.cosmos.starwarz /data/app/com.cosmos.starwarz-

2IB61gP3toiK44zR21mgoQ==/base.apk

APK12 com.gamma.scan2 /data/app/com.gamma.scan2-

ckccwYHzKBUdNhuZeyqqtQ==/base.apk

APK13 com.zip.unzip.zipextractor

.raropener.zipfile

/data/app/com.zip.unzip.zipextractor.raropener.zipfile-

Wbu8XTlljC7VoMSRwCcFQ==/base

APK14 com.whatsapp /data/app/com.whatsapp-

eHcCvC4QGycO4kAifNvs9g==/base.apk

Table 8:User-installed applications

60

Permissions AP

K1

AP

K2

AP

K3

AP

K4

AP

K5

AP

K6

AP

K7

AP

K8

AP

K9

AP

K1

0

AP

K1

1

MOUNT_UNMOUNT_FIL

ESYSTEMS

🗸 🗸 🗸

READ_PHONE_STATE 🗸 🗸 🗸 🗸 🗸 🗸 🗸

READ_EXTERNAL_STOR

AGE

🗸 🗸 🗸 🗸 🗸 🗸 🗸 🗸 🗸 🗸

ACCESS_NETWORK_STA

TE

🗸 🗸 🗸 🗸 🗸 🗸 🗸 🗸 🗸

CHANGE_NETWORK_ST

ATE

🗸

ACCESS_WIFI_STATE 🗸 🗸 🗸

RESTART_PACKAGES 🗸 🗸

READ_LOGS 🗸 🗸

CHANGE_WIFI_STATE 🗸

RECORD_AUDIO 🗸 🗸 🗸

CAPTURE_AUDIO_OUTP

UT

 🗸

DISABLE_KEYGUARD 🗸 🗸

WAKE_LOCK 🗸 🗸 🗸 🗸 🗸

BLUETOOTH 🗸

GET_PACKAGE_SIZE 🗸 🗸 🗸

61

ACCESS_COARSE_LOCA

TION

🗸

WRITE_SETTINGS 🗸

WRITE_EXTERNAL_STO

RAGE

🗸 🗸 🗸 🗸 🗸 🗸 🗸 🗸 🗸 🗸

WRITE_MEDIA_STORAG

E

🗸

READ_CONTACTS 🗸 🗸 🗸 🗸

UNINSTALL_SHORTCUT 🗸

INSTALL_SHORTCUT 🗸 🗸

SYSTEM_ALERT_WINDO

W

🗸 🗸 🗸 🗸

KILL_BACKGROUND_PR

OCESSES

🗸 🗸 🗸

CLEAR_APP_CACHE 🗸 🗸

RECEIVE_BOOT_COMPL

ETED

🗸 🗸 🗸 🗸

GET_TASKS 🗸 🗸 🗸 🗸 🗸 🗸 🗸

ACTIVITY_RECOGNITIO

N

🗸

READ_SETTINGS 🗸

INSTALL_PACKAGES 🗸 🗸 🗸

DELETE_PACKAGES 🗸 🗸 🗸

62

accelerometer 🗸

FORCE_STOP_PACKAGE

S

🗸

ACCESS_FINE_LOCATIO

N

🗸 🗸 🗸

READ_OWNER_DATA 🗸 🗸

INTERNET 🗸 🗸 🗸 🗸 🗸 🗸 🗸 🗸 🗸 🗸

READ_SMS 🗸 🗸 🗸 🗸

SEND_SMS 🗸 🗸 🗸

WRITE_SMS 🗸 🗸

READ_CALL_LOG 🗸 🗸 🗸

READ_HISTORY_BOOK

MARKS

 🗸

READ_SYNC_SETTINGS 🗸

READ_CALENDAR 🗸

READ_PROFILE

SET_ALARM 🗸 🗸

RECEIVE_SMS 🗸 🗸 🗸 🗸

RECEIVE_MMS 🗸

RECEIVE 🗸

VIBRATE 🗸 🗸 🗸

CALL_PHONE 🗸 🗸

63

ACCESS_MOCK_LOCATI

ON

 🗸

ACCESS_LOCATION_EX

TRA_COMMANDS

 🗸

BIND_JOB_SERVICE 🗸

FOREGROUND_SERVICE 🗸 🗸

SET_WALLPAPER 🗸

READ_GMAIL 🗸

GET_ACCOUNTS 🗸

AUTHENTICATE_ACCOU

NTS

 🗸

USE_CREDENTIALS 🗸

ACCESS_NOTIFICATION

_POLICY

 🗸

STORAGE 🗸

BIND_GET_INSTALL_RE

FERRER_SERVICE

 🗸 🗸 🗸 🗸

DOWNLOAD_WITHOUT_

NOTIFICATION

 🗸

CHANGE_COMPONENT_

ENABLED_STATE

 🗸

REAL_GET_TASKS 🗸

64

Table 7 contains the android system permissions required by all the applications mentioned in

Table 6. These tables are systematically analyzed based on the dangerous and non-dangerous

android permissions they require. The dangerous android system permissions include

READ_PHONE_STATE, SET_ALARM, READ_EXTERNAL_STORAGE,

INSTALL_PACKAGES, RECEIVE_SMS, SET_ALARM, ACCESS_FINE_LOCATION,

SYSTEM_OVERLAY_WI

NDOW

 🗸

CAMERA 🗸 🗸

PACKAGE_USAGE_STAT

S

 🗸 🗸 🗸

FLASHLIGHT 🗸

MODIFY_AUDIO_SETTIN

GS

 🗸 🗸

REQUEST_DELETE_PAC

KAGES

 🗸

READ_PRIVILEGED_PHO

NE_STATE

 🗸

REQUEST_IGNORE_BAT

TERY_OPTIMIZATIONS

 🗸

INJECT_EVENTS 🗸

ACCESS_SUPERUSER 🗸

REQUEST_INSTALL_PAC

KAGES

 🗸

Table 9: System permissions required by APKs

65

WRITE_SECURE_SETTINGS, GET_ACCOUNTS, UPDATE_DEVICE_STATS,

READ_CONTACTS, READ_HISTORY_BOOKMARKS,GET_ACCOUNTS, READ_SMS,

ACCESS_COARSE_LOCATION, SEND_SMS READ_CALL_LOG,

WRITE_HISTORY_BOOKMARKS, and ACCESS_NOTIFICATION_POLICY. and. In the

above Table 7, the APKs which contain dangerous android permissions are classified as

malicious. The APKs which do not require dangerous permissions, or no permissions are

classified as benign. The APKs12, APK13 and APK14 do not require system permissions so

they can be classified as benign. Out of the 14 APKs the APK7, APK12, APK13 and APK14

are labelled as benign and the rest of 10 APKs are malicious.

6.2. Validation with Cuckoo Sandbox

The 10 APKs are found suspicious after the above analysis. To prove the results of

methodology, detected APKs are validated through Cuckoo sandbox. The validation phase will

prove the effectiveness of results by the proposed methodology.

Figure 16: Cuckoo Sandbox suspicious APK score validation of APK1

66

The above APK is classified as malicious by cuckoo sandbox as well.

Figure 17: Validation score of APK2 by Cuckoo Sandbox

The APK validation score classified APK2 as malicious.

Figure 18: Cuckoo Sandbox Validation of APK3

The APK3 is identified as malicious by cuckoo sandbox as well.

67

Figure 19: Cuckoo Sandbox validation of APK4 as malicious

Classification of APK4 as malicious by cuckoo sandbox.

Figure 20: APK5 identified suspicious by Cuckoo Sandbox

The APK5 is classified as malicious by cuckoo sandbox as well.

68

Figure 21: APK6 validation by Cuckoo Sandbox

The APK5 is validated as malicious by cuckoo sandbox.

Figure 22: Validation of APK7 by Cuckoo Sandbox

69

The APK7 is classified as benign because its malicious score is 0.1/10 by cuckoo sandbox as

well.

Figure 23: Validation by Cuckoo Sandbox for APK8

The APK8 is categorized as malicious by cuckoo sandbox.

70

Figure 24: APK9 validated by Cuckoo Sandbox

The APK9 malicious score is 10/10 by cuckoo sandbox.

Figure 25: Validation of APK10 by Cuckoo Sandbox

The APK10 malicious score is 10/10 by cuckoo sandbox.

71

Figure 26: APK11 Cuckoo Sandbox validation

Cuckoo sandbox identified APK11 as malicious.

Figure 27: APK12 validated by Cuckoo Sandbox

The APK12 is classified as benign cuckoo sandbox.

72

Figure 28: Cuckoo Sandbox Validation of APK13

Based on malicious score APK13 is classified as benign by cuckoo sandbox.

Figure 29: APK14 Validation by Cuckoo Sandbox

73

The APK14 malicious score is 0.1/10, it is identified as benign by cuckoo sandbox as well.

APK No. Cuckoo Sandbox outcome Proposed methodology Outcome Validation

APK1 Malicious Malicious Match

APK2 Malicious Malicious Match

APK3 Malicious Malicious Match

APK4 Malicious Malicious Match

APK5 Malicious Malicious Match

APK6 Malicious Malicious Match

APK7 Benign Benign Match

APK8 Malicious Malicious Match

APK9 Malicious Malicious Match

APK10 Malicious Malicious Match

APK11 Malicious Malicious Match

APK12 Benign Benign Match

APK13 Benign Benign Match

APK14 Benign Benign Match

Result

Accuracy

100 %

Table 10: Summarized results of validation by Cuckoo sandbox

6.3. Discussion

The data/data, data/app, data/system and system/app provided the most important paths and

artifacts. These directories are comprised of 11 important paths listed in Table 1 to construct

the sequence of evidence. The identified artifacts in Table 1 helped to classify the benign and

74

malicious applications. In the above experiment 15 user-installed apps were analyzed by

following the methodology, and later on the suspicious apps were validated by the cuckoo

sandbox as if they are real malwares.

The methodology presented in this thesis contributes to significant advancement in smart

device security by addressing security challenges within smart devices. In this study, the

malware threats in the evolving environment of smart devices are tackled by a comprehensive

digital forensic investigation framework. The methodology systematically analyzes location,

paths and files that contain necessary information about artifacts of installed applications in the

smart device to identify and detect the real malwares traces.

A robust incident response framework is designed by implementing this methodology, which

detects multiple malwares in smart devices efficiently. The framework comprises proactive,

reactive, and forensic phases. In the forensic phase the real-time forensic investigation is

carried out that aligns with NIST forensic process. Each phase of framework is followed strictly

to ensure filtering out of benign from malicious applications.

Particularly, the approach efficiently filters out suspicious apps that require deeper

investigation. In this way, the methodology addresses the issues of identifying malicious

applications from numerous other applications in smart device. The effectiveness of this

technique is further strengthened using tools like Autopsy to analyze the artifacts and Cuckoo

sandbox to validate forensic findings.

In a nutshell the proposed technique offers a framework that provides investigators with the

resources they need to effectively identify, categorize, and filter the most recent malware

variants that attack smart devices. This method not only helps to improve smart security, yet it

also offers a model for future incident response in the ever-changing world of connected

devices. Proposed methodology will be crucial in preserving the integrity and security of the

smart ecosystem as it grows.

75

6.4. Comparison with Benchmark Approach

For comparison, the performance of the proposed approach is compared with Dohyun Kim et.

al.’s [1] approach. The Dohyun et. al. [1] analyzed the only four malwares i.e. SPAp.apk,

GMS.apk, V3Plus.apk and 23983JJF.apk. On the other hand, in our proposed approach

multiple latest malwares are analyzed. The most recent Android device easily implements our

suggested methods for malware analysis. We also contrasted the malicious and benign

programs, in contrast to the benchmark technique. The contribution is further enhanced by our

suggested technique, which offers additional artifacts and routes helpful for effective

malicious program identification. The system permissions that the apps that are suspected of

being malicious have obtained are used to confirm their identity. Furthermore, the Cuckoo

Sandbox verifies malicious programs as well.

 Dohyun et al. (2020) Juanru LI et

al. (2012)

Zainab et

al. (2023)

J. Lee et al. (2019) Proposed

method

Proposed

incident

response

model

No No No No Yes

Number of

malwares

investigated

4 1 0 1 10

Identified

Paths

7 0 11 4 11

76

Comparison

of benign and

malicious

applications

No Yes No yes Yes

System-

installed

APKs

identification

No Yes No No Yes

User-

installed

APKs

identification

No Yes No Yes Yes

Real-time

android

device

forensic

Yes No Yes No Yes

Investigation

of D1

Yes No No No Yes

Investigation

of D2

No No Yes No Yes

Investigation

of D3

No No Yes Yes Yes

77

Investigation

of D4

Yes No Yes Yes Yes

Investigation

of D5

No No Yes Yes Yes

Investigation

of D6

Yes No No No No

Investigation

of D7

No No Yes No Yes

Investigation

of D8

No No Yes No Yes

Investigation

of D9

No No No No Yes

Investigation

of D10

No Yes No No Yes

Investigation

of D11

Yes No Yes No Yes

Cuckoo

sandbox

validation of

suspicious

APKs

No No No No Yes

78

Followed

NIST

framework

No No No No Yes

Table 11: Comparison table proposed VS existing method

6.5. Summary

We have outlined the key findings in this chapter and used the validations to support

our conclusions. The outcomes derived from our research have been contrasted with those from

the benchmark. Additional uses of the suggested methodology have been considered. Future

research and the conclusion are covered in the next chapter.

79

Chapter 7

7. Conclusion & Future Work

Chapter 7 concludes the presented thesis and highlights potential future research

directions. It describes different research prospects of our research and identifies open research

problems that still need to be solved by the research community.

7.1. Conclusion

The smart devices ecosystem is currently under severe security threat from smart device

malware. The efficiency of forensic detection approaches must be increased to meet these

problems, with a general focus on identifying malicious apps and the successful operation of

the chosen methodology to contrast benign and malicious programs. In this study, we examined

the smart device ecosystem to demonstrate that forensic inquiry may lead to improved

outcomes. To evaluate the effectiveness of the research, various forensic investigation phases

were employed and concluded the most useful forensic artifacts and paths.

 With this forensic investigation methodology, we performed a comparison between benign

and malicious applications. The obtained results compared with the benchmark and existing

methods, it was observed that the proposed strategy achieved improved level of detections and

is also capable to further improve it by suggesting more artifacts and paths. The proposed

framework detected multiple malwares in the latest android version devices.

CHAPTER 7 CONCLUSION AND FUTURE WORK

80

Experiment results show that the 9 malicious APKs have been separated out from 5 benign

applications. This classification was conducted by following the proposed methodology. Later,

the results of the experiment are validated through Cuckoo Sandbox. The suspected APKs

which are validated through cuckoo sandbox turned out as very dangerous applications.

7.2. Limitation & Future Work

The major limitation of the proposed work is that we only use the android mobile device

for forensic investigation to detect malware. Other smart devices such as smart TVs, smart

watches, smart homes assistance devices, smart cameras, tablets, laptops etc. need to be

forensically investigated. Although forensic investigation methodology can help distinguish

the apps over platforms other than android as well. However, to provide a complete solution in

terms of detection, malware analysis needs to handle other platforms like ROS, Tarzen as well;

therefore, the forensic investigation of other platforms would be targeted in the future. We

would also like to explore other methodologies for malware detection while enhancing the no.

of artifacts.

81

Bibliography

[1] Kim, Dohyun, Yi Pan, and Jong Hyuk Park. "A study on the digital forensic investigation method of

clever malware in IoT devices." IEEE Access 8 (2020): 224487-224499.

[2] J. Milosevic, F. Regazzoni and M. Malek, “Malware Threats and Solutions for

Trustworthy Mobile Systems Design”, Hardware Security and Trust, Design and

Deployment of Integrated Circuits in a Threatened Environment, Switzerland:

Springer, 2017, pp. 149-157

[3] G. Kalogeridou, N. Sklavos, A.W. Moore, O Koufopavlou, “On the Hardware

Trojans Detection, using Mixed-Signal ICs”, proceedings, workshop on

Trustworthy Manufacturing and Utilization of Secure Devices, Conference DATE

2015, Grenoble, France, March 9-13, 2015

[4] Nokia, “Nokia Threat Intelligence Report”, 2016.

[5] Kshertri, Nir: 'Can Blockchain Strengthen the Internet of Things'. IEEE Access, vol

19. Pp. 68-72. 17 August2017

[6] Meng, Weizhi. 'When Intrusion Detection Meets Blockchain Technology: A

Review. IEEE Access. Pp 1 -10. 21 January 2018.

[7] Meng, Weizhi. 'When Intrusion Detection Meets Blockchain Technology: A

Review. IEEE Access. Pp 1 -10. 21 January 2018.

[8] Clincy, Victor, and Hossain Shahriar. "IoT malware analysis." 2019 IEEE 43rd

annual computer software and applications conference (COMPSAC). Vol. 1. IEEE,

2019.

BIBLIOGRAPHY

82

[9] Zhang, Xiaolu, et al. "Iot botnet forensics: A comprehensive digital forensic case

study on mirai botnet servers." Forensic Science International: Digital

Investigation 32 (2020): 300926.

[10] Asma Razgallah, Raphaël Khoury, Sylvain Hallé, Kobra Khanmohammadi, “A

survey of malware detection in Android apps: Recommendations and perspectives

for future research”, Computer Science Review 39 (2021) 100358

[11] Kebande, Victor R., and Indrakshi Ray. "A generic digital forensic investigation

framework for internet of things (iot)." 2016 IEEE 4th International Conference on

Future Internet of Things and Cloud (FiCloud). IEEE, 2016.

[12] Kebande, Victor R., et al. "Towards an integrated digital forensic investigation

framework for an IoT-based ecosystem." 2018 IEEE International Conference on

Smart Internet of Things (SmartIoT). IEEE, 2018.

[13] Al-Masri, Eyhab, Yan Bai, and Juan Li. "A fog-based digital forensics investigation

framework for IoT systems." 2018 IEEE international conference on smart cloud

(SmartCloud). IEEE, 2018.

[14] Lee, Jinwoo, et al. "Analysis of application installation logs on android

systems." Proceedings of the 34th ACM/SIGAPP Symposium on Applied

Computing. 2019.

[15] Khalid, Zainab, et al. "Forensic investigation of Cisco WebEx desktop client, web,

and Android smartphone applications." Annals of Telecommunications 78.3-4

(2023): 183-208.

[16] D. Goel and A. K. Jain, ``Smishing-classi_er: A novel framework for detection of

smishing attack in mobile environment,'' in Proc. Int. Conf. Next Gener. Comput.

Technol., Singapore, Oct. 2017, pp. 502_512.

BIBLIOGRAPHY

83

[17] J. W. Joo, S. Y. Moon, S. Singh, and J. H. Park, ``S-detector: An enhanced security

model for detecting Smishing attack for mobile computing,'' Telecommun. Syst.,

vol. 66, no. 1, pp. 29_38, Sep. 2017.

[18] A. K. Jain and B. B. Gupta, ``Rule-based framework for detection of Smishing

messages in mobile environment,'' Procedia Comput. Sci., vol. 125, pp. 617_623,

2018.

[19] S.Wang, Z. Chen, Q.Yan, B.Yang, L. Peng, and Z. Jia, ̀ `Amobile malware detection

method using behavior features in network traf_c,'' J. Netw. Comput. Appl., vol.

133, pp. 15_25, May 2019.

[20] M. Alazab, M. Alazab, A. Shalaginov, A. Mesleh, and A. Awajan, ``Intelligent

mobile malware detection using permission requests and API calls,'' Future Gener.

Comput. Syst., vol. 107, pp. 509_521, Jun. 2020.

[21] Autopsy. “Autopsy | Digital Forensics.” Autopsy, 2023, www.autopsy.com/.

[22] Z. Xu, C. Shi, C. C.-C. Cheng, N. Z. Gong, and Y. Guan, ̀ `A dynamic taint analysis

tool for Android app forensics,'' in Proc. IEEE Secur. Privacy Workshops (SPW),

May 2018, pp. 160_169.

[23] M. Sun, T. Wei, and J. C. S. Lui, ``TaintART: A practical multi-level information-

_ow tracking system for Android RunTime,'' in Proc. ACM SIGSAC Conf. Comput.

Commun. Secur., Oct. 2016, pp. 331_342.

[24] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung, P.

McDaniel, and A. N. Sheth, ``TaintDroid: An information-_ow tracking system for

realtime privacy monitoring on smartphones,'' ACM Trans. Comput. Syst., vol. 32,

no. 2, pp. 1_29, Jun. 2014.

[25] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon, D.

Octeau, and P. McDaniel, ``FlowDroid: Precise context, _ow, _eld, object-sensitive

BIBLIOGRAPHY

84

and lifecycle-aware taint analysis for Android apps,'' ACM SIGPLAN Notices, vol.

49, no. 6, pp. 259_269, Jun. 2014.

[26] L. Li, A. Bartel, T. F. Bissyande, J. Klein, Y. Le Traon, S. Arzt, S. Rasthofer, E.

Bodden, D. Octeau, and P. McDaniel, ``IccTA: Detecting inter-component privacy

leaks in Android apps,'' in Proc. IEEE/ACM 37th IEEE Int. Conf. Softw. Eng., vol.

1, May 2015, pp. 280_291.

[27] M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen, and M. C. Rinard,

``Information _owanalysis of Android applications in droidsafe,'' in Proc. NDSS,

Feb. 2015, vol. 15, no. 201, p. 110.

[28] L. Qiu, Y. Wang, and J. Rubin, ``Analyzing the analyzers: Flow- Droid/IccTA,

AmanDroid, and DroidSafe,'' in Proc. 27th ACM SIGSOFT Int. Symp. Softw. Test.

Anal. (ISSTA), Jul. 2018, pp. 176_186.

[29] A. Kumar, V. Agarwal, S. Kumar Shandilya, A. Shalaginov, S. Upadhyay, and B.

Yadav, ``PACER: Platform for Android malware classi_cation, performance

evaluation and threat reporting,'' Future Internet, vol. 12, no. 4, p. 66, Apr. 2020.

[30] M. K. Alzaylaee, S. Y. Yerima, and S. Sezer, ``EMULATOR vs REAL PHONE:

Android malware detection using machine learning,'' in Proc. 3rd ACM Int.

Workshop Secur. PrivacyAnalytics (IWSPA), Mar. 2017, pp. 65_72.

[31] A. Nieto and R. Rios, ``Cybersecurity pro_les based on human-centric IoT

devices,'' Hum.-Centric Comput. Inf. Sci., vol. 9, no. 1, p. 39, Dec. 2019.

[32] A. Souri and R. Hosseini, ``A state-of-the-art survey of malware detection

approaches using data mining techniques,'' Hum.-Centric Comput. Inf. Sci., vol. 8,

no. 1, p. 3, Dec. 2018.

BIBLIOGRAPHY

85

[33] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-an, and H. Ye, ``Signi_cant permission

identi_cation for Machine-Learning-Based Android malware detection,'' IEEE

Trans. Ind. Informat., vol. 14, no. 7, pp. 3216_3225, Jul. 2018.

[34] Z. Yuan, Y. Lu, and Y. Xue, ̀ `Droiddetector: Android malware characterization and

detection using deep learning,'' Tsinghua Sci. Technol., vol. 21, no. 1, pp. 114_123,

Feb. 2016.

[35] G. Suciu, C.-I. Istrate, R. I. R ducanu, M.-C. Diµu, O. Fratu, and A. Vulpe, ̀ `Mobile

devices forensic platform for malware detection,'' in Proc. Int. Symp. ICS SCADA

Cyber Secur. Res, vol. 6, Sep. 2019, pp. 59_66.

[36] O. S. J. Nisha and S. M. S. Bhanu, “Detection of repackaged Android applications

based on Apps Permissions,” Proc. 4th IEEE Int. Conf. Recent Adv. Inf. Technol.

RAIT 2018, pp. 1–8, 2018

[37] H. R. Sandeep, “Static analysis of android malware detection using deep learning,”

2019 Int. Conf. Intell. Comput. Control Syst. ICCS 2019, no. Iciccs, pp. 841–845,

2019.

[38] Z. Wang, K. Li, Y. Hu, A. Fukuda, and W. Kong, “Multilevel permission extraction

in android applications for malware detection,” CITS 2019 - Proceeding 2019 Int.

Conf. Comput. Inf. Telecommun. Syst., pp. 0–4, 2019

[39] M. Fan et al., “Android malware familial classification and representative sample

selection via frequent subgraph analysis,” IEEE Trans. Inf. Forensics Secur., vol.

13, no. 8, pp. 1890–1905, 2018

[40] Lessard, Jeff, and Gary Kessler. "Android forensics: Simplifying cell phone

examinations." (2010).

BIBLIOGRAPHY

86

[41] Vidas, Timothy, Chengye Zhang, and Nicolas Christin. "Toward a general

collection methodology for Android devices." digital investigation 8 (2011): S14-

S24.

[42] Al Barghouthy, Nedaa, and Andrew Marrington. "A comparison of forensic

acquisition techniques for android devices: a case study investigation of orweb

browsing sessions." 2014 6th International Conference on New Technologies,

Mobility and Security (NTMS). IEEE, 2014.

[43] Jamalpur, Sainadh, et al. "Dynamic malware analysis using cuckoo sandbox." 2018

Second international conference on inventive communication and computational

technologies (ICICCT). IEEE, 2018.

[44] Anish, & sk3ptre. (2021, January 18). Android Malware Timeline 2021.

Sk3ptre. https://sk3ptre.github.io/Malware-Timeline-2021/

[45] win.rar GmbH. (2016). WinRAR download and support: Download. Win-Rar.com.

https://www.win-rar.com/download.html?&L=0

[46] “Android Debug Bridge (Adb).” Android Developers,

developer.android.com/tools/adb.

[47] “Ncat.” Nmap.org, 2019, nmap.org/ncat/.

[48] “Autopsy.” Sleuthkit.org, sleuthkit.org/autopsy/.

[49] “Download IntelliJ IDEA – the Leading Java and Kotlin IDE.” JetBrains,

www.jetbrains.com/idea/download. Accessed 1 June 2023.

[50] Wang, W., Zhao, M., Gao, Z., Xu, G., Xian, H., Li, Y., & Zhang, X. (2019).

Constructing Features for Detecting Android Malicious Applications: Issues,

Taxonomy and Directions. IEEE Access, 7, 67602–67631.

https://doi.org/10.1109/ACCESS.2019.2918139

https://sk3ptre.github.io/Malware-Timeline-2021/
https://www.win-rar.com/download.html?&L=0
http://www.jetbrains.com/idea/download.%20Accessed%201%20June%202023
https://doi.org/10.1109/ACCESS.2019.2918139

BIBLIOGRAPHY

87

[51] Ghosh, A., Majumder, K., & De, D. (2021). Android forensics using sleuth kit

autopsy. In Proceedings of the Sixth International Conference on Mathematics and

Computing: ICMC 2020 (pp. 297-308). Springer Singapore

Appendix 1

Table 12:Applications downloaded from google playstore

package_name title

com.gamma.scan2

QR & Barcode

Scanner PRO

com.prisbank.app Sberbank

com.google.android.apps.youtube.mango YouTube Go

com.whatsapp

WhatsApp

Messenger

com.google.android.tts

Speech Services by

Google

com.winzip.android

WinZip – Zip UnZip

Tool

com.zip.unzip.zipextractor.raropener.zipfile

Zip Extractor - RAR

ZIP, UnZIP

BIBLIOGRAPHY

88

Appendix 2

Table 13: All applications, package name and APK path

Malware APK path Package name

Rootnik:

E5E22B357893BC15A50DC35B702DD5

FCDFEAFC6FFEC7DAA0D313C724D72

EC854.APK

/data/app/com.web.sdfil

e-k-

J7EiTfXQlECfkTH4lw

Vw==/base.APK

com.web.sdfile

Rootnik:

E2BDCFE5796CD377D41F3DA3838865

AB062EA7AF9E1E4424B1E34EB084AB

EC4A.APK

/data/app/com.br.srd-

wd9DupMc6MqQxWil

0h8j2A==/base.APK

com.br.srd

Rootnik:

CEE6584CD2E01FAB5F075F94AF2A0C

E024ED5E4F2D52E3DC39F7655C736A7

232.APK

/data/app/com.oyws.pd

u-

T8mJZ8THM_48wsn1z

aat7g==/base.APK

com.oyws.pdu

Krept banking:

krep.itmtd.ywtjexf-1.APK

/data/app/krep.itmtd.yw

tjexf-gsDSrpELqvys6u-

CR4dEuQ==/base.APK

krep.itmtd.ywtjexf-

1

BIBLIOGRAPHY

89

Candycorn:

14d9f1a92dd984d6040cc41ed06e273e.AP

K

/data/app/org.merry.cor

e-c9kJMr666FcViVSc-

-dp8w==/base.APK

org.merry.core

Nimaz ka waqt:

1514376339e4a0b4727c6897640c7c3e.AP

K

/data/app/com.tos.salatt

ime.pakistan-

t5s0eEUxxfs8oHEqqW

I-DA==/base.APK

com.tos.salattime.p

akistan

Xbot:

1264C25D67D41F52102573D3C528BCD

DDA42129DF5052881F7E98B4A9

Youtube:

/data/app/com.google.a

ndroid.apps.youtube.ma

ngo-

qBh30GLh7U0pwBoL

6gGbgg==/base.APK

com.google.androi

d.apps.youtube.ma

ngo

Whatsapp: /data/app/com.whatsapp

-

eHcCvC4QGycO4kAif

Nvs9g==/base.APK

com.whatsapp

Sberbank: /data/app/com.prisbank.

app-

/TyIM70hfj_oC2C3kDt

C8ZA==/base.APK

com.prisbank.app

Barcode scanner /data/app/com.gamma.s

can2-

com.gamma.scan2

BIBLIOGRAPHY

90

ckccwYHzKBUdNhuZ

eyqqtQ==/base.APK

Winzip com.winzip.androi

d

Zip extractor /data/app/com.zip.unzip

.zipextractor.raropener.

zipfile-

Wbu8XTlljC7VoMSR

wCc-FQ==/base.APK

com.zip.unzip.zipe

xtractor.raropener.

zipfile

Photo processing

263b0851156f7d77fb43368ce13bede1

/data/app/com.pcnts.spl

icingpp-

TxJngHz3tzdzRsNPC

WNcsg==/base.APK

com.pcnts.splicing

pp

Facebook com.facebook.syst

em

Lockkeeper

0e8805b683bc0fd8a6d49b07205f1a4b

/data/app/com.enab.loc

kkeep-

Y6AzdXU071I5NTKM

gb0YWA==/base.APK

com.enab.lockkeep

janOscorp_20230307/f73ebc6f645926bf85

66220b14173df8.APK

/data/app/com.cosmos.s

tarwarz-

2IB61gP3toiK44zR21

mgoQ==/base.APK

com.cosmos.starw

arz

 /data/app/com.facebook

.appmanager-

com.facebook.app

manager

BIBLIOGRAPHY

91

AbEIncHcjzUsEhHY9b

Q2wA==/base.APK

 com.snt.rubbishcle

aner

