INCIDENT RESPONSE MODEL FOR PROACTIVE

MALWARE DETECTION IN SMART DEVICES

Amna Hameed

Fall 2021 — MS (1IS) - 00000364734

Supervisor

Dr. Mehdi Hussain

Department of Computing

A thesis submitted in partial fulfillment of the requirements for the degree of Master of

Science in Information Security (MS IS)

In
School of Electrical Engineering and Computer Science,
National University of Sciences and Technology (NUST),

Islamabad, Pakistan.

(December 2023)

Online Printing Date & Time: Wednesday, 06 December 2023 20:01:46

Approval

It is certified that the contents and form of the thesis entitled "Incident Response Model
for Proactive Malware Detection in Smart Devices" submitted by Amna Hameed have
been found satisfactory for the requirement of the degree

Advisor : Dr. Mehdi Hussain

Signature: ERoirmrin—

Date: 29-Nov-2023

Committee Member 1:Dr. Muhammad Zeeshan

e
Qionatira- "QL‘A

29-Nov-2023

Committee Member 2:Dr. Sana Qadir

Signature; ~ ol
Date: 28-Nov-2023
Signature:

Date:

Publish Date & Time: Wednesday, 29 November 2023 , 14:10:2]

Online Printing Date & Time: Wednesday, 06 December 2023 20:12:53

THESIS ACCEPTANCE CERTIFICATE

Certified that final copy of MS/MPhIl thesis entitled "Incident Response Model for
Proactive Malware Detection in Smart Devices" written by Amna Hameed, (Registration
No 364734), of SEECS has been vetted by the undersigned, found complete in all
respects as per NUST Statutes/Regulations, is free of plagiarism, errors and mistakes and
is accepted as partial fulfillment for award of MS/M Phil degree. It is further certified that

necessary amendments as pointed out by GEC members of the scholar have also been
incorporated in the said thesis.

Signature: <4; =
Name of Advisor: Dr. Mehdi Hussain
Date: 29-Nov-2023
HoD/Associate Dean:

Date:

Signature (Dean/Principal):

Date:

Publish Date & Time: Wednesday, 29 November 2023 , 14:10:2

Dedication

| dedicate this thesis to my Parents and Siblings for their endless prayers, love, and

encouragement.

Online Printing Date & Time: Wednesday, 06 December 2023 20:15:58

Certificate of Originality

| hereby declare that this submission titled "Incident Response Model for Proactive
Malware Detection in Smart Devices"” is my own work. To the best of my knowledge it
contains no materials previously published or written by another person, nor material
which to a substantial extent has been accepted for the award of any degree or diploma at
NUST SEECS or at any other educational institute, except where due acknowledgement
has been made in the thesis. Any contribution made to the research by others, with whom
| have worked at NUST SEECS or elsewhere, is explicitly acknowledged in the thesis. |
also declare that the intellectual content of this thesis is the product of my own work,
except for the assistance from others in the project's design and conception or in style,
presentation and linguistics, which has been acknowledged. | also verified the originality of
contents through plagiarism software.

Student Name:Amna Hameed

ik

Student Signature: LL

Publish Date & Time: Wednesday, 29 November 2023 , 14:10:2

Acknowledgment

First of all, I would like to thank Allah, the Almighty for giving me the ability and strength to
carry out this research. My deepest gratitude to my supervisor Dr. Mehdi Hussain for his
continuous support and guidance during my thesis. | could not have imagined having a better
supervisor and mentor for my master’s degree. I am also thankful to my teachers for providing

me with an academic base, which enabled me to complete this thesis.

I am thankful to all my fellows and friends for their support and motivation. Last but not least,

| would like to thank my parents for their endless prayers and support throughout.

Table of Contents

1. INEFOAUCTION ... bbbttt 1
L.1. OVEIVIBW ...ttt b bbbttt bt r et n e 1
1.2, TRESIS IMOLIVALION ..ottt b ettt 3
1.3, RESEAICN ODJECHIVES....c.viiiiiiiieie ettt et e s be e e saeesre e e enes 3
1.4, RESEArCh QUESTIONSciivieiiieiieectie et ite et ste st e st e et e s re e sae e s beesbeeerbeesbeesabeesbeeenree e 4
1.5, Problem STatEMENT ... s 5
1.6. Solution Definition/DeSCrPLION........cc.ciiiiieie e 5
1.7. TRESIS CONIIDULION. ..ottt 6
1.8, TNESIS OrganIZAIONccueiuieiieieieiie ittt bbbt 6
IS TR TV 1 10 -1 Y PRSPPSO 7
2. LITEratUre REVIBW.o.viiiiiiiiiiieie ettt bbb bbbt 8
2.1, OVEIVIEW OF MAIWAIES.......coiiiiieiiitiieciee e 8
2.2. General Malware Detection APPrOACHEScccciiiiiirirereiieeeeee e 10
2.3. Smart-device Malware Detection APProaChEScccveveiieieeieiie e 12
2.4, Smart Device FOrensic FrameWOrKScouiiiiieiiineieinie et 13
2.5, REIAIEA WOTK ...t 16
2.6, RESEAICH GAP ...ivieiiiiiciie ittt e et reenteeraeare s 21
2.7, SUMIMAIY ..ttt ettt ettt h bbb etk e bttt b e b e et e b e e bt e bt e sn e b e e nennnenne s 22
3. Research MethodOlOgYc.oceiiiiiiiiiiiie e 23
3L INEFOTUCTION ...ttt bbb 23
3.2. Thesis Research Methodologycccciiriiiiiiieieie s 25
30 S A Xot o [1 £ SRS PPPP 32
B.2.2. EXIFACE ..ottt 33
3.2.3. Detection of INStalled APKS.........cciiiiiiiiiie e 33

Vi

324, INVESTIGALE ..eovveieeeesieeie ettt ettt e te e e nr et ne e neenneeneennes 34

3:2.5. VAHAALE ...t 35
G T 11 1011 0T 1Y TR UP R PUPROUPRRPPN 35
4. EXPEriMENtal SELUD ...c..ecveecieee et 36
A1, OVEIVIBW ...tttk bbb bbbt bbb h et e b et e bbbt bt e e n e 36
4.2, Setting Up ENVIFONMENTccviiieiicc ettt 36
4.3. Malicious and benign APK Sample COlIeCtioNnccccoiiiiiiiiiiiieee 37
4.4. Setting up the ANdroid dEVICE.........cceieiiieie e 38
4.5. Pre-requisite Software INStallation.............cccooiiiiiiiiiiii e 40
4.6, SUMIMAIY ...ttt t et b e ek b e et st bt e b e s e e bt e bt s e ke e bt e e nne e b e enrennes 41
5. EXPerimental RESUILScooiiiie e 42
5.1, OVEIVIEBW ...tttk bbbt bbbt e bbbttt b e e e 42
5.2, Important FOrensic ArtIfaCtS........cccceiiieiiiii i 42
5.3. Evaluating Research EffeCtIVENESSccoiiiiiiiiieies e 51
S4. SUMIMAIY ..ottt bbbt btttk b et b e et n e b e e b nne s 56
6. DiscusSION aNd ANAIYSISc.ecviiieieeie e ne s 57
8.1, OVBIVIEBW ...ttt bbbttt bbbt bbbt et et e bbbt bt et e e 57
6.2. Validation with CuCkoo SaNdDOXccoeiiiiiiiiiiie e 65
6.3, DIESCUSSION ...ttt bbb bbbttt b et b ettt 73
6.4. Comparison with Benchmark Approach...........cccoceiiiiiiiiic e 75
0.5, SUIMIMAIY ..eiiiiiiiiiiie ettt st e et e e e r e e e eab e e e sbb e e e sbbe e e bbeeabbeeabeeeanneeens 78
7. CoNnCluSION & FULUIE WOTK.....c..oiiiiiiiiiiiesieeee e 79
7.1 CONCIUSTON ..ttt ettt bbb 79
7.2, LImitation & FULUIE WOTKcoiiiiiiiiiiiii e 80
BIBHOGIaPNY ..o e 81
Y o] o 1=] 16 | G SRS PO PO TU TP PRURUPPRRPIN 87
F AN o] o 1= 0T LGPPSR 88

vii

List of Tables

Table 1: Target artifacts and paths for analysisccooeririiiiiniiie s 30
Table 2: System SPeCITICAtION.cciiie i 37
Table 3: Smart device SPECITICAtIONc.coi i 37
Table 4: MalWare SAMPIES..........coveiiiieiiece et re e ens 38
Table 5: Targeted Forensic artifacts and pathscccccveveiieiiiie s 45
Table 6: Analysis of forensic image based ontable 1., 48

Table 7: Analysis of forensic image based on proposed forensic investigation methodology 55

Table 8:User-installed appliCations............ccoouiiiiiiiii s 59
Table 9: System permissions required DY APKS..........ccooiiiiiiieie e 64
Table 10: Summarized results of validation by Cuckoo sandboX............cccccovveviivciicieenenne, 73
Table 11: Comparison table proposed VS existing method.............cccccevviveiiiece e, 78
Table 12: Applications downloaded from google playstoreccccooevveveiiiccecve e 87
Table 13: All applications, package name and APK path.........ccccccovvvieiiieiiniieneece e 88

viii

List of Figures

Figure 1: Digital Forensic Investigation Framework for 10T [11].....ccccccoveviiiieiiieieeiciieneen, 14
Figure 2: Integrated Digital Forensic Investigation Framework for 10T [12]........cc.ccovvnnnee. 15
Figure 3: Fog-based Digital Forensic Investigation Framework for 10T [13]........cc.cccovvneneee. 16
Figure 4: Forensic investigation Steps OVEIVIEWccoeiiierieiininieieesese e, 24
Figure 5: Proactive process phase-Digital forensic preparationcccoceveeerenenenieennennen, 26
Figure 6: Reactive process phase-Defined steps to perform digital Forensic.c.c........ 26
Figure 7: Proposed Model for Incident response using Digital Forensic Investigation for smart
ABVICE. .tttk bbb bbb e bRt R bR e bR Rt b bt b ene 27
Figure 8: Smart device INVeStigation PrOCESSc.ciiiieieerieiie e see et 34
Figure 9: Fastboot flash recovery process 0n ADBccccoiiiiiinininieeese e, 39
Figure 10: ADB to connect with mobile device and getting root access.c.cocvrvrvereennen. 40
Figure 11: External.db database artifactS...........cooririiieiiie i, 48
Figure 12: Installgeue.db database artifaCtS...........cocueiieiiiiiiicieee e, 49
Figure 13: Local_appstate.db database artifactsc.ccovveviiiieiiciicic e, 49
Figure 14: Frosting.db database artifactSccccoveviiiiiicii i, 50
Figure 15: investigate application permissions from package_cache path.cccccccveenien. 50
Figure 16: Cuckoo Sandbox suspicious APK score validation of APKLcccccocvviivinennnn. 65
Figure 17: Validation score of APK2 by Cuckoo SandboXcccccovvcinirieiiniinencieneseeee, 66
Figure 18: Cuckoo Sandbox Validation of APK3ccoiiiiiiee e, 66
Figure 19: Cuckoo Sandbox validation of APK4 as maliCiouscccccevereniienenieieenen, 67
Figure 20: APKS5 identified suspicious by Cuckoo SandboX..........c.ccccvevieiiiieiiieiiie e, 67
Figure 21: APKG6 validation by Cuckoo SandboX...........ccccevveiiieiieiiic e 68
Figure 22: Validation of APK7 by Cuckoo SandboXccccocveiiiiiiiiiiieccc e 68
Figure 23: Validation by Cuckoo Sandbox for APKS ... 69
Figure 24: APKQ9 validated by Cuckoo SandboXcccccoeiiieiiiiniiiceeee e, 70
Figure 25: Validation of APK10 by Cuckoo SandboXccccviiiiiiiinieiene e, 70
Figure 26: APK11 Cuckoo Sandbox validation............ccccceiiiiniiininiieeee e, 71

X

Figure 27: APK12 validated by Cuckoo Sandbox ..
Figure 28: Cuckoo Sandbox Validation of APK13
Figure 29: APK14 Validation by Cuckoo Sandbox

Xi

Abstract

Extensive usage of the Internet is increasing the risk of malware attacks on smart devices.
Implementing security controls in these devices is challenging due to their limited processing
and computation power. Different methods detect malware in smart devices through live
forensics, memory analysis, and timeline reconstruction. However, these solutions provide
only a limited number of artifacts and techniques. There is a need for a forensic investigation
model that identify the most suitable set of paths and artifacts to detect the malware presence
effectively. This study proposed an incident response model for detecting malware by
employing a digital forensic methodology. The proposed model consists of three phases:
proactive, reactive, and forensic process. The study extends the smart device forensic process
into four modules (1) acquire & extract, (2) detect, (3) investigate and, (4) validate & report.
The experiments are conducted on Android devices with the latest APKs malware. The
proposed model carefully examined and identified 11 different folder paths such as /data/data,
[/data/app, /system/app, /system/data. These paths contain useful artifacts for investigation. The
systematic examination of paths and corresponding artifacts helps to construct the timeline of
APK download URI, installation, traces, activity, intent, and system permissions acquired by
user-installed applications. The proposed model also correlates the changes in system paths
and files made by different user-installed applications. Similarly, the proposed system is
capable to identify the user-installed malware and benign applications. To prove the
effectiveness of results these suspicious applications are verified by Cuckoo Sandbox for

validation purposes.

Xii

Chapter 1

1.Introduction

This chapter elaborates the overview of basic concepts, significance, and history of
research work. This chapter describes the road map of the thesis and briefly highlights the
further organization and structure of the thesis. This chapter explains the motivation for
carrying out the research work. This chapter also gives an idea about the vital contributions,

prominent benefits, scope of the work, and key objectives of the thesis.

1.1. Overview

The term "Smart Devices” typically refers to hardware and other items that could potentially
read, recognized, located, addressed, and/or controlled online. Over thirty billion smart devices
associations, over four smart devices per person on a typical basis, and trillions of sensors
linking and communicating on these devices anticipated by 2025. Each second, 127 new
gadgets link to the internet, reports The McKinsey Global Institute. There are more than
thousands of smart devices in existence, and defending a system with such huge attack surface
is not a simple task—especially given the wide range of device kinds and standards of security.
Regarding those billions of smart devices, the consensus from an information security
operations perspective is that everything connected can be exploited?.

Every smart device is a potential attack surface via which attackers might access data. Malware

that targets smart devices or other connected devices is on the rise because these devices are

1

CHAPTER 1. INTRODUCTION

constantly linked to mobile smartphones or other computing gadgets through the Internet.
According to a recent study?, the most susceptible gadgets involve video-streaming devices,
linked cameras, PCs, cellphones, and tablets.

Additionally, the majority of smart devices have lower storage and processing capacities than
smartphones and laptops. Because of this, using firewalls, anti-virus software, and various
other security tools that may help safeguard them is challenging. Edge computing also makes
local data an attractive target for skilled threat actors by aggregating it.

In addition to the hardware of smart devices, ransomware may attack apps and data. According
to Check Point Studies, the typical daily amount of ransomware assaults rose by 50% in the
third quarter of 2020 compared to the first half of the year®.

Smart device botnets are an illustration of how vulnerabilities in devices affect users and how
hackers have learned to exploit them. Mirai is well-known smart device botnet malware strains,
hacked home smart devices network to launch a distributed denial of service (DDoS) operation.
The introduction of smart gadgets into the home might create new entry points into a setting
with questionable security, exposing staff to viruses and assaults that can infiltrate a company's
network. When establishing work-from-home and BYOD policies, it is an important factor to
consider.

Smart devices with known flaws can potentially be used by attackers to access inside networks.
These dangers vary from DNS rebinding attacks, which enable the collecting and exfiltration
of data from private networks to fresh side channel assaults, such infrared laser-initiated attacks

targeting smart devices in residential and commercial settings®.

1: Daunting challenge of securing 10T: https://www.forbes.com/sites/chuckbrooks/2021/02/07/cybersecurity-threats-the-daunting-
challenge-of-securing-the-internet-of-things/

2: Report on threats found in 10T: https://www.techrepublic.com/topic/security/

3: 10T security trends: https://www.itprotoday.com/iot/iot-security-trends-2021-covid-19-casts-long-shadow

4: How IOT device vulnerabilities effect users: https://www.trendmicro.com/vinfo/us/security/news/internet-of-things

https://www.techrepublic.com/topic/security/
https://www.itprotoday.com/iot/iot-security-trends-2021-covid-19-casts-long-shadow

CHAPTER 1. INTRODUCTION

1.2. Thesis Motivation

This research is focused on malware detection using forensic investigation
methodology. In literature, different malware detection approaches are employed by the
various techniques [1-9, 11-14, 17-18] with their merits and demerits but there is research gap
for detection of malware in smart devices. Security measures and detecting malware might,
however, be difficult at times. Dohyun Kim et. al. proposed an incident response framework

for smart device malware detection through digital forensic investigation [1].

The motivation behind this work is to improve the efficiency of forensic methodology by
identifying useful artifacts and paths to detect malware among other benign applications.

Further, the suspicious applications are validated based by cuckoo sandbox.

The proposed research aims to provide two significant perspectives. First, a method to identify
and analyze multiple latest malwares by digital forensic investigation. Secondly, to suggest

new artifacts and paths useful for forensic investigation for smart devices.

1.3. Research Objectives

In this study, we perform an in-depth analysis of artifacts and paths of android
applications to create new insights and explore malicious behaviors. The main objectives of

this research are as follows:
1. To study the existing smart device-based malwares and its forensic artifacts
2. To propose an incident response investigation forensic model for smart device.

3. Detect multiple malwares in real-time smart devices.

CHAPTER 1. INTRODUCTION

1.4. Research Questions

study:

This section describes the research questions listed here are devised to perform this

Why is this research required?

Smart device ecosystem is continuously being threatened by malware which
poses many security risks to the user’s data. Since this data is usually of great value to
the users, the users wanted to protect it.

There already exists several detection methodologies, each providing their own
benefits to the community. There is a need to investigate whether these can be employed

with the latest or modern smart device-based devices for the detection of malware.

How much importance does studying have? And what procedures are followed in
the study?

This study highlights the importance of malware detection in smart devices. The
purpose of the study is to classify malicious applications from benign applications using
forensic artifacts. It will help malware analysts and the research community to quickly
identify the malicious applications. The study performs qualitative as well as
quantitative detection of malwares. We have essentially split our process into the
following four phases to conduct the study:

1. Collection of the most recent benign and malicious samples and design
environmental setup

2. Obtain a forensic image of a smart device.

3. Analyzing and detecting forensic paths and artefacts by autopsy.

4. Verification of suspicious applications as malware using cuckoo sandbox.

4

CHAPTER 1. INTRODUCTION

What are the aims of this study?
The mainly focused aims are as follows:
a) Proposing forensic investigation model to identify the latest malware from
benign applications.

b) Identifying the newer artifacts and paths useful for efficient malware detection.

1.5. Problem Statement

In literature, most of the existing techniques detected the malware through the digital
forensic investigation in the smart devices. However, existing techniques are unable to identify
multiple and latest malicious applications along with other benign applications. In addition, the
existing investigation techniques are based on conventional and limited number of artifacts.
There is a need for research to propose a comprehensive incident response model to readily
detect the malicious applications in smart devices. The model correlates the changes in the

system paths and artifacts made by malicious and benign applications in smart devices.

1.6. Solution Definition/Description

The research provides an efficient malware detection approach using forensic
investigation of smart devices. In this research, the physical image of smart device is extracted
and analyzed by various tools i.e. Autopsy. Furthermore, the artifacts are collected from
targeted paths such as application data paths, and system data paths. This model is used to trace
malware presence and distinguish them from benign application. The suspicious applications

detected by this methodology are verified by Cuckoo sandbox.

CHAPTER 1. INTRODUCTION

1.7. Thesis Contribution

The proposed research methodology successfully explored and improved the detection
of malware by introducing new artifacts and paths. The contributions of the proposed

methodology are as follows:

» To detect the presence of multiple malwares installed in real-time smart devices.

» Proposes most suitable forensic artifacts and paths for effective investigation of
malware activities in smart devices.

» The study will correlate the changes in the paths and directories of smart devices by

comparing benign and malicious applications.

1.8. Thesis Organization

The thesis organization is presented as follows. Chapter 2 throws light on previous work
done related to detection of malware applications. In chapter 3, the research methodology
followed during the research has been discussed. The experimental setup is discussed in
Chapter 4. Chapter 5 showcases the result of the experiment. This section also discusses the
activities/events performed during the results collection. Chapter 6 is dedicated towards the
discussion and analysis of the experimentation results. Lastly, chapter 7 sheds light on the

conclusion with possible directions for the future.

CHAPTER 1. INTRODUCTION

1.9. Summary

In this chapter, basic concepts are discussed regarding malware analysis by digital
forensic investigation for the detection of malicious applications. It provides an overview of
the aim and scope of the thesis and presents the objectives of the research work with the overall
thesis organization. In the next chapter, we will look at the literature review that has been

conducted.

Chapter 2

2.Literature Review

Chapter 2 discusses the related work and terminologies. The related work is the research
carried out by different researchers over the years which is related to the work done in this

thesis and contributed towards making a new solution.

2.1. Overview of Malwares

The biggest danger to smart devices is malware, which has the potential to either
damage the gadget or, in some situations, transform the system into one that is privileged and
controlled by the attacker [2]. Such viruses can open a backdoor for other assaults because of
their ability to function independently. Grayware and Madware both provide serious security
risks in a similar way. Grayware, which among other infections include dialers and adwares,
cannot be deemed harmful but can nevertheless carry out undesirable acts that impair the
functionality of the device. Madware, on the opposite hand, utilizes aggressive and targeted
pop-up advertisements to gather data from a user's device [2]. According to data on
cyberattacks, financial malware, rootkits, logic bombs, ransomware, bots, worms, viruses, and
trojans are the most well-known types of malwares. A rootkit is a form of malware that an
attacker may gradually access with the aim of taking control of the system. In order to eradicate
the present infection, ransomware viruses might lock the user's device or software and demand

payment from them. The "screen locker ransomware” mentioned before may disable an
8

CHAPTER 2. LITERATURE REVIEW

Android-based smart TV. Bots are intended to infiltrate a device and are a sort of malware that
spreads itself. These malware threats then establish a connection with a server, commonly
referred to as a "bot master,” which serves as the main command and control center for infected
devices. Financial malware attempts to gather details about an account from a device or through
faulty banking websites. Code blocks inserted by an intruder into a network are known as logic
bombs. These programmed operations have the potential to damage the system when they are
activated, either by erasing data or by causing circumstances that might lead to the system's
total demise. Software that runs on computers is how virus and malware software spreads and
can destroy a system. The user's activity is required for a malicious program to be installed and
propagated on a device (by initiating it through an executive program). In contrast to viruses,
worms may propagate without the user's involvement and can function on their own. Worms,
on the contrary hand, spread through networks. Trojans are a category of malware that enters
the computer system by compromising user information and identity [3]. Uapush.A,
Kasandra.B, and SMSTracker are three of the mobile phones malware that are most often
installed in mobile devices [4]. A mobile device's data can be stolen by the malware Uapush.A
via an SMS. Another virus that resembles a security program is Kasandra.B. A mobile phone's
sensitive data, such as logs, passwords, history, etc., can be accessed by Kasandra.B. With the
help of the Android software SMSTracker, hackers may fully observe all of a mobile device's
traffic-related features, including SMS, phone calls, and other communications. A "screen
locker ransomware" has also been reported to have the ability to disable an Android-based
smart TV [4]. Finally, a virus known as "Mirai" has been found to have compromised a large
number of smart devices, including routers, IP cameras, printers, DVRs, etc. By scanning the

default usernames and passwords, it targets smart devices. [5]

CHAPTER 2. LITERATURE REVIEW

2.2. General Malware Detection Approaches

Over the years smart devices have become a popular ecosystem. Owing to their
extensive use and popularity, smart devices has previously been a subject of many studies from
different perspectives including security research like malware detection. There is enormous
literature for malware detection using different techniques, but the research lacks the detection
of malware from digital forensic investigation. In this section, we will examine the currently

available literature of malicious app detection under such analysis schemes.

Malicious application detection methods are mainly categorized into three types:

static analysis, dynamic analysis, and hybrid analysis.
a) Static Analysis

Static analysis is carried out in a non-runtime context and focuses on looking at the
source code, byte code, or application binaries, as well as on looking at the meta data and
supplementary information for any indications of security flaws [10]. A wide range of
methodologies and approaches are used in static analysis to identify a software's runtime
characteristics before it is executed. In a security setting, the goal is obviously to separate out

dangerous or repackaged programs before they are installed and used.

Since it requires far fewer resources and time, static analysis is frequently used as a
malware detection method and is seen as an effective mechanism for market protection. The
design is a fairly quick detection approach that is advantageous for Android smartphones with

limited resources [50].

b) Dynamic Analysis

10

CHAPTER 2. LITERATURE REVIEW

The study's dynamic component examines how programs behave during their execution
phases when tested against certain test cases. The study seeks to spot harmful actions that occur
after applications are deployed and run on actual or simulated devices. The hidden goals of
malware software can be retrieved through dynamic analysis. To differentiate among
dangerous and benign applications, this analysis frequently necessitates some human or
automated engagement with apps and gathers data on network activity, processor execution,
system calls, SMS sent/received, phone calls, etc.

The data obtained through dynamic analysis accurately reflects the real purposes of the
program. Nevertheless, although being a useful tool, the execution of dynamic analysis

consumes extensive resources [50].

c¢) Hybrid Analysis

Hybrid Analysis utilizes the mixture of static analysis and dynamic to perform the study
thereby increasing the detection accuracy. Given that it examines both the installation files and
the behaviors of the apps, it is regarded as the most thorough analysis since it combines the
benefits and drawbacks of both analysis kinds. However, like dynamic analysis, hybrid analysis
is also subjected to extensive resource utilizations.
Static analysis is beneficial for time and resource constrained environments. On the other hand,
although accurate for detection, the dynamic methodology requires extensive application study
and has a significant processing cost. Furthermore, unlike the static technique, the analysis is
done after the APKs have been run. For this purpose, static analysis is quicker and useful in

creating a preliminary understanding of the APKs depending on their anticipated behaviors.

11

CHAPTER 2. LITERATURE REVIEW

2.3. Smart-device Malware Detection Approaches

Forensic investigation methodologies are followed to detect malware from desktops,
mobile and smart device. In [1] authors aimed to develop a digital forensic incident response
framework for the detection and analysis of the malwares (i.e., phishing, smishing, vishing or
APT attack) for Android. The experiment is carried out to investigate Malware of Smishing
and Vishing and Malware of Phishing and APT. Targeted activates include detection of
Malware, invade method of malware, malicious activities performed by the malwares and their
command-and-control server. List of Devices used are IPhone 6, Samsung galaxy S3, wireless
router and, List of OS used are Linux, android, 10S. List of Malwares investigated are
SPAp.APK GMS.APK, V3Plus.APK, 23983JJF.APK Tools: Taig, Clutch. iTools, JEB, IDA

ProAndroid image extractor.

In [9], authors targeted to examine the Mirai botnet server through forensic examination
while acquiring the remote access of the server. The investigators set up the Mirai botnet
network architecture to retrieve the list of the infected 10T devices, the past statistics for the
DDosS attacks, and retrieved as numerous login credentials as possible. It was required to gather
the forensic artefacts left on the attacker's terminal, scan receiver, database server, loader
command and control (CNC) server, as well as the network packets. Therefore, disk and
memory image were acquired and also the author reverse engineered the live processes and
service executable from the control servers of the Mirai botnet. This study outlined how a
forensic investigator can access these artefacts remotely and to gather artefacts which target
machine can provide beneficial information. The forensic examination of compromised loT
devices and DDoS attack victims is out of scope of this study. Instead, they concentrate on the
attacker’s-controlled devices. "Vulnerable 10T device' and 'Infected 10T device' models are

created on Raspberry Pi 3 Model B computers. The operating system is a forensic workstation

12

CHAPTER 2. LITERATURE REVIEW

running 64-Bit Kali Linux. For acquisition and analysis of memory (RAM), the forensic tool
Linux Memory Extractor (LIME) and Volatility 2.6 were used, respectively. DD 8.3 was used
to obtain the disk image. Data recovery and file system analysis were enabled in Autopsy
4.11.0. PCAP analysis and monitoring of network traffic was carried out with Wireshark 3.0.3.
To extract network packets from the RAM dump, Bulk Extractor was used. The executable
files are reverse engineering by using the Ghidra 9.0.4 tool from the National Security Agency

(NSA).

2.4. Smart Device Forensic Frameworks

Kebande et al. [11] have proposed a general-purpose, ISO/IEC 27043: 2015-based
Digital Forensic Investigation Framework for the Internet of Things (DFIF-10T) that may
reasonably accommodate emerging 10T investigative capabilities. Three separate components
are combined into the framework, and they comprise: (1) “Proactive process” which deals with
activities aimed at rendering the environment of loT forensically prepared to use. (2) “Reactive
process” is represented by the digital forensic investigation process which could be initiated
after a potential security incident becomes apparent. The (3) “loT forensics” represents various

forensic strategies where 10T evidence can be obtained.

13

CHAPTER 2. LITERATURE REVIEW

Proactive Process

Potential Digital E

IoT Scenano Defmition

IoT evidence source identification

Plannmg Incident Detection

ridence Colection

= Drigital Preservation
=]
o
=g Stompe of Potentil Bvidence
228 ' g -
A B
= ; -]
SESES
E - .IJE E &
= =N = =
=1 =
gl ez2 = loT Forensics

- -t
—E c 28 |-
< g = B Cloud forens ics
EE e e i .
2= E |7 Network Forensics
(=N . - .
E 4 Device level Forens ics
B
g =
1=]
ua

l

3 Reactive Process

Initaliztion =" Acquistive

Investigative

Figure 1: Digital Forensic Investigation Framework for loT [11]

Kebande et al. [12] proposed an loT-based ecosystem Integrated Digital Forensic
framework which can analyze 10T Digital Evidence and in addition to it, this framework
defines IOT management platform. It defines IOT policies and standards from organizational
aspect. The generic Digital Forensic Investigation Framework for 10T environment (DFIF-
IoT), which was first presented, is expanded upon in the IDFIF-l1oT framework. In figure 3,
IDFIF-10T has been shown utilizing nine different subprocesses, including, Things (1), Device

Connectivity and Communication Network (2), Readiness Process Groups (3), 10T Forensics

14

CHAPTER 2. LITERATURE REVIEW

(4), Digital Investigation Process (5), Concurrent Processes (6), loT Management Platform (7),
loT Policy (8) and 10T Standards (9). The DFIF-IoT and IDFIF-10T differ primarily in that the
earlier one was universal and governed by the ISO/IEC 27043 international standard, whereas
the latter has integration of organizational aspects. IDFIF-I10T is also more policy-oriented
because post-event response processes, readiness, and the “things" themselves are all direction

oriented.

|
©|
(@)
©

®) @ “Things"

Device connectivity and
Network Communication

|

loT Policy

@ Readiness Process Groups

loT Standards

@ loT Forensics —

loT Management Platform

5 |

Digital Forensic Investigations

dp—— Concurrent processes

Figure 2: Integrated Digital Forensic Investigation Framework for 10T [12]

In [13], to deal with the primary problems with digital 1oT forensics, Al-Masri et al.
presented the fog based loT forensic framework (FoBl). Fog based 10T forensic framework
makes use of the 10T utilizing the fog computing paradigm, which aids in pushing intelligence

to the outer edges of a network through a gateway. Fog-based computing is appropriate for I0T

15

CHAPTER 2. LITERATURE REVIEW

systems with lots of installed 10T devices and high data volumes. Such a fog node may save
the last known position of a connected device, the framework can extract log files linked to the
broken device, and the fog node will alert other Internet of Thing’s devices or networks of a

potential danger. Then, using FoBlI, it is feasible to recover forensic evidence.

Cloud Environment

FoBl Framework

m——

Forensic Evidence
Analyzer Recowery

Devices
computing
devices

Figure 3: Fog-based Digital Forensic Investigation Framework for 10T [13]

2.5. Related Work

These days, system log analysis is used to undertake numerous investigations and
research in a variety of sectors. Designers and investigators can determine the current state of

the system and identify any odd conditions by analyzing the logs. For analyzing the Android
16

CHAPTER 2. LITERATURE REVIEW

log, utilize Logcat [14]. Even while the Logcat has the benefit of being simple to use, it has the
drawback of just being able to inspect the basic logs that the Logcat provides. In this article,
we demonstrate the examination of Application Installation Log files on Android Systems and
create an installation log management solution. Using Python and Android Debug Bridge
(ADB), the setup of the log management program gathers log files that are kept locally and can
only be accessed by root users. Important forensic artifacts found are androidMenifest.xml file
to get installation information about the APK, Localappstate.db: records information of all
installed apps, Library.db contains ownership of installed apps and Frosting.db does not detect
the installation time but contains traces of APK. When a normal app and malicious app is

installed the change in APK path can be clearly seen in frosting.db record.

The researchers [15] presented a thorough forensic examination of Cisco WebEX, one
of the top three videoconferencing programs on the market right now. More specifically, we
provide the findings of the forensic examination of the web, Android, and Cisco WebEx
desktop client apps. Memory, disc space, and network forensics are the three elements of digital
forensics that we concentrate on. It is clear from the collected artefacts that useful user data
may be obtained from many data locations. The Advanced Encryption Standard (AES) keys,
contact information, emails, user IDs, profile images, chat messages, shared media, meeting
information, including meeting passwords, keywords searches, timestamps, and phone logs are
among them. We use the retrieved artefacts as the foundation for creating a memory
interpreting tool for Cisco WebEx. The anti-forensic artefacts we find also include deleted
conversation messages. Despite the fact that network connections are encrypted, researchers
are able to gain access to important artefacts such the IP addresses of host devices and server
domains as well as message/event timestamps. Andriller CE tool is used to conduct analysis
and important artifacts found are SQL.ite database. \data\apps\com.android.vending\db folder

contains frosting.db which has the APK path, other SQLite databases including
17

CHAPTER 2. LITERATURE REVIEW

install_source.db, install_queue.db, suggestions.db, localappstate.db, verify apps.db, and
xternal referrer status.db, provided some digital evidence of application’s usage.

\data\apps\com.android.vending\db folder also contains library.db which lists the email
address against WebEx Meetings and the certifcate hash of the application.
\data\apps\com.google.android.googlequicksearchbox\r\app_webview folder contains
Cookies.db that contains the WebEXx meetings web cookies.
\data\apps\com.android.vending\db folder also contains SQL ite databases like auto_update.db,

and data_usage.db which indicates traces of usage/installation.

To address the security threats brought on by the widespread distribution of smishing
malware, multiple studies have been carried out. Some of them employed the Naive Bayesian
classifier [16, 17], which analyzes the properties of smishing characters and finds smishing
characters employing rule-based techniques [18]. Additionally, research was done to identify
malware using app network traffic analysis [19] and integrating API call and authorization
information [20]. Taint analysis has been used in studies to proactively identify malware using
Android malware [22, 23, 24]. Similar research has been done to identify malware by
examining an app's behavior using data flow analysis [25, 26, 27]. Another study [28]
compared the investigation's findings of the previous data flow analysis. PACE has been
offered as a comprehensive solution for malware analysis that offers machine learning-based
Android malware detection technologies via REST API, web interface, and ADB interface
[29]. Additionally, experiments on dynamic analysis utilizing machine learning for malware
detection on actual devices were undertaken [30], [31], to address the drawbacks of malware
detection in Android emulators. Studies have suggested a way of identifying malware that
combines a signature-based, motion-based detection with data mining approaches [32].

Another research detected the malware by analyzing android system permissions required by

18

CHAPTER 2. LITERATURE REVIEW

malicious applications [33]. Significant Permission Identification (SigPI1D) was created in this
investigation. Because of the tests, SigPID efficiently identifies new malware by mining

permissions data to identify malware.

Additionally, a study that combined features of static analysis and dynamic analysis of
Android apps with deep learning technology created an engine called DroidDetector that
enhances the ability to identify about malware through a successful extraction of specific
features of malware [34]. Additionally, research named ToR-SIM Platform [35] proposed a

mobile forensic platform for Android malware analysis and detection.

Similarly, Nisha et al. [36] suggested utilizing mutual information and chi-square
approaches for the identification of characteristics to identify repackaged Android malware.
Random forest classifier, among other used classifiers, was able to attain the best accuracy of
91.76% for assessment. The 88 uniquely recognized permissions for the study are the primary

goal of their approach, which may be further condensed to include harmful ones.

Sandeep HR [37] did exploratory data analysis (EDA) and extracted data from the apps.
The suggested method concentrated on employing deep learning techniques to detect malware
during installation. Their detection architecture made use of a variety of tools, including
permissions, to mimic the actions taken by the programs. They are successful in classifying
with 94.6% accuracy using Random Forest. Their method excludes mimicry attacks, cloning
of apps, and adware and instead employs 331 characteristics for categorization that may be

further optimized.

In Multilevel Permission Extraction (MPE) technique, Zhen Wang et al. [38]
concentrated on finding the permissions automatically that aids in differentiating among the
good and bad apps. Their dataset consisted of 9736 apps from each of the sets of categories,

malicious and benign, and experimental findings indicate that the detection rate of 97.88% is
19

CHAPTER 2. LITERATURE REVIEW

reached. In a different study, Ming Fan et al. [39] developed a method for creating frequent
subgraphs, or "fregraphs,” to describe the typical behaviors of viruses from the same family.
They suggested FalDroid, a technique for fregraphs based detection. As per preliminary
findings from their testing, FalDroid can categorize samples of malware up-to 94.2% of into
the appropriate categories in approximately per program with 4.6 seconds. Without an
objection, both of these methods accomplish the ultimate objective well, but at a considerable

cost in terms of more computations as well as the time required.

Wang et. al. [40] designed a permission-based detection approach which uses
contrasting permission patterns to differentiate malicious and benign applications. They extract
information regarding required and used permissions for mining permission patterns which
they later use to detect Android Malwares. The dataset used by Wang et. al. consisted of 2454
Android applications (1227 applications for each malicious and benign class) comprising of
different application categories such as games, entertainment etc. With their analysis, they were

able to achieve a high accuracy of 94%, with 5% false positives and 1% false negatives.

By evaluating the behavior of the virus and utilizing the cuckoo sandbox to investigate
its behavior, this sandboxing technique can identify malware samples whose source code is not
trusted. A malicious code examination tool called Cuckoo looks at malware in greater depth
and offers thorough results depending on the tests it runs. Its objective is to offer a method for
automatically analyzing files and to present all of the links between the system and the files
being analyzed. Windows executables, PDF files, DLL files, Internet URLs, Office documents,

and Java files are the primary targets. [43]

For the research's categorization of harmful programs, most of the approaches used a
collection of permission-based characteristics. Since they offer quick and almost precise
detection, permissions-based approaches are typically used for the detection of maliciousness.

20

CHAPTER 2. LITERATURE REVIEW

Since the examination is done before the app is installed, there is no risk of the device being
harmed. For this reason, permissions may play a crucial part in the quicker identification of
malware. Additionally, minimizing useless permission characteristics might simplify
computations.

To apply a computation-effective and rapid detection strategy, a solution that makes

use of android system permissions is provided.

2.6. Research Gap

The literature review demonstrates that considerable advancements have been achieved
in the creation of frameworks and approaches [18-20] for malware detection on various smart
devices. However, there is still room for improvements that must be addressed. Most of the
study targeted the analysis and detection of malware on certain smart devices, such as Mirai
botnet servers and Android smartphones. There is no generic framework or approach for the
diverse nature of smart platforms and devices. Numerous studies use smart environments that
are emulated or simulated, which could not accurately reflect the richness and diversity of smart
device ecosystems in the real world. Validating forensic methodologies requires running
experiments on real smart devices. The majority of existing methods concentrate on static
malware analysis. The identification and analysis of malware that might not leave traces in
memory might be improved by using dynamic analysis approaches. The acquisition and
analysis of forensic artefacts from smart devices requires the development of more effective
forensic investigation techniques. A study is required to recreate the sequence of events and
pinpoint the underlying causes of breaches of privacy in smart networks. In order to maintain
the privacy and security of smart devices and ecosystems, the proposed study would address a
few of these gaps such as: physical mobile device investigation, identifying multiple real time

malwares from a bunch of other benign applications, propose a comprehensive incident

21

CHAPTER 2. LITERATURE REVIEW

response model using forensic investigation methodology. The proposed forensic investigation

methodology comprises of the most suitable artifacts and paths to provide efficient output.

Summary

This chapter covers the background and the related work of the smart malware detection
approaches. The related literature has been presented along with a critical analysis of the
studies. Existing research work and schemes used in literature help in formulating the solution

to the identified problem.

22

Chapter 3

3.Research Methodology

This research methodology will be explained that is followed to carry out this thesis
research. A brief description of the methods that are used in our research methodology along
with the phases followed in the research process, i.e., acquiring digital image of smart device,
investigating the artifacts and paths, and malware detection using digital forensic investigation

are given in this chapter.

3.1. Introduction

Here is a brief overview of research methodology that improved Dohyun Kim et. al. [9]
malware detection methodology by identifying the artifacts and new location that are useful
and beneficial for malware detection investigation.

To meet the research objectives the proposed methodology studied the generic Digital Forensic
Investigation Framework for 10T (DFIF-10T) based on the ISO/IEC 27043: 2015 and added
the research contribution to design incident response methodology by only extending the smart
forensics phase of above framework. The overview of proposed model to conduct smart device

forensic is below:

23

CHAPTER 3. RESEARCH METHODOLOGY

O 1 Proactive phase Reactive phase O 3
The tion st i
preparation steps The steps of reactive Smart device
are defined prior to phase are mapped to f icoh
perform the digital IOT forensic phase orensicphase

J— O 1 Acquire &
Extract

v

N l ST—< 0 3 Investigate

v

o1 (Z)

4

- O 5 Report

Figure 4: Forensic investigation Steps Overview

The steps how forensic investigation will be carried out is below:

A. Using the ADB bridge and DD to obtain the physical image of a smart device.

B. Forensic image examination of the devices and autopsy-based artifact discovery.

C. Based on findings, construct the methodology that contains the most suitable artifacts
and path for malware detection.

D. Analyzing the applications of device by following constructed methodology.

E. Comparing the benign and suspicious applications to see changes in the paths and
artifacts.

F. After comparison identify vital paths and artifacts that can be useful for forensic
investigation

G. Analyzing all device applications by the newly identified paths

H. Final suspicious applications are validated by the cuckoo sandbox to verify if the

identified applications are real malware.

24

CHAPTER 3. RESEARCH METHODOLOGY

After performing the stages, a report of the malware detection summary is generated which

can then, later, be used to carry out further evaluations.

3.2. Thesis Research Methodology

The system architecture of the methodology is shown in Figure 4. It depicts the
proactive, reactive and smart device forensics process. In this research we are extending only
the smart device forensic process part. The NIST framework based forensic process is being
followed and steps are acquired, extract, investigate and detect. These processes are mapped to
smart device forensics and steps are defined for each phase. It depicts an abstract level view of
proposed methodology to detect malware at device level evaluation process. How APKs will
be evaluated by forensic investigation to distinguish benign and malicious. The key

components are discussed in the below topics.

For efficient incident response, the research proposed incident response framework that can
filter the benign and malicious applications and it can detect multiple malwares at the same
time. The proposed incident response framework methodology is shown in Fig. 4, and that
comprises of three phases:

(1) Proactive

In the proactive phase the steps are defined prior to performing the smart device forensic.

While, in reactive phase when real time forensic examination is started.

25

CHAPTER 3. RESEARCH METHODOLOGY

Proactive Phase

i) Evidence i Potential Digital
{ Smart de?'lce source { Evidence i Evidence
SR ! identification i Collection Preservations
| | —
¥ . ¥ , b ¥
Malware Android Data Safe
Activities Devices Gathering Container

Figure 5: Proactive process phase-Digital forensic preparation

(2) Reactive

The steps of reactive phase are mapped to smart device forensic phase.

Reactive Process

Acquire -~ Extract - - Detect

+--# |nvestigate --p Report

Figure 6: Reactive process phase-Defined steps to perform digital Forensic.

(3) Smart device forensics

The smart device forensic phase is following the reactive process to detect the malware by

performing several steps like path traversal, examining invade method of malware, detection,

and reporting.

26

CHAPTER 3. RESEARCH METHODOLOGY

-

-

i

P o ~ - R R e e S Ea=So o e -
/~ Acquire & Extract ™ 4 S
i q ./ Report s
! rrm————— 3 1 h \
1 Acquisition of a : : :
1 oo H 1 : o .
I Device image I] i ;i‘;z:]':ft:;in ﬁl] Smart device Forensic
H b] 1
H §nsmssssssssssssssmasassssssssssssssasasdh - ! 1
i *I o ;1 Process
1 o 1 ! 1
! 1] 1
H - Detect APKs | ™. 1 1 .]
1< tracesin ¢ ~-;No | ! i
P ™ smart device 1 1 { Validate the suspicious APKs ";:51_ 1
1 R : I { in Cuckoo Sandbox : 1
1 ; \ ’
] N\, 4
: 1 B TS N I o
1
1 - e B e e e .
1 1 - I ticat e
H IFAPKsare ™. Nol F nvestigate
1 installed on aTa —I%]
) 1
: Device : [DI1: APK Download files from Google play store or websites
\ \"‘\w I : D2: Google play store Installed APK files
2 .l Yes A I D3: Verify hash certificates of APKs
hat DLt EEE L bl - : D4: Investigate the time of download. URI and Account
I D5: Apps that are auto-updated from Google play store
"""""""""""""""" ~ : Dé6: Verify system installed applications
I’ Detect R I D7 Verify the APK names of legitimate APKs
1 : : Identification of D8 Verify package names of APKs downloaded from Google play store
! i i [Malicious and D9 System installed apps metadata
1 : Traversing the paths Investigate 1 al ; 1 pp
1 | and directories s b forensics =% i 1 iBenignaPks o DD Wi AR it
. b § 1 I l'I D11 Verify User-installed apps metadata
i artifacts W \ 1‘ L
3 1 .
\\- ______________________________ f’ \\. -

Figure 7: Proposed Model for Incident response using Digital Forensic Investigation for

smart device.

When analyzing Android device digital forensic image suspected of being infected with
malware, there are several important paths and artifacts that investigators should look for. Some

of the key areas to focus on include:

1. Application data and logs: Malware typically leaves traces of its activities in application
data and logs. Investigate the data and logs of installed applications, attentions required to
suspicious or abnormal behavior, such as excessive network connections or unusual file

activity.

2. System logs: System logs contain information about the device's operation and can be a
valuable source of information when investigating malware. Check the system logs for any
unusual activity or errors, such as repeated crashes, unusual network activity, or unexpected

changes to system files.

27

CHAPTER 3. RESEARCH METHODOLOGY

3. File system artifacts: Malware often creates files or modifies existing files on the device.
Investigate the file system for any files that look suspicious, such as executables, hidden files,

or files with unusual names.

4. Malware binaries: If it is suspected that the device is infected with malware, then extract
the binary files of the malware and analyze them further. These files can often be found in the

application data or system directories of the device.

For evaluation, the following directories should be investigated to find useful forensic

artifacts:

1. /system/app: Contains system apps that are pre-installed on the device. Malware may
be disguised as a legitimate system app, therefore it's important to check for any
suspicious apps that may have been added.

2. /data/app: Contains user-installed apps. Malware may be installed as a legitimate-
looking app, so it's important to check for any unfamiliar or suspicious apps.

3. /sdcard: Contains user data, including photos, videos, and files. Malware may be
disguised as a file, such as a PDF or document, so it's important to scan for any
suspicious files.

4. /data/data: User-installed application data, including databases and cache files.
Malware may store data here, so it's important to check for any suspicious data

associated with unfamiliar or suspicious apps.

28

CHAPTER 3. RESEARCH METHODOLOGY

No Paths Description Artifacts
D1 Android/providers/media/external.db SD card Filesystem Data, size, format,parent,
Information data_addded, data_modified,
Mime_type, Title, bucket_id,
bucket_display_name,
media_type, storage_id,
D2 Android/vending/databases/installgeue.db Google play store Reason,package
App Trace
D3 Android/vending/databases/library.db Certificate hash of Account, doc _id,
the application document_hash,
app_certificate_hash
D4 | Android/vending/databases/localappstate.db Information of all | Package name, download uri,
installed apps account, title, download and
update timestamp, app hame
D5 Android/vending/databases/frosting.db All APK paths and Apk_path, package name
pkg names
D6 Android/providers/media/internal.db Contains data of Data added or modified time,
internal system app name, title, size
D7 Android/vending/databases/ verifyapp.db Contains only APK APK name
name
D8 Android/vending/databases/autoupdate.db Information about Package name

the auto update of

apps

29

CHAPTER 3. RESEARCH METHODOLOGY

D9 [system/app/* Pre-installed system System installed apps
apps on the device metadata
D10 data/system/package_cache/l System permissions Intent, activity and APK
for all installed apps permissions
D11 Data/app/ Contains data of User-installed apps metadata
user-installed apps

Table 1: Target artifacts and paths for analysis

Table 1. contains the targeted paths and directories which are traversed from D1 to D11 to

analyze the necessary information about the device applications.

D1(external.db): This file resides in the internal memory of a device. It contains the
file system metadata for all existing files in the /sdcard area. After invading into the
device through smishing or phishing, the malicious applications download its
configuration files to the /sdcard area.. Therefore, to check the app installation items in
the /sdcard directory, this file is necessary. This pertains to the file that is linked to D1
in Table 1.

D2 (installqeue.db): The file corresponding to D2 in Table 1, contains forensic
information related to app installation and update activities on Android devices. This
information may include package names, installation timestamps, update version
numbers, and installation source details. It can be useful for digital forensics
investigations to track app installation history and identify potential malicious or
unauthorized installations.

D3 (library.db): File corresponding to D3 in Table 1. contains ownership of installed

apps, lists the email address against installed apps, and the certificate hash of the

30

CHAPTER 3. RESEARCH METHODOLOGY

application. This file is required to verify the authenticity and hash of installed
applications.

e D4 (localappstate.db): A file storing the app installation metadata on smart devices.
The file that relates to D4 in Table 1 for Android includes details on the application.
These details include its name, latest update date, installation date, package name, and
Google play account used to download the app.

e D5 (frosting.db): The file corresponding to D5 in Table 1. does not detect the
installation time but contains traces of APK. When a normal app and malicious app is
installed the change in APK path is detected.

e D6 (internal.db): The file corresponding to D6 in Table 1. contains the application
data downloaded from official vendors or Google play store. Its analysis is necessary
for classification and comparison of behavior among user-installed apps from third
party or Google play store.

e D7 (verifyapp.db): The file corresponding to D7 in Table 1. contains forensic
information related to app verification and licensing on Android devices. This
information may include app package names, version numbers, licensing status,
timestamps of app installations, and verification tokens. It can be valuable for digital
forensics investigations and analyzing app usage patterns on a device.

e D8 (autoupdate.db): The file corresponding to D8 in Table 1. contains traces of apps
packages which are downloaded from official vendors like Google play store and
contain information about the automatic update of apps. It is necessary to analyze this
file to figure out which app gets update from Google play store even after installation

as some apps downloaded from Google play store also contains malicious codes.

31

CHAPTER 3. RESEARCH METHODOLOGY

e D9 (/system/app): The files corresponding to D9 in Table 1. contains system apps that
are pre-installed on the device. Malware may be disguised as a legitimate system app,
S0 it's important to check for any suspicious apps that may have been added.

e D10 (/package_cache/l): The file corresponding to D10 in Table 1. contains the
installation package of all apps, and permissions in system for all installed apps.

e D11 (/Data/app): All user-installed app installation files are located inside the IOT
device. From among the files suspected of being harmful, the investigator chooses and

carefully examines the files matched to D11 of Table 1.

Only the smart device forensic process part of Fig. 1 has been extended to achieve research
outcomes. The NIST framework based forensic process is being followed and steps are
acquired, extract, detect, investigate, and validate. Fig. 2 depicts the technical perspective of
proposed methodology for device level forensic to detect multiple malwares at the same time,
it shows how APKs will be evaluated by forensic investigation to distinguish between benign
and malicious applications. Smart device forensic phase comprises of following steps as

depicted in Figure 4:

3.2.1. Acquire

An Android-based device's root-privilege shell may be opened with the use of the Android
Debug Bridge (ADB) and a rootkit. From there, a trusted 'dd' software can be run to capture an
image of the device's memory, both removable and internal [40]. Throughout this work, the
"rootkit method"—a technique employed by several professional mobile phone forensics
programs—will be referred to. Installing a rootkit requires some sort of modification to the
device, even if it's just a very little one. The most valuable digital evidence is likely to exist on

the user data partition, hence Vidas et al. advise against modifying it and instead recommend

32

CHAPTER 3. RESEARCH METHODOLOGY

re-flashing the recovery partition of the smartphone and replacing it with a forensic acquiring
setting [41]. Restarting the device into "recovery mode" results in the collection of a picture
utilizing the reliable forensic acquisition platform. In this study, this tactic is known as the

"recovery mode" technique. [42]

3.2.2. Extract

It refers to the artifact finding stage. The forensic image acquired in first phase is loaded into
sleuth kit autopsy. Forensic image is then analyzed to find forensic artifacts and directories by
traversing through the paths comprising of application data and logs, system data and logs,
filesystem artifacts and malware binaries. The path traversal helped into the detailed insights
of the system data and artifacts. In this phase, changes have been detected into the system paths
made by the applications and forensically useful paths were identified. Based on findings, the
forensic investigation methodology has been constructed that contains targeted artifacts and

paths for malware detection as mentioned in Table 1.

3.2.3. Detection of installed APKSs

It is important to detect the presence of applications as the first step of investigation. The
applications usually present are user installed apps and system installed apps. The user-
installed apps are downloaded from Google play store or from untrusted source or third-party.
The presence of user installed APKs are detected at the D1 and D6 paths. The basic information
about APKs e.g., the download method, URI, installation timing etc. are gathered. This
information is useful only when these APKs are installed in the device. To detect the installed

applications D9 and D11 paths are analyzed. Forensic artifacts for the installed applications

33

CHAPTER 3. RESEARCH METHODOLOGY

e.g., APK path, package name, installation files etc. are found which is useful to move forward

with forensic investigation for malware detection.

3.2.4. Investigate

The installed applications of device can be analyzed and investigated by following constructed
methodology. Installed applications are investigated by traversing through all the paths
mentioned in Table 1. During the path traversal important artifacts are collected and
applications are evaluated based on these artifacts. After evaluation, the applications are
classified as benign and malicious. These benign and suspicious applications are compared to
detect changes in the system files e.g., the installation files and paths, application packages,
application behaviors, intent, activities, system permissions required by benign and malicious

APKSs etc.

Analyze system-installed apps 14 apps are not internal systemapps

Android/providers/media/internal.db }

v

Android/providers/media/external.db }

10 Apps were and source of download was chrome browser.

—— Y A A

Analyze 3"-party downloaded apps

Analyze Google playstore
downloaded apps

out of 41 apps only 4 are downloaded from google playstore

v
Android/vending/databases/installqeue.d }
b)

Investigate Google playstore
downloaded apps

v
Android/proViders/media/[ocaiappstate.d W 1 Collected playstore installed apps title and google account used
b >

Apps that auto-update from
google playstore

v |
Android/vendr'ng/databases/autoupdate.d] ! Collected playstore installed apps package name

L]

Android/vending/databases/verifyapp.db

verify user downloaded
apps are installed

4

e N e

— S

H
i Collected playstore installed APK name

verify the hash certificate
of application

: '
¥ 1
'

{ Android/vending/databases/library.db

| :
)

i
I
Verify if 3™ party user-installed app ! 4 i
disguised as legitimat tem ¢ H + Qut of these 10 APKs none of them has disguised as legitimate app
isguised as legitimate system app :'[/system/app/* : er
: . |
! H 1
1 v !
Investigate suspicious 10 APKs | f] ! Android system permission to detect the malwares out of these applications
,“L data/system/package_cache/1 I >

Figure 8: Smart device Investigation Process

34

! Only 4 apps has the verified hash certificates, and 10 apps don't have.

CHAPTER 3. RESEARCH METHODOLOGY

3.2.5. Validate

The suspicious applications which are filtered out as a result of investigation are fed into the
cuckoo sandbox to verify whether the detected suspicious APKs are real malware or benign.
This step proves the effectiveness of the methodology that is proposed and verifies the results
of investigation by identifying all suspicious applications as dangerous APKSs. At the final step,

the results are reported.

3.3. Summary

In this chapter, we have discussed different methodologies that have been used in the
research and can be followed to achieve similar results. The overall view involves are acquired,
extract, investigate and detect to detect malware by forensic investigation. In the next chapter,

we will look at the experimental setup designed to perform this specific analysis.

35

Chapter 4

4.Experimental Setup

This chapter explains the experimental setup that has been designed to create and
set up an environment to conduct the research. This chapter also justifies why some of the

processes have been followed. System configurations are also provided in this chapter.

4.1. Overview

The experimental setup includes an Android Redmi Go device consisting of
malicious and benign applications and a PC for consisting of tools like ADB Bridge,
Autopsy and Cuckoo sandbox to acquire the physical image of device, to analyze the
forensic image for filtering benign and malicious applications and validate the malicious

applications as malwares respectively.

4.2. Setting up Environment

For carrying out experimentation, a windows-based machine has been used. The

specifications of the system have been shown in below table 1.

36

CHAPTER 4. EXPERIMENTAL SETUP

Property Description
Manufacturer HP

Model Pavillion
Architecture X64 based
Operating System Windows 11

Processor Intel(R) Core (TM) i7-8550U CPU
@ 1.80GHz 1.99 GH GHz
RAM 8 GB
Storage 1TB
Table 2: System Specification
Property Description
Manufacturer Redmi
Model Redmi Go
OS Android 8.1 Oreo
Processor Quad-core 1.4 GHz Cortex-A53
RAM 1GB
Storage 16 GB

Table 3: Smart device specification

4.3. Malicious and benign APK Sample collection

To construct the dataset, we have collected different samples of Android applications
containing applications from two distinct sets of android families i.e., malicious and benign.

Both types of samples were collected from different sources. Benign samples were collected

37

CHAPTER 4. EXPERIMENTAL SETUP

from the official Play Store. The collected benign samples represent applications from different
application categories such as business, entertainment, Finance, and games, etc. to provide as
much diversity as possible to the samples.

While for the malicious samples, we have collected from GitHub Android malware

database. The samples on GitHub are available in the form of zip files and can be downloaded

[44].

Malware Quantity
Rootnik: 1
ES5E22B357893BC15A50DC35B702DD5FCDFEAFC6FFEC7TDAAOD313C724D72EC854.APK
Krept banking: krep.itmtd.ywtjexf-1.APK 1
Candycorn: 14d9f1a92dd984d6040cc41ed06e273e. APK 1
Nimaz ka waqt: 1514376339e4a0b4727c6897640c7c3e.APK 1
Xbot: 1264C25D67D41F52102573D3C528BCDDDA42129DF5052881F7E98B4A9 1
Zip extractor: com.zip.unzip.zipextractor.raropener.zipfile 1
Rubbish cleaner: com.snt.rubbishcleaner 1
Photo processing: 263b0851156f7d77fb43368cel3bedel 1
Lockkeeper: 0e8805b683bc0fd8a6d49b07205f1a4b 1
Oscorp: 20230307/f73ebc6f645926bf8566220b14173df8.APK 1

Table 4: Malware Samples

4.4. Setting up the Android device

e Redmi Phone with Andriod version 8.1 is used for this process.
¢ Rooting of device was performed using TWPR & Magisk

e Download TWPR for Redmi Phone & Magisk installer

38

CHAPTER 4. EXPERIMENTAL SETUP

e Copy the Magisk through MTP/file transfer on Phone internal storage.

e Reboot into the bootloader

e Flash TWPR through Fastboot mode

e Boot the phone in RWPR recovery mode (fastboot reboot)

e Install the Magisc from the phone internal storage

e After Magisc installation rebooted the phone

e After reboot Magisc Manager App was there, simply run it to verify Magisc has
been installed.

e Magisc Manager will control the root access, Magisc will monitor the root access
for every app and will allow or deny the access.

e Installed “Root Checker” to verify rooting status

\Desktop\platform-tools»adb devices -1
ed
device product:tiare model:Redmi Go device:tiare transport_id:1

\Desktop\platform-tools>adb devices -1
ched
offline transport_id:2

latform-tools>fastboot flash re ry recovery.img

Booting
Finished. Total time: ©.861s

C:\Users\EliteBook\Desktop\platform-tools>

Figure 9: Fastboot flash recovery process on ADB

Installed BusyBox on Phone, it requires root privileges for installation. BusyBox was installed
to have “dd” utility. We used “dd method” for physical image acquisition.

Installed “Netcat” on PC, this utility is used for network connection through TCP.
Establishing ADB connection to phone from PC and switched to phone root access and viewed

all the disks & partitions details in the in “/proc/partitions”
39

CHAPTER 4. EXPERIMENTAL SETUP

C:\Users\EliteBook\Desktop\platform-tools»adb devices -1
ces attached
device product:tiare model:Redmi Go device:tiare transport_id:8

tiare:/ cat /proc/partitions
major minor #b name

B
e
1

GO =] O LA I R

Figure 10: ADB to connect with mobile device and getting root access.

4.5. Pre-requisite Software Installation

Following Software need to be installed before the experimentation process in windows
can be followed:
1. An Archiving tool such as WIinRAR; for extracting the application samples [45]
2. Installing the ADB bridge; for connecting with android and for logical and physical
device image acquisition [46]
3. Netcat; to start a connection in PC that can connect with the android device with TCP
based connection at port ‘P’ [47]
4. Autopsy: for device logical & physical analysis of the acquired image to find forensic
artifacts and paths [48]
Following Software need to be installed before the experimentation process in Ubuntu 18.04
can be followed.
5. Cuckoo sandbox: It is the leading open-source sandbox to automat malware analysis

system for Windows, Linux, Mac or android [49]

40

CHAPTER 4. EXPERIMENTAL SETUP

4.6. Summary

In this chapter, we have covered the experimental setup that has been proposed to
carry out the analysis. The process of collecting the required applications sample and
setting the necessary environment and the related tools has been discussed in the chapter.
Moreover, details about the installation of pre-requisite software for the analysis process

and their sources have also been provided in this section.

41

Chapter 5

5.Experimental Results

This chapter explains the achieved results and their analysis in the form of detection
results. The results are compared with the benchmark approach [9] and their achievements

have been discussed in this chapter.

5.1. Overview

Android applications use permissions to provide the functionality to the users, which are
exploited by malware developers for conducting cybercrimes. In this study, extensive analysis
has been carried out on an Android application representing benign and malicious applications.
We further investigated different forensic artifacts while performing the analysis to measure

the effectiveness of the approach.

5.2. Important Forensic Artifacts

As described in methodology the useful forensic artifacts which are suggested:

42

1. Android/providers/media/external.db

Description Traces to SD card used in the device. This is stored on
the phone. But the device doesn’t have SD card, the
apps downloaded without google play store save their
installation files here.
Aurtifacts Data, size, format, parent, data_addded,

data_modified, Mime_type, Title, bucket_id,

bucket_display _name, media_type, storage_id

2. Android/vending/databases/installgeue.db

Description Traces of apps package which are downloaded from
official vendors like google playstore and contain
information about the auto update of apps.

Artifacts Reason,package

3. Android/vending/databases/library.db

Description Library.db contains ownership of installed apps and
lists the email address against installed apps, and the

certifcate hash of the application

Avrtifacts Account, doc_id, document_hash,

app_certificate_hash

4. Android/vending/databases/localappstate.db

Description

Records information of all installed apps

43

Artifacts

Package name, download uri, account, title, download

and update timestamp, app name

5. Android/vending/databases/frosting.db

Description Does not detect the installation time but contains
Traces of APK. When a normal app and malicious app
is installed the change in APK path is detected in
frosting.db
Aurtifacts APK_path, package name
6. Android/providers/media/internal.db
Description Contains data of internal system
Aurtifacts Data added or modified time, app name, title, size

Android/vending/databases/veifyapp.db

Description Contains Google play store downloaded APKs
Aurtifacts APK package name
8. Android/vending/databases/autoupdate.db
Description Contains Google play store downloaded APKs
Avrtifacts APK package name
9. /system/app

44

Description Contains system apps that are pre-installed on the
device. Malware may be disguised as a legitimate
system app, so it's important to check for any

suspicious apps that may have been added

Artifacts APK package name

10. data/system/package_cache/1

Description Contains permissions in system for malicious activities

Artifacts APK package name

11. Data/app/

Description Contains the installation package of all apps

Artifacts APK package name

Table 5: Targeted Forensic artifacts and paths

The forensic image which was acquired is analyzed on the basis of above table and paths are
compared on the basis of found evidence to filter out more useful artifacts and figure out which

type of applications are found in different paths.

45

1. Android/ providers/ media/ external.db

Artifacts

Data, size, format, parent, bucket_display_name,
data_addded, data_modified, Mime_type, Title,

bucket_id, media_type, storage _id

Found evidence

List all of the APK files are obtained without using the

Google Play Store as in figure 8

2. Android/ vending/ databases/ installgeue.db

Artifacts

Reason,package

Found evidence

As seen in figure 9, the APK packages located in

external.db are absent from installgeue.db.

3. Android/ vending/ databases/ library.db

Artifacts

Account, doc_id, document_hash,

app_certificate_hash

Found evidence

Figure 8 shows that does not include the hash

certificate of the discovered APKs.

4. Android/vending/databases/localappstate.db

Artifacts

Package name, download uri, account, title, download

and update timestamp, app name

Found evidence

Figure 10 shows that does not include the package

names of the discovered APKSs.

46

5. Android/ vending/ databases/ frosting.db

Artifacts

APK _path, package name

Found evidence

discovered the package names and APK paths for

every program, whether it had been downloaded

through Google or another source. Some potentially

suspicious package names were discovered, and the

path for these APKSs was data/app/, as seen in figure

11.

6. Android/providers/media/internal.db

Artifacts

Data added or modified time, app name, title, size

Found evidence

Found no information on APKSs obtained outside of

the Google Play Store; just APKSs installed on the

system

7. Android/ vending/ databases/ veifyapp.db

Artifacts

Application package name

Found evidence

figure 8

Only contain APK names that are found in

8. Android/vending/databases/autoupdate.db

Artifacts

APK package name

Found evidence

Can’t find APK data

47

9. /system/app

Artifacts APK package name

Found evidence Can’t find APK data

10. data/system/package_cache/1

Artifacts APK package name

Found evidence Can’t find APK data

11. Data/app/

Anrtifacts APK package name

Found evidence Can’t find APK data

Table 6: Analysis of forensic image based on table 1.

| 292 /storage/emulated/0/Download/14d9f1a92dd984d6040ccd1ed0be273e.apk

293 /storage/emulated/0/Download/Magisk-24.3(24300).apk
294 /storage/emulated/0/Download/.com.google.Chrome.1jsNJR

295 fstorage/emulated/0/Download/1264C25D67D41F52102573D3C528BCDDDA42129DF5052881F7E98B4A90F61F23.apk
296 [storage/emulated/0/Download/krep.itmtd.ywtjexf-1.apk
297 /storage/emulated/0/Download/E5E22B357893BC15A50DC35B702DD5F CDFEAFCAFFEC7DAAOD313C724D72ECE54.apk

298 /storage/emulated/0/Download/Magisk-v25.2.apk

299 /storage/emulated,/0/Download/CEEGS84CD2E0LIFABSFO75F94AF2A0CE024EDSEAF2D52E3DC39F7655C736A7232.apk
300 [storage/emulated/0/Download/BusyBox_v64_apkpure.com.apk
301 /storage/emulated/0/Download/E2BDCFES796CD377D41F3DA3838865AB062EATAFIE1E4424B1E34EB084ABECAA apk

302 /storage/emulated/0/Download/Magisk-25.2{25200).apk

Figure 11: External.db database artifacts

48

AL LR | S| 6 |] | O L | e | L[| | |

reason

single_install
auto_update
suto_update
asuto_update
auto_update
auto_update
suto_update
asuto_update
auto_update
auto_update
suto_update
asuto_update
auto_update
auto_update
suto_update
asuto_update
auto_update
auto_update
suto_update
asuto_update
auto_update
auto_update
suto_update

pk state data

me.twrptwrpapp 6 BLOB Data not shown
com.google.android.apps.navlite 11 BLOB Data not shown
com.miui.videoplayer 11 BLOB Data not shown
com.mi.android globalFileexplorer 11 BLOB Data not shown
com.xiaomi.midrop 11 BLOB Data not shown
com.mi.android.go.globallauncher 11 BLOB Data not shown
com.google.android.apps.assistant 11 BLOB Data not shown
com.google android apps.youtube mango 11 BLOB Data not shown
com.google android.apps.mapslite 11 BLOB Data not shown
com.google.android.apps.messaging 11 BLOB Data not shown
com.google.android.deskclock 11 BLOB Data not shown
com.google android apps searchlite 11 BLOB Data not shown
com.google.android.dialer 11 BLOB Data not shown
com.google.android.contacts 11 BLOB Data not shown
com.google.android.calculator 11 BLOB Data not shown
com.google android gms 11 BLOB Data not shown
com.google.android.ims 11 BLOB Data not shown
com.google.android tts 11 BLOB Data not shown
com.google.android.calendar 11 BLOB Data not shown

BLOB Data not shown
BLOB Data not shown
BLOB Data not shown
BLOB Data not shown

com.mi_globalbrowser mini

@

com.google.android.apps.photos
com.google.android.inputmethod latin
com.android.chrome

= oo

Figure 12: Installgeue.db database artifacts

A B C D E F G K
1 |package_name auto_ug desired_v downl delive delivi installer title
2 |com.google.android tts 1 -1 o 0 Speech Services by Google
3 |com.miui.videoplayer 1 -1 0 o
4 |com.xiaomi.midrop 1 -1 0 o
5 |com.google.android.ims 1 -1 o o
& |com.google.android.apps.navlite 1 -1 0 o
7 |com.google.android.apps.searchlite 1 -1 0 o
& |com.google.android.deskclock 1 -1 o o
9 |com.google.android gms 1 -1 BLOB #i 0 Google Play services
10 |com mi.android go globallauncher 1 -1 o o
11 |com.google.android.apps.messaging 1 -1 o o
|12 |com.google.android.gm.lite 1 -1]]
13 |com google android apps.mapslite 1 -1 o o
14 |com.google.android.contacts 1 -1 o o
15 |com.google.android.dialer 1 -1]]
16 |com google android apps youtube mango 1 -1 o o
17 | metwrp.twrpapp 1 -1 BLOB #us# 0 Official TWRP App
|18 |com.google.android.calculator 1 -1]]
19 |com.mi.andreoid.globalFileexplorer 1 -1 o o
0 |com.google.android.apps.assistant 1 -1 o o
11 |com.google.android.calendar 1 -1]]
12 |com.mi.globalbrowser mini 1 -1 BLOB #u## 0 Mint Browser - Video download,
13 |com.google.android.apps.photos 1 -1 BLOB #us# 0 Google Photos
14 |com.google.android.inputmethod. latin 1 -1 BLOB ###4 0 Gboard - the Google Keyboard
15 |com.android.chrome 1 -1 BLOB #u## 0 Google Chrome: Fast & Secure

Figure 13: Local_appstate.db database artifacts

49

constraints

[CAEQACEBQH 11 AVAAWABZAGEACAFAAIABAQ==
[CAIQACZBOH 1IAVABW AFEAGEy CABAAYABAIZBACS
[CAIQACZBOH1IAVABW AFEAGEYCABAAYABAIZBAO=
[CAIOACZBOH1IAVABW AFZAGEy cABAAYABAIZBACS
[CAIQACZBOH 1IAVABWAFZAGEy CABAAYABAIZBACS
[CAIQACZBOH 1IAVABW AFEAGEy CABAAYABAIZBACS
[CAIQACZBOH1IAVABW AFEAGEYCABAAYABAIZBAO=
[CAIOACZBOH1IAVABW AFZAGEy cABAAYABAIZBACS
[CAIQACZBOH 1IAVABWAFZAGEy CABAAYABAIZBACS
[CAIQACZBOH 1IAVABW AFEAGEy CABAAYABAIZBACS
[CAIQACZBOH1IAVABW AFEAGEYCABAAYABAIZBAO=
[CAIOACZBOH1IAVABW AFZAGEy cABAAYABAIZBACS
[CAIQACZBOH 1IAVABWAFZAGEy CABAAYABAIZBACS
[CAIQACZBOH 1IAVABW AFEAGEy CABAAYABAIZBACS
[CAIQACZBOH1IAVABW AFEAGEYCABAAYABAIZBAO=
[CAIQASZBOH1IAVABW AFgAGEACABAAI ABAIgBAQ=
[CAIQACZBOH 1IAVABWAFZAGEy CABAAYABAIZBACS
[CAIQACZBOH 1IAVABW AFEAGEy CABAAYABAIZBACS
[CAIQACZBOH1IAVABW AFEAGEYCABAAYABAIZBAO=
[CAIOACZBOH1IAVABW AFZAGEy cABAAYABAIZBACS
[CAIQACZBOH 1IAVABWAFZAGEy CABAAYABAIZBACS
[CAIQACZBOH 1IAVABW AFEAGEy CABAAYABAIZBACS
[CAIQACZBOH1IAVABW AFEAGEYCABAAYABAIZBAO=

L) .
flags continue_ last_notified |

000 000000000000 000000000

0 /data/app/com.google.android.gms-pr2e)DX0X0ogugV OkhIMMg==/base.apk 1.67E+12 com.google.android.gms BLOB Data not shown

0 /data/app/com.topjohnwu.magisk-K9DZcsh456_-yZpzlljryA==/base.apk 1.67E+12 com.topjohnwu.magisk BLOB Data not shown
19 /data/app/me.twrp.twrpapp-OEclihf31bRAMAX_r9lvNQ==/base.apk 1.67E+12 me.twrp.twrpapp BLOB Data not shown
_20 /data/app/stericson busvbox-6e714GN2-Q0sfiGUc7nl Q==/hace aok L.67E+12 stericson busybo BLOBD
0 /data/app/org.merry.core-c3kIMr666FcViVSc-dp8w==/base.apk 1.67E+12 org.merry.core BLOB Data not shown
0 /data/app/com.google.progress-CBTcEHgLiMwa0l4bVYySFQ==/base.apk 1.67E+12 com.google.progress BLOB Data not shown
0 /data/app/krep.itmtd.ywtjexf-gsDSrpELgvysbu-CRAdEuQ==/base.apk 1.67E+12 krep.itmtd.ywtjexf BLOB Data nat shown
0 /data/app/com.web.sdfile-k-J7ETFXQIECTkTHAlwWVw==/base.apk 1.67E+12 com.web.sdfile BLOB Data not shown
0 /data/app/com.br.srd-wd9DupMecsMgQxWilohgj2A==/base.apk 1.67E+12 com.br.srd BLOB Data not shown
0 /data/app/com.oyws.pdu-T8mJZETHM_48wsn1zaat7g==/base.apk 1.67E+12 com.oyws.pdu BLOB Data not shown
|_0 /data/apo/com,fos salattime akistan{5s0e U sSoHEQOWI-DA==/base ok L67E+12 comtos,salaltime, pal
0 /system/priv-app/facebook-services/facebook-services.apk 1.23E+12 com.facebook.services BLOB Data not shown
0 /data/app/com.android.vending-2170aQJhmyCeluCrefiisg==/base.apk 1.68E+12 com.android.vending BLOB Data not shown
2 /data/app/com.mi.globalbrowser.mini-8lKuAG200zdDWABROS5)YAg==/base.apk 1.68E+12 com.mi.globalbrowser.mini BLOB Data not shown
2 /data/app/com.google.android.apps.photos-Y2j_FM5BA2QpsBP-ImHL3g==/base.apk 1.68E+12 com.google.android.apps.photos BLOB Data not shown
3 /data/app/com.google.android.inputmethod.latin-dberY6gtxf_kb6TThG352g==/base.apk 1.68E+12 com.google.android.inputmethod.latin BLOB Data not shown

Figure 14: Frosting.db database artifacts

From the above analysis it was figured out that external.db only contains the application
information which is downloaded from third party and without google play store. While the
internal.db comprises of that list of APKs which are downloaded from official vendor or
google play store. As from the above defined paths we cannot label applications as malicious
or benign so there is a need to find artifacts about the permissions required by the applications

and their intent, so more artifacts are found in this case.

Path to find intent and permission of these apps:

/img_mobileimagel.dd/vol_vol55/system/package _cache/1/

() COM, 3NOrOIg. VENaINg-3-L4gNKFgag)s £1 UAEWA-A= =) u LUZE WD LLILS PR QUG LIS PR UL LD LI PR QUG LUnda LIS P Lemns
| system (49) com.br.srd-wd9DupMcEMaQuitiohgj2A==-0 0 2023-02-08 11:21:25 PKT - 2023-02-06 11:21:25 PKT 2023-02-06 11:21:25 PKT 2023-02-06 11:2125PKT 3316
.. dropbox (83) < >
L. araphicsstats (7)
heapdump (2) Hex Text File Metadata Annotations Other Occurrences
e —
L inputmethod (4) L
| install_sessions (2) Page: 1 of 1 Page Matches on page: - of - Match 100% ﬁﬁ) Reset Text Source: | File Text v
. job (4) com.android.sync N
b m_ost(l) de?ulé tent. pm. PackageParser $Activity
android.content.pm. PackageParser $Activi
. netstats (14) comsfy.oyrR
2 £ padkage_cache (3) android.content, pm. PackageParser SActivityIntentinfo
[1089 android.intent. action, USER_PRESENT
android.intent.action. SCREEN_OFF
tats (12 el
& prostts (1) android.net.conn. CONNECTIVITY_CHANGE
L sensor_service (3) android.intent. action PACKAGE _INSTALL
o swap (2) android.intent.action. PACKAGE_ADDED
L syne () package
tats (3 android.content.pm. ActivityInfo
S usagestats (3) android. content,pm,PackageParser $5ervice
o users (6) com.sfy.oyr.D
L system_ce (3) android,content.pm. Servicelnfo

android.permission. INTERNET

tem_de (3]
o system.de (3) ancroid,permission, READ_PHONE_STATE

-1 thermal (3) android, permission. INSTALL_PACKAGES
~| 4} time () android. permission. ACCESS_METWORK_STATE
1| tombstones () android,permission, GET_TASKS
) android. permission. DELETE_PACKAGES
T e android,permission, MOUNT_UNMOUNT_FILESYSTEMS
|4 user_de (3) = =
vendor (26) com.android.launcher . permission, INSTALL_SHORTCLT

android.permission. READ_EXTERNAL_STORAGE

volsé (Unallocated: 15269855-15269887) o

Figure 15: investigate application permissions from package_cache path.

50

5.3. Evaluating Research Effectiveness

To evaluate the effectiveness of the research, we have employed various forensic

investigation phases and concluded the most useful forensic artifacts and paths to illustrate the

generality of the research. In experiments, from the prospect of suspicious application

detection, the forensic investigation technique is employed. The benign and malicious

applications was compared. The final paths and artifacts are displayed in table below that we

will use to conduct forensic investigation.

Based on above framework, the forensic image is acquired, and findings are below:

Paths

Found artifact

Android/providers/me

dia/external.db

1. /storage/emulated/0/WhatsApp/Media/WhatsApp
Documents/Sent/1514376339e4a0b4727c6897640c7c3e.APK

2. [storage/emulated/0/Download/14d9f1a92dd984d6040cc41edO
6e273e.APK

3. [storage/emulated/0/Download/1264C25D67D41F52102573D
3C528BCDDDA42129DF5052881F7E98B4A90F61F23.APK

4. [storage/emulated/0/Download/krep.itmtd.ywtjexf-1. APK

5. /storage/emulated/0/Download/E5E22B357893BC15A50DC3
5B702DD5FCDFEAFC6FFEC7DAAOD313C724D72EC854.
APK

6. /storage/emulated/0/Download/CEE6584CD2EO01FAB5SFO75F
94AF2A0CE024EDSE4F2D52E3DC39F7655C736A7232.AP

K

51

7. [storage/emulated/0/Download/E2BDCFE5796CD377D41F3D
A3838865AB062EATAFIE1E4424B1E34EBOS4ABEC4A.A
PK

8. /storage/emulated/0/CMA_Zip/Decompressed/janOscorp_2023
0307/f73ebc6f645926bf8566220014173df8.APK

9. /storage/emulated/0/Download/julyFacebookCredSteal.zip

Android/vending/data | The packages for APK which are found in external.db are not
bases/installgeue.db | present in installgeue.db

1. com.google.android.apps.youtube.mango

2. com.prisbank.app

3. com.gamma.scan2

4. com.winzip.android

5. com.whatsapp

6. com.zip.unzip.zipextractor.raropener.zipfile

Android/vending/data | It does not contain hash certificate of found APKs, it contains the
bases/library.db APKs:

1. com.google.android.apps.youtube.mango

2. com.prisbank.app

3. com.gamma.scan2

4. com.winzip.android

5. com.whatsapp

6. com.zip.unzip.zipextractor.raropener.zipfile
but there is same pkg of com.gamma.scan2 again at the last but it

doesnot contain hash

52

Android/vending/data
bases/localappstate.d

b

It does not contain discovered applications packages APKs in

appendix 1

Android/vending/data

bases/frosting.db

discovered the package names and APK locations for every
program, whether it had been downloaded through Google or
another source. Some potentially suspicious package names were

discovered, and the path for these APKs was data/app/.

Android/providers/me

dia/internal.db

Cant find any data for APKs found in media/external.db

Android/vending/data

bases/ verifyapp.db

krep.itmtd.ywtjexf
com.web.sdfile
com.oyws.pdu

com.br.srd

org.merry.core
com.tos.salattime.pakistan
com.prisbank.app
com.gamma.scan2
com.zip.unzip.zipextractor.raropener.zipfile
com.whatsapp
com.pcnts.splicingpp
com.facebook.system
com.enab.lockkeep
com.cosmos.starwarz
com.facebook.appmanager

se.dirac.acs

53

Android/vending/data

bases/autoupdate.db

com.google.android.apps.youtube.mango
com.whatsapp

com.winzip.android
com.zip.unzip.zipextractor.raropener.zipfile
com.gamma.scan2

com.prisbank.app

/system/app/* facebook-appmanager
YouTubeGo
Application not found there proves that these APKS not disguised
as legitimate app
data/system/package_ | Appendix 2
cache/l

/data/app/<applicatio

n package name>

com.br.srd-wd9DupMc6MgQxWilOh8j2A==
com.cosmos.starwarz-21B61gP3toiK44zR21mgoQ==
com.enab.lockkeep-Y6AzdXUO71ISNTKMgb0YWA==
com.facebook.appmanager-AbEIncHcjzUsEhHY9bQ2wA==
com.facebook.lite-mOtY ZsnbkAK52Z_anlyvrg==
com.facebook.services-gdIEIrF8IA-mm2Mu682-0g==
com.facebook.system-eKOkZWxhXApD6zJ6YPMqLg==
com.gamma.scan2-ckccwYHzKBUdNhuZeyqqtQ==
com.oyws.pdu-T8mJZ8THM_48wsnlzaat7g==
com.pcnts.splicingpp-TxJngHz3tzdzZRSNPCWNcsg==
com.prisbank.app-TyIM70hfj_oC2C3kDtC8ZA==

com.tos.salattime.pakistan-t5s0eEUxxfs8oHEqqWI-DA==

54

com.web.sdfile-k-J7TEITEXQIECTKTH4IwVw==
com.whatsapp-eHcCvC4QGycO4kAifNvs9g==
com.zip.unzip.zipextractor.raropener.zipfile-
Wbu8XTIIjC7VoMSRwCc-FQ==
krep.itmtd.ywtjexf-gsDSrpELqvys6u-CR4dEuUQ==

org.merry.core-c9kJMr666FcViVSc--dp8w==

Table 7: Analysis of forensic image based on proposed forensic investigation methodology

For the forensic investigation of android mobile device, the total number of apps are checked
in the system. The data/app/ directory contains all the apps and their paths information, there
are 41 apps installation files. Now we are interested that how many apps are installed from
google play store or third party or downloaded directly from internet and how many are system
app. To analyze the apps which are downloaded from google playstore lets check the
Android/vending/databases/installgeue.db so out of 41 apps only 6 are downloaded from
google playstore. In order to find out the download source of rest of the apps
Android/providers/media/external.db is analyzed and it was revealed that 9 apps were
downloaded from the internet directly and source of download was chrome browser. To verify
the user- installed in the system analyze the Android/vending/databases/verifyapp.db. The
package names of installed apps can be found there. Now check the
Android/providers/media/internal.db to verify the system-installed apps, so it was verified that
these 15 apps are not internal system apps. In order to validate whether the apps are legitimate
we have to verify the hash certificate of application. Therefore,
Android/vending/databases/library.db path is analyzed. The apps like Youtube, prisbank,
barcode scanner, Whatsapp, winzip and rar opener has the verified hash certificates. And in the

Android/vending/databases/autoupdate.db it can be verified that these packages can update

55

from google playstore. The total installed apps found from verifyapp.db has only 6 apps that
have verified certificates and auto-update from google playstore but rest of the 9 apps are still
questionable. We can classify these 9 apps as suspicious apps and its necessary to analyze the
[/system/app/* because Contains system apps that are pre-installed on the device. Malware may
be disguised as a legitimate system app, so it's important to check for any suspicious apps that
may have been added. After the analysis of this path, it was turned out that only facebook and
YouTube are system apps and out of these 9 APKSs none of them has disguised as legitimate
app.

These suspicious 9 APKSs are further investigated on the basis of required android system

permission to detect the malwares out of these applications.

5.4. Summary

In this chapter analysis and results achieved during the research is discussed. In the

following chapter validation and verification of the achieved results are provided.

56

Chapter 6

6.Discussion and Analysis

The validation and verification of the data obtained during the experimentation against
the suggested framework are covered in this chapter. The cuckoo sandbox is used throughout
the investigation to validate the suspicious programs that were filtered out as previously
indicated in the chapter. to verify if the apps in our findings are indeed malicious and to assess
the efficacy and efficiency of the suggested technique. The outcomes are then contrasted with

the benchmark method.

6.1. Overview

This section assesses the efficacy of the studies conducted to identify malware in Internet
of Things devices. The device's forensic picture has been obtained and examined using
autopsy. The suggested technique was used for the analysis. Nine apps have been eliminated
for analysis because of the trial. Ultimately, Table 8's filtered-out programs may be identified
from one another by their obtained system permissions. The system permission acquired by
malicious and benign malware are different and the study in this paper H. J. Zhu et al. [9]
conducted the research on the system permissions acquired by malicious applications. The
dangerous system permissions required by the malicious applications are marked in red font.
Based on findings of this research paper the applications that have malicious behavior can be

separated from benign ones.
57

APK Package name APK path
No.

APK1 com.web.sdfile /data/app/com.web.sdfile-k-
JTEITIXQIECTKTH4lwVw==/base.apk

APK2 com.br.srd /data/app/com.br.srd-
wd9DupMc6MgQxWilOh8j2A==/base.apk

APK3 com.oyws.pdu /data/app/com.oyws.pdu-
T8mJZ8THM_48wsnlzaat7g==/base.apk

APK4 krep.itmtd.ywtjexf /data/app/krep.itmtd.ywtjexf-gsDSrpELqvys6u-
CR4dEuQ==/base.apk

APK5 org.merry.core /data/app/org.merry.core-c9kJMr666FcViVSc--
dp8w==/base.apk

APK6 com.tos.salattime /data/app/com.tos.salattime.pakistan-t5s0eEUxxfs8oHEqqWI-
DA==/base.apk

APK7 com.facebook.system /data/app/com.facebook.system-
eKOkZWxhXApD62J6YPMqLg==

APKS8 com.enab.lockkeep /data/app/com.enab.lockkeep-
Y6AzdXUOQO71I5NTKMgbOYWA==/base.apk

APK9 com.pcnts.splicingpp /data/app/com.pcnts.splicingpp-

TxJngHz3tzdzRsNPCWNcsg==/base.apk

58

APK10 | com.snt.rubbishcleaner /data/app/com.snt.rubbishcleaner

APK11 | com.cosmos.starwarz /data/app/com.cosmos.starwarz-
21B61gP3toiK44zR21mgoQ==/base.apk

APK12 | com.gamma.scan2 /data/app/com.gamma.scan2-
ckcewYHzKBUdNhuZeyqqtQ==/base.apk

APK13 | com.zip.unzip.zipextractor | /data/app/com.zip.unzip.zipextractor.raropener.zipfile-

raropener.zipfile Wbu8XTIljC7VoMSRwCcFQ==/base
APK14 | com.whatsapp /data/app/com.whatsapp-

eHcCvC4QGycO4kAifNvs9g==/base.apk

Table 8:User-installed applications

59

Permissions AP AP AP AP [AP[AP[AP AP [AP[AP [AP

K1 |K2|K3|K4|K5|K6|K7|K8|K9|KL |K1
0 |1

MOUNT UNMOUNT FIL |v |v |v

ESYSTEMS

READ_PHONE_STATE v IviIiv v iv]v v

READ EXTERNAL STOR | v |[v |v |v [v |v v v v |v

AGE

ACCESS NETWORK STA [v |v |[v |v |v v |v v v

TE

CHANGE_NETWORK_ST | v

ATE

ACCESS_WIFI_STATE v v v

RESTART PACKAGES | v v

READ_LOGS v v

CHANGE_WIFI_STATE | v

RECORD_AUDIO v v v

CAPTURE_AUDIO_OUTP v

uT

DISABLE_KEYGUARD | v v

WAKE_LOCK v v v v v

BLUETOOTH v

GET_PACKAGE_SIZE v v v

60

ACCESS_COARSE_LOCA

TION

WRITE_SETTINGS

WRITE_EXTERNAL_STO

RAGE

WRITE_MEDIA_STORAG

E

READ_CONTACTS

UNINSTALL_SHORTCUT

INSTALL_SHORTCUT

SYSTEM_ALERT_WINDO

W

KILL_BACKGROUND_PR

OCESSES

CLEAR_APP_CACHE

RECEIVE_BOOT_COMPL

ETED

GET_TASKS

ACTIVITY_RECOGNITIO

N

READ_SETTINGS

INSTALL_PACKAGES

DELETE_PACKAGES

61

accelerometer

FORCE_STOP_PACKAGE

S

ACCESS_FINE_LOCATIO

N

READ_OWNER_DATA

INTERNET

READ_SMS

SEND_SMS

WRITE_SMS

READ_CALL_LOG

READ_HISTORY_BOOK

MARKS

READ_SYNC_SETTINGS

READ_CALENDAR

READ_PROFILE

SET_ALARM

RECEIVE_SMS

RECEIVE_MMS

RECEIVE

VIBRATE

CALL_PHONE

62

ACCESS_MOCK_LOCATI

ON

ACCESS_LOCATION_EX

TRA_COMMANDS

BIND_JOB_SERVICE

FOREGROUND_SERVICE

SET_WALLPAPER

READ_GMAIL

GET_ACCOUNTS

AUTHENTICATE_ACCOU

NTS

USE_CREDENTIALS

ACCESS_NOTIFICATION

_POLICY

STORAGE

BIND_GET_INSTALL_RE

FERRER_SERVICE

DOWNLOAD_WITHOUT_

NOTIFICATION

CHANGE_COMPONENT_

ENABLED_STATE

REAL_GET_TASKS

63

SYSTEM_OVERLAY_WI v

NDOW

CAMERA v v
PACKAGE_USAGE_STAT v v v
S

FLASHLIGHT v
MODIFY_AUDIO_SETTIN v v
GS

REQUEST_DELETE_PAC v
KAGES

READ_PRIVILEGED_PHO v
NE_STATE

REQUEST IGNORE_BAT v
TERY_OPTIMIZATIONS

INJECT_EVENTS v
ACCESS_SUPERUSER v
REQUEST_INSTALL_PAC v
KAGES

Table 9: System permissions required by APKs

Table 7 contains the android system permissions required by all the applications mentioned in
Table 6. These tables are systematically analyzed based on the dangerous and non-dangerous
android permissions they require. The dangerous android system permissions include
READ_PHONE_STATE, SET_ALARM, READ_EXTERNAL_STORAGE,

INSTALL_PACKAGES, RECEIVE_SMS, SET_ALARM, ACCESS_FINE_LOCATION,
64

WRITE_SECURE_SETTINGS, GET_ACCOUNTS, UPDATE_DEVICE_STATS,
READ_CONTACTS, READ_HISTORY_BOOKMARKS,GET_ACCOUNTS, READ_SMS,
ACCESS_COARSE_LOCATION, SEND_SMS READ_CALL_LOG,
WRITE_HISTORY_BOOKMARKS, and ACCESS_NOTIFICATION_POLICY. and. In the
above Table 7, the APKs which contain dangerous android permissions are classified as
malicious. The APKs which do not require dangerous permissions, or no permissions are
classified as benign. The APKs12, APK13 and APK14 do not require system permissions so
they can be classified as benign. Out of the 14 APKs the APK7, APK12, APK13 and APK14

are labelled as benign and the rest of 10 APKs are malicious.

6.2. Validation with Cuckoo Sandbox

The 10 APKs are found suspicious after the above analysis. To prove the results of
methodology, detected APKs are validated through Cuckoo sandbox. The validation phase will

prove the effectiveness of results by the proposed methodology.

cuc OD’:‘" @& Dashboard = Recent @& Pending Q Search

MD5 468507254b8156de817f02cBed111e99f

00

SHA1 9337ccd945cb320eb26b731edf132178d939ee85

SHA256 e5e22b357893bc15a50dc35b702dd5fcdfeafc6ffec7daald313c724d72ec85
4

CRC32 347C99E3
ssdeep None

Yara None matched

Score

LEEEER

This file is very suspicious, with a score of 10 out of 10!

Figure 16: Cuckoo Sandbox suspicious APK score validation of APK1

65

The above APK is classified as malicious by cuckoo sandbox as well.

@ Dashboard = Recent ©f Pending Q Search

Type Java archive data (JAR)

o

MD5 7022578af4a5fTa7a049b568559b97c89
SHA1 24cd5086383126a9cdbb43d7dbe5bcbh91d9bb13d

SHA256 e2bdcfe5796cd377d4113da3838865ab062ea7at9eled4424ble34ebf84abecd
a

sHas12
CRC32 0C2B6AB2
ssdeep None

Yara None matched

000000

g8 # Score

3!

This file is very suspicious, with a score of 10 out of 10!

Figure 17: Validation score of APK2 by Cuckoo Sandbox

The APK validation score classified APK2 as malicious.

@& Dashboard = Recent ©f Pending Q Search

MD5 15fbef8lad64eldd42ea53ab80chabs7d
SHA1 051888210T8ddaedbbbfcb52bb091d4a3614ebld

SHA256 ceeb6584cd2e@lfab5fa75T94at2abcef24ed5e4T2d52e3dc3917655Cc736a723
2

e CRC32 4F7E9F56
ssdeep None

Yara None matched

&# Score

This file is very suspicious, with a score of 10 out of 10!

Figure 18: Cuckoo Sandbox Validation of APK3

The APK3 is identified as malicious by cuckoo sandbox as well.
66

@ Dashboard := Recent «f Pending Q Search Submit Impaort

L.
&
Summary @ krep. itatd. ywtjesf. 1. apk
&
I File krep.itmtd.ywijexf-1.apk & Score
@ Summary & pawnsoad | £ Resunmit sampie Thisz file iz wery suspicious, with & score of
) 10 out of 10!
2 Size B05.4KB
=] Type Zip archive data, at least v2.0 to extract Flease motice: The scoring sysiem |s currently il in
deyelopment and should be considered an adpha feature.
- MD5 B82e231f85558F37da68021424407366
™ SHA1 f79dB844fcB530484ddd0922061d58146040ed368 A Feedback
- SHAZ56 9d767c41599325ccd0643d6T43209075775a85060d f176a845605715be230263 B'F“'I'IE "":’"“‘w"" Send s this analysis and we wil
inspect i Cick here
E3
CRC32 TE338509
9]
ssdeep None
of

Yara MNone matched

Figure 19: Cuckoo Sandbox validation of APK4 as malicious

Classification of APK4 as malicious by cuckoo sandbox.

MD5 14d9fla92dd984de@40cc4led@be273e
SHA1 42b25b60aa7déd9fob388clead45e8a8T8clfc718

SHA256 be@df39d6e334908c685e4cT7b89%efc49cc9bddc528a7c2434576b5a8b740T8
8

sHAS12

CRC32 3DA9B255
ssdeep MNone

Yara MNone matched

Score

This file is very suspicious, with a score of 10 out of 10!

Figure 20: APKS5 identified suspicious by Cuckoo Sandbox

The APKS is classified as malicious by cuckoo sandbox as well.

67

@& Dashboard :E Recent & Pending Q Search

Summary X Download | £ Resubmit sample
Size 10.1MB
Type Java archive data (JAR)
MDS 1514376339e4a0b4727c6897640cTc3e
SHA1 0al74dbfb431bce53aafl386977a584fbc21d897
SHA256 6afee70f460effd06168939ddaly429740d07d3d5ac496de88870b6160bbI3224

CRC32 1CC5E578

DOOOOOO

oo
wn

ssdeep MNone

Yara = shellcode - Matched shellcode byte patterns

® Score

©00

This file is very suspicious, with a score of 10 out of 10!

Figure 21: APKG6 validation by Cuckoo Sandbox

The APKS5 is validated as malicious by cuckoo sandbox.

@& Dashboard IE Recent & Pending Q Search

Summary & Download | & Resubmit sample
Size 9.7MB
Type Zip archive data, at least v?[0] to extract
MD5 7fdca®50829c1357297ddfbd771db64e
SHA1 a0a3a676bbde@97719d40e%eef39282b48eebfloe
SHA256 e57eB8033a0452781eld36bf7e5cd57caab5873ed1d6ce33d77dee3922eab9fdb
SHA512
CRC32 09F198947
ssdeep MNone

Yara » shellcode - Matched shellcode byte patterns

#® Score

0000000000

This file appears fairly benign with a score of 0.1 out of 10.

Figure 22: Validation of APK7 by Cuckoo Sandbox

68

The APKY is classified as benign because its malicious score is 0.1/10 by cuckoo sandbox as

well.

cuc!-@_f-_-;{' @& Dashboard i= Recent ©f Pending Q Search

Summary & Download | Resubmit sample
Size 7.2MB
Type Zip archive data, at least v2.0 to extract
MD5 0e8805b683bcOfdBa6d49b87205f1ladb
SHA1 d8f941fea8dbda39a88lad?alesle3227e3f8f18
SHA256 6a4c430a032f833fad34777017a83427db73a58c2efd1eB836e88a866c1b80607

CRC32 94168F7B

DOOOOOO

ssdeep None

Yara MNone matched

#® Score

XXX

This archive is very suspicious, with a score of 10 out of 10!

aith

Figure 23: Validation by Cuckoo Sandbox for APK8

The APKS is categorized as malicious by cuckoo sandbox.

69

@& Dashboard i= Recent & Pending Q Search

Summary X Download | £ Resubmit sample
Size 4.9MB
Type Zip archive data, at least v2.0 to extract
MD5 263b0851156f7d77fb43368cel3bedel
SHA1 8f308f3f176613dbcl4aa29bfb3c952bGebbdbdas
SHA256 5be5dalcbd156796a7c321b6c9ceebfclalef6lb39a02911142b85a40702aa57
L P Show SHAS12
CRC32 5BFDE771
ssdeep None

Yara Mone matched

Score

0000000000

This archive is very suspicious, with a score of 10 out of 10!

Figure 24: APKQ9 validated by Cuckoo Sandbox

The APK9 malicious score is 10/10 by cuckoo sandbox.

@ Dashboard = Recent < Pending Q Search

Summary X Download | & Resubmit sample
Size 13.2MB
Type Zip archive data, at least v?[0] to extract
MD5 f73ebc6f645926bT8566220b14173df8
SHA1 5dd32e919e033a3a52ba8dbadche6fdacele2ds9
SHA256 9ae593c5611fa0d4fcOb7cfa5f356bPac92dcbes51fc5f481425ec7d6743368447
SHAS12 SR
CRC32 A2D82C97
ssdeep None

Yara + shellcode - Matched shellcode byte patterns

&# Score

20000000000

This file is very suspicious, with a score of 10 out of 10!

rhy

Figure 25: Validation of APK10 by Cuckoo Sandbox

The APK10 malicious score is 10/10 by cuckoo sandbox.

70

i= Recent ¢ Pending Q Search

Summary X Download | = Resubmit sample
Size 13.2MB
Type Zip archive data, at least v?[0] to extract
MD5 f73ebc6f645926bT8566220b14173df8
SHA1 5dd32e919e033a3a52ba8dbadcbe6fdacel62d8g
SHA256 9ae593c5611faf4fcOb7cf85f356bBac92dcbe51fc5f481425ec7d6743368447
ELEA VA Show SHAS12
CRC32 A2D82C97
ssdeep MNone

Yara » shellcode - Matched shellcode byte patterns

Score

0000000000

This file is very suspicious, with a score of 10 out of 10!

rh

Figure 26: APK11 Cuckoo Sandbox validation

Cuckoo sandbox identified APK11 as malicious.

@ Dashboard := Recent «f Pending Q Search Submit Import

Summar:.r X Download | T Resubmit sampla

Size 3I9MBE

MD5 9d49d0408b7d36ea2179c40814c9042ac

SHA1 b7c82357822881b4bcBbT5ee920e48474a6dladc

o Type Java archive data (JAR)

SHA256 007d11e4376e5e5a50528b91a38321095a29e7798b99da55chb4a7cd@8bac56e0

CRC32 AOFOD5GE

BR ssdeep None

Yara Mone matched

<
9 # Score
o

This file appears fairly benign with a score of 0.9 out of 10.

Figure 27: APK12 validated by Cuckoo Sandbox

The APK12 is classified as benign cuckoo sandbox.

71

@ Dashboard := Recent «f Pending Q Search Import

Summary X Download | = Resubmit sample
Size 18.3MB
Type Zip archive data, at least v2.0 to extract
MD5 =2e58fe920824d27954789F11cc29849
SHA1 cbdb8e812759f7a13f780e3acBCT988572309951
SHA256 7b9cbb3ffebefced7fb29bl4bd79ac3f5abbaasccabdflbI386877b5c39a7529

sus2 EEIED

CRC32 3FF4E382

0e00BG000

(o}
e

ssdeep MNone

Yara » JavaDropper - (no description)
» shellcode - Matched shellcode byte patterns

$ Score

This file appears fairly benign with a score of 0.1 out of 10.

000

Figure 28: Cuckoo Sandbox Validation of APK13

Based on malicious score APK13 is classified as benign by cuckoo sandbox.

@& Dashboard i= Recent < Pending Q Search

Summary & Download | & Resubmit sample
Size 9.7MB
Type Zip archive data, at least v?[0] to extract
MD5 7fdcaf50829c1357297ddfbd771db64e
SHA1 aBaab76bbdefd7719d40e9eef39282b4Bechflie
SHA256 e57eB8033a0452781eld36bf7e5cd57caab5873ed1d6ce33d77dee3922eab9fdb
LRV Show SHAS12
CRC32 9F198947
ssdeep MNone

Yara » shellcode - Matched shellcode byte patterns

Score

This file appears fairly benign with a score of 0.1 out of 10.

0000000000

Figure 29: APK14 Validation by Cuckoo Sandbox

72

The APK14 malicious score is 0.1/10, it is identified as benign by cuckoo sandbox as well.

APK No. [Cuckoo Sandbox outcome |Proposed methodology Outcome |Validation
APK1 Malicious Malicious Match
APK?2 Malicious Malicious Match
APK3 Malicious Malicious Match
APKA4 Malicious Malicious Match
APK5 Malicious Malicious Match
APK6 Malicious Malicious Match
APK7 Benign Benign Match
APK8 Malicious Malicious Match
APK9 Malicious Malicious Match
APK10 |Malicious Malicious Match
APK11 |Malicious Malicious Match
APK12 |Benign Benign Match
APK13 |Benign Benign Match
APK14 |Benign Benign Match
Result 100 %
Accuracy

Table 10: Summarized results of validation by Cuckoo sandbox

6.3. Discussion

The data/data, data/app, data/system and system/app provided the most important paths and
artifacts. These directories are comprised of 11 important paths listed in Table 1 to construct

the sequence of evidence. The identified artifacts in Table 1 helped to classify the benign and

73

malicious applications. In the above experiment 15 user-installed apps were analyzed by
following the methodology, and later on the suspicious apps were validated by the cuckoo
sandbox as if they are real malwares.

The methodology presented in this thesis contributes to significant advancement in smart
device security by addressing security challenges within smart devices. In this study, the
malware threats in the evolving environment of smart devices are tackled by a comprehensive
digital forensic investigation framework. The methodology systematically analyzes location,
paths and files that contain necessary information about artifacts of installed applications in the
smart device to identify and detect the real malwares traces.

A robust incident response framework is designed by implementing this methodology, which
detects multiple malwares in smart devices efficiently. The framework comprises proactive,
reactive, and forensic phases. In the forensic phase the real-time forensic investigation is
carried out that aligns with NIST forensic process. Each phase of framework is followed strictly
to ensure filtering out of benign from malicious applications.

Particularly, the approach efficiently filters out suspicious apps that require deeper
investigation. In this way, the methodology addresses the issues of identifying malicious
applications from numerous other applications in smart device. The effectiveness of this
technique is further strengthened using tools like Autopsy to analyze the artifacts and Cuckoo
sandbox to validate forensic findings.

In a nutshell the proposed technique offers a framework that provides investigators with the
resources they need to effectively identify, categorize, and filter the most recent malware
variants that attack smart devices. This method not only helps to improve smart security, yet it
also offers a model for future incident response in the ever-changing world of connected
devices. Proposed methodology will be crucial in preserving the integrity and security of the

smart ecosystem as it grows.

74

6.4. Comparison with Benchmark Approach

For comparison, the performance of the proposed approach is compared with Dohyun Kim et.

al.’s [1] approach. The Dohyun et. al. [1] analyzed the only four malwares i.e. SPAp.apk,

GMS.apk, V3Plus.apk and 23983JJF.apk. On the other hand, in our proposed approach

multiple latest malwares are analyzed. The most recent Android device easily implements our

suggested methods for malware analysis. We also contrasted the malicious and benign

programs, in contrast to the benchmark technique. The contribution is further enhanced by our

suggested technique, which offers additional artifacts and routes helpful for effective

malicious program identification. The system permissions that the apps that are suspected of

being malicious have obtained are used to confirm their identity. Furthermore, the Cuckoo

Sandbox verifies malicious programs as well.

Dohyun et al. (2020) | Juanru LI et | Zainab et | J. Leeetal. (2019) | Proposed
al. (2012) al. (2023) method

Proposed No No No No Yes
incident
response
model
Number of |4 1 0 1 10
malwares
investigated
Identified 7 0 11 4 11
Paths

75

Comparison
of benign and
malicious

applications

No

Yes

No

yes

Yes

System-
installed
APKs

identification

No

Yes

No

No

Yes

User-

installed

APKs

identification

No

Yes

No

Yes

Yes

Real-time

android

device

forensic

Yes

No

Yes

No

Yes

Investigation

of D1

Yes

No

No

No

Yes

Investigation

of D2

No

No

Yes

No

Yes

Investigation

of D3

No

No

Yes

Yes

Yes

76

Investigation

of D4

Yes

No

Yes

Yes

Yes

Investigation

of D5

No

No

Yes

Yes

Yes

Investigation

of D6

Yes

No

No

No

No

Investigation

of D7

No

No

Yes

No

Yes

Investigation

of D8

No

No

Yes

No

Yes

Investigation

of D9

No

No

No

No

Yes

Investigation

of D10

No

Yes

No

No

Yes

Investigation

of D11

Yes

No

Yes

No

Yes

Cuckoo
sandbox
validation of
suspicious

APKs

No

No

No

No

Yes

77

Followed No No No No Yes

NIST

framework

Table 11: Comparison table proposed VS existing method

6.5. Summary

We have outlined the key findings in this chapter and used the validations to support
our conclusions. The outcomes derived from our research have been contrasted with those from
the benchmark. Additional uses of the suggested methodology have been considered. Future

research and the conclusion are covered in the next chapter.

78

Chapter 7

7.Conclusion & Future Work

Chapter 7 concludes the presented thesis and highlights potential future research
directions. It describes different research prospects of our research and identifies open research

problems that still need to be solved by the research community.

7.1. Conclusion

The smart devices ecosystem is currently under severe security threat from smart device
malware. The efficiency of forensic detection approaches must be increased to meet these
problems, with a general focus on identifying malicious apps and the successful operation of
the chosen methodology to contrast benign and malicious programs. In this study, we examined
the smart device ecosystem to demonstrate that forensic inquiry may lead to improved
outcomes. To evaluate the effectiveness of the research, various forensic investigation phases
were employed and concluded the most useful forensic artifacts and paths.

With this forensic investigation methodology, we performed a comparison between benign
and malicious applications. The obtained results compared with the benchmark and existing
methods, it was observed that the proposed strategy achieved improved level of detections and
is also capable to further improve it by suggesting more artifacts and paths. The proposed

framework detected multiple malwares in the latest android version devices.

79

CHAPTER 7 CONCLUSION AND FUTURE WORK

Experiment results show that the 9 malicious APKs have been separated out from 5 benign
applications. This classification was conducted by following the proposed methodology. Later,
the results of the experiment are validated through Cuckoo Sandbox. The suspected APKs

which are validated through cuckoo sandbox turned out as very dangerous applications.

7.2. Limitation & Future Work

The major limitation of the proposed work is that we only use the android mobile device
for forensic investigation to detect malware. Other smart devices such as smart TVs, smart
watches, smart homes assistance devices, smart cameras, tablets, laptops etc. need to be
forensically investigated. Although forensic investigation methodology can help distinguish
the apps over platforms other than android as well. However, to provide a complete solution in
terms of detection, malware analysis needs to handle other platforms like ROS, Tarzen as well;
therefore, the forensic investigation of other platforms would be targeted in the future. We
would also like to explore other methodologies for malware detection while enhancing the no.

of artifacts.

80

Bibliography

[1]

[2]

3]

[4]

[5]

[6]

[7]

[8]

Kim, Dohyun, Yi Pan, and Jong Hyuk Park. "A study on the digital forensic investigation method of

clever malware in 10T devices." IEEE Access 8 (2020): 224487-224499.

J. Milosevic, F. Regazzoni and M. Malek, “Malware Threats and Solutions for
Trustworthy Mobile Systems Design”, Hardware Security and Trust, Design and
Deployment of Integrated Circuits in a Threatened Environment, Switzerland:
Springer, 2017, pp. 149-157

G. Kalogeridou, N. Sklavos, A.W. Moore, O Koufopavlou, “On the Hardware
Trojans Detection, using Mixed-Signal ICs”, proceedings, workshop on
Trustworthy Manufacturing and Utilization of Secure Devices, Conference DATE
2015, Grenoble, France, March 9-13, 2015

Nokia, “Nokia Threat Intelligence Report”, 2016.

Kshertri, Nir: 'Can Blockchain Strengthen the Internet of Things'. IEEE Access, vol
19. Pp. 68-72. 17 August2017

Meng, Weizhi. 'When Intrusion Detection Meets Blockchain Technology: A
Review. IEEE Access. Pp 1 -10. 21 January 2018.

Meng, Weizhi. 'When Intrusion Detection Meets Blockchain Technology: A
Review. IEEE Access. Pp 1 -10. 21 January 2018.

Clincy, Victor, and Hossain Shahriar. "loT malware analysis." 2019 IEEE 43rd
annual computer software and applications conference (COMPSAC). Vol. 1. IEEE,

2019.

81

BIBLIOGRAPHY

[9] Zhang, Xiaolu, et al. "lot botnet forensics: A comprehensive digital forensic case
study on mirai botnet servers." Forensic Science International: Digital
Investigation 32 (2020): 300926.

[10] Asma Razgallah, Raphaél Khoury, Sylvain Hall¢, Kobra Khanmohammadi, “A
survey of malware detection in Android apps: Recommendations and perspectives
for future research”, Computer Science Review 39 (2021) 100358

[11] Kebande, Victor R., and Indrakshi Ray. "A generic digital forensic investigation
framework for internet of things (iot)."” 2016 IEEE 4th International Conference on
Future Internet of Things and Cloud (FiCloud). IEEE, 2016.

[12] Kebande, Victor R., et al. "Towards an integrated digital forensic investigation
framework for an loT-based ecosystem." 2018 IEEE International Conference on
Smart Internet of Things (SmartloT). IEEE, 2018.

[13] Al-Masri, Eyhab, Yan Bai, and Juan Li. "A fog-based digital forensics investigation
framework for 10T systems." 2018 IEEE international conference on smart cloud
(SmartCloud). IEEE, 2018.

[14] Lee, Jinwoo, et al. "Analysis of application installation logs on android
systems."” Proceedings of the 34th ACM/SIGAPP Symposium on Applied
Computing. 2019.

[15] Khalid, Zainab, et al. "Forensic investigation of Cisco WebEx desktop client, web,
and Android smartphone applications.” Annals of Telecommunications 78.3-4
(2023): 183-208.

[16] D. Goel and A. K. Jain, ““Smishing-classi_er: A novel framework for detection of
smishing attack in mobile environment,” in Proc. Int. Conf. Next Gener. Comput.

Technol., Singapore, Oct. 2017, pp. 502_512.

82

BIBLIOGRAPHY

[17] J. W. Joo, S. Y. Moon, S. Singh, and J. H. Park, ~S-detector: An enhanced security
model for detecting Smishing attack for mobile computing,” Telecommun. Syst.,
vol. 66, no. 1, pp. 29 38, Sep. 2017.

[18] A. K. Jain and B. B. Gupta, "Rule-based framework for detection of Smishing
messages in mobile environment,” Procedia Comput. Sci., vol. 125, pp. 617_623,
2018.

[19] S.Wang, Z. Chen, Q.Yan, B.Yang, L. Peng, and Z. Jia, " Amobile malware detection
method using behavior features in network traf_c," J. Netw. Comput. Appl., vol.
133, pp. 15_25, May 2019.

[20] M. Alazab, M. Alazab, A. Shalaginov, A. Mesleh, and A. Awajan, " Intelligent
mobile malware detection using permission requests and API calls," Future Gener.
Comput. Syst., vol. 107, pp. 509_521, Jun. 2020.

[21] Autopsy. “Autopsy | Digital Forensics.” Autopsy, 2023, www.autopsy.com/.

[22] Z.Xu, C. Shi, C.C.-C. Cheng, N. Z. Gong, and Y. Guan, =" A dynamic taint analysis
tool for Android app forensics," in Proc. IEEE Secur. Privacy Workshops (SPW),
May 2018, pp. 160_169.

[23] M. Sun, T. Wei, and J. C. S. Lui, TaintART: A practical multi-level information-
_ow tracking system for Android RunTime," in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., Oct. 2016, pp. 331_342.

[24] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung, P.
McDaniel, and A. N. Sheth, “"TaintDroid: An information-_ow tracking system for
realtime privacy monitoring on smartphones,” ACM Trans. Comput. Syst., vol. 32,
no. 2, pp. 1_29, Jun. 2014.

[25] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon, D.

Octeau, and P. McDaniel, “"FlowDroid: Precise context, ow, _eld, object-sensitive

83

BIBLIOGRAPHY

and lifecycle-aware taint analysis for Android apps,” ACM SIGPLAN Notices, vol.
49, no. 6, pp. 259 _269, Jun. 2014.

[26] L. Li, A. Bartel, T. F. Bissyande, J. Klein, Y. Le Traon, S. Arzt, S. Rasthofer, E.
Bodden, D. Octeau, and P. McDaniel, “"IccTA: Detecting inter-component privacy
leaks in Android apps," in Proc. IEEE/ACM 37th IEEE Int. Conf. Softw. Eng., vol.
1, May 2015, pp. 280_291.

[27] M. 1. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen, and M. C. Rinard,
““Information _owanalysis of Android applications in droidsafe," in Proc. NDSS,
Feb. 2015, vol. 15, no. 201, p. 110.

[28] L. Qiu, Y. Wang, and J. Rubin, “Analyzing the analyzers: Flow- Droid/IccTA,
AmanDroid, and DroidSafe," in Proc. 27th ACM SIGSOFT Int. Symp. Softw. Test.
Anal. (ISSTA), Jul. 2018, pp. 176_186.

[29] A. Kumar, V. Agarwal, S. Kumar Shandilya, A. Shalaginov, S. Upadhyay, and B.
Yadav, PACER: Platform for Android malware classi_cation, performance
evaluation and threat reporting,” Future Internet, vol. 12, no. 4, p. 66, Apr. 2020.

[30] M. K. Alzaylaee, S. Y. Yerima, and S. Sezer, "EMULATOR vs REAL PHONE:
Android malware detection using machine learning,” in Proc. 3rd ACM Int.
Workshop Secur. PrivacyAnalytics (IWSPA), Mar. 2017, pp. 65_72.

[31] A. Nieto and R. Rios, Cybersecurity pro_les based on human-centric 10T
devices," Hum.-Centric Comput. Inf. Sci., vol. 9, no. 1, p. 39, Dec. 2019.

[32] A. Souri and R. Hosseini, A state-of-the-art survey of malware detection
approaches using data mining techniques,” Hum.-Centric Comput. Inf. Sci., vol. 8,

no. 1, p. 3, Dec. 2018.

84

BIBLIOGRAPHY

[33] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-an, and H. Ye, Signi_cant permission
identi_cation for Machine-Learning-Based Android malware detection,” IEEE
Trans. Ind. Informat., vol. 14, no. 7, pp. 3216_3225, Jul. 2018.

[34] Z. Yuan, Y. Lu,and Y. Xue, Droiddetector: Android malware characterization and
detection using deep learning,"” Tsinghua Sci. Technol., vol. 21, no. 1, pp. 114 123,
Feb. 2016.

[35] G.Suciu, C.-I. Istrate, R. I. R ducanu, M.-C. Dipwu, O. Fratu, and A. Vulpe, "~ Mobile
devices forensic platform for malware detection,” in Proc. Int. Symp. ICS SCADA
Cyber Secur. Res, vol. 6, Sep. 2019, pp. 59_66.

[36] O. S. J. Nisha and S. M. S. Bhanu, “Detection of repackaged Android applications
based on Apps Permissions,” Proc. 4th IEEE Int. Conf. Recent Adv. Inf. Technol.
RAIT 2018, pp. 1-8, 2018

[37] H.R. Sandeep, “Static analysis of android malware detection using deep learning,”
2019 Int. Conf. Intell. Comput. Control Syst. ICCS 2019, no. Iciccs, pp. 841-845,
2019.

[38] Z. Wang, K. Li, Y. Hu, A. Fukuda, and W. Kong, “Multilevel permission extraction
in android applications for malware detection,” CITS 2019 - Proceeding 2019 Int.
Conf. Comput. Inf. Telecommun. Syst., pp. 0-4, 2019

[39] M. Fan et al., “Android malware familial classification and representative sample
selection via frequent subgraph analysis,” IEEE Trans. Inf. Forensics Secur., vol.
13, no. 8, pp. 1890-1905, 2018

[40] Lessard, Jeff, and Gary Kessler. "Android forensics: Simplifying cell phone

examinations.” (2010).

85

BIBLIOGRAPHY

[41] Vidas, Timothy, Chengye Zhang, and Nicolas Christin. "Toward a general
collection methodology for Android devices.” digital investigation 8 (2011): S14-
S24.

[42] Al Barghouthy, Nedaa, and Andrew Marrington. "A comparison of forensic
acquisition techniques for android devices: a case study investigation of orweb
browsing sessions.” 2014 6th International Conference on New Technologies,
Mobility and Security (NTMS). IEEE, 2014.

[43] Jamalpur, Sainadh, et al. "Dynamic malware analysis using cuckoo sandbox.” 2018
Second international conference on inventive communication and computational
technologies (ICICCT). IEEE, 2018.

[44] Anish, & sk3ptre. (2021, January 18). Android Malware Timeline 2021.

Sk3ptre. https://sk3ptre.github.io/Malware-Timeline-2021/

[45] win.rar GmbH. (2016). WinRAR download and support: Download. Win-Rar.com.

https://www.win-rar.com/download.htmI?&L=0

[46] “Android Debug Bridge (Adb).” Android Developers,
developer.android.com/tools/adb.

[47] “Ncat.” Nmap.org, 2019, nmap.org/ncat/.

[48] “Autopsy.” Sleuthkit.org, sleuthkit.org/autopsy/.

[49] “Download IntelliJ IDEA — the Leading Java and Kotlin IDE.” JetBrains,

www.jetbrains.com/idea/download. Accessed 1 June 2023.

[50] Wang, W., Zhao, M., Gao, Z., Xu, G., Xian, H., Li, Y., & Zhang, X. (2019).
Constructing Features for Detecting Android Malicious Applications: Issues,
Taxonomy and Directions. IEEE Access, 7, 67602-67631.

https://doi.org/10.1109/ACCESS.2019.2918139

86

https://sk3ptre.github.io/Malware-Timeline-2021/
https://www.win-rar.com/download.html?&L=0
http://www.jetbrains.com/idea/download.%20Accessed%201%20June%202023
https://doi.org/10.1109/ACCESS.2019.2918139

BIBLIOGRAPHY

[51] Ghosh, A., Majumder, K., & De, D. (2021). Android forensics using sleuth kit
autopsy. In Proceedings of the Sixth International Conference on Mathematics and

Computing: ICMC 2020 (pp. 297-308). Springer Singapore

Appendix 1

Table 12:Applications downloaded from google playstore

package name title
com.google.android.apps.youtube.mango YouTube Go
WhatsApp
com.whatsapp Messenger
Speech Services by
com.google.android.tts Google

WinZip — Zip UnZip

com.winzip.android Tool

Zip Extractor - RAR

com.zip.unzip.zipextractor.raropener.zipfile ZIP, UnZIP

QR & Barcode

com.gamma.scan2 Scanner PRO

com.prisbank.app Sberbank

87

BIBLIOGRAPHY

Appendix 2

Table 13: All applications, package name and APK path

FCDFEAFC6FFEC7DAAOD313C724D72

JTEITTXQIECTKTH4Iw

Malware APK path Package name
Rootnik: /data/app/com.web.sdfil | com.web.sdfile
E5E22B357893BC15A50DC35B702DD5 | e-k-

CEE6584CD2EO1FABSF075F94AF2A0C

E024ED5E4F2D52E3DC39F7655C736A7

232.APK

u_
T8MJZ8THM_48wsnlz

aat7g==/base.APK

EC854.APK Vw==/base.APK

Rootnik: /data/app/com.br.srd- com.br.srd
E2BDCFE5796CD377D41F3DA3838865 | wd9DupMc6MgQxWil
ABO62EA7AFIE1E4424B1E34EBO84AB | 0h8j2A==/base.APK

EC4A.APK

Rootnik: /data/app/com.oyws.pd | com.oyws.pdu

Krept banking:

krep.itmtd.ywtjexf-1.APK

/data/app/krep.itmtd.yw
tjexf-gsDSrpELqvys6u-

CR4dEuQ==/base.APK

krep.itmtd.ywtjexf-

1

88

BIBLIOGRAPHY

Candycorn:

14d9f1a92dd984d6040cc41ed06e273e.AP

/data/app/org.merry.cor

e-c9kJMre666FcViVSc-

org.merry.core

K -dp8w==/base. APK
Nimaz ka waqt: /data/app/com.tos.salatt | com.tos.salattime.p
1514376339e4a0b4727c6897640c7c3e.AP | ime.pakistan- akistan
K t5s0eEUxxfs8oHEqqW
I-DA==/base. APK
Xbot:

1264C25D67D41F52102573D3C528BCD

DDA42129DF5052881F/E98B4A9

Youtube:

/data/app/com.google.a
ndroid.apps.youtube.ma
ngo-
qBh30GLh7UOpwBoL

69Gbgg==/base.APK

com.google.androi
d.apps.youtube.ma

ngo

Whatsapp:

/data/app/com.whatsapp

eHcCVCAQGYCO4KAIf

Nvs9g==/base. APK

com.whatsapp

Sberbank:

/data/app/com.prisbank.
app-
ITyIM70hfj_oC2C3kDt

C8ZA==/base.APK

com.prisbank.app

Barcode scanner

/data/app/com.gamma.s

can2-

com.gamma.scan2

89

BIBLIOGRAPHY

ckecewYHzKBUdNhuzZ

eyqqtQ==/base.APK

Winzip

com.winzip.androi

d

Zip extractor

/data/app/com.zip.unzip
.Zipextractor.raropener.
zipfile-
Wbu8XTIIjC7VOoMSR

wCc-FQ==/base. APK

com.zip.unzip.zipe
xtractor.raropener.

zipfile

Photo processing

263b0851156f7d77fb43368cel3bedel

/data/app/com.pcnts.spl
icingpp-
TxJngHz3tzdzRsNPC

WNcsg==/base.APK

com.pcnts.splicing

PP

Facebook com.facebook.syst
em
Lockkeeper /data/app/com.enab.loc | com.enab.lockkeep

0e8805b683bc0fd8a6d49b07205f1a4db

kkeep-
Y6AzdXUO71I5NTKM

gbOYWA==/base.APK

janOscorp_20230307/f73ebc6f645926bf85

66220b14173df8.APK

/data/app/com.cosmos.s
tarwarz-
21B61gP3toiK44zR21

mgoQ==/base.APK

€COmM.cosmos.starw

arz

/data/app/com.facebook

.appmanager-

com.facebook.app

manager

90

BIBLIOGRAPHY

ADbEIncHcjzUsSEhHY9b

Q2wA==/base.APK

com.snt.rubbishcle

aner

91

