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Abstract 

A fluid for which stress isn’t linearly related to deformation rate is termed as a non-Newtonian 

fluid. Such fluids help us comprehend the widespread variety of fluids that occur in the physical 

world. Many researchers explored non-Newtonian fluids via upper-convected Maxwell model 

which is preferred due to its wide-ranging applications.  

Chapter 1 includes a brief background of the research undertaken in this thesis. Dimensionless 

numbers and their significance are described briefly. Some important concepts employed in the 

thesis are explained. 

Chapter 2 focuses on variable thermal conductivity effects on a viscoelastic fluid flow past a 

continuously flat plate placed in stationary fluid subjected to convective heating. A convenient 

routine bvp4c of MATLAB is invoked to find similarity solutions. The role of variable thermal 

conductivity on temperature is clarified by plotting graphs. 

Chapter 3 concerns with radiation effects on viscoelastic fluid flow around a moving flat plate in 

an otherwise calm environment. Analysis is based on physically realizable convective type 

condition and inclusion of wall suction. Moreover, nonlinear Rosseland formula for radiative 

heat flux is utilized. Using Similarity approach, the velocity and temperature profiles are 

estimated numerically for wide range of viscoelastic fluid parameter.  
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Chapter 1 

Introduction 

1.1 Background 

Heat transfer in non-Newtonian fluids has been an area of great interest for fluid dynamics 

research community. Non-Newtonian fluid models give flow description of liquids generally 

faced in natural surroundings and industries, for instance biological fluids, foams, liquids with 

polymers, slurries etc. Unlike water and air, these fluids possess at least one rheological feature 

out of shear-thinning/thickening, nonlinear creep, normal stress differences, stress relaxation or 

yielding. Although, viscoelastic fluids act as viscous fluids in long-time experiments but their 

initial response to the applied stress is like that of elastic solid. Maxwell model is perhaps the 

widely accepted model that explains the stress-relaxation feature of viscoelastic materials. 

Numerous industrial processes involve non-Newtonian fluid flow around moving belts or plates. 

A few noteworthy examples are spinning of artificial fiber, paper production, thread travelling in 

amid a windup roll and feed roll, cooling of a long metallic plate, continuous casting, glass 

manufacturing etc.  Such flows usually comprise of boundary layer flow problem caused either 

by fluid flow prompted due to uniform flow across a flat fixed plate, or by the flow triggered by 

a moving flat plate in an otherwise stationary fluid. The formerly mentioned flow type is known 

infamously as Blasius flow and the later as Sakiadis flow. Flow above a plate as well as a sheet 

was initially investigated by authors Blasius [1] and Sakiadis [2, 3] in the earlier times i.e. 19
th

 

century. Sadeghy et al. [4] tested different approaches for Sakiadis flow of viscoelastic fluid 

obeying Maxwell model. Later, Kumari and Nath [5] made use of Maxwell model to analyze 

buoyancy induced viscoelastic fluid flow exposed to transverse magnetic field. Hayat et al. [6] 

formulated and resolved stagnation point flow of Maxwell fluid impinging on a horizontal 

surface by analytical method. Shateyi [7] resolved flow past a vertical stretchable surface placed 

in an incompressible Maxwell fluid containing chemically reactive species. Mustafa [8] 

elucidated non-Fourier heat flux in rotating viscoelastic fluid above a stretching surface utilizing 

homotopy analysis method. Later, Abbasi and Shehzad [9] also conducted non-Fourier heat 

transfer analysis for viscoelastic fluid flow resulted due to bidirectional stretching of an elastic 

surface. Later, Hsiao [10] explored radiative heat transfer in viscoelastic fluid flow bounded by 
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an extensible surface.  Similar boundary layer problems concerning Maxwell fluid are published 

frequently in recent times [11-17]. 

Heat transfer simply put is transfer of energy whenever in a medium temperature difference 

exists. Convective heat transfer take place between a surface and moving fluid kept at different 

temperatures. A consequence of the fluid-surface interaction is the development of a boundary 

layer where the velocity changes from zero at the boundary i.e.     to a finite value   . 

Moreover temperature difference between fluid and surface results in the formation of thermal 

boundary layer, where temperature varies from     at the boundary to    in the free streamline. 

In the case when        convective heat transfer occurs from the surface to the outer flow. 

Many researchers also showed interest in forced convection caused due to an application of heat 

source to the boundary layer flow. On the other hand, radiative heat transfer is imperative in 

astrophysical flows, nuclear reactor cooling, solar power technology, electrical power generation, 

cooling of electronic devices and energy production etc. In most of the earlier articles, the 

practice was to linearize Rosseland heat flux by utilizing the assumption of small temperature 

difference. (See, for instance, Refs. [18-22]). Magyari [23], in 2011, revealed that the use of 

linearized Rosseland formula for radiation doesn’t add any novelty keeping in view the 

computational of physical perspective of the problems. Pantokratoras and Fang [24], [25] 

investigated the effects of nonlinear Rosseland thermal radiation on the Sakiadis and Blasius 

flow. Motivated by [23], flow analysis by using non-linear radiative heat flux has been 

considered in many recent articles. Pal et al. [26] investigated the impact of nonlinear radiation 

on MHD mass and heat transfer in a thin liquid film. Hayat et al. [27] addressed the coinciding 

characteristics of nonlinear thermal radiation and melting heat transfer effects in stagnation point 

flow of carbon nanotubes due to stretching cylinder. Effects of heat generation/absorption along 

a moving slip surface with nonlinear thermal radiation were studied by Soomro et al. [28]. Reddy 

et al. [29] considered the flow of a nanofluid over a curved shaped stretchable geometry and 

carried out the numerical study of heat and mass transfer by assuming nonlinear radiation. 

Mustafa et al. [30] dealt with the nonlinear radiative heat flux in laminar flow due to rough 

rotating disk in the presence of partial slip effects and vertical magnetic field. Some more recent 

work carried out in this area is given through [31-37]. 
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Motivation of current thesis is twofold. Firstly, to consider variable thermal conductivity for a 

viscoelastic fluid flow around a convectively heated wall. Such problem comprises of a nonlinear 

boundary condition which is not yet reported in the literature. Secondly, the aspect of nonlinear 

radiation in Sakiadis flow of viscoelastic fluid. The numerical solutions of above problems are 

sought by a contemporary MATLAB solver bvp4c, the details of which can be found from [38] 

and [39].  

1.2 Some dimensionless numbers 

1.2.1 Reynolds number 

Reynolds numbers      is used to predict whether the flow is laminar or turbulent. 

Mathematically, the ratio of inertial forces to viscous forces defines Reynolds number, given by: 

   
   

 
 

  

 
  

(1.1) 

where   is the characteristic length and       is termed kinematic viscosity. At low Reynolds 

number, viscous forces relatively dominate thereby producing laminar flow. On the other hand, 

inertial forces dominate at high Reynolds number and thus initiate turbulence in fluid flow. 

1.2.2  Prandtl number 

Prandtl number (  ) is used to determine heat transfer between a moving fluid and a solid 

surface. Mathematically, it is the ratio of momentum diffusion to thermal diffusion, represented 

as: 

   
 

 
 

   

  
  (1.2) 

where         denotes the thermal diffusivity in which   is thermal conductivity and 

   represents the specific heat capacity. 

1.2.3 Nusselt number 

The ratio of convective heat transfer to conductive heat transfer defines Nusselt number. 

Mathematically: 

https://en.wikipedia.org/wiki/Thermal_diffusivity
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(1.3) 

where   is the convective heat transfer coefficient. 

 

1.2.4 Deborah number 

A viscoelastic parameter used to characterize the fluidity of material under explicit flow 

environments is known as Deborah number. In mathematical terms, it is the ratio between two 

time quantities, which are, time required by the material to adjust to applied stress and the 

characteristic time for which the stress was applied, represented as: 

               
  
  

  
(1.4) 

where    denotes relaxation time and    represents the time of observation. At low Deborah 

number, material tends to be more fluid like and at high values, it acts more solid like. 

1.2.5 Biot number 

Biot number analyzes the interaction between conduction in a solid and convection at the solid’s 

surface. Mathematically, 

   
 

 
√
 

 
  

(1.5) 

where   is the horizontal velocity of the plate. 

1.2.6 Magnetic interaction parameter 

 It is a parameter of prime importance when the flow is exposed to a transverse magnetic field 

being applied externally. Mathematically, it is the ratio of electromagnetic force to the viscous 

force, represented as: 

  √
   

  
   

(1.6) 
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where   denotes electrical conductivity,   is magnetic field intensity,   represents fluid density 

and   is horizontal velocity of the plate. 

1.3 Preliminary concepts 

1.3.1 Boundary layer 

Boundary layer refers to the layer of fluid surrounding the boundary where the effect of the 

viscosity is present. Two important types of boundary layers are discussed below: 

Momentum boundary layer 

When fluid particles come in contact with a solid surface, they exhibit a zero velocity in order to 

adhere to the no-slip condition. These fluid particles impact the particles of the adjacent fluid 

layer and it consequentially influences the next layer fluid particles. This slowing of velocity 

goes on till a considerable distance from the flat surface is achieved where the retardation effect 

becomes negligible. In the boundary layer, fluid velocity varies from zero to       , where    

represents free stream velocity. 

Thermal boundary layer 

Thermal boundary layer forms when there is a temperature difference between the fluid flow and 

the surface across which the flow is flowing. This is the region where the temperature varies 

along    direction i.e. normal to the surface (as in Fig. 1.1). 

 

Figure 1.1: Boundary layer schematic 
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There are two well-known boundary layer flows. They are defined under: 

Blasius flow refers to the fluid flow occurring over a stationary flat plate (at zero incidence) 

placed in a moving fluid. On the other hand, fluid flow triggered by a moving plate in an 

otherwise stationary fluid is termed as Sakiadis flow. Both Blasius and Sakiadis flow are 

described by the following equations: 

  

  
 

  

  
     

(1.7) 

 ( 
  

  
  

  

  
)   

   

   
  

(1.8) 

with   and   representing velocities in the    and    directions respectively where coordinate 

  is measured along the plate and   is normal to it. The boundary conditions are: 

Blasius flow:                  

Blasius flow  :                  

(1.9) 

Sakiadis flow:                    

Sakiadis flow:                      

(1.10) 

1.3.2 Non-Newtonian fluids 

Fluids which do not adhere to Newton’s law of viscosity are classified as non-Newtonian fluids. 

For these fluids, shear stress and deformation rate cannot be linked linearly. Under stresses, such 

fluids change their viscosity with varying strain rate. The flows involving non-Newtonian fluids 

prevail in a wide spectrum of applications in industrial processes such as synthetic fibers, 

polymer solutions, paper production etc. A vast variety of biological as well as industrial fluids 

exhibit non-Newtonian behavior, for example, blood, printer ink, ketchup, slurries and grease 

etc.  

Since there doesn’t exist a linear relation between stress and deformation rate, a single model 

cannot be used to define non-Newtonian fluids. Researchers have developed numerous models to 

study non-Newtonian fluids. Some widely used models include power-law model, Bird-Carreau 

model, Cross-Power law model, Herschel-Bulkey model, second-grade model etc. Somewhat 
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widely accepted and utilized model is the upper-convected Maxwell model. It is able to explain 

the memory effect exhibited by non-Newtonian fluids in terms of relaxation time.  

The basic flow equations governing the Maxwell fluid flow are given under. 

Governing equations for boundary layer flow of Maxwell fluid 

Equations governing incompressible MHD Maxwell fluid flow are: 

       (1.8) 

 [
  

  
]                 

 

(1.9) 
 

where   (                          ) is the velocity vector,   is fluid density,    ⁄  is 

material derivative,   is extra stress tensor,   represents current density and        is the 

total magnetic field.    is induced magnetic field which is neglected by assuming small magnetic 

Reynold’s number. 

Current density   is given by Ohm’s law as: 

            (1.10) 

where   is electrical consucivity and   is the electrical field which is assumed to be negligible 

here. Thus Eq. (1.10) can be rewritten as: 

                 (1.11) 

In components form, Eq. (1.8) can be expressed as: 

  

  
 

  

  
 

  

  
    

(1.12) 

For Maxwell fluid,   obeys the following relationship: 

    

  

  
      

(1.13) 

where    is fluid relaxation time,      is convected time derivative and    is the first Rivlin-

Erickson tensor defined as: 
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              *

             

             

             

+  

(1.14) 

The upper convected derivative      for any vector   is defined as: 

   

  
 

   

  
                

(1.15) 

Assigning the operator (    
 

  
) on both sides of Eq. (1.9) we get: 

 (     

 

  
 ) [

  

  
]   (    

 

  
)   (    

 

  
)       (    

 

  
)              

(1.16) 

The assumption of no modified pressure gradient leads to the following equation: 

 (     

 

  
 ) [

  

  
]    (    

 

  
)   (    

 

  
)              

(1.17) 

Utilizing Eq. (1.13), Eq. (1.17) can be rewritten as: 

 (     

 

  
 ) [

  

  
]          (    

 

  
)              

(1.18) 

Using definitions given in (1.14) and (1.15), Eq. (1.18) in the    and    components, we get 

the following momentum equations for Maxwell fluid: 
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(1.19) 
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(1.120) 

 

1.3.3 Thermal conductivity  

The intrinsic property of a material which explains the materials capability to conduct heat is 

known as thermal conductivity. Its S.I unit is watts per meter-kelvin        ⁄  . 
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1.3.4 Electrical conductivity 

It is defined as the ability of a material to allow the flow of electric current. Mathematically: 

  
 

  
  

(1.21) 

where   represents length of the material,   gives resistance of the material and   gives area of 

the material. The S.I unit of   is siemens per meter       . 

1.3.5       

Flows occurring in physical world are governed by complex non-linear partial differential 

equations. These equations may have no solution, or may have a finite number, or may have 

infinitely many solutions. In order to get a solution MATLAB programs require the user to 

provide with the initial guesses for the solution required and also for the parameters involved in 

the governing equations. MATLAB built in package      , which implements collocation 

method, is capable of solving a nonlinear multipoint boundary value problem. In order to utilize 

this technique, the third order equations are reduced to first order ordinary differential equations. 

The guesses are provided for more accurate results. Changes can be made in step size to increase 

accuracy. To get more detailed understanding of this technique Refs. [38] and [39] can be 

consulted.  
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Chapter 2 

Numerical study for Sakiadis flow of Maxwell fluid with 

variable thermal conductivity 

Fluid flow triggered by the plane surface moving with constant velocity in an otherwise calm 

Maxwell fluid is revisited here. Heat transfer process accompanied by variable thermal 

conductivity and convective boundary is considered. It is assumed that thermal conductivity 

exhibits a directly linear temperature dependency and such assumption makes the convective 

condition nonlinear in temperature. Flow field is exposed to vertical magnetic field with flux 

density B. A reliable and easy to implement numerical procedure is invoked to retrieve velocity 

and temperature functions. Emphasis is paid towards the effects of rheology (viscoelasticity) and 

variable thermal conductivity on the flow model. 

. 

2.1 Problem formulation 

The problem under consideration involves a steady and laminar Maxwell fluid flow resulting by 

motion of a flat plate with constant velocity  . Heat transfer mechanism is induced by providing 

convection at the plate with temperature    and heat transfer coefficient   , whereas    denotes 

the free stream temperature such that      . The system is permeated to vertical magnetic 

field with flux density  . Electric field is ignored whereas induced magnetic field becomes 

negligible by considering small magnetic Reynolds number. The Lorentz force vector takes the 

form   
⃗⃗⃗⃗             . The physical sketch of the model is given by Fig. 2.1. Boundary layer 

equations embodying the problem under discussion are: 
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Fig 2.1: Physical sketch of the problem 
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)  (2.2) 

   ( 
  

  
   

  

  
)  

 

  
 (    

  

   
)   (2.3) 

The assumptions of no slip and convective heating at the wall produce the following conditions: 

                
  

  
   (      )              (2.4a) 

and following holds at the ambient: 

                          (2.4b) 

where       represent velocities in the       directions respectively.    is termed fluid 

relaxation time,   symbolizes kinematic viscosity,   represents density,     √ ⁄   is the heat 

transfer coefficient,   is local fluid temperature,    shows the specific heat capacity and      

stands for thermal conductivity which has the following form: 
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       (   
    
     

)  (2.5) 

In Eq. (2.5),      is constant and     is the thermal conductivity of the ambient fluid. 

In [40], it was shown that problem is reducible to a locally similar system by substituting: 

  √
 

  
                    

 

 
√
  

 
                  (

    
     

)   (2.6) 

where      represents dimensionless stream function and      gives non-dimensional  

temperature. The continuity equation, Eq. (2.1) is by design satisfied whereas Eq. (2.2), Eq. (2.3) 

and boundary conditions given by Eqs. (2.4a and 2.4b) become: 

     
 

 
     

  

 
                                                (2.7) 

               
  

 
        (2.8) 

               [       ]         (      )  (2.9a) 

                   (2.9b) 

where         ⁄  is local Deborah number,   √      ⁄  is magnetic interaction 

parameter,      ⁄  is the Prandtl number,       √   ⁄  is the Biot number. 

Local Nusselt number     is used in calculations of heat transfer between a moving fluid and a 

solid body, a physical quantity of great importance, is defined as: 

    
   

    (     )
  (2.10) 

  

where              ⁄     is the wall heat flux. Using (2.6) and substituting    in Eq. 

(2.10) we get: 

   
                  (2.11) 

where        ⁄  represents local Reynolds number. 
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2.2 Numerical method 

The boundary value problem (bvp) stated by Eqs. (2.7) and (2.8) with conditions (2.9a) and 

(2.9b) is solved using MATLAB package bvp4c. Let us substitute, 

                      (2.12) 

in Eqs. (2.7) and (2.8), we obtain: 

   { 
 

 
   

  

 
                           }  (  

  

 
  )  (2.13) 

    {    
  

 
  }          (2.14) 

Eqs. (2.13) and (2.14) are written in bvp4c code along with the conditions (2.9a) and (2.9b). We 

initiate the computations by initially choosing low   . The computations are performed at 

different   ’s (say 10, 11, 12, 13 etc.) until the initial slopes        and       become consistent 

and residuals of far field conditions stay less than     . 

2.3 Numerical results and discussion 

To ascertain that computations are accurate, the results of        are compared in Table 2.1 with 

previous works of Cortell [41] and Mustafa et al. [40] and such comparison appears convincing. 

Having the accuracy of our code being established, we will now discuss the new findings of our 

analysis and discuss how temperature dependent thermal conductivity impacts our flow model. 

In Table 2.2, numerical data of local Nusselt number represented by        is compared by 

varying embedded parameters. It is detected that by increasing    or   ,        increases in 

absolute sense. However, a decreasing trend in local Nusselt number is found for growing values 

of   and  . This is because variable thermal conductivity depends upon  , and since epsilon 

increases, thermal conductivity increases which results in rise of temperature which consequently 

leads to lower temperature gradient. 
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Table 2.1: Comparison with local Nusselt number        obtained by Cortell [41] and Mustafa 

et al. [40] when                         : 

          

Cortell [41] Mustafa et al. [40] Present 

0.6 0.313519 0.31352 0.313519 

5.5 1.216049 1.21605 1.216057 

7 1.387033 1.38703 1.387038 

10 1.680293 1.68029 1.680297 

50 3.890918 3.89091 3.890929 

100 5.544663 5.54464 5.544655 

 

In Fig. 2.2, when the flow is not exposed to magnetic field, a cross over in    velocity curves is 

noticed indicating that velocity increases near the plate and decreases far from it when De 

becomes large. This mixed behavior is not seen by inducing transverse magnetic field to the 

flow. Velocity as well as boundary layer thickness is inversely related to the local Deborah 

number. Furthermore, boundary layer thickness is much suppressed by the action of magnetic 

field. However, Fig. 2.3 illustrates that heat penetration depth progresses as magnetic flux 

density enlarges. The striking influence of rheology is the enhancement of thermal boundary 

layer thickness for increasing values of De. In Fig. 2.4, variation in temperature profile by 

changing Prandtl number is observed. Large Prandtl number    indicates relatively lower 

thermal conductivity at the ambient. Hence increasing    is expected to shorten heat penetration 

depth. Fig. 2.5 illustrates the behavior of convective boundary on the temperature  . Higher 

values of    imply larger surface temperature which in turn produces higher penetration depth. 

In Fig. 2.6, when      , local Nusselt number has a linear relationship with Deborah number. 

It increases (in absolute sense) for increasing Deborah number. However, opposite relationship 

holds when magnetic force is brought into effect. To understand the significance of parameter   

with regards to heat transfer, Fig. 2.7 is obtained. A marked reduction in         is seen for 

higher values of  . This concludes that the consideration of constant thermal conductivity (in 

practical processes) may lead to overestimates of local Nusselt number. In Fig. 2.8, when we 
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increase Biot number, it results in increase in local Nusselt number. When    approaches   local 

Nusselt number becomes constant. 

Table 2.2: Computational results of local Nusselt number for various values of              

with       . 

                 

0 0 3 0 0.31696815 

   0.5 0.27386683 

   1 0.24302909 

  7 0 0.36751738 

   0.5 0.32871833 

   1 0.29895069 

 1 3 0 0.29705083 

   0.5 0.25242898 

   1 0.22112219 

  7 0 0.357126 

   0.5 0.31669739 

   1 0.28606194 

1 0 3 0 0.31890243 

   0.5 0.27656686 

   1 0.24644296 

  7 0 0.36919746 

   0.5 0.331166 

   1 0.30210732 

 1 3 0 0.29261641 

   0.5 0.24751319 

   1 0.21594574 

  7 0 0.35577038 

   0.5 0.31508706 

   1 0.28428662 
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Fig. 2.2: Variation in velocity curve     with   for different Deborah numbers. 

 

Fig. 2.3: Variation in temperature curve   with   for different magnetic field parameters. 
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Fig. 2.4: Variation in temperature curve   with   for different Prandtl numbers. 

 

Fig. 2.5: Variation in temperature curve   with   for different Biot numbers. 
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Fig. 2.6: Variation in local Nusselt number        with    for different Prandtl numbers 

 

Fig. 2.7: Variation in local Nusselt number        with    for different values of parameter  . 
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Fig. 2.8: Variation in local Nusselt number        with    for different Prandtl numbers.  
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2.4 Concluding remarks 

Analysis of MHD Sakiadis flow of Maxwell fluid influenced by temperature dependent thermal 

conductivity is theoretical focus of this chapter. The conclusions drawn from the present study 

are in excellent agreement to those from recent bibliography. Listed below are the key findings 

reached from numerical treatment of the governing model: 

• In the absence of magnetic field      , velocity increases near the plate and decreases just 

away from it with an increase in Deborah number.   

• Velocity of fluid as well as momentum boundary layer thickness decreases with the increase in 

either Deborah number or magnetic field parameter.  

• The increase in thermal conductivity parameter raises the temperature of the fluid across the 

boundary layer. This again increases the thickness of boundary layer.  

• Local Nusselt number is proportional to the local Deborah number. The trend is reversed when 

magnetic field is brought into effect.  

• Increase in Biot number causes increase in local Nusselt number. When biot number grows 

sufficiently large,          becomes nearly constant.  
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Chapter 3 

Numerical study for Sakiadis flow of MHD Maxwell fluid 

inspired by nonlinear radiation heat flux 

This chapter is motivated to formulate fluid flow around a moving porous plate immersed in a 

viscoelastic fluid subjected to thermal radiation effects. Thermal process is characterized by 

implementing convective boundary heating. A locally similar treatment is pursued to resolve 

flow and heat transfer problems. The first section formulates governing problem under boundary 

layer approximations. Numerical calculations signifying the consequences of nonlinear radiation 

on the flow model are deliberated in section 3.3. Section 3.4 outlines the important findings of 

this research. 

 

3.1 Problem formulation 

The considered plate within this research rests in the plane     where heat source of 

volumetric heat generation        is present. Heat transfer occurs as a result of heating of the 

absorbing fluid and plate by radiation. The flow is triggered by the motion of plate in the positive 

  direction with constant velocity  . The plate is assumed porous with wall suction velocity 

    . Temperature at the boundary is passively maintained by convective heating with 

temperature   .    shows temperature at the far field such that      . The field flow is 

exposed to vertical magnetic field with uniform magnetic flux density  . Accounting these 

assumptions, the conservation equations can be casted in the following forms: 

  

  
 

  

  
    (3.1) 

 
  

  
  

  

  
   (  

   

   
   

   

   
    

   

    
)   

   

   
 

   

 
(     

  

  
)  (3.2) 

 
  

  
   

  

  
  

   

   
 

 

   

   

  
 

  

   
          (3.3) 
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with the conditions, 

                 
         

  

  
   (      )              (3.4a) 

and following holds at the ambient: 

                          (3.4b) 

In Eqs. (3.1) - (3.4),       denote the horizontal and vertical velocities,    stands for fluid 

relaxation time,   symbolizes thermal diffusivity,   stands for density, the symbol    represents 

specific heat capacity,          ⁄   with     is heat transfer coefficient of the (convective) 

fluid and    measures heat flux due to radiation.   

For optically thick media, Rosseland [42] proposed following approximation of heat flux   : 

     (
    

   
)
   

  
  (3.5) 

where     
    is referred as mean-absorption coefficient and                        

symbolizes Stefan-Boltzman constant. 

For linearization of heat flux given by Eq. (3.5), we write Taylor series of    about    and 

subsequently neglect the square and higher powers involving        by considering small 

temperature gradients. That is,  

       
     

   (3.6) 

The energy equation Eq. (3.3) for the linear thermal radiation case will then become: 
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          (3.7) 

Whereas, for the nonlinear case, inserting Eq. (3.5) into Eq. (3.3) brings the following energy 

equation in temperature T: 
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          (3.8) 

In [42], it was shown that problem is reducible to a locally similar system by substituting: 
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                 (  (    )     )   (3.9) 

where              is termed temperature ratio parameter and   is local similarity variable. 

In view of Eq. (3.9), the mass-conservation equation is identically fulfilled, while Eq. (3.2) and 

Eq. (3.8) are transformed to the following ODEs: 

     
 

 
     

  

 
                                                (3.10) 
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)]

 

    (3.11) 

Here         ⁄  is termed local Deborah number,          ⁄      is referred as 

magnetic interaction parameter,        denotes the Prandtl number,       ⁄  stands for 

heat generation parameter,    represents thermal radiation parameter. 

The boundary conditions in Eqs. (3.4a) and (3.4b) are transformed as follows: 

                        (      )  (3.12a) 

                   (3.12b) 

 where       √    (> 0) is suction strength parameter, and         ⁄      ⁄  represents 

Biot number.  

Local Nusselt number     in this case is defined as: 

    
   

 (     )
  (3.13) 

where           ⁄              is the wall heat flux. Using (3.7) and substituting    in 

(3.13) we get: 

   
           (  

 

 
  (  (    )    )

 
 )        (3.14) 

where        ⁄  is the local Reynolds number. 
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3.2 Numerical method 

In order to treat the system comprising of Eqs. (3.10) and (3.11), together with conditions (3.12a) 

and (3.12b) and to obtain the locally similar solutions formed for heat transfer in Sakiadis flow 

of viscoelastic Maxwell fluid with wall suction and thermal radiation effects, MATLABs 

package       based on collocation method is adopted. For this purpose, we use substitutions 

(2.12). The equivalent first-order system is given below: 

   { 
 

 
   

  

 
                           }  (  

  

 
  )  (3.15) 
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   }  ( 

 

  
 
 
  (  (    ) )

 
)  (3.16) 

Eqs. (3.15) and (3.16) with conditions (3.12a) and (3.12b) are treated using the approach already 

explained in Chapter 2. 

3.3 Results and discussion  

Before analyzing the results, it is worthwhile to validate the solutions obtained. The numerical 

data of        appears consistent with the previous works of Cortell [43] and Mustafa et al. [42] 

shown in table 3.1. Table 3.2 computes local Nusselt number data by varying key parameters of 

the problem. Heat transferred rate is lowered as radiation effect intensifies. It is further decreased 

as fluid is subjected to higher magnetic field strength. The striking effect of viscoelasticity 

appears to the improvement in heat transfer for increasing magnetic interaction parameter. 

Curves of   velovity component (represented by   ) are computed with regard to variation in 

local Deborah number (  ). For low Deborah number (    ), the material’s response is 

viscous-like. Whereas, material behaves like an elastic solid for high Deborah number (De>>1). 

By increasing   , the time needed for elastic effects to decay becomes higher than characteristic 

time. Consequently, boundary layer development is restricted and fluid flow slows down as De 

becomes higher. This reduction of    imparts a higher value of        as shown in Fig 3.1. 

Boundary layer shrinks further when higher magnetic field strength is employed. The resistive 

force produced by vertical magnetic field restricts fluid flow and enhances temperature profile. 
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The role of wall suction on horizontal velocity is demonstrated through Fig. 3.2. When the fluid 

is sucked from the plate, the boundary layer naturally thins. Since the viscous effect remains 

intact, horizontal velocity is maximum near the plate which is why reduction in horizontal 

velocity occurs. The influence that local Deborah can have on the temperature profile can be 

determined from Fig. 3.3. This Fig. depicts a decreasing trend in   as relaxation time grows. 

However, a significant rise in fluid temperature is observed for increasing magnetic field 

strength. The outcomes of Fig. 3.3 suggest that viscoelasticity can provide improved heat transfer 

rate. Fig. 3.4 elucidates the change in temperature profile     by changing Prandtl number   . 

As    increases, thermal diffusivity becomes weaker while momentum diffusion strengthens. 

Consequently, thermal penetration depth is shortened when    enlarges. The shorter penetration 

depth produces solid surface. Furthermore, the impact of viscoelasticity on temperature profile 

appears to diminish as    increases. In order to forecast the behavior of convective heating on 

temperature    , we plotted temperature   against   for a variety of Biot numbers. The cases 

     and      represent isoflux wall and isothermal wall situations respectively.  A marked 

rise on heat penetration depth is found for increasing Biot number. Physically, large    means 

higher surface temperature which imparts thicker penetration depth. The graphs of Fig. 3.5 are 

perfectly compatible with this physical penetration. In Fig. 3.6, we plot the temperature curves 

for sundry values of radiation parameter     An increase in radiation parameter causes an 

increase in boundary layer thickness. Fig. 3.7 is obtained to foresee the suction effect on 

temperature distribution    . Our numerical results detected that    velocity components is 

proportional to the parameter  . Naturally, vertical flow is expected to accelerate as wall suction 

velocity increases. It means that (cold) fluid at ambient conditions is brought closer to the plate 

due to which thermal boundary layer shrinks. Consequently, heat transfer rate proportional to 

      is much elevated when suction is brought into effect. Temperature ratio parameter 

           is an indicator of difference between convective and ambient temperatures. In Fig. 

3.8, temperature curves are obtained against   for different values of     Akin to the earlier 

studies,   curve is concave up near the plate and concave down away from it when    is 

sufficiently large. In other words, an inflection point arises in   profile. The same is not 

observed in case of small temperature differences (    )  Also, thermal boundary layer is seen 

to expand as    enhances. Fig. 3.9 contains the curves of    versus   for large values of  
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(    )   The inflection point exists in all the cases and location of inflection point shifts away 

from the plate for increasing values of   . In Fig. 3.10, we identified the location of inflection 

point on temperature curve   when       . 

Table 3.1: Computational results of –        for different values of    when         

                       

Pr Cortell [41] Mustafa et al. [40] Present 

0.6 0.313519 0.31352 0.31352 

5.5 1.216049 1.21605 1.21605 

7 1.387033 1.38703 1.38704 

10 1.680293 1.68029 1.68029 

50 3.890918 3.89091 3.89091 

100 5.544663 5.54464 5.54464 

 

Table 3.2: Numerical values of local Nusselt number for different values of                 

when                           

            (  
 

 
  (  (    )    )

 
 )       

0 1 0.5 1.5 0.76309227 

0.2    0.76264303 

0.5    0.76174482 

0.5 0 0.5 1.5 0.76892736 

 0.5   0.76327111 

 1   0.76174482 

0.5 1 0.2 1.5 0.56989205 

  0.7  0.89055559 

  1  1.0831362 

0.5 1 0.5 1 0.69247371 

   1.5 0.76174482 

   2 0.86136206 
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Fig. 3.1: Variation in velocity curve     with   for different Deborah numbers. 

 

Fig. 3.2: Variation in velocity curve    with   for different suction strength parameters. 
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Fig. 3.3: Variation in temperature curve   with   for different magnetic interaction parameters. 

 

Fig. 3.4: Variation in temperature curve   with   for different Prandtl numbers. 
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Fig. 3.5: Variation in temperature curve   with   for different Biot numbers. 

 

Fig. 3.6: Variation in temperature curve   with   for different radiation parameters. 
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Fig. 3.7:  Variation in temperature curve   with   for different suction strength parameters. 

 

Fig. 3.8:  Variation in temperature curve   with   for different temperature ratio parameters. 
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Fig. 3.9: Variation in wall temperature slope    for different values of temperature ratio parameter . 

 

Fig. 3.10: Point of inflection for        . 
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3.4   Concluding remarks 

Analysis of MHD Sakiadis flow of viscoelastic fluid influenced by radiative heat transfer is 

theoretical focus of this research. The conclusions drawn from the present study are in full 

line with those from recent bibliography. We list below the key findings reached from 

numerical treatment of the governing model: 

 Temperature   has direct relationship with both fluid relaxation time and magnetic 

field intensity    

 Wall suction opposes the horizontally driven flow by the plate. Naturally, suction 

elevates the wall skin friction as well as volumetric flow rate. 

 Increasing suction drastically lowers the thermal penetration depth. This outcome 

signals that wall suction physically favors the heat transfer rate from the surface. 

 Keeping in view the technological processes, suction appears to have definite role in 

improving wall cooling efficiency. 

 When       temperature curve is concave up throughout the boundary layer. 

However, temperature function has horizontal tangents at any point inside the 

boundary layer when    is large. 

 Wall skin friction grows and heat transfer rate is lowered when fluid is exposed to 

vertical magnetic field. 
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