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Abstract

This thesis discusses solutions of ODEs and PDEs by FEM as this method has become

a standard numerical technique for solving a lot of physical systems. We are compar-

ing this method with other available methods and finding out that this is more general

and powerful in terms of its applications. This method is endowed with three distinct

features that account for its superiority over other numerical methods which include

the representation of complex geometry into sub-domains, development of algebraic

equations over each sub-domain and assembling all elements. We are applying this

method on ODEs with constant coefficients and PDEs including Laplace, Burger and

Heat equations by using MATLAB. The approach is to first introduce the method and

its applications in different fields of science and engineering. In addition, Galerkin’s

method of weighted residuals is used for formulating and implementing this method.

Initially for obtaining the approximate solutions, linear polynomials are assumed as

trial functions. After that, shape functions are derived to obtain the estimated solu-

tions. Finally, analytical and FEM solutions of the problems are presented in the form

of tables. The study is worth investigating as it is showing that how much this numer-

ical technique gives best approximations when compared with the exact solutions.
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Chapter 1

Introduction

1.1 Literature Review

Initially, Finite Difference Method was used for solving boundary value problems. In

the field of finite element method (FEM), the most recent work started in the year 1940

with the work of Hrennikoff [1] and McHenry [2] who basically used 1-D elements in

order to find stresses in continuous solids. Courant [3] through his published paper (al-

though that was not known for many years) proposed the concept of variation form for

the solution of stresses. After that, he came up with the idea of piecewise interpolation

functions as a method for finding the approximate numerical solutions. Southwell [4]

published a book based on finite difference method. That was actually the beginning

of FEM that is from the concept of above mentioned numerical method. Levy [5] came

up with the idea of flexibility (force) method. His work, [6] recommended that a new

method named the displacement method could be a good option to use for the statisti-

cal analysis of aircraft structures. As it was easy to solve his equations by hand so his

method became admired with the beginning of digital computer. Argyris and Kelsey

[7, 8] made matrix structural analysis method by the use of energy principles which had

a very important role in FEM because of the energy principles. Turner et al [9] first

treated 2-D elements. He first obtained the stiffness matrices for two dimensional rect-

angular and triangular elements in plane stress and explained the process known as the

direct stiffness method which is used to obtain the structured stiffness matrix. Early in

1950s, by the advancement of digital computers, Turner′s work was promoted for the
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progress of finite element stiffness equations expressed in matrix form. The term finite

element was actually given by Clough [10] during plane stress analysis. Melosh [11]

discovered a plane rectangular plate bending element stiffness matrix which was basi-

cally followed by the idea of curved shell bending elements stiffness matrix by Grafton

and Strome [12]. The extended work on the method up to 3-D problems was done

by Martin [13], Gallagher et al [14] and Melosh [15]. Argyris [16] extended this study

on 3-D problems. Clough et al. [17] did work on axis symmetric solids. Zienkiewicz

and Cheung [18] implemented this method on field problems like conduction of heat,

irrotatinal flow of fluid etc. A large amount of work on nonlinear problems are available

in Oden [19]. Early attempts made for modeling the transfer of heat problems on com-

plex geometric shapes was found in Huebner [20]. Prior to that, a complete 3-D finite

element model for heat conduction was given by Heuser [21]. Bakerin [22] applied finite

element method to viscous fluid flow. All of these early works with rapid growth were

continued upto the mid-1970s. Several articles were published and regular appearance

of new applications found in the literature. Outstanding feedback and description of

the method are available in some early texts by Finlayson [23], Desai [24], Baker [25],

Fletcher [26], Reddy [27], Segerlind [28], Bickford [29], Zienkiewicz and Taylor [30],

and Reddy [31].

Detailed discussion about the method is presented in Johnson [32], also Smith [33]

who programmed the FEM. Furthermore, Owen and Hinton [34] gave a short disserta-

tion on the progress of this method.

The basis of this method fundamentally lies with usual Rayleigh-Ritz and varia-

tional methods developed by Rayleigh [35] and Ritz [36]. These theories address the

causes that why is the finite element approach best for type of problems where vari-

ational forms could be obtained. On the other hand, as FEM became interested to

extend it to other types of problems, the classical theory became restricted and could

not be applied to fluid related problems.
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In early twentieth century, Galerkin [37] came up with a new method named

Weighted Residuals. This method was actually found to present the theoretical ba-

sis for the problems in contrast to Rayleigh-Ritz method. Generally, this method of

weighted residual was based on few steps which require; initially multiply the governing

differential equation by some weight function, then the resulting product needs integra-

tion to vanish for whole domain. Galerkin method is basically a subset of the weighted

residual method, since the choice of weight functions is not limited as in Galerkin

method, the chosen weight functions are identical to the approximate function or trial

function chosen for the approximation of corresponding problem.

Galerkin and Rayleigh-Ritz methods give the same results in a situation when ob-

taining a proper variational statement for the problem is possible and the same basis

functions are used. More detailed information regarding the method is discussed in

the earlier works by Portela and Chara [38], Chandrupatla and Belegundu [39], Liu

and Quek [40], Hollig [41], Bohn and Garboczi [42], Hutton [43], Solin et _al. [44],

Reddy [45], Becker [46], Ern and Guermond [47], Thompson [48], Gosz [49], Kattan

[50], Moaveni [51], and more recently in Dow [52], and Bathe [53]. Most commonly,

in using the FEM, the technique Galerkin method is used to find the approximate

solutions to the governing problems. This is a very simple and rich method used to

solve complicated problems. Once this basic concept is grasped, implementation of the

FEM is very easy.

1.2 Background

Most of the physical and theoretical phenomena in the field of applied sciences and

engineering can be expressed as differential equations. In general, it is not always

possible to solve these equations using basic analytical methods for complex shapes.

Number of natural phenomena are represented by equations that involve the rate where

one variable changes with respect to the other variable(s) known as "derivative". The
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equation containing the derivative is called differential equation which can be further

categorize into various types which assists in finding appropriate solution.

Differential equations are mainly characterized into two types of problems which

are dependent on the type of conditions. One is the boundary value problem in which

conditions are described at more than one point of the domain while the other type

includes initial value problem that are described at only one point of the domain.

BVPs are alternatively named as field problems and that field is actually the area of

dependence of independent variables and usually represents the physical structure of

the problem. We cannot get analytical solution for every type of differential equation

which means we might face many practical situations where analytical solution does not

exist so we need to devise a new method, numerical solution to solve the problem. We

have numerous ways in order to solve a differential equation numerically. If the leading

differential equation is of order one then we have different methods like Euler method,

multiple Runge-Kutta methods, and multistep methods including Adam-Bash forth

and Adam-Molten methods. Furthermore, we can transform the differential equation

having higher order into a coupled first order differential equation system and after that

solve the system using aforementioned methods. Not necessarily all physical problems

are described by ODEs rather some from the field of science and engineering are coded

in PDEs. So we have numerous techniques for finding the approximate solutions for

partial differential equations. Some [54] of these are:

1. Finite Difference Method (FDM)

2. Finite Volume Method (FVM)

3. Finite Element Method (FEM)

1.2.1 Finite Difference Method (FDM)

Finite difference method (FDM) is the simplest numerical technique to understand.

To solve the differential equation using FDM, first step is to discretize the whole do-
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main into small intervals called mesh and label the grid points in the created mesh

accordingly.

η

n

(i, n)

(i, n+1)

(i+1, n)

(i-1, n)

(i, n-1)

Figure 1.1: Finite difference method grid

After that, in the next step approximate the derivatives occurring in the leading

differential equation by first order forward difference quotient, backward difference or

second order central difference quotient. This process results in algebraic equation for

the first grid point and so on. By repeating the same process for all interior grid points

will lead us to a system of algebraic equations for which the grid point values of the

nodal variables will remain unknown. After this, by putting in the boundary conditions

we get the number of unknowns equal to the number of interior points and this system

can be solved numerically using iterative methods like Jacobi Method, Gauss-Seidal

Method etc.

5



1.2.2 Finite Element Method (FEM)

It is basically a mathematical technique which is used to find the approximate solution

of differential and integral equations that occur in different fields of engineering and

applied sciences. FEM was actually used to solve problems like stresses in complex

aircraft structures, and then it was extended to the field of continuum mechanics which

includes heat transfer and fluid flow.

Basic approach behind this technique is to replace the original problem which is

Figure 1.2: Finite element method grid

difficult with the simple one and by doing so we get an approximate solution instead

of the exact solution. Further more in FEM, we can get better approximation by

increasing the computational effort. In general, FEM is given preference over FDM

because of the following reasons. First one is that FEM is comparatively more suitable

for problems having complex geometrical domains. Another advantage is that writing

the codes for FEM are easy in general. Basically, we have three different approaches
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available for the formulation of FEM which includes:

1. Direct method

2. Variational approach

3. Weighted residual method

Direct Method

This is an easiest approach to understand FEM. The benefit of this approach is that

since it is a simple technique so we don’t have to use difficult mathematics while for-

mulating FEM via this method. But with this technique, we can only solve simple and

easy problems.

Variational Approach

This approach is broadly used for solving those type of finite element equations for

which variational statement is not complicated to form for certain problem. To use

this approach, basic knowledge of calculus of variation is necessary. Drawback of this

approach is that, we cannot find variational statement for every type of problem such

as in the case of nonlinear problem. So this is not very useful approach for such type of

problems. Another method named as Rayleigh-Ritz is also used to obtain approximate

solutions which is based on this technique.

Weighted Residual Method

In this method, instead of depending on any variational principle we directly work on

the governing differential equation. This method can be applied for both linear and

nonlinear problems. This method has two basic steps. Firstly, according to the gen-

eral behavior of the dependent variable, we suppose a trial function which should also

satisfy the boundary conditions. Then, we substitute this assumed trial function into

7



the governing differential equation. As this assumed solution is only an approximation

to the exact solution, it will not satisfy the differential equation instead it will result

into an error term generally called as residual. We need to vanish this residual over the

whole domain. By this process, we will get a system of algebraic equations. Next step

of this technique involves to get the solution of this system depending on the boundary

conditions to get an estimated solution for the problem under consideration.

The major problem with the weighted residual method is that it is not an easy task

to find an appropriate trial function to approximate the solution, because we might

not have knowledge concerning the behavior of the solution since polynomial functions

are designated as trial functions which may not be suitable for some cases, specifically,

when the interval is large. So the low degree polynomials better reflect the behavior of

the function when the interval is short. Hence, the weighted residual method is best to

apply using polynomials of lower degree by subdividing the larger interval into smaller

subintervals, that is, we can use the piecewise lower degree polynomials in smaller

subintervals instead of going with polynomials of higher degree for the whole domain.

This is actually the basic idea used in FEM.

Differences and Similarities in FDM and FEM

To differentiate between the finite element technique with finite difference tech-

nique, initial vital issue that differs in each strategies is that, in FEM, the variation of

the field variable in physical domain is an essential part of the strategy that’s relying

upon the chosen interpolation functions, the variation of the field variable all over the

finite element is taken into account to be the integral part for the formulation of the

problem. Whereas in finite difference technique, this can not be true. Here, the field

variable is computed at explicit points. The vital outcome of this difference is that

derivatives are evaluated in FEM, however, FDM provides information solely on the

variable itself. For structural issues, each strategies offer displacement solutions, FEM

will be accustomed directly to calculate strain parts that’s the first derivatives whereas
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to get a similar in FDM it needs additional concerns.

Now regarding the similarities between both strategies, the first one is that integra-

tion points within the finite difference technique are equivalent to the nodes in a finite

element technique. Secondly, as if we select the smaller step size in FDM, we have a

tendency to expect the convergence of solution to the exact solution that is analogous

to the expected convergence in FEM in a sense that if we have a tendency to refine

mesh of elements. In each cases, the refinement of step size and mesh both results

in the reduction of mathematical model. Also in both cases, the governing problem

reduces to an algebraic system of equations.

Most likely, the more expressive way to differentiate between both methods is to

notice that the FDM models the differential equations of the problem and uses the nu-

merical integration to find the solution at discrete points whereas the FEM models the

whole domain of the problem and uses the known physical principles to build up the

algebraic equations which describe the approximate solutions. Therefore, FDM mod-

els a differential equations whereas FEM models a physical problem. In some cases,

combination of both methods is very helpful and able to find solutions for engineering

problems mainly where dynamic effects are essential.

1.2.3 Finite Volume Method (FVM)

This finite volume method is a widely used mathematical approach. In this method,

the partial differential equations which represent the conservation laws are transformed

using differential volumes into system of distinct algebraic equations for finite volumes.

Afterward, this system is used to calculate the values of the dependant variable for

each element.

The finite volume method is in the form of integrals rather than differentials. In

this method, domain is further divided into non-overlapping volumes known as finite

volumes or cells. The conservation equations that are basically used to determine the

9



Figure 1.3: Finite volume method grid

flow variables in discrete points of the cells are defined for each finite volume. The

integrals appearing in the expression are evaluated at computational nodes usually

taken as centroids of finite volumes using interpolation functions. We use approximate

integral formulas and interpolation techniques to get values of dependent variables at

control surfaces. FVM is suitable for all type of complex geometries because it can

accommodate any kind of grid.

Basic Steps in FVM

• Divide the domain into finite sized sub-domains known as finite volumes where

each sub domain is represented by some grid points.

• Integrate the governing differential equation over each sub-domain by first con-

verting volume into surface integral by using divergence theorem and then finding

the flux through each face.

• Consider a suitable profile assumption for dependent variable in order to inte-

grate.

1.3 Applications of FEM

1.3.1 Structural

• Structural areas [55] include thermal analysis of manufacturing parts including

electronic devices and chips, pipes, valves, aircraft etc and stress analysis which
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includes frame analysis like pedestrian walk bridges, frames of residence buildings,

and towers etc. Also stress attention problems usually related with holes, fillets

or other types of changes in geometry of a body including automotive parts,

medical devices, pressure vessels, aircraft and sports tools.

• Vibration analysis like in vibratory tools and buckling in columns, frames etc.

Impact problems which include collision analysis of vehicles, projectile impact

and bodies falling etc.

1.3.2 Non-Structural

• Nonstructural problems [55] include analysis of fluid flow which includes leakage

all the way through porous media such as leakage of water through dams, cooling

ponds and air in ventilation systems, air flow around racing cars, boats and

surfboards etc.

• Also the movement of heat like in electronic devices which emit heat in computers

microprocessor chip, engines, cooling fins in radiators.

• Division of electric potential for example in antennas and transistors etc.

• Investigation of surgical methods for example plastic surgery, reconstruction of

jaw and many more.

These were just few applications of FEM in order to get the general idea. New areas of

application in FEM are regularly appearing in the literature. This method has a very

interesting contribution in medical field. Few years back, the medical society has come

up with exciting choices of predictive, patient peculiar medicine. One perspective that

is used in predictive machine is usage of medical imaging and data monitoring for the

construction of a part of model for anatomy of individuals and physiology. This model

is later utilized for the prediction of response of patients towards different treatments,

for example, procedures that are used in surgery. As in finite difference methods, the

finite elements are also utilized in scientific simulations like in tetrahedral mesh of a
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heart model on which a finite element method is used for simulating activities of the

heart. Such type of models play a significant role for the development of cardiovascular

surgical procedures and the design of artificial heart valves.

1.4 Ordinary Differential Equations

A lot of problems in the field of computational engineering [57] can be described in

terms of differential equations. An ODE is defined to be a relation between a function

y(x) of a dependent variable x and its derivatives y′, y′′, yn which can be expressed

generally as:

Ψ(x, y, y′, y′′, , yn) = 0.

A function y = f(x) is the solution of the equation which satisfy the equation ∀ x

in the specified domain Ω.

1.4.1 Types of Solutions

The solution of an ODE is not every time simple, specially for the nonlinear equations,

it becomes quite complicated. Even for the case of linear equations, solutions are

straightforward only for simple cases. Generally, solution falls into three categories:

• Closed form

• Integral form

• Series form

Solution of the type which can be described in the form of elementary functions and

arbitrary constants is known as the closed form solution. Some specific type of equa-

tions for which closed form is not possible to form then we go towards series solution

approach which we call a series form solution. Further, we have an integral form which
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is the only possible form when closed and series form is not possible. If all the above

mentioned forms are impossible to apply than we need to approach the alternative

techniques for finding the approximate and numerical solutions of the problems.

Linear differential equations with constant coefficients are widely used in the mod-

eling of physical phenomena, for example, in the analysis of vibrating systems and

electrical circuits. There are a lot of numerical methods (single and multistep) and

most of them are based on the same Taylor series approximation discretization tech-

nique.

1.5 Partial Differential Equations

A partial differential equation [57] (PDE) is a relationship which contains one or more

than one partial derivatives. In contrast with ODEs, PDEs are very complex especially

in the case of nonlinear equations where the solution techniques are very difficult even

the numerical simulations are not usually straight forward. In this chapter, we will

discuss both linear and nonlinear PDEs namely Laplace, Poisson, Heat and Burgers

equation. Like in ODE, the order n of the PDE is the highest nth partial derivative in

the equation. In general, PDE can be expressed as

Ψ(x, y, · · · , ∂u
∂x
,
∂u

∂y
,
∂2u

∂x2
,
∂2u

∂y2
,
∂2u

∂x∂y
, · · · ) = 0 (1.1)

where u corresponds to the dependent variable whereas x, y, · · · corresponds to the

independent variables.

The linear partial differential equation having order one, can be written as

a(x, y)
∂u

∂x
+ b(x, y)

∂u

∂y
= f(x, y) (1.2)

which is for two independent variables and one dependent variable u.
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To simplify the notations of PDEs , commonly used compact forms in literature are

ux ≡
∂u

∂x
, uy ≡

∂u

∂y
, uxx ≡

∂2u

∂x2
, uyy ≡

∂2u

∂y2
, uxy ≡

∂2u

∂x∂y
(1.3)

and therefore Eq. (1.2) can be written as

aux + buy = f. (1.4)
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Chapter 2

FEM Solution of Scalar Second Order
ODE

In this chapter, we will present the basic steps used in FEM. Furthermore, we will

introduce the weighted residual technique used for FEM formulation. We will take an

ordinary differential equation for a one-dimensional system and make its weak form

and define shape functions for the implementation of FEM.

2.1 Basic Steps of FEM

Following are the main steps [54, 56]:

1. First of all, the domain of interest is subdivided into very small sub regions or

subintervals which are non-overlapping called as finite elements. This process

of subdivision is basically called as discretization. In this process, elements are

joined at x1, x2, . . . , xn−1, here xi are the interior nodes and we call x0 = a, the

left boundary point and xn = b the right boundary point and in general these

both are the exterior nodes. The process of choosing the shape, size and number

of elements is very important as we should have to choose them in such a way

that the actual domain must be simulated as closely as possible so that we can

get rid of extra computational efforts.
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2. Next step is to assume trial function usually known as the interpolation polyno-

mial for the differential equation which corresponds to the variation of dependent

variable over elements. In general, accuracy of approximate solution is totally

dependent on the chosen trial function.

3. After the assumption of trial or approximate function, we substitute that assumed

function into the corresponding differential equation. As it is the approximate

solution so it will not satisfy the differential equation identically. So, in order to

satisfy the differential equation we get an error term which we call in FEM as

residual.

4. Then we multiply this residual term with some weight function and integrate this

product over the entire domain and set it equal to zero.

5. After that we decide the test function which is the weight function. We have

several weighted residual methods available for the selection of weight function.

More commonly, we use Galerkin approach of the weighted residual to evaluate

the weight function.

6. In the next step, we construct the weak formulation of the problem by using

integration by parts with appropriate functions to reduce the order of derivative

of trial function which lead to weak formulation of differential equation.

7. For Galerkin method, weak formulation is very useful since here the test functions

and trial functions are identical. If the leading differential equation is self adjoint

operator (A second-order linear homogeneous differential equation is called self-

adjoint if and only if it has the following form: d
dx

(h(x)y′) + Ψ(x)y = 0 for a <

x < b, where h(x) > 0 on (a,b) and Ψ(x), h′(x), are continuous functions on

[a,b]) then we get symmetric matrix. Other than weak or strong formulation, the

choice of selecting trial function is very important for accurate approximation of

the solution. So far the best choice for choosing the trial function is piecewise

linear functions in 1-D domain. Once we are done with weak formulation of the
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leading differential equation, substitute the test and trial functions into it and

evaluate the integral for each element.

8. Once we accomplish this the element wise evaluation of integral which will result

in square matrices, the next step is to assemble the matrices that is the assembly

process in which we gather all the matrices into one large matrix by adding the

corresponding entries. It produces an algebraic system of equations which is the

one equation for each element.

9. After this, we need to apply the boundary conditions for finding the nodal vari-

ables. Once the nodes are determined, solution can be obtained from correspond-

ing nodes and trial functions within each element.

10. In general, this system of algebraic equations gives the approximate solution.

Selection of Elements

Selecting the certain type of elements and suitable trial functions are very important

while using FEM. Trial function is usually referred to as interpolation polynomial. So

the type of element you are going to use actually means the following points we have

to consider:

1. Element’s geometrical shape whether it is a line segment, triangle, or rectangle

etc.

2. The number and type of nodes in each element whether it contains two or three

nodes etc and are they interior or exterior. Exterior nodes are those which lie

on the boundary of the element representing the point of connection between

the bordering elements and interior nodes have no connection with neighboring

elements.

3. Types of the nodal variable whether it may have single degree of freedom or

several degree of freedom depending on the type of problem.
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4. Type of the approximating function whether its polynomial or trigonometric func-

tion etc. Polynomials are used frequently in general because they are easy to

handle.

2.2 Finite Element Formulation

In order to illustrate the FEM [58] we will solve the second order ordinary differ-

ential equation

a
d2u

dx2
+ b

du

dx
+ cu = f(x) (2.1)

with the boundary conditions

u(0) = 0 & u(L) = 0.

2.2.1 Weak Formulation

In case of complex domains, solving the strong form (governing differential equations)

is not always efficient and there may not be smooth (classical) solutions to a particular

problem. Moreover, while solving strong form directly it is not easy to incorporate

boundary conditions. As on continuity, the requirement of field variables is much

stronger hence weak formulation is given preference over strong formulation.

Weak formulation of Eq. (2.1) is :

∫ L

0

w

[
a
d2u

dx2
+ b

du

dx
+ cu

]
dx =

∫ L

0

wf(x)dx. (2.2)

By using Leibnitz’s formula on the first term of the above expression i.e aw d2u
dx2 by

letting u = w and dv = d2u
dx2 .

This implies du = dw and v = du
dx

∫ L

0

[
−adw

dx

du

dx
+ bw

du

dx
+ cwu

]
dx =

∫ L

0

wf(x)dx−
[
aw

du

dx

]L
0

. (2.3)
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2.3 Shape Functions

The chosen trial function corresponds to the accuracy of estimated solution. Also, it

is observed that use of piecewise continuous functions as a test function is very advan-

tageous because by increasing the number of sub-domains, representation of complex

function in terms of sum of simple piecewise linear functions is possible.

Consider a finite element shown in Fig. 2.1

Here an element has two nodes, one at the left side and one at the right side. The

Figure 2.1: Two-node linear element

values are assigned at ( xi or xi+1 ) and ( ui or ui+1).

Assume the trial function as

u = b1x+ b2. (2.4)

We replace b1 and b2 by ui and ui+1 at x = xi and x = xi+1 i.e.

u(xi) = b1xi + b2 = ui (2.5)

u(xi+1) = b1xi + b2 = ui+1 (2.6)

By simultaneously solving for b1 and b2 we get

b1 = ui+1−ui

xi+1−xi
; b2 = uixi+1−ui+1xi

xi+1−xi

Putting the values of b1 and b2 into Eq. (2.4) , we get

19



u =
ui+1 − ui
xi+1 − xi

x+
uixi+1 − ui+1xi
xi+1 − xi

h = xi+1 − xi

u =
ui(xi+1 − x)

hi
+
ui+1(x− xi)

hi
(2.7)

u = H1(x)ui +H2(x)ui+1 (2.8)

where H1(x) = xi+1−x
hi

and H2(x) = x−xi

hi
.

Eq. (2.7) is dependent on ui and ui+1 and H1(x) and H2(x) are called linear shape

functions.

Figure 2.2: Linear shape function

Shape functions have two important characeristics:

(1) It corresponds to 1 at node i and zero otherwise.

H1(xi) = 1 ; H1(xi+1) = 0; H2(xi) = 0; H2(xi+1) = 1

(2) All shape functions add up to give unity.

2∑
i=1

Hi(x) = 1 (2.9)
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Using the shape function H1(x) and H2(x) in Eq. (2.3) where w =

[
H1

H2

]
and

u =
[
H1 H2

]
. Also we have H ′1 = −1

hi
and H ′2 = 1

hi
.

Hence the left hand side of Eq. (2.3) becomes

[
Ke
]

=

∫ xi+1

xi

−a[H ′
1

H
′
2

] [
H

′
1 H

′
2

]
+ b

[
H

′
1

H
′
2

] [
H

′
1 H

′
2

]
+ c

[
H

′
1

H
′
2

] [
H1H2

] dx .

(2.10)

After putting the shape functions and their derivatives in above equation and eval-

uation of integration gives[
Ke
]

=
−a
hi

[
1 −1
−1 1

]
+
b

2

[
−1 1
−1 1

]
+
chi
6

[
2 1
1 2

]
. (2.11)

Now consider the right hand side of Eq. (2.3), here the element vector is:

[
F e
]

=

∫ xi+1

xi

f(x)

[
H1

H2

] dx (2.12)

if f(x) = 1 =⇒

F e =
hi
2

[
1
1

]
. (2.13)

We have given a brief introduction of the method in the previous chapter, here we

will illustrate this technique by alluding to an example.

Problem 2.1

Consider an ODE over the domain 0 < x < 1 i.e.
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ad2u
dx2 + bdu

dx
+ cu = f(x)

with boundary conditions

u(0) = 0 & u(1) = 0.

Here a, b and c have the values of 1, -3 and 2 respectively. Also f(x) = 1.

Figure 2.3: Mesh with five linear elements

By writing the MATLAB code using FEM [58], we have the following results as

shown in the table and after that we have done with error analysis of exact solution

and finite element solution.

Node# FEM Sol Exact Sol Error
1 0.00000 0.00000 0.00000
2 -0.0621 -0.0610 0.00011
3 -0.1133 -0.1110 0.00023
4 -0.1388 -0.1355 0.00033
5 -0.1142 -0.1111 0.00031
6 0.00000 0.00000 0.00000

Table 2.1. Comparison of FEM solution and exact solution
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Figure 2.4: Exact and numerical solution with error for first order ODE

Problem 2.2

Consider second order ODE over the domain 0 < x < 1 i.e.

ad2u
dx2 + bdu

dx
+ cu = f(x)

with boundary conditions

u(0) = 0 & du(1)
dx

= 1.

Here a, b and c have the values of 1, -3 and 2 respectively. Also f(x) = 1. Here,

the left end corresponds to the essential boundary condition where as the right end

corresponds to the natural boundary condition.

By writing the MATLAB code through FEM [58], we have the following results as

mentioned below in the table and also the error plot is given in the figure.
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Node# FEM Sol Exact Sol Error
1 0.00000 0.00000 0.0000
2 -0.0588 -0.0578 0.0010
3 -0.1043 -0.1024 0.0019
4 -0.1203 -0.1180 0.0023
5 -0.0802 -0.0792 0.0010
6 0.0586 0.0546 -0.0041

Table 2.2. Comparison of FEM solution and exact solution
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Figure 2.5: Exact and numerical solution with error for second order ODE
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Chapter 3

FEM Solution of PDEs

In this chapter, we will discuss the finite element formulation for Poisson’s equation

for two types of elements that is the linear triangular elements and bilinear rectangular

elements along with discussion on boundary integral used for computation of column

vectors. In addition, we will discuss the general theory of FEM for 1-D and 2-D heat

equation. Furthermore, PDE toolbox will be discussed for finding the solution of PDEs

and also the FEM formulation for the case of non-linear PDEs.

3.1 Formulation for Poisson’s Equation

To express different physical natures, Poisson’s and Laplace’s equations [58] are com-

mon field governing equations. These equations generally represent the heat conduction

and flow of potential etc. Here we will apply the formulation of finite element on these

equations. Hence, Laplace’s equation is given as

∇2u = 0 (3.1)

and Poisson’s equation is given as

∇2u = g (3.2)

where ∇2 = ∂2

∂x2 + ∂2

∂y2
is the differential operator.

Since Poisson’s equation is more general as compared to Laplace’s equation, so we will

apply the finite element formulation on it.
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In terms of Cartesian coordinates, Poisson’s equation is given as

∂2u

∂x2
+
∂2u

∂y2
= g(x, y) in Ω (3.3)

for the two-dimensional domain Ω. The relevant boundary conditions are defined

as

u = ū on Γe (3.4)

and
∂u

∂n
= q̄ on Γn (3.5)

where ū and q̄ represent the identified variable and flux boundary conditions, and

n represents the unit normal vector. In addition, Γn and Γe represent the boundaries

for natural and essential boundary conditions, respectively. For a well-posed bvp, we

have

Γe

⋃
Γn = Γ (3.6)

and

Γe

⋂
Γn = ∅ (3.7)

where
⋃

is the sum and
⋂

is the intersection, and Γ denotes the entire boundary

of the respective domain Ω.

By integrating the weighted residual of the differential equation given in Eq. (3.3)

and applying the boundary condition we get the following equation

I =

∫
Ω

w

(
∂2u

∂x2
+
∂2u

∂y2
− g(x, y))dΩ−

∫
Γe

w(
∂u

∂n

)
dΓ (3.8)

3.1.1 Weak Formulation

So as to develop the weak formulation of Eq. (3.8), we need to apply by parts integra-

tion to decrease the order of differentiation inside the integral.

26



First we will evaluate the first term of Eq. (3.8) that is∫
Ω

w
∂2u

∂x2
dΩ. (3.9)

Domain integral can be represented as below∫ y2

y1

(∫ x2

x1

w
∂2u

∂x2
dx

)
dy (3.10)

y1 and y2 here represent the maximum and minimum values in the y-axis of the re-

spective domain. By using Leibnitz’s formula with respect to variable x, we get

−
∫ y2

y1

∫ x2

x1

∂w

∂x

∂u

∂x
dxdy +

∫ y2

y1

[
w
∂u

∂x

]x2

x1

dy (3.11)

and again writing the above expression using the domain and boundary integrations,

we get

−
∫

Ω

∂w

∂x

∂u

∂x
dΩ +

∫
Γ2

w
∂u

∂x
nxdΓ−

∫
Γ1

w
∂u

∂x
nxdΓ. (3.12)

Here nx represents the x-component of the unit normal vector. Now combining the

both boundary integrals we get

−
∫

Ω

∂w

∂x

∂u

∂x
dΩ +

∮
Γ

w
∂u

∂x
nxdΓ. (3.13)

In the similar manner, we can express second term of Eq. (3.8) as

−
∫

Ω

∂w

∂y

∂u

∂y
dΩ +

∮
Γ

w
∂u

∂y
nydΓ (3.14)

Adding the expressions (3.13) and (3.14) we get

∫
Ω

w

(
∂2u

∂x2
+
∂2u

∂y2

)
dΩ = −

∫
Ω

(
∂w

∂x

∂u

∂x
+
∂w

∂y

∂u

∂y

)
dΩ +

∮
w

(
∂u

∂x
nx +

∂u

∂y
ny

)
dΓ

(3.15)
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As the boundary integral can be expressed as
∂u

∂n
=
∂u

∂x
nx +

∂u

∂y
ny. (3.16)

Thus Eq. (3.15) becomes∫
Ω

w

(
∂2u

∂x2
+
∂2u

∂y2

)
dΩ = −

∫
Ω

(
∂w

∂x

∂u

∂x
+
∂w

∂y

∂u

∂y

)
dΩ +

∮
Γ

w
∂u

∂n
dΓ (3.17)

Above expression is known as Green’s theorem.

Using Eq. (3.17) into Eq. (3.8) will result in the following equation

I = −
∫

Ω

(
∂w

∂x

∂u

∂x
+
∂w

∂y

∂u

∂y

)
dΩ−

∫
Ω

wg(x, y)dΩ +

∫
Γn

w
∂u

∂n
dΓ (3.18)

In the above expression, first term which is the volume integral will become a matrix

term where as the second term which is volume integral and the third term which is

line integral will turn out to be the vector terms.

3.1.2 Linear Triangular Elements

Domain descritization in Eq. (3.18) is done by using two-dimensional finite elements.

One technique of discretization is by the use of triangular element having three nodes,

which are linear triangular element (cf.3.1). The linear element in x and y is written

as

u = a1 + a2x+ a3y (3.19)

or

u =
[
1 x y

]
a1

a2

a3

 (3.20)
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here ai’s are all constants which need to be determined. The interpolation function as

in Eq. (3.19), corresponds to the nodal variables at three nodal points. Hence, putting

in values of x and y at every nodal point is given as
u1

u2

u3

 =

1 x1 y1

1 x2 y2

1 x3 y3



a1

a2

a3

 (3.21)

.

In above equation, xi and yi are the ith coordinates where ui are its nodal values.

Inversion of the matrix and again writing the Eq. (3.21) gives


a1

a2

a3

 =
1

2A

x2y3 − x3y2 x3y1 − x1y3 x1y2 − x2y1

y2 − y3 y3 − y1 y1 − y2

x3 − x2 x1 − x3 x2 − x1



u1

u2

u3

 (3.22)

where

A =
1

2
det

1 x1 y1

1 x2 y2

1 x3 y3

 (3.23)

Area of the linear triangular element equals the magnitude of matrix A. Although,

when the node numbering of element is in the counter-clockwise direction, it will have

a positive value and negative otherwise. For computation purpose, the nodal value

must have the same direction as for the elements in the domain.

Substituting the Eq. (3.22) into Eq. (3.20) results in

u = H1(x, y)u1 +H2(x, y)u2 +H3(x, y)u3 (3.24)

where Hi(x, y) are known as the shape functions for the linear triangular element and
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Figure 3.1: Linear triangular element

are given as:

H1 =
1

2A
[(x2y3 − x3y2) + (y2 − y3)x+ (x3 − x2)y] (3.25)

H2 =
1

2A
[(x3y1 − x1y3) + (y3 − y1)x+ (x1 − x3)y] (3.26)

H3 =
1

2A
[(x1y2 − x2y1) + (y1 − y2)x+ (x2 − x1)y] (3.27)

These shape functions have some properties that are already mentioned in the previous

chapter.

So our problem can be descritized by different elements as discussed below (cf.3.2).

Here the curved boundary which is the original boundary is estimated using linear

piecewise boundary and the crude mesh (cf.3.2) is for the closer approximation of the

original boundary while linear triangular elements have been used. In addition, another

way is by using the finite elements of higher order which can easily fit in the curved

boundary using higher order polynomial expressions.
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Figure 3.2: Finite element descritization

The element matrix for is computed below:

[Ke] =

∫
Ωe

(
∂w

∂x

∂u

∂x
+
∂w

∂y

∂u

∂y

)
dΩ =

∫
Ωe




∂H1

∂x
∂H2

∂x
∂H3

∂x


{∂H1

∂x
∂H2

∂x
∂H3

∂x

}
+




∂H1

∂y
∂H2

∂y
∂H3

∂y


{∂H1

∂y
∂H2

∂y
∂H3

∂y

}
(3.28)

where Ωe denotes the domain of an element.

Now by substituting the shape function Eq. (3.25) through Eq. (3.27) into Eq.

(3.28) and performing integration we get

[Ke] =

k11 k12 k13

k21 k22 k23

k31 k32 k33

 (3.29)

where
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k11 =
1

4A
[(x3 − x2)2 + (y2 − y3)2], (3.30)

k12 =
1

4A
[(x3 − x2)(x1 − x3) + (y2 − y3)(y3 − y1)], (3.31)

k13 =
1

4A
[(x3 − x2)(x2 − x1) + (y2 − y3)(y1 − y2)], (3.32)

k21 = k12, (3.33)

k22 =
1

4A
[(x1 − x3)2 + (y3 − y1)2], (3.34)

k23 =
1

4A
[(x1 − x3)(x2 − x1) + (y3 − y1)(y1 − y2)], (3.35)

k31 = k13, (3.36)

k32 = k23, (3.37)

k33 =
1

4A
[(x2 − x1)2 + (y1 − y2)2]. (3.38)

The integrand in Eq. (3.28) is constant since ∂Hi

∂x
and ∂Hi

∂y
are constant for the linear

triangular element so, as a result, the integration in Eq. (3.28) would become the in-

tegrand multiplied to the area of the element domain and we have the results as given

in Eq. (3.29) through Eq. (3.38).

On the other hand, the term of the domain integral in Eq. (3.18) is evaluated as

∫
Ω

wg(x, y)Ω. (3.39)

32



As a result, this integration will become a column vector and computing the integral

over every linear triangular element results in

∫
Ωe


H1

H2

H3

 g(x, y) dΩ (3.40)
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3.1.3 Bilinear Rectangular Elements

The element for this is shown below (cf.3.3):

Figure 3.3: Bilinear element

Derivation of the shape functions can be done using the following interpolation function:

u = a1 + a2x+ a3y + a4xy. (3.41)

As seen, the above function is linear in both x and y. Following the same method

for deriving the shape functions as in the previous section yields

H1 =
1

4bc
(b− x)(c− y) (3.42)

H2 =
1

4bc
(b+ x)(c− y) (3.43)

H3 =
1

4bc
(b+ x)(c+ y) (3.44)

H4 =
1

4bc
(b− x)(c+ y) (3.45)

here 2b represent the length and 2c represent height of the element.
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Shape functions in Eq. (3.42) through Eq. (3.45) can be obtained by taking the

product of two classes of 1-D shape functions. Let the linear shape functions with

nodes located at x=-b and x=b in the x-direction be given as

Φ1(x) =
1

2b
(b− x) (3.46)

and

Φ2(x) =
1

2b
(b+ x) (3.47)

Also in the y-direction, the linear shape functions are given as

Ψ1(x) =
1

2c
(c− y) (3.48)

and

Ψ2(x) =
1

2c
(c+ y) (3.49)

Taking the product of Eq. (3.46) and Eq. (3.47) and Eq. (3.48) and Eq. (3.49) would

result in Eq. (3.42) through Eq. (3.45). Shape functions found by these products of

equations are known as Lagrange shape functions.

The element matrix for a bilinear element as shown in Fig.3.3 is computed as:

[Ke] =

∫
Ωe




∂H1

∂x
∂H2

∂x
∂H3

∂x
∂H4

∂x



∂H1

∂x
∂H2

∂x
∂H3

∂x
∂H4

∂x
] +


∂H1

∂y
∂H2

∂y
∂H3

∂y
∂H4

∂y




[
∂H1

∂y
∂H2

∂y
∂H3

∂y
∂H4

∂y

]
 dΩ

(3.50)

where Hi is called the bilinear shape function. After putting the shape functions

Eq. (3.42) through Eq. (3.45) and performing the integration over all terms will result
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in the bilinear rectangular element matrix given below

[Ke] =


k11 k12 k13 k14

k12 k22 k23 k24

k13 k23 k33 k34

k14 k24 k34 k44

 (3.51)

in which

k11 =
b2 + c2

3bc
, (3.52)

k12 =
b2 − 2c2

6bc
, (3.53)

k13 = −b
2 + c2

6bc
, (3.54)

k14 =
c2 − 2b2

6bc
, (3.55)

k22 = k11, (3.56)

k23 = k14, (3.57)

k24 = k13, (3.58)

k33 = k11, (3.59)

k34 = k12, (3.60)

k44 = k11. (3.61)

Evaluation of the other domain integral yields

∫ b

−b

∫ c

−c


H1

H2

H3

H4

 g(x, y)dydx (3.62)

which is same as Eq. (3.40).
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3.1.4 Boundary Integral

The integral on the boundary as in Eq. (3.18) is given as

∫
Γn

w
∂u

∂n
dΓ =

∑∫
Γe

w
∂u

∂n
dΓ (3.63)

Here we have two types of boundary conditions that are the natural boundary condi-

tion represented by n and element boundary condition represented by e.

Figure 3.4: Elements at boundary

Here, the boundary of an element which is parallel to the x-axis is considered for

simplicity, as shown below in Fig.3.5
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Figure 3.5: Triangular element subjected to constant flux

A positive constant flux is subjected to the element boundary i.e. the flux is in

the outward direction which is supposed to be positive. Since for the domain’s decriti-

zation we have used linear triangular elements hence the boundary of an element has

two nodes as seen in Fig.3.5 and as a result, linear 1-D shape functions are used for

interpolation of element boundary.

The mathematical term is

∫
Γe

w
∂u

∂x
dΓ = q̄

∫ xj

xi

{
xj−x
xj−xi
x−xi

xj−xi

}
dx =

q̄hij
2

{
1
1

}
(3.64)

where hij= xj − xi is the length of element boundary.

Hence this column vector is added to the corresponding nodes i and j and for the

boundary of an element in the direction of y-axis or in any arbitrary direction (xy-

axes), we get the results as far as hij is the length for element boundary.
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Problem 1

Consider a Laplace equation

uxx + uyy = 0

for (x, y) ∈ (0, 5)× (0, 10) where the boundary conditions are given as

u = 0 at y = 0 and x ∈ (0, 5)

u = 0 at x = 0 and y ∈ (0, 10)

u(x, y) = 100 sin(πx/10) at y = 10 and x ∈ (0, 5)

ux(x, y) = 0 at x = 5 with y ∈ (0, 10)

.

Fig.3.6 shows the finite element discretization and domain. Apply the finite element

formulation for the above mentioned boundary conditions.

Figure 3.6: Mesh with linear triangular elements
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By writing the MATLAB code using FEM [58], we have the results as shown in the

Table 3.1

Dof# FEM Sol Exact Sol Error
1 0.0000 0.0000 0.0000
2 0.0000 0.0000 0.0000
3 0.0000 0.0000 0.0000
4 0.0000 0.0000 0.0000
5 0.0000 0.0000 0.0000
6 0.0000 0.0000 0.0000
7 3.6896 2.8785 0.8112
8 6.5689 5.3187 1.2502
9 8.4046 6.9492 1.4553
10 9.0361 7.5218 1.5143
11 0.0000 0.0000 0.0000
12 10.6206 7.6257 2.9949
13 17.3122 14.0904 3.2218
14 21.6258 18.4100 3.2158
15 23.1241 19.9268 3.1973
16 0.0000 0.0000 0.0000
17 14.0437 17.3236 3.2799
18 37.5677 32.0099 5.5578
19 46.1080 41.8229 4.2851
20 49.1988 45.2688 3.9300
21 0.0000 0.0000 0.0000
22 38.2683 38.2683 0.0000
23 70.7101 70.7107 0.0006
24 92.3880 92.3880 0.0000
25 100.0000 100.0000 0.0000

Table 3.1. Comparison of FEM solution and exact solution
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3.2 General Theory of FEM for Heat Equation

Problems of heat transfer [57] are commonly used in the field of engineering mostly

with irregular geometry. Hence, FEM is very helpful in such cases.

3.2.1 Basic Formulation For 1-D Steady State Heat Conduction

The process of heat transfer is mainly governed through heat conduction equation or

Poisson equation that is

∇.(k∇u) +Q = 0 (3.65)

with boundary condition

u = ū, x ε ∂ΩE (3.66)

which is of essential type and another boundary condition

k
∂u

∂n
− q = 0, x ε ∂ΩN (3.67)

which is of natural type.

Using the finite element formulation similar that is applying integration by parts

and plugging uh =
∑M

j=1 ujNj(x) in the equation , we get

M∑
j=1

[

∫
Ω

(k∇Ni.∇Nj)dΩ]uj −
∫

Ω

QNidΩ−
∫
∂ΩN

qNidΓ = 0 (3.68)

We can write it in compact form as

M∑
j=1

KijUj = fi, KU = f, (3.69)

whereK = [Kij],(i, j = 1, 2, · · · ,M), UT = (u1, u2, · · · , uM), and fT = (f1, f2, · · · , fm).

That is,
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Kij =

∫
Ω

k∇Ni∇NjdΩ, (3.70)

fi =

∫
Ω

QNidΩ +

∫
∂ΩN

qNidΓ (3.71)

Here, we consider 1-D steady-state heat conduction problem,

u′′(x)+Q(x)=0

with following boundary conditions

u(0) = β , u′(1) = q

In a special case, where Q(x) = r exp(-x), the analytical solution have the form

u(x) = (β − r) + (re−1 + q)x+ re−x (3.72)

Hence, Eq. (3.71) then gets the following form

M∑
j=1

(

∫ 1

0

N ′iN
′
jdx)uj =

∫ 1

0

QNidx+ qNi(1). (3.73)

Element By Element Assembly

The process of assembling the system of linear matrix is the common element-by-

element formulation. In Eq. (3.69) and Eq. (3.71), the stiffness matrix K is the

summation of the integral upon the entire solution domain, and the domain is further

divided into m number of elements with each element situated on a sub-domain Ωe(e =

1, 2, · · · ,m). The whole stiffness matrix is contributed by each element, and actually,

its contribution is a pure number. Hence, we can done with assembly process of the

stiffness matrix through an element-by-element approach. In addition, Ki,j 6= 0 iff

nodes i and j belong to same elements. In the case of 1-D, ki,j 6= 0 only for j =

i− 1, i, i+ 1. The shape functions Nj in finite element analysis are classically localized

functions, hence the matrix K is more often sparse in nearly all cases.
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We can write element-by-element formulation as

Ki,j =
m∑
e=1

K
(e)
i,j , K

(e)
i,j =

∫
Ωe

k∇Ni∇NjdΩe (3.74)

and

fi =
m∑
e=1

f
(e)
i , f

(e)
i =

∫
Ωe

QNidΩe +

∫
∂Ωe

qNidΓe (3.75)

Furthermore, as the simple number contributes to each element, hence we can in-

tegrate each element by using the local coordinates and local node numbers over an

element.Then, the contribution of each part to the global system matrix K is solely

assembled by direct addition to the corresponding global nodes or connected equations.

This could be simply done by associate index matrix to trace the element contribution

to the global system matrix.

The assembly of the global system matrix for the instance with four components

and 5 nodes is shown below. For every element with i and j nodes, we have

Ni = 1− ξ, Nj = ξ, ξ = x
L
, L = he,

K
(e)
ij =

[∫ L

0

kN ′iN
′
jdx

]
=

k

he

(
1 −1
−1 1

)
(3.76)

f
(e)
i = Qhe

2

(
1
1

)

so that, for instance in elements 1 and 2 , these will reach all nodes

(with hi = xi + 1 = xi, i, i=1,2,3,4),

K =


k/h1 −k/h1 0 0 0
−k/h1 k/h1 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , f (1) = Q/2


h1

h2

0
0
0
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so that global system matrix becomes

K =


k
h1

−k
h1

0 0 0
−k
h1

k
h1

+ k
h2

−k
h2

0 0

0 −k
h2

k
h2

+ k
h3

−k
h3

0

0 0 −k
h3

k
h3

+ k
h4

−k
h4

0 0 0 −k
h4

k
h4

,

U =


u1

u2

u3

u4

u5

, f =


Qh1/2

Q(h1 + h2)/2)
Q(h2 + h3)/2)
Q(h3 + h4)/2
Qh4/2 + q


where the last row of f has already enclosed the natural boundary condition at

u′(1) = q.

3.2.2 2-D Heat Transfer

More complicated elements and shape functions are used in higher dimensions. For

simplicity, we will discuss 2-D steady state transfer

∂

∂x
(kx

∂u

∂x
) +

∂

∂y
(ky

∂u

∂y
) +Q = 0 (3.77)

where kx and ky are thermal conductivities on a triangular mesh, each element has

three nodes i, j and m with three points (xi, yi), (xj, yj) and (xm, ym). The area of an

element is

∆ =
1

2
det

∣∣∣∣∣∣∣
1 x1 y1

1 xj yj
1 xm ym

∣∣∣∣∣∣∣ (3.78)
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The shape functions are given as

Ni =
(ai + bix+ ciy)

24
, (3.79)

where ai = xjym − xmyj, bi = yj − ym = yjm, and ci = xm − xj=xmj as well as

their cyclic permutations of subscripts in the order of i, j, m. Therefore, the matrix

Kij becomes

K
(e)
ij =

∫
Ωe

(
kx
∂Ni

∂x

∂Nj

∂x
+ ky

∂Ni

∂y

∂Nj

∂y

)
dxdy (3.80)

This load matrix is simply

f (e) =
Q4

3

1
1
1

 (3.81)

The index matrix for the global nodes or equation numbers are

DIndex =

 (i, i) (i, j) (i,m)
(j, i) (j, j) (j,m)
(m, i) (m, j) (m,m)

 (3.82)

This can be written as two separate matrices ID and JD for easily implementation

ID =

 i i i
j j j
m m m

 JD =

i j m
i j m
i j m

 (3.83)

ID = JDT (3.84)
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So that the contribution of K(e)
ij to the global matrix Kij is just

K[ID(I,J),JD(I,J)] = K[ID(I,J),JD(I,J)] +K(I,J)(e), I, J = 1, 2, 3 (3.85)

and

f(l) = f(l) + f (e)(l)(l = i, j,m)etc
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Problem 1: Heat Equation In 1-D

In this problem, we have solved the steady-state of the 1-D heat conduction equa-

tion given as

u′′(x)+Q(x)=0

with following boundary conditions

u(0) = β , u′(1) = q

In a special case, where Q(x) = r exp(-x), the analytical solution have the form

u(x) = (β − r) + (re−1 + q)x+ re−x (3.86)

in MATLAB using FEM and we have the following results as shown below:
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Figure 3.7: 1-D heat conduction(steady state)
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Problem 2: Heat Equation in 2-D

Consider a 2-D steady state transfer

∂

∂x
(kx

∂u

∂x
) +

∂

∂y
(ky

∂u

∂y
) +Q = 0 (3.87)

where kx and ky are thermal conductivities and Q is the heat source on a triangular

mesh, each element has three nodes i, j and m with three points (xi, yi), (xj, yj) and

(xm, ym). Results are shown below:
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Figure 3.8: 2-D heat conduction on a rectangular domain
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3.3 PDE Toolbox

3.3.1 Description

The Partial differential equation (PDE) toolbox is a powerful tool which provides us

with a flexible environment to find the solution of PDEs in two space dimension and

time. The process of discretization in PDE toolbox is done by using the finite element

method (FEM). This is an alternate way to find the solution of PDEs as we do not

need to write code by ourself instead this tool uses some built in functions for finding

the solutions of PDEs. We just need to input some information into this toolbox

regarding PDE that is geometry, boundary conditions of dirichlet, neumann or mix

type, coefficients of PDE etc. Step by step procedure is mentioned below. In addition,

toolbox has advantages as well as some disadvantages.

3.3.2 Basic steps to solve PDEs

• First step is to define a 2-D geometry.

• Secondly, we need to define the boundary conditions.

• Thirdly, we have to define the coefficients of a PDE.

• Than create a triangular mesh.

• Solve the PDE.

• At the end, plot the solution.

Advantages

• Easy to use.

• Easy to generate grid.

• Easy to handle complex geometry.

• Efficiency is higher.
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• We can change the PDE and recompute the solution.

• Also we can change the mesh, boundary conditions and the geometry as well.

Disadvantages

• Cannot handle nonlinearity.

• Cannot handle 3-D properly.

• Cannot handle higher order equations.

Generally, PDE toolbox adds some necessary steps automatically if not defined that

is:

• If we do not create a geometry, it will use the L-shaped geometry with the default

boundary conditions.

• While in draw mode if we initialize the mesh than it will first decompose the

geometry by using the current set formula and it will assign the default boundary

conditions to the outer boundaries and after that it will generate a mesh.

• Before initializing if we refine the mesh than it will automatically intialize the

mesh first.

• Without generating a mesh if we solve the PDE, it will initialize a mesh before

solving it.

• If we choose to plot the solution, it will first check if the solution to the corre-

sponding PDE is available, if not than it will first solve the corresponding PDE.

• If the coefficients are not specified while in generic scalar application mode, than

it will solve the default PDE that is the Poisson equation.

The default settings of PDE depend on the application mode.
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Problem 1

The problem here shows how we can solve a Poisson’s Equation numerically using

the assempde function in PDE toolbox.

Consider a PDE that is

−∆u = 1 (3.88)

on the unit disk with zero-Dirichlet boundary conditions. The analytical solution is

u(x, y) = 1−x2−y2
4

Since for many partial differential equations, the exact solution is not known so in

this example, however, we have used the known solution that is exact to show that

how the error decreases as we refine the mesh.

Generate initial mesh
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Figure 3.9: Initial mesh
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Plot final mesh
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Figure 3.10: Final mesh

Plot error
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Figure 3.11: Error plot
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Plot FEM solution
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Figure 3.12: FEM solution

Problem 2

In this problem we have solved the heat equation with a source term using the

parabolic function in the PDE Toolbox.

Consider the heat equation
∂u

∂t
−∆u = 1 (3.89)
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Generate mesh
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Figure 3.13: Generate mesh

Plot FEM solution

Figure 3.14: FEM solution
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3.4 Nonlinear PDEs

3.4.1 Burgers Equation

In applied mathematics, nonlinear partial differential equations have a very important

role. They are used for modeling and analyzing the physical problems. So the Burgers

equation [59]

ut + uux = νuxx (3.90)

which lies in the class of nonlinear PDEs is considered to be a center of interest for

studying different physical phenomenon including shock waves, gas dynamics etc. Since

this equation includes an advection term uux and viscosity term νuxx so it had been

used to test some numerical methods. In addition, this equation allow us to do the com-

parison for analyzing the quality of a numerical method applied to a nonlinear equation.

In this section, we are going to solve Burgers equation through FEM by writing the

MATLAB code. Consider the Burger equation given below:

∂x

∂t
= µ

∂2x

∂z2
− x∂x

∂z
= µxzz − xxz (3.91)

with zε[0, 1] and t is non-negative. The relevant conditions are as:

x(z, t) = xa(z, t) at t = 0 (3.92)

x(z, t) = xa(z, t) at z = 0 (3.93)

x(z, t) = xa(z, t) at z = 1 (3.94)

where xa is the analytical solution given as:

xa(z, t) =
0.1ep + 0.5eq + er

ep + eq + er
(3.95)

here

p = −(0.05/µ)(z − 0.5 + 4.95t);

q = −(0.25/µ)(z − 0.5 + 4.75t);

r = −(0.5/µ)(z − 0.375);
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The underlying method produce as following coupled ODEs:

M
∂x̃

∂t
= (α0D0 + α1D1 + α2D2)x̃+Mf̃NL + g (3.96)

where

M
dx̃

dt
=

∆z

6
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Details are mentioned in the book.

Now consider

M
∂x̃

∂t
= µD2x̃− f̃NL + g (3.101)

here f̃NL is the nonlinear term xzz.

By writing the MATLAB code, we have the following result which shows the com-

parison between the analytical solution ” − ” and numerical solution ”.” of Burgers

equation by using the finite element code.
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Figure 3.15: Comparison between the analytical and numerical solution
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The figure shows that this numerical technique that is finite element method pro-

duces very satisfactory results. The discretization points as well as basis functions can

be varied for different µ appear in Burgers equation.
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Chapter 4

Conclusion

This work was intended as an attempt to motivate the implementation of finite element

method for finding the numerical solutions to the problems. It is actually a general-

ization of the weighted residual method, which lies on the principle that the solution

of a problem can be represented in a linear combination form including the unknown

parameters along with suitably selected functions in the entire region of the problem.

These unknown parameters are then determined in such a way that they should satisfy

the differential equation in a weighted-integral sense. In addition, trial functions are

assumed such that they have to satisfy the boundary conditions of the corresponding

problem.

The traditional weighted-residual method suffer from one majorshort coming that is

the construction of the approximation functions which is bound to satisfy the boundary

conditions of the problem to be solved. Most of the problems are defined on a geometri-

cally complex regions and therefore it becomes difficult to generate the approximation

functions of the type which satisfy different types of boundary conditions on different

parts of the boundary of that particular complex domain. However, if the domain can

be represented as a collection of simple sub domains that permit construction of the

approximation functions for any arbitrary but physically meaningful boundary con-

ditions, then the traditional weighted residual method can be used to solve practical

problems. So an idea behind the method is to analyze a respective domain as a col-
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lection of simple sub-domains known as the finite elements, for which we can generate

the approximation functions necessary for the solution of differential equations by any

weighted residual technique. The capability of representing the domains with irregular

geometries along with the collection of finite elements makes this method an important

practical tool for the solving the problems.

Galerkin finite element method (GFEM) has been used in this entry throughout for

solving ODEs and PDEs. For a 1-D ordinary differential equation which has been solved

in chapter two, weak formulation was constructed by a weighted residual technique

and then by assuming the linear functions as the trial functions, we derived the shape

functions which were later used along with weight functions into the governing ODE for

finite element formulation. In chapter three, the method was used for formulating the

Poisson and Laplace equation. For Laplace equation, first we have solved it with linear

triangular elements and secondly theoretical results for bilinear rectangular elements

are presented. The bilinear rectangular elements when compared with linear triangular

elements will produce more accurate solutions. Also the steady state of 1-D heat

conduction equation and 2-D heat transfer on a rectangular region are discussed along

with graphs which shows both analytical and numerical solutions. In addition to the

numerical technique used here, it is possible to apply FEM for solving the nonlinear

problems; hence we have solved Burgers equation through finite element formulation.

Therefore, this method is widely used for solving the practical engineering problems.
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