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Abstract

Tracking of human hand is an integral part of many key computer vision systems with diverse

applications such as human computer interaction, gesture recognition and augmented reality etc.

However this task is very challenging due to the non rigid nature of hands, heavy occlusions due

to interaction and it’s smaller size relative to the camera frame. Sceneflow estimation is also one

of the key algorithms used in many applications such as image processing, navigation and visual

surveillance etc. This task is also very difficult due to the one-to-many correspondence prob-

lem.In this project, we will develop a deep learning based system for estimation of sceneflow

and extend it to solve the hand tracking problem.

xiii



CHAPTER 1

Introduction and Motivation

Human hand tracking and pose estimation serve as a natural method for human computer inter-

action in augmented / virtual reality applications. This is an active research area in computer

vision with vast industrial applications [49, 50].

Hand shape estimation or mesh reconstruction has been a tough problem and continues to chal-

lenge the computer vision community especially for images in the wild [25, 29]. Multiple deep

learning based efforts have been made in solving this issue in a monocular setup [8, 26, 27, 10,

21, 41] with exceptional performance. However, the monocular approach (depth or RGB) has

few limitations due to following challenges:

• 1. Depth image uncertainty: The depth images are very noisy and have high level of

uncertainty that causes erroneous prediction.

• 2. Limited perspective: Any monocular image, whether it be depth or RGB, captures

only one perspective. So any deep learning technique is biased towards the limited per-

spectives available in the datasets.

• 3. Occlusion: Naturally, single view does not provide any information about the occluded

portion of the hands causing a reduction in robustness.

Multiview approach seems to be the most suitable and intuitive way of solving above issues. In

this research project we will focus on developing a similar approach.
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CHAPTER 1: INTRODUCTION AND MOTIVATION

1.1 Problem Statement and Contribution

In this research project, we have developed a state of the art scene flow based hand tracking

network by resolving the depth image uncertainty, limited perspective and occlusion problems

inherited by the state-of-the-art methods due to their monocular nature by following ways:

• Multiview Fusion: Fusing multiple views in a global 3d frame of reference.

• 3d deeplearning: Designing a deep learning model with direct 3d to 3d mapping for hand

mesh reconstruction.

• Pointcloud input: Using 3d point cloud input for smaller network size.

• Realworld images: We have used a realworld hand image dataset [25] instead of sen-

thetic images which makes the task more challenging.

Our main contributions are:

• 2d to 3d data pipeline: A data preprocessing pipeline for fusing multiple views into a

singular point cloud.

• 3d hand shape estimator: A state of the art hand mesh estimator.

• 3d sceneflow estimator: Optimization / finetuning of the state of the art scene flow esti-

mation network for hand point clouds.

• 3d hand shape tracker: A sceneflow based state of the art hand mesh tracker.

• 3d hands dataset: Our version of DexYcb with merged views containing point cloud and

corresponding joints/vertices of hand.

• 3d hands sceneflow dataset: Our version of DexYcb with merged views containing point

cloud pairs and corresponding sceneflow for hand flow problems.

For the scope of this project, hand mesh or shape in 3d is defined by the standard MANO

parametric model [42] comprising of 778 vertices.

2



CHAPTER 2

Literature Review

Hand mesh reconstruction or shape estimation task can be broadly classified into two distinct

forks, namely monocular and multiview. Multiview approaches either merge multiple views to

form a pointcloud or merge the embeddings generated through some feature encoder. Here we

will focus on the single view and point cloud based approaches.

• Monocular Hand Shape Reconstruction

Most of the techniques [8, 11, 38, 24] focus on hand shape reconstruction through deform-

ing a standard hand mesh template based on some parametric model such as MANO [42].

However, regression of 3d rotations is a challenging task which limits the performance.

Many recent techniques [27, 10, 13, 20] try to regress the hand mesh vertices directly

without any parametric model through graph based approaches for preserving geometric

sanctity. 3d voxels [21], signed distance functions [35, 19] and UV positional graphs [26]

have also been used successfully. [13] proposed that combining parametric model and

graph convolutions are helpful in human body pose estimation. This can be extended to

human hands as well. Transformer based approaches [30, 31] have also proved fruitful in

extracting useful features for this problem. Building on these observations, we also base

our approach on graph convolutions and transformer attention centric concepts.

• Pointcloud Learning Networks

Qi et al. [3] developed a ground breaking pointcloud feature extraction deep learning

netowork called PointNet. They further improved the performance in PointNet++ [4]

by incorporating ball query and heirarchical clustring. PointNet++ better preserved the

geometric structure of the pointcloud. There are many other approaches that try to ex-

3



CHAPTER 2: LITERATURE REVIEW

tract local features from pointsets through convolution operators [6, 15, 16]. Zao et al.

integrated the transformer architecutre into such networks and introduced Point Trans-

former [34] with local neighborhood attention mechanism. Guo et al. achieved similar

performance in Point Cloud Transformer [28] via application of Laplacian matrix. Our

network consists of a feature extractor comprising of successive PointNet++ and Point

Transformer Layers.

• Multiview Hand Shape Reconstruction

In literature, fusing multiple views directly or merging there features is usually termed as

multi-view stereo (MVS) problem. Some approaches extract 2d image features from each

view and then merge them in some latent space such as epiolar-line based position em-

bedding [18], point based position embedding [37, 23, 33] and 3d position encoding [40].

While others extract 3d features [1, 2, 7, 9] directly from 3d pointclouds using 3D-CNN

or point cloud networks. POEM [48] proposed by yang et al. is a similar structure aware

approach that directly updates hand vertices by utilizing feature aggrigation and structure

conscious vertex query. Since intrinsic and extrinsic calibration parameters of a camera

can be easily calculated, we use a simpler approach and merge the piontclouds generated

by un-projecting depth maps directly into a global or common frame of reference.

• Sceneflow Estimation

Sceneflow prediction is another fundamental computer vision problem where we need to

predict the movement of a pixel or a point in 3d between two consecutive frames. It’s

an ill posed correspondence problem where we need to identify a corresponding pixel

or point in the next frame. There are a lot of state-of-the-art networks with exceptional

performance predicting sceneflow using deep learning. These methods vary in the type of

data they take as input. Broadly speaking, they can be classified into two categories. Ones

take RGB-D images as input data [32, 39, 46]. RAFT3d [32] introduced the concept of

recurrent all pairs feature transforms. Using the Lie Algebra they significantly reduced

the training time as well as the prediction accuracy. Second are the ones that take point

clouds as input [14, 17, 22, 43, 36].

FlowNet3d [14] was the pioneering network that estimated sceneflow directly from pointsets

using a PointNet [3] based Siamese feature extractor and a similar flow embedding layer

to find correspondences. Flow embedding layer dealt with the correspondence problem

in a point-to-patch manner. PointPWCNet [17] incorporated the pyramid approach to

4



CHAPTER 2: LITERATURE REVIEW

counter for different scales and improved the results significantly. FLOT [22] emplyed

optimal transport approach and significantly reduced the parameters. Bi-PointFlowNet

[36] introduced bidirectional flow embedding layers that learn in both forward and back-

ward flow directions. Guangming Wang et al. [43] proposed an all-to-all flow embedding

layer at the lowest level in the pyramid network. We build our own sceneflow estimation

network and also use fine-tuned Bi-PointFlowNet as a off-the-shelf sceneflow estimator

in our experiments.

5



CHAPTER 3

Methodology

Section 3.1 provides details on the data pipeline while section 3.2 explains the deep learning

model. Section 3.3 explains the training methodology. Section 3.4 sheds light on the evaluation

metrices.

3.1 Introduction to the Dataset - DexYcb

We are using DexYcb [25] Dataset which contains hundred video sequences of ten different

subjects interacting with multiple objects one hand at a time on a table top from 8 different

views or perspectives. The dataset contains 640x480 RGB-D Images, camera intrinsics and

extrinsics. The ground truth includes hand mask, object mask and MANO [42] parameters

which include three dimensional global translation, three dimensional global rotation, ten blend

shape parameters and fourty-five local rotations.

3.2 Data Pre-processing Pipeline

The main goal of the data pre-processing pipeline is to first convert the 2D images to 3D point

clouds. Then extract the points that belong to the hand. And finally merge multiple views.

3.2.1 Back-projection of Depth Images and Filtering Hand Points

The depth image directly contains the z-axis location of every pixel. Given the intrinsic param-

eters of the depth camera, each pixel with location (u, v) can be back-projected to the 3d world

6



CHAPTER 3: METHODOLOGY

coordinates (x, y, z) using following relations:

X =
U − cx

fx
·D (3.2.1)

Y =
V − cy

fy
·D (3.2.2)

Z = D (3.2.3)

Where:

- fx and fy are the focal lengths in pixels along the X and Y axes.

- cx and cy are the principal point coordinates (the optical center) in pixels.

- U and V are the pixel coordinates in the image.

- D is the depth value at pixel (U, V).

- X, Y, and Z are the resulting 3D world coordinates.

Since we also need to filter out the points that belong to the hand, we add another factor to the

above equations signifying whether the pixel belongs to hand or not. This is obtained from the

hand mask ground truth available in the DexYcb Dataset.

Figure 3.1: Hand Point Cloud generated from Single View (Before DBSCAN)

After masking out the required points, we observe that some outliers are observed that are clearly

not a part of the hand when we observe qualitatively. These pixels arise due to the small errors in

7



CHAPTER 3: METHODOLOGY

hand mask ground truth. Such points are filtered out using DBSCAN algorithm [5]. DBSCAN

algorithm generates a set of clusters or groups of points based on their vacinity to each other.

Their are two parameters that control output of this algo:

1. EPS which is the maximum distance between two points in the same cluster. We set this

parameter equal to 0.005 m or 5 mm.

2. S which is the minimum number of points required to form a cluster. We set this parameter

equal to 5.

Figure 3.2: Hand Point Cloud generated from Single View (After DBSCAN)

3.2.2 Generating Ground Truth for Pose/Shape Estimation

DexYcb Dataset has annotated MANO [42] parameters which include three dimensional global

translation, three dimensional global rotation, ten blend shape parameters and fourty-five local

rotations. The 3D hand mesh (778x3) and joints (21x3) can be obtained by using these paramters

and inserting them into the differentiable pytorch MANO layer [12]. The 3D hand mesh contains

778 vertices while there are 21 joints in standard MANO parametric model.

3.2.3 Generating Ground Truth for Dense Sceneflow Estimation

DexYcb does not contain any sceneflow information. Therefore, generating the sceneflow

ground truth was a great challenge. This problem was solved by utilizing the hand shape ground

truth as a guide.

8



CHAPTER 3: METHODOLOGY

Figure 3.3: Hand Shape Ground Truth (778 Mesh Vertices)

To find accurate sceneflow, we need to know the point to point correspondences between each

3D point. Once we know these correspondences, the sceneflow of any 3D point ’p’ is simply the

vector directed from the location of this point in first frame ’p1’ to the location in second frame

’p2’. So finding the sceneflow is simply a problem of finding the correspondences or movement

of points.

Now consider the ground truth hand shape which was generated in previous section. Let ’Vi’

be the 3D location of the ith vertex in the ground truth hand mesh. If ’Vi1’ is the location of ith

vertex in frame 0 and ’Vi2’ is the location of ith vertex in frame 1, then the sceneflow can be

evaluated using following formula:

SceneFlowi =Vi2−Vi1 (3.2.4)

Here we assume that the sceneflow of a local patch or group of 3D points remains same due to

the rigid body movement which is a fairly reasonable assumption. Since we already have the

known sceneflow at vertex locations, we can find the the sceneflow at any arbitrary point ’n’ in

the hand point cloud (Figure 3.2) by simply averaging the sceneflow of the nieghbouring ground

truth vertices.

9



CHAPTER 3: METHODOLOGY

Figure 3.4: Hand Shape Ground Truth (778 Mesh Vertices)

SceneFlown = mean( sceneflow of 03 nearest nieghbouring MANO mesh vertices ) (3.2.5)

After generating the dense sceneflow in such a way the results were qualitatively evaluated.

Following figure shows two point clouds superimposed on each other. Blue points represent the

original point cloud while red points depict points of the next frame minus the dense sceneflow.

It can be seen that the two superimpose perfectly.

3.2.4 Merging Multiple Views and Filtering

The 3D points generated so far are in camera frame of reference or camera coordinate system.

To convert them to global coordinate system, we need to use camera extrinsic parameters. These

parameters describe the camera’s position and orientation in the world coordinate system. We’ll

need these parameters to transform from camera coordinates to world coordinates.

• First we convert the 3D point in camera frame to homogenous coordinate system by ap-

10



CHAPTER 3: METHODOLOGY

Figure 3.5: Dense Sceneflow Ground Truth of Hands (colored image)

pending 1 at the end.

Homogeneous Point in Camera Frame: (Xcam,Ycam,Zcam,1)

• Then we compile the extrinsic parameters of the camera:

Extrinsic Parameters: Rotation Matrix R and Translation Vector T

• Then we build the Transformation matrix:

Transformation Matrix (4x4):


R11 R12 R13 T1

R21 R22 R23 T2

R31 R32 R33 T3

0 0 0 1



• Finally the point is projected to world coordinates using following equation:

(Xworld,Yworld,Zworld,1) = Transformation Matrix · (Xcam,Ycam,Zcam,1) (3.2.6)

11



CHAPTER 3: METHODOLOGY

Where:

- R is the rotation matrix representing the camera’s orientation in the world frame.

- T is the translation vector representing the camera’s position in the world frame.

- point camera is the 3D point you want to transform in homogeneous coordinates.

- The transformation matrix extrinsic matrix combines rotation and translation.

- The transformed point point world represents the 3D coordinates of the point in the

world frame.

Once we have converted all the camera views to the global frame, we can simply concatenate or

directly merge them to form a consolidated point cloud.

Figure 3.6: Multiview Point Cloud after merging all individual camera views

3.2.5 Removing Outliers

All frames that have less than 4096 points after merging all views are considered outliers and

have been removed from the dataset.

3.2.6 Single Sided Dataset

Only right hand frames are considered for evaluation and training in line with the latest state-

of-the-art papers [48] for a fair comparison.

12



CHAPTER 3: METHODOLOGY

3.2.7 Training and Validation Split

We have used standard S0 split of DexYcb [25] dataset. According to this split, 80 percent

sequences are used for training while 18 percent are used for testing and 2 percent for validation.

In total there are 58188, 2900 and 11658 samples in S0 for train, validation and test splits

respectively. We have combined validation and test splits to form a single 20 percent validation

spilt in line with [48].

In total there are 23564 training samples and 5920 validation samples in our dataset.

3.3 Deep Learning Architecture

The goal of the project is that given an initial mesh and a pair of consecutive pair of pointcloud

frames, we need to estimate an accurate 3D hand mesh in the next frame by utilizing sceneflow

information. Our proposed deep learning pipeline is shown in the figure below.

Figure 3.7: Overall Architecture of Our Hand Tracker

The architecture includes five distinct learning blocks.

• Initial Hand Shape Estimator

• Sceneflow Estimator

• Local Feature Extractor

• Global Feature Extractor

• Refinement Module

13



CHAPTER 3: METHODOLOGY

The initial hand pose estimator estimates the hand shape for the first frame from pointcloud.

Sceneflow estimator estimates the sceneflow at the mesh vertices predicted by the initial hand

pose estimator. We find the hand shape of the next frame by simply adding the the sceneflow

into the intial shape estimated for the previous frame.

Shape @ frame t + 1 = Shape @ frame t + Sceneflow from frame t to t + 1 (3.3.1)

Evidently, this initial shape contains error due to the error in the sceneflow which accumulates

over time. This error is removed by the refinement module which uses the local and global

features extracted from pointcloud of next frame through local and global feature extractors

respectively.

Next sections will dive deep into these individual blocks in more detail.

3.3.1 Global Feature Encoder

The global feature extractor is a combination of Set Abstraction Layers from PointNet++ [4] and

PointTransformer Layers from PointTransformer [34]. We have used three sets of these layers

back-to-back and the final set abstraction layer generates a global feature using the maxpool

function. Layer settings are given in the tables.

Sr. Name npoint radius nsample in channel mlp out channel

1 SA1 512 0.015 4 3 32, 32, 64 64

2 SA2 128 0.030 4 64+3 64, 64, 128 128

3 SA3 64 0.060 4 128+3 128, 128, 256 256

4 SA4 None None 4 256+3 256, 256, 1024 1024

Table 3.1: Configuration parameters of Set Abstraction Layers in Global Feature Extractor

Sr. Name Model Dimension Point Feature Dimension nsample

1 T1 64 64 4

2 T2 128 128 4

3 T3 256 256 4

Table 3.2: Configuration parameters of Transformer Layers in Global Feature Extractor

14



CHAPTER 3: METHODOLOGY

Figure 3.8: Architecture of Local (right) and Global (left) Feature Extractors

3.3.2 Local Feature Encoder

Similar to global feature extractor, local feature extractor also consists of a single set abstraction

layer from PointNet++ [4] architecture. However, it is slightly different in a sense that it does not

perform ball query to find the points. Rather it accepts pre-computed points as input. Another

important thing to remember is that we are not grouping the features at the end. So basically we

are extracting local features from the local neighbour hood for each of the 3D point provided at

the input. The detail of the layer is provided in the table.

Sr. Name radius nsample in channel mlp out channel

1 SA1 0.030 4 3 32, 64, 128, 256, 512, 1024 778x1024

Table 3.3: Configuration parameters of Set Abstraction Layer in Local Feature Extractor

3.3.3 Graph Convolution Network for Shape Refinement Module

The heart of the shape refinement module is the graph convolution layers. The architecture of

our network is similar to [13]. We have used five layers in total. Each layer has 512 channels

and a feature length of 2048 (1024 global feature + 1024 local feature). First we form a graph

from the input initial hand shape. Then we copy and concatenate global feature with each node.

After that we concatenate corresponding local feature with each node. Then we pass this input

graph from the graph convolutional layers. Finally we extract the refined shape from the output

graph.
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Figure 3.9: Architecture of Graph Convolution Network for Shape Refinement Module

3.3.4 Hand Shape Regressor

The input of our hand shape regressor is a piontcloud made up of 4096 3D points. We first

extract 1024 dimensional global feature using the global feature extractor module. Then we use

a three layer multi-layer perceptron (MLP) for regressing the initial shape of hand. The detailed

architecture of this MLP is tabulated.

Sr. Layer Name Configuration Parameters

1 Fully Connected 1 in channel = 1024, out channel = 512

2 Batch Norm channel = 512

3 Activation ReLU

4 Dropout drop percentage = 0.40

5 Fully Connected 2 in channel = 512, out channel = 256

6 Batch Norm channel = 256

7 Activation ReLU

8 Dropout drop percentage = 0.40

9 Fully Connected 1 in channel = 256, out channel = 778x3

Table 3.4: Configuration parameters of MLP Layers in shape regressor

Once we have this initial shape, we can now find the local features using the local feature

extractor module. After extracting local features, we can now apply the graph convolutions

based refinement module to find the refined hand shape.
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Figure 3.10: Architecture of Hand Shape Regressor

3.3.5 Scene Flow Estimator

We have used Bi-PointFlowNet [36] as our sceneflow estimator. This network generates dense

sceneflow by matching a pair of pointclouds. The sceneflow generated by this network is dense

meaning that a sceneflow vector is generated against each point in the first pointcloud.

Figure 3.11: Architecture of Scene Flow Estimator

Since we need the scene flow at a specific location (meaning the hand mesh vertices), we used

k-NN method to average out the sceneflow of the three nearest neighbors of the vertex location.

This approach is the same as the one we used to generate ground truth for the dense scene flow.

3.4 Training Methodology

We first train the hand shape regressor and sceneflow estimator separately. Once they are ready,

we then train the whole pipeline while keeping the parameters of these two networks fixed. We

also fix the parameters of the global feature extractor. Here, we use the same weights as the
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ones used for hand shape regressor.

3.5 Evaluation Methodology

The evaluation criteria is simply the mean end point error between the ground truth hand shape

mesh and the predicted one. Mean end point error is the mean L2 norm of each predicted 3d

point in the evaluation (validation) dataset. Since we are only evaluating on the hand shape

mesh vertices, its usually denoted by Mean Vertex End Point Error (MVPE) in literature. It is

measured in millimeters. In the case of sceneflow SceneFlow (SF), simply mean end point error

Mean End Point Error (EPE) is used. It is also measured in millimeters.
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Experiments and Results

4.1 SceneFlow Estimator

Here our goal is just the fine-tuning of existing Bi-PointFlowNet model on our dataset. We

carried out the ablation study on subject 1 data only. The finetuning is done on complete dataset.

4.1.1 Evaluation on pre-trained weights

We performed an ablation study to find the optimum value of scaling normalization and k value

for the k-NN algorithm. The results are tabulated in table below. Here we have used ground

truth hand shape as input to the k-NN.

Sr. Scale Factor EPE of Dense SF EPE of SF @ Mesh Vertices

1 1 522.78 418.11

2 5 4.18 5.38

3 10 2.74 4.32

4 15 2.72 4.27

5 20 2.71 4.30

Table 4.1: Ablation Study on scaling normalization at k = 3

Based on results in Table ??, a scale factor of 15 was chosen for normalization. Another ablation

was carried out to choose an optimum value of k in the k-NN algorithm. Results are tabulated.

As expected raising the value of k improves the error metric. However, we chose the value of

15 as an optimum value based on the knee point rule of thum used in k-NN clustring. This is
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Sr. k EPE of SF @ Mesh Vertices

1 1 4.33

2 3 4.27

3 5 4.24

4 7 4.22

5 9 4.20

6 11 4.18

7 13 4.17

8 15 4.15

9 17 4.14

10 19 4.13

11 21 4.12

12 23 4.11

13 25 4.10

14 27 4.09

15 30 4.08

16 35 4.07

17 40 4.05

18 45 4.04

19 50 4.03

20 55 4.02

21 60 4.01

22 65 4.00

23 70 3.99

24 75 3.98

25 80 3.98

Table 4.2: Ablation Study on value of k in k-NN at Scale Factor = 15
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evident from the figure.

Figure 4.1: Ablation Study on value of k in k-NN at Scale Factor = 15

4.1.2 Fine-tuning the Bi-PointFlowNet Model on our dataset

We used the dense sceneflow ground truth generated during data pre-processing for fine tuning

the Bi-PintFlowNet. The results are tabulated below. Note that the k value and scale factor both

are fixed at 15.

Sr. Model Weights EPE of Dense SF EPE of SF @ Mesh Vertices

1 Pre-Trained 7.76 7.42

2 Fine-Tuned 2.86 3.72

Percentage Imporovement 63.14 % 49.86 %

Table 4.3: Fine-tuning Bi-PointFlowNet

4.2 Hand Shape Estimator

We first trained the pose estimator without the refinement module. Once trained, we then trained

the refinement module and local feature extractor while keeping weights of the MLP and global

feature extractor fixed. Results are tabulated.

21



CHAPTER 4: EXPERIMENTS AND RESULTS

Figure 4.2: Fine-tuning Bi-PointFlowNet

Sr. Model Type MVPE of Hand Shape

1 Global Feature Extractor and MLP 10.74

2 With Refinement Module 9.7

Table 4.4: Evaluation Results of Hand Shape Estimator

4.3 Hand Shape Tracker

In this section, we present the results of the complete pipeline. Here we have fixed the weights

of the sceneflow estimator, global feature extractor and initial shape estimator. Hence only the

local feature extractor and the refinement module are trained. Results are shown below:

Sr. Model Type MVPE of Hand Shape

2 Hand Tracker 9.46

Table 4.5: Evaluation Results of Hand Shape Tracker

4.4 Comparison with State of The Art (SOTA) on DexYcb Dataset

Following table shows a comparison of our approach with the SOTA methods on DexYcb dataset’s

S0 split evaluation. All papers that are referred below are from 2023. Older papers are not
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shown.

Sr. Model Type MVPE of Hand Shape

1 POEM [48] 6.13

2 MVP [33] 9.77

3 HandOccNet [41] 13.1

4 DiffHand [44] 12.1

5 H2ONet [47] 12.7

6 HFL [45] 12.56

7 ours 9.46

Table 4.6: Comparison of our approach with SOTA on DexYcb Dataset

Qualitative Results Following figures show the qualitative comparison between the ground truth

and our predicted shape. In these images, blue is the ground truth while red is the predicted one.

Figure 4.3: Qualitative Results of Our Hand Tracker 1
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Figure 4.4: Qualitative Results of Our Hand Tracker 2
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Discussion

We have developed a hand tracker pipeline that can accurately track the hand shape in next

frames given some initial shape or mesh estimate. Thre results show that the MVPE is small

and comparable with the SOTA. However the quality of mesh or shape can still be improved as

shown in the qualitative results. This can be achieved by introducing the parametric model such

as MANO [42].
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Conclusion

The multiview hand tracker is a very challenging task and is heavilty impacted by occlusions.

We have developed a occlusion resistant multiview tracker that directly predicts the hand mesh

or shape in the next frame. The qualitative and quantitative results show that our approach is

one of the best in terms of MVPE second only to [POEM].

6.1 Future Work

• Although results are good but they can still be improved further by improving the accuracy

of global translation. A small network may be introduced this purpose. Another important

aspect is the extrinsics of the cameras.

• It has been observed that the camera views do not align perfectly by using extrinsics alone

as there is some error. A calibration procedure may be adopted or a correction technique

may be introduced to improve this aspect. Resolving this issue will also improve accuracy.

• The quality of mesh or shape can be improved by incorporating a parametric model such

as MANO [42]
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Recommendations

This research project shows that multiview depth images can be used to predict the 3d hand

shape very accurately. Such a technique can be directly deployed in mission critical human

computer interfaces.
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