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Abstract 

The prediction of aging and serviceability in single base propellants has become 

remarkably effortless owing to the rapid advancement of new analytical techniques, 

specifically High-performance liquid chromatography (HPLC). However, HPLC only 

provides momentary situations. To address this issue and to obtain real time aging 

prediction of SBPs this research explores the use of machine learning (ML) and genetic 

algorithms (GA). Aging refers to the deterioration of the propellant over time, which 

can affect its functionality and performance. The study uses predictive ML models to 

optimize, automate, and surveil single-base propellants in combination with GA to 

enhance their performance. Widely used machine learning models include support 

vector machines (SVM), ensemble trees (ET), Gaussian process regression (GPR), and 

regression trees (RT). Several criteria are used in this study to evaluate the models' 

accuracy and probability for prediction. The study is significant with 0.89 coefficient 

of determination for the optimum performing ML technique namely ET-GA to forecast 

the effects of aging on propellants, contributing to the advancement of testing and 

surveillance techniques for single-base propellants. An optimized ML model ET-GA 

shows maximum of 5% deviation with experimentation is used to create a Graphical 

User Interface (GUI) that simplifies the calculation of the remaining effective stabilizer 

percentage. 

Keywords: Propellants, Energetic Material, Nitro Cellulose, Machine Learning, 

Genetic Algorithm.  
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Chapter 1:  

Introduction 

1.1 Background 

When ignited or detonated, highly energetic nitrogen-based compounds known as 

propellants quickly release significant amounts of energy and gaseous byproducts. 

They are extensively used by the military and by the construction and mining industries 

[1]. Several aging reactions, including nitrate breakdown and post-curing reaction can 

degrade propellants with time. Scholars have used chromatography, spectrum analysis, 

mechanical analysis, thermal analysis and computer simulations to evaluate and 

predict the extended storage effectiveness of propellants. Propellant's lifespan is often 

estimated to be between 13 and 16 years [2]. 

The materials used as propellants in rockets, missiles, and other propulsion systems 

create thrust. Early in the 20th century, researchers began looking into different 

chemicals' capacities to generate regulated propulsion for use in the military and space 

applications. One of the first propellants used was black powder, which has its roots 

in ancient China. However, the present rocket business underwent a revolution when 

liquid and solid propellants were developed in the middle of the 20th century. 

Fuel and oxidizer are combined to form a solid matrix to form solid propellants. Solid 

propellants first appeared in gunpowder, but Dr. Robert Goddard's research in the early 

20th century led to their modern formulations[3]. Solid propellants are the best choice 

for both industrial and military applications since they are straightforward, portable, 

and simple to handle. 

Although they offer many advantages, propellants also have significant disadvantages. 

Propellers may degrade over time for a number of reasons, such as environmental 

exposure and chemical instability. Their performance and safety may be significantly 

impacted by this decline. For instance, the propellants' combustion properties may alter 

over time, impacting the amount of thrust produced and trajectory control. The 

structural integrity of the rocket engine may also be in danger as a result of cracks or 

cavities developing inside the solid propellant grain as a result of degradation [4, 5]. 
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Recently, engineers and researchers have concentrated on improving propellant 

compositions to extend their shelf life and improve stability. Research has been done 

to examine the mechanisms of deterioration and develop strategies to halt or slow the 

process. These efforts have led to the development of more dependable and long-

lasting propellant formulae, ensuring the efficiency and security of modern propulsion 

systems. 

Propellers must be maintained and stored properly to preserve their performance and 

avoid early deterioration. Proper storage procedures, regular inspections, and 

adherence to safety procedures are required to maintain propellant integrity throughout 

its useful life. 

Propeller degradation-related safety problems can be a big problem. A rocket might 

malfunction, for instance, if a propellant deteriorates to the point where it delivers 

insufficient thrust. A propellant may potentially explode if it deteriorates to the point 

that it becomes unstable. These are the causes for propellants to require meticulous 

upkeep and routine inspection for signs of deterioration. Propellers should be stored in 

a cool, dry area away from air and moisture. Furthermore, it is vital to regularly check 

propellants for deterioration indicators such fractures and discolouration [5]. 

1.1.1 Single Base Propellants 

The present work proposes a new method that combines genetic algorithms (GA) and 

machine learning (ML) to forecast the aging of single-base propellants (SBP). The 

majority of propellants are SBPs, which find utility in everything from rocket 

propulsion to missile propulsion systems. SBPs primarily consist of plasticized 

nitrocellulose (NC), which is used as both a fuel and an oxidizer, with a tiny mass 

percentage of additives such stabilizers and plasticizers [6-11].  

SBPs have a number of benefits over other propellants because of their high energy 

densities. They are a popular option for many applications since they have strong 

storage stability and are relatively simple to handle. But its sensitivity to heat and 

shock, which can result in an early ignition or detonation, is one of their biggest 

drawbacks [12]. The instability and susceptibility to thermal stress of the CO-NO bond 

can be attributed to its low binding energy (155 kJ/mol) [13-15]. 
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1.2 Aging in Propellants 

Aging in SBPs is a natural process (Figure 1) that refers to the deterioration or changes 

that occur over time in the physical, chemical, or mechanical properties of a propellant, 

which can affect its performance or functionality. Several variables can affect the 

breakdown of a propellant, such as its initial composition, conditions during its 

production, and external conditions during storage. These factors may affect how 

quickly and how decomposition proceeds. Propellant decomposition products, such as 

NO and NO2, accelerate further propellant decomposition. This can eventually lead to 

declining physical and ballistic properties [16-19]. Aging directly affects the storage 

life (shelf life) and service life. [18].  

 

Figure 1: Schematic showing chemical aging of propellant. 

1.2.1 Diphenylamine 

To scavenge nitrogen oxides and slow nitrogen ester decomposition, stabilizers are 

added to propellants [20]. By preventing nitrocellulose (NC) from degrading on its 

own, diphenylamine (DPA) is frequently employed as a stabilizer in single-base 

propellants (SBPs) to increase their chemical stability [21]. Nitrated analogs of DPA 

are formed because of decomposition (N-NO-DPA, 2-NDPA, 4-NDPA) and they also 

act as stabilizers [10, 22, 23] (Figure 2). The stabilizer composition ranges between 

0.5% and 2% of the total mass% (Table 1). For propellants to remain stable, regular 
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monitoring of stabilizer content or surveillance testing is essential. A minimum of 

0.2% DPA is typically used as the lower limit [13, 24]. According to Allied Ordnance 

Publication – 48 (AOP-48), if the effective stabilizer percentage of a propellant is 

lower than 0.2%, it must be considered unserviceable. If the DPA content exceeds 3-

4%, it may also result in incompatibility [25]. 

 

Figure 2: Sequential degradation of DPA. 

Table 1: Composition of SBPs 

S. No Chemical Composition Mass% Function 

1.  Nitro Cellulose (N – Content) 90 – 95% Main Energy 

2.  Diphenyl Amine (DPA) 1 – 2 %   Stabilizer 

3.  Dibutyl Phthalate  2 – 5% Plasticizer 

4.  Graphite 0.2% Burn Rate 

Enhancer 

5.  Moisture 0.6 % Mechanical 

Strength  

 

Since certain nitrate-derivatives of DPA are used as stabilizers, it is essential to figure 

out the “remaining effective stabilizer” (RES) which is a combination of the original 

stabilizers and N-nitroso-diphenylamine content [24, 26]. Researchers have 
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established that the reduction of stabilizers is not only dependent on temperature but 

is also affected by many variables including temperature, relative humidity, moisture 

content, and initial composition [19, 27-31]. 

1.3 Surveillance Testing 

The Hansen-Metz test, the red fumes test and methyl violet test are just a few of the 

techniques that have been devised to assess the chemical stability of NC-based 

propellants. These monitoring and stability tests have been devised to ensure the 

reliability of the propellants [15, 18, 32-34]. Surveillance testing is an essential aspect 

of the quality control and safety of SBPs and is typically conducted during various 

stages of the propellant production, storage, and use. The surveillance of gun 

propellants involves either examining their thermal behavior or measuring their RES 

content [17, 35].  

In the present study, the deterioration mechanism was monitored through employment 

of high-performance liquid chromatography (HPLC) by scrutinizing the RES% [36]. 

It may be noted that serviceability and aging of propellants is directly dependent on 

RES %. HPLC tests carried out to analyze the serviceability of NC-based propellants 

are in accordance with the NATO Standardization Agreement (STANAG) 4620 and 

Allied Ordnance Publication (AOP) 48 [26, 37]. It may be noted that HPLC gives a 

momentary situation. HPLC data can be helpful in gauging the stability of propellants, 

but it cannot determine how long they will remain usable when stored [38, 39]. 

Surveillance testing has been used since ages however, in the era when the world is 

moving towards smart automation and Industry 4.0 [40], it offers certain disadvantages 

such as time and cost, human error during sampling, limited scope, false sense of 

security, and inability to comply with regulations [41].  
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Chapter 2:  

Literature Review 

2.1 Literature Review 

The amount of literature relating to propellants and the application of machine learning 

techniques within this domain is quite sparse, according to a preliminary search 

conducted on the Google Scholar platform. However, there has recently been a steady 

increase in publications in this sector, which can be linked to a growing interest in the 

investigation of novel and improved energetic materials that are suitable for a variety 

of use cases. 

Some of the most dynamic domains of inquiry in energetic materials and propellants 

encompass [42-44]: 

• new energetic material synthesis and characterization 

• modeling and simulation of the behavior  

• the burning and ignition of combustible materials 

• Safe handling of materials  

• uses for energetic materials in explosives, pyrotechnics, and propulsion 

Research in these areas enables the development of the most advanced energetic 

materials and propellants, and contribute towards the development of new and 

improved materials with improved performance, safety, and environmental impact [45, 

46]. 

Artificial intelligence (AI) has progressed in different areas over time. AI has been 

used in military operations, space exploration, medical care, and other tasks. AI is 

designed to imitate human behavior to reduce costs and save time [47]. Energetic 

materials has undergone major modifications as a result of the big data era's advent 

[48-50]. Since the invention of black powder the development of energetic materials 

has mostly relied on conventional trial-and-error approaches [50, 51]. Over the past 

few decades computational chemistry have matured enough to complement and aid 

experimental studies [52]. AI is much more than a rule-based program; it uses 
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sophisticated ML models that are backed by experimental data and scientific 

computation. This makes AI an effective, highly developed and reliable approach [53, 

54]. 

This study examined how ML can be used to predict the aging of SBPs, based on their 

RES. For this research, predictive ML models are used to gain insights from the data 

thus increasing the efficiency and monitoring of SBPs. These models provide a 

practical solution that can be used for optimization, automation, and surveillance.  

Various ML techniques were used to forecast SBP aging. As illustrated in Figure 3, a 

machine learning model was employed that incorporates several input variables, 

including initial composition, temperature, relative humidity, and moisture content. 

These variables include nitrocellulose (NC), moisture (M), hygroscopicity (H), dinitro 

toluene (DNT), graphite (G), methyl violet test at 134.5°C (MV), DPA, zone (Z), 

Temperature (T), humidity and propellant age.  

For research, different ML models were coupled with GA, an optimization method for 

designing a predictive ML model. By integrating ML with GA, prediction of the effects 

of aging on propellants was carried out more accurately. This can be beneficial for 

further research on double- and triple-base propellants. Multiple machine learning 

models, including support vector machine (SVM), ensemble tree (ET), gaussian 

process regression (GPR), and regression tree (RT), were used to train the data. The 

machine learning model's parameters were adjusted using a genetic algorithm (GA) to 

facilitate further optimization. The formulation of a Graphical User Interface (GUI) 

using MATLAB improved the precision of aging predictions. A comparison between 

the machine learning model's projected values and the investigational results was done 

to verify the effectiveness of the model.  



8 

 

 

Figure 3: Steps involved in aging prediction.  

The current surveillance testing procedures for SBPs are mostly dependent on the 

relationship between temperature and relative humidity using an empirical formula, 

rarely paying attention to the history of stabilizer depletion under different 

environmental and storage conditions [55-57]. For this research, DPA content histories 

of propellant samples at various moments in their life were obtained; the initial DPA 

contents were also known. Samples were collected from different temperature zones 

to perform a comparative analysis. 

2.2 Objectives 

The following are the primary aims of the current investigation: 

a. A feature selection approach for the ageing of single base propellants was 

conducted through employment of a genetic algorithm (GA). 

b. Partial dependence analysis of the input parameters on the propellants ageing. 

c. Prediction of ageing using optimized ML methods integrated with GA. 

d. Influence of various parameters on propellants ageing. 

e. Efforts are being made to create a graphical user interface (GUI) that will 

forecast the deterioration of propellants in real time. 

f. Validation of the proposed model with the experimental results using HPLC. 
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2.3 Research Justification and Relevance to National Needs 

There is a noticeable dearth of published research on the utilization of artificial 

intelligence methodologies for the purpose of predicting propellant aging, and as a 

result, designing an interface that can effectively forecast aging in real-time. It is 

crucial that we maximize artificial intelligence (AI) and ML to develop a wireless or 

non-invasive mechanism capable of accurately forecasting propellant aging in the 

context of changing environmental factors like temperature, humidity, chemical 

composition, and other pertinent variables. This research will prove to be economically 

viable and in accordance with the United Nations Sustainable Development Goal no 9 

and a step towards modernization. 

Potential energy policy and economical constraints are important motivators for ML 

based aging prediction of propellants, particularly in developing nations such as 

Pakistan. The aging of solid propellants can seriously affect their mechanical and 

chemical properties [58]. Therefore, it is crucial to make accurate predictions regarding 

the aging of propellants to ensure their safety and optimal performance. The 

implementation of machine learning techniques can significantly enhance the 

reliability of lifetime predictions for energetic materials. With the help of this novel 

methodology, composites' structural characteristics and combustion behaviors, which 

have a significant impact on their overall performance, may be accurately forecasted 

[59]. Knowing ahead of time the anticipated lifespan of different energy materials is 

beneficial from an economic point, as well as for performance and safety. Energy-

dense materials tend to age rapidly when kept at elevated temperatures, which could 

result in thermal instability, leading to failure or unintended ignition. Machine learning 

approaches can be used to anticipate the aging of propellants in order to get a deeper 

understanding of the physical elements of combustion processes and to pinpoint the 

variables that affect the pace of burning. This may ensure the safe and efficient use of 

propellants, which may be advantageous. 

2.4 Thesis Outline 

The thesis aims to explore the challenges and opportunities in integrating machine 

learning methods and optimization techniques with surveillance testing methods like 

HPLC analysis. Chapter 1 of thesis will focus on the background and existing 
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surveillance methods. Chater 2 will begin with a comprehensive literature review, 

analyzing previous research on aging of propellants. Chapter 3 will provide an 

overview and will delve into the analysis of the existing machine learning and 

optimization techniques identifying key bottlenecks and limitations for aging of SBPs. 

Novel solutions developed will be critically evaluated for their efficacy in facilitating 

the more accurate aging prediction in Chapter 4 and 5.  
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Chapter 3:  

Machine Learning Models and Optimization 

Algorithm 

3.1 Machine Learning Models 

Several ML methods, such as GPR, ET, SVM, and RT, were used to develop the best 

model for predicting SBP aging to meet our research goals. It was based on an estimate 

of how long the propellants had been subjected to different storing conditions based 

on the storage temperature, relative humidity, initial composition, and time since 

production. The optimum hyperparameters for the GPR and ensemble techniques were 

selected using Bayesian optimization. Training and evaluation were carried out using 

MATLAB software. 

3.1.1 Support Vector Machine 

For both classification and regression analysis, the Support Vector Machine (SVM) 

supervised learning model is used. It's a robust algorithm for machine learning that's 

adept at performing tasks such as outlier detection, as well as linear or nonlinear 

regression and classification [59]. The underlying concept of how SVM works is to 

determine the hyperplane that most effectively separates the data into different 

categories. By identifying the hyperplane that optimizes the distance between the two 

classes, this is achieved in a linear SVM. The margin is the separation between the 

nearest data points from each group, referred to as support vectors, and the hyperplane 

[60]. 
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Figure 4: A graphical representation of SVM Hyperplane 

SVMs have a number of advantages, including being very effective in high-

dimensional environments, being able to handle circumstances in which the number of 

dimensions exceeds the number of samples, and using very little memory because they 

only need a small number of training points (referred to as support vectors) while 

making decisions. SVMs may integrate a range of alternate kernel functions into their 

decision-making process, which further increases their adaptability [61].  

3.1.2 Ensemble Tree 

An Ensemble Tree (ET) is a machine learning technique that utilizes multiple decision 

trees to enhance the precision and reliability of forecasts [62]. Ensemble methods are 

exceptional supervised learning algorithms that deliver remarkably precise solutions 

by training numerous models [63]. 

The concept at the core of the ET functioning is to merge the forecasts of different base 

estimators made using a particular learning method to enhance generalizability and 

resilience compared to a lone estimator. In general, ensemble methods belong to one 

of two categories: Averaging methods aim to create multiple estimators independently 

and then average their individual forecasts. The combined estimator, owing to its 

reduced variance, typically outperforms any individual base estimator. Bagging 

techniques and forests of randomly selected trees are two examples. In contrast, base 
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estimators are constructed progressively in boosting approaches, and the bias of the 

composite estimator is attempted to be reduce [64]. 

 

Figure 5: Bagging Training Procedure - ET 

ET have many advantages, including their unmatched performance in high-

dimensional spaces, their amazing capacity to handle scenarios in which the number 

of dimensions exceeds the number of samples, and their exceptional memory 

efficiency, which comes from their use of a subset of training points from the decision 

function (called support vectors). The fact that several kernel functions can be given 

for the decision function makes ET very flexible [64]. 

3.1.3 Gaussian Process Regression 

The outstanding non-parametric Bayesian method known as Gaussian Process 

Regression (GPR) is widely employed in the field of machine learning. It is a 

straightforward approach for nonlinear function regression that requires little previous 

knowledge. In contrast to previous techniques, Gaussian Process modeling provides a 

mean forecast as well as a measure of the model's accuracy [65]. 

The fundamental principle underlying GPR is founded on the assumption that 

observations conform to a stochastic process that is normally distributed. 

Consequently, it can be inferred that subsequent observations do not modify the 
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probability distribution of earlier ones in any way. Through this basic attribute, GPR 

facilitates the prediction of values that are not yet known [66]. 

3.1.4 Regression Tree 

Regression trees (RT), a specific type of decision tree, are used to predict a continuous 

target variable. It can be used for applications in both classification and regression 

[67]. The fundamental idea that drives the functionality of a Regression Tree is to 

iteratively divide the data into increasingly smaller subsets, until they become 

sufficiently minuscule to be characterized by a straightforward model, typically a fixed 

value. The tree is formed by picking the most optimal split at each node, relying on a 

splitting criterion, such as reducing the total squared errors between the forecasted and 

factual values [68]. 

 

Figure 6: Regression Tree Analysis in Machine learning. 

Some advantages of utilizing RT consist of their simplicity and ease of interpretation. 

They may be viewed and compared to actual trees since they have a root node at the 

top, branches, and terminal nodes (or leaves) at the bottom of the plot. Additionally, 

they require minimal data preparation and can handle both numerical and categorical 

data. Furthermore, they are capable of handling multi-output problems [67]. 
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3.2 Optimization 

3.2.1 Genetic Algorithm (GA) 

The best feature selection and hyperparameter adjustment were carefully 

selected utilizing GA. To achieve the best results, we compared various optimization 

techniques. The GA is a method for search and optimization that mimics the process 

of natural selection seen in biological evolution. The GA operates in three steps: 

crossover, mutation, and selection. [69]. By testing and developing a set of candidate 

solutions iteratively, GA can be used to optimize an ML model. This approach, also 

known as a metaheuristic, is frequently used to come up with effective solutions for 

issues relating to search and optimization [70]. 

The general steps of GA for model optimization are as follows: 

• Create a population of potential solutions, often at random. 

• Determine the performance metric or goal function that best describes each 

solution in the population. The GA parameters at all these stages are with 100 

generation. Scattered crossover technique is used with 80% probability and 

elite count of 4. Population type is bitstring with 50 size and uniform mutation 

is used with 10% probability.  

• Create a new population by selecting the best candidates, generally using 

methods like crossover and mutation that were inspired by biological 

processes. 

• Determine the population's level of fitness. 

• Keep going through steps 3–4 until a good answer is discovered or a 

predetermined stopping criterion is satisfied. 

Using GA, one may swiftly navigate through a sizable search field and find the best 

solutions to difficult optimization problems. The goal of the GA is to iteratively 

evaluate and improve potential solutions to identify the optimal one for a particular 

issue. The key advantages of the GA are its speedy discovery of nearly optimal 

solutions, robustness against noisy or imperfect data and capacity for handling 

enormous datasets [71]. 
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In a GA, the fitness function is a crucial component that defines the optimization 

problem being solved. It determines how well each population's chromosomes 

represent a solution and guides the decision of which parents will have the next 

generation of children. The likelihood that a chromosome will pair with genetic 

material  to produce offspring is determined by its fitness value [72]. 
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Chapter 4:  

Methodology 

4.1 Methodology 

The approach to research and framework used to answer the study questions and 

objectives are provided in full in the methodology portion of this thesis. This chapter 

outlines the systematic procedures and tools utilized for data collection, data analysis, 

and the interpretation of findings. The chosen methodology is grounded in established 

research principles and aligns with the nature of the study, ensuring the reliability, 

validity, and generalizability of the results. Additionally, potential limitations related 

to the research are discussed. By meticulously detailing the methodology, this chapter 

aims to provide a transparent and replicable foundation for the investigation, allowing 

readers to understand the methods utilized and the rationale behind their selection. 

For this part of thesis data comprising initial composition of propellants their storage 

conditions, age and data available on surveillance test for serviceability of propellants 

was collected and preprocessed using different techniques available. Multiple ML 

learning models were integrated with GA to optimize prediction. 

MATLAB R2021 was used for the above processes. Work methodology is shown in 

figure 7. 
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Figure 7: Research Methodology 

4.2 Data Collection 

A detailed survey of the published literature has been carried out for this research, 

focusing on the degradation of stabilizer content in SBPs. HPLC results for the RES 

were also obtained from different organizations, keeping records of propellant aging 

in Pakistan as part of the surveillance testing of SBPs. The major criteria for the 

collection of data revolve around the storage temperature of the propellant, relative 

humidity, and initial composition along with environmental conditions.  

Data was collected in following steps: - 

• By gathering surveillance testing data from various organizations, a total of 

372 data points were obtained. 

• Information was supplemented by data in the literature.  

• Initial composition, storage temperature, relative humidity, year of 

manufacture and age of propellants (years since manufactured) were used as 

input parameter.  

• MATLAB was used for preprocessing data. 

• Cleaning and filtering of data was performed by removing or imputing missing 

values, removing outliers, and smoothing the data where necessary. 
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• Various filling methods like mean/median/mode imputation, 

forward/backward fill, linear interpolation, and k-nearest neighbor imputation 

were used. 

• RES was the output parameter.  

MATLAB provides several built-in functions to perform these preprocessing steps, 

including load, fill missing, isoutlier, smoothdata, selectFeatures, zscore, normalize, 

trainTestSplit, and encode Labels. The development of a GUI using the MATLAB 

toolbox facilitated the assessment of RES content for predicting the aging of SBP. This 

GUI simplifies entering the required information and allows for the visualization of 

the predicted RES values, making it user friendly for individuals. 
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Chapter 5:  

Results And Discussion 

The research's findings are reported and critically examined in the results and 

discussion chapter of this thesis in relation to the study's goals and the body of prior 

literature. This chapter goes into great detail about the methodology, experiments, and 

data analysis outcomes that were employed in the study. The results are carefully 

structured and supplemented with the pertinent tables, graphs, and visual aids to make 

them simpler to understand. The identification of significant patterns, trends, or 

relationships in the data that support the study's findings is also covered in this chapter. 

This chapter attempts to provide a critical examination of the research findings and 

their consequences, offering insightful commentary and opening the door for 

additional fieldwork. 

5.1 Box Plot Representation of Input Values and Output RES 

Quartiles, Q1, Q2, Q3, represent the minimum, medium and maximum values, which 

are used as the five-number summary in a box plot, also known as a box-and-whisker 

plot, to offer a visual representation of a dataset. This kind of plot efficiently depicts 

the distribution of data values and offers information on a dataset's symmetry, 

skewness, variance, and outliers. In a box plot, the first quartile through the third 

quartile is represented by the boxes, and the median is shown as a line inside the boxes. 

In addition, whiskers are discernible between each quartile and the minimum and 

maximum data values [73].  

When examining the distribution of numerical data values between various groups, 

box plots are a valuable tool for presentation. They offer valuable insight into the 

symmetry, skew, variance, and outliers of a dataset, providing high-level information 

at a quick glance [74].  
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Figure 8: Box plot showing data distribution of input variables for RES prediction. 

The figure 8 shows box plot presentation for different input variables including C, NC, 

G, MV, DPA, zone, temperature, humidity and prop age, whereas figure 5 (b) is a blow 

up of variable ‘G’.    

5.2 Preprocessing and Feature Selection 

A relevant subset of features or variables to be used in a predictive model are found 

via the feature-selection technique. This is a key step since it helps the model become 

more efficient, reduces over-fitting, and ultimately improves its capacity to generalize. 

The best features are selected using a variety of ways, including filtering, wrapping, 

and embedded methods. The two most popular methods for ML applications, wrapper-

based and filter methods, are best suited for addressing feature selection [75, 76]. 

Wrapper approaches employ an ML model to assess the efficacy of feature subsets. 

Forward selection, backward elimination, and recursive feature elimination are a few 

examples of typical wrapper approaches. By optimizing a distinct objective function 

that gauges the effectiveness of the model, a subset of characteristics is chosen [77]. 

It is best to use input parameters that have been shown to affect the model's outcomes 

in order to ensure maximum model efficiency. Some input features had low R2 scores 

and high RMSE values, but they were left in since it was thought that even if they 
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might seem unimportant, they still provide some context for the ML model. [78-80]. 

The primary purpose of feature selection is to identify a set of input variables that can 

faithfully represent the input data, limit the impact of noise or irrelevant elements, and 

generate accurate prediction results [75, 81]. 

When using a filter method, the relationship between the features and the desired 

outcome is investigated, each feature's importance is assessed, and only the most 

important features are kept. This makes it easier to exclude features from subsequent 

analysis that are redundant or irrelevant. The Chi-Square, mutual information, and 

correlation coefficient are a few illustrations of common filtering techniques. These 

are helpful for highlighting key aspects to be focused upon [81]. Hybrids of the filter 

and wrapper methods were used to select features. 

Each data set contains both the output (RES%) and the input parameters. The initial 

composition, ambient and storage conditions, and propellant age were among the 

seventeen input characteristics chosen for this study, with RES% serving as the output 

parameter. 

Table 2: GA based features selected. 

Model Type Feature Selected for GA 

SVM C, Manufacturing Year, NC, DNT, M, H MV, DPA, 

Zone, T, Humidity 

GPR C, NC, DNT, M, H, DPA, T, Humidity, Propellant 

Age  

Ensembled Tree C, NC, DNT, G, M, H, MV, DPA, Zone, T, Humidity, 

Propellant Age      

Regression Tree C, Manufacturing Year, NC, G, M, H, DPA, Zone, 

T, Humidity, Propellant Age 

5.3 Performance Evaluation Criteria 

R2 (R-Squared) and RMSE (Root mean squared error), are two critical metrics used 

to evaluate predictive models. These variables are used to assess a model's predictive 

power [82]. Regression analysis relies heavily on the R-squared statistic, which 

enables us to determine the volatility in the dependent variable can be attributed to the 
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independent variables. With a scale that ranges from 0 to 1, higher numbers indicate a 

more optimal fit between the model and the data. As such, R2 proves valuable for 

comparing the performance of multiple models on the same dataset [83, 84].  

RMSE is a metric that quantifies the discrepancy between the anticipated and factual 

data of a model. The RMSE is helpful for comparing the effectiveness of various 

models and determining the extent of their errors [85]. It is well acknowledged that 

models with greater R2 and lower RMSE values function more accurately and 

predictably. There is no single "correct" value for either metric [86]. This work 

increases our understanding of the various factors that influence aging and how those 

factors interact. This study is noteworthy because it combines four ML techniques with 

a GA strategy for feature selection and ML model hyperparameter tuning. To ascertain 

the impact of input parameters on the output variable, we conducted analyses of feature 

importance and partial dependence. Furthermore, a correlation plot was utilized to 

scrutinize the interrelationships among different variables [87]. ML will provide a 

comprehensive and unique understanding towards insights into the serviceability of 

propellants. 

The effectiveness of the regression models was evaluated using coefficient of 

determination (R2) and RMSE. Training (80%) and testing (20%) subsets of the data 

were created, and the default hyperparameters in the MATLAB toolbox were used for 

the preprocessing of GPR, ET, RT, and SVM [88]. The 5-fold cross-validation method 

was employed in order to prevent overfitting and data loss. The GA was used to 

optimize the hyperparameter values after obtaining them from the regression model 

toolbox. Optimized hyperparameters were used to build and evaluate the regression 

models. The R2 and RMSE were calculated using the following formulas, which are 

often used in statistical analysis to assess the quality of fit of a regression model. 

𝑅𝑀𝑆𝐸 =  √∑ (𝑥𝑖 − 𝑥̂𝑖)
2 𝑁⁄𝑁

𝑖=1  , 

𝑅2 = 1 − ∑ (𝑦̂𝑖 − 𝑦𝑖)
2 ∑ (𝑦𝑖 − 𝑦𝑖̅)

2𝑛
𝑖=1⁄𝑛

𝑖=1   
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5.4 Optimization of ML methods 

For this investigation, a regression learner program for MATLAB's machine learning 

models was used. Following the selection of each model's tuning parameters from the 

toolbox, the 5-fold cross validation and real standardized data were kept. Data must be 

altered to have a mean of 0 and a variance of 1 to be standardized. This is a standard 

approach in machine learning to guarantee that all features are scored on the same scale 

and given the same weight in the model.  

A technique for assessing a model's performance is the 5-fold cross-validation.  

Utilizing 5-fold cross-validation was the better choice because it will lessen the 

variance of the performance estimate given our smaller dataset. Bias and variance are 

two sources of error in machine learning models. A model with small variance and 

little bias should be sought for. This is known as the bias-variance trade-off [89].  The 

dataset was trained using four different models: GPR, SVM, ET, and RT and was 

optimized using GA. The values of the hyperparameters obtained by GA are shown in 

Table 3. SVM optimized variables were: standardize data: true, box constraint: 4.8614, 

kernel scale: 2.1399, epsilon: 0.056476, and kernel function: gaussian. Similarly 

for ET, parameter values for GA were ensemble method: bag, number of learners: 135 

and minimum leaf size: 1. 
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Table 3: Parameters Selected: Ranges and Optimized Values 

ML 

Method 

Parameters Ranges Optimized 

Values 

SVM Box constraint 

Kernel scale 

Epsilon  

Kernel function  

Standardize 

 

0.001-1000 

0.001-1000 

0.00016308-16.3084 

Gaussian, Linear, 

Quadratic, Cubic 

True, False 

4.8614 

2.1399 

0.056476 

Gaussian 

True 

GPR Sigma 

Kernel function 

 

 

 

Basis function 

Kernel scale:  

0.0001-1.9371 

Nonisotropic Exponential, 

Nonisotropic Matern 5/2, 

Nonisotropic 

RationalIsotropic 

Exponential, Isotropic 

Matern 3/2, Isotropic 

Matern 5/2, Isotropic 

Rational Quadratic 

Constant, Zero, Linear 

0.147-147 

 

 

0.00031766 

Nonisotropic 

Matern 5/2 

 

 

                              

Zero 

0.22918   

Ensembled 

Tree 

Ensemble method 

Number of learners 

Minimum leaf size 

Number of 

predictors to 

sample 

Bag, LSBoost 

10-500 

 

1-149 

1-17 

Bag 

135 

1 

15 

Regression 

Tree 

Minimum leaf size  1-149 6 
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5.5 Prediction Performance 

 

Figure 9: Comparison of different ML models for RES % (a) SVM (b) GPR (c) ET 

and (d) RT. 

 

SVM, GPR, ET, and RT as ML models are employed for RES % prediction. Before 

features were chosen, ET's R2 and RMSE values were 0.78 and 0.8454. The value of 

R2 for the ET model was attained at 0.89 after employing the GA-based feature and 

optimized hyperparameters, and the RMSE was calculated to be 0.0904. The 

performance of ET-GA based model was found to be more acceptable as compared to 

SVM, RT and GPR for prediction of RES (figure 9). 

Table 4: R2 and RMSE comparison for building and testing models. 

Model Initial 

R2 

Initial 

RMSE 

Training 

R2 

Training 

RMSE 

Testing 

R2 

Testing 

RMSE 

SVM 0.23 0.8454 0.28 0.2527 0.18 0.1198 

GPR 0.71 0.9385 0.79 0.9148 0.81 0.3797 

ET 0.78 0.8454 0.89 0.0904 0.85 0.0198 

RT 0.74 0.9319 0.81 0.0718 0.80 0.2102 

Table 4 shows the R2 and RMSE values for SVM, GPR, ET, and RT during training 

and testing. Both R2 and RMSE were used as evaluation criteria for the best model and 
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their values were compared. Results obtained by running the GA based feature section 

on SVM model were not found to be satisfactory. From table 4 it was found that ET 

model best fit the performance evaluation criteria followed by RT and GPR.  

5.6 Features Importance. 

Table 2 depicts the features selected for prediction of RES % once each model was 

coupled with GA.  To assess the importance of each selected feature, we used shapley 

method. Shapley values for machine learning models can be calculated using the 

"shapley" function in MATLAB's Statistics and Machine Learning Toolbox. This 

function creates a "shapley" object for a machine learning model using the query point 

by computing the shapley values for all features for the provided query point. These 

numbers describe how specific features affect a prediction at the given query point. 

Our GA based model predicts the relation between RES % value, on which aging and 

serviceability of SBP is dependent, and factors like initial composition, temperature, 

humidity, age of propellant, manufacturing year and temperature zones in which 

propellants were stored. The comparison of input parameters was assessed using the 

ET-GA model. Figure 10 shows that propellant age, temperature, humidity, Zone and 

DPA had a significant effect on the RES value, compared to initial composition, which 

have a minimal effect. This effect is likely due the reason that mass % of different of 

materials used in manufacturing SBPs is kept constant. It was also recorded that caliber 

propellant lot used as sample has a minimum effect mainly due to the fact all sample 

were from the same caliber having similar composition and propellant shape. 

 

Figure 10: Feature importance in predicting RES (%) 
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5.7 Partial Dependence Analysis (PDA) 

In order to evaluate the influence of input features on predicted outcome of a machine 

learning model, MATLAB leverages partial dependence plots (PDPs). These plots also 

have the ability to detect non-linear associations between input features and predicted 

outcomes, as well as interactions among input features [90, 91].  

Using ET with GA, PDPs were created for the selected features.  These plots are shown 

in figure 11. The correlation between RES and temperature and humidity is depicted 

in figure 11(b). A drop in RES % is evident with rising temperature. Figure 11(a) 

illustrates the impact of initial DPA% and temperature. For our collected data, the 

storage temperature is in the range of 10 to 35 oC. It is observed that increasing 

temperature decreases RES (%) value.  

 

Figure 11: Partial dependence plot of ELT-GA model. 
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5.8 Pearson Correlation Plot 

 

Figure 12: Correlation matrix plot showing Pearson's correlation coefficient between 

variables. 

Pearson correlation heatmap is a graphical representation of the Pearson correlation 

coefficients as given in figure 12 between multiple variables. By utilizing this 

approach, it is possible to visually represent the intensity and orientation of the linear 

associations between two groups of variables. The correlation values are represented 

by colors on the heatmap, with one hue designating positive correlations and another 

negative correlation. The color's saturation reveals how strong the correlation is. The 

selection of features and an understanding of the data's structure can both be aided by 

the usage of Pearson correlation heatmaps, which are effective for seeing patterns and 

interactions between several variables [92]. A strong correlation suggests that as one 

measure rises, the other should rise as well. From figure 12, relation of temperature 

and humidity with PCC value of 0.51 effect the DPA percentage. When two variables 

have a negative correlation, one variable rises while the other one declines, for example 

the PCC value of DPA and NC percentage.  

5.9 Validation of Prediction using HPLC Analysis 

Due to its exceptional ability to provide higher resolution and increased sensitivity as 

compared to alternative approaches, the use of HPLC has gained substantial 
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importance as a chromatography technique [93]. The validation of the meticulously 

developed predictive framework was a crucial step in the process of creating a 

comprehensive ET-GA based prediction model. HPLC analysis became an essential 

tool for completing this validation. In order to assess the viability and functionality of 

SBPs based on predetermined benchmarks outlined in STANAG 4620 and AOP-48 

[26, 37] RES% was taken for the samples whose data has been used for model. The 

experimental RES% values obtained through HPLC analysis and the anticipated values 

produced by the constructed model were compared for this validation. 

During the model validation process, three separate sample datasets were used as 

inputs to the prediction model. The model's resulting projected outcomes were 

compared to the corresponding values obtained through careful HPLC examination. 

The results of this careful comparison showed a mere 5% error margin (table 5), 

demonstrating the predictive model's remarkable accuracy and precision in estimating 

RES%. The implications of these findings go beyond simple statistical validation; they 

highlight the predictive model's effectiveness in not only accurately quantifying RES% 

but also in making wise judgments about the operational integrity of propellants in 

accordance with the specified standards. 

In conclusion, the focus of the current study was the development and validation of an 

ET-GA based predictive model, a task that required the use of HPLC analysis to 

determine the RES%.  

Table 5: Comparison of Actual and Predicted Values 

Sample Predicted RES % Actual RES % using 

HPLC 

% error 

1 0.403 0.415 2% 

2 0.613 0.648 5% 

3 0.402 0.385 5% 

5.10 Graphical User Interface 

A straightforward app or Graphical User Interfaces (GUI) was created using 

MATLAB. By removing the need for users to learn a language or submit commands 

to utilize the application, these apps provide point-and-click management. With the 
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help of a GUI, users may build interactive graphical programs that include buttons, 

sliders, menus, and other graphical elements. These GUIs offer a simple and clear user 

interface for manipulating, analyzing, and visualizing data. Users can build unique 

interfaces for their programs using MATLAB's GUI creation tools without having to 

have extensive programming knowledge. Using drag-and-drop features, they can 

quickly design and arrange components, establish characteristics and behaviors, and 

create code to give the components more functionality. In the end, MATLAB's GUI 

offers a simple method to build interactive visualizations of complex data, making it 

particularly helpful for researchers and engineers that work with enormous datasets. 

There are three different approaches to develop a GUI in MATLAB; the interactive 

app designer was chosen for this paper to lay out the visual elements and program the 

app's behavior. It enables to switch between writing code in the MATLAB editor and 

visual design on the canvas quickly.  

The model prediction function employed by the GUI, the screen shot is given in figure 

13, in this study will help us predict the RES%. The GUI produced as part of 

this research will assist researchers to simply enter in initial composition, storage 

temperature, humidity, and age of propellant. Using the criteria outlined in STANAG 

4620 and AOP-48, the app will carry out sentencing of propellant [26, 37].  
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Figure 13: Screen Shot of GUI Developed for Prediction of Serviceability of 

Propellants. 
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Conclusion 

In conclusion, this study demonstrated the effectiveness of using ML models in 

combination with GA for predicting the aging of SBPs. By analyzing various variables 

such as initial composition, temperature, relative humidity, and moisture content, the 

study provided insights into the aging process and its impact on propellant 

functionality. The use of predictive ML models and GA optimization also allowed for 

the automation and optimization of surveillance techniques. Overall, this research 

provides a practical solution to enhance the efficiency and reliability of SBP 

surveillance and testing methods. Future research could also benefit from this study by 

expanding the analysis to double- and triple-base propellants. Possible ways to reduce 

the percentage error between predicted RES and measured RES by HPLC analysis 

include improving the accuracy of the HPLC instrument calibration, ensuring precise 

and consistent data collection and input, and reducing human error during HPLC 

analysis. Additionally, incorporating additional data points and increasing the sample 

size may improve predictive models, ultimately leading to more accurate predictions 

of aging and serviceability of SBPs. 
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Future Recommendations 

• To improve the precision of aging prediction models, particle swarm 

optimization (PSO) and GA can be used together. 

• The predictive machine learning model developed has the potential to be used 

in aging prediction for double and triple base propellants. Despite having 

different chemical composition, they also undergo aging that can affect their 

stability and performance. 

• Extensive testing over long periods of time is frequently needed for traditional 

techniques of evaluating propellant aging. By employing the model at 

industrial scale this predictive model might considerably minimize the time and 

cost involved with such testing. 
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