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Abstract

In this thesis, numerical solutions of compressible fluid are developed for com-

pressible flow problems. In the first part, the variable fluid properties have been

studied for the Sakiadis flow. This work is extended for the case of stretching

sheet. The arising non-linear partial differential equations (PDEs) are reduced into

the system of non-linear ordinary differential equations (ODEs) by using similarity

transformations. Constant fluid properties and temperature-dependent viscosity are

considered for the solution which is obtained by using the built-in solver bvp4c of

MATLAB and are compared with the shooting method using a fifth order Runge-

Kutta Method.

The momentum boundary layer is seen to grow in the direction of motion of the

surface. This characteristic is not observed when a semi-infinite flat plate moves

through a quiescent fluid and the boundary layer grows in the direction opposite to

that in which the plate is moving. Heat is transferred by the mechanism of conduc-

tion, convection or radiation. In the present work, convection (free) is the source

of heat transfer due to temperature difference between surface and an ambient fluid

and conservation equations are used to find its solution.

In the second part of the thesis, the compressible Euler equation has been solved.

For time integration, we use explicit Euler method and for space discretization, the

first order Lax-Friedrich and local Lax-Friedrich schemes are used. For the inviscid

compressible flow, we test the case of Shock tube problem. Results for different

variables are presented.
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Chapter 1

Introduction

1.1 Literature Review

The study of laminar compressible flow over moving flat surface as well as over a

stretching sheet is taken into account in the present work. The motion of the surface

induces a motion in the adjacent fluid. Sakiadis was probably the first person who

solved the problem of forced convection over an isothermal moving plate. He derived

the basic differential and integral momentum equations for boundary layer on both

continuous and solid surfaces [1,2]. As Sakiadis considered an ambient fluid over

a moving continuous surface, his boundary layer was different from that of Blasius

who considered a flow over a fixed flat plate [3]. Since that time researchers have

considered the problem for various situations ranging from flat surface to cylinder.

Solutions that included mass transfer, varying plate velocity, varying plate temper-

ature, fluid injection and fluid suction at the plate have been obtained.

Most of the studies for the ambient fluid is carried out by considering constant

physical properties of fluid which provides parabolic velocity profile for laminar flow

and may introduce severe error as described by Ioan Pop et al. [4]. However, in

reality all physical properties involved in the condition are dependent on temperature

[5]. Andersson and Aarseth [6] revised the Sakiadis flow by considering variable

viscosity of the fluid on a moving flat surface. In Chapters 2 and 3 of this work,
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the effects of temperature-dependent viscosity are considered to accurately predict

the flow as viscosity changes significantly with temperature [6]. Takhar et al. [7]

assumed that dynamic viscosity, density, and thermal conductivity exhibited power

law variation with absolute temperature. Temperature-dependent viscosity has not

received much attention despite its importance. In current work, Chapters 2 and

3 deals with the constant and temperature-dependent viscosity over steadily flat

and stretching surface, respectively. Unlike previous works, chapter 4 presents the

solution of the compressible Euler equation.

1.2 Basic Definitions and Concepts

1.2.1 Viscosity

A measure of fluid resistance to flow is called dynamic viscosity µ. In simple words,

viscosity refers to thickness. For example, water is thin, have a low viscosity and

can flow easily while honey is thick and have a high viscosity so its movement is

slow. The ratio of dynamic viscosity to density is called kinematic viscosity. It is

also called momentum diffusivity.

It is denoted by ν and expressed as

ν =
µ

ρ
.

Viscosity varies with temperature. Honey and syrups flow more readily when heated.

In general, the viscosity of a simple liquid decreases with increasing temperature and

increases with decreasing temperature. Engine oil and hydraulic fluids thicken on

cold days and significantly affect the performance of machineries in winters. As tem-

perature increases, the average speed of the molecules in a liquid increases. Thus,

the average intermolecular forces decrease and the gases get thicker with the rise of

temperature. The viscosity of gases increases as temperature increases. This is due

to the increase in the frequency of intermolecular collisions at higher temperatures.

Ostwald viscometer is a common device to measure the viscosity of liquids.
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1.2.2 Newtonian Fluid

Fluids for which the rate of deformation is proportional to the shear stress are called

Newtonian fluids [8]. Mathematically, it can be described as

τ = µ
du

dy
,

the proportionality constant µ is the coefficient of dynamic viscosity and du/dy is

the velocity gradient also known as the rate of deformation.

1.2.3 Thermal Conductivity

A physical property of fluid that mediates diffusion of heat through a substance is

called thermal conductivity. It is denoted by k.

1.2.4 Boundary Layer Flows

When fluid flows over a solid surface, the layer of the fluid particles in immediate

contact to the surface attaches to it, this is called the no-slip condition. This results

in generation of boundary layer in the vicinity of surface. That thin layer is called

momentum boundary layer in which strong viscous effects exist due to large velocity

gradients. The thickness of this region between the surface and the free-stream

velocity increases in the direction of flow. The flow past a surface is divided into

two regions: a region far from the surface of the body in which the effects of such

fluid properties as viscosity and thermal conductivity are negligible and a region

close to the surface where these properties are not negligible. The flow outside the

boundary layer is inviscid and Euler equation is applied there.

The pressure distribution throughout the boundary layer in the direction normal

to the surface remains constant. Also note that strong gradients of velocity and

temperature occur in the boundary layer [4].

Unlike momentum boundary layer, thermal boundary layer is defined as a region due

to the transfer of heat between the surface and fluid and characterized by heat fluxes
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Figure 1.1: Momentum boundary layer [9].

and temperature gradients. Its thickness also increases in the direction of flow. The

velocity and thermal boundary layers will not be identical except when Pr = 1.

Additional influencing factors change the thickness of the thermal boundary layer

as compared to the thickness of the velocity boundary layer at any point [10].

Figure 1.2: Thermal boundary layer [9].
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1.2.5 Compressible Flow

It is defined as a flow in which density varies. It is in contrast to incompressible

flow where the density is assumed to be constant. Liquids have a low level of com-

pressibility (for water 5 × 10−10 m2/N at 1 atm) while gases have a high level of

compressibility (for air 10−5 m2/N) [11]. Compressible flows are also classified ac-

cording to the value of dimensionless Mach number, Ma, which is defined as

Ma =
u

c

where u is a velocity of the fluid and c is the speed of the sound.

1.2.6 Steady Flow

Fluid flows also show the property of steady or unsteady flow. In steady flow, the

fluid properties, such as temperature, pressure, density etc, in the control volume

don’t change with time [12]. Mathematically

∂u

∂t
=
∂p

∂t
=
∂ρ

∂t
=
∂T

∂t
= 0.

For instance, flow around an aeroplane that is moving with a constant velocity is

steady.

1.2.7 Laminar Flow

Two types of motions are observed in fluid dynamics. The smooth motion of real

fluid in parallel layers (laminae) with no macroscopic mixing is called a laminar flow.

The momentum or heat transfer happens at the molecular level and velocity at any

point remains steady (i.e. a smooth function of time). The laminar flow occurs

when:

1. the liquid viscosity is relatively high.

2. Liquid velocity is below the certain level [13].
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3. Reynolds number is low.

1.2.8 Turbulent Flow

The three-dimensional and random or chaotic motion of individual particles due to

a high flow rate is called a turbulent flow. The velocity at any point varies with

respect to a mean value [11]. Unlike laminar flow, the turbulent flow is easy to find

in nature.

Figure 1.3: Laminar and turbulent flows [9].

1.2.9 Prandtl Number

The relative thickness of velocity and thermal boundary layers are defined by the

parameter Prandtl number, which is a dimensionless quantity. Mathematically,

Pr =
ν

α
=
µcp
k
,

where µ, cp, and k are dynamic viscosity, specific heat at constant pressure and

thermal conductivity, respectively.

Prandtl number of gases are about 1, which indicates that both momentum and heat

dispel (or dissipate) through fluid at approximately the same rate. When Pr ≪ 1,

thermal diffusivity dominates and when Pr ≫ 1, momentum diffusivity dominates.

Prandtl number controls the relative thickness of momentum and thermal boundary
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layers in case of heat transfer.

Few values of Prandtl number for different fluids are given as

Pr= 0.16− 0.17 for mixture of Noble gases.

Pr= 0.71 for air at room temperature.

Pr= 10 for water at temperature 20 ◦C .

Pr= 13.4 for sea-water at 0 ◦C.

Pr= 50− 2000 for oils.

1.3 Governing Equations of Fluid Dynamics

The governing equations form basic principle in fluid dynamics. These are conser-

vation equations of mass, momentum, and energy. They can be expressed in general

terms as follows:

1. The mass of fluid is conserved.

2. According to Newton’s second law, the rate of change of momentum equals

the sum of the forces on fluid particles [14].

3. The rate of change of energy is equal to the sum of the rate of the heat

addition to and the rate of work done on a fluid particle [14]. This is known as the

first law of thermodynamics.

1.3.1 Continuity Equation

The continuity equation states that the mass of the fluid is conserved. Let us take

a fixed surface S in the fluid and V is its control volume. The rate of flow of mass

into V is

−
∫

s

(ρv).dS.

The negative sign shows that mass flux ρv is entering in V . The rate of increase

of mass flow is

9



d

dt

∫

V

ρ dV.

The integral and derivative can be interchanged because of constant volume V .

∫

V

∂ρ

∂t
dV.

As mass is conserved, the conservation equation can be written as

∫

V

∂ρ

∂t
dV = −

∫

S

(ρv).dS. (1.3.1)

By using the divergence theorem, above equation becomes

∫

V

(
∂ρ

∂t
+∇.(ρv)) dV = 0.

We assume that integrand is continuous, therefore, the above equation can be

written as

∂ρ

∂t
+∇.(ρv) = 0. (1.3.2)

The equation is valid for compressible flow.

For steady flow

∂ρ

∂t
= 0.

This equation is still valid for compressible flow and equation (1.2.2) can be written

as

∇.(ρv) = 0. (1.3.3)

This is called a continuity equation or conservation equation of mass.
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1.3.2 Conservation of Momentum

We apply Newton’s second law for developing principle of conservation of momen-

tum. This law is applied to the moving fluid element which states that the rate of

change of momentum of fluid mass is equal to the net external forces acting on the

mass [15]. The moving fluid element experiences a force. There are two sources of

that force.

1. Body forces: These forces act at a distance on the mass of the fluid element.

For example, gravitational, electric and magnetic forces.

2. Surface forces: It acts directly on the surface of the fluid element. These forces

are due to

(a) the pressure distribution acting on the surface, imposed by the outside fluid

surrounding the fluid element,

(b) the shear and normal stress distributions acting on the surface due to vis-

cosity [16].

The rate of increase of momentum in volume V is equal to the sum of the

1. rate of change of momentum through S

2. total body force per unit mass acting on fluid element within V

3. total surface force per unit area acting on S [17].

The mass per unit volume is ρ and ith component of momentum is ρvi. The rate

of momentum through S is

−
∫

s

n.ρvi v dS,

The negative sign shows an inward flow. n is a normal to the surface.

Also the rate of change of momentum of the mass contained in volume V is

d

dt

∫

V

ρvi dV.
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Let the resultant body force per unit mass acting on fluid element is denoted by f.

The net external body force acting on a mass of volume V is given by

∫

V

ρfi dV.

Similarly, let the resultant surface force per unit area is denoted by P, then the net

external surface force acting on the surface S containing volume V is

∫

s

P dS.

Thus the equation of motion for the fluid is

d

dt

∫

V

ρvi dV = −
∫

s

n.ρvi v dS +

∫

V

ρfi dV +

∫

s

P dS.

There are nine components of stress at any given point; three normal components

and six shear components on each coordinate plane. The surface force P is related

to stress tensor σij because three stress components acting on the surface S are σii,

σij and σik in x, y and z directions. The unit normal vector acting on this surface

is n̂i, then surface force will be given by

Pj = σijn̂i.

The above mathematical equation can be written as

d

dt

∫

V

ρvi dV = −
∫

s

n.ρvi v dS +

∫

V

ρfi dV +

∫

s

σijn̂i dS.

The surface integral on the right hand side may be converted to volume integral by

using Gauss’s divergence theorem. This leads to

∫

V

(
∂

∂t
ρvi) dV =

∫

V

(−∇.ρvi v+ ρfi +
∂

∂xj
σij) dV.

Here we assume that V is arbitrary and integrand is smooth. Therefore, we have

∂

∂t
(ρvi) = −∇.ρvi v+ ρfi +

∂

∂xj
σij .

12



By using the identity

∇.(vw) = v.(∇w) + w.(∇v)

and continuity equation, the above equation expressing conservation of momentum

becomes

ρ
∂vi
∂t

= −ρvi.∇v + ρfi +
∂

∂xj
σij . (1.3.4)

1.3.3 Conservation of Energy

The first law of thermodynamics deals with the conservation of energy. It states

that the rate of energy equals the sum of rate of heat addition to and work done

on fluid particles. Heat is transferred from a system at the higher temperature to

one at the lower temperature as a result of temperature difference between the two

systems.

Consider an arbitrary mass of fluid enclosed in volume V . The total energy of the

mass per unit volume is

ρe +
1

2
ρu2

The rate of total energy contained in volume V is

E =

∫

V

(ρe +
1

2
ρu2) dV,

here e is the internal energy per unit mass and 1
2
u2 is the kinetic energy per unit

mass.

The work done by the two external forces (surface and body forces) on fluid is the

product of velocity and force vectors. The magnitude of surface force (stress) per

unit area is represented by vector P. Then total work due to these forces will be

∫

s

u.P dS

where S is the surface (boundary) enclosing volume V .

Similarly, the magnitude of body force per unit mass is vector f. Then the total
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work done the fluid particle due to body force is

∫

V

u.ρf dV.

Let heat flux adding to the control volume is vector q. The quantity of heat flux

per unit time per unit surface area is q.n.

Thus the net amount of heat per unit area is

∫

s

q.n dS

where n is the unit outward normal.

The statement of law can be written in analytical form [15] as

d

dt

∫

V

(ρe+
1

2
ρu2) dV =

∫

V

ρ~f.u dV +

∫

s

P.u dS −
∫

s

q.n dS.

Using Reynolds transport theorem, the above equation can be written as

∫

V

∂

∂t
(ρe+

1

2
ρu2) dV +

∫

s

(ρe+
1

2
ρu2)(u.n) dS =

∫

V

ρf.u dV +

∫

s

P.u dS−
∫

s

q.n dS.

(1.3.5)

It can be explained by the theorem as, ”the total time derivative of an integral with

time-dependent limits equals the integral of the partial time derivative of the inte-

grand plus a term that accounts for the motion of the integration boundary” [12].

Using Gauss’s theorem, the surface integral is converting into volume integral.

∫

s

(ρe +
1

2
ρu2)(u.n) dS =

∫

V

∇.(ρe + 1

2
ρu2)u dV

=

∫

V

∂

∂xj
(ρe +

1

2
ρui.ui)uj dV (1.3.6)

Similarly we know that force vector P is related to tensor vector by the equation

Pj = σijni. Then

∫

s

P.u dS =

∫

s

σijniuj dS

=

∫

V

∂

∂xj
σijuj dV. (1.3.7)
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And
∫

s

q.n dS =

∫

s

qj.nj dS

=

∫

V

∇.q dV =

∫

V

∂qi
∂xi

dV. (1.3.8)

Substituting equations (1.2.6)-(1.2.8) in Eq. (1.2.5), expression for conservation of

energy becomes

∫

V

(
∂

∂t
(ρe+

1

2
ρu2) +

∂

∂xi
(ρe+

1

2
ρuj.uj)ui) dV =

∫

V

(ρfjuj +
∂

∂xi
σijuj −

∂qi
∂xi

) dV.

If integrand vanishes at every point in space, we obtain the differential equation of

conservation of energy.

∂

∂t
(ρe +

1

2
ρu2) +

∂

∂xi
(ρe +

1

2
ρuj .uj)ui = ρfjuj +

∂

∂xi
σijuj −

∂qi
∂xi

.

(1.3.9)

1.4 Compressible Euler Equations

The compressible Euler equations are comprised of continuity, momentum and en-

ergy equations. They are used in applications where viscosity is negligible. As we are

studying compressible flow in this work, compressible Euler equations are equations

for perfect fluids when heat conduction, viscosity, and mass diffusion are neglected.

The Euler equations are mathematically a set of three hyperbolic partial differential

equations. Hyperbolic partial differential equations typically arise in wave motion.

Here we consider the compressible Euler equations in conservative form which is

generally non-linear.

We use a fixed region of space called a control volume in which both mass and energy

can cross the boundary of the control volume [10]. According to the conservation

law, the rate of change of total amount of material contained in a control volume V

is equal to the flux of that material in a closed surface S [18]. Let ρ(x,t) is a density
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of the material (kg/m3) at time t and at point x. Then the total mass inside V is
∫

V

ρ dV

The rate of change of total mass can be written as

d

dt

∫

V

ρ dV

The flow of quantity has size and direction and is called flux which is a vector quan-

tity. Let flux vector is represented by F(x,t). For conserved mass, the only flow

at a particular time which affects the total mass is the flow through its boundary

surface S in V at that time [19]. We consider only the values of F at points on the

boundary of V where F can be in any direction. Hence for inward flux, F. n is the

normal component of F at the boundary of V .

A total flux through a surface element dS of the boundary surface S is given by

−
∫

s

(F.n) dS

The negative sign shows the inward flux. Then conservation law is given by

d

dt

∫

V

ρ dV = −
∫

s

(F.n) dS.

Taking d/dt inside the integral and applying Gauss’s divergence theorem, we obtain
∫

V

(
∂ρ

∂t
+∇F) dV = 0.

If integrand is continuous, it must vanish everywhere in the domain. Thus we get

the conservation equation in the form

∂ρ

∂t
+∇F = 0, (1.4.1)

which is the general form of compressible Euler equation in conservative form. The

components of ρ = (ρ1, ρ2, ..., ρn) ∈ R
n are conserved and components of the function

F = (f1, f2, ..., fn) : R
n → R

n are corresponding fluxes.
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1.5 Numerical Methods

BVPs are much harder to solve than IVPs and any solver might fail. A solution to

the initial value problem always exists and is unique. Unlike initial value problem

(IVP), boundary value problem (BVP) specifies equations at more than one point

and may or may not have finite solutions. In this work, numerical algorithms are

used to solve nonlinear boundary value problems and to find the unknown values of

shock waves. These methods are listed here.

1.5.1 Shooting Method

Shooting method can be used for both linear and non-linear equations. The basic

algorithm of the shooting method is the supposition of trial value. The solution

begins at one end of the boundary value problem, and shoot to the other end like a

cannon-ball (reaching its target under the influence of gravity) with an initial value

solver until the boundary condition at the other end converges to its true value. The

advantage of the shooting method is that the speed and adaptivity of methods for

initial value problems is considered.

For a boundary value problem of a third-order differential equation, consider

Figure 1.4: Multiple shots from a canon to strike the target.
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y′′′ = f(x, y, y′, y′′), ∀ a ≤ x ≥ b,

y(a) = α, y′(a) = γ, y′(b) = β (1.5.1)

where α, β and γ are the given constants.

Consider the initial guess is s0 that finds the solution of the derivative y′′(a). Then

y′′′(x, s) = f(x, y(x, s), y′(x, s), y′′(x, s)), ∀ a ≤ x ≥ b,

y(a) = α, y′(a) = γ, y′(b) = β, y′′(a, s) = s0. (1.5.2)

Differentiate Eq. (1.5.2) with respect to s and we get

∂y′′′

∂s
=
∂f

∂x
(x, y(x, s), y′(x, s), y′′(x, s))

∂x

∂s
+
∂f

∂y
(x, y(x, s), y′(x, s), y′′(x, s))

∂y

∂s
+

∂f

∂y′
(x, y(x, s), y′(x, s), y′′(x, s))

∂y′

∂s
+
∂f

∂y′′
(x, y(x, s), y′(x, s), y′′(x, s))

∂y′′

∂s
.

Let z(x, s) = ∂y
∂s
(x, s), then

z′′ =
∂f

∂y
(x, y, z, z′)z +

∂f

∂y′
(x, y, z, z′)z′ +

∂f

∂y′′
(x, y, z, z′)z′′, ∀ a ≤ x ≥ b,

z(a) = 0, z′(a) = 0, z′′(a) = 1. (1.5.3)

To choose value of s0 such that

y(b, s)− β = 0

then

s0 = y′(a) =
y(b)− y(a)

b− a
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s0 =
β − α

b− a

Newton Raphson Method is used to approximate the solution of y(b, s)−β = 0 and

find a next guess sk+1.

sk+1 = sk −
y′(b, sk)− β

z(b, sk)
(1.5.4)

Eq. (1.5.3) is converted into a first order ordinary differential equation by replacing

z′ by another variable. Then a first order ordinary differential equation can be solved

by Runge Kutta method. The process will stop until the error is |β − y′(b, sk)| ≤
Tolerance value.

1.5.2 Runge Kutta Method

The Runge Kutta methods are a family of a single step and include both implicit

and explicit iterative methods. As an explicit RK method of fifth order is used in

the present work, so it is described here.

Consider an initial value problem

dy

dx
= f(x, y), y(0) = y0

We integrate the general ODE from xn to xn+1

yn+1 = yn +

∫ xn+1

xn

f(τ, y(τ))dτ

By replacing the integral by quadrature method, we obtain

yn+1 = yn +
v

∑

j=1

bjf(xn + cjh, yn + hcjkj), n = 0, 1, 2, ...
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where kj are increments based on the slope and cj are nodes at which the values of

y are unknown.

k1 = hf(xn, yn),

k2 = hf(xn + c2h, yn + a21k1(xn, yn))
...

kn = hf(xn + cvh, yn +
∑v−1

m=1 av,mkm).

To specify a fifth order RK, we need to provide the integer v (the number of stages),

and the coefficients cv, av,m, and bj . These data are usually obtained from a Butcher

tableau.

Hence for fifth order RK method, increments k1, k2, k3, k4, k5, k6 are given by

k1 = hf(xn, yn),

k2 = hf(xn +
h
5
, yn + 5

k1) (1.5.5)

k3 = hf(xn +
3h
10
, yn +

3
40
k1 +

9
40
k2) (1.5.6)

k4 = hf(xn +
3h
5
, yn − 3

10
k1 − 9

10
k2 +

6
5
k3) (1.5.7)

k5 = hf(xn + h, yn − 11h
54
k1 +

5
2
k2 − 70

27
k3 +

35
27
k4) (1.5.8)

k6 = hf(xn +
7h
8
, yn − 1631

55296
k1 +

175
512
k2 +

575
13824

k3 +
44275
110592

k4 +
253
4096

k5) (1.5.9)

and general form of equation is

yn+1 = yn + (
37

378
k1 +

250

621
k3 +

125

594
k4 +

512

1771
k6) (1.5.10)

1.5.3 Lax Friedrichs Methods

Lax-Friedrichs is a finite difference method which is used for numerically solving

hyperbolic partial differential equations. It is a first order in time, explicit in time,

consistent, and conservative method.

The conservative hyperbolic differential equation in nonlinear form can be written as
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∂U

∂t
+
∂F

∂x
= 0, (1.5.11)

As Lax-Fedrich is based on Forward-Time, Central-Space method (FTCS), we ex-

pand Taylor’s series upto second order on grid points xj −∆x and xj +∆x.

F (xj −∆x, tn) = F (xj , t
n)− ∂F

∂x
(xj , t

n)∆x+
1

2

∂2F

∂x2
(xj , t

n)∆x2 +O(∆x3),

F (xj +∆x, tn) = F (xj , t
n) +

∂F

∂x
(xj , t

n)∆x+
1

2

∂2F

∂x2
(xj , t

n)∆x2 +O(∆x3),

After substrating these two expressions, we obtain

∂F

∂x
(xj , t

n) =
F (xj +∆x, tn)− F (xj −∆x, tn)

2∆x
(1.5.12)

which provides us with a central difference formula. In order to discreitze time, we

apply forward Euler method. Letting U(j∆x, n∆t), forward Euler method is given

as

∂U

∂t
=
U(xj , t

n+1)− U(xj , t
n)

∆t
. (1.5.13)

Subtituting Eqs. (1.5.12) and (1.5.13) in Eq. (1.5.11), we finally obtain the form of

Lax-Friedrich method.

Un+1
j = Un

j − (∆t/2∆x)(F n
j+1 − F n

j−1). (1.5.14)

A numerical flux can be defined as

F (Un
j+1, U

n
j ) =

1

2
(F (Un

j+1) + F (Un
j ))−

∆x

2∆t
(Un

j+1 − Un
j ). (1.5.15)

The stability and convergence of finite difference method is checked by the condition
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known as Courant-Friedrich-Lax condition (CFL). CFL is a necessary but not a suf-

ficient condition. If it is violated then method can’t be convergent. If it is satisfied,

still a proper stability analysis is required to check the convergence. It is defined by

the following condition

”The full numerical domain of dependence must contain the physical domain of de-

pendence.”

Any method that violates this condition is unstable and causes error. For one di-

mensional case, CFL is defined as

CFL = max(|(u+ a)|)∆t/∆x ≤ 1. (1.5.16)

LFM can be improved by replacing ∆x
2∆t

by max(|(F ′(Uj+1), F
′(Uj))|). This method

is called Rusanov’s method or local Lax-Friedrich Method. Lax-Friedrich Method

converges to the true solution as ∆x → 0 and ∆t → 0, provided CFL is satisfied.

LFM is a first order accurate in space and time.

1.5.4 bvp4c

A programming in MATLAB requires a guess for solving BVP. bvp4c is one such

effective solver for solving BVP. As the shooting method is not as robust as finite

difference or collocation methods, we have also used bvp4c. It is a collocation method

and starts solution with initial guess supplied at initial mesh points. A step-size

is also changed to obtain the specified accuracy. As BVPs are much difficult to

solve, in this respect, bvp4c is an effective solver. Contrary to the shooting method,

the solution is approximated over the whole interval and boundary conditions are

considered all the time [36].
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Chapter 2

Numerical Solution of Sakiadis

Flow with Variable Fluid

Properties

2.1 Introduction

This chapter is the review work of Andersson and Aarseth [6]. A study of boundary

layer over a continuous solid surfaces has attracted little attention from researchers

despite its increasing industrial applications which include the cooling of an infi-

nite metallic plate in a cooling bath, the boundary layer along material handling

conveyers, the aerodynamic extrusion of plastic sheets, the boundary layer along a

liquid film in condensation processes, paper and glass production, metal spinning,

drawing plastic films and polymer extrusion. The behaviour of boundary layer flow

on continuous solid surfaces was first examined by Sakiadis [1, 2]. Sakiadis used

Blasius transformation to reduce partial differential equations into ordinary differ-

ential equations. The ordinary differential equation was identical to that obtained

by Blasius [3] but the boundary conditions and velocity profile were different. So-

lutions have been appeared including mass transfer, varying plate velocity, varying

plate temperature, fluid injection and fluid suction at the plate [20]. Tsou et al.

[21] extended the work of Sakiadis by combining analytical and experimental study
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of momentum and temperature fields on a continuous moving surface and found an

excellent agreement between experimental measurements and analytical predictions.

Andersson has considered the influence of variable fluid properties and for this he

introduced a new similarity transformation inspired by the Howarth-Dorodnitsyn

transformation [6].

2.2 Mathematical Formulation

Consider the laminar flow of a Newtonian fluid that is driven by a moving flat

surface. T0 is a constant temperature of an ambient fluid and Tw is a constant tem-

perature of the continuous surface. Let the flat surface is moving with a constant

speed U in the x-direction while y-axis is perpendicular to the surface. It is observed

that momentum and thermal boundary layer thicknesses develop and grow in the

direction of the flow. For compressible flow, energy equation is also considered along

continuity and momentum equations.

The velocity and temperature inside the momentum and thermal boundary layers

are governed by the conservation equations for mass, momentum and energy as

follows:
∂

∂x
(ρu) +

∂

∂y
(ρv) = 0, (2.2.1)

u
∂u

∂x
+ v

∂u

∂y
=

1

ρ

∂

∂y

(

µ
∂u

∂y

)

, (2.2.2)

u
∂T

∂x
+ v

∂T

∂y
=

1

ρcp

∂

∂y

(k∂T

∂y

)

, (2.2.3)

here u represents a velocity component along x-axis and v a velocity component

along y-axis, T is taken as a temperature inside the boundary layer, ρ is the density

of the fluid , µ is the dynamic viscosity, k is the thermal conductivity and cp is

the specific heat at a constant pressure. Pressure gradient is neglected in equations
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(2.2.1), (2.2.2), and (2.2.3). The boundary conditions for the given problem are

u = U, v = 0, T = Tw at y = 0,

u→ 0 as y → ∞, T → T0 as y → ∞. (2.2.4)

The similarity transformation may be defined as a rule for combining two indepen-

dent variables x and y into ODEs and are used to transform Eqs. (2.2.1), (2.2.2)

and (2.2.3) into ODEs along with boundary conditions. We introduce the following

dimensionless variables

η =

√

U

aν0x

∫

ρ

ρ0
dy , ψ = ρ0

√

aν0xUf(η), (2.2.5)

θ(η) =
T − T0
Tw − T0

, (2.2.6)

here ρo and νo are the values of ambient fluid at temperature T0 and a is a dimen-

sionless positive constant. Here η is a similarity variable and f(η) and θ(η) are new

dependent variables. It is emphasized that the transformation (2.2.6) exists only if

Tw 6= T0. In the special case Tw = T0, the trivial solution T (x, y) = T0 solves the

energy Eq. (2.2.3) subject to the boundary conditions in Eq. (2.2.4). Here f is a

reduced stream function that depends on η.

It is important to note that θ is positive for gases and negative for liquids when

(Tw − T0) is positive as mentioned in refs [4] and [22].

We choose a stream function ψ(x, y) by

ρu =
∂ψ

∂y
, ρv = −∂ψ

∂x
(2.2.7)
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Obviously the above equation satisfies mass conservation equation (2.2.1).

Substituting all above equations in Eqs. (2.2.1), (2.2.2), and (2.2.3) transform them

into following ordinary differential equations:

(
2

a
)(
ρµ

ρ0µ0
f ′′)′ + f(η)f ′′(η) = 0. (2.2.8)

(
ρk

ρ0k0
θ′(η))′ +

aPr0
2

θ′(η)f(η) = 0. (2.2.9)

In the transformed energy equation (2.2.9), the Prandtl number has been assumed

constant across the boundary layer [6]. Pr0 is given by Pr0 = µocp/k0.

Thus transformed boundary conditions are

f(0) = 0, f ′(0) = 1, θ(0) = 1 at η = 0,

f ′ → 0, θ → 0 as η→ ∞. (2.2.10)

An exact similarity exists when all coefficients in Eqs. (2.2.8) and (2.2.9) are either

constants or only functions of η [6]. The requirement for similarity is satisfied by

the equation (2.2.7). The variation in physical properties of a particular fluid (ρ, ν,

k and cp) with respect to temperature T is required to solve the above transformed

boundary layer equations.

2.2.1 Special Cases

Case A: Constant Fluid Properties

The ODE in Eq.(2.2.8) is paired with thermal energy boundary layer Eq. (2.2.9)

with respect to the temperature-dependency of density and viscosity. For constant
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fluid properties, the similarity transformation variable η simplifies to:

η =

√

U

aν0x
y (2.2.11)

which is a Blasius variable.

Therefore, Eqs. (2.2.8) and (2.2.9) reduce to

f ′′′(η) +
a

2
f(η)f ′′(η) = 0, (2.2.12)

and

θ′′(η) +
aPr0
2

f(η)θ′(η) = 0 (2.2.13)

These equations are still subject to the boundary conditions (2.2.10). For a = 1,

the reduced momentum boundary layer problem is similar to that of Sakiadis [14]

and Tsou et al. [21].

Case B: Variable Viscosity

Following Pop et al. [4], Andersson and Aarseth [6], Pantokratoras [20], and El-

bashbeshy and Bazid [23], viscosity is considered temperature-dependent whereas

other fluid properties are assumed to be constant.

For a viscous fluid, it is assumed that the viscosity is an inverse linear function

of temperature given by the following equation.

µ =
µref

[1 + γ(T − T0)]
(2.2.14)
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here γ is a fluid property that depends on the reference temperature Tref . The

inversely linear viscosity-temperature correlation was also used by Andersson and

Aarseth [6], and Pantokratoras [20] and Elbashbeshy and Bazid [23]. If the reference

temperature Tref ≈ To, the formula (2.2.14) can be written as follows

µ =
µ0

1− T−T0

θref (Tw−T0)

(2.2.15)

Using above formula in Eqs. (2.2.8) and (2.2.9), we get

2

a
(
µ

µ0
f ′′)′) + f(η)f ′′(η) = 0 (2.2.16)

f ′′′ = −a
2

(θref − θ)

θref
f(η)f ′′(η)− f ′′(η)θ′

(θref − θ(η))
, (2.2.17)

While thermal boundary layer equation takes the same form as of Eq. (2.2.13). It

should be noted that Pop et al. [4] used a transformation with a = 1 while El-

bashbeshy and Bazid [23] chose a = 2.

2.3 Numerical Methods

Shooting method and bvp4c are used to find the numerical solution of boundary

value problems. In order to solve a set of transformed differential equations with

boundary conditions, we apply shooting method which is used for finding the nu-

merical solution of the boundary value problems (BVPs). This method converts

BVP into an initial value problems (IVP)by guessing the initial missing guess until

the convergence is obtained.
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To convert BVP into an IVP, new variables are defined as follows

y = f = y1, f ′ = y′1 = y2, f ′′ = y′2 = y3

θ = y4, θ′ = y′4 = y5. (2.3.1)

This method transforms the coupled ordinary differential equations (2.2.12), (2.2.13)

and (2.2.16) to a system of five simultaneous equations with five unknowns.

Then equations for constant fluid properties (Case A) can be written as

y′3 = f ′′′ = −a
2
y1y3, (2.3.2)

y′5 = θ′′ = −aPr0
2

y1y5. (2.3.3)

Equation of momentum for variable fluid properties (Case B) becomes

y′3 = f ′′′ = −a
2

(θref − y4)

θref
y1y3 −

y3y5
(θref − y4)

, (2.3.4)

while thermal equation remains the same as Eq. (2.3.3).

Results obtained from shooting method are compared with the results of bvp4c.

2.4 Results and Discussions

The solution of boundary value problem (2.2.8) and (2.2.9) depends on T0, Pr0 and

Tw − T0. Pr0 is related to T0. Similar to the works of Pop et al. [4], Pantokratoras

[20], and Elbashbeshy and Bazid [23] the paper of Andersson and Aarseth [6] as-

sumes all physical properties except viscosity constant while focuses on the effects

of temperature dependence of viscosity. First the numerical solution of Sakiadis

problem is calculated for the constant fluid properties for Pr0 = 0.7. Results of

characteristic gradient velocity and temperature are compared with the results of

[4], [20], [21], and [24] in Table 2.1. It serves the purpose of validating the technique
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of Andersson and Aarseth [6].

Two different cases are solved to describe the effect of temperature dependent

η∞ −f ′′(0) −θ′(0)
Sakiadis [2] 0.44375 -

Tsou et al. [21] 0.444 0.4392

Takhar et al. [7] 0.4439 0.3508

Pop et al. [4] 0.4445517 0.3507366

Pantokratoras [20] 0.4438 0.3500

8 (current) 0.4445533 0.3541256

16 (current) 0.4437512 0.3492923

24 (current) 0.4437500 0.3492374

32 (current) 0.4437507 0.3492372

Table 2.1: Numerical values of f ′′(0) and θ′(0) for Pr0 = 0.7, a = 1 and constant

fluid properties.

viscosity. Water is considered as an ambient fluid at temperature T0 = 5 ◦C(278K).

Temperature of the flat surface is taken as Tw = 85 ◦C(358K), then Tw −T0 = 80K.

Results for Sakiadis problem for Case A are compared with those of Case B in Table

2.2. we have used θref = −0.25 for water at T0 = 278K.

shooting method bvp4c

Case −f ′′(0) −θ′(0) −f ′′(0) −θ′(0)
A 0.4437483 1.6802948 0.4437483 1.6803047

B 1.3005546 1.5291513 1.3005463 1.5291562

Table 2.2: Numerical solutions of f ′′(0) and θ′(0) for Pr0 = 10, a = 1.

Compared to Case A, a velocity profile f ′(η) is reduced near the surface for Case B.

Viscosity reduces when surface heats the adjacent fluid. It also reduces the viscous

diffusion of stream-wise momentum in the inner part of momentum boundary layer.
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A reduced f(η) in the advection term (1/2a)Pr0fθ
′ in thermal equation (2.2.13)

causes decrease in viscosity and produces higher temperature near the surface as

shown in Fig 2.2. The rise in temperature near the surface is known as an indirect

effect. It should be noted that there is no direct effect of the temperature dependent

viscosity in equation (2.2.13) and the importance of the diffusive energy transport

θ′′ is also increased [6]. Pop et al. [4] and Pantokratoras [20] did not consider the

case for temperature-dependent viscosity.
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Figure 2.1: Velocity profile f ′(η) for Pr0 = 10 and a = 1.
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Figure 2.2: Temperature profile θ(η) for Pr0 = 10 and a = 1.
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The thermal gradient in Case A in Table 2.2 is accurately same as θ′(η) = −1.6804

mentioned by Tsou et al. [21]. Andersson and Aarseth has observed a three-fold

increase in the velocity gradient which shows that skin-friction appears when the

temperature-dependent viscosity is considered. However, temperature gradient for

Case B has been reduced by 10 percent. Though thermal boundary layer was thinner

in Case A but it became thicker in Case of temperature-dependent viscosity. Since

local Prandtl number Pr is less than Prandtl number of the ambient fluid Pr0, the

ratio of momentum boundary layer thickness and thermal boundary layer thickness

decreases with reduced viscosity [6].
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Chapter 3

Numerical Solution of

Compressible Flow Over a

Stretching Sheet

3.1 Introduction

The study of laminar flow over a stretching sheet in a viscous and compressible fluid

is of considerable interest because of its application in the extrusion of a polymer

sheet from a dye or in the drawing of plastic films. Anderson and Aarsheth [6], M.

Mustafa et al. [25], M. Turkyilmazoglu [26] and M. Sheikholeslami et al. [27] revised

the Sakiadis flow by considering a variable viscosity of the fluid.

An extensive work is carried out to analyse the motion of a fluid using moving and

fixed surfaces. Using different flow models and boundary conditions, boundary layer

flow has been observed on the stretching/continuous sheet by some authors includ-

ing Anderson and Aarsheth [6], Anjalidevi and Thiyagarajn [28], Sanyal and Das

Gupta [29], Takhar and Soundalgekar [30], Mahapatra et al. [31], Bhargava et al.

[32], Idress and Abel [33], Takhar and Soundalgekar [34].

In this chapter, the effects of temperature-dependent physical properties are taken

into account along with constant fluid properties. The variation of viscosity on tem-

perature is taken into account to accurately predict the flow [23]. Viscosity of liquid
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decreases with increase in temperature while the viscosity of gas increases with in-

crease in temperature. However in [23], fluid was treated as incompressible. Using

scaling variables, we carry out dimensionless analysis of the governing equations.

Dynamic viscosity, density, and thermal conductivity exhibited power law variation

with absolute temperature has been considered by Takhar et al. [24]. Despite its

importance, temperature-dependent viscosity has not received much attention. This

work deals both with the constant and temperature-dependent viscosity in the flow

of compressible fluid over a stretching surface. To our knowledge, the present anal-

ysis seems the first attempt on the topic for compressible fluid.

3.2 Mathematical Formulation

We consider the two-dimensional laminar flow of viscous fluid driven by a continu-

ously moving stretching sheet. Consider at t = 0, the sheet submerged in the fluid

of density ρ and dynamic viscosity µ coincides with the plane y = 0. The flow is

confined to y > 0. The sheet moves with linear velocity ax, where a is a constant.

Let the temperatures Tw of sheet is kept constant. The free stream of fluid is main-

tained at constant T∞. The effects of viscous dissipation are neglected. The basic

equations for compressible fluid governed by the conservation for mass, momentum,

and energy are as follows:

∂

∂x
(ρu) +

∂

∂y
(ρv) = 0, (3.2.1)

u
∂u

∂x
+ v

∂u

∂y
=

1

ρ

∂

∂y

(

µ
∂u

∂y

)

, (3.2.2)

u
∂T

∂x
+ v

∂T

∂y
=

1

ρcp

∂

∂y

(k∂T

∂y

)

, (3.2.3)

where u and v are the velocity components along x-direction and y-direction

respectively. T is the temperature inside the boundary layer, k is the thermal con-

ductivity and cp is the specific heat at a constant pressure. The boundary conditions

on velocity and temperature are given by
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u = ax, v = 0, T = Tw at y = 0,

u = 0, T = T∞ as y → ∞. (3.2.4)

A new similarity transformations has been developed to transform Eqs. (3.2.1),

(3.2.2) and (3.2.3). The similarity transformation may be defined as a rule for com-

bining two independent variables x and y into ODEs. We introduce the following

dimensionless variables

η =

√

a

ν∞

∫

ρ

ρ∞
dy , ψ = ρ∞

√
aν∞ xf(η), (3.2.5)

θ(η) =
T − T∞
Tw − T∞

. (3.2.6)

Here ρ∞ and ν∞ are the values of ambient fluid at temperature T∞. Here η is a

similarity variable and f(η) and θ(η) are new dependent variables. T∞ is an ambi-

ent fluid temperature. It is emphasized that the transformation (3.2.6) exists only

if Tw 6= T∞. The classical Sakiadis problem is obtained when the fluid viscosity

becomes equal to ambient viscosity for θref → ∞ [20]. In the special case Tw = T∞,

the trivial solution T (x, y) = T∞ solves the energy Eq. (3.2.3) subject to the bound-

ary conditions in Eq. (3.2.4).

It is important to note that θ is positive for gases and negative for liquids as men-

tioned in refs [4] and [22].

We define a stream function ψ(x, y) by

35



ρu =
∂ψ

∂y
, ρv = −∂ψ

∂x
. (3.2.7)

On substituting Eqs. (3.2.5), (3.2.6), and (3.2.7) into the Eqs. (3.2.1), (3.2.2), and

(3.2.3), we obtain

(
ρµ

ρ∞µ∞

f ′′)′ + f(η)f ′′(η)− f ′2 = 0. (3.2.8)

(
ρk

ρ∞k∞
θ′(η))′ + Pr∞θ

′(η)f(η) = 0. (3.2.9)

It should be mentioned here that in the transformed energy equation (3.2.9), the

Prandtl number has been assumed constant across the boundary layer [20]. The

constant Prandtl number is defined by Pr∞ = µ∞cp/k∞.

We also transform the boundary conditions (3.2.4) into

f(0) = 0, f ′(0) = 1, θ(0) = 1 at η = 0,

f ′ → 0, θ → 0 as η→ ∞. (3.2.10)

3.2.1 Special Cases

Case A: Sakiadis/Constant Fluid Properties

It should be noted that the ODE in Eq. (3.2.8) governing the flow in the momentum

boundary layer is coupled to the thermal energy boundary layer Eq. (3.2.9) with

respect to temperature-dependent density and viscosity. The coupling vanishes for

constant fluid properties and similarity transformation variable η reduces to

η =

√

a

ν∞
y (3.2.11)
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which is a Blasius variable and related to boundary layer thickness δ by

η =
y

δ
.

Where

δ =

√

ν∞
a
.

Therefore, Eqs. (3.2.8) and (3.2.9) reduce to

f ′′′(η) + f(η)f ′′(η)− f ′2(η) = 0, (3.2.12)

and

θ′′(η) + Pr∞f(η)θ
′(η) = 0 (3.2.13)

The auxiliary boundary conditions are given in Eq. (3.2.10).

Case B: Temperature-dependent Viscosity

Most studies of the problems of heat transfer are based on the constant physical

properties of the ambient fluid. As these properties especially viscosity may change

with temperature, it is necessary to scrutinize the variation of viscosity to correctly

predict the momentum and heat transfer rates.

Following Pop et al. [4], Andersson and Aarseth [6], Pantokratoras [20], and El-

bashbeshy and Bazid [23] viscosity is considered temperature-dependent whereas

other fluid properties are considered as constant.

It was assumed by Pop et al. [4] and followed Ling and Dybbs [35] that the viscosity

is an inverse linear function of temperature for a viscous fluid and is given by the

following equation
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µ =
µref

[1 + γ(T − T∞)]
(3.2.14)

here γ is a fluid property and its value depends on the reference temperature Tref .

The inversely linear viscosity-temperature correlation was also used by Andersson

and Aarseth [6], Pantokratoras [20], and Elbashbeshy and Bazid [23]. If the refer-

ence temperature Tref ≈ T∞, the formula (14) can be written as

µ =
µ∞

1− T−T∞

θref (Tw−T∞)

(3.2.15)

Using above formula in Eqs. (3.2.8) and (3.2.9), we get

(
µ

µ∞

f ′′)′ + f(η)f ′′(η)− f ′2(η) = 0 (3.2.16)

f ′′′ = − f ′′(η)θ′(η)

(θref − θ(η))
− (θref − θ(η)

θref
(f(η)f ′′(η)− f ′(η)2), (3.2.17)

While thermal boundary layer equation takes the same form as of Eq. (3.2.13).

3.3 Numerical Methods

To numerically compute the set of non-linear ordinary differential equations subject

to the boundary conditions, the shooting method via fifth order Runge-Kutta inte-

gration method and MATLAB built-in solver bvp4c are used. To convert BVP into

an IVP, we define new variables as

y = f = y1, f ′ = y′1 = y2, f ′′ = y′2 = y3

θ = y4, θ′ = y′4 = y5. (3.3.1)
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This method transforms the coupled ordinary differential equations (3.2.12), (3.2.13),

and (3.2.16) which are third order in f and second order in θ, to a system of five

simultaneous equations with five unknowns.

Then equations for constant fluid properties (Case A) can be written as

y′3 = f ′′′ = −y1y3 + y22, (3.3.2)

y′5 = θ′′ = −Pr∞ y1y5. (3.3.3)

Equation of momentum for variable fluid properties (Case B) becomes

y′3 = f ′′′ = − y3y5
(θref − y4)

− (θref − y4)

θref
(y1y3 − y22), (3.3.4)

while thermal equation remains the same as Eq. (3.3.3).

3.4 Results and Discussions

The solution of the generalized boundary value problem depends on T∞, (Tw − T∞)

and Pr∞ as mentioned in the paper of Andersson and Aarseth [6]. Pr∞ is related to

T∞. As in refs [6] and [20], the current work also focuses on temperature dependent

viscosity while considering other fluid properties constant. Unlike other literature,

the solution of equations governing variable fluid properties is also obtained in Table

3.2 for a range of values of variable η. Lai and Kulacki [22] considered a reference

temperature of 80K for geophysical usage which gave them θref = 5.62 for air and

θref = −0.37 for water but we have considered θref = −0.25 as mentioned by An-

dersson and Aarseth [6] and Ling and Dibb [35].

First, numerical solutions for constant and variable fluid properties are computed

for Prandtl number Pr∞ = 0.7 for different values of integration domain. Tsou

et al. [21] numerically solved the differential equations for Pr∞ = 0.7, 1, 10, 100.

In Tables 3.1 and 3.2 the dimensionless velocity and temperature gradients on the

sheet are estimated. The velocity boundary layer grows in the direction of motion
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η∞ −f ′′(0) −θ′(0)
8 1.00006251 0.456055378

16 1.00000004 0.453928163

24 1.00000001 0.4539168

32 1.00000003 0.453920088

40 1.00000001 0.453917639

Table 3.1: Numerical values of f ′′(0) and θ′(0) for Pr∞ = 0.7 and different values

of ratio parameter η (Case A).

η∞ −f ′′(0) −θ′(0)
8 2.28569231 0.311824842

16 2.28199354 0.291035625

24 2.28176472 0.289721023

32 2.28175165 0.289635306

40 2.28175001 0.289627223

Table 3.2: Numerical values of f ′′(0) and θ′(0) at Pr∞ = 0.7 and using variable fluid

properties (Case B).

of flow. There is a very slight change in the values of velocity gradient for different

domains in Tables 3.1 and 3.2 though the change is evident in different values of

temperature gradient in Table 3.2. Water is taken as an ambient fluid at T∞ = 278K

and Pr∞ = 10 and surface temperature Tw = 358K. Second, results for Case A

and Case B are computed in Table 3.3. We have used θref = −0.25. Also note that

small values of Prandtl number (less than 1) in a given fluid indicate that thermal

diffusion occurs at a greater rate than momentum diffusion. However, for Prandtl

number greater than 1, momentum diffuses at the greater rate than thermal energy.
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Case −f ′′(0) −θ′(0)
shooting method bvp4c shooting method bvp4c

A 1.0000001 1.0 2.3080052 2.6781983

B 2.6784758 2.6781983 2.0388601 2.0389636

Table 3.3: Numerical values of f ′′(0) and θ′(0) and Pr∞ = 10.
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Figure 3.1: (Case A) Velocity profile f ′(η) for Pr∞ = 0.7.

The computed velocity f ′(η) and temperature profiles θ(η) are shown in Figs. 3.2-

3.7, respectively. Figs. 3.2 and 3.3 are drawn for constant fluid properties while

Figs. 3.4 and 3.5 are displayed for variable fluid properties (Case B) when consider-

ing a range of values of η in both cases. There is a very slight change in the values

of velocity profile in the Figs 3.2 and 3.4. Similarly, there is hardly any effect in the

temperature gradient θ(η) for different values of η in Figs. 3.3 and 3.5. There are

only marginal differences in the surface gradients between Case A and Case B for

different values of η and Pr∞ = 0.7. The thermal boundary layer is slightly thicker

than the momentum boundary layer when considering Pr∞ = 0.7. Velocity profile
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Figure 3.2: (Case A) Temperature profile θ(η) for Pr∞ = 0.7.

f ′(η) in Fig. 3.6 is substantially reduced near the moving surface for Case B when

compared with Case A. Also boundary layer thickness is reduced for Case B. The

momentum layer thickness at zero velocity has the same momentum defect relative

to the outer flow as the actual boundary layer [15]. Approximately twofold increase

in the velocity gradient at the stretching sheet is observed when Case B is taken

into account. An 11 percent reduction in temperature gradient is observed for Case

B when compared to Case A. The temperature profiles θ in Fig. 3.7 show higher

temperature near the surface due to the reduced viscosity. The thermal boundary

layer becomes slightly thicker in Case B where temperature-dependent viscosity is

considered. Note that thermal boundary layer develops when the stretching sheet’s

temperature Tw is different from free-stream temperature T∞. There is an indirect

effect of the temperature dependent viscosity on the governing thermal equation

(3.2.13).
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Figure 3.3: (Case B) Velocity profile f ′(η) for Pr∞ = 0.7.
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Figure 3.4: (Case B) Temperature profile θ(η) for Pr∞ = 0.7.

3.4.1 Prandtl Number and Integration Domain

Due to difference in temperatures of the surface and ambient fluid, convection ap-

pears. A large number of parameters can be involved in solving conservation equa-
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Figure 3.5: Velocity profile f ′(η) for Pr∞ = 10.
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Figure 3.6: Temperature profile θ(η) for Pr∞ = 10.

tions for convection. The heat transfer coefficient is usually expressed using a non-

dimensional group that also includes Prandtl number. The Prandtl number appears
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in both natural and free convection. The Prandtl number is the ratio of the rate

when viscous forces penetrates the material to the rate when thermal forces pene-

trates the material. As a consequence, Prandtl number is proportional to the rate

of growth of two boundary layers, i.e.

δ

δT
≈ Pr1/2. (3.4.1)

This suggests that δ/δT should decrease due to the reduced viscosity [6].

The physical properties of fluid depends upon temperature, so the Prandtl number

Pr = µcp/k also varies with temperature. Pantokratoras [20] used the Prandtl

number that varied with viscosity. Takhar et al. [24] also considered variable Prandtl

number. However in the present work, the constant Prandtl number Pro of ambient

fluid is used into the transformed equations (3.2.8)-(3.2.10) which also appeared in

the works of Pop et al. [4] and Elbashbeshy and Bazid [23]. Moreover, Takhar et

al [24] used gases while Andersson and Aarseth [6] has considered water. For gases

Prandtl number may be considered constant in the temperature range of Tw and

T∞ while for liquids, its temperature variation may be essential. It is noted that

Prandtl number of water decreases with increase in temperature which is due to the

reduction in µ and increase of 20% in thermal conductivity k.

Pantokratoras [20] solved the BVP on a finite-interval η ∈ [−10, 10] without using

similarity transformation. He used Pr∞ = 0.7 and 10. Pop et al. [4] integrated the

resulting BVP over the interval η ∈ [0, 8] for Pr∞ = 0.7 and η ∈ [0, 4] for Pr∞ = 10.

The results in their papers show that interval domain is not large enough for the

proper decay of velocity and temperature profiles. Thus the auxiliary result

f ′′ → 0; θ′ → 0 as η → ∞ (3.4.2)

is violated. However, the non-linear BVP (3.2.8)-(3.2.10) are defined on the infinite

interval η ∈ [−∞,∞] in order to satisfy the outer boundary conditions in (3.2.10)

and auxiliary condition (3.4.2).
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Chapter 4

Numerical Solution of

Compressible Euler Equations

4.1 Introduction

In this chapter, we numerically solve compressible Euler equations in one dimension.

For time integration, we use Euler method and for space discretization, we apply

Lax-Friedrichs methods. For test case, 1D shock tube problem is solved.

4.2 Governing Equation

A nonlinear hyperbolic conservation law in one dimension takes the form

∂U

∂t
+
∂F (U)

∂x
= 0. (4.2.1)

Here F is the flux vector which usually arises from the transport of conservative

variable U in the domain. As conservation law consists of equations of mass, mo-

mentum and energy, therefore, U and F in vector form are defined as
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U =









ρ

ρu

ρE









(4.2.2)

It represents mass per unit volume, momentum per unit volume and total energy

per unit volume, respectively. The flux is given by

F =









ρu

ρu2 + p

u(ρE + p)









(4.2.3)

Conservation law comprises of equations of mass, momentum, and energy. There are

three equations and four unknowns which are density, velocity, pressure and total

energy. To find a solution, we require an equal number of equations and unknowns.

Here we introduce one more equation known as equation of state that determines the

nature and type of fluid. Equation of state is form of conservation on a microscopic

level [37]. For perfect gas, pressure p, density ρ, and temperature T are related by

the thermal equation of state

p = ρRT, (4.2.4)

which is a conservation of momentum on the microscopic level. Similarly a relation

between an internal energy e and constant volume specific heat cv expressed by

caloric equation of state is in fact a conservation of energy on the microscopic level,

which is

e = cvT, (4.2.5)

where

R = cp − cv

is a specific gas constant. cp is constant pressure specific heat. For air at standard

sea-level, cp =
γR
γ−1

= 1004.5m2/s2k and cv =
R

γ−1
= 717.5m2/s2k. Also e = e(T ) for

thermal equation of state. Note that a fluid obeying the thermal equation of state is
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called thermally perfect while one following caloric equation of state is called calor-

ically perfect. And gas obeying both laws is called a perfect gas.

Solving equations (4.2.4) and (4.2.5) give

p = ρe(γ − 1) (4.2.6)

here γ = cp
cv

is the ratio of specific heats, calls adiabatic exponent. For air at standard

condition, γ = 1.4, R = 277m2/s2k. The total energy E is often defined as

E = e+
1

2
u2 (4.2.7)

e is the internal energy and u2/2 is the kinetic energy. Equation (4.2.4) can also be

written as

p = (γ − 1)(ρE − 1

2
ρu2) (4.2.8)

4.3 Characteristic Equation

Considering a compressible Euler equation (4.2.1) in conserved and non-conserved

form
∂U

∂t
+
∂F (U)

∂x
= 0,

∂U

∂t
+ A

∂U

∂x
= 0. (4.3.1)

Where A(U) = dF
dU

is a Jacobian matrix. The equation (4.3.1) is a quasi-linear

nonconservative hyperbolic equation. This equation is hyperbolic if and only if A

has real eigenvalues and is diagonalizable, i.e. R−1AR = Λ for some matrix R [37].

Λ is a diagonal matrix.

Multiplying both sides of equation (4.3.1) by R−1, we obtain.

R−1∂U

∂t
+R−1A

∂U

∂x
= 0. (4.3.2)
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By changing the characteristic variable V = R−1U , above equation becomes

∂V

∂t
+ Λ

∂V

∂x
= 0, (4.3.3)

which is a characteristic form of equation (4.3.1) that is written in characteristic

variable V . It is in fact a wave-form. Equation (4.3.1) can also be written in form

of V as

Vi = constant, for
dx

dt
= λi. (4.3.4)

Vi are signals carried by waves, dx = λi dt are called wavefronts or characteristic

curves, and λi are wave speeds or characteristic speeds [37].

A matrix A for conservative form of compressible Euler equation is given by

A =









0 1 0

(γ − 3)u2/2 (3− γ)u γ − 1

−γeu+ (γ − 1)u3 γe− 3(γ − 1)u2/2 γu









(4.3.5)

The eigenvalues of A obtained by det(λI −A) are

λ1 = u, λ2 = (u+ a), and λ3 = (u− a) (4.3.6)

Since R−1AR = Λ, where matrices R−1 and R are left and right characteristic vec-

tors of A, respectively. To find right characteristic vectors of A associated with λi,

i = 1, 2, 3, we define (λiI−A)r and to find left characteristic vectors of A, we define

(λiI −A)l. Where I is an identity matrix, r are a right characteristic vectors and l

are left characteristic vectors.

As R = [rA1
|rA2

|rA3
] and R−1 = [lA1

|lA2
|lA3

], we get

R =









1 ρ
2a

− ρ
2a

u ρ
2a
(u+ a) − ρ

2a
(u− a)

u2

2
ρ
2a
(u

2

2
+ a2

γ−1
+ au) − ρ

2a
(u

2

2
+ a2

γ−1
− au)









(4.3.7)
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and

R−1 =
γ − 1

ρa









ρ
a
(−u2

2
+ a2

γ−1
) ρ

a
u −ρ

a
u

u2

2
− au

γ−1
−u+ a

γ−1
1

−u2

2
− au

γ−1
u+ a

γ−1
−1









(4.3.8)

There is a physical relation between the flow and characteristics. The wave speed

λ1 equals to flow speed u while the wavefronts dx = λ1 dt = u dt is equal to path-

lines. Thus first family of waves travels with the fluid and is called entropy (contact

discontinuity)wave. In case of remaining two family of characteristics, dx = (u+a) dt

conforms to travel at the local speed of flow in addition to local speed of sound,

whereas dx = (u−a) dt conforms to travel at the local speed of flow minus the local

speed of sound. Later two families of characteristics are called acoustic waves.

4.4 Numerical Methods

Different finite difference methods are used to solve compressible Euler equation.

One of them is Lax Friedrich Method (LFM). LFM is an explicit, consistent, and

conservative method. It is based on Forward-Time Centre-Space method which can

be written as

Un+1
i = Un

i − (∆t/2∆x)(F n
i+1 − F n

i−1). (4.4.1)

Here numerical flux can be defined as

F (Un
i+1, U

n
i ) =

1

2
(F (Un

i+1) + F (Un
i ))−

∆x

2∆t
(Un

i+1 − Un
i ). (4.4.2)

The flux is a centered flux. The additional term ∆t
∆x

is called numerical diffusion

or viscosity and LFM introduces too much diffusion. LFM can be improved by

replacing numerical viscosity by max(abs(F ′(ul), F
′(ur))). This method is called

Rusanov’s method or local Lax-Friedrich Method. Lax-Friedrich Method converges

to the true solution as ∆x → 0 and ∆t→ 0, provided CFL is satisfied. LFM is first

order accurate in space and time.

CFL of Lax Friedrich can be defined as

CFL = max(abs(u+ a))∆t/∆x ≤ 1. (4.4.3)
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4.5 Test Case: Shock Tube Problem

We are studying a shock tube in gas-dynamics. A simple shock tube is an instrument

which is used to study blast wave effects under laboratory conditions. It is a long

tube or cylinder divided into two chambers by diaphragm. It has a constant area.

Figure 4.1: Diagram of shock tube [41].

The chamber consisting of high pressure gas is called driver chamber while cham-

ber containing low pressure gas is called driven or expansion chamber. These regions

can consist of different gases that are at rest. Let their ratio of specific heats is de-

noted by γ1 and γ2, respectively. Also the data at initial stage is T1, p1, u1, ρ1 on the

right side of the tube and T2, p2, u2, ρ2 on the left side. When diaphragm is ruptured

at time t = 0, the gas from the high pressure chamber flows into the low pressure

chamber and compresses it. It causes an unsteady flow containing steadily moving

shock wave, expansion wave and contact wave. A normal shock wave propagates

into low pressure region and expansion wave propagates into high pressure region

[37]. A temperature reaches in thousand of degrees within a short interval.

A gas of low molecular weight like helium or hydrogen is chosen for driver region.

In fact the molecular weights µ1 and µ2 of both gases are different. The driver

and driven gases don’t coalesce due to the presence of contact surface in the driven

chamber. Pressure and velocity are same across that surface. Shock wave and ex-

pansion or rarefaction wave reflect at the closed ends of tube. The reflected shock

wave cancels the motion of the driven gas that is caused by the primary shock. A
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Figure 4.2: Shock and expansion waves produced in a shock tube [38].

shock wave originate either from jump-discontinuity in the initial condition or from

smooth compression wave. Mach number increases as the pressure ratio across di-

aphragm increases.

Expansion or rarefaction waves are always composed of acoustic waves whereas en-

tropy waves don’t produce expansion waves [37]. In other words, expansion waves

are created by family of characteristics containing u + a and u − a. Unlike shock,

expansion waves are composed of boundaries. The boundary at high pressure side

is called head and at low pressure side is called tail of expansion. An expansion

wave appears like an old fashioned fan, so it is also called expansion fan. All char-

acteristics originate from a single point in the x− t plane in the centered expansion

fan. That single point can be either a jump discontinuity in the initial conditions

or an intersection between shocks or contact discontinuities [37]. The flow across

expansion can be solved using method of characteristics.

Contact discontinuity like shocks is a jump continuity. It can’t form immediately

and originate either in the initial condition or at the intersection of the shocks. It

flows with the fluid but fluid doesn’t pass through contact discontinuity. Also note

that pressure and velocity are equal across contact but density and energy are dif-
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ferent.

4.6 Riemann Problem for Compressible Euler Equa-

tion

Shock tube problem gives rise to shock, expansion and contact waves but in case

of Riemann problem, one or two of these waves may be absent. Unlike the integral

form, the differential form of compressible Euler equations contain undifferentiated

discontinuities that create shock waves. The non-differentiable solution is called a

weak solution. Riemann problem finds the weak solution of the equation. The initial

condition of Riemann problem for compressible Euler equation at x = xo and t = to

is

u (x, to) =







ul for x < xo

ur for x > xo
(4.6.1)

The Riemann problem is treated on an infinite domain . Unlike shock tube, the

initial velocity of Riemman problem may not be zero. Here we are interested in

xo = 0 and to = 0 when ul = ur = 0 at the initial stage and pl > pr and ρl > ρr.

The driver gas is filled in the driver chamber at x < 0 while driven gas is filled in

the driven chamber at x > 0.

To find a jump-discontinuities in the differential form of compressible Euler equa-

tion, Rankine-Hugoniot relations are used. We choose a rectangular control-volume

that is surrounding the discontinuity and separating the left and right state of the

shock. Let shock is moving in a very short time increment, say, from t1 to t1 +∆t

and from x1 to x1 +∆x. Applying an integral form of conservation law,

∫ x1+∆x

x1

u(x, t1+∆t) dx−
∫ x1+∆x

x1

u(x, t1) dx =

∫ t1+∆t

t1

f(u(x1, t)) dt−
∫ t1+∆t

t1

f(u(x1+∆x, t)) dt,

since u is constant along edge, it becomes

∆x (ur − ul) = ∆t(f(ul)− f(ur)).

53



If S is a shock speed, then ∆x = −S∆t when S < 0. Dividing by −∆t and taking

∆t→ 0, Rankine-Hugoniot equation becomes

S(ur − ul) = fr − fl. (4.6.2)

Shock wave is governed by R-H relation and also satisfies the conditions of compres-

sion which is

ul + al ≥ S ≥ ur + ar (4.6.3)

or ul − al ≥ S ≥ ur − ar.

4.7 Results

For a numerical solution, the flow is assumed to be unsteady and one-dimensional.

At t = 0, the values of flow properties ρl = 1, pl = 2.5, ul = 0, and ρr = 0.125,

pr = 0.25, ur = 0 are considered on both sides of shock tube. For diatomic gas, γ =

1.4 is taken. The compressible Euler equation is solved along the initial conditions

on the region [−1, 2]. As different numerical methods use slightly different CFL

number, an initial Courant number C = 0.34 is chosen in the present work. Graphs

are plotted for the unknown variables density, velocity, pressure and total energy. It

is observed that at λ1 = u, there is neither shock nor rarefaction wave. Instead we

obtain contact discontinuities that propagate with speed equal to the characteristic

speed u. Moreover, u and p are constant here and only ρ varies.

The solution of Riemann problem consists of flat regions for first order method while

for second and higher order methods it develops large spurious oscillations. There

is a jump in density across the contact discontinuity in the Figure 4.4. The velocity

remains the same on both side of contact discontinuity and fluid never cross this

path as shown in Figure 4.5. Note that the fluid is accelerated smoothly through

the rarefaction wave and abruptly through the shock. Also gas in left chamber is

cooled by expansion (or rarefaction) wave while gas in the right chamber heats up

because of shock wave.
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For initial velocity ul = ur = 0, Riemann solution consists of one shock wave and one

expansion wave along a contact discontinuity. However for nonzero initial velocities,

solution may consist of two shock or two expansion waves depending on the data

[40].
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Figure 4.3: Density in shock tube problem using LFM.
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Figure 4.4: Velocity in shock tube problem using LFM.
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Figure 4.5: Pressure in shock tube problem using LFM.
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Figure 4.6: Total energy in shock tube problem using LFM.
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Chapter 5

Conclusion and Outlook

Numerical solutions of compressible fluid were studied in two different situations.

In the first part of this thesis, we observe the effects of variable viscosity and Sakiadis

problem is studied. A laminar boundary layer behaviour of compressible fluid has

been investigated on a continuous flat surface and linearly stretching sheet. Similar-

ity transformations are applied to transform non-linear partial differential equations

(PDEs) into ordinary differential equations (ODEs). Here the dependency of vis-

cosity was considered on temperature when pressure decreases with the increase in

temperature.

Numerical methods are applied on the resultant ODEs. For that bvp4c and shooting

method are used. Results are plotted for Cases A and B. For temperature gradient

in Case B, a less than 10% reduction is observed for continuously moving flat surface

while approximately 11% reduction is calculated for stretching sheet. Similarly for

velocity gradient in Case B, three-fold increase is obtained for continuously moving

flat surface whereas two-fold increased is observed for stretching sheet.

The test case of shock tube problem is used in the second part of the study of the

compressible flow. A nonlinear compressible Euler equation has been derived from

a first-order non-linear hyperbolic differential equations. For time integration, an

explicit Euler method is used while for spatial integration, Lax-Friedrich and local

Lax-Friedrich Methods are used. The graphs of density, velocity, pressure, and total

energy are plotted and studied for shock and expansion waves.
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Appendix A

Tables

Temperature (C) Prandtl number (Pr)

0.01 13.67

10 9.47

20 7.01

30 5.43

40 4.34

50 3.56

60 2.99

100 1.75

140 1.25

200 0.92

Table 5.1: Prandtl number of water at different temperatures [42].

Temperature (C) Prandtl number (Pr)

-73 0.736

27 0.707

52 0.701

102 0.692

127 0.688

Table 5.2: Prandtl number of dry air at different temperatures [42].
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Gas Specific heats Ratio of Specific heats Gas constant R

Names cp(kJ/kgK) cv(kJ/kgK) γ cp − cv(kJ/kgK)

Air 1.01 0.718 1.40 0.287

Argon 0.520 0.312 1.667 0.208

carbon monoxide 1.02 0.72 1.40 0.297

carbon dioxide 0.844 0.655 1.289 0.189

Helium 5.19 3.12 1.667 2.08

Hydrogen 14.32 10.16 1.405 4.12

Methane 2.22 1.70 1.304 0.518

Neon 1.03 0.618 1.667 0.412

Nitrogen 1.04 0.743 1.4 0.297

Table 5.3: Specific heats and ratio of specific heats of gases [42].

Gas Temperature (C) Speed of sound (m/s)

Air 0 331.5

Air 20 344

Air 50 360.3

Argon 0 307.85

Helium 0 972

Helium 20 927

Hydrogen 0 1270

Carbon dioxide 0 260

Carbon monoxide 0 336

Neon 30 461

Nitrogen 29 354.4

Table 5.4: Speed of sound in ideal gases.
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Appendix B

MATLAB code to solve non-linear ODE

function shootingreviewandersson global XSTART XSTOP H Pr

XSTART = 0;XSTOP = 14; Pr = 2; H = 0.1; freq = 1;

u = [−1 − 1];

x = XSTART ;

u = newtonRaphson2(@residual, u);

[xSol, ySol] = runKut5(@dEqs, x, inCond(u), XSTOP,H);

printSol(xSol,ySol,freq)

result = -ySol(1,3)

plot(xSol, ySol(:,2))

functionF = dEqs(x, y)

global Pr

My equations for compressible laminar boundary layer over a stretching sheet- An-

dersson’s paper

yy1 = y(2)2 − y(1) ∗ y(3);
yy2 = −Pr ∗ y(1) ∗ y(5);
F = zeros(1, 5);

F (1) = y(2);

F (2) = y(3);

F (3) = yy1;

F (4) = y(5);

F (5) = yy2;

ysol = [y(2); y(3); yy1; y(5); yy2]; functiony = inCond(u)

y = [0 1 u(1) 1 u(2)];

functionr = residual(u)

global XSTART XSTOP H
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r = zeros(length(u), 1);

x = XSTART ;

[xSol, ySol] = runKut5(@dEqs, x, inCond(u), XSTOP,H);

lastRow = size(ySol, 1);

r(1) = ySol(lastRow, 2);

r(2) = ySol(lastRow, 4);

Subroutines for the Shooting Method

Subroutine of Newton-Raphson method

functionroot = newtonRaphson2(func, x, tol)

ifnargin == 2; tol = 1.0e4 ∗ eps; end
ifsize(x, 1) == 1; x = x′; end

fori = 1 : 10

[jac, f0] = jacobian(func, x);

ifsqrt(dot(f0, f0)/length(x)) < tol

root = x;return

end

dx = (jac)/(−f0);
x = x+ dx;

ifsqrt(dot(dx, dx)/length(x)) < tol ∗max(abs(x), 1.0)
root = x; return

end

disp(i)

end

error(’Too many iterations’)

function[jac, f0] = jacobian(func, x)

h = 1.0e− 4;

n = length(x);

jac = zeros(n);

f0 = feval(func, x);
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fori = 1 : n

temp = x(i);

x(i) = temp + h;

f1 = feval(func, x);

x(i) = temp;

jac(:, i) = (f1− f0)/h;

end

Subroutine of Runge-Kutta method.

function[xSol, ySol] = runKut5(dEqs, x, y, xStop, h, eTol)

if size(y,1) ¿ 1 ;y = y′; end ifnargin < 6; eTol = 1.0e− 6; end

n = length(y);

A = [01/53/103/517/8];

B = [0 0 0 0 0 1/5 0 0 0 0 3/40 9/40 0 0 0 3/10 − 9/10 6/5 0 0

−11/54 5/2 − 70/27 35/27 0 1631/55296 175/51 575/13824 44275/110592 253/4096];

C = [37/3780250/621125/5940512/1771];

D = [2825/27648018575/4838413525/55296277/143361/4];

xSol = zeros(2, 1); ySol = zeros(2, n);

xSol(1) = x; ySol(1, :) = y;

stopper = 0; k = 1;

forp = 2 : 5000

K = zeros(6, n);

K(1, :) = h ∗ feval(dEqs, x, y);
fori = 2 : 6

BK = zeros(1, n);

forj = 1 : i− 1

BK = BK +B(i, j) ∗K(j, :);

end

K(i, :) = h ∗ feval(dEqs, x+ A(i) ∗ h, y +BK);

end

dy = zeros(1, n);E = zeros(1, n);
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fori = 1 : 6

dy = dy + C(i) ∗K(i, :);

E = E + (C(i)−D(i)) ∗K(i, :);

end

e = sqrt(sum(E. ∗ E)/n);
ife <= eTol

y = y + dy; x = x+ h;

k = k + 1;

xSol(k) = x; ySol(k, :) = y;

ifstopper == 1;

break

end

end

ife = 0; hNext = 0.9 ∗ h ∗ (eTol/e)0.2;
else;

hNext = h; end

if(h > 0) == (x+ hNext >= xStop)

hNext = xStop− x; stopper = 1;

end

h = hNext;

end

Chapter 2 (bvp4c Codes)

This MATLAB program of chapter 3 to find the solution of compressible fluid over

a linearly stretching sheet using bvp4c method.

function bvp4cextensionA

clear all

close all

Pr = 0.7;

functionysol = bvpex1(x, y)

yy1 = y(2)2 − y(1) ∗ y(3);
yy2 = −Pr ∗ y(1) ∗ y(5);
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ysol = [y(2); y(3); yy1; y(5); yy2];

end functionres = bcex1(y0, yinf)

res = [y0(1); y0(2)− 1; yinf(2); y0(4)− 1; yinf(4)];

end sol1 = bvpinit(linspace(0, 32, 26), [10000]);

sol = bvp4c(@bvpex1,@bcex1, sol1);

x = sol.x;

y = sol.y;

value = deval(sol, o), 9)

figure (1) plot(x, y(4, :),’linewidth’, 1) xlabel(′η′)

ylabel(′θ(η)′)

end

Chapter 3 (bvp4c Codes)

This MATLAB program of chapter 3 to find the effects of temperature-dependent

viscosity on heat transfer over a continuous moving surface using bvp4c method.

function bvp4cextensionB

clear all

close all

Pr = 0.7;

thetaref = −0.25;

functionysol = bvpex1(x, y)

yy1 = −(y(3)∗j(5))/(thetaref−y(4))−(y(1)∗y(3)−y(2)2)∗(thetaref−y(4))/thetaref ;
yy2 = −Pr ∗ y(1) ∗ y(5);
ysol = [y(2); y(3); yy1; y(5); yy2];

end

functionres = bcex1(y0, yinf)

res = [y0(1); y0(2)− 1; yinf(2); y0(4)− 1; yinf(4)];

end

sol1 = bvpinit(linspace(0, 32, 26), [1 0 0 0 0]);
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sol = bvp4c(@bvpex1,@bcex1, sol1);

x = sol.x;

y = sol.y;

figure(1)

plot(x, y(2, :)

xlabel(′η′)

ylabel(′df/dη′)

end

end
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