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Abstract 
An analytical analysis of Carbon nanotubes(CNTs) with variable viscosity is done to scrutinize the 

unsteady peristaltic flow  in a non-uniform pipe of finite measure. Exact solutions are obtained. 

Influence of CNTs on temperature, axial and transverse velocities, effective thermal conductivity 

and on pressure gradient is studied graphically by varying various flow constraints. Trapping has 

also been examined. This study is helpful in medication and even essential  to layout a micro 

push for the movement of nanofluids. 
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Chapter 1 

                    Introduction 

Peristalsis is  the  process of contraction and relaxation of muscles in a wave like manner. For 

example, in esophagus where food bolus is swallowed and moved  through different processing 

units of digestive tract. Peristalsis is an auotamatic process. This process also occurs in Peristaltic 

pumps where different variety of fluids1 are displaced. The similar mechanism is used by 

earthworms to drive their locomotion. In 1987, Pozrikidis C [1] studied the two-dimensional2 

peristaltic flow by considering creeping motion under which the problem is framed via boundary 

integral method for Stokes flow. The results are conferred with allusion to different  engineering 

and physiological processes. It is recommended that peristaltic flow by taking different  mean 

pressure gradient  under the quasi-steady estimation provides a competent method for 

molecular-convective transport. In 1982, Radhakrishnamacharya G [2] analyzed the two-

dimensional peristaltic motion of a power law fluid by considering long wavelength in contrast 

to the half-width of the channel. The mathematical expressions for shear stress, stream function 

and axial pressure gradient are derived  and the influence of flow behaviour index n on shear 

stress and streamline design is studied. Trapping is also discussed. Li M [4] discussed fluid flow 

and heat transfer attributes of nanofluids in free and forced convection flows by taking 

suspended solid nanoparticles in base fluids and concluded that suspended nanoparticles3 

distinctly changed the heat transfer characteristics and transport properties of suspension. 

Bhatti MM [6] explored the peristaltic blood flow of nanofluid4 in a porous irregular channel  

with  long wavelength estimation and creeping flow  scheme. By using perturbation method, the 

approximated analytical  solutions are acquired for pressure rise, friction force,  nanoparticle 

concentration and temperature profiles. To obtain the expression for friction forces and 

                                                           
1 A fluid is a substance that continously  deforms under a shear stress  applied on it. 
2 The flow in which the variation of flow characteristics can be defined by two spatial coordinates. 
3 Particles that lie between 1 to 100 nanometer in size. 
4 The fluids that contain nanoscale particles. 
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pressure rise the Numerical computation is used. The influence of distinct  physical constraints  

such as thermal grashof number5, thermophoresis  parameter, Brownian motion parameter and 

basic density grashof number on concentration  profile, temperature and  velocity and profile 

are discussed with the help of graphs. This analysis has  applications  in various drug delivery 

systems in peristaltic pumping  and pharmacological engineering. 

Contemporary developments in fluid mechanics integrated the areas of the nanofluids and 

peristaltic motion. Nanoparticles are particles in nanofluids which have extensive span of 

implementations in biomedical sciences, engineering and in industrial sectors. Bhatti MM [7] 

examined the peristaltic motion of fluid containing suspended particles through an irregular  

annulus to examine the heat transfer analysis on clot blood model. Akbar  NS [10] analytically 

analyzed the curved channel with peristaltic transport of copper nanofluids  having compliant 

walls, by considering low Reynolds number6 and long wavelength estimation.  The mathematical 

analysis is done and exact solutions for temperature and velocity profile are acquired and the 

influence  of  consequential constraints are  expressed graphically. 

Carbon nanotubes have cylindrical structure and are allotropes of carbon. SWCnt and MWCnt 

are main types of carbon nanotubes. Akbar and Butt [13] considered curved channel and 

observed  the consequences of heat transfer on peristaltic flow of carbon nanoparticles. By 

considering  low Reynolds number estimation and long wavelength assumption and also by 

investigating the impacts of curvature of the curved channel, the equations for flow and heat 

transfer are obtained. Fluid velocity in the curved channel is determined from the exact solution 

for stream function. The consequence of heat transfer in this channel is perceived and the 

consequences of Grashof number and curvature parameter on velocity and the pressure 

gradient  are also examined.In 2016, Bhatti et all [18] analyzed the consequences of variable 

magnetic field of jaffery fluid  on peristaltic flow in an irregular  rectangular duct with compliant 

walls by considering the unsteady incompressible viscous electrically conducting flow. Kuznetsov 

AV & Nield DA  [24] examined analytically the natural convective boundary-layer flow of a 

                                                           
5 The ratio of buoyancy to viscous forces. Generally it is denoted as Gr. It is a dimensionless quantity. 

 

6 The ratio of inertial to viscous forces. It is a dimensionless quantity. It determines whether the fluid is steady or unsteady, 

streamlined, laminar or turbulent.  
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nanofluid through a vertical plate and the model used by them is consolidated the 

consequences of thermophoresis and Brownian motion. Tripathi D [29] proposed a 

mathematical model based on viscoelastic fluid flow. Low Reynolds number estimation and long 

wavelength assumption is  used to obtain the simplified version of governing equations. With 

the help of homotopy analysis method the analytical approximate solutions are obtained. 

Tripathi D [33] presented the numerical study to analyze the peristaltic transport of fractional 

bio-fluids through the channel by taking assumptions of low Reynolds number and long 

wavelength. Buongiorno J [36] done numerical analysis over an exponential stretching sheet to 

examine the boundary layer flow behavior and heat transfer attributes  of a nanofluid. Huda AB 

[40] analyzed the flow of nanofluid and heat transfer in a vertical tube with variable viscosity. A 

Tiwari-Das type construction is engaged for the nanofluid with a viscosity amendment. Tripathi 

D [41] investgated the peristaltic flow of nanofluids based on low Reynolds number and the long 

wavelength approximations through a two-dimensional channel. NS Akbar [42] presented the 

CNT  analysis for an unsteady flow7 in two  dimensional irregular channel of finite measure. CNTs 

influence  on active thermal conductivity, pressure gradient, axial and transverse velocities, and 

on temperature are studied graphically by varying various flow constraints. Trapping is also 

discussed. Our work is done by considering variable viscosity in  the unsteady peristaltic flow in a 

non-uniform channel of finite measure. This study is helpful in medication and even essential  to 

layout a micro push for the movement of nanofluids. 

 

                                                           
7 The flow in which fluid properties change with time is known as unsteady flow. 
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Chapter 2 
              

Carbon Nanotube Analysis for an 

Unsteady Physiological Flow in a Non-

Uniform Channel of Finite Length                 

2.1. Introduction: 
In this chapter a Carbon nanotubes(CNTs) analysis is done to examine  the unsteady peristaltic 

flow in an irregular channel of certain measure. Exact solutions are obtained. Influence of CNTs 

on temperature, axial and transverse velocities, effective thermal conductivity  and on pressure 

gradient  is  studied graphically . Trapping is also examined.  

2.2. Mathematical formulation: 

In this chapter we have considered the unsteady peristaltic flow of nanofluid with SWCnt and 

MWCnt via a non-uniform channel of finite measure. The geometrical model is taken as: 

( , ) ( ) cos ( )h t a b ct


  


= + − .            (2.1) 

In above equation; 0( )a a   = +  denotes  the half width of the channel at any axial 

distance   from inlet,   represents the  axial coordinate, 0a  gives  the half width of channel at 

inlet,    is wavelength, b  denotes  amplitude, c  represents  wave speed, t
~

is time and   is non-

uniformality constant, as 0→ , the irregular channel moderates to a regular channel. 

 



5 
 

  

                                 Fig. 2.1: Schematic of the problem. 

 

Consider an irregular channel of finite measure with sinusoidal motion along  with the flow path. 

The walls of this irregular channel are assumed to be alike in structure and distensible. The 

features of damping are discounted. Governing equations are amended with low Reynolds 

number and also long wavelength approximation is taken into account. 1T   denotes the extent 

of the temperature at the wall )( h= . According to Boussinesq interpretation, the transport 

equations  with a particular reference pressure are described in Ref: [35] for the scheme and 

subsequent assumptions are considered as: (a) Streamline flow with constant density , (b) 

negligible external forces, (c) no chemical reactions, (d) insignificant radioactive heat transfer, 

(e) insignificant viscous dissipation, (f) base fluid and nanoparticles regionally in thermal 

equilibrium. 
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Law of conservation of mass (Component form): 

v
0.

u



  
+ =


    (2.2)  

Axial momentum equation: 

( ) ( )
2 2

122
.nf nf nf

p u u
u v u g T T

t
  

   

         
   + + = − + + + −  

       
     (2.3) 

Transverse momentum equation: 

2 2

22
.nf nf

p v v
u v v

t
 

   

         
  + + = − + +  

       
       (2.4) 

Energy equation:                           

( )
2 2

022
.p nfnf

T T
c u v T k Q

t


  

       
  + + = + +  

      
       (2.5)                                                                                   

In above equations; u and v represents axial and transverse velocities, ~  transverse 

coordinate, T  shows temperature, 
1T  is wall temperature, 0

~
Q is constant heat absorption 

parameter,  g denotes gravity, nf  depicts density of nanofluids, fk denotes  thermal 

conductivity of the base fluid, p  denotes  pressure,  nf depicts the thermal expansion 

coefficient . Moreover ( )
nfpc  represents heat capacitance. 

To non-dimensionlize the BVP, the given non-dimensional parameters are used as described in 

Eq. (2.6)  

2

0

0 0

3

0 0 10 0 01

2

0 1 1

, , , , , , 1 cos ( ),

, , ,Re , , .
f f f

T

f f f

p act u v h
t u v p h t

a c c c a

ca g a Ta Q aT Tb
Gr

a T k T

  
    

     

  
   

  

 
= = = = = = = = + − −

−
= = = = = =

        (2.6)                      

Where   is dimensionless temperature, is non-dimensional wave number,  is rescaled 

nanoparticle volume fraction,  is kinematic viscosity, ε is amplitude ratio, Re  is Reynolds 
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number,  is heat absorption parameter  and TGr  is thermal Grashof number. By using long 

wavelength estimation (i.e. a  ), it follows that 0→  and then also 0Re→ . By using these 

estimations, Equations  (2.2) − (2.5)  implies that:                                                      

                                                 
v

0,
u

 

 
+ =

 
                                    (2.7) 

                                                 
( )

( )
,

2

2










 f

nf

T

f

nf
Gr

up
+




=




                                               (2.8) 

                                                  ,0=






p
                                                                             (2.9) 

                                                 
2

2
0.

f

nf

k

k







+ =


                                                                               (2.10)                   

The related  boundary conditions are described as follows: 

   
0

( , , ) 0, ( , , ) 0
h

t t





    

 =

=


= =


,         (2.11) 

0),,(
0

=




=




t
u

, ,0),,( =
=h

tu


          (2.12) 

0),,(
0
=

=
 tv , 

t

h
tv

h 


=

=
 ),,( ,         (2.13) 

𝑝|𝜉=0 = 𝑝0, 𝑝|𝜉=𝑙 = 𝑝𝑙.                                                                             (2.14) 

The  properties of the nanofluids Ref: [13] are described by: 

(𝜌𝛾)𝑛𝑓 = (1 − 𝜑)(𝜌𝛾)𝑓 + 𝜑(𝜌𝛾)𝑠,  𝜇𝑛𝑓 =
𝜇𝑓

(1−𝜑)2.5 ,                                                                   (2.15a) 

( )
( )

2

2

2

2

(1 ) log
.

(1 ) log

CNT fCNT

CNT f f

f CNT f

CNT f f

k kk

k k k

nf f k k k

k k k

k k









+

−

+

−

 − +
 =
  − +
 

                    (2.15b) 

Here f denotes fluid density, s represents density of the nanoparticles,  𝑘𝐶𝑁𝑇 denotes 
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thermal conductivity of the SWCnt and MWCnt, f  represents  the thermal expansion 

coefficient of base fluid, s  denotes  the thermal expansion coefficient of the nanoparticles  

and 𝜑 represents  the nanoparticle volume fraction.   

 

2.3. Analytical solutions: 

The mathematical  solutions of above Eqs. (2.8) − (2.10) are obtained as: 

𝜃(𝜉, 𝜂, 𝑡) =
1

2
[

𝑘𝑓

𝑘𝑛𝑓
𝛽(ℎ − 𝜂)(ℎ + 𝜂)] ,                                     (2.16) 

 

𝑢(𝜉, 𝜂, 𝑡) =
(𝜂2−ℎ2){

𝑘𝑓

𝑘𝑛𝑓
𝛽𝐺𝑟𝑇

(𝜌𝛾)𝑛𝑓

(𝜌𝛾)𝑓
(𝜂2−5ℎ2)}+12

𝑑𝑃

𝑑𝜉

24(1−𝜑)−2.5  .                                                                            (2.17) 

To calculate transverse velocity, the axial velocity equation (2.17) along with boundary 

condition (2.13)  is used in equation (2.7)  . The expression for transverse velocity becomes: 

 

𝑣(𝜉, 𝜂, 𝑡) =
𝜂ℎ

𝜕ℎ

𝜕𝜉
(

𝑘𝑓

𝑘𝑛𝑓
𝛽𝐺𝑟𝑇

(𝜌𝛾)𝑛𝑓

(𝜌𝛾)𝑓
(𝜂2−5ℎ2)+6

𝑑𝑃

𝑑𝜉
)−𝜂(𝜂2−3ℎ2)

𝑑2𝑃

𝑑𝜉2

6(1−𝜑)−2.5  .                             (2.18)                       

 

By using vibration transverse boundary condition in Eq. (2.18)  gives : 

(1 − 𝜑)−2.5 𝜕ℎ

𝜕𝑡
=

𝜕ℎ

𝜕𝜉
(

𝑘𝑓

𝑘𝑛𝑓
𝛽𝐺𝑟𝑇

(𝜌𝛾)𝑛𝑓

(𝜌𝛾)𝑓
(−

2

3
ℎ4) + ℎ2 𝑑𝑃

𝑑𝜉
) +

ℎ3

3

𝑑2𝑃

𝑑𝜉2.                 (2.19)                                                                                                  

 

To calculate pressure gradient, Integrate Eq. (2.19) w.r.t. 𝜉 : 

𝜕𝑃

𝜕𝜉
=

3

ℎ3 {𝐴(𝑡) +
𝜖∗cos 𝜋(𝜉−𝑡)

(1−𝜑)2.5 } + 𝐺𝑟𝑇

(𝜌𝛾)𝑛𝑓

(𝜌𝛾)𝑓
(

2

5

𝑘𝑓

𝑘𝑛𝑓
𝛽ℎ2).                             (2.20)                 

 

To calculate pressure difference Δ𝑃, Integrate (2.20) w.r.t. 𝜉 : 

Δ𝑃(𝜉, 𝑡) = ∫
3

ℎ3 {𝐴(𝑡) +
𝜖∗cos 𝜋(𝜉−𝑡)

(1−𝜑)2.5 } + 𝐺𝑟𝑇

(𝜌𝛾)𝑛𝑓

(𝜌𝛾)𝑓
(

2

5

𝑘𝑓

𝑘𝑛𝑓
𝛽ℎ2)

𝜉

0
𝑑𝜉.                             (2.21)  
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Upon replacing Δ𝑃(𝜉, 𝑡) = 𝑝(𝜉, 𝑡) − 𝑝(0, 𝑡) and  𝜉 = 𝑙, and putting the finite length 

condition, we get: 

𝑝𝑙 − 𝑝0 = ∫ {
3

ℎ3 {𝐴(𝑡) +
𝜖∗cos 𝜋(𝜉−𝑡)

(1−𝜑)2.5 } + 𝐺𝑟𝑇

(𝜌𝛾)𝑛𝑓

(𝜌𝛾)𝑓
(

2

5

𝑘𝑓

𝑘𝑛𝑓
𝛽ℎ2)}

𝑙

0
𝑑𝜉 .                          (2.22) 

Where 𝐴(𝑡) is calculated by re-arranging (2.22) and solving with the help of Mathematica, it 

gives : 

𝐴(𝑡) =
(𝑝𝑙−𝑝0)−∫ [

3𝜖 cos 𝜋(𝜉−𝑡)

ℎ3(1−𝜑)2.5 ]𝑑𝜉−𝐺𝑟𝑇

(𝜌𝛾)𝑛𝑓
(𝜌𝛾)𝑓

[
2

5

𝑘𝑓

𝑘𝑛𝑓
𝛽 ∫ ℎ2𝑑𝜉

𝑙
0 ]

𝑙
0

∫
3

ℎ3𝑑𝜉
𝑙

0

 .                    (2.23) 

 

2.4. Graphical representation and discussion: 

From figure 2.2, It is seen that the thermal conductivity gains higher magnitude for SWCnt as 

compared to MWCnt by providing each constraint a fixed value . From figure 2.3, It is seen that 

the temperature rise gains more magnitude and varies directly with   for an irregular channel. 

Moreover, the rise in temperature is slightly less for SWCnt’s as compared to MWCnt’s. From 

Fig. 2.4, we observe that by increasing both  𝛽 and 𝐺𝑟𝑇, the axial velocity ( , )u    increases. The 

axial velocity for MWCnt is higher than SWCnt in all covers but this grow is slightly greater in 

case of regular channel and it is maximum where η = 0. Fig. 2.5 shows the transverse velocity 

and its diversification for   and 𝐺𝑟𝑇 . Like axial velocity, the transverse velocity holds same 

amenities except that it is minimum where 𝜂 = 0. It is observed that MWCnt’s play their key 

role to increase the magnitude of both transverse  and  axial velocities. Fig. 2.6 depicts the 

sinusoidal behaviour of Pressure gradient. Pressure gradient and thermal Grashof number are 

directly in relation. For 𝛼 ≠ 0 (i.e.non-uniform channel), by increasing the channel’s length the 

pressure gradient increases. 

For both SWCnt and MWCnt, the streamlines are drawn for distinct  values of   as depicted  in 

figures 2.7 and 2.8(a,b). Graphs show that in the case of SWCnt bolus decreases in size and 

increases in number by increasing β. But for MWCnt, we have opposite results. The size of 

trapped bolus increases and  bolus  decreases in number  by increasing  . In  both cases (i.e. 

SWCnt and MWCnt), streamlines for various values of  𝐺𝑟𝑇  are shown in Figs. 2.9 and 2.10(a,b). 

It is noted that with an increase of 𝐺𝑟𝑇  (for  SWCnt and MWCnt), the size of trapped bolus 

decreases. 
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                                       Fig. 2.2 Effective thermal conductivity( 
𝑘𝑛𝑓

𝑘𝑓
 ). 
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                                                Fig2.3(a) 

                                                                                      

                                                

                                                  Fig2.3(b) 

  

 

Fig. 2.3 Temperature profile ( 𝜃(𝜉, 𝜂) 𝑣𝑠 𝜂 ) for various values of  (a)  𝛽 where 𝛼 = 0, (b)  𝛽 

where 𝛼 = 0.1. 
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                                                   Fig2.4(a) 

 

                                           

                                     Fig2.4(b)                                                                                                            

 
 

 

                                    

                                    Fig2.4(c) 

 

 

                                     Fig2.4(d)

  

 

Fig. 2.4 Axial velocity profile ( 𝑢(𝜉, 𝜂) 𝑣𝑠 𝜂 ) for various values of (a)  𝛽 where 𝛼 = 0,  (b) 𝛽 

where 𝛼 = 0.1, (c) 𝐺𝑟𝑇   where 𝛼 = 0, (d) 𝐺𝑟𝑇   where 𝛼 = 0.1. 
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                                       Fig2.5(a) 

 

 

                                        Fig2.5(b) 

 

 

 

 

                                     Fig2.5(c) 

 
 

                                

                                        Fig2.5(d) 

 

 

Fig. 2.5 Transverse velocity profile ( 𝑣(𝜉, 𝜂) 𝑣𝑠 𝜂 ) for various values of (a) 𝛽 where 𝛼 = 0,   

(b) 𝛽 where 𝛼 = 0.1,  (c) 𝐺𝑟𝑇 where  𝛼 = 0, (d)  𝐺𝑟𝑇 where 𝛼 = 0.1. 
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                                     Fig2.6(a) 

 

  

                                          Fig2.6(b) 

 

 

 

 

                                      Fig2.6(c) 

 
 

 

                                        Fig2.6(d) 

 

 

Fig. 2.6 Pressure gradient for discrete values of (a) 𝛽 where 𝛼 = 0, (b) 𝛽 where 𝛼 = 0.1,  (c)  𝐺𝑟𝑇 

where 𝛼 = 0, (d) 𝐺𝑟𝑇 where 𝛼 =  0.1. 
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Figs. 2.7 Streamlines (SWCnt) for (a) 𝛽 = 0.5. (b) 𝛽 = 0.8. Other constants are 𝐺𝑟𝑇 = 0.5,  

φ=0.2, α= 0.4, ε = 0.3, t=0.5, δ = 0.1. 

  

 

Figs. 2.8 Streamlines (MWCnt) for (a) 𝛽 = 0.5. (b) 𝛽 = 0.8. Other constants are 𝐺𝑟𝑇 = 0.5,  

φ=0.2, α=0.4, ε = 0.3, t=0.5, δ = 0.1. 
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Figs.2.9 Streamlines (SWCnt) for (a) 𝐺𝑟𝑇 = 0.3. (b)  𝐺𝑟𝑇 = 0.6. Other constants are β=0.5, 

 ϕ=0.2, α=0.4, ε=0.3, t=0.5, δ=0.1. 

  

 

Figs 2.10 Streamlines (MWCnt) for (a) 𝐺𝑟𝑇 = 0.3. (b)  𝐺𝑟𝑇 = 0.6.   Other constants are 𝛽 = 0.5,  

ϕ=0.2, α=0.4, ε=0.3, t=0.5, δ=0.1. 
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2.5. Conclusions: 

1. The temperature  rise  is greater for MWCnt. 

2. Axial velocity increases by increasing both   𝛽 and  𝐺𝑟𝑇. 

3. The pressure gradient  rises by increasing both  𝛽 and  𝐺𝑟𝑇. 

4. By increasing the values of 𝛽 and 𝐺𝑟𝑇, the pressure difference reduces. 

5. By increasing  𝛽  for SWCnt,the trapped bolus increases in number and decreases in size. 

6. By increasing  𝛽  for MWCnt, the trapped bolus decreases in number and  decreases in size. 

7. By increasing values of 𝐺𝑟𝑇 , size of boluses decreases for both SWCnt and MWCnt. 
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Chapter 3 

Pressure Driven Peristaltic Flow Study 

With the Interaction of Nanoparticles 
              

3.1. Introduction: 

In this chapter an analytical investigation of Carbon nanotubes(CNTs) with variable viscosity  is 

done to analyse  the peristaltic transient flow of nanofluids in an irregular pipe of finite 

measure. This flow geometry accommodates a broad range of biological applications. Exact 

mathematical solutions are determined.  Influence  of CNTs on temperature,  axial and 

transverse velocities, effective thermal conductivity and on pressure gradient is studied 

graphically. Trapping is also studied. The model has applications in drugs delivery.system. 

3.2. Mathematical formulation: 

The geometrical model  is same as it was taken in chapter 2 which is given in Eq(2.1). Governing 

equations are amended with low-Reynolds number and also long wavelength approximation is 

taken into account. 1T   denotes the extent of the temperature at the wall )( h= . According to 

Boussinesq interpretation, the transport equations with a particular reference pressure are 

described in Ref: [35] for the scheme and subsequent assumptions are considered as: (a) 

Streamline flow with constant density , (b) negligible external forces, (c) no chemical reactions, 

(d) insignificant radioactive heat transfer, (e) insignificant viscous dissipation, (f) base fluid and 

nanoparticles regionally in thermal equilibrium, (g) variable fluid viscosity is considered. 

Law of conservation of mass (Component form): 

v
0.

u



  
+ =


     (3.1)  
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Axial momentum equation: 

( ) ( )
2 2

122
.nf nf nf

p u u
u v u g T T

t
  

   

         
   + + = − + + + −  

       
      (3.2) 

Transverse momentum equation: 

2 2

22
.nf nf

p v v
u v v

t
 

   

         
  + + = − + +  

       
         (3.3) 

Energy equation:                           

( )
2 2

022
.p nfnf

T T
c u v T k Q

t


  

       
  + + = + +  

      
         (3.4)         

Here u and v represents axial and transverse velocities, ~  transverse coordinate, T   shows 

temperature, 
1T  is wall temperature, 0

~
Q is constant heat absorption parameter,  g denotes 

gravity, nf  depicts density of nanofluids, fk denotes  thermal conductivity of the base fluid, 

p  denotes  pressure,  nf depicts the thermal expansion coefficient . Moreover ( )
nfpc  

represents heat capacitance. 

To non-dimensionlize the BVP, the given  non-dimensional parameters are used as described in 

Eq. (3.5).  

2

0

0 0

3

0 0 10 0 01

2

0 1 1

, , , , , , 1 cos ( ),

, , ,Re , , .
f f f

T

f f f

p act u v h
t u v p h t

a c c c a

ca g a Ta Q aT Tb
Gr

a T k T

  
    

     

  
   

  

 
= = = = = = = = + − −

−
= = = = = =

       (3.5) 

Where is dimensionless wave number,  is kinematic viscosity,  is amplitude ratio,  is 

rescaled nanoparticle volume fraction,   is dimensionless temperature, Re  is Reynolds 

number,  is heat absorption parameter and TGr  is thermal Grashof number. By using long 

wavelength estimation (i.e. the wavelength for peristaltic is much more than the channel 

breadth, viz, a  ), As 0→ and then also Re 0→ . Intending 0→  refutes channel 

curvature effects and convective inertial forces are neutralised in comparison of viscous 
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hydrodynamic forces as Re 0→ . By using these estimations,  Equations (3.1) − (3.4) implies 

that:                                                      

                                                  
v

0,
u

 

 
+ =

 
                                    (3.6) 

                                                 
( )

( )
,

nf nf

T

f f

p u
Gr




    

   
= +     

                                 (3.7)      

                                                  ,0=






p
                                                                             (3.8) 

                                                  
2

2
0.

f

nf

k

k







+ =


                                                                              (3.9)  

The related boundary conditions are  described  as follows: 

   
0

( , , ) 0, ( , , ) 0
h

t t





    

 =

=


= =


,          (3.10) 

  0),,(
0

=




=




t
u

, ,0),,( =
=h

tu


                        (3.11) 

  0),,(
0
=

=
 tv ,

t

h
tv

h 


=

=
 ),,( ,          (3.12) 

   𝑝|𝜉=0 = 𝑝0, 𝑝|𝜉=𝑙 = 𝑝𝑙.                                                                              (3.13) 

The  properties of the nanofluids  Ref: [13] are described by:                  

   (𝜌𝛾)𝑛𝑓 = (1 − 𝜑)(𝜌𝛾)𝑓 + 𝜑(𝜌𝛾)𝑠, 
( )
( )

.
log)1(

log)1(

2

2

2

2















+−

+−
=

+

−

+

−

f

fCNT

fCNT

f

f

fCNT

fCNT

CNT

k

kk

kk

k

k

kk

kk

k

fnf kk







   (3.14) 

The Reynold’s model for nanofluid viscosity can be defined as follows: 

 
( )

2.5
1

nf

f

e 

 

−

=
−

, 𝑎𝑛𝑑 𝑒−αθ = 1 − 𝛼𝜃,   α << 1.                                                                         (3.15) 

Where  𝜇𝑓 is constant viscosity of fluid and 𝛼 is viscosity parameter. 



21 
 

In Eq(3.14), f  represnts fluid density, s denotes  density of the nanoparticles,  𝑘𝐶𝑁𝑇 

repreents thermal conductivity of the SWCnt and MWCnt, f  denotes  the thermal expansion 

coefficient of base fluid, s  represents  the thermal expansion coefficient of the nanoparticles  

and 𝜑  represents  the nanoparticle volume fraction.   

3.3. Analytical solutions: 

The mathematical solutions of above Eqs. (3.7) − (3.9) are obtained as: 

 𝜃(𝜉, 𝜂, 𝑡) =
1

2
[

𝑘𝑓

𝑘𝑛𝑓
𝛽(ℎ − 𝜂)(ℎ + 𝜂)],                                                                                          (3.16)                                                                                       

   

( )
2 2 2 2 2 2 4( ){ ( ( 3 ) 5 ( 3 ) 4 )

( )

2 29(4 ) }

( , , )
2.572(1 )

T

k k k k
f nf f f f

h Gr h h
k k k k
nf f nf nf nf

k k
dPf f

h
k k d
nf nf

u t


       



  


 


− − − + − − + +

+ − +

=
−−

.  (3.17)                                                                                                      

 

The expression for the  transverse velocity in Eq.(3.18) is obtained by using the axial velocity 

given in (3.17) with boundary condition (3.12)  in Eq.(3.6):  

 

2
2 2

2

( )
2 2 2 2 2 2 24 { ( ( 5 ) 5 (5 2 )) 5( 6 3 )

( )

2 2 2} { ( 20 3 ) 5 (12 2 3 )}

( , , )
2.5120(1 )

T

k k k k k k
f nf f f f f f

h Gr h h h
k k k k k k
nf f nf nf nf nf nf

k k k
dP h d Pf f f

h h
d k k k d

nf nf nf
v t


          



      
  

 


− − + + − + + − + −


+ − + + − +


=

−−

 .  (3.18) 

 

The volume flow rate is defined as follows Ref:  [25]:  

=
h

udQ
0

 .                                                                                                                                               (3.19)                                                                                                                            
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By using Eq. (3.17) into Eq. (3.19), we get the following equation: 

5 2 3 2

2.5

( )
(14 3 ) 7 (5 )

( )

105(1 )

nf f f f

T

f nf nf nf

k k k dP
Gr h h h h

k k k d
Q

   
 

 

 −

+ − +

=
−

.                         (3.20)     

The wave frame ( X ,Y ) is going with the velocity c, the transformation among a wave frame       

( X ,Y ) and the fixed frame ( ,  ) are considered as cited in Refs: [29-34]:  

, , ,X ct Y U u c V v = − = = − = ,                                                                                                   (3.21)                                                                                                  

Where (U ,V ) are the velocity components in the moving wave frame and ( u , v ) are the 

velocity components in the fixed frame respectively. The volume flow rate in wave frame can be 

calculated with the following relation: 

0

( 1)

h

Q U dY= + .                                                                                                                         (3.22)                                                                                                                                            

By integrating Eq.(3.22),we  get the following expression:  

Q q h= +                                                                                                                                               (3.23)                                                                                                                                                                                            

Where  
0

.

h

q UdY =   

By taking the average volume flow rate through unit  time period, we get: 

( )
1 1

0 0

Q Qdt q h dt= = +  .                                                                                                                (3.24)                                                                                                                           

From Eq. (3.23) and Eq. (3.24), we obtained the  following equation:  

1 1Q Q h q= + − = + .                                                                                                                         (3.25) 

Eq. (3.20) and Eq. (3.25) yield a compressed form for the pressure gradient: 

2.5 5 2

3 2

( )
105(1 ) ( 1 ) (14 3 )}]

( )

7 (5 )

f nf f

T

nf f nf

f

nf

k k
Q h Gr h h

k kdp

kd
h h

k

  






−− − − + + +

=

+

.                          (3.26) 
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The  pressure difference  over unit  wavelength (∆p) is given  in Eq. (3.27) : 

1

0

dp
p d

d



 =  .                                                                                                                                         (3.27) 

By applying the transformations of Eq. (3.21) into Eq. (3.17), the stream function in the wave 

frame (obeying the Cauchy–Riemann equations ,U V
 

 

 
= = −
 

) is obtained as: 

4 6 2 2 2 2 2

2 2 2 2 2 2

2.5

( )
(21 5 7 (6 ( 5 ) 5 (15 3

( )

4 ))) 21 ( ( 20 3 ) 5 (12 2 3 )) )

( , )
2520(1 )

f nf f f f

T

nf f nf nf nf

f f f f

nf nf nf nf

k k k k
Gr h h

k k k k

k k k k dP
h h h

k k k k d


         



       


   
 −

− + − + + −

+ − − + + − +

= −
−

.       (3.28)          

3.4. Graphical representation and discussion: 

From figure 3.1, It is seen that the thermal conductivity gains higher magnitude for SWCnt as 

compared to MWcnt by providing each constraint a fixed value .  From figure 3.2(a,b), It is seen 

that the temperature rise gains more magnitude and varies directly with   for an irregular 

channel. Moreover, the rise in temperature is slightly less for SWCnt’s as compared to MWCnt’s.  

Fig. 3.3(a,b,c,d) shows increase in axial velocity ( , )u   by increasing  𝛽 and 𝐺𝑟𝑇 and the axial 

velocity for MWCnt is higher than that of SWCnt in both uniform and non-uniform channels but 

the velocity gains more magnitude for irregular pipe. Axial  velocity is maximum at 𝜂 = 0 which 

is actually the center of tube. The transverse velocity ( , )v   and variation in it, for 𝛽 and 𝐺𝑟𝑇 is 

shown in Fig. 3.4(a-d). The transverse velocity by increasing  both 𝛽 and 𝐺𝑟𝑇 in all cases but at 

the center of the tube where  𝜂 = 0, it is minimum. It is noted that  SWCnt achieves higher 

transverse velocity as compared to the MWCnt in both channels. 

Fig. 3.5(a,b,c,d) presents that due to increase in β and 𝐺𝑟𝑇, pressure gradient increases and it 

shows linear behaviour. Pressure gradient  is directly proportional to both  β and 𝐺𝑟𝑇.  

For both SWCnt and MWCnt, the streamlines for distinct  values of   are shown in Figs. 3.6(a,b) 

and 3.7(a,b). Graphs show that with an increase in   for both SWCnt and MWCnt both the size 

and the number of bolus decreases.  
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Streamlines(SWCnt and MWCnt) for various  values of  𝐺𝑟𝑇  are shown in Figs. 3.8(a,b) and 

3.9(a, b). It is perceived that with an increase in 𝐺𝑟𝑇 , the trapped bolus decreases in  number 

and size. 
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                                        Fig. 3.1 Effective thermal conductivity( 
 𝑘𝑛𝑓

𝑘𝑓
 ).    

 

 

 

 

 



26 
 

 

Fig. 3.2(a) Temperature profile (𝜃(𝜉, 𝜂) 𝑣𝑠 𝜂) for different values of 𝛽 where  𝛼 =0 (i.e.uniform 

channel). 

     

Fig. 3.2 (b) Temperature profile (𝜃(𝜉, 𝜂) 𝑣𝑠 𝜂) for different values of 𝛽 where  𝛼=0.1 (i.e.non-

uniform channel). 
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Fig. 3.3(a) Axial velocity profile (𝑢(𝜉, 𝜂) 𝑣𝑠 𝜂) for different values of 𝛽 where 𝛼 = 0 (i.e.uniform 

channel). 

 

Fig. 3.3(b) Axial velocity profile (𝑢(𝜉, 𝜂) 𝑣𝑠 𝜂) for different values of 𝛽 where 𝛼 = 0.1 (i.e.non-

uniform channel).                      
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Fig. 3.3(c) Axial velocity profile (𝑢(𝜉, 𝜂) 𝑣𝑠 𝜂) for different values of 𝐺𝑟𝑇 where 𝛼 = 0 (i.e.uniform 

channel). 

  

 Fig. 3.3(d) Axial velocity profile (𝑢(𝜉, 𝜂) 𝑣𝑠 𝜂) for different values of 𝐺𝑟𝑇 where 𝛼 = 0.1 (i.e.non-

uniform channel). 
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Fig. 3.4(a) Transverse velocity profile (𝑣(𝜉,𝜂) 𝑣𝑠 𝜂) for various values of 𝛽 where 𝛼=0 (i.e.uniform 

channel).  

                                    

Fig. 3.4(b) Transverse velocity profile (𝑣(𝜉,𝜂) 𝑣𝑠 𝜂) for various values of 𝛽 where 𝛼 =0.01 (i.e.non-

uniform channel). 
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Fig. 3.4(c) Transverse velocity profile (𝑣(𝜉,𝜂) 𝑣𝑠 𝜂) for various values of 𝐺𝑟𝑇 where 𝛼 =0 

(i.e.uniform channel). 

           

Fig. 3.4(d) Transverse velocity profile (𝑣(𝜉,𝜂) 𝑣𝑠 𝜂) for various values of 𝐺𝑟𝑇 where 𝛼 =0.01 

(i.e.non-uniform channel).  
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   Fig. 3.5(a)  Pressure gradient by  taking  discrete values of  𝛽  with 𝛼 = 0 (i.e.uniform channel). 

                             

Fig. 3.5(b) Pressure gradient by taking discrete values of 𝛽 with 𝛼 = 0.01 (i.e.non-uniform   

channel). 
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Fig. 3.5(c) Pressure gradient by  taking  discrete  values of  𝐺𝑟𝑇  with  𝛼 = 0  (i.e.uniform channel). 

        

Fig. 3.5(d) Pressure gradient by taking discrete values of  𝐺𝑟𝑇 with 𝛼 = 0.01 (i.e.non-uniform 

channel). 
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         Fig. 3.6(a) Streamlines (SWCnt) for 𝛽 = 60 and other  parameters are 𝜖 = 0.1; 

𝑡 = 0.5; 𝜙 = 0.1; 𝛿 = 0.1; 𝛼 = 0.001;  𝐺𝑟𝑇 = 0.01; 𝑄
_

= 50. 

                                   

        Fig. 3.6(b) Streamlines (SWCnt) for 𝛽 = 65 and other  parameters are 𝜖 = 0.1; 

𝑡 = 0.5; 𝜙 = 0.1; 𝛿 = 0.1; 𝛼 = 0.001;  𝐺𝑟𝑇 = 0.01; 𝑄
_

= 50. 



34 
 

                            

       Fig. 3.7(a) Streamlines (MWCnt) for 𝛽 =60 and other  parameters are 𝜖 = 0.1; 

𝑡 = 0.5; 𝜙 = 0.1; 𝛿 = 0.1; 𝛼 = 0.001;  𝐺𝑟𝑇 = 0.01; 𝑄
_

= 50. 

                       

      Fig. 3.7(b) Streamlines (MWCnt) for   𝛽 =65 and other parameters are 𝜖 = 0.1; 

                           𝑡 = 0.5; 𝜙 = 0.1; 𝛿 = 0.1; 𝛼 = 0.001;  𝐺𝑟𝑇 = 0.01; 𝑄
_

= 50.   
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               Fig. 3.8(a) Streamlines (SWCnt) for  𝐺𝑟𝑇 = 60 and other parameters are 𝜖 = 0.1; 

                                              𝑡 = 0.5; 𝜙 = 0.1; 𝛿 = 0.1; 𝛼 = 0.001; 𝛽 = 0.01; 𝑄
_

= 50.  

                        

                 Figs. 3.8(b) Streamlines (SWCnt) for  𝐺𝑟𝑇 = 65 and other parameters are 𝜖 = 0.1; 

           𝑡 = 0.5; 𝜙 = 0.1; 𝛿 = 0.1; 𝛼 = 0.001; 𝛽 = 0.01; 𝑄
_

= 50. 
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            Fig. 3.9(a) Streamlines (MWCnt) for  𝐺𝑟𝑇 = 60 and other parameters are 𝜖 = 0.1; 

                                     𝑡 = 0.5; 𝜙 = 0.1; 𝛿 = 0.1; 𝛼 = 0.001; 𝛽 = 0.01; 𝑄
_

= 50.  

             

            Fig. 3.9(b) Streamlines (MWCnt) for  𝐺𝑟𝑇 = 65 and other parameters are 𝜖 = 0.1; 

                                          𝑡 = 0.5; 𝜙 = 0.1; 𝛿 = 0.1; 𝛼 = 0.001; 𝛽 = 0.01; 𝑄
_

= 50. 
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3.5. Conclusions: 

1.  Single wall carbon nanotubes attain higher thermal  conductivity. 

2.  In the  case of multi wall carbon nanotubes, temperature rise is marginally greater.  

3.  The axial  velocity increases by increasing  both 𝛽 and  𝐺𝑟𝑇. 

4.  The axial velocity gains more magnitude for MWCnt than that of SWCnt. 

5.  The transverse velocity increases by increasing  both 𝛽 and  𝐺𝑟𝑇. 

6.  The transverse velocity gains more magnitude for SWCnt than that of MWCnt. 

7. The pressure gradient shows linear behaviour and it is directly proportional to both  𝛽 and 

 𝐺𝑟𝑇.  

8.  Trapped boluses decreases in number by increasing  𝛽 and  𝐺𝑟𝑇 for both SWCnt and MWCnt. 

9.  Size of boluses reduces by increasing  𝛽 and  𝐺𝑟𝑇 for both SWCnt and MWCnt. 
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