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Abstract

In this thesis we review the paper [11], in which some different bounds related

to the Stanley depth of monomial ideal I ⊂ S are given. For example Stanley depth

of monomial ideal denoted by I is less than or equal to the Stanley depth of any

prime ideal Ω associated to S/I. Furthermore, if the associated prime ideals of S/I

are generated by disjoint sets of variables, then Stanley’s conjecture holds for I and

S/I.

We find some classes of monomial ideals whose Stanley depth is equal to its

lower bound. Furthermore, we also show that Stanley’s conjecture holds for these

classes of monomial ideals. For these ideals we have also shown that sdepth(I) ≥

sdepth(S/I) + 1. If I is the intersection of four prime ideals that is I =
4⋂

j=1

Ωj and

Ωk ⊂
4∑

1=j 6=k

Ωj for all j 6= k, then we have good bound for Stanley depth of I and S/I.

Also if I is the intersection of five prime ideals that is I =
5⋂

j=1

Ωj and Ωi ⊂
5∑

1=j 6=i

Ωj

for all i 6= j, then we have a good bound for Stanley depth of I.
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Introduction

In [20], Stanley introduced the idea of what is now called the Stanley depth of a

Zn-graded module over a commutative ring. This is combintorial invariant which has

some common properties with the homological invariant depth. Stanley conjectured

that depthM ≤ sdepthM , but it still remains largely open. Herzog, Vladoiu and

Zheng considered the Stanley depth of monomial ideals in [8] and showed that the

Stanley depth of a monomial ideal can be computed by partitioning a finite poset

associated to the ideal into intervals. The difficulty of computing Stanley depths is

one of the main obstacles for verifying the Stanley’s conjecture. It is still practically

very difficult to find the Stanley depth for modules even for monomial ideals, if the

method of [8] is applied. In this thesis we try to find some good bounds for the

Stanley depth of some square free monomial ideals.

This thesis consists of four chapters. First chapter is devoted to basic definitions

and results that are fundamental to the development later in this project. We

review the background on abstract algebra that we need in the study of commutative

algebra.

Second chapter summarizes the essentials of the theory of Stanley depth and

Stanley decomposition. Here we recall the principle results related to the Stanley

depth of some multigraded S-modules. Let S = K[x1, · · · , xn] denotes the polyno-

mial ring in n unknowns over a field K and a finitely generated Zn-graded S-module

is denoted by M. It is well known that for a field K, the Stanley depth of the max-

imal ideal (x1, · · · , xn) ⊂ K[x1, · · · , xn] is exactly dn
2
e by [2]. In this chapter, some

important results about the depth and dimension of monomial ideals and module

are given. For general monomial ideals result sdepthS[xn+1](I, xn+1) ≤ sdepthS I + 1

given by [10] is also mentioned in this chapter.

In third chapter, we review paper [11]. Let Ω denotes an associated prime

ideal of S/I. We already know that depthS S/I ≤ depthS S/Ω = dim S/Ω and

depthS I ≤ depthS Ω. In [1], it was proved by Apel that sdepthS S/I ≤ dim S/Ω



and Theorem 3.1.1 shows that sdepthS I ≤ sdepthS Ω. We denote the minimal

monomial generators of I by G(I) and let s denotes the cardinality of G(I). Corol-

laries 3.1.3 and 3.1.4 says that if there exist an associated prime ideal Ω of S/I with

ht Ω = s then sdepthS I = n− b s
2
c.

Let AssS/I = {Ω1, · · · ,Ωr}, if Ωj 6⊂
r∑

j 6=k

Ωk, where 1 ≤ j ≤ r and I is square free

ideal. Then by [18], we have sdepthS(I) ≥ depthS(I). Suppose thatG(Ωj)∩G(Ωk) =

∅ for all j 6= k. In particular, the result mentioned above holds in this situation as

it was proved in [15]. Corollary 3.1.7 says that previous result holds even if I is

not square free. Furthermore, Theorem 3.2.1 says that sdepthS S/I ≥ depthS S/I.

Hence in this situation Stanley conjecture holds for I and S/I.

It is very difficult to compute the Stanley depth even we adopt the method

mentioned in [8]. So in this chapter, the detail of some results which gives tight

bounds are mentioned. If r = 3, a = ht Ω1 ≤ b = ht Ω2 ≤ c = ht Ω3 then an

upper bound for sdepthS S/I is given by b + d c
2
e except possibly in the case when

a = b 6= c, b = a + 1 and a is odd when a < c (see Proposition 3.2.4 and Corollary

3.2.3). Lemma 3.2.5 says that sdepthS S/I ≥ min{a + b, a + d c
2
e, da

2
e + d c

2
e}. Some

good upper bounds for the sdepthS I, when r = 3 but G((Ωj))j are not necessarily

disjoint, are mentioned in section 3. Bounds given by Lemma 3.3.5, Theorem 3.3.7

and Proposition 3.3.8 are not good but very strong in certain cases as in example

3.3.1, 3.3.2 and 3.3.3. Some good results of Stanley depth are stated in Corollaries

3.1.3, 3.1.4 and 3.2.6.

In fourth chapter, we find some classes of monomial ideals whose Stanley depth is

equal to its lower bound. Further, we have shown that Stanley’s conjecture holds for

these classes. For these ideals Corollary 4.1.4 shows that sdepthS(I) ≥ sdepthS(S/I)

+1. Let Ω be a prime ideal, I =
4⋂

j=1

Ωj and Ωk ⊂
4∑

1=j 6=k

Ωj for all j 6= k, Lemma

4.2.1 says that I is a square free monomial ideal and all generators of I are of degree

two. Lemma 4.2.2 and 4.2.3 gives good bound for I and S/I respectively. Also if



I =
5⋂

j=1

Ωj and Ωi ⊂
5∑

1=j 6=i

Ωj for all i 6= j then Lemma 4.2.4 says that I is a square

free monomial ideal and all generators of I are of degree three. Lemma 4.2.5 says

that 3 ≤ sdepth(I) ≤
⌊
n+3

2

⌋
.



Contents

1 Preliminaries 1

1.1 Rings, fields and modules . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Monomial ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Stanley decomposition and the Stanley depth 15

2.1 Stanley decomposition and the Stanley depth . . . . . . . . . . . . . 15

2.2 Some known values and bounds for Stanley depth . . . . . . . . . . . 17

3 Values and bounds for the Stanley depth 22

3.1 Upper bounds of the Stanley depth of monomial ideals . . . . . . . . 22

3.2 Stanley depth of multigraded cyclic modules . . . . . . . . . . . . . . 25

3.3 Upper bounds for intersection of three prime ideals . . . . . . . . . . 30

4 Bounds for the Stanley depth of some square free monomial ideals 36

4.1 Some classes of monomial ideals whose Stanley depth is equal to its

lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Bounds of some square free monomial ideals . . . . . . . . . . . . . . 40

Bibliography 48



Chapter 1

Preliminaries

This chapter is devoted to a brief introduction of basic concepts of abstract algebra

and commutative algebra. These concepts will be helpful in the results of next

chapters.

1.1 Rings, fields and modules

Definition 1.1.1. Let R be a non empty set with two binary operations, called

addition and multiplication and denoted by “ + ” and “.”, respectively. Then the

algebraic system 〈R,+, .〉 is called a ring, if

<1. 〈R,+〉 is an abelian group.

<2. Multiplication is associative, i.e 〈R, .〉 is a semigroup.

<3. For all x, y, z ∈ R, left distributive law, x.(y + z) = (x.y) + (x.z) and the right

distributive law (x+ y).z = (x.z) + (y.z) hold.

Example 1.1.1. 〈Z,+, .〉, 〈Q,+, .〉, 〈R,+, .〉, and 〈C,+, .〉, are rings.
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Example 1.1.2. For any non-empty set X, the power set P (X) is a ring, where

addition and multiplication is defined as follows:

for all A,B ∈ P (X),

(i) A+B = (A\B) ∪ (B\A),

(ii) A ·B = A ∩B.

Example 1.1.3. Let A = {g | g : R −→ R}. We define pointwise addition and

multiplication on A as:

for all g, h ∈ A, and r ∈ R

(i) (g + h)(r) = g(r) + h(r),

(ii) (gh)(r) = g(r)h(r).

Definition 1.1.2. A ring R is called a commutative ring, if the multiplication in R

is commutative. A ring R is said to be ring with identity, if R has an identity for

multiplication.

Definition 1.1.3. Let R be a ring with identity. An element a ∈ R is called a unit

if it has an inverse in R with respect to multiplication.

Definition 1.1.4. Let R be a ring with identity. R is called a division ring if every

non-zero element of R is a unit. A commutative division ring is called a field.

Example 1.1.4. In Z, 3 has no multiplicative inverse, so 3 is not a unit in Z hence

Z is not a field. 1 and −1 are only units in Z. However, Q and R are fields.

Proposition 1.1.1 ([6]). Let R be a ring. Then

(i) 0.r = r.0 = 0 for all r ∈ R.

(ii) (−r1)r2 = r1(−r2) = −(r1r2), for all r1, r2 ∈ R (recall −r1 is the additive

inverse of r1.
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(iii) (−r1)(−r2) = r1r2 for all r1, r2 ∈ R.

(iv) If R has an identity 1, then the identity is unique and −r = (−1)r.

Definition 1.1.5. If x and y are two non-zero elements of a ring R such that xy = 0,

then x and y are called zero divisors.

Theorem 1.1.2 ([6]). In the ring Zn, the zero divisors are precisely those non-zero

elements that are not relatively prime to n.

Corollary 1.1.3 ([6]). If p is a prime, then Zp has no zero divisors.

Definition 1.1.6. A commutative ring with identity 1 6= 0 without zero divisors is

called an integral domain.

Theorem 1.1.4 ([6]). Any finite integral domain is a field.

Corollary 1.1.5 ([6]). If p is a prime, then Zp is a field.

Definition 1.1.7. The polynomial ring R[x] in the variable x with coefficients from

R is the set of all polynomials bnx
n + bn−1x

n−1 + · · ·+ b1x+ b0 with n ≥ 0 and each

bj ∈ R. If bn 6= 0 then the polynomial is of degree n, bnx
n is the leading term, and

bn is the leading coefficient. The polynomial ring in the variables x1, x2, · · · , xn with

coefficients in R, denoted by R[x1, x2, · · · , xn], is defined inductively by

R[x1, x2, · · · , xn] = R[x1, x2, · · · , xn−1][xn].

This definition means that we can consider polynomials in n variables with coeffi-

cients in R simply as polynomials in one variable (say xn) but now with coefficients

that are themselves polynomials in n− 1 variables.

Definition 1.1.8. A non-empty subset of a ring R is called a subring of R, if it is

a ring itself with respect to the same binary operations as R.

Example 1.1.5. Following are examples of subrings:
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(1) Z is a subring of Q.

(2) T = {0, 2, 4, 6, 8, 10} is a subring of Z12 and S = {0, 4, 8} is a subring of T.

(3) A = {0, 3} is a subring of Z6.

Remark 1.1.1. Let S be a subring of a ring R. Then it is possible that:

(1) R has an identity but S does not has an identity.

(2) R does not has identity but S has an identity.

(3) R and S have same identities i.e. 1R = 1S.

(4) R and S have different identities i.e. 1R 6= 1S.

Example 1.1.6. (1) 2Z is a subring of Z. The ring Z has the identity 1 but 2Z
has no identity.

(2) S of Example 1.1.5(2) has an identity which is 4, but T has no identity.

(3) Q and Z both have identities which are same.

(4) Z6 and A of Example 1.1.5(3) both have identities 1 and 3 respectively and

1 6= 3.

Proposition 1.1.6 ([6]). A non-empty subset S of a ring R is a subring of R if

and only if x− y ∈ S and xy ∈ S whenever x, y ∈ S.

Definition 1.1.9. A non-empty set I of a ring R is called an ideal, if:

(1) (I,+) is a subgroup of (R,+).

(2) for all a ∈ I, r ∈ R,

(i) ra ⊂ I,
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(ii) ar ⊂ I.

Remark 1.1.2. (1) Every ideal of a ring R is a subring of R.

(2) A subring in general is not an ideal. For instance Z is a subring of Q but not

an ideal of Q. Because 3 ∈ Z and 2
5
∈ Q but (3)(2

5
) = 6

5
/∈ Z.

Proposition 1.1.7 ([6]). A non-empty subset I of a ring R is an ideal in R if and

only if for all a, b ∈ I and r ∈ R, a− b ∈ I, ar ∈ I, ra ∈ I.

Theorem 1.1.8 ([6]). Let R be a ring with identity and I is an ideal in R. If I

contains a unit element of R, then I = R.

Corollary 1.1.9 ([6]). The only ideal of a field F are {0F} and F.

From now onwards, R is a commutative ring with unity.

Definition 1.1.10. Let I 6= R is an ideal in R, then I is called prime ideal if xy ∈ I
then either x ∈ I or y ∈ I where x, y ∈ R.

Example 1.1.7. We know that Z × {0} is an ideal in a commutative ring Z × Z.

Let (w, x)(y, z) ∈ Z × {0} then xz = 0 ∈ Z. It implies that either x = 0 or z = 0.

So (w, x) ∈ Z× {0} or (y, z) ∈ Z× {0}. Hence Z× {0} is a prime ideal of Z× Z.

Definition 1.1.11. An ideal m of a ring R is called maximal ideal, if m 6= R and

m is not properly contained in any other ideal I of R.

Definition 1.1.12. Let I be an ideal in R. I is called principal ideal if it is generated

by a single element and it is written as

I = 〈x〉, where x ∈ R.

Definition 1.1.13. An ideal I in a ring R is called primary ideal if it satisfies the

following conditions

(i) I 6= R
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(ii) For all x, y ∈ R if xy ∈ I, then either x ∈ I or there exist r ≥ 1 such that

yr ∈ I.

Remark 1.1.3. (1) prime ideals are primary.

(2) Let P is an ideal whose radical is a maximal ideal, then P is a primary ideal.

Definition 1.1.14. Let A be any subset of R. (A) is said to be the ideal generated

by A if it is the smallest ideal of R containing A. If A is a finite set then (A) is

called a finitely generated ideal.

Definition 1.1.15. If every ideal of R is finitely generated, then R is called Noethe-

rian ring.

Theorem 1.1.10 ([6]). Every ideal in the polynomial ring S = K[x1, · · · , xn] over

a field K is finitely generated.

Definition 1.1.16. A ring that has a unique maximal ideal is called a local ring.

Definition 1.1.17. Let R and S be rings. A map ψ : R −→ S is called ring

homomorphism if it satisfying:

(1) ψ(r1 + r2) = ψ(r1) + ψ(r2) for all r1, r2 ∈ R

(2) ψ(r1r2) = ψ(r1)ψ(r2) for all r1, r2 ∈ R.

The kernel of the ring homomorphism ψ, denoted as ker ψ, is the set

ker ψ = {r ∈ R : ψ(r) = 0S}.

A bijective ring homomorphism is called an isomorphism.

Theorem 1.1.11 ([6]). (First Isomorphism Theorem for Rings). If ψ : R −→ S is

a homomorphism of rings, then the kernel of ψ is an ideal of R, the image of ψ is

a subring of S and R/ kerψ ∼= ψ(R).
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Theorem 1.1.12 ([6]). (Second Isomorphism Theorem for Rings). Let R1 be a

subring and let I be an ideal of R. R1 + I = {r + x : r ∈ R1, x ∈ I} is a subring of

R, R1 ∩ I is an ideal of R1 and (R1 + I)/I ∼= R1/(R1 ∩ I).

Theorem 1.1.13 ([6]). (Third Isomorphism Theorem for Rings). Let I and J be

ideals of R with I ⊆ J . Then J/I is an ideal of R/I and (R/I)/(J/I) ∼= R/J .

Definition 1.1.18. Let R be a ring. Then a non-empty set M is called an R-module

or a module over R if it satisfies the following conditions:

(1) (M,+) is an abelian group,

(2) R×M −→ R (the image of (r,m) is denoted by rm) such that for all r1, r2 ∈ R
and m,n ∈M ,

(i) (r1 + r2)m = r1m+ r2m,

(ii) (r1r2)m = r1(r2m),

(iii) r1(m+ n) = r1m+ r1n,

(iv) 1m = m for all m ∈M.

If R is a field F , then the axioms of an R-module coincide with the axioms of

a vector space over F , it depicts that modules over F and vector spaces over F are

the same.

Example 1.1.8. Let R be any ring. Then M = R is an R-module, where action of

a ring element on a module element is just the usual multiplication in the ring R.

In particular, every field can be considered as a (1-dimensional) vector space over

itself.

Example 1.1.9. Let R = Z, let A be any additive abelian group (finite or infinite).

Make A into a Z-module as follows: for any n ∈ Z and a ∈ A, define

7



na=


a+ a+ · · ·+ a (n times) if n > 0

0 if n = 0

−a− a− · · · − a (−n times) if n < 0

(here 0 is the additive identity of the group A). Above definition of an action of the

integers on A makes A into a Z-module, and the module axioms show that this is the

only possible action of Z on A making it a (unital) Z-module. Thus every abelian

group is a Z-module. Conversely, if M is any Z-module, a fortiori M is an abelian

group, so Z-modules are the same as abelian groups. Moreover it is consequently

from the definition that Z-submodules are the same as subgroups.

Definition 1.1.19. Let R be a ring and M be an R-module. A subgroup N of M

for which rn ∈ N, for all r ∈ R and n ∈ N is called an R-submodule of M .

Remark 1.1.4. Submodules of M are subsets of M which are themselves modules

under the restricted operations.

Proposition 1.1.14 ([6]). Let M1 be a non-empty subset of the R-module M . Then

M1 is a submodule of M if and only if for all x, y ∈ M1, r ∈ R, x − y ∈ M1 and

xr ∈M1.

Definition 1.1.20. Let R be a ring and let M and N be R-modules. A map

ψ : M −→ N is an R-module homomorphism if it satisfies the following conditions:

(i) ψ(m1 +m2) = ψ(m1) + ψ(m2), for all m1,m2 ∈M and

(ii) ψ(rm) = rψ(m), for all r ∈ R,m ∈M .

Definition 1.1.21. An R-module homomorphism is an isomorphism (of R-module)

if it is bijective. If ψ : M −→ N is an R-module isomorphism, then the modules M

and N are said to be isomorphic and it is denoted as M ∼= N .

Example 1.1.10. If R is a ring and M = R is a module over itself, then R-module

homomorphism (from R to itself) need not be a ring homomorphisms and ring
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homomorphisms need not be R-module homomorphisms. For example, when R = Z,

the Z-module homomorphism n 7→ 2n is not a ring homomorphism because m 7→
2m, n 7→ 2n and mn 7→ 2nm 6= 4nm. When R = F [x], the ring homomorphism ψ :

g(x) −→ g(x2) is not an F [x]-module homomorphism because ψ(x.1) = ψ(x) = x2

but xψ(1) = x so ψ(x.1) 6= xψ(1).

Definition 1.1.22. If ψ : M −→ N is an R-module homomorphism, then kernel of

ψ is the set

ker ψ = {m ∈M : ψ(m) = 0}.

Image of ψ is the set

ψ(M) = {n ∈ N : n = ψ(m)}.

Theorem 1.1.15 ([6]). (First Isomorphism Theorem for Modules). Let M,N be

R-modules and let ψ : M −→ N be an R-module homomorphism. Then kerψ is a

submodule of M and M/ kerψ ∼= ψ(M).

Theorem 1.1.16 ([9]). (Second Isomorphism Theorem for Modules). Let M1, M2

be submodules of the R-module M , and let M1 +M2 = {m+ n : m ∈M1, n ∈M2}.
Then M1 +M2 and M1 ∩M2 are submodules of M and (M1 +M2)/M2

∼= M1/(M1 ∩
M2).

Theorem 1.1.17 ([6]). (Third Isomorphism Theorem for Modules). Let M be

an R-module, and let M1 and M2 be submodules of M with M1 ⊆ M2. Then

(M/M1)/(M2/M1) ∼= M/M2.

Definition 1.1.23. An R-module M is said to be finitely generated if and only if

there exist b1, b2, · · · , bn in M such that for all w ∈M , there exist s1, s2, · · · , sn ∈ R
with w = s1b1 + s2b2 + · · ·+ snbn. The set {b1, · · · , bn} is referred as generating set

for M in this case.

Definition 1.1.24. An R-module M is said to be Noetherian R-module or to satisfy

the ascending chain condition on submodules if every increasing chain of submodules
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stops, that is,

M1 ⊆M2 ⊆M3 ⊆ · · ·

is an increasing chain of submodules of M, then there is a positive integer r such

that Mk = Mr for all k ≥ r.

Definition 1.1.25. Let M be an R-module. A non-zero element r ∈ R is said to

be M-regular if for any m ∈M, rm = 0 implies that m = 0. In other words r is not

a zero divisor on M.

Definition 1.1.26. A sequence r = (r1, · · · , rn) of elements of R is called an M -

regular sequence, if it satisfy the following conditions:

(1) rj is M/(r1, · · · , rj−1)M -regular for any j;

(2) M 6= (r)M.

Such a sequence is also called an M -sequence.

Example 1.1.11. (1) If S = K[x1, · · · , xn] be a module over itself, then (x1, · · · ,
xn) is a regular sequence on S.

(2) If I = (x1x
2
2, x

2
1x3, x

2
2x

2
4) ⊂ S = K[x1, x2, x3, x4], then (x1 − x3, x2 − x4) is a

regular sequence on S/I.

1.2 Monomial ideals

Definition 1.2.1. Let S = K[x1, · · · , xn] be the polynomial ring in the n indetermi-

nates xi over a field K. Let Zn
+ denotes the set of vectors a = (a1, · · · , an) with each

aj ≥ 0. Any product xa11 · · · xann with aj ∈ Z+ ∪ {0} is called a monomial. A mono-

mial w = xa11 · · ·xann can be written in the form w = xa with a = (a1, · · · , an) ∈ Zn
+.

Let W be the set of all monomials of S, then W is a K-basis of S. In other words,
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g ∈ S can be written as linear combination of monomials with coefficients from field

K. Write

g =
∑
w∈W

aww with aw ∈ K.

Then the set

supp(g) = {w ∈ W : aw 6= 0}

is called support of g. And the set

supp(w) = {xi : xi | w}

is called the support of monomial w.

Definition 1.2.2. If an ideal I ⊂ S is generated by set of monomials, then it is

called a monomial ideal.

Proposition 1.2.1 ([9]). Every monomial ideal I ⊂ S has a unique minimal set of

monomial generators.

Usually G(I) denotes the unique minimal set of monomial generators of the

monomial ideal I.

Example 1.2.1. Let S = K[x1, · · · , x5] and G(I) = {x2
1x2, x

2
3x

3
4, x

4
5}, then ideal

generated by G(I) is called monomial ideal in S.

Definition 1.2.3. A monomial w is called square free, if w = xj1xj2 · · ·xjr for some

1 ≤ j1 < j2 < · · · jr ≤ n.

Definition 1.2.4. If a monomial ideal I ⊂ S is generated by square free monomials

then I is called square free monomial ideal.

Example 1.2.2. Let S = K[x1, · · · , x4], then w = x1x2x4 is square free monomial

in S and I = (x1x2x3, x2x3x4, x1x3x4, x1x2x3x4) is square free monomial ideal in S.
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Definition 1.2.5. If J ⊂ S is an ideal, then
√
J = {x ∈ S : xl ∈ J for some l > 0}

is called the radical of ideal J .

Example 1.2.3. In Example 1.2.1, radical of I is (x1x2, x3x4, x5).

Proposition 1.2.2 ([9]). Let I and J be monomial ideals. Then I∩J is a monomial

ideal, and its set of generators is defined as

{lcm(u,w) : u ∈ G(I), w ∈ G(J)}.

Definition 1.2.6. Let I, J are two ideals in S. The set

I : J = {f ∈ S : fh ∈ I for all h ∈ J}

is an ideal, called the colon ideal of I with respect to J .

Proposition 1.2.3 ([9]). Let I and J be monomial ideals. Then I : J is a monomial

ideal, and

I : J =
⋂

w∈G(J)

I : (w).

Moreover, set of generators of I : (w) is defined as {u/gcd(u,w) : u ∈ G(I)}.

Corollary 1.2.4 ([9]). A square free monomial ideal is an intersection of monomial

prime ideals.

Definition 1.2.7. Let M be an R-module, then a prime ideal Ω is called an asso-

ciated prime ideal of M if there is an injective morphism of R-modules:

ξ : R/Ω ↪→M

The set of associated primes of M is denoted by AssR(M).

Definition 1.2.8. If P is a primary ideal, then the prime ideal Ω = radP is called

the associated prime of R/P (in short we say that Ω is associated prime of P ) and P
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is said to be Ω-primary. A representation of an ideal I as an intersection I =
s⋂

j=1

Pj,

where each Pj is a primary ideal is known as Primary decomposition of I. Suppose

that {Ωj} = Ass(Pj). If none of the Pj can be omitted in this intersection and if

Ωj 6= Ωk for all j 6= k, then this type of primary decomposition is called irredundant

primary decomposition. If I =
s⋂

j=1

Pj is an irredundant primary decomposition of

I, then the Pj is called the Ωj-primary components of I, and we have Ass(I) =

{Ω1, · · · ,Ωs}.

Definition 1.2.9. Let R be a Noetherian ring and M a finitely generated R-

module. If for a prime ideal Ω ⊂ R, there exists an element y ∈ M such that

Ω = Ann(y), then Ω is said to be an associated prime ideal of M .

Example 1.2.4. Let I = (x1x
2
2, x2x

3
3, x3x

3
4, x

2
1x2x3), then

I = (x1, x3) ∩ (x2, x
3
4) ∩ (x1, x

3
3, x

3
4) ∩ (x2

2, x3) ∩ (x2
1, x

2
2, x

3
3, x

3
4),

is irredundant primary decomposition of I and Ass(I) = {(x1, x3), (x2, x4), (x1, x3, x4)

, (x2, x3), (x1, x2, x3, x4)}.

Corollary 1.2.5 ([9]). Let I ⊂ S be a monomial ideal, and let Ω ∈ Ass(I). Then

there exists a monomial w such that Ω = I : w.

Definition 1.2.10. A ring R is called graded ring or H-graded if (H,+) is an

abelian semi-group and R is the direct sum of additive subgroups:

R =
⊕
m∈H

Rm (as a group)

such that RlRm ⊂ Rl+m for all l,m ∈ H. The elements of Rk are said to be

homogeneous of degree k, and Rk is called the homogeneous component of R of

degree k.
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Definition 1.2.11. If R is an H-graded ring and M is an R-module with a decom-

position M =
⊕
m∈H

Mm (as a group) such that RlMm ⊂Ml+m for all l,m ∈ H, then

M is called an H-graded module.

Example 1.2.5. The polynomial ring S = Z[x1, · · · , xn] in n unknowns over the

ring Z is a Z-graded ring. Here S0 = Z and the homogeneous component of degree

k is the subgroup of all Z-linear combinations of monomial of degree k. Polynomial

ring is also Zn-graded. Monomial ideals in a polynomial ring are Zn-graded modules.

Definition 1.2.12. Let R be a ring. The chain of prime ideals of length k is

Ω0 ⊂ Ω1 ⊂ Ω2 ⊂ · · · ⊂ Ωk = Ω. (1.2.1)

The supremum of lengths of chains of prime ideals as mentioned in (1.2.1) is referred

as krull dimension of R. dimR =∞, if there is no upper bound for such chains in

R. Height of a prime ideal Ω is define as

ht(Ω) = max{k : there exist a chain of prime ideals Ω0 ⊂ Ω1 ⊂ · · · ⊂ Ωk = Ω}.
and

dim(R/Ω) = max{k : there exist a chain of prime ideals Ω = Ω0 ⊂ Ω1 ⊂ · · · ⊂
Ωk}. Height of any ideal I is defined as ht(I) = min{ht(Ω) : Ω is prime ideal and I ⊂
Ω}. Generally, dim(R/I) + ht(I) ≤ dim(R).

Definition 1.2.13. Let R be a ring and M be an R-module, then annihilator of

module M is defined as:

AnnR(M) = {r ∈ R : rM = 0}.

And Krull dimension of M is defined as dim(M) = dim(R/Ann(M)). We put

dimM = −1 if M = 0. Let M be a finitely generated module over the Noethe-

rian ring R. Then Ass(M) is finite and

dim(M) = sup{dim(R/Ω) : Ω ∈ Ass(M)}.
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Chapter 2

Stanley decomposition and the

Stanley depth

This chapter includes the discussion about Stanley decomposition, Stanley depth

and depth of Zn-graded S-modules, where S is the polynomial ring in n variables

over a field. We also discuss about a conjecture of R. P. Stanley given in [20]. Some

results related to Stanley depth and Stanley’s conjecture that obtained in recent

years are also discussed.

2.1 Stanley decomposition and the Stanley depth

Definition 2.1.1. Let S = K[x1, · · · , xn] is a polynomial ring in n unknowns with

coefficients in the field K and M be a finitely generated Zn-graded S-module. Let

v ∈ M be a homogeneous element in M and Z a subset of the set of variables.

The K-subspace of M , generated by all elements vw, where w is a monomial in

K[Z], is denoted as vK[Z]. If vK[Z] is a free K[Z]-module then Zn-graded K-space

vK[Z] ⊂ M is called the Stanley space of dimension |Z|. A Stanley decomposition

of M is a representation of the Zn-graded K-vector space M as a finite direct sum
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of Stanley spaces

D : M =
r⊕

j=1

vjK[Zj].

The number

sdepthD = min{|Zj| : j = 1, · · · , r}

is called the Stanley depth of decomposition D and the number

sdepthM := max{sdepthD : D is a Stanley decomposition of M }

is called the Stanley depth of M.

Now we discuss the Herzog method as described in [8]. By using this method,

we can compute the Stanley depth of a square free monomial ideal I using posets.

Suppose that set of minimal monomial generators of I is denoted by G(I) =

{w1, · · · , wk}. The characteristics poset of I with respect to q = (1, · · · , 1) see [8],

represented by Pq
I , where

Pq
I = {Z ⊂ [n] | Z contains supp(wj) for some j},

where supp(wj) = {l : xl | wj} ⊆ [n] := {1, · · · , n}. For each X, Y ∈ Pq
I with

X ⊆ Y and the interval [X, Y ] is defined as {W ∈ Pq
I : X ⊆ W ⊆ Y }. Suppose that

partition of Pq
I is defined as P : Pq

I = ∪sj=1[Wj, Zj], and for all j, let w(j) ∈ {0, 1}n

be the n-tuple such that supp(xw(j)) = Wj. Then there is a Stanley decomposition

D(P) of I

D(P) : I =
s⊕

j=1

xw(j)K[{xl | l ∈ Zj}].

By [8], we have

sdepth(I) = max{sdepthD(P) | P is a partition ofPq
I }.
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The following conjecture is due to Stanley [20]

depthM ≤ sdepthM,

for all finitely generated Zn-graded S-modules M.

Example 2.1.1. Let S = K[x1, · · · , x5] and I = (x1x2, x3x4, x1x3x5) is a square

free monomial ideal in S.
D1 := x1x2K[x1, x2]⊕ x3x4K[x3, x4]⊕ x1x3x5K[x1, x2, x3, x4, x5]⊕ x1x2x3K[x1,

x2, x3]⊕ x1x2x4K[x1, x2, x4]⊕ x1x2x5K[x1, x2, x5]⊕ x1x3x4K[x1, x3, x4]⊕
x2x3x4K[x2, x3, x4]⊕ x3x4x5K[x3, x4, x5]⊕ x1x2x3x4K[x1, x2, x3, x4]⊕ x1

x2x4x5K[x1x2x4x5]⊕ x2x3x4x5K[x2, x3, x4, x5].

D2 := x1x2K[x1, x2, x3]⊕ x3x4K[x1, x3, x4]⊕ x1x2x5K[x1, x2, x3, x5]⊕ x2x3x4K

[x2, x3, x4]⊕ x1x3x5K[x1, x3, x4, x5]⊕ x3x4x5K[x2, x3, x4, x5]⊕ x1x2x4K[x1,

x2, x3, x4, x5].

D3 := x1x2K[x1, x2, x3, x4]⊕ x3x4K[x1, x3, x4, x5]⊕ x1x2x5K[x1, x2, x4, x5]⊕ x1

x2x5K[x1, x2, x3, x5]⊕ x2x3x4K[x2, x3, x4, x5]⊕ x1x2x3x4x5K[x1, x2, x3,

x4, x5].

sdepth(I) ≥ max{sdepth(D1), sdepth(D2), sdepth(D3)} = max{2, 3, 4} = 4. Since I

is not principal ideal, so sdepth(I) = 4.

2.2 Some known values and bounds for Stanley

depth

Proposition 2.2.1. [16, Proposition 1.3]. Let I ba a monomial ideal in S. Then

sdepthS(I) ≤ sdepthS(I : w) for each monomial w 6∈ I.

Theorem 2.2.2. [5, Theorem 1.1]. Let I ⊂ S be a monomial ideal which is not

principal. Assume I = wI
′
, where w ∈ S is a monomial and I

′
= (I : w). Then:

(1) sdepth(S/I
′
) = sdepth(S/I)
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(2) sdepth(I
′
) = sdepth(I)

Theorem 2.2.3. [2, Theorem 2.2]. Let S = K[x1, · · · , xn], where K is a field. If

m = (x1, · · · , xn) be the maximal ideal in S, then

sdepthm =
⌈n

2

⌉
.

Theorem 2.2.4. [14, Theorem 2.3]. Let I be a monomial ideal of S satisfying

|G(I)| = m. Then

max
{

1, n−
⌊m

2

⌋}
≤ sdepth I.

Proposition 2.2.5. [5, Proposition 1.2]. For a monomial ideal I ⊂ S, we have

sdepth(S/I) ≥ n−G(I).

Lemma 2.2.6. [14, Lemma 2.4]. Let M be a Zn-graded S-module and suppose that

M1 and M2 be its two submodules. Let 0 −→ M1 −→ M −→ M2 −→ 0 be an exact

sequence, then

sdepthM ≥ min{sdepthM1, sdepthM2}.

Theorem 2.2.7. [17, Corollary 2.4]. Let P and P
′

be two irreducible monomial

ideals of S such that P and P
′

have different associated prime ideals. Then

sdepthS S/(P ∩ P
′
) = max

{
min

{
dim(S/P

′
),
⌈dim(S/P ) + dim(S/(P + P

′
)

2

⌉}
,

min
{

dim(S/P ),
⌈dim(S/P

′
) + dim(S/(P + P

′
)

2

⌉}}
.

Definition 2.2.1. Let (R,m , K) be a local Noetherian ring and M a finitely gen-

erated R-module. The common length of all maximal M -sequences in m is referred

as the depth of M and denoted by depth(M).

Lemma 2.2.8. [17, Lemma 1.2]. For a monomial primary ideal P in S = K[x1, · · · , xn]

we have, sdepthS/P = dim S/P = depthS/P.
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Lemma 2.2.9. [17, Lemma 1.3]. Let I and J be two monomial ideals in a polynomial

ring S = K[x1, · · · , xn]. Then

sdepth(S/(I ∩ J)) ≥ max{min{sdepth(S/I), sdepth(I/(I ∩ J))},

min{sdepth(S/J), sdepth(J/(I ∩ J))}}.

Theorem 2.2.10. [17, Theorem 1.5]. Let P and P
′

are the distinct irreducible

monomial ideals in a polynomial ring S. Then

sdepthS S/(P ∩P
′
) ≥ max

{
min

{
dim(S/P

′
),
⌈dim(S/P ) + dim(S/(P + P

′
))

2

⌉}
,

min
{

dim(S/P ),
⌈dim(S/P

′
) + dim(S/(P + P

′
))

2

⌉}}
.

Theorem 2.2.11. [10, Theorem 2.1]. Let I and J be two monomials ideals of S

satisfying I ⊂ J and
√
I and

√
J be the radical ideals of I and J , respectively. Then

sdepth(J/I) ≤ sdepth(
√
J/
√
I).

Corollary 2.2.12. [10, Corollary 2.2]. Let
√
I be a radical of monomial ideal I in

S. Then sdepth(S/I) ≤ sdepth(S/
√
I) and sdepth(I) ≤ sdepth(

√
I).

Corollary 2.2.13. [10, Corollary 2.3]. Suppose that I and J be two monomial ideals

in S satisfying I ⊂ J , and let radical ideals of I and J are
√
I and

√
J , respectively.

If sdepth(J/I) = dim(J/I), then sdepth(
√
J/
√
I) = dim(

√
J/
√
I).

Lemma 2.2.14. [10, Lemma 2.5]. Suppose that P and P
′

be two primary ideals

having
√
P = (x1, · · · , xr) and

√
P ′ = (x1, · · · , xn). Then

sdepth(P ∩ P ′) ≤ n−
⌊r

2

⌋
.

Lemma 2.2.15. [10, Lemma 2.6]. Let P and P
′

be two primary ideals such that
√
P = (x1) and

√
P ′ = (x2, · · · , xn). Then

sdepth(P ∩ P ′) ≤ 1 +
⌈n− 1

2

⌉
.
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Theorem 2.2.16. [10, Theorem 2.8]. Let P and P
′

be two primary ideals such that
√
P = (x1, · · · , xr) and

√
P ′ = (xr+1, · · · , xn), where r ≥ 2 and n ≥ 4. Then

sdepth(P ∩ P ′) ≤ n+ 2

2
.

Corollary 2.2.17. [10, Corollary 2.9]. Let P and P
′

be the distinct irreducible

monomial ideals with
√
P = (x1, · · · , xr) and

√
P ′ = (xr+1, · · · , xn), where n is odd.

Then sdepth(P ∩ P ′) = dn
2
e.

Corollary 2.2.18. [10, Corollary 2.10]. Let P and P
′

be two irreducible monomial

ideals with
√
P = (x1, · · · , xr) and

√
P ′ = (xr+1, · · · , xn), where n is even. Then

sdepth(P ∩ P ′)=

{
n
2
or n

2
+ 1, if r is even;

n
2

+ 1, otherwise.

Lemma 2.2.19. [10, Lemma 2.11]. Let I be a monomial ideal in polynomial ring

S, and let I
′
= (I, xn+1) ⊂ S

′
= S[xn+1]. Then

sdepthS(I) ≤ sdepthS′ (I
′
) ≤ sdepthS(I) + 1.

Proposition 2.2.20. [10, Proposition 2.13]. Let P and P
′

be two primary monomial

ideals such that
√
P = (x1, · · · , xv) and

√
P ′ = (xu+1, · · · , xn). Suppose that 1 <

u ≤ v < n, n ≥ 4. Then

sdepth(P ∩ P ′) ≤ n+ v − u+ 2

2
.

Lemma 2.2.21. [10, Lemma 2.15]. Let P and P
′

be two primary monomial ideals

satisfying
√
P = (x1, · · · , xn−1) and

√
P ′ = (x2, · · · , xn). Then

sdepth(P ∩ P ′) ≤ n−
⌊n− 1

2

⌋
.

Proposition 2.2.22. [10, Proposition 2.16]. Let P and P
′

be two primary monomial

ideals satisfying
√
P = (x1, · · · , xv) and

√
P ′ = (xu+1, · · · , xn), with 1 ≤ u ≤ v ≤ n.

Then

sdepth(P ∩ P ′) ≤ min
{
n−

⌊v
2

⌋
, n−

⌊n− v
2

⌋}
.
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Theorem 2.2.23. [10, Theorem 2.19]. Let P and P
′

be two primary monomial

ideals satisfying
√
P = (x1, · · · , xt) and

√
P ′ = (xs+1, · · · , xq), with 1 < s ≤ t < q ≤

n, n ≥ 4. Then

sdepth(P ∩ P ′) ≤ min
{2n+ t− q − s+ 2

2
, n−

⌊ t
2

⌋
, n−

⌊q − t
2

⌋}
.

Theorem 2.2.24. [4, Theorem 2.1]. Let I be a complete intersection monomial

ideal in S and
√
I be its radical. Then

sdepth(I) = sdepth(
√
I).

Theorem 2.2.25. [13, Theorem 2.2]. Let
√
I be a radical of a monomial ideal

I =
r⋂

j=1

Pj in S satisfying each Pj is irreducible and G(
√
Pj) ∩ G(

√
Pk) = ∅ for all

j 6= k, then

sdepth(I) = sdepth(
√
I).

Theorem 2.2.26. [13, Theorem 2.14]. Let I be a monomial ideal and let Min(S/I) =

{Ω1, · · · ,Ωr} with
r∑

j=1

Ωj = m. Let hj := |G(Ωj) \G(
r∑

j 6=k

Ωk)|, and s := |{hj : hj 6=

0}|. Suppose that s ≥ 1. Then

sdepth(I) ≤
(

2n+ s−
r∑

j=1

Ωj

)/
2.

Theorem 2.2.27. [18, Theorem 2.3]. Let I =
r⋂

j=1

Ωj be a reduced intersection

of monomial prime ideals in S. Suppose that Ωj 6⊂
r∑

1=k 6=j

Ωk for all j ∈ [r]. Then

Stanley’s Conjecture holds for I, that is

sdepthS I ≥ r = depthS I.

Theorem 2.2.28. [12, Theorem 2.3]. Let I =
r⋂

j=1

Pj be the irredundant represen-

tation of I as an intersection of primary monomial ideals. Let Ωj :=
√
Pj. If

Ωj 6⊂
r−1∑

1=j 6=k

Ωk for all j ∈ [r] then sdepth(S/I) ≥ depth(S/I), that is the Stanley’s

conjecture holds for S/I.
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Chapter 3

Values and bounds for the Stanley

depth

In this chapter, we give review of paper [11]. The different bounds for the Stanley

depth of a monomial ideal I of a polynomial ring S over a field K are discussed. If

the associated prime ideals of S/I are generated by disjoint sets of variables, then

it is shown that Stanley’s conjecture holds for I and S/I.

3.1 Upper bounds of the Stanley depth of mono-

mial ideals

Theorem 3.1.1. [11, Theorem 2.1]. Let I ⊂ S be a monomial ideal such that

Ass(S/I) = {Ω1, · · · ,Ωr}. Then

sdepth(I) ≤ min{sdepth(Ωj), 1 ≤ j ≤ r}.

Proof. Suppose that Ωj ∈ Ass(S/I), then Ωj is a monomial prime ideal and there

exists a monomial vj /∈ I such that I : vj = Ωj. By [16, Proposition 1.3] sdepth(I) ≤
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sdepth(I : vj) = sdepth(Ωj). Hence we get

sdepth(I) ≤ min{sdepth(Ωj), 1 ≤ j ≤ r}.

Corollary 3.1.2. [11, Corollary 2.1]. Let I ⊂ S be a monomial ideal such that

m ∈ Ass(S/I), then sdepth(I) ≤ dn
2
e.

Proof. Theorem 2.2.3 says that sdepthm = dn
2
e and by Theorem 3.1.1 sdepth(I) ≤

sdepthm , hence we obtain sdepth(I) ≤ dn
2
e.

Corollary 3.1.3. [11, Corollary 2.2]. Let I ⊂ S be a monomial ideal with |G(I)| =
m, where m is even. Let there exists a prime ideal Ω ∈ Ass(S/I) with ht(Ω) = m.

Then

sdepthS (I) = n− m
2
.

Proof. By [14, Theorem 2.3] we have sdepth(I) ≥ n− m
2
. By hypothesis, there exist

a prime ideal Ω ∈ Ass(S/I) with ht(Ω) = m. Since sdepth(Ω) = n−bhtΩ
2
c = n− m

2

then Theorem 3.1.1 implies that sdepth(I) ≤ n − m
2
. Thus we get sdepthS(I) =

n− m
2
.

Corollary 3.1.4. [11, Corollary 2.3]. Let I ⊂ S be a monomial ideal with |G(I)| =
m (m is odd). Let there exists a prime ideal Ω ∈ Ass(S/I) with ht(Ω) ≥ m − 1.

Then

sdepthS(I) = n− bm
2
c.

Proof. By [14, Theorem 2.3] we have sdepth(I) ≥ n− bm
2
c.

Case 1 :

Suppose that there exist a prime ideal Ω ∈ Ass(S/I) with ht(Ω) = m − 1, then

sdepth(Ω) = n − bhtΩ
2
c = n − bm−1

2
c = n − bm

2
c. So Theorem 3.1.1 implies that

sdepth(I) ≤ n− bm
2
c.
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Case 2 :

Suppose that there exist a prime ideal Ω ∈ Ass(S/I) with ht(Ω) = m then sdepth(Ω) =

n − bhtΩ
2
c = n − bm

2
c. So by Theorem 3.1.1, we have sdepth(I) ≤ n − bm

2
c. Hence

we get sdepthS(I) = n− bm
2
c.

Lemma 3.1.5. [11, Lemma 2.1]. Let S = K[x1, · · · , xn] and I ⊂ S
′
= K[x1, · · · , xm],

J ⊂ S
′′

= K[xm+1 · · · , xn] be monomials ideals, where 1 < m < n. Then

sdepthS(IS ∩ JS) ≥ sdepthS′ (I) + sdepthS′′ (J).

Proposition 3.1.6. [11, Proposition 2.1]. Suppose that I ⊂ S be a monomial ideal

and Min(S/I) = {Ω1, · · · ,Ωr}. If Ωi 6⊂
r∑

j 6=i

Ωj for all i ∈ [r]. Then depth(I) ≤ r and

depth(S/I) ≤ r − 1.

Proof. By [8, Lemma 3.6], it is sufficient to consider that
r∑

j=1

Ωj = m . Since
√
I =

r⋂
j=1

Ωj. By [18, Theorem 2.3] and [7, Theorem 2.6] we obtained depth(I) ≤ depth(
√
I)

= r and accordingly depth(S/I) ≤ r − 1.

Corollary 3.1.7. [11, Corollary 2.4]. Let I ⊂ S be a monomial ideal such that I =
r⋂

j=1

Pj is a reduced primary decomposition of I and Ωj =
√
Pj with G(Ωi)∩G(Ωj) = ∅

for i 6= j. Then sdepth(I) ≥ r. In particular, we can say that Stanley’s conjecture

holds for I.

Proof. By [8, Lemma 3.6] it is sufficient to consider the case
r∑

j=1

Ωj = m . If ht(Ωj) =

1 for all j then I is principal monomial ideal and it follows that sdepth(I) = n ≥ r.

Now suppose that I is not principal monomial ideal. Since for all j sdepth(Ωj) ≥
1 then by using Lemma 3.1.5 by recurrence we obtained sdepth(I) ≥ r and by

Proposition 3.1.6 depth(I) ≤ r. Hence we get sdepth(I) ≥ depth(I).
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3.2 Stanley depth of multigraded cyclic modules

Theorem 3.2.1. [11, Theorem 3.2]. Let I ⊂ S be a monomial ideal such that I =
r⋂

j=1

Pj is a reduced primary decomposition of I and Ωj =
√
Pj with G(Ωi)∩G(Ωj) = ∅

for i 6= j. Then sdepth(S/I) ≥ r − 1. In particular, we can say that Stanley’s

conjecture holds for S/I.

Proof. Using [8, Lemma 3.6] it is sufficient to consider that
r∑

j=1

Ωj = (x1, · · · , xn).

Let
r−1∑
j=1

Ωj = (x1, · · · , xt) and S
′

= K[x1, · · · , xt]. Firstly apply induction on r. If

r = 1 then I is maximal monomial ideal in S thus sdepth(S/I) = 0 = 1− 1 = r− 1.

Hence result hold for r = 1. Fix r > 1 and apply induction on n − t. Suppose

that l be the minimum positive integer such that xln ∈ Pr. Now for some ideal

Ij ⊂ S
′′

= K[x1, · · · , xn−1], we define Ij by I ∩ xjnS
′′

= xjnIj. Then

S/I = S
′′
/I0 ⊕ xn(S

′′
/I1)⊕ · · · ⊕ xl−1

n (S
′′
/Il−1)⊕ xln(S

′′
/Il)[xn].

Let J = P1 ∩ P2 ∩ · · · ∩ Pr−1. If n − t = 1, then I = P1 ∩ P2 ∩ · · ·Pr−1 ∩ (xn). It

implies that Pr is an (xn)-primary and hence it is given by a power of xn, that is

Pr = (xkn). By [5, Theorem 1.1], [8, Lemma 3.6] and by using induction on r, we have

sdepthS/(J∩xkn) = sdepthS/(xknJ) = sdepthS/J = sdepth(S
′
/J)+1 ≥ (r−1−1)+

1 = r−1. If n−t > 1, then by induction we have sdepthS′′(S
′′
/Ij) ≥ r−1 for all j < l

and by using [8, Lemma 3.6] we have sdepthS′′ (S
′′
/Il) = sdepthS′ (S

′
/Il)+n−1−t ≥

r − 2 + n− t− 1 ≥ r − 2 because t < n. Then

sdepthS(S/I) ≥ min{{sdepthS′′ (S
′′
/Ij)}j=0,1,··· ,l−1, 1 + sdepthS′′ (S

′′
/Il)}.

If minimum is 1 + sdepthS′′ (S
′′
/Il), then we get sdepthS(S/I) ≥ r − 2 + 1 = r − 1.

If the minimum is sdepthS′′ (S
′′
/Ij) for some 0 ≤ j < l, then again sdepthS(S/I) ≥

r − 1. Now using Proposition 3.1.6, we obtained depth(S/I) ≤ r − 1 this yield

sdepth(S/I) ≥ depth(S/I).
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The lower and upper bounds for the Stanley depth of S/I with unique irre-

dundant presentation of I = Ω1 ∩ Ω2 ∩ Ω3 is given as the intersection of its min-

imal monomial prime ideals. By [8, Lemma 3.6] it is sufficient to consider that

Ω1 + Ω2 + Ω3 = m . Let D : S/I =
m⊕
j=1

vjK[Zj] be a Stanley decomposition. Then

Zj cannot have in the same time variables from all G(Ωj), otherwise vjK[Zj] will

not be a free K[Zj]-module.

Lemma 3.2.2. [11, Lemma 3.2]. Let D : S/I =
r⊕

j=1

vjK[Zj] be a Stanley decompo-

sition of S/I. Suppose that v1 = 1 and Z1 ⊂ (G(Ω1) ∪G(Ω2)) \G(Ω3). Then

sdepth(D) ≤ max{dim(S/(Ω2 + Ω3)), dim(S/(Ω1 + Ω3))}+
⌈ht(Ω3)− t

2

⌉
,

where t = |G(Ω1) ∩G(Ω2) ∩G(Ω3)|.

Proof. Suppose that Z := G(Ω3) \ (G(Ω1) ∩ G(Ω2)) and Ψ : Ω3 ∩K[Z] ↪→ S/I be

the inclusion map given by K[Z] ↪→ S/I. Then Ω3 ∩ K[Z] =
⊕
j

Ψ−1(vjK[Zj]). If

Ψ−1(vjK[Zj]) 6= 0, then there exist vjf ∈ vjK[Zj] with vjf ∈ Ω3 ∩ K[Z]. Since

all variables of Z1 are in Ω1 + Ω2 and Ω3 is the maximal ideal of K[Z], therefore

vjK[Zj]∩Ω3∩K[Z] 6= 0 implies that vj 6= 1 and so vj ∈ Ω3∩K[Z]. Let Z
′
j = Zj ∩Z

and Ω
′
3 = Ω3 ∩ K[Z]. Then Ψ−1(vjK[Zj]) = vjK[Z

′
j] and we obtained Stanley

decomposition of Ω
′
3 that is Ω

′
3 =

⊕
vj∈Ω

′
3

vjK[Z
′
j]. Since |Z ′j| ≤ sdepth(Ω

′
3) = |Z| −

bht(Ω
′
3)

2
c = |Z| − b |Z|

2
c = d |Z|

2
e. But either Zj ⊂

(
G(Ω3) ∪ G(Ω1)

)
\ G(Ω2) or

Zj ⊂
(
G(Ω3) ∪G(Ω2)

)
\G(Ω1) because otherwise vjK[Zj] will not be a free K[Zj]

module. In the first case, we have Zj ⊂
(
G(Ω3) \ G(Ω2)

)
∪
(
G(Ω1) \

(
G(Ω2) ∪

G(Ω3)
))

and we get Zj ⊂ Z
′
j ∪

(
G(Ω1) \

(
G(Ω2) ∪ G(Ω3)

))
. It follows |Zj| ≤

|Z ′j| +
∣∣∣(G(Ω1) \

(
G(Ω2) ∪ G(Ω3)

))∣∣∣ ≤ d |Z|2
e+dim(S/(Ω2 + Ω3)). Now for the case

Zj ⊂
(
G(Ω3)∪G(Ω2)

)
\G(Ω1), we have Zj ⊂

(
G(Ω3)\G(Ω1)

)
∪
(
G(Ω2)\

(
G(Ω1)∪

G(Ω3)
))

and we get Zj ⊂ Z
′
j ∪

(
G(Ω2) \

(
G(Ω1) ∪ G(Ω3)

))
. It follows |Zj| ≤
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|Z ′j|+
∣∣∣(G(Ω2)\

(
G(Ω1)∪G(Ω3)

))∣∣∣ ≤ d |Z|2
e+dim(S/(Ω1 +Ω3)). As |Z| = ht(Ω3)−t.

Hence we get

sdepth(D) ≤ max{dim(S/(Ω2 + Ω3)), dim(S/(Ω1 + Ω3))}+
⌈ht(Ω3)− t

2

⌉
.

Corollary 3.2.3. [11, Corollary 3.5]. Let a ≤ b ≤ c be some positive integers with

a + b + c = n, Ω1 = (x1, · · · , xa), Ω2 = (xa+1, · · · , xa+b), Ω3 = (xa+b+1, · · · , xa+b+c)

prime ideals of S = K[x1, · · · , xn] and I = Ω1 ∩ Ω2 ∩ Ω3. Then

sdepth(S/I) ≤ b+
⌈ c

2

⌉
.

Proof. Suppose that D : S/I =
r⊕

j=1

vjK[Zj] be a Stanley decomposition of S/I and

v1 = 1 then there arise three cases:

Case 1. If Z1 ⊂ (G(Ω1) ∪G(Ω2)) \G(Ω3), then by Lemma 3.2.4

sdepth(D) ≤ max{dim(S/(Ω2 + Ω3)), dim(S/(Ω1 + Ω3))}+
⌈

ht (Ω3)
2

⌉
= max{a, b}+ d c

2
e = b+ d c

2
e.

Case 2. If Z1 ⊂ (G(Ω1) ∪G(Ω3)) \G(Ω2), then by Lemma 3.2.4

sdepth(D) ≤ max{dim(S/(Ω1 + Ω2)), dim(S/(Ω2 + Ω3))}+
⌈

ht(Ω2)
2

⌉
= max{c, a}+ d b

2
e = c+ d b

2
e.

Case 3. If Z1 ⊂ (G(Ω2) ∪G(Ω3)) \G(Ω1), then again by Lemma 3.2.4 we get

sdepth(D) ≤ max{dim(S/(Ω1 + Ω2)), dim(S/(Ω1 + Ω3))}+
⌈

ht(Ω1)
2

⌉
= max{c, b}+ da

2
e = c+ da

2
e.

Above three cases imply that

sdepth(D) ≤ max{b+ d c
2
e, c+ d b

2
e, c+ da

2
e}

= c+ d b
2
e.

Hence we have

sdepth(S/I) ≤ sdepth(D) ≤ c+ d b
2
e.
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From following proposition, the above bound can be improved.

Proposition 3.2.4. [11, Proposition 3.2]. Let a ≤ b ≤ c be some positive integers

with a+b+c = n, Ω1 = (x1, · · · , xa), Ω2 = (xa+1, · · · , xa+b), Ω3 = (xa+b+1, · · · , xa+b+c)

prime ideals of S = K[x1, · · · , xn] and I = Ω1 ∩ Ω2 ∩ Ω3. Then

sdepth(S/I) ≤ a+ min
{
b,
⌈ c

2

⌉}
,

except in the case when a = b 6= c, b = a+ 1 and a is odd when a < c.

Proof. Suppose that a = b = c it follows from Corollary 3.2.3 sdepthS(S/I) ≤
c +

⌈
b
2

⌉
= a + min{b,

⌈
c
2

⌉
}. Hence result holds in this case. Now suppose that

a 6= b 6= c. Let R
′

= K[x2, · · · , xn] and R
′′

= K[x1, xa+1, · · · , xn]. If a = 1,

then by using [5, Theorem 1.1(1)] and [17, Corollary 2.4], we have sdepth(S/I) =

sdepth(S/(I : x1)) = 1 + sdepthR′R
′
/((Ω2 ∩Ω3) ∩R′ = 1 + max{min{a+ c− 1, a−

1 + d b
2
e},min{a+ b− 1, a− 1 + d c

2
e} = a− 1 + 1 + max{min{c, d b

2
e},min{b, d c

2
e} =

a + max{d b
2
e,min{b, d c

2
e} = a + min{b, d c

2
e}, so inequality holds in this case. Now

assume that Ω1 = (Ω
′
1, x2, · · · , xa), where Ω

′
1 = (x1) and J = Ω

′
1 ∩ Ω2 ∩ Ω3, that is

JS = I ∩ (Ω
′
1S). Now assume the following exact sequence

0 −→ I/JS −→ S/JS −→ S/I −→ 0.

Using [19, Lemma 2.2] we get

sdepth(S/JS) ≥ min{sdepth(I/JS), sdepth(S/I)}.

Since I/JS ' I/(I∩Ω
′
1)S ' (I+Ω

′
1)/Ω

′
1 ' I∩K[x2, · · · , xn] = (x2, · · · , xa)∩Ω2∩Ω3,

using [17, Lemma 4.1] by recurrence we have sdepth(I/JS) ≥ da−1
2
e+d b

2
e+d c

2
e. Now

sdepth(S/JS) = (a−1)+sdepth(R
′′
/(x1)∩Ω2∩Ω3) = (a−1)+sdepth(R

′′
/(Ω2∩Ω3) :

x1) = a−1+sdepth(R
′′
/(Ω2∩Ω3)∩R′′) = a−1+1+min{b, d c

2
e} = a+min{b, d c

2
e}.

It can be observed that da−1
2
e + d b

2
e + d c

2
e > a + min{b, d c

2
e} for all cases except

b = a 6= c, b = a + 1 and a is odd. Therefore, with these exceptions we have
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sdepth(I/JS) > sdepth(S/JS). It implies that sdepth(S/I) ≤ sdepth(S/JS) =

a + min{b, d c
2
e} except in the cases when b = a 6= c, b = a + 1 and a is odd when

a < c.

Remark 3.2.1. Suppose that I ⊂ S be a monomial ideal and Min(I) = {Ω1,Ω2,Ω3}
satisfying G(Ωj) ∩G(Ωk) = ∅ for all j 6= k. From [10, Corollary 2.2] sdepth(S/I) ≤
sdepth(S/Ω1 ∩ Ω2 ∩ Ω3) and the upper bounds in Proposition 3.2.4 (including ex-

ceptions mentioned in the proposition) and Corollary 3.2.3 are also upper bounds

for the Stanley depth of S/I.

Lemma 3.2.5. [11, Lemma 3.3]. Let 1 ≤ a ≤ b ≤ c be some positive integers with

a + b + c = n, Ω1 = (x1, · · · , xa), Ω2 = (xa+1, · · · , xa+b), Ω3 = (xa+b+1, · · · , xa+b+c)

prime ideals of S = K[x1, · · · , xn] and I = Ω1 ∩ Ω2 ∩ Ω3. Then

sdepth(S/I) ≥ min
{
a+ b, a+

⌈ c
2

⌉
,
⌈ b

2

⌉
+
⌈ c

2

⌉}
.

Proof. We can write a K-linear space S/I in the direct sum of multi-graded modules:

S/I = S/Ω3 ⊕ Ω3/(Ω2 ∩ Ω3)⊕ (Ω3 ∩ Ω2)/I

and we get

sdepth(S/I) ≥ min{sdepth(S/Ω3), sdepth(Ω3/(Ω2 ∩ Ω2)), sdepth((Ω2 ∩ Ω3)/I)}.

sdepthS/Ω3 = sdepthK[x1, · · · , xa+b] = a + b. By second isomorphism theorem

Ω3/(Ω2∩Ω3) ' (Ω2+Ω3)/Ω2 ' Ω3∩K[x1, · · · , xa, xa+b+1, · · · , xn]. Since sdepth(Ω3∩
K[x1, · · · , xa, xa+b+1, · · · , xn]) = n− b−bhtΩ3

2
c = a+ b+ c− b−b c

2
c = a+ c−b c

2
c =

a+d c
2
e. It implies that sdepth(Ω3/(Ω2∩Ω3)) = a+d c

2
e. Again by second isomorphism

theorem (Ω2∩Ω3)/I ' ((Ω2∩Ω3) + Ω1)/Ω1 ' (Ω2∩Ω3)∩K[xa+1, · · · , xn], by using

[17, Lemma 4.1], sdepth((Ω2 ∩ Ω3) ∩K[xa+1, · · · , xn]) ≥ d b
2
e + d c

2
e. It implies that

sdepth((Ω2 ∩ Ω3)/I) ≥ d b
2
e+ d c

2
e. Hence we get

sdepth(S/I) ≥ min
{
a+ b, a+

⌈ c
2

⌉
,
⌈ b

2

⌉
+
⌈ c

2

⌉}
.
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Corollary 3.2.6. [11, Corollary 3.6]. With the hypothesis from the Lemma 3.2.5,

suppose that a ≤ d b
2
e. Then sdepth(S/I) = a+ min

{
b,
⌈
c
2

⌉}
.

Proof. By Lemma 3.2.5, we have sdepth(S/I) ≥ min
{
a+ b, a+

⌈
c
2

⌉
,
⌈
b
2

⌉
+
⌈
c
2

⌉}
≥

min
{
a + b, a +

⌈
c
2

⌉}
= a + min

{
b,
⌈
c
2

⌉}
. Also by Proposition 3.2.4 we have

sdepth(S/I) ≤ a+min
{
b,
⌈
c
2

⌉}
, it follows that sdepth(S/I) = a+min

{
b,
⌈
c
2

⌉}
.

3.3 Upper bounds for intersection of three prime

ideals

Theorem 3.1.1 gives an upper bound for the Stanley depth of any monomial ideal,

but in general it is not a good bound. This section contains results related to upper

bounds for the Stanley depth of ideals such that their minimal associated primes set

having three prime ideals. These bounds are stronger than the bound that mentioned

in Theorem 3.1.1. [10, Corollary 2.2] which says that it is fair enough to give an

upper bound for the Stanley depth of intersection of three minimal prime ideal. Let

I = Ω1 ∩ Ω2 ∩ Ω3, where Ω1,Ω2 and Ω3 are monomial prime ideals of S. Assume

that Ωj ⊂ Ωk for all j 6= k and xr /∈ G(I) for all 1 ≤ r ≤ n (for upper bound, if

G(I) contains some variables then by applying [10, Lemma 2.11] by recurrence G(I)

can be reduce to the case when it contains no variable). Using [8, Lemma 3.6] it is

enough to consider that Ω1 + Ω2 + Ω3 =m . After renumbering the variables assume

that Ω1 = (x1, · · · , xb), Ω2 = (xa+1, · · · , xd) and Ω3 = (xc+1, · · · , xn, x1, · · · , xe),
with a ≤ b, c ≤ d, b > e ≥ 0. Consider the following cases:

(1) e > 0, b ≤ c,

(2) e = 0, a = b, c = d,

(3) e = 0, a ≤ b, c ≤ d.
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The purpose of considering the above cases is to find best possible upper bounds

that depend on the behavior of these prime ideals.

Lemma 3.3.1. [11, Lemma 4.4]. Let J ⊂ S
′

= S[xn+1] be a monomial ideal, xn+1

being a new variable. If J ∩ S 6= (0), then sdepthS(J ∩ S) ≥ sdepthS[xn+1] J − 1.

Proof. Suppose that D : J =
r⊕

j=1

vjK[Zj] be a Stanley decomposition of J such that

sdepth(J) = sdepthD. Let w be a monomial and supp(w) := {l : xl|w}. We claim

that

J ∩ S =
⊕

n+1/∈supp(vj)

vjK[Zj\{xn+1}],

which is enough. Suppose that u ∈ J∩S be a monomial. Then there exist j such that

u ∈ vjK[Zj] and so xn+1 - vj then u ∈ vjK[Zj\{xn+1}]. Hence “ ⊂ ” holds and other

inclusion is obvious. As vjK[Zj\{xn+1}] ∩ vlK[Zl\{xn+1}] ⊂ vjK[Zj] ∩ vlK[Zl] = 0

for j 6= l, hence proved.

Corollary 3.3.2. [11, Corallary 4.7]. Let I ⊂ S be a monomial ideal of S and

I
′
= (I, xn+1) ⊂ S

′
= S[xn+1]. Then sdepthS′ (I

′
) ≤ sdepthS(I) + 1.

Corollary 3.3.3. [11, Corollary 4.8]. Let 0 < e < b < n be some positive integers

and suppose that I
′

= Ω1 ∩ Ω2 ∩ Ω3 ⊂ S
′

= S[xn+1], where Ωj are prime monomial

ideals with Ω1 = (x1, · · · , xb), Ω2 = (xe+1, · · · , xn) and Ω3 = (xb+1, · · · , xn, xn+1, x1,

· · · , xe). Then

sdepthS′ (I
′
) ≤ sdepth(I) + 1,

where I = I
′ ∩ S = (x1, · · · , xb) ∩ (xe+1, · · · , xn) ∩ (xb+1, · · · , xn, x1, · · · , xa).

Next assume the special kind of ideals that belong to the case (1) by taking

e < 0, e = a and b = c. Then Ω1 = (x1, · · · , xb), Ω2 = (xe+1, · · · , xn) and Ω3 =

(xb+1, · · · , xn, x1, · · · , xe) are prime ideals of S, where 0 < e < b and I = Ω1∩Ω2∩Ω3.

Then the following results hold.
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Proposition 3.3.4. Let 0 < e < b and I = Ω1 ∩ Ω2 ∩ Ω3, where Ω1 = (x1, · · · , xb),
Ω2 = (xe+1, · · · , xn) and Ω3 = (xb+1, · · · , xn, x1, · · · , xe). Then

I = (x1 · · · , xe) ∩ (xb+1, · · · , xn) + (xe+1, · · · , xb) ∩ (xb+1, · · · , xn, x1, · · · , xe).

Proof. Ω1 ∩ Ω2 = (x1 · · · , xe, xe+1, · · · , xb) ∩ (xe+1, · · · , xb, xb+1, · · · , xn)

= (x1 · · · , xe) ∩ (xb+1, · · · , xn) + (xe+1, · · · , xb)
Ω1 ∩ Ω2 ∩ Ω3 = [(x1 · · · , xe) ∩ (xb+1, · · · , xn) + (xe+1, · · · , xb)] ∩ (xb+1, · · · , xn,

x1, · · · , xe) = (x1 · · · , xe) ∩ (xb+1, · · · , xn) + (xe+1, · · · , xb)∩
(xb+1, · · · , xn, x1, · · · , xe).

Hence proved.

Lemma 3.3.5. [11, Lemma 4.5]. sdepth(I) ≤ 2 +

(
n

3

)
−

(
e

3

)
−

(
b− e

3

)
−

(
n− b

3

)
(
n

2

)
−

(
e

2

)
−

(
b− e

2

)
−

(
n− b

2

)
where

(
s

t

)
= 0 when s < t.

Proof. It is clear from Proposition 3.3.4 that I is generated by square free monomials

of degree 2. Suppose that t := sdepth(I). P : Pq
I =

r⋃
j=1

[Wj, Zj] is the partition of the

poset Pq
I and this partition satisfy sdepth(D(P)) = t, where D(P) is the Stanley

decomposition of I with respect to the partition P . Each interval [Wj, Zj] in partition

P satisfying |Wj| = 2 has |Zj| ≥ t. Each such interval has |Zj| − |Wj| subsets of

cardinality 3. As these intervals are disjoint, therefore by counting the number of

subsets of cardinality 2 and 3 we get[(n
2

)
−
(
e

2

)
−
(
b− e

2

)
−
(
n− b

2

)]
(t− 2) ≤

(
n

3

)
−
(
e

3

)
−
(
b− e

3

)
−
(
n− b

3

)
.

It follows that

sdepth(I) ≤ 2 +

(
n

3

)
−
(
e

3

)
−
(
b− e

3

)
−
(
n− b

3

)
(
n

2

)
−
(
e

2

)
−
(
b− e

2

)
−
(
n− b

2

) .
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Example 3.3.1. Let I = (x1, x2, x3, x4, x5)∩(x4, x5, x6, x7, x8)∩(x6, x7, x8, x1, x2, x3)

then e = 3, b = 5 and n = 8 by the above lemma, we get sdepth(I) ≤ 4.

Proposition 3.3.6. [11, Proposition 4.3]. If 0 < e ≤ a ≤ b ≤ c ≤ d ≤ n

and I = Ω1 ∩ Ω2 ∩ Ω3, where Ω1 = (x1, · · · , xb), Ω2 = (xa+1, · · · , xd) and Ω3 =

(xc+1, · · · , xn, x1, · · · , xe). Let g = a− e+ c− b+ n− d, n− g ≥ 3, then

sdepth(I) ≤ 2 + g +

(
n− g

3

)
−
(
e

3

)
−
(
b− a

3

)
−
(
d− c

3

)
(
n− g

2

)
−
(
e

2

)
−
(
b− a

2

)
−
(
d− c

2

) .
Proof. Suppose that J = (x1, · · · , xe, xa+1, · · · , xb) ∩ (xa+1, · · · , xb, xc+1, · · · , xd) ∩
(xc+1, · · · , xd, x1, · · · , xe) ⊂ R = K[x1, · · · , xe, xa+1, · · · , xb, xc+1, · · · , xd]. Then by

using Lemma 3.3.5 we have

sdepthR(J) = 2 +

(
n− g

3

)
−
(
e

3

)
−
(
b− a

3

)
−
(
d− c

3

)
(
n− g

2

)
−
(
e

2

)
−
(
b− a

2

)
−
(
d− c

2

) .
Now applying Corollary 3.3.3 by recurrence, we get

sdepthS(I) ≤ sdepthR(J) + g.

Hence proved.

Theorem 3.3.7. [11, Theorem 4.3]. Let I = Ω1 ∩Ω2 ∩Ω3, where Ω1,Ω2 and Ω3 are

prime monomial ideals of S satisfying G(Ωj)∩G(Ωk) = ∅ for all j 6= k, Ω1+Ω2+Ω3 =

m and ht(Ωj) = hj. Then

sdepth(I) ≤ 3 +
1

h1h2h3

[(n
4

)
−

3∑
j=1

(
hj
4

)
−

3∑
j=1

(
hj
3

)
(n− hj)−

∑
j<k

(
hj
2

)(
hk
2

)]
.
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Proof. We can observe that I is generated by square free monomials of degree 3.

Suppose that t := sdepth(I). P : Pq
I =

r⋃
j=1

[Wj, Zj] is the partition of the poset Pq
I

and this partition satisfies sdepth(D(P)) = t, where D(P) is the Stanley decompo-

sition of I with respect to the partition P . Since every interval [Wj, Zj] in partition

P satisfying |Wj| = 3 has |Zj| ≥ t. Since |G(I)| = h1h2h3, so there are h1h2h3 such

intervals. Each such interval has |Zj| − |Wj| subsets of cardinality 4. Since these

intervals are disjoint, so by counting the number of subsets of cardinality 4, we have

h1h2h3(t− 3) ≤
[(n

4

)
−

3∑
j=1

(
hj
4

)
−

3∑
j=1

(
hj
3

)
(n− hj)−

∑
j<k

(
hj
2

)(
hk
2

)]
.

Hence proved.

Example 3.3.2. Let I = (xb11 , · · · , xb77 ) ∩ (xb88 , · · · , xb1414 ) ∩ (xb1515 , · · · , xb2121 ) for some

positive integer bj. Then by Corollary 3.1.5, we have sdepth(I) ≥ d7
2
e+ d7

2
e+ d7

2
e =

12. Now by Theorem 3.3.7, we get sdepth(I) ≤ 12 it follows that sdepth(I) = 12.

Proposition 3.3.8. [11, Proposition 4.4]. Suppose that Ω1 = (x1, · · · , xb), Ω2 =

(xa+1, · · · , xd) and Ω3 = (xc+1, · · · , xn). with a ≤ b, c ≤ d, and I = Ω1 ∩ Ω2 ∩ Ω3.

Let

k := min
{2n+ b− d− a+ 2

2
,
n+ d+ a− c+ 2

2
, n−

⌊ b
2

⌋
, n−

⌊d− a
2

⌋
, n−

⌊n− c
2

⌋
,
}
.

Then sdepth(I) ≤ k, if b ≥ c, and

sdepth(I) ≤ min
{
k,
n+ c− b+ 2

2

}
, if b < c.

Proof. Suppose that w = xn. Since I = Ω1 ∩ Ω2 ∩ Ω3, so we can observe that

w /∈ I and J := I : w = (x1, · · · , xb) ∩ (xa+1, · · · , xd) ⊂ R = K[x1, · · · , xd]
that is J = Ω1 ∩ Ω2. Then by [16, Proposition 1.3] sdepthS(I) ≤ sdepthS(J)

and applying [8, Lemma 3.6] by recurrence sdepthS(J) = sdepthR(J) + n − d.

Using [10, Proposition 2.13] sdepthR(J) = b+d−a+2
2

. Since sdepthR(Ω1) = d −
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bhtΩ1

2
c = d − b b

2
c and sdepthR(Ω2) = d − bhtΩ2

2
c = d − bd−a

2
c. Now by Theo-

rem 3.1.1, sdepthR(J) ≤ min{ b+d−a+2
2

, d− b b
2
c, d− bd−a

2
c}. This yield sdepthS(I) ≤

sdepthS(J) ≤ min{ b+d−a+2
2

+ n− d, d− b b
2
c+ n− d, d− bd−a

2
c+ n− d} = min{n+

b−d−a+2
2

, n − b b
2
c, n − bd−a

2
c}. Now if we consider w = x1, then again w /∈ I and

J
′
= I : w = (xa+1, · · · , xd)∩ (xc+1, · · · , xn) ⊂ R

′
= K[xa+1, · · · , xc+1, · · · , xn], that

is J
′

= Ω2 ∩ Ω3. By [16, Proposition 1.3] sdepthS(I) ≤ sdepthS(J
′
) and applying

[8, Lemma 3.6] by recurrence sdepthS(J
′
) = sdepthR′ (J

′
) + a. Since sdepthR′ (Ω2) =

n−a−bhtΩ2

2
c = n−a−bd−a

2
c and sdepthR′ (Ω3) = n−a−bhtΩ3

2
c = n−a−bn−c

2
c using

[10, Proposition 2.13] sdepthR′ (J
′) ≤ n+d−a−c+2

2
. By Theorem 3.1.1 sdepthR′ (J

′
) ≤

min{n+d−a−c+2
2

, n−a−bd−a
2
c, n−a−bn−c

2
c}. It follows sdepthS(I) ≤ sdepthS(J

′
) ≤

min{n+d−a−c+2
2

+ a, n − a − bd−a
2
c + a, n − a − bn−c

2
c + a} = min{n+d+a−c+2

2
, n −

bd−a
2
c, n− bn−c

2
c}. Hence sdepthS(I) ≤ k. If b < c, then take w = xb+1 and we have

J
′′

= I : w = (x1, · · · , xb) ∩ (xc+1, · · · , xn) ⊂ R
′′

= K[x1, · · · , xb, xc+1, · · · , xn] and

by [10, Theorem 2.8] it follows sdepthR′′ (J
′′
) ≤ n−(c−b)+2

2
. Applying [8, Lemma 3.6]

by recurrence, we get

sdepthS(I) = sdepthR′′ J
′′

+ c− b ≤ n− (c− b) + 2

2
+ c− b =

n+ c− b+ 2

2
.

Example 3.3.3. Let I = (x1, · · · , x7) ∩ (x6, · · · , x12) ∩ (x10, · · · , x15), that is n =

15, a = 5, b = 7, c = 9, d = 12. Then k := min{11, 12, 12, 12, 12} = 11 and by

Proposition 3.3.8 sdepth(I) ≤ 9.
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Chapter 4

Bounds for the Stanley depth of

some square free monomial ideals

In this chapter, we show that Stanley conjecture holds for some classes of monomial

ideal whose Stanley depth is equal to its lower bound. For these ideals, we show

that sdepth(I) ≥ sdepth(S/I) + 1. We also give some good bounds for monomial

ideal I, where I is an intersection of four and five prime ideals.

4.1 Some classes of monomial ideals whose Stan-

ley depth is equal to its lower bound

Let I ⊂ S = K[x1, · · · , xn] be a monomial ideal such that for all xi there exist a

monomial v ∈ G(I) such that xi|v and define li = sup{j : xji | v, for some v ∈ G(I)}.

Theorem 4.1.1. Let I ⊂ S = K[x1, · · · , xn] be a monomial ideal with |G(I)| = m.

If there exist A := {xk1 , xk2 , · · · , xkm} ⊂ {x1, · · · , xn}and for each v ∈ G(I) there

exist unique xki ∈ A such that x
lki
ki
| v then sdepthS(I) = n− bm

2
c.

Proof. Suppose that I ⊂ S = K[x1, · · · , xn] be a monomial ideal with |G(I)| =

m. After renumbering the variables, let A := {x1, · · · , xm} ⊂ {x1, · · · , xn} and

36



for each v ∈ G(I) there exist unique xi ∈ A such that xlii | v. Then there exist

Ω = (x1, · · · , xm) ∈ Ass(S/I) with ht(Ω) = m. Because there exist a monomial

u = xl1−1
1 xl2−1

2 · · ·xlm−1
m x

lm+1

m+1 · · ·xlnn such that I : u = Ω. Also u /∈ I because there

does not exist xi ∈ A such that xlii | u. Then by [11, Corollary 2.2] and [11, Corollary

2.3] sdepthS(I) = n− bm
2
c.

Example 4.1.1. Let I = (x1x2x3, x1x3x4, x1x3x5, x1x3x6) is a monomial ideal in

S = K[x1, · · · , x6]. Then using Theorem 4.1.1, we have sdepth(I) = 4 and corre-

sponding Stanley decomposition is

D : I = x1x2x3K[x1, x2, x3, x4]⊕ x1x3x4K[x1, x3, x4, x5]⊕ x1x3x5K[x1, x2, x3, x5]

⊕x1x3x6K[x1, x2, x3, x6]⊕ x1x3x5x6K[x1, x3, x4, x5, x6]⊕ x1x3x4x6K[x1,

x2, x3, x4, x6]⊕ x1x2x3x5x6K[x1, x2, x3, x4, x5, x6].

Remark 4.1.1. Converse of Theorem 4.1.1 is not true. As shown in the following

example.

Example 4.1.2. Let I = (x1, x2x3, x3x4, x2x4x5) ⊂ S = K[x1, · · · , x5], I does

not satisfy the hypothesis of Theorem 4.1.1 and primary decomposition of I is I =

(x1, x2, x3)∩(x1, x2, x4)∩(x1, x3, x4)∩(x1, x3, x5). But by using cocoa, sdepth(I) = 3

and corresponding Stanley decomposition is

D : I = x1K[x1, x2, x3, x4, x5]⊕ x3x4K[x3, x4, x5]⊕ x2x3K[x2, x3, x4, x5]⊕ x2x4

K[x2, x4, x5].

Theorem 4.1.2. Let I ⊂ S = K[x1, · · · , xn] be a monomial ideal with |G(I)| = m

(m is odd). If there exist A := {xk1 , xk2 , · · · , xkm−1} ⊂ {x1, · · · , xn} and B :=

{vt1 , vt2 , · · · , vtm−1} ⊂ G(I) and for each vti ∈ B, there exist unique xki ∈ A such

that x
lki
ki
| vti, moreover there exist xj ∈ {x1, · · · , xn}\A such that x

lj
j |w where

w ∈ G(I)\B and x
lj
j divide only one vti ∈ B then sdepthS (I) = n− bm

2
c.

Proof. Let I ⊂ S be a monomial ideal with |G(I)| = m (m is odd). After renumber-

ing the variables let A := {x1, · · · , xm−1} ⊂ {x1, · · · , xn} and B := {v1, · · · , vm−1}
⊂ G(I). Suppose that for each vi ∈ B there exist unique xi ∈ A such that

xlii | vi and for w ∈ G(I)\B there exist xj ∈ {x1, · · · , xn}\A such that x
lj
j |w and
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x
lj
j |vk where vk ∈ B. Then Ω = (x1, · · · , xk−1, xk+1, · · · , xm−1, xj) ∈ Ass(S/I) with

ht(Ω) = m− 1. Because there exist a monomial

u = xl1−1
1 xl2−1

2 · · ·xlk−1−1
k−1 xlkk x

lk+1−1
k+1 · · ·xlm−1−1

m−1 xlmm x
lm+1

m+1 · · ·x
lj−1
j · · ·xlnn

such that I : u = Ω. Also u /∈ I, because there does not exist xi ∈ A such that

xlii |u for i ∈ {1, · · · ,m − 1}\{k}, xk|u but x
lj
j - u. By [11, Corollary 2.3], we have

sdepthS(I) = n− bm
2
c.

Example 4.1.3. Let I = (x1x2x3, x1x3x4, x1x3x5, x1x3x6, x2x3x7) is a monomial

ideal in S = K[x1, · · · , x7]. Then by Theorem 4.1.2 we have sdepth(I) = 5 and

corresponding Stanley decomposition is

D : I = x1x2x3K[x1, x2, x3, x4, x5]⊕ x1x3x4K[x1, x3, x4, x5, x6]⊕ x1x3x5K[x1,

x3, x5, x6, x7]⊕ x1x3x6K[x1, x2, x3, x6, x7]⊕ x2x3x7K[x1, x2, x3, x4, x7]⊕
x1x3x4x7K[x1, x3, x4, x5, x7]⊕ x2x3x5x7K[x1, x2, x3, x5, x7]⊕ x2x3x6x7

K[x2, x3, x4, x6, x7]⊕ x1x2x3x5x6K[x1, x2, x3, x5, x6, x7]⊕ x1x3x4x6x7K

[x1, x3, x4, x5, x6, x7]⊕ x1x2x3x4x6K[x1, x2, x3, x4, x5, x6, x7]⊕ x2x3x4x5

x6x7K[x2, x3, x4, x5, x6, x7].

Remark 4.1.2. Converse of Theorem 4.1.2 is not true. As shown in the following

example.

Example 4.1.4. Let I = (x1x2, x2x3, x3x4, x4x5, x1x5x6) ⊂ S = K[x1, · · · , x6], I

does not satisfy the hypothesis of Theorem 4.1.2 and primary decomposition of I

is I = (x1, x3, x4) ∩ (x1, x3, x5) ∩ (x2, x3, x5) ∩ (x1, x2, x4) ∩ (x2, x4, x5) ∩ (x2, x4, x6).

But by using Cocoa sdepth(I) = 4 and the corresponding Stanley decomposition is

D : I = x1x2K[x1, x2, x3, x4]⊕ x2x3K[x2, x3, x4, x5]⊕ x3x4K[x1, x3, x4, x5]⊕ x4x5

K[x1, x2, x4, x5]⊕ x1x2x5K[x1, x2, x3, x5]⊕ x1x2x6K[x1, x2, x3, x6]⊕ x1x5

x6K[x1, x2, x5, x6]⊕ x2x3x6K[x2, x3, x4, x6]⊕ x3x4x6K[x1, x3, x4, x6]⊕ x4

x5x6K[x1, x4, x5, x6]⊕ x1x2x3x4x5x6K[x1, x2, x3, x4, x5, x6].

Let I ⊂ S = K[x1, · · · , xn] be a monomial ideal with |G(I)| = m. Let A =

{xk1 , · · · , xkm} ⊂ {x1, · · · , xn} and for each v ∈ G(I) there exist unique xki ∈ A

such that x
lki
ki
| v. Then, we have the following results.

38



Corollary 4.1.3. sdepthS(S/I) = n−m.

Proof. By proof of Theorem 4.1.1, there exists a prime ideal Ω ∈ Ass(S/I) with

ht(Ω) = m. By Proposition 2.2.5, we have sdepth(S/I) ≥ n − m and by [1]

sdepth(S/I) ≤ min{dim(S/Ω) : Ω ∈ Ass(S/I)} = n−m. It follows that

sdepthS(S/I) = n−m.

Corollary 4.1.4. sdepthS(I) ≥ sdepthS(S/I) + 1.

Proof. Using Theorem 4.1.1, we have sdepthS(I) = n− bm
2
c and by Corollary 4.1.3

sdepthS(S/I) = n−m. Since n− bm
2
c ≥ n−m+ 1 hence

sdepthS(I) ≥ sdepthS(S/I) + 1.

Corollary 4.1.5. depthS(S/I) ≤ sdepthS(S/I), that is Stanley’s conjecture holds

for S/I.

Proof. Since depthS(S/I) ≤ n−m, hence by Corollary 4.1.3 we have depthS(S/I) ≤
sdepthS(S/I).

Corollary 4.1.6. depthS(I) ≤ sdepthS(I), that is Stanley’s conjecture holds for I.

Proof. By Corollary 4.1.4 sdepth(I) ≥ sdepthS(S/I) + 1 ≥ 1 + depth(S/I) =

depth(I). Therefore sdepthS(I) ≥ depthS(I).

Proposition 4.1.7. Let I
′
= (I, xn+1, xn+2) is a monomial ideal in S

′
= S[xn+1, xn+2]

then sdepth(I
′
) = sdepth(I) + 1.

Proof. By proof of Theorem 4.1.1, we have a prime ideal Ω ∈ Ass(S/I) with ht(Ω) =

m then Ω
′

= (Ω, xn+1, xn+2) is a prime ideal in Ass(S
′
/I
′
) and ht(Ω

′
) = m + 2 so

using Theorem 4.1.1 we have sdepthS′ (I
′
) = n+ 2−bm+2

2
c = n−bm

2
c+ 1. It follows

sdepthS′ (I
′
) = sdepthS(I) + 1.

For the general monomial ideals result given by Lemma 4.1.7 is not proved.
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4.2 Bounds of some square free monomial ideals

In this section, we have good bounds for the Stanley depth of I, where I =
s⋂

j=1

Ωj

and Ωk ⊂
s∑

1=j 6=k

Ωj for s = 4, 5 but [13, Theorem 2.6] does not give any information

about sdepth(I) for this type of ideals.

Lemma 4.2.1. Let 0 < q < r < s < n and I = Ω1 ∩ Ω2 ∩ Ω3 ∩ Ω4

where Ω1 = (x1 · · · , xr), Ω2 = (xq+1, · · · , xs), Ω3 = (xr+1, · · · , xn) and Ω4 =

(xs+1, · · · , xn, x1, · · · , xq). Then

I = (x1, · · · , xq) ∩ (xr+1, · · · , xs) + (xq+1, · · · , xr) ∩ (xs+1, · · · , xn).

Proof. Suppose that I
′

is the intersection of prime ideals Ω1 and Ω2

I
′

= Ω1 ∩ Ω2 = (x1 · · · , xq, xq+1, · · · , xr) ∩ (xq+1, · · · , xr, xr+1, · · · , xs)
= (x1 · · · , xq) ∩ (xr+1, · · · , xs) + (xq+1, · · · , xr).

Now I
′′

intersection of prime ideals Ω3 and Ω4

I
′′

= Ω3 ∩ Ω4 = (xr+1, · · · , xs, xs+1, · · · , xn) ∩ (xs+1, · · · , xn, x1, · · · , xq)
= (x1, · · · , xq) ∩ (xr+1, · · · , xs) + (xs+1, · · · , xn).

Now taking the intersection of I
′

and I
′′
, we get

Ω1 ∩ Ω2 ∩ Ω3 ∩ Ω4 =
{

(x1 · · · , xq) ∩ (xr+1, · · · , xs) + (xq+1, · · · , xr)
}
∩
{

(x1, · · ·

, xq) ∩ (xr+1, · · · , xs) + (xs+1, · · · , xn)
}

= (x1 · · · , xq) ∩ (xr+1, · · · , xs) + (x1 · · · , xq) ∩ (xr+1, · · · , xs)
∩(xs+1, · · · , xn) + (x1 · · · , xq) ∩ (xq+1, · · · , xr) ∩ (xr+1, · · ·
, xs) + (xq+1, · · · , xr) ∩ (xs+1, · · · , xn).

So

I = (x1, · · · , xq) ∩ (xr+1, · · · , xs) + (xq+1, · · · , xr) ∩ (xs+1, · · · , xn).

Proposition 4.2.2. Let 0 < q < r < s < n and I = Ω1 ∩ Ω2 ∩ Ω3 ∩ Ω4

where Ω1 = (x1 · · · , xr), Ω2 = (xq+1, · · · , xs), Ω3 = (xr+1, · · · , xn) and Ω4 =
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(xs+1, · · · , xn, x1, · · · , xq). Then

2 ≤ sdepth(I) ≤ 2 +
⌊d3

d2

⌋
,

where d2 = q(s− r) + (r − q)(n− s) and

d3 = d2(n− 2)−
{
q

(
s− r

2

)
+ (s− r)

(
q

2

)
+ (r − q)

(
n− s

2

)
+ (n− s)

(
r − q

2

)}
.

Proof. Let I = Ω1 ∩ Ω2 ∩ Ω3 ∩ Ω4 then by Lemma 4.2.1

I = (x1, · · · , xq) ∩ (xr+1, · · · , xs) + (xq+1, · · · , xr) ∩ (xs+1, · · · , xn).

Number of monomials of degree 2 in I is d2 = q(s − r) + (r − q)(n − s). And the

number of monomials of degree 3 is

d3 = d2(n− 2)−
{
q

(
s− r

2

)
+ (s− r)

(
q

2

)
+ (r − q)

(
n− s

2

)
+ (n− s)

(
r − q

2

)}
.

By using [13, Lemma 2.4], we have 2 ≤ sdepth(I) ≤ 2 +
⌊
d3
d2

⌋
.

Example 4.2.1. Let I = (x1, · · · , x6)∩(x5, · · · , x8)∩(x7, · · · , x10)∩(x9, x10, x1, · · · ,
x4), that is q = 4, r = 6, s = 8, n = 10. Then by Proposition 4.2.2, we get

2 ≤ sdepth(I) ≤ 8, while [13, Theorem 2.14] gives sdepth(I) ≤ 10. It is noted that

Proposition 4.2.2 gives better bound as compare to [13, Theorem 2.14].

Theorem 4.2.3. Let 0 < q < r < s < n and I = Ω1 ∩ Ω2 ∩ Ω3 ∩ Ω4 where Ω1 =

(x1 · · · , xr), Ω2 = (xq+1, · · · , xs), Ω3 = (xr+1, · · · , xn) and Ω4 = (xs+1, · · · , xn, x1, · · ·
, xq). Then

sdepth(S/I) ≥ max
{

min
{
q,
⌈s− r

2

⌉}
,min

{
s− r,

⌈q
2

⌉}}
+ max

{
min

{
n− s,

⌈r − q
2

⌉}
,min

{
r − q,

⌈n− s
2

⌉}}
.

Proof. Let I = Ω1 ∩ Ω2 ∩ Ω3 ∩ Ω4 then by Lemma 4.2.1

I = (x1, · · · , xq) ∩ (xr+1, · · · , xs) + (xq+1, · · · , xr) ∩ (xs+1, · · · , xn).
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Let I
′
= (x1, · · · , xq) ∩ (xr+1, · · · , xs) ⊂ R

′
= K[x1, · · · , xq, xr+1, · · · , xs] and

I
′′

= (xq+1, · · · , xr) ∩ (xs+1, · · · , xn) ⊂ R
′′

= {xq+1, · · · , xr, xs+1, · · · , xn}.
Then by [19, Theorem 3.1 ], we have

sdepth(S/I) ≥ sdepth(R
′
/I
′
) + sdepth(R

′′
/I
′′
).

Let Q
′
1 = (x1, · · · , xq) and Q

′
2 = (xr+1, · · · , xs). Then dim(R

′
/Q

′
1) = (s− r+ q)− q

= s− r, dim(R
′
/Q

′
2) = (s− r + q)− (s− r) = q and dim(R

′
/(Q

′
1 +Q

′
2)) = 0. So

min
{

dim(R
′
/Q

′

2),
⌈dim(R

′
/Q

′
1) + dim(R

′
/(Q

′
1 +Q

′
2))

2

⌉}
= min

{
q,
⌈s− r

2

⌉}
min

{
dim(R

′
/Q

′

1),
⌈dim(R

′
/Q

′
2) + dim(R

′
/(Q

′
1 +Q

′
2))

2

⌉}
= min

{
s− r,

⌈q
2

⌉}
.

By [17, Corollary 2.4], we get sdepth(R
′
/I
′
) = max

{
min

{
q,
⌈
s−r

2

⌉}
,min

{
s −

r,
⌈
q
2

⌉}}
. Now suppose that Q

′′
1 = (xq+1, · · · , xr) and Q

′′
2 = (xs+1, · · · , xn), then

dim(R
′′
/Q

′′
1) = (n− s) + (r− q)− (r− q) = n− s, dim(R

′′
/Q

′′
2) = (n− s) + (r− q)−

(n− s) = r − q and dim(R
′′
/(Q1 +Q2)) = 0. So

min
{

dim(R
′′
/Q

′′

1),
⌈dim(R

′′
/Q

′′
2) + dim(R

′′
/(Q

′′
1 +Q

′′
2))

2

⌉}
= min

{
n−s,

⌈r − q
2

⌉}
,

min
{

dim(R
′′
/Q

′′

2),
⌈dim(R

′′
/Q

′′
1) + dim(R

′′
/(Q

′′
1 +Q

′′
2))

2

⌉}
= min

{
r−q,

⌈n− s
2

⌉}
.

Now again by using [17, Corollary 2.4], we have

sdepth(R
′′
/I
′′
) = max

{
min

{
n− s,

⌈r − q
2

⌉}
,min

{
r − q,

⌈n− s
2

⌉}}
.

Hence we get

sdepth(S/I) ≥ max
{

min
{
q,
⌈s− r

2

⌉}
,min

{
s− r,

⌈q
2

⌉}}
+ max

{
min

{
n− s,

⌈r − q
2

⌉}
,min

{
r − q,

⌈n− s
2

⌉}}
.
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Remark 4.2.1. If 0 < q = 3 < r = 5 < s = 7 < n = 10 and I = Ω1 ∩ Ω2 ∩
Ω3 ∩ Ω4 where Ω1 = (x1, · · · , x5), Ω2 = (x4, · · · , x7), Ω3 = (x6, · · · , x10) and Ω4 =

(x8, · · · , x10, x1, · · · , x3) then I = (x1x6, x2x6, x3x6, x1x7, x2x7, x3x7, x4x8, x5x8,

x4x9, x5x9, x4x10, x5x10).And max{min{3, 1},min{2, 2}}+max{min{3, 1},min{2, 2}}
= 2 + 2 = 4. So by applying Theorem 4.2.3 sdepth(S/I) ≥ 4, but by using Proposi-

tion 2.2.5, we have sdepth(S/I) ≥ n−m = 10− 12 = −2. It is noted that Theorem

4.2.3 gives better bound as compare to Proposition 2.2.5.

Lemma 4.2.4. Let 0 < q < r < s < t < n and I = Ω1 ∩ Ω2 ∩ Ω3 ∩ Ω4 ∩ Ω5 where

Ω1 = (x1 · · · , xr), Ω2 = (xq+1, · · · , xs), Ω3 = (xr+1, · · · , xt), Ω4 = (xs+1, · · · , xn)

and Ω5 = (xt+1, · · · , xn, x1, · · · , xq), then

I = (x1, · · · , xq) ∩ (xr+1, · · · , xs) ∩ (xs+1, · · · , xt) + (x1, · · · , xq) ∩ (xr+1, · · · , xs)

∩(xt+1, · · · , xn) + (x1, · · · , xq) ∩ (xq+1, · · · , xr) ∩ (xs+1, · · · , xt) + (xq+1, · · · , xr)

∩(xr+1, · · · , xt) ∩ (xt+1, · · · , xn).

Proof. Firstly we take intersection of prime ideals Ω1 and Ω2

Ω1 ∩ Ω2 = (x1, · · · , xq, xq+1, · · · , xr) ∩ (xq+1, · · · , xr, xr+1, · · · , xs)
= (x1, · · · , xq) ∩ (xr+1, · · · , xs) + (xq+1, · · · , xr).

Suppose that I
′

is the intersection of Ω1,Ω2 and Ω3

I
′
= Ω1 ∩ Ω2 ∩ Ω3 = {(x1, · · · , xq) ∩ (xr+1, · · · , xs) + (xq+1, · · · , xr)} ∩ (xr+1,

· · · , xs, xs+1, · · · , xt)
= (x1, · · · , xq) ∩ (xr+1, · · · , xs) + (xq+1, · · · , xr) ∩ (xr+1,

· · · , xs, xs+1, · · · , xt).
Let

I
′′

= Ω4 ∩ Ω5 = (xs+1, · · · , xt, xt+1, · · ·xn) ∩ (xt+1, · · · , xn, x1, · · · , xq)

= (x1, · · · , xq) ∩ (xs+1, · · · , xt) + (xt+1, · · · , xn).

Now by taking intersection of I
′

and I
′′

we have
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Ω1 ∩ Ω2 ∩ Ω3 ∩ Ω4 ∩ Ω5 = {(x1, · · · , xq) ∩ (xr+1, · · · , xs) + (xq+1, · · · , xr) ∩ (xr+1,

· · · , xs, xs+1, · · · , xt)} ∩ {(x1, · · · , xq) ∩ (xs+1, · · · , xt)
+(xt+1, · · · , xn)}

= (x1, · · · , xq) ∩ (xr+1, · · · , xs) ∩ (xs+1, · · · , xt) + (x1, · · ·
, xq) ∩ (xr+1, · · · , xs) ∩ (xt+1, · · · , xn) + (x1, · · · , xq)∩
(xq+1, · · · , xr) ∩ (xs+1, · · · , xt) + (xq+1, · · · , xr) ∩ (xr+1

, · · · , xt) ∩ (xt+1, · · · , xn).

Theorem 4.2.5. Let 0 < q < r < s < t < n and I = Ω1 ∩Ω2 ∩Ω3 ∩Ω4 ∩Ω5 where

Ω1 = (x1 · · · , xr), Ω2 = (xq+1, · · · , xs), Ω3 = (xr+1, · · · , xt), Ω4 = (xs+1, · · · , xn)

and Ω5 = (xt+1, · · · , xn, x1, · · · , xq), then

3 ≤ sdepth(I) ≤
⌊n+ 3

2

⌋
.

Proof. Let I = Ω1 ∩ Ω2 ∩ Ω3 ∩ Ω4 ∩ Ω5 then by Lemma 4.2.4

I =(x1, · · · , xq) ∩ (xr+1, · · · , xs) ∩ (xs+1, · · · , xt) + (x1, · · · , xq) ∩ (xr+1, · · · , xs)∩

(xt+1, · · · , xn) + (x1, · · · , xq) ∩ (xq+1, · · · , xr) ∩ (xs+1, · · · , xt) + (xq+1, · · · , xr)

∩ (xr+1, · · · , xt) ∩ (xt+1, · · · , xn).

Number of monomials of degree 3 in I is d3 = q(s − r)(t − s) + q(s − r)(n − t) +

(r − q)(t− r)(n− t) + q(r − q)(t− s), after simplifying we get

d3 = q(s− r)(n− s) + (r − q)(t− r)(n− t) + q(r − q)(t− s). (4.2.1)

For our convenience, we denote different components of ideal I as I
′
= (x1, · · · , xq)∩

(xr+1, · · · , xs)∩(xs+1, · · · , xt), I
′′

= (x1, · · · , xq)∩(xr+1, · · · , xs)∩(xt+1, · · · , xn), J
′
=

(xq+1, · · · , xr)∩(xr+1, · · · , xt)∩(xt+1, · · · , xn) and J
′′

= (x1, · · · , xq)∩(xq+1, · · · , xr)∩
(xs+1, · · · , xt).
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Since the number of monomials of degree 4 in I
′

are

q(s− r)(t− s)
2

{
q + s− r + t− s− 3

}
+ q(s− r)(t− s)

{
n− (q + s− r + t− s)

}
= q(s− r)(t− s)

{q − r + t− k + 2n− 2q + 2r − 2t

2

}
=
q(s− r)(t− s)

2

{
2n+ r − q − t− 3

}
.

Hence we get the number of monomials of degree 4 in I
′

is

=
q(s− r)(t− s)(n− t)

2
+
q(s− r)(t− s)(r − q)

2
+
q(s− r)(t− s)(n− 3)

2
. (4.2.2)

And the number of monomials of degree 4 in I
′′

is

q(s− r)(n− t)
2

{
n+ q + s− r − t− 3

}
+ q(s− r)(n− t)

{
n− (q + s− r + n− t)

}
= q(s− r)(n− t)

{n+ q + s− r − t− 3− 2s− 2q + 2r + 2t

2

}
=
q(s− r)(n− t)

2

{
n+ r + t− s− q − 3

}
.

Thus we have the number of monomials of degree 4 in I
′′

is

=
q(s− r)(n− t)(t− s)

2
+
q(r − q)(s− r)(n− t)

2
+
q(s− r)(n− t)(n− 3)

2
. (4.2.3)

Also the number of monomials of degree 4 in J
′

is

(r − q)(t− r)(n− t)
2

{
r − q + t− r + n− t− 3

}
+ (r − q)(t− r)(n− t)

{
n− (r − q

+ t− r + n− t)
}

=
(r − q)(t− r)(n− t)

2
(n+ q − 3)

=
q(r − q)(t− r)(n− t)

2
+

(r − q)(t− r)(n− t)(n− 3)

2
.

So the number of monomials of degree 4 in J
′

is

=
q(r − q)(t− s)(n− t)

2
+
q(r − q)(s− r)(n− t)

2
+

(r − q)(t− r)(n− t)(n− 3)

2
.

(4.2.4)

45



Number of monomials of degree 4 in J
′′

is

q(r − q)(t− s)
2

{
q + r − q + t− s− 3

}
+ q(r − q)(t− s)

{
n− (q + r − q + t− s)

}
=
q(r − q)(t− s)

2

{
2n+ s− t− r − 3

}
=
q(r − q)(t− s)(s− r)

2
+
q(r − q)(t− s)(n− t)

2
+
q(r − q)(t− s)(n− 3)

2
. (4.2.5)

Now combining (4.2.2), (4.2.3), (4.2.4) and (4.2.5) we get

q(s− r)(t− s)(n− t) + q(r − q)(t− s)(s− r) + q(r − q)(s− r)(n− t) + q(r − q)

(t− s)(n− t)q(s− r)(t− s)(n− 3)

2
+
q(s− r)(n− t)(n− 3)

2
+ (r − q)(t− r)(n− t)

(n− 3)

2
+
q(r − q)(t− s)(n− 3)

2

= q(s− r)(t− s)(n− t) + q(r − q)(t− s)(s− r) + q(r − q)(s− r)(n− t) + q(r − q)

(t− s)(n− t) +
n− 3

2

{
q(s− r)(n− s) + (r − q)(t− r)(n− t) + q(r − q)(t− s)

}
.

Number of common monomials of degree 4 in components I
′

and I
′′
, I

′
and J

′′
,

I
′′

and J
′
, J

′
and J

′′
are given as q(s − r)(n − t)(t − s), q(t − s)(r − q)(s − r),

q(r − q)(s − r)(n − t) and q(r − q)(t − s)(n − t), respectively. So total number of

monomials of degree 4 in I is

d4 = q(s−r)(t−s)(n− t)+q(r−q)(t−s)(s−r)+q(r−q)(s−r)(n− t)+q(r−q)(t−
s)(n− t) + n−3

2

{
q(s− r)(n− s) + (r − q)(t− r)(n− t) + q(r − q)(t− s)

}
−
{
q(s−

r)(n− t)(t−s)+q(t−s)(r−q)(s−r)+q(r−q)(s−r)(n− t)+q(r−q)(t−s)(n− t)
}

= n−3
2

{
q(s− r)(n− s) + (r − q)(t− r)(n− t) + q(r − q)(t− s)

}
.

Then from above and by (4.2.1), we get

d4 =
n− 3

2
d3. (4.2.6)

By using [13, Lemma 2.4] we have 3 ≤ sdepth(I) ≤ 3 +
⌊
d4
d3

⌋
. Hence by (4.2.6), we

have 3 ≤ sdepth(I) ≤ 3 +
⌊
n−3

2

⌋
=
⌊
3 + n−3

2

⌋
=
⌊
n+3

2

⌋
.
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Example 4.2.2. Let I = (x1, · · · , x5)∩ (x4, · · · , x6)∩ (x6, · · · , x9)∩ (x7, · · · , x12)∩
(x10, · · · , x12, x1, · · · , x3) that is q = 3, r = 5, s = 6, t = 9 and n = 12. Then

by Theorem 4.2.5, we have 3 ≤ sdepth(I) ≤ 7, while [13, Theorem 2.14] gives

sdepth(I) ≤ 12. It is noted that Theorem 4.2.5 gives better bound as compare to

[13, Theorem 2.14].

Example 4.2.3. Let I = (x1, · · · , x8)∩(x6, · · · , x12)∩(x9, · · · , x15)∩(x13, · · · , x20)∩
(x16, · · · , x20, x1, · · · , x5) that is q = 5, r = 8, s = 12, t = 15 and n = 20. Then

by Theorem 4.2.5, we have 3 ≤ sdepth(I) ≤ 11, while [13, Theorem 2.14] gives

sdepth(I) ≤ 20. It is observed that Theorem 4.2.5 gives better bound as compare

to [13, Theorem 2.14].
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