

From Natural Language to Domain-Specific

Languages – A Use Case of Xtext Platform

By:

Amina Zafar

(Registration No.: MS-CSE-21-361404)

Supervisor:

Dr. Farooque Azam

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING,

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING,

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY,

ISLAMABAD

December 20, 2023

From Natural Language to Domain-Specific

Languages – A Use Case of Xtext Platform

By

Amina Zafar

(Registration No.: 00000361404)

A thesis submitted to National University of Sciences and Technology,

Islamabad

in partial fulfillment of the requirements for the degree of

Master of Sciences in Software Engineering

Supervisor

Dr. Farooque Azam

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING,

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING,

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY

ISLAMABAD

December 20, 2023

i

Dedicated to my mother, whose
tremendous continuous support and

endless prayers led me to this
accomplishment.

ii

Acknowledgment

First and foremost, I would like to express my gratitude to Allah Almighty, the most

merciful and the most kind, for bestowing His blessings upon me and granting me the

strength to complete this work.

I extend my heartfelt appreciation to the Higher Education Commission (HEC) Pakistan

for funding this research project under the MRED project series.

I am deeply indebted to my supervisor, Brig. Dr. Farooque Azam, for his unwavering

intellectual support and valuable ideas throughout this research journey. He has been an

inspirational instructor, providing me with technical guidance and moral encouragement.

His insightful feedback has honed my skills and critical thinking, enabling me to achieve

my research goals. Without his continuous support, completing this dissertation would

not have been possible. I am immensely grateful for the motivation he has instilled in me

throughout this challenging expedition. Concluding my research study under his supervi-

sion has been a great honor.

I would also like to express my appreciation to my external GEC member, Dr. M. Waseem

Anwar, for his valuable suggestions and guidance. I am thankful to Ms. Afshan Latif for

their assistance and direction in helping me achieve my research objectives.

I dedicate this work to my supervisor, mentor, and teacher, Brig. Dr. Farooque Azam,

and my beloved mother, Aisha Nazir, who has supported and stood by me unwaveringly

throughout this journey. Without her love and encouragement, I would not have been able

to accomplish this work. To my dear ”Mama,” thank you for everything. I also extend my

gratitude to my sister for her support.

iii

Abstract

Development of the domain-specific language (DSL), i.e., the Xtext framework, supports

the development of consistent requirements of software systems, but their development

complexities are crucial in MDE. At the core of the Xtext framework, we find its gram-

mar, which requires propitious knowledge regarding its technical concepts. The soft-

ware development life cycle (SDLC) involves a complex requirement elicitation phase

that entails collaboration among multiple stakeholders. The problem arises when non-

technical stakeholders encounter diverse challenges to grasp the development intricacies

of the Xtext grammar. Hence, they cannot communicate their requirements to technical

stakeholders. Consequently, there is a need for such a framework that can simplify the

DSL development of the Xtext to facilitate collaboration among multiple stakeholders.

An extensive analysis of 44 prior studies is conducted related to both NLP techniques

and MDE approaches. It is analyzed that a few of the existing studies have focused on

modeling with NLP techniques and the Xtext framework to support the generation of con-

sistent requirements. However, it is important to mention that a prominent research gap

still exists, as a framework for auto-generated Xtext grammar is not proposed.

Therefore, this thesis presents a research work where a framework is developed to au-

tomatically generate the Xtext grammar from the natural language requirements using

natural language processing (NLP) techniques. Particularly, a rule-based approach is in-

corporated to extract the primary DSL elements comprising the Xtext, such as the root el-

ement, relationship element, and attributes from the textual requirements. Furthermore, a

comprehensive algorithm is devised to systematically apply the NLP rules, facilitating the

generation of desired Xtext grammar. Based on this approach, the tool Natural-Language

To Domain-Specific Language (NL2DSL) is developed. The proposed approach is val-

idated through two case studies, i.e., the timing model and the diabetic manager. Our

generated results prove that the proposed framework generates the Xtext grammar from

the textual requirements with a satisfactory degree of accuracy.

Keywords: Domain-Specific Languages, DSLs, Xtext, East-ADL, model-driven engi-

neering, Natural Language Processing.

iv

Contents

Chapter 1: Introduction 1

 Background .. 1

 DSL environment ... 2

 Importance of Collaboration in Requirements Engineering 2

 Importance of automation for the modeling environment 4

 Natural Language Processing (NLP) ... 4

 Goals and Objectives .. 5

 Motivation .. 6

 Problem .. 6

 Proposed Solution ... 7

 Thesis Organization .. 9

Chapter 2: Preliminaries 10

 Literature Review ... 10

 Natural Language Processing in MDE .. 11

 Natural Language Processing in UML .. 14

 Natural Language Processing in SysML.. 17

 Natural Language Processing in DSM .. 19

 Xtext in MDE ... 21

 Blended Modeling... 21

 Verification/Validation ... 22

 Domain’s Perspective ... 23

 Artificial Intelligence .. 25

 Research Gap .. 26

 Contributions .. 27

Chapter 3: Methodology 28

 Proposed Algorithm .. 29

 Transformation Rules For the Identification of Xtext Elements 35

Chapter 4: Implementation 57

 Tools and Languages .. 57

 Tool Interface ... 59

 Xtext Grammar Generation Details ... 60

Chapter 5: Validation 62

 Dataset Collection ... 62

 Case Study 01 ... 63

 Case Study 02 ... 64

 Results .. 64

v

 Results of Case Study 01 .. 65

 Results of Case Study 02 .. 72

Chapter 6: Discussion and Limitations 78

 Discussions ... 78

 Limitations ... 80

Chapter 7: Conclusion and Future Directions 81

7.1 Conclusion .. 81

References

vi

List of Figures

Figure 1.1 Research Review ... 8

Figure 1.2 Overview of the Research Study .. 8

Figure 3.1 High Level of the Proposed Framework. .. 29

Figure 3.2 Proposed Algorithm... 30

Figure 3.3 Graphical Description of Rules for the Root Element Identification. 38

Figure 3.4 Graphical Description of Rules for the Relationship Element Identification. 40

Figure 3.5 Graphical Description of Rules for the Multiple Attribute Element Iden-

tification.. 47

Figure 3.6 Graphical Description of Rules for the Multiple Attribute Element Iden-

tification.. 50

Figure 3.7 Graphical representation of rules for Single Attribute Element Identification. 52

Figure 3.8 Graphical Description of Rules for Single & Optional Attribute Element

Identification. .. 53

Figure 4.1 Interface of the Eclipse Platform. ... 58

Figure 4.2 Interface of the NL2DSL Tool. .. 59

Figure 4.3 NL2DSL’s Output comprising Xtext Grammar... 60

Figure 4.4 Generated Xtext Grammar Save in .xtext.. 61

Figure 5.1 Timing Model Case Study ... 63

Figure 5.2 Diabetic Manager Case Study .. 64

Figure 5.3 Generated Xtext Timing Model Grammar .. 68

Figure 5.4 Generated Xtext Diabetic Manager .. 72

vii

List of Tables

Table 1.1 Overview of primary DSL elements comprising the Xtext Framework. 3

Table 2.1 Natural Language Processing (NLP) in MDE. 12

Table 2.2 Natural Language Processing (NLP) in UML. 15

Table 2.3 Natural Language Processing (NLP) in SysML. 18

Table 2.4 Natural Language Processing (NLP) in DSM. 19

Table 2.5 Blended Modeling in Xtext. ... 22

Table 2.6 Verification with Xtext. ... 23

Table 2.7 Domains Perspectives within Xtext. ... 24

Table 2.8 AI within Xtext. ... 25

Table 2.9 Overview of the Limitations analyzed from the Literature Review 26

Table 3.1 List of POS Tags.. 36

Table 5.1 List of Actual Xtext DSL Elements for Timing Model Case Study 66

Table 5.2 List of Xtext DSL Elements for Timing Model Case Study Identi-

fied by NL2DSL tool. ... 67

Table 5.3 Calculation of NL2DSL Effectiveness for Timing Model Case Study. 68

Table 5.4 List of Actual Xtext DSL Elements for Variated Timing Model Case

Study .. 69

Table 5.5 List of Xtext DSL Elements for Variated Timing Model Case Study

Identified by NL2DSL tool. .. 70

Table 5.6 Calculation of NL2DSL Effectiveness for Variated Timing Model

Case Study .. 71

Table 5.7 List of Actual Xtext DSL Elements for the Diabetic Manager Case

Study .. 73

Table 5.8 List of Xtext DSL Elements for the Diabetic Manager Case Study

Identified by NL2DSL Tool. ... 74

Table 5.9 Calculation of NL2DSL Effectiveness for Diabetic Manager Case

Study .. 74

Table 5.10 List of Actual Xtext DSL Elements for Variated Diabetic Manager

Case Study .. 75

Table 5.11 List of Xtext DSL Elements for Variated Diabetic Manager Case

Study Identified by the NL2DSL tool. ... 76

Table 5.12 Calculation of NL2DSL Effectiveness for variated Diabetic Man-

ager Case Study .. 76

1

Chapter 1

Introduction

The primary purpose of this chapter is to give an overview of the terms utilized throughout

this thesis. It is organized into six sections. Section 1.1 presents the background study

of the concepts used throughout this research work. Section 1.2 presents the goals and

objectives of our research study. The motivation behind our research study is presented

in Section 1.3. The problem statement of our research study and the proposed solution

are presented in Section 1.4 and Section 1.5, respectively. Section 1.6 presents the thesis

organization.

 Background

This section presents a background study of our research study by exploring which con-

cepts have been utilized. The concepts include:

• DSL Environment

• Importance of Collaboration in Requirement Engineering

• Importance of automation in the modeling environment

• Natural Language Processing (NLP)

2

 DSL environment

Model-driven engineering offers two modeling approaches, i) textual modeling ii) graph-

ical modeling. Throughout this thesis, our research work focuses on the textual model-

ing approach provided by different frameworks, including Xtext. Particularly, Xtext is a

domain-specific modeling (DSL) framework that provides a textual model with reliance

on keywords and syntax of the programming language. It is powered by the Itemis AG,

released in 2008 under the Eclipse Public License. Xtext framework aims to develop con-

sistent requirements to support complex systems development. It is vital in enhancing

usability and imposing validation checks to ensure the requirement’s consistency [1].

It is comprised of two components, i) DSL Definition ii) Runtime behavior. Particularly,

the DSL definition permits the design of customized Xtext grammar. On the contrary,

the runtime behavior assists in the validation of the designed Xtext grammar. Our re-

search study focuses on the DSL definition of the Xtext framework. Table 1.1 presents an

overview of the primary DSL elements of the Xtext.

 Importance of Collaboration in Requirements Engineering

The requirement engineering is the initial phase of the software development life cycle

(SDLC). Moreover, requirement elicitation is a critical phase to elicit the entire require-

ments of the software system being developed [2]. The requirements are elicited through

collaboration among multiple stakeholders. The stakeholders are classified into two cat-

egories: i) technical stakeholders and ii) non-technical stakeholders. The requirements

elicitation is influenced by the desired needs and expectations, along with each stake-

holder’s experience that must be satisfied. A detailed understanding of the requirements

is required to develop an efficient software system. It is observed that both categories of

stakeholders hold distinct perceptions in the model-based development of software sys-

tems. Like, technical stakeholders focus on technical perceptions, whereas non-technical

stakeholders lack technical expertise and merely focus on the business requirements.

3

Table 1.1: Overview of primary DSL elements comprising the Xtext Framework.

Sr.# Primary Element Sub-Element Representation in Xtext

1 Root Element
Parser Rule

Keyword

Parser Rule

Keyword

Association Name

Child Element

2 Relationship Element

Association
Operator

Association
Constraint

Parser Rule

Keyword

Attribute Name

3 Attributes

Data Type Or Keyword

ParserRule appears with a colon
followed by a keyword.

ParserRule appears with a colon
followed by a keyword.

Containment Relationship

(Association Name, Association
Operator, Child Element, Association

Constraint)

Reference Relationship
(Association Name, Association

Operator, Cross Reference
(Child Element),

Association Constraint)

ParserRule appears with a colon
followed by a keyword.

Multiple Attributes
Attribute1 Name = Data Type
Attribute2 Name = Data Type

Or
(Attribute1 Name? = Keyword)?
(Attribute2 Name? = Keyword)?

Single Attributes
Attribute Name = Data Type

(Attribute Name? = Keyword)?

Optional Attributes

Or
(Attribute Name = Data Type)?

Due to this technical barrier, the communication gap is introduced between the technical

and non-technical stakeholders, which impacts the quality of requirements [3]. It is esti-

mated that 56% of the failures in system development are caused by poor communication,

which requires high cost and 86% of the staff time for correction [4]. Therefore, a collab-

orative environment should be developed by devising the identical language among both

stakeholder categories [5]. Thus, the technical stakeholders can elicit accurate require-

ments through effective collaboration with non-technical stakeholders. Several organiza-

tions adapt the collaborative environments in their workplace to support the high-quality

standard of software systems. Such a collaborative environment supports a variety of

advantages, such as system development with non-conflicted requirements, proper stake-

4

holder engagement, and fewer communication failures.

 Importance of automation for the modeling environment

Development of the Domain-specific languages (DSLs) through the Xtext framework is

crucial in model-driven engineering. Automation is a process of generating models from

the textual requirements. Currently, the manual development of the domain-specific lan-

guage using the Xtext framework is conducted in various ways, such as blended modeling.

Particularly, the manual development of DSLs through the Xtext framework makes it dif-

ficult to grasp the technical concepts by the non-technical stakeholders.

In contrast, the technical stakeholders can understand the technical concepts of the Xtext

grammar. Due to such complex scenarios, misunderstandings and conflicting require-

ments between these two categories of stakeholders occur, which can impact their collab-

oration environment. With the occurrence of these challenges, an auto-generated Xtext

grammar is required. To employ this automation process, artificial intelligence technolo-

gies such as natural language processing can be applied to auto-generate the Xtext gram-

mar.

 Natural Language Processing (NLP)

Natural language processing (NLP) is a branch of artificial intelligence that can com-

prehend the structure and syntax of human language. Generally, it takes textual data,

processes the unstructured text, and then extracts the key information [6]. NLP is divided

into two main phases, described in the below sub-sections.

i) Data Preprocessing Data preprocessing is an integral and initial phase of NLP that

removes unnecessary information from the unstructured text to create the structured

textual dataset. Some techniques, like stemming, lemmatization, etc., can be used

based on customized preferences.

ii) Algorithm application Results of the data preprocessing are attained to execute the

5

applied algorithm. The applied algorithm extracts the desired information from the

preprocessed results. The algorithms are classified as machine learning classifiers

and customized algorithms with the rule-based approach of NLP, etc.

(a) Advanced Artificial Intelligence Some advanced artificial intelligence tech-

niques, such as Machine learning and deep learning, are utilized. This sub-

field of artificial intelligence consists of multiple algorithms such as Random

Forest, Naive Bayes, etc. Further, deep learning (DL) comprises different al-

gorithms like CNN (convolutional neural network), which can classify textual

requirements. These algorithms attained the results of the preprocessed dataset

to identify the desired elements later used for the categories classification.

(b) Rule-Based Approach In the initial days of natural language processing, the

rule-based approach was widely utilized, and it is still used today. It is a prac-

tical approach that comprises a set of regular expressions or heuristic rules

that can apply to the textual dataset, extracting the desired information. In

a comparison view, the rule-based approach is straightforward, and the ad-

vanced algorithms of Machine learning or deep learning require training the

large textual datasets, which is a bit complex.

 Goals and Objectives

The main objective of this research study is to support a collaborative environment among

diverse stakeholders. The Xtext framework is comprised of various technical concepts

conforming to the creation of Xtext grammar. Due to the development complexity of the

Xtext grammar, its technical concepts appear different for the technical and non-technical

stakeholders. The non-technical stakeholders have an inproficient understanding of the

Xtext framework. On the other hand, the technical stakeholders can easily comprehend

the technical concepts of Xtext grammar.

6

Consequently, there is a need for such a framework that supports the language of non-

technical stakeholders. In this thesis, our goal is to present a framework in order to provide

an automated Xtext grammar. The techniques of natural language processing (NLP) are

utilized, paving the way to auto-generate the Xtext grammar from the natural-language re-

quirements which become easily comprehensible by the non-technical stakeholders. The

natural-language requirements also support the technical experts by including some re-

served technical words such as string type, optional, etc.

 Motivation

The requirement specification is the central pillar of software systems development. How-

ever, the technical experts elicit the requirements through collaboration with non-technical

stakeholders. The non-technical experts cannot grasp the technical concepts of the Xtext

grammar, so they cannot share their requirements and collaborate with the technical par-

ties. Although current studies did not play a prominent contribution to the automation of

the Xtext grammar. Therefore, there is a need for a framework that provides automated

Xtext grammar, and offers several benefits to the public:

i) It brings simplicity to the DSL development of the Xtext grammar.

ii) It benefits several organizations by integrating into their workflow process seam-

lessly.

iii) It reduces the development burden to support the technical experts.

 Problem

The requirement engineering is an initial software development life cycle (SDLC) phase to

support the development of software systems. The collaboration is observed to be highly

effective in speeding up the requirement elicitation process. Requirements are elicited

through the collaborative participation of diverse stakeholders. The emergence of Model-

7

driven engineering (MDE) brings simplification to the development of complex software

systems across multiple domains. Developing Xtext-based DSLs is challenging due to its

inherent complexity, which requires extensive knowledge to comprehend. From the per-

spective of technical stakeholders, the technical concepts comprising the Xtext grammar

are easily interpreted by them. On the contrary, the same concepts are hard to under-

stand by non-technical stakeholders because each stakeholder has its own understanding

of grammatical notations. This problem negatively impacts the collaborative environment

of stakeholders. Although various state-of-art studies have worked on the automation of

MDE models, those studies have two-fold:

1. Overall, the models, i.e., UML, SysML, and metamodels, have been proposed with

automation. However, the integrated Xtext and NLP approach has merely focused

on the generation of formal or unambiguous requirements.

2. A restricted natural-language template has been utilized to write the requirement

specifications. Still, the existing studies did not contribute to the automation of the

Xtext grammar. Consequently, there is a need for such a framework that provides an

auto-generated Xtext grammar through the utilization of NLP techniques to support

the collaborative environment of the stakeholders.

 Proposed Solution

Throughout this thesis, our research work consists of multiple activities, which are struc-

tured as follows: Initially, the main problem is identified. Then, an initial solution is

proposed to resolve the identified problem. Then, the literature review is conducted to

analyze the related papers through which the research gap and optimum solution are rec-

ognized. After, the primary approach is determined by analyzing the related studies corre-

sponding to the proposed solution. Afterward, the proposed solution is implemented using

tools and languages. Validation is presented with case studies to prove the feasibility of

the proposed solution. Afterward, discussions and significant limitations of the proposed

8

Figure 1.1: Research Review.

solution are presented. Finally, the research study is concluded by suggesting a few im-

provements. Figure 1.1 presents the outline of our research work. Our research work is

presented with a proposed solution that automatically generates the Xtext grammar from

the natural-language requirements using the NLP techniques. Figure 1.2 presents the

overview of the research work.

Figure 1.2: Overview of the Research Study.

To demonstrate the proposed solution, a tool named Natural-Language To Domain-Specific

9

Language, abbreviated as NL2DSL is developed. It has a user interface design to load the

PDF file containing the textual requirements of the system. Particularly, the rule-based

approach comprising the regular expressions is developed to extract the primary DSL el-

ements of the Xtext. Further, the extracted DSL elements of the Xtext are saved in arrays

to represent a DSL file of the .xtext extension. The feasibility of the proposed framework

is evaluated through two case studies, i.e., the timing model is associated with the Volvo

industry, and the diabetic manager is associated with the health system.

 Thesis Organization

The thesis is organized as follows:

• Chapter 1 presents the introductory overview of the proposed approach, motivation,

problem, and objectives.

• Chapter 2 presents the state-of-art by exploring the NLP approaches for the de-

velopment of model-based software systems and overall utilization of the Xtext

framework.

• Chapter 3 presented an approach to resolve the state-of-the-art problems.

• Chapter 4 discusses the implementation details of the proposed framework.

• Chapter 5 presents the validation of the proposed framework with case studies.

• Chapter 6 presents discussions and a few limitations of the proposed framework.

• Chapter 7 provides a brief conclusion with some enhancements for the proposed

framework, which can be implemented in the future. .

10

Chapter 2

Preliminaries

This chapter is organized into three sections to determine the existing research work.

Section 2.1 describes the research work of previous studies while Section 2.2 presents

the research gap in the context of analyzed studies. Section 2.3 presents the contributions

of this master thesis.

 Literature Review

This section presents the analysis of the previous studies in the context of model-driven

engineering (MDE). In the MDE context, several existing studies have used natural-

language processing techniques to automate the generation of SDLC phases, i.e., verifica-

tion, testing, etc. Further, natural-language processing techniques have been employed to

generate the UML and SysML architectural diagrams. Similarly, a few other studies have

employed natural-language processing techniques in the context of metamodeling and

Xtext framework. Further, we analyzed several previous studies related to the scenarios

in which the Xtext framework is generally employed.

11

 Natural Language Processing in MDE

This subsection presents the analysis of various studies in which the integrated utilization

of MDE and NLP techniques is considered. After reviewing existing studies, we identi-

fied that several studies proposed their valuable contribution to the SDLC phases. Further,

this section explored the modeling languages related to the MDE standards, such as Inter-

action Flow Modeling Language (IFML). Table 2.1. summarises these analyzed studies

to understand the underlying terminologies.

For example, Sonbol et al. [7] proposed a framework to generate the business process

modeling notation (BPMN) diagram. The proposed framework has two modules, includ-

ing natural language analysis and modeling language generation. The natural language

analysis module generated the concept map using NLP techniques, such as morphologi-

cal analysis, lexical analysis, etc. Then, the other module translated the concept map to

generate a text graph. Then, the BPMN diagram is translated from the text graph with the

inclusion of syntactic and morphological refinements. The study of Sholiq et al. [8] pro-

posed a framework to generate the business process modeling notation (BPMN) diagram

from the textual requirements. The proposed methodology is tested with the requirements

of various sentence structures, such as simple, complex, etc. Firstly, a heuristic rule-based

approach with dependency parsing is adapted to extract the fact types from the require-

ments. Then, several mapping rules are defined to transform the extracted fact types into

the BPMN modeling elements, i.e. activities, pool, datastore, etc. Furthermore, the gen-

erated BPMN-based elements are represented by the spreadsheet-based description. The

study of Tangkawarow et al. [9] focused on developing a tool of ID2SBVR (Informal doc-

ument to SBVR) to generate the operational rules of the SBVR (Semantics of Business

and Vocabulary Rules) model from the informal interviewing documents. The tool uti-

lized dependency parsing to determine the syntactic relations between the sentences. The

tool performed the identification of candidate fact types using word patterns and triplet

extraction. Then, the fact types, such as simple, compound, etc, are identified from the

12

Table 2.1: Natural Language Processing (NLP) in MDE.

Work Approach Domain Purpose
Libraries

\Tool

Input Results

Semantic, Syntactic,

[7] & Morphological

Manipulations

Heuristic Rule-Based

Process Management
System i.e., Friedrich
Dataset

Automation
Stanford
CoreNLP

Textual
Requirements

BPMN
Diagram

[8]

[9]

Approach with
dependency

parsing technique &

Mapping Rules

Candidate Fact Types
Identification using
Triplet Method Extrac-
tion

Process Management
System i.e.,
Registration Process

Process Management
System i.e.,
University Library
Dataset

Functional
Software
Size Estimation

Comprehensive
Business Process

Stanza

NLTK

Textual
Requirements

Informal
Interviewing
Documents

BPMN
Diagram

SBVR
Model

Applying the POS tags
with ATL approach

General i.e.,
Undergraduate-
based Project

Automation
Stanford
CoreNLP

User Stories
Requirements

[11]

Semantic approach &
Graph Coverage Crite-
ria

Automotive System,
i.e., Vehicle
Braking System

Unrestricted
Requirement
Formalization to
create the blended
generation type

Spacy

Text
documents
comprising
functional
requirements

Template-

Test cases
in the form of
sequence
diagrams

Semantic-Role
Labeling

Rule-Based Approach

Automotive System,
i.e., BodySense

Automotive System

System-Level
Acceptance Tests

Simplified

Gate
Work-
bench

based
Use case
specifications
document

Textual
Design

Test cases

[13]

[14]

comprising regular ex-
pressions

Rule-Based Approach
comprising regular ex-
pressions

Enhanced Simple
Sentence Generation,

i.e., Car Collision
Avoidance System

Web Interfaces i.e.,
Movie Manager

Safety-Critical

Verification
Process

Automated
Validation of
Web Interfaces

SharpNLP

SharpNLP

Requirements
comprising
action and
conditions

Non-
Template
Natural
Language
Requirements

Textual
System

Verification
assertions

IFML
Model

[15]
Deep Syntactic,
Semantic Analysis
& Temporal logic
Approach

Formal Notation
of Requirements

Stanford
CoreNLP

Requirements
comprising
triggers, etc

Formalized
Requirements

candidate fact types to generate the operational rules of the SBVR. Then, the XML pro-

cess definition language is used to view the generated SBVR model.

Allala et al. [10] proposed a framework to provide auto-generated test cases from the user

story documents. Particularly, a metamodel is designed to represent the requirements of

user stories. Then, the designed metamodel is transformed into the test case model using

the ATL by accessing the results of POS tags. Gropler et al. [11] proposed a framework to

generate the test cases from the natural-language requirements. The study identified the

syntactic entities using dependency parsing, which were then mapped to semantic entities.

Then, the UML state machine diagram is generated using the customized algorithm of the

[10] Test cases

[12]

Systems

13

rule-based approach that is transformed into the PetriNet model using the graph coverage

criteria. This step is directed to generate abstract test cases in the form of sequence dia-

grams. Wang et al. [12] proposed a framework to automatically generate the test cases

from the template-based natural-language requirements. This approach utilized the Re-

stricted Use Case Modeling (RUCM) template to elicit the use case specifications in the

embedded systems domain. This study aimed to create use-case models for the accep-

tance testing of the systems. Using the Gate Workbench, the approach utilized semantic

role labeling to generate the OCL constraints from the requirements that capture the de-

tection of use case steps. Then, the approach also employed an algorithm of alloy-based

constraint-solving pattern to generate test input data. It led to the creation of a mapping

table to support the generation of executable test cases. In study [13], a framework is pre-

sented to support the automatic verification of embedded systems. This study provided an

AR2AA (automated requirement to assertion analyzer) tool, developed with a rule-based

approach comprising regular expressions to extract the actions and conditions scenarios.

This step determined the classification of requirements as verifiable or unverifiable.

Hamdani et al. [14] implemented an approach to generate the IFML model from the

natural-language requirements for the simplified and automated validation of require-

ments in the context of web interfaces. Using the rule-based approach comprising the

regular expressions, the various elements of the IFML model are extracted, such as view

container, view component, actions, and events. Then, an XMI model is created where

the extracted elements of the IFML model are viewed. In study [15], a framework is

proposed to support the automated extraction and formalization of the requirements in

the context of safety-critical systems. The study developed a tool named RCM-Extractor,

where the elements such as action, trigger, and conditions are extracted from the textual

requirements using the enhanced component extraction algorithm. Further, the study also

extracted the sub-components using deep syntactic and semantic analysis, such as valid

time, which proceeded to the augmentation of the extracted elements. Then, the tem-

poral logic is applied to formalize the extracted requirements using the model-to-model

14

transformation of ATL.

 Natural Language Processing in UML

This section comprises numerous studies where analysis focuses on the automated ex-

traction of unified modeling languages (UML). Table 2.2. presents an overview of UML-

based existing studies. The working directions of UML-based existing studies are defined

below.

For example, the study [16] has proposed an integrated framework using natural language

processing (NLP) and machine learning (ML) techniques to generate the UML use case

diagram from the user stories-based requirements. The authors used the grammatical error

correction model and dependency parsing to analyze the grammatical relations between

the words of each sentence. The NLP model stores the extracted dataset in a data structure

format. The ML model retrieved the dataset from the NLP model, which utilized the Naive

Bayes algorithm that computed the classification for use-case identification. Then, the au-

thors used the PlantUML tool to visualize the use case diagram from the generated output

of the ML model. Similarly, the study [17] presented an approach to auto-generate the

UML use case diagram from textual requirements. In this approach, the authors utilized

the Open Information Extraction technique (OpenIE) to create the triplet model. Then, an

Ego network graph is created to recognize the use cases, actors, and their relationships.

The study [18] introduced the automatic generation of UML diagrams such as sequence

and class diagrams from the scenario-based user requirements. This research study uti-

lized the noun-phrase technique to determine the validity of the sentences. Then, the au-

thors performed the syntactical and lexical analysis to determine the relationship within

the requirements. Then, the authors implemented the heuristic rule-based approach by ac-

cessing the results of POS tags to extract the information from the requirements. Then, the

Plant UML tool is utilized to visualize the extracted information. Z. A. Hamza et al. [19]

introduced a methodology to automatically extract the use-case diagrams from the func-

15

CoreNLP

CoreNLP

Table 2.2: Natural Language Processing (NLP) in UML.

Work Approach Domain Purpose
Libraries

 Input Results

[16] Naive Bayes Classifier

Triplet Extraction

General, i.e.,
Customer
Appointment

General, i.e.,

\Tool

Automation
Stanford

Stanford

User-Story
Documents

Requirements
in

Use-Case
Diagram

UML
Diagrams i.e.,

[17] Method &
Ego Network

ATM System Automation

General, i.e.,

CoreNLP
Unrestricted
Natural-
Language
template

 Scenario-

use-cases,
actors, &
relationships

UML

Heuristic Rule-Based
Approach

 Heuristic Rule-Based

Course
Registration
System

General, i,e.

Automation
Stanford

Based
Requirements

System

Diagrams
i.e., Class &
Sequence
Diagrams

[19]

[20]

[21]

Approach

Semantic-Role
Labeling
extraction

Naive Bayes Classifier
& Grammatical
Patterns & Greedy
Algorithm

E-Store
System

General,
i,e. Banking
System
Customized
Dataset
comprising
system
requirements

Automation -

Unambiguous
Requirements

Automation Spacy

Requirements
from SRS
Document

Textual
Requirements

Textual
Requirements

Use-Case
Diagram

Class
Diagram

Class
Diagram

[22]

Heuristic Rule-Based
Approach

General, i.e.,
Library
System

Unambiguous
Requirements

Stanford
CoreNLP

Use-Case
Specification
Document

UML
Diagrams,
i.e., Use-Case
& Activity

Prolog Rules &
Ontology Created

Apply the Word2Vec
& Hierarchical

General, i.e.,
Course
Details

General, i.e.,

Redundancy
Elimination

Semantic-

Stanford
CoreNLP

User-Story
Documents

Use-Case
Diagram

[24]
Agglomerative Clus-
tering Algorithm &
Heuristic Rule-Based
Approach

Page
Rankings

Similarity
between the
requirements

User-Story
Documents

Use-Case
Diagram

Parse Tree
Analyzation

Rule-Based Approach
comprising regular

General, i.e.,
ATM system

General,
i.e., Money

Collaborative
Environment

Unambiguous

Tree
Tagger

User Story
Document

Textual

Use-Case
Diagram

Class

[26] expressions &
requirement
traceability

Exchange
Service

General,

Requirements

Automated

Requirements Diagram

Heuristic Rule-Based
Approach

i.e., Product
Mechanism
Service

generation
from various
use-case
templates

Stanford
CoreNLP

Textual
Requirements

Class
Diagram

tional requirements of the systems. Initially, the authors utilized the ginger spell checker

and grammar knowledge pattern technique for the requirements preprocessing. Further,

the authors employed the heuristic rule-based approach to identify the elements of UML

use-case diagrams, such as actors and use cases. The relationship elements between the

actors and use cases are determined using the assigned tags of grammar knowledge pat-

[18]

OpenNLP

[23]

Spacy

[25]

[27]

16

terns. Alharbia et al. [20] focused on the auto-generated UML class diagrams from the

textual requirements. The study performed the preprocessing, like removing stopwords,

and a semantic-role labeling technique was applied to extract the desired elements of the

UML class diagram, such as classes, attributes, methods, etc. Yang et al. [21] designed

a tool with the utilization of NLP techniques to support the generation of UML class

diagrams. In this study, the customized requirement dataset is created in the English lan-

guage with the participation of outsourcing volunteers. Initially, performed the data pre-

processing activities involving pronoun substitutions and sentence fragmentations. Then,

the requirements are processed using the term frequency and inverse document frequen-

cies (TF-IDF) techniques. Then, the preprocessed results are mapped to auto-generate the

UML class fragments using the Naive Bayes Classifier. Lastly, the composition of the

UML class fragments into a UML class diagram is employed using the greedy algorithm

to visualize in the Plant UML tool. The study [22] proposed a framework to automatically

generate the use-case and activity diagrams from the natural-language requirements. Ini-

tially, the syntactical rules are proposed to normalize the informal requirements that direct

to the data preprocessing engine. Furthermore, multiple heuristic NLP rules are proposed

to recognize multiple UML elements such as class, attributes, aggregation, etc. Then, the

generated results are parsed with a few refinement rules to generate the refined UML class

diagram. Nasiri et al. [23] proposed a framework by integrating the techniques of NLP

and ontology to automatically generate UML architectural diagrams (use case, class, and

package) from the user story documents. Then, the Prolog language is utilized with the

pos tagging technique for the identification of the relationship elements, which is directed

to generate the ontology model. The Plant UML editor is used to view the generated

results.

Kochbati et al. [24] proposed an approach to support the automatic generation of the

UML case diagram from the user story documents. The proposed approach initially com-

puted the similarity scores between each sentence of processed textual requirements of

user story documents. Then, the HAC (Hierarchical Agglomerative Clustering) algorithm

17

is utilized to compute the clustered labels for the text summarization. Those generated

results are passed to the execution of heuristic NLP rules to extract the use case diagram

elements. Similarly, the study of Elallaouia et al. [25] proposed an NLP-based transfor-

mation methodology to generate the UML use case diagrams from the requirements. The

authors extracted the information related to the UML use case diagrams by applying the

heuristic rule-based approach with the POS tags extraction technique and generated re-

sults visualized by the Visual Paradigm editor. In the study [26], a framework is proposed

to generate the UML class diagram with the preprocessing of the textual requirements.

Then, a set of NLP rules comprising regular expressions is applied to extract the ele-

ments of the UML class diagram with their traceability matrix to track each requirement

approval. The study of Shewta et al. [27] proposed an approach that contributes to gener-

ating the UML class diagrams from the use-case templates. Particularly, the study devised

conversion rules that generate the intermediate use-case template from the use-case tem-

plate. Then, the approach rephrased the requirements by converting negative sentences

to positive sentences. Then, the entities are identified using heuristic NLP rules with

universal dependency relations to extract the elements of the UML class diagram. The

performance of the proposed approach validates with the reference models created by the

technical experts.

 Natural Language Processing in SysML

From the analytical point of view, we identified numerous existing studies that performed

the automated generation of the SysML model. Table 2.3 presents an overview of the

terminologies used in the related studies. Below are examples of several existing studies

explained in a descriptive summary.

Zhong et al. [28] presented the framework to automatically generate the SysML diagrams

from the corpus of natural-language requirements. Therefore, the framework used the

term-frequency and inverse document frequencies (tf-Idf) techniques to generate the key

18

Table 2.3: Natural Language Processing (NLP) in SysML.

Work Approach Domain Purpose
Libraries

\Tool

Input Results

[28]

Used the TF-IDF tech-
nique, Augmenting the
Key-phrases &
relationships using the
OpenIE technique

Semantic Role Labelling

General, i.e.,
Wikipedia, Patents

Comprehensive
Diagrams NLTK

Textual
Documents, e.g.,
Manuals

Textual

Sysml Diagram,
i.e., Block-based
Diagrams

[29]
using Bert Model &
create the requirement
model using Hash-map

General, i.e.,
Wikipedia, Patents

Traceability
Management

Hanlp
Documents
in the
Chinese
Language,

SysML
Requirement
Diagram

[31]

Heuristic Rule-Based
Approach

Train with the Named
Entity Recognition
Model Train-Test Split-
ting Method

Embedded System
i.e., Engine Control
System

Embedded System,
i.e.,

Railway System

Traceability
Management

Optimized
modeling
artifacts

textual
requirements

User-Story
Documents

SysML
Requirement
Diagram

SysML Modeling
Entities

[32]
Train using Convolu-
tional Neural Network &
Ontology model

Embedded System,
i.e., Aviation Control
System

Automation &
Efficient
Diagrams

Stanford
CoreNLP

Textual
Requirements

SysML Diagram,
i.e., Block-Based
Diagram

nouns from the requirements. Similarly, the relationship elements are extracted from the

requirements by employing open information extraction (OpenIE) techniques such as se-

mantic role labeling, relational nouns, etc. The key phrases and relationships are selected

on the scores of candidate phrases that direct the selection of key relationships. The se-

lected key phrases and relationships are augmented to extract the blocks and relationships,

which were further organized into the SysML diagrams using the Plant UML. The study

of Chen et al. [29] proposed a framework to support the automated generation of SysML

diagrams using natural language processing (NLP) techniques from the textual require-

ments of the Chinese language. Firstly, word separation and POS tagging are performed

to create the domain lexicon, then combine the domain thesaurus with regular expres-

sions to eliminate redundancy. Secondly, semantic role labeling using the Bert model is

performed to support the identification of desired elements of the SysML requirement dia-

gram. Hwang et al. [30] proposed a framework that assists in the automated generation of

SysML diagrams from the requirements. Initially, this proposed framework split the state-

ments into the system needs and system requirements, directed to the implementation of

a heuristic rule-based approach with the pos tags. Then, the generated SysML diagrams

are executed in the Cameo System Modeler. Chami et al. [31] proposed a framework

integrated with natural language processing and machine learning techniques to extract

[30] OpenNLP

Spacy

19

-

the desired entities of SysML models. The proposed framework used the train-test split

method to split the dataset into chunks. Then, the SysML model’s desired entities are ex-

tracted using the named entity recognition. Qie et al. [32] proposed an integrated natural

language processing and deep learning framework to auto-generate the SysML models.

Particularly, the framework encountered the named entity recognition methodology to

identify elements such as subject, object, etc., from the textual requirements. Then, the

convolutional neural network with SGD optimizer is used to determine the semantic rela-

tionship between the words of each sentence. Then, the generated results are mapped to

the SysML model creation with the Rhapsody tool. There, web ontology language (OWL)

is utilized to build the ontology for the result verification process.

 Natural Language Processing in DSM

In the context of existing studies, Domain-specific modeling (DSM), i.e., graphical mod-

eling and textual modeling, have a few contributions by integrating with NLP methodolo-

gies. Table 2.4 presents an overview of the terminologies used in the related studies. The

contributions of DSM with a blend of NLP methodologies are concisely explained below.

Table 2.4: Natural Language Processing (NLP) in DSM.

Libraries

Work Approach Domain Purpose \Tool Input Results

[33]

Various heuristic Patterns are
identified to extract the

implicit and explicit

clauses and to recognize

the semantic formulations

Rule-Based Approach com-

prising regular expressions

General,
i.e.,

Car Rental

System

General,

i.e.,

Comprehensible

SBVR Model

Formal

Stanford

CoreNLP

Textual Require-

ments comprising

business rules

Formal-Method

SBVR Model

Z-Notation

[34] to Map each natural

language Requirement

& Apply Xtend Language

Birthday

Book
Requirements

-

Based Require-

ments

Textual

Artifact

[35]

[36]

[37]

Rule-Based Approach com-

prising regular expressions

& Apply Acceleo Language

CNL-based grammar rules

proposed in EBNF notation

using the WordNet & Verb-

Net Technique

Xtext Grammar was created

with the utilization of named

entity recognition & recur-

rent neural networks

General,

i.e.,

PSS

Financial

Domain

Embedded

system

Blended

Modeling

Formal

Requirements

Transition of

Formal require-

ments aspects

Stanford

CoreNLP

NLTK

Template-

Based Natural-

Language

Requirements

Requirements ex-

tracted from SRS

documents

Context-free

grammar

Ecore

Metamodel

& MPS DSL

Manual

Xtext

Grammar

Formalized

requirements

20

Haj et al. [33] aimed to automatically transform the textual requirements into meta-model

elements related to semantics and vocabulary of business rules (SBVR). This study per-

formed the extraction of the implicit and explicit clauses from the statements by analyz-

ing them with dependency parsing. Then, the study proposed two different algorithms

to extract the dictionary terminologies of the business vocabulary, such as synonyms, ab-

breviations, and noun concepts. Further, the study extracted the business rules of logical

formulations with the heuristic rules-based approach. Lastly, they saved the generated

content into an XML editor. The study [34] provides a framework to support the gener-

ation of formal requirements with integrated techniques of natural-language techniques

and formal methods. Firstly, the study utilized the terminologies of the Z-notations for

the requirement specifications. Then, the Xtext grammar is created using the rule-based

approach comprising the regular expressions to map the textual requirements with their

identified POS tags. Secondly, they applied the model-to-text transformation using the

Xtend to generate the z-notation-based textual artifact.

In study [35], a blended modeling framework is proposed to generate the Ecore meta-

model and DSL of JetBrains MPS. The authors utilized the rule-based approach compris-

ing the regular expressions to automatically generate the basic metamodeling elements

such as relationships, attributes, etc. Then, the generated content is saved in an XML

file. Further, the XML translator is applied to transform the saved content to the Xcore

DSL. Then, the model-to-text transformation is applied with Acceleo language to gen-

erate the Ecore meta-model and JetBrains MPS DSL. Veizaga et al. [36] utilized the

controlled natural language (CNL) to propose a Rimay requirement editor to support the

clarity within the requirements of the financial domain. In this study, the requirements

are extracted from the software requirement specification (SRS) document. Then, the au-

thors analyzed the extracted requirements by applying WordNet and VerbNet techniques

to propose the grammar rules in EBNF notation. Then, the Xtext grammar is created to

express the unambiguous requirements using the proposed grammar rules. Further, the

study [37] presented a requirement formalization framework in the domain of embedded

21

systems. This study presented the implementation of context-free grammar in the Xtext

framework, where pseudo-English is transformed into the formal representation of tempo-

ral logic properties. Firstly, the named entity recognition model is utilized to produce the

correct syntactic terminals, and then the recurrent neural network is used for the transition

process.

 Xtext in MDE

This subsection presents an overview of the existing studies where the Xtext framework

is manually utilized in various ways i.e., blended modeling, verification or validation

purposes, etc. The description of the research work of the existing studies is presented in

subsequent sections.

Blended Modeling

Predoaia et al. [38] developed a hybrid modeling editor named Graphite to hold both

graphical and textual modeling. The hybrid development of Sirius and Xtext models is

performed with annotated metamodels. Further, model-to-text (M2T) transformation with

Xtext language is performed for the code generation to support the delegation of API calls

and global scoping to link the textual and graphical components. The study of Latifaj [39]

developed a blended modeling framework where synchronization is performed between

the two modeling languages, i.e., graphical and textual. Particularly, the blended mod-

eling framework has two working contributions. i) Developed an Ecore-based mapping

modeling language where the mapping rules are identified between two domain-specific

modeling languages, i.e., graphical and textual. ii) The specifications of identified map-

ping rules are implemented using the Xtext framework. iii) With the scenario of mapping

rules, the higher-order transformations are implemented using the Xtend to generate the

synchronized model transformation within the syntax of the operational QVT language.

In study [40], a blended modeling framework is proposed integrating the Xtext and ecore

metamodeling languages. The framework utilized Acceleo and Java languages to gen-

22

\

erate the textual and graphical modeling notation from the input models. Due to this

functionality, the EBNF grammar is implemented using Java CC to map the synchronized

modeling elements. The synchronized model switching across the textual and graphical

modeling notations within the Sirius editor is performed using the model-to-text transfor-

mations and vice versa. The study of [41] designed a blended modeling framework to

support collaborative and cross-platform environments in the context of the UML state

machine. Therefore, this study proposed an editor that performs the integrated modeling

of Xtext, the graphical modeling framework (GMF), and JetBrains MPS. Further, the ed-

itor is also enabled with another component of Angular JS to generate a custom web app.

The required changes in modeling are propagated to all participants using the emf. Cloud.

Below, Table 2.5 presents an overview of these analyzed studies.

Table 2.5: Blended Modeling in Xtext.

Work Approach Domain Purpose Input Results

[38]

[39]

[40]

[41]

Modeling of Xtext & Sir-
ius & Apply the M2T with
Xtend Language
Translation Mapping of

two ecore models with
Xtext & apply the M2T
with the Xtend Language
in the QVT-Operational
syntax

Generation of EBNF
Grammar within the
JavaCC platform & Apply
the M2T & T2M
transformation
using Acceleo & Java
language

Modeling of Xtext, MPS
& GMF with a server of
EMF.Cloud

Cloud
Application

Embedded
System,
i.e.,
UML-RT

General,
i.e., PSS

Cloud
Application

Linkage
b/w elements

Synchronizations

Blended
Modeling

Cross-Platform
Collaboration

Emfactic
Notation
DSL

Two
samples of
Ecore
meta-
models

Ecore
Meta-
model
Xtext
Grammar

Software
Architec-
ture
Descriptions

Manual
Xtext Grammar &
Automated code

Synchronized
Model
Transformation
across multiple
notations

Textual &
Graphical
Notations
within Sirius
Editor

Angular JS
Web Application

Verification/Validation

Liu et al. [42] introduced a methodology for the verification of requirement documents.

The proposed approach utilized the Xtext framework to create a DSL with the viewpoint

of states and modes. Furthermore, the terminologies of temporal logic properties are

23

Table 2.6: Verification with Xtext.

Work Approach Domain Purpose Input Results

[42]

[43]

[44]

Utilized the Xtext
Framework with the
temporal logic
properties

Created the Xtext
Grammar & Apply the
Henshin rules

Created the Xtext
Grammar With Event-
B specifications &
apply the Xtend
Language

General, i.e.,
Finite State
Chart Models

Embedded
System, i.e.,
Control
systems

Data-Driven
Application
i.e.,
AI planning
problems

Verification of
requirements

Verification
of Deadlock’s
absence

Validation of
Formal methods

Requirements
documents
on State
and modes
views

System’s
Discrete
Operations

Event-B
specification
details

Verified
Requirements

Grafcet
Model

PDDL-
based
textual
artifact

defined within the created Xtext grammar. Furthermore, the requirements are dynamically

checked using the NusmV modeling transformation using the Xtend language.

The study [43] has presented a model-driven approach to verify that the system has no

existing deadlocks for the embedded system. Therefore, an Xtext domain-specific lan-

guage is designed within the syntax of the UML state machine. Then, the Henshin rules

are applied to transform the designed UML state chart models into graph models to trace

the system behaviors. Further, the generated result was utilized for the Grafcet model

to view the generated model of the programmable logic controller (PLC). F. Fourati et

al. [44] provided a domain-specific language to validate the Event-B models. To realize

this behavior, the proposed editor initially created the Xtext grammar, which captured the

semantics of Event-B models. To further validate the Xtext grammar, the Planning Do-

main Definition Language (PDDL) is utilized by the model-to-text transformation of the

Event-B models. Table 2.6 presents an overview of these analyzed studies.

Domain’s Perspective

Brabra et al. [45] aim to orchestrate cloud resources with high-level elasticity resource

management. To attain the objective, this study presented a domain-specific language

24

by leveraging Xtext and Sirius for the textual and graphical model representations. The

study also defines the model-to-model transformation with a set of QVT-operational rules

to transform the cloud resource descriptions into the Docker compose model. Further,

the Xtend language is utilized for the model-to-text transformation to generate the YAML

code from the generated docker model. Lastly, the results are forwarded to the cloud

resource orchestration for the execution of elastic policies. Mzid et al. [46] introduced

Table 2.7: Domains Perspectives within Xtext.

Work Approach Domain Purpose Input Results

[45]

Created the modeling using
Xtext & Sirius & apply the
M2M & M2T transforma-
tions using QVT-O & Xtend

Created the Xtext grammar

Cloud Application

Optimum
Elastic
Cloud
Resources

Cloud-
Resource
Entities

Docker model
& YAML
textual artifact

[46]
& Apply the Xtend language
& conduct the M2M trans-
formation using Papyrus.

Embedded systems,
i.e., IoT Case Study

Reverse
engineering

Source code UML activity
diagrams

[47]

Utilized the Xtext Frame-
work with the terminologies
of Mape-K loop patterns
& ECA rules

Cloud Application,
i.e., E-Learning

Automated
Deployment

Cloud
Deployment
Concepts

Cloud
Deployment
Application
with elasticity
configuration

an approach to support behavioral reverse engineering. Therefore, this study consists

of two phases which are the compiling and modeling phase. In the compiling phase, a

programming language code is converted to an intermediate representation of the Gimple

code. In the modeling phase, the Xtext grammar is created conforming to the syntax of

Gimple code. Then, the study conducted the model-to-text transformation using the Xtend

language to generate the ALF (Action language for foundational UML) code. Then, the

Papyrus is utilized to create the UML activity diagrams from the generated ALF code. The

study of Yangui et al. [47] proposed a domain-specific language editor named AutoCaDep

to support the simplified execution of cloud deployment applications across SAAS and

PASS platforms. The editor defines the Xtext grammar by adapting the ECA (event,

condition, and action) rules and mape-k loop patterns to attain this objective. Further,

the model-to-text transformation is performed to deploy the cloud services. Table 2.7.

presents an overview of these analyzed studies.

25

Artificial Intelligence

Mohin et al. [48] proposed an editor with the utilization of various machine-learning clas-

sifiers to support prediction analytics in the domain of IoT systems. The study created a

domain-specific language editor of ML-quadrant implemented using the Xtext framework

and generated the Python code using the Xtend Language.

Table 2.8: AI within Xtext.

Work Approach Domain Purpose Input Results

[48]

[49]

[50]

Utilized the Xtext Frame-
work with the Machine
Learning Classifiers & M2T
with Xtend language

Designed a DSL using the
Xtext framework with the
natural-language analysis by
targeting the concrete Plat-
forms of Discord, Slack

Utilized the Xtext Frame-
work with the Neural Net-
work Classifier & M2T with
Xtend language

Iot System,
i.e.,
Ping Pong

Chat-Bot
Application

General, i.e.,
Benchmark
Dataset

Prediction

Cross-
platform
chatBot
Application

Structured
Requirements
formulation

Behavioral
Patterns
of IOTs

User
messages

Designed
metamodel
for
requirement
specifications

Auto-
generated
Python code

chatBot
Application

Synthetic
Data
Generator

The study of Daniel et al. [49] introduced the Xatkit framework to design chatbot ap-

plications. In this study, the proposed framework implemented the Xtext grammar by

integrating the deployment configuration with Slack and Discord and also recognized the

user’s intentions with NLP techniques. The study of Jahic et al. [50] devised a DSL

approach to develop the requirements specifications of the deep neural networks. Particu-

larly, this study leveraged the Xtext framework that developed a structured metamodel to

simplify the customer requirements for the dataset selection criteria and desired key prop-

erties of deep neural networks. Further, the Xtext DSL and model-to-text transformation

using Xtend are performed to conduct dataset augmentation for the prediction analytics.

Table 2.8. presents an overview of these analyzed studies.

26

 Research Gap

This subsection concludes that most of the existing studies have performed the automated

generation in the context of MDE, i.e., verification aspects, test cases, UML, and SysML

architectural diagrams. However, a few studies have focused on the automated generation

of metamodels. The current studies have also focused on the generation of formal require-

ments using the NLP techniques within the context of the Xtext framework. Moreover, it

is analyzed that the existing studies have used the Xtext framework in multiple ways, i.e.,

blended modeling, verification, validation, etc., across various domains.

Table 2.9: Overview of the Limitations analyzed from the Literature Review.

Work Purpose Approach
Input

\Context

Result Limitations

[35]

Formal
Requirements

Mapping of NLP
Rules & apply the
Xtend Language

CNL grammar rules

Formal
Method-based
textual
Requirements

Requirements

Z-
Notation
Textual
Artifact

Manual
Xtext
Grammar

[36]
Unambiguous

defined in EBNF extracted from Xtext Manual

[37]

Requirements

Formal
requirements

notation using the
WordNet & VerbNet
Technique

Named Entity Recog-
nition & Recurrent
Neural Network

the SRS
documents

Pseudo-
English Text

Grammar

Formal
Require-
ments

Xtext
Grammar

Manual
Xtext
Grammar

We explored existing studies to determine the utilization of the NLP techniques in the

context of the Xtext framework. The research study of [35] created the manual Xtext

grammar by mapping the requirements with NLP rules. The study of [36] created the

manual Xtext grammar by proposing the CNL grammar rules in EBNF notation from

the textual requirements of the financial domain using the wordNet and verbNet NLP

technique. Similarly, the research study [37], utilized the NLP technique of named entity

recognition and deep learning of recurrent neural network, both are utilized to generate

the formal requirements from the texts of pseudo-English.

However, current studies utilized the Xtext framework in various ways but did not propose

27

a methodology that automatically generates the Xtext grammar. The summary of the

limitations through the analysis of the existing studies is presented in Table 2.9.

 Contributions

It is analyzed from the literature review that several studies have proposed automatic gen-

eration of the MDE models, i.e., test cases, UML and SysML architectural models, etc.,

using natural language processing (NLP) techniques. It is also analyzed that the NLP tech-

niques and Xtext framework are utilized to support the formal or unambiguous require-

ments. However, our approach is different from the approaches of the existing studies in

the following aspects:

a) automatically generate the Xtext grammar from the textual requirements in natural

language without relying on any natural language template. This step documents the

natural-language requirements in any English language style. b) The tool is implemented

with the rule-based approach to extract the primary DSL elements of the Xtext from the

natural-language requirements. This step helps to reduce the development complexity of

the Xtext grammar. c) Extracted DSL elements conforming to the Xtext grammar, save

in the DSL file of the .xtext extension. d) Validation is performed with two case studies.

Hence, such a framework where the Xtext grammar is automatically generated is hard to

find in the literature review.

28

Chapter 3

Methodology

In this chapter, we will delve into the methodology of the proposed framework, organized

into two sections 3.1 and 3.2. Section 3.1 provides the working details of the proposed

algorithm, and Section 3.2 provides the underlying details of the transformation engine.

Figure ?? represents the high-level view of the proposed framework’s methodology. The

elicitation of requirements from diverse stakeholders to support the development of effi-

cient software systems is a challenging process. In the context of the MDE, the underlying

terminologies to develop the Xtext grammar are hard to understand by the non-technical

stakeholders. Due to the existence of this technical barrier, non-technical experts can-

not share their requirements with the technical team. Due to this issue, mutual consensus

among the stakeholders is difficult to manage, reflecting a negative impact on their collab-

oration environment which directly delays the development of software systems. There-

fore, natural-language requirements are required to utilize and it is impossible to manage

the different styles of requirements. The proposed methodology specifies some rules on

the basis of an earlier research study [14], which supports the requirements to be written

in English. The description of those rules is given below:

• The requirements should be clearly described in short sentences. While long sen-

tences can create ambiguities.

29

Figure 3.1: High Level of the Proposed Framework.

• The requirements should be simple and defined according to the user’s perspective.

• The requirement should be described in active voice sentences.

• All the requirements should be free from non-functional concepts and negative sen-

tences.

Firstly, the natural-language requirements are written in the form of plain text accord-

ing to the aforementioned rules. Secondly, a proposed algorithm is developed to support

the extraction of the Xtext DSL elements from the textual requirements. Particularly,

some processing tasks and NLP techniques are required to apply to the textual require-

ments. Furthermore, certain transformation rules are applied to the processed textual

requirements for the automated generation of the Xtext grammar. The description of the

proposed algorithm is given in the subsequent subsection.

 Proposed Algorithm

The proposed algorithm comprises various steps that support the extraction of the primary

DSL elements of the Xtext. After the execution of the proposed algorithm, the extracted

DSL elements conforming to the Xtext grammar, such as the root element, relationships,

and attributes are added into a DSL file of .xtext extension. A few activities are performed

before the execution of the proposed algorithm which are defined as follows:

30

Step a. Input a PDF document containing the textual requirements of the system, which

are based on the rules described previously for the requirement specification.

Step b. Preprocessing is applied to the textual requirements to remove the punctuation

marks.

Step c. Apply the NLP techniques within the NLP pipeline, including sentence splitting,

tokenization, and POS (Parts of Speech) tagging.

Step d. Conversion of plural and proper nouns (NNS & NNP) to singular nouns (NN).

After the execution of the above-defined activities, the text is fed into the proposed algo-

rithm. There, the text is in the form of tagged sentences as the splitting method of the

tagged sentences is based on the full-stop delimiter. Then, the proposed NLP rules are

systematically applied to the preprocessed requirements within the proposed algorithm.

The rules are composed of regular expressions to match the relevant tags through the Java

Regex library. The workflow of the proposed algorithm is presented in Figure 3.2.

Figure 3.2: Proposed Algorithm.

Steps of the algorithm: The execution of the proposed algorithm has a dependency on

the nested for-loop to support the extraction process.

31

Initially, a main for-loop is defined where the tagged sentences are set to an initial value

of t=0, which means that the first tagged sentence is checked to the total number of tagged

sentences named TS. Then, an if-condition is defined to check whether the tagged sen-

tences have a ‘where WRB’ tag. If this condition returns false, then subsequently apply

the NLP rules on the first tagged sentence. Similarly, if the condition returns true, then

subsequently tokenize the tagged sentences based on the ‘where WRB’ tag. After the tok-

enization, an inner for-loop is defined to check the whole tokenized sentences with a value

of u=0, which means the first tokenized sentence is checked to the total number of tok-

enized sentences named US. Then, the entire NLP rules are applied to the first tokenized

sentence. In summary, if the tagged sentences have any ‘where WRB’ tag, tokenization

is performed and NLP rules are applied to the tokenized sentences for the identification

of the Xtext DSL elements, i.e., root Element, relationship Element, and attributes. Sim-

ilarly, suppose the tagged sentences do not have the ‘where WRB’ tag. In that case, the

NLP rules apply to the tagged sentences for the identification process. The execution

workflow of the applied NLP rules is described as follows:

Step 1: First, apply the Root Element Rules to the sentence for extracting the root

element.

Suppose a sentence i.e., tagged or tokenized is matched with the proposed NLP rules to

extract the root element of the entire Xtext grammar. In that case, it is followed by two

conditions to retrieve the concept name of the root element and keyword parameter. The

expression of both conditions is described below.

• An if- condition is defined as the sentence, i.e., tagged or tokenized, containing a

combination of adjective JJ and Noun NN tag. If this specified condition returns

true, then the concept name of the root element and keyword parameters are to be

extracted.

• Suppose the sentence i.e., tagged or tokenized, has two consecutive nouns NN. If

this condition returns true, then both the root element’s concept name and keyword

32

parameter are to be extracted.

Step 2: The second step executes the Relationship rules to extract relationship elements.

Throughout, this proposed algorithm, we identify the relationships of two different cate-

gories, i.e., containment & reference relationship with their association constraint which

can be specified as multiple, single, and optional. The proposed NLP rules apply to the

given sentence, i.e., tagged or tokenized to support the extraction process of relationship

elements. The execution of the proposed NLP rules for both of the relationship categories

is defined below.

• Suppose a sentence, i.e., tagged or tokenized either has ‘contains VBZ’, ‘con-

tain VB’, or ‘composed VBN’, then it targets the containment type of relationship

category. Similarly, if the sentence, i.e., tagged or tokenized has ‘linked VBN’, then

it targets the reference type of relationship category. We define some conditions to

target other elements of these two relationship categories, given below:

– Suppose the given sentence can have an association constraint of ‘multiple JJ’.

Then, the following elements are defined.

i) Association operator is set to ‘+=’.

ii) Association constraint is set to ‘*’.

– Suppose the given sentence can have an association constraint of ‘optional JJ’.

Then, the following elements are defined.

i) Association operator is set to ‘=’.

ii) Association constraint is set to ‘?’.

– Suppose the given sentence can have an association constraint of ‘single JJ’.

Then, the following elements are defined.

i) Association operator is set to ‘=’.

33

Additionally, a few post-processing tasks are executed to ensure that the identical root of

the relationship element is undefined in the output of the DSL file, then it should be added.

Further, the rest of the relationship elements should be added in the Xtext DSL file next

to the index of the identified root element.

Step 3: The third step specifies the execution of Multiple Attribute Rules on the given

sentence for extracting multiple attributes.

If the sentence, i.e., tagged or tokenized, is matched with the proposed NLP rules to

identify the set of multiple attributes, then the extraction process executes. Firstly, check

the sentences have an ‘it PRP’ tag for extracting the root of multiple attributes. Then,

extract the attribute names with their specified datatypes, such as string, id, etc.

Step 4: The fourth and last step of the proposed algorithm has the purpose of extracting

the Single and optional Attribute Rules from the given sentence.

Suppose a given sentence, i.e., tagged or tokenized, is matched with the proposed NLP

rules to identify the single and optional attributes. Therefore, two conditions are specified

to support the valid extraction of both attributes.

• An if-condition is specified to check that the given sentence has an optional JJ tag that

supports the extraction process of the optional attributes. Then, check that the sentence

has an ‘it PRP’ tag to extract the root element. Then, extract the elements of the optional

tag and attribute name with their specified datatypes, i.e., string, etc. Additionally, a

few post-processing tasks are executed to ensure that if the identical root element has

already been included in the output of the DSL file of the .xtext extension, it should not

be added again.

• Similarly, consider that the sentence does not have an optional JJ tag that supports the

extraction process of the single attributes. Then, check that the sentence does not have

an ‘it PRP’ tag for extracting the root element. Then, extract the attribute names with

their specified datatypes, i.e., string, etc. Additionally, a few post-processing tasks are

34

executed to ensure that if the identical root element has already been included, it should

not be added again.

In the absence of the ‘where WRB’ tag, all the rules are applied to the single tagged

sentence for the desired elements identification, and the value of t is incremented, i.e.,

t=t+1. It means t=1, and now the second sentence is passed for matching within the

same sequential workflow of the proposed algorithm. Therefore, it is summarized that

the proposed algorithm will check all the tagged sentences until the value of t becomes

equal to the value of TS. When the ‘where WRB’ tag is defined in the tagged sentence,

first perform the tokenization based on the ‘where WRB’ tag. Then, all the rules are first

applied to the single tokenized sentence to identify the desired elements. Then, the value

of u is incremented within an inner for-loop, i.e., u=u+1 < US. It means u=1, and now

the second sentence is passed for matching within the same sequential workflow of the

proposed algorithm.

Figure 3.2 describes the complete workflow of the proposed algorithm. The extracted

results through the implementation of proposed NLP rules are stored in arrays, and then

append the results to a DSL file of the .xtext extension. Before the implementation of the

proposed NLP rules, the input textual requirements are required to be passed through a few

steps. Our approach generates an Xtext grammar to support the collaborative environment

among the stakeholders in order to develop critical software systems. The whole process

is described below.

1. Pre-Processing of Natural Language (NL)-based text

The textual requirements are defined within a PDF file. The initial state of the text

is rough where some unnecessary information is defined, which can change the

syntactic meaning of the text. Therefore, it is necessary to clean the input of textual

requirements with the removal of punctuation marks. The punctuation marks are

removed using the replace function to obtain the text in a structured format.

35

2. Processing of Natural Language (NL)-based text using NLP pipeline

Stanford CoreNLP [51] is a Java-based NLP library to perform natural language

processing activities. It analyzes the natural-language requirements by labeling

each word to its corresponding POS (Parts of Speech) tags, such as adjectives,

nouns, verbs, etc. Stanford CoreNLP has the following capabilities.

(a) Sentence Splitting The activity of sentence splitting adds simplicity by trans-

forming large textual requirements into sentences. After preprocessing, the

preprocessed textual requirements are split into individual sentences with a

dot delimiter. Therefore, the textual requirements are converted into a string

array, which is later passed to the tokenization activity. The activity of sen-

tence splitting is required before the execution of the tokenization because

the proposed NLP rules need to be applied to the individual sentences of the

textual requirements.

(b) Tokenization Tokenization is a process of analyzing large textual require-

ments into sentences, words, or phrases. After performing the activity of sen-

tence splitting, the acquired results are checked based on the words.

(c) POS Tagging The POS (Parts-Of-Speech) tagging is applied to the results

acquired by tokenization. The activity of POS tagging is required to operate

the execution of the proposed NLP rules. Therefore, we used the Maxent

tagger provided by the Stanford CoreNLP library that assigns the POS tags

to each word of the given sentence to identify the verbs, nouns, etc. Then,

POS tags for each individual sentence are obtained. The list of the POS tags

is presented with their descriptions and examples in Table 3.1.

 Transformation Rules For the Identification of Xtext Elements

This section presents the details of proposed NLP rules. The transformation engine is

the main component of the proposed framework, in which the rule-based approach is

36

Table 3.1: List of POS Tags.

Sr.# Tag Description Examples

1 NN Nouns in Singular Form system, description, constraint

2 NNP Proper Noun in the singular form EventFunctionflowport, EventChain

3 NNS Noun in plural form concepts, attributes

4 TO To To

5 IN Preposition/Subordinating conjunction for, of, with, by, like

6 CC Coordinating conjunction And

7 VBN Verb, Past participle composed, named, preceded

8 VBZ verb, 3rd person singular, Present

participle

is, contains, has

9 VB verb, the base form have, contain, define, specify, precede

10 VBP Verb, non-3rd person singular present are

11 MD Modal may, must, should

12 JJ Adjective diabetic, multiple, optional, main

13 VBG Gerund Verb Defining, including

14 DT Determiner a, an, the

15 WDT WH-Determiner that

16 PRP Possessive pronoun it

17 RB Adverb only

18 CD Cardinal Number one

implemented to extract the primary DSL elements of the Xtext. The results attained by

the activity of POS tagging are passed to the transformation engine. Particularly, several

rules are implemented to attain the DSL elements of the Xtext with the help of NLP

techniques. We classified the rules into two categories, i.e., General Purpose Rules and

Special Purpose Rules.

General Purpose Rules The general-purpose rules are applied to the results acquired

from the POS tagging. These rules are specified to simplify the implementation of special-

purpose rules. A few general-purpose rules are defined below:

• Rule No. 1: Conversion of NNS To NN The entities are extracted from the tagged

sentences identified as NNS (plural noun), which are transformed into the NN (sin-

gular noun) tag. For example, concepts in ‘It is composed of multiple description

concepts’ is tagged as a plural noun (NNS), which is converted to a singular noun

37

(NN).

• Rule No. 2: Conversion of NNP To NN The entities are extracted from the tagged

sentences identified as NNP (proper noun), which are transformed into the NN (sin-

gular noun) tag. For example, ‘The EventChain concept must have a name and cat-

egory of string type’. Here, EventChain is tagged as a proper noun (NNP), which is

converted to a singular noun (NN).

Special Purpose Rules: To generate the primary DSL elements of the Xtext, we applied

the special-purpose rules on all NN POS tags achieved after the application of general-

purpose rules. The special-purpose rules are based on a rule-based approach composed

of regular expressions. These regular expressions are then applied to the text using the

string-matching technique provided by the Java Regex library. Each input sentence is

matched by applying these NLP rules to view the pattern of these sentences and select the

sentences from which the Xtext grammar can be generated. The pattern is a combination

of some POS tags. If the pattern of a sentence is matched with the pattern of NLP rules,

then the sentence is selected for the generation of the Xtext grammar. Particularly, we

define 14 NLP rules to extract the primary DSL elements, i.e., root element, relationship

element, and attribute element. The study [14] suggests that as the complexity of the

sentences increases, there is a corresponding rise in the number of rules to consider. To

achieve the optimal accuracy, more rules are required to be included. The special-purpose

rules are defined below, with descriptions, examples, and diagrammatical representations.

1. Rules for identification of Root Element The Xtext grammar is initiated with a

parser rule by following its syntax. Particularly, a colon and a keyword parameter

appear after the declaration of the parser rule. The keyword is declared within

single quotation marks. It is simply known as the root element that is to be defined

right after the Xtext Package declaration. Such as timing model:‘timing model’.

By focusing on such root element identification, we have defined two NLP rules.

Figure 3.3 shows the representation of the rules where the Red circle presents the

38

mandatory feature, and the green circle presents the optional feature, which may or

not be present.

(a)

(b)

Figure 3.3: Graphical Description of Rules for the Root Element Identification.

• Rule No. 1 Consider a sentence where the noun NN tag with the verb VBZ

appears at the start followed by an optional determiner DT tag, noun tag, and

preposition IN tag, as shown in Figure 3.3a. Then, those tags follow one of

the two scenarios defined below to form the root element.

i) Those tags proceed with an adjective JJ tag and an NN tag.

ii) Those tags proceed with two consecutive NN tags.

Tagged Output The DT system NN presents VBZ a DT scenario NN of IN

timing NN model NN.

Regular Expression Transformation “(\\w+NN\\b.\\w+VBZ\\b.(?:(\\

w+DT\\b.)?)\\w+NN\\b.\\w+IN\\b. (\\w+JJ\\b.\\w+NN\\b | \\w+NN

\\b.\\w +NN\\b))”

Extraction-Example The input sentence is:

“The system presents a scenario of timing model.”

39

Here, the ‘timing model’ is tagged as a pattern of two consecutive nouns NN

tag. Applying this defined NLP rule to a given sentence, the root element is

extracted including two consecutive nouns of the NN tag following the VBZ

and IN tag.

• Rule No. 2 Consider a sentence where the noun NN tag with the preposition

IN tag and a noun tag appears at the start of a sentence. Then, look for the

combination of MD- VB tag that appears before an optional determiner DT

tag, as shown in Figure 3.3b. Then, those tags follow one of the two scenarios

defined below.

i) Those tags proceed with an adjective JJ tag and an NN tag.

ii) Those tags proceed with two consecutive NN tags.

Tagged Output The DT scenario NN of IN system NN can MD be VB a DT

timing NN model NN.

Regular Expression Transformation “(\\w+NN\\b.\\w+IN\\b.\\w+NN

\\b.\\w+MD\\b.\\w+VB\\b.(?:(\\w+DT\\b.)?)(\\w+JJ\\b.\\w+NN\\b

|\\w+NN\\b.\\w+NN\\b))”

Extraction-Example The input sentence is:

“The scenario of system can be a timing model.”

Here, the timing model is tagged as the pattern of two consecutive nouns NN.

Applying this NLP rule to the given sentence, the root element is extracted

following the VB tag.

2. Rules for the identification of relationship element The relationship element

starts with a parser rule followed by a colon notation and a keyword parameter in

the Xtext grammar. It is known as the root of the relationship element which is

undefined in the case of the PRP tag. A relationship element has four components:

40

(a)

(b)

(c)

Figure 3.4: Graphical Description of Rules for the Relationship Element Identification.

(i) a root element (ii) an association name, (iii) an association operator, (iv) and the

child element with multiplicity constraints. Therefore, the relationship element is

represented,

Such as description:‘description’ (EventFunction+=EventFunction)*

We define three NLP rules for relationship element identification. Figure 3.4 shows

the representation of the rules where the Red circle presents the mandatory feature,

and the green circle presents the optional feature, which may or not be present.

41

• Rule No. 1 Consider a sentence that starts with two consecutive nouns of

the NN tag or if a single NN tag appears with a VBZ tag, which identifies the

root of the relationship element. A PRP tag might appear instead of an NN

tag at the start of a sentence. Then, it is followed by an Adjective JJ tag with

two consecutive nouns of the NN tag to identify the rest of the relationship

elements. Depicted in Figure 3.4a.

Tagged Output The DT description NN concept NN contains VBZ multi-

ple JJ EventFunction NN concepts NN.

Regular Expression Transformation “((\\w+NN\\b.\\w+NN\\b.|\\w+NN

\\b.|\\w+PRP\\b.)(\\w+VBZ\\b.\\w+JJ\\b.\\w+NN\\b.\\w+ NN\\b))”

Extraction-Example The input sentence is:

“The description concept contains multiple EventFunction concepts.”

Applying this rule to the given sentence, the relationship element is extracted

under the following rationals.

(a) NN/PRP before the VBZ tag refers to the root of the relationship element.

(b) Pattern after the adjective JJ refers to the child element.

(c) Adjective JJ tag refers to the association constraint of the relationship

element.

• Rule No. 2 Consider a sentence that starts with two consecutive nouns of the

NN tag or if a single NN tag appears with a VBZ tag, which identifies the root

of the relationship element. A PRP tag might appear at the start of a sentence

instead of NN. Then, a combination of the VBN- IN tag is followed by a JJ

tag with two consecutive nouns of the NN tag in the same sentence to identify

the rest of the relationship elements. Depicted in Figure 3.4b.

Tagged Output The DT description NN concept NN is VBZ composed VBN

42

of IN multiple JJ EventFunction NN concepts NN.

Regular Expression Transformation “((\\w+NN\\b.\\w+NN\\b.|\\w+N

N\\b.|\\w+PRP\\b.)(\\w+VBZ\\b.\\w+VBN\\b.\\w+IN\\b.\\w+JJ\\b.\\

w+NN\\b.\\w+NN\\b))”

Extraction-Example The input sentence is:

“The description concept is composed of multiple EventFunction

concepts.”

Applying this rule to the given sentence, the relationship element is extracted

under the following rationals.

(a) NN/PRP before the VBZ tag refers to the root of the relationship element.

(b) Pattern after the adjective JJ refers to the child element.

(c) Adjective JJ tag refers to the association constraint of the relationship

element.

• Rule No. 3 Suppose a sentence starts with two consecutive nouns of the

NN tag, or if an NN appears with an MD tag, considered as a root of the

relationship element. A PRP tag might appear at the start of a sentence instead

of NN. Then, those tags are followed by an optional RB tag and a VB tag

before the JJ tag associated with two consecutive nouns of the NN tag, which

identifies the rest of the relationship elements. Depicted in Figure 3.4c.

Tagged Output

i) It PRP should MD contain VB multiple JJ constraint NN concepts NN.

ii) It PRP should MD only RB contain VB multiple JJ expression NN con-

cepts NN.

Regular Expression Transformation “((\\w+NN\\b.\\w+NN\\b.|\\w+NN

43

\\b.| \\w+ PRP\\b.)(\\w+MD\\b.(?:(\\w+RB\\b.)?)\\w+VB\\b.\\w+JJ\\

b.\\w+NN\\b.\\w+NN\\b))”

Extraction-Example The input sentence is:

“It should contain multiple expression concepts.”

Applying this rule to the given sentence, the relationship element is extracted

under the following rationals.

(a) NN/PRP tag before the MD tag refers to the root of the relationship ele-

ment.

(b) Pattern after the adjective JJ refers to the child element.

(c) Adjective JJ tag refers to the association constraint of the relationship

element.

3. Rules for the identification of Multiple Attribute elements The Xtext grammar

is also comprised of multiple attributes. Therefore, the attribute element of the mul-

tiple category starts with a parser rule followed by a colon notation and a keyword

parameter in the Xtext grammar. It is known as the root of the multiple attribute

element which is undefined in the case of PRP tag. After the declaration of this root

element, the multiple (two) attributes with their datatypes are defined, i.e., STRING,

etc.

Such as EventFunction:‘EventFunction’

name=STRING

category=STRING

We define a set of six NLP rules for the identification of multiple attributes. Figure

and Figure 3.6 depict the description of rules, where the red circle

defines the mandatory feature and the green circle represents the

optional feature, which may or may not be present.

44

• Rule No. 1 Suppose a sentence starts with two consecutive nouns NN tag, or

if a single noun NN is followed by the combination of MD-VB tag, considered

as a root of the multiple attributes. A PRP tag might appear instead of an NN

tag at the start of a sentence. Then, those tags proceed with the tags of an

optional determiner DT and a noun NN with a combination of the VBN- IN

tag followed by the optional Determiner DT tag and a noun NN tag. This

combination identifies the set of multiple (two) attributes. Depicted in Figure

3.5a.

Regular Expression Transformation “((\\w+NN\\b.\\w+NN\\b.|\\w+

NN\\b.|\\w+PRP\\b.)(\\w+MD\\b.\\w+VB\\b.(?:(\\w+DT\\b.)?)\\w+

NN\\b.\\w+VBN\\b.\\w+IN\\b.(?:(\\w+DT\\b.)?)\\w+NN\\b))”

Tagged Output The DT EventFunction NN concept NN must MD spec-

ify VB a DT name NN preceded VBN by IN a DT category NN of IN string

NN type NN.

Extraction-Example The input sentence is:

“The EventFunction concept must specify a name preceded by a cat-

egory of string type.”

This defined NLP rule applies to the given sentence under the set of following

rationals.

(a) NN/PRP before the MD tag refers to the root of the multiple attribute

element.

(b) VB tag and combination of VBN-IN tag are used to extract the multiple

attribute’s names.

(c) After the pattern, the IN tag is again defined in a sentence before two

consecutive nouns referring to the datatype.

45

• Rule No. 2 Suppose a sentence starts with two consecutive nouns NN tag, or

if a single noun NN is followed by the combination of MD-VB tag, considered

as a root of the multiple attributes. Depicted in Figure 3.5b. A PRP tag might

appear at the start of a sentence instead of NN. Then, those previous tags are

followed by the tags of optional preposition IN and an optional determiner DT

associated with a noun phrase containing a noun NN, CC, and noun NN tag

corresponding to the set of multiple (two) attributes.

Tagged Output

i) It PRP must MD specify VB by IN name NN and CC category NN of IN

string NN type NN.

ii) It PRP must MD specify VB have VB a DT name NN and CC category NN

of IN string NN type NN.

Regular Expression Transformation “((\\w+NN\\b.\\w+NN\\b.|\\w+N

N\\b.|\\w+PRP\\b.)\\w+MD\\b.\\w+VB\\b.(?:(\\w+IN\\b.)?)(?:(\\w+

DT\\b.)?) \\w+NN\\b.\\w+CC\\b.\\w+NN\\b)”

Extraction-Example The input sentence is:

“It must specify by name and category of string type.”

Applying this defined NLP rule to a given sentence under the following ratio-

nals.

(a) NN/PRP tag before the MD tag refers to the root of the multiple attribute

element.

(b) Combination of MD and IN tag, and CC tag are used to extract the multi-

ple attributes’ names.

(c) After the CC tag, the Preposition IN tag exists in a sentence that refers to

the datatype of the attribute.

46

• Rule No. 3 Consider a sentence that starts with two consecutive nouns of NN

tag, or a single noun NN tag appears with a verb VBZ tag, which identifies the

root of the multiple attributes. A PRP tag might appear instead of an NN tag

at the start of a sentence. Those tags are followed by an optional determiner

DT and a Noun NN tag associated with a WDT determiner tag followed by

the combination of MD- VB tag together with an optional Determiner DT tag,

and then the noun NN tag appears, corresponds to the set of multiple (two)

attributes. Depicted in 3.5c.

Tagged Output It PRP defines VBZ a DT name NN that WDT should MD

precede VB a DT category NN of IN string NN type NN.

Regular Expression Transformation “((\\w+NN\\b.\\w+NN\\b.|\\w+

NN\\b.|\\w+PRP\\b.) (\\w+VBZ\\b.(?:(\\w+DT\\b.)?)\\w+NN\\b.\\w

+WDT\\b.\\w+MD\\b.\\w+VB\\b.(?:(\\w+DT\\b.)?)\\w+NN\\b))”

Extraction-Example The input sentence is:

“It defines a name that should precede a category of string type.”

Applying this NLP rule to the given sentence under the set of following ratio-

nals.

(a) NN/PRP before the VBZ tag refers to the root of the multiple attribute

element.

(b) VBZ tag, the combined pattern of WDT and VB tag refers to the names

of multiple attributes.

(c) After this, the IN tag is again defined in a sentence before two consecutive

nouns referring to the datatype.

• Rule No. 4 Consider a sentence that starts with two consecutive nouns NN

or a single noun NN tag is defined with a verb VBZ tag, identifies the root of

47

(a)

(b)

(c)

Figure 3.5: Graphical Description of Rules for the Multiple Attribute Element Identification.

the multiple attributes. There can be a PRP tag instead of an NN tag at the

start of a sentence. Then those tags proceed with an optional adjective JJ tag,

and noun NN tag followed by a VBG (gerund verb) tag or preposition IN tag.

Then, those previous tags collectively proceed with a noun NN tag, CC tag,

and then again a Noun NN tag, which identifies the multiple (two) attributes

element. Shown in Figure 3.6a.

Tagged Output

i) It PRP has VBZ attributes NN including VBG name NN and CC cate-

48

gory NN of IN string NN type NN.

ii) It PRP has VBZ attributes NN like IN name NN and CC category NN

of IN string NN type NN.

Regular Expression Transformation “((\\w+NN\\b.\\w+NN\\b.|\\w+N

N\\b.|\\w+PRP\\b.)(\\w+VBZ\\b.(?:(\\w+JJ\\b.)?)\\w+NN\\b.(\\w+V

BG\\b.|\\w+IN\\ b.)\\w+ NN\\b.\\ w+CC\\b.\\w+NN\\b))”

Extraction Example The input sentence is:

“It has attributes including name and category of string type.”

Applying this defined NLP rule to the given sentence, the multiple attribute

element is extracted under the following rationals.

(a) NN/PRP before the VBZ tag refers to the root of the multiple attribute

element.

(b) VBG and CC tag refers to the names of multiple attributes.

(c) After the pattern, the IN tag is defined in a sentence that refers to the

datatypes.

• Rule No. 5 Suppose the two consecutive nouns NN tag or a single Noun

NN tag appears with the verb VBZ tag at the start of a sentence, considered

as the root of the multiple attributes. A PRP tag might appear instead of the

NN tag at the start of a sentence. Then, the combination of the VBN- IN tag

is followed by the tags of an optional determiner DT, noun NN, CC, and two

consecutive noun NN tags are defined in the same sentence corresponding to

the set of multiple (two) attributes. Depicted in Figure 3.6b.

Tagged Output The DT EventFunction NN concept NN is VBZ represented VBN

by IN name NN and CC category NN attributes NN of IN string NN type NN.

Regular Expression Transformation “((\\w+NN\\b.\\w+NN\\b.|\\w+

49

NN\\b.|\\w+PRP\\b.)(\\w+VBZ\\b.\\w+VBN\\b.\\w+IN\\b.(?:(\\w+D

T\\b.)?)\\w+NN\\b.\\w+CC\\b.\\w+NN\\b.\\w+NN\\b))”

Extraction Example The input sentence is:

“The EventFunction concept is represented by name and category

attributes of string type.”

Applying this NLP rule to extract the multiple attribute element with consid-

eration of a few following rationals.

(a) NN/PRP before the VBZ tag refers to the root of the multiple attribute

element.

(b) Combination of VBZ and IN tag, and CC tag, used to extract the at-

tribute’s names.

(c) After the pattern, the IN tag is defined in a sentence that refers to the

datatypes.

• Rule No. 6 Consider a sentence where the Noun NN tag appears at the start

with the preposition IN tag, followed by an optional determiner DT tag and

NN (single or multiple) tag before a VBP tag identifies the root of multiple

attributes. Then, proceed with tags of NN, CC, and NN, which correspond to

the set of multiple (two) attributes as shown in Figure 3.6c.

Tagged Output Attributes NN of IN EventFunction NN are VBP name NN

and CC category NN of IN string NN type NN.

Regular Expression Transformation “(\\w+NN\\b.\\w+IN\\b.(?:(\\w+

DT\\b.)?)\\w+NN\\b.*\\w+VBP\\b.\\w+NN\\b.\\w+CC\\b.\\w+NN\\

b)”

Extraction Example The input sentence is:

“Attributes of EventFunction are name and category of string type.”

50

(a)

(b)

(c)

Figure 3.6: Graphical Description of Rules for the Multiple Attribute Element Identification.

Applying this NLP rule to extract the multiple attribute element with consid-

eration of a few following rationals.

(a) NN before the VBP tag refers to the root of the multiple attribute element.

(b) VBP and CC tag are used to extract the attribute’s names.

(c) After the pattern, the IN tag is defined in a sentence that refers to the

datatypes.

4. Rules for the identification of Single Attribute elements

The Xtext grammar can have single attributes. Therefore, the attribute element of

51

the single category starts with a parser rule followed by a colon notation, and then

a keyword parameter appears. It is considered as the root of the single attribute

element which is undefined in the case of PRP tag. After the declaration of this root

element, the single (one) attribute with its datatypes is defined, i.e., STRING, etc.

The textual example of the target Xtext grammar rule is listed below:

EventFunctionflowport:‘EventFunctionflowport’

FunctionFlowPort=STRING.

We define an NLP rule for the single attribute identification. Figure 3.7 represents

the description of rules where the green circle defines the mandatory feature, and

the green circle determines the optional feature, which may or may not be present.

• Rule No. 1 Suppose a sentence starts with two consecutive nouns of the

NN tag or a single noun of the NN tag followed by a VBZ and VBN tag,

corresponding to the root of the single attribute element. There might be a

PRP tag instead of the noun NN that appears at the start of a sentence. Further,

those tags must be followed by two scenarios to identify the single attribute,

as shown in Figure 3.7.

i) The first scenario is where the previous tags are followed by the TO and

the VB (verb base form) tag associated with an optional determiner DT

and two consecutive nouns NN.

ii) In the second scenario, the previous tags are followed by the IN tag and

the VBG (gerund verb) tag associated with an optional determiner DT

and two consecutive nouns NN.

Tagged Output

i) It PRP is VBZ used VBN to TO define VB a DT FunctionFlowPort NN

attribute NN of IN string NN type NN.

52

Figure 3.7: Graphical representation of rules for Single Attribute Element Identification.

ii) It PRP is VBZ used VBN for IN defining VBG a DT FunctionFlowPort

NN attribute NN of IN string NN type NN.

Regular Expression Transformation “((\\w+NN\\b.\\w+NN\\b.|\\w+

NN\\b.|\\w+PRP\\b.)\\w+VBZ\\b.\\w+VBN\\b.(\\w+TO\\b.\\w+VB\\

b.|\\w+IN\\b.\\w+VBG\\b.)(?:(\\w+DT\\b.)?)\\w+NN\\b.\\w+NN\\b)”

Extraction Example The input sentence is:

“It is used to define a FunctionFlowPort attribute of string type.”

By executing this NLP rule to the given sentence, the multiple attribute ele-

ment is extracted under a few following rationals.

(a) NN/PRP before the VBZ tag refers to the root of the single attribute ele-

ment.

(b) Combination of VBN and VB tag are used to extract the single attribute’s

name.

(c) After the pattern, an IN tag is defined in a sentence that implies the

datatypes.

5. Rules for the identification of Single & Optional Attribute elements

In the context of the Xtext grammar, both single and optional attributes can be

53

(a)

(b)

Figure 3.8: Graphical Description of Rules for Single & Optional Attribute Element Identifica-

tion.

defined. Therefore, both types of attributes can initially start with a parser rule

followed by a colon notation and a keyword parameter. It is known as the root of

both types of attributes which is undefined in the case of PRP tag. The declaration

of both attributes is defined as:

i) Declaration of the single attribute with its datatype (STRING, etc).

such as FunctionFlowPort=STRING.

ii) The optional attribute element is declared together with a question-mark nota-

tion and its datatype (STRING, etc).

such as (TraceableSpecification=STRING)?.

Two NLP rules are defined for the identification process to target both single and

optional attributes. Figure 3.8 represents the description of rules where the red

54

circle determines the mandatory feature and the green circle determines the optional

feature, which may or may not be present.

• Rule No. 1 Consider a sentence that starts with two consecutive Nouns NN

tags or a single NN tag that appears with a modal MD tag, which identifies

the root of the attributes. There might be a PRP tag instead of a noun NN

tag. Then, those tags are associated with a VB tag followed by an optional

determiner DT tag and an optional adjective JJ tag, and then a Noun NN tag

appears. Then, proceeds with one of the two scenarios to identify the set of

single and optional attributes, as shown in Figure 3.8a.

i) The first scenario is where those tags proceed with the VBN (past-participle

verb) tag and a noun NN tag.

ii) The second scenario is where those tags proceed with the preposition IN

tag and an optional determiner DT tag defined before the noun NN tag.

Tagged Output

i) It PRP should MD define VB a DT main JJ attribute NN like IN a DT

FunctionFlowPort NN of IN string NN type NN.

ii) It PRP may MD have VB an DT optional JJ attribute NN named VBN

TraceableSpecification NN of IN string NN type NN.

iii) It PRP should MD define VB an DT attribute NN named VBN Func-

tionFlowPort NN of IN string NN type NN.

Regular Expression Transformation “((\\w+NN\\b.\\w+NN\\b.|\\w+

NN\\b.|\\w+PRP\\b.)\\w+MD\\b.\\w+VB\\b.(?:(\\w+DT\\b.)?)(?:(\\w

+JJ\\b.)?)\\w+NN\\b. (\\w+VBN\\b.\\w+NN\\b|\\w+IN\\b.(?:(\\w+D

T\\b.)?))\\w+NN\\b)”

Extraction Example The input sentence is:

55

“It may have an optional attribute named TraceableSpecification of

string type.”

Executing this NLP rule to the given sentence, the optional attribute element

is extracted under a few following rationals.

(a) NN/PRP before the MD tag refers to the root of an optional attribute.

(b) Combined patterns of MD and VBN tags are used to extract the name of

an optional attribute.

(c) JJ tag refers to the optional tag.

(d) After the pattern, an IN tag is defined in a sentence that implies the

datatypes.

• Rule No. 2 Consider a sentence that starts with a cardinal number CD tag, as

shown in Figure 3.8b, followed by the following tags: Suppose the previously

identified tag appears with an optional adjective JJ tag and a Noun NN tag,

followed by a preposition IN, an optional determiner DT, and a noun NN tag,

which identifies the root element. Then, it appears with a verb VBZ and a noun

tag, which targets the identification process of optional and single attributes.

Tagged Output

i) One CD optional JJ attribute NN of IN the DT timing NN model NN

is VBZ TraceableSpecification NN of IN string NN type NN.

ii) One CD attribute NN of IN EventFunctionflowport NN is VBZ Func-

tionFlowPort NN of IN string NN type NN.

Regular Expression Transformation “(\\w+CD\\b.((?:(\\w+JJ\\b.)?)\\

w+NN\\b.\\w+IN\\b.(?:(\\w+DT\\b.)?)\\w+NN\\b.*\\w+VBZ\\b.\\w+

NN\\b)”

Extraction Example The input sentence is:

56

“One attribute of EventFunctionflowport is FunctionFlowPort of string

type.”

Executing this NLP rule to the given sentence, the optional attribute element

is extracted under a few following rationals.

(a) Combination of CD and IN tag containing the NN before the VBZ tag

refers to the root of the single attribute element.

(b) VBZ tag implies the name of a single attribute.

(c) After the pattern, an IN tag is defined in a sentence that implies the

datatypes.

57

Chapter 4

Implementation

This chapter presents the implementation details required to understand the underlying

terminologies of the tool. Section 4.1 provides the details of libraries, tools, and lan-

guages used for the implementation. Section 4.2 presents the interface elements of the

implemented tool. Section 4.3 discusses the Xtext grammar generation in detail.

 Tools and Languages

Then, the text is passed for minor preprocessing to attain the structured format. This

section describes the underlying implementation details, such as tools, libraries, and lan-

guages used to implement the proposed framework. The NL2DSL tool is based on the

proposed algorithm implemented using the Java language within the Eclipse IDE frame-

work. Figure 4.1 depicts the interface of the Eclipse platform. The NL2DSL tool takes the

input of a PDF document containing the textual requirements of the system. The gener-

ated Xtext grammar by the NL2DSL tool is viewed with the .xtext DSL file. The process

is summarized as follows:

• The textual requirements of the systems within a PDF file are given as input to

the NL2DSL tool. Then, the text is passed for minor preprocessing to attain the

58

Figure 4.1: Interface of the Eclipse Platform.

structured format by removing punctuation marks.

• Maxnet Tagger by the Stanford CoreNLP library [51] is employed to identify the

phrases of nouns, verbs, adjectives, etc from the requirements.

• Java Regex API library [52] is employed to implement the proposed NLP rules in

the form of regular expressions that support the desired extraction of the Xtext DSL

elements with the string-matching technique.

• The series of if-else statements controls the extraction process to match the relevant

tags of each word and match the string expressions with the proposed NLP rules to

support the desired extraction of the Xtext DSL elements.

• The results of the extracted elements of the Xtext grammar are stored in an array

data structure and added to the DSL file of the .xtext extension with a few post-

processing operations. The process of the NL2DSL is fully automated. Hence no

manual interruption is required.

59

 Tool Interface

Figure 4.2 depicts the user interface of the NL2DSL tool. The tool inputs a PDF file con-

taining the textual requirements of the system to generate the output of the Xtext grammar.

From Figure 4.2, it is observed that the tool has multiple buttons that are intended to per-

form different functions. The main functionalities of the buttons are as follows.

Figure 4.2: Interface of the NL2DSL Tool.

Upload

By pressing the ’upload’ button, the tool inputs a PDF file that contains the intended text

added to the top textbox. The tool also locates the location of the selected input file added

to the top text field.

Generate

Pressing this button generates the Xtext grammar from the texts, and the result is added

to the below textbox.

Save

60

By pressing the save button, the results of the generated Xtext grammar are saved to the

user-specified location of the device in a DSL file of the .xtext extension.

Clear

When this button is clicked, the generated result of the Xtext grammar from the below

textbox clears.

 Xtext Grammar Generation Details

The basic steps required to operate the NL2DSL tool are already discussed at the start of

Chapter 4. So, these steps must be understood to generate the Xtext grammar from the

requirements. Each button has its own functionality, so its details are provided. The tool

has to input a PDF file of textual requirements to generate the Xtext grammar from that

file.

Figure 4.3: NL2DSL’s Output comprising Xtext Grammar.

61

By clicking the upload button, the tool will ask you to input a PDF file from the specific

location of your device. When the file is successfully uploaded, then the output is gen-

erated by clicking the generate button. Figure 4.3 shows the generated Xtext grammar

in the output area of the tool. Now, the Xtext grammar is generated by the tool from

the uploaded PDF file. This is the desired output of the NLP rules. The generated Xtext

grammar in the output area of the tool can be saved to the desired location of the device

for future use. From Figure 4.4, it is observed that the NL2DSL tool has a save button

that is used to perform this desired operation. It clearly indicates that by clicking the save

button, the desired location of the device is asked at which you want to save the output

file with the file extension of .xtext. Therefore, non-technical experts can use this file to

understand the requirements of complex systems while technical experts can use it for the

efficient development of software systems. Also, it alleviates the additional burden of the

technical experts with the auto-generated Xtext grammar.

Figure 4.4: Generated Xtext Grammar Save in .xtext.

62

Chapter 5

Validation

Within this chapter, the validation of the proposed framework is presented in detail with

the case studies and generated results. The main aim of this chapter is to provide a proof-

of-concept in order to demonstrate the viability of the proposed framework. This chapter

is organized into two sections. Section 5.1 provides the details of case studies. Subse-

quently, Section 5.2 presents the results of the generated Xtext grammar.

 Dataset Collection

Initially, analytical reasoning is conducted to determine the structural representation of

systems in order to define the functional concepts. Thus, the textual requirements con-

sisting of the functional concepts are defined as a case study with the analysis results as

per the rules to write the requirements. We defined two case studies: one is the timing

model associated with the Volvo industry, and the other one is the diabetic manager asso-

ciated with the health industry. Further, it is analyzed from the research gap (presented in

Chapter 2 that there is an ongoing necessity for a framework of automated Xtext grammar.

Therefore, we can utilize these two case studies to prove the efficiency of our proposed

framework.

63

It is noted that the initial state of the textual system requirements requires some prepro-

cessing tasks to make it capable of implementing the NLP rules to generate the Xtext

grammar. Preprocessing is required to perform before being fed into the proposed algo-

rithm. The texts may include punctuation marks that can change the syntactic meaning.

Before the algorithm’s operation, the text must be cleansed to generate the Xtext grammar.

This has been discussed in detail in Chapter 3.

 Case Study 01

The requirements of the timing model case study are taken from the prior research study

[53] containing the EastADL specifications, associated with the Volvo industry. Partic-

ularly, the requirements of the ‘Timing Model’ cover the details of developing reliable

embedded systems. The textual requirements of the timing model case study are pre-

sented in Figure 5.1.

Figure 5.1: Timing Model Case Study.

64

 Case Study 02

The feasibility of the proposed framework is proved with the help of another case study,

that is based on the general scenario of diabetes associated with the health industry. Par-

ticularly, the textual requirements of this case study cover diabetes management through

controlling the symptoms. The basic information about diabetes is elicited from the web

portal of the National Library of Medicine [54]. The textual requirements of the diabetic

manager as a case study are presented in Figure 5.2.

Figure 5.2: Diabetic Manager Case Study.

 Results

Various NLP rules have been applied to each case study in order to generate the Xtext

grammar. For each case study, the results of the Xtext grammar are separately presented

in subsequent sections. The rules have been implemented within a sequence of if-else

conditions employed by the for-loop. Therefore, a sentence pattern containing the POS

tags synchronizes and matches with the rule pattern, so the DSL element conforming

to the Xtext grammar is extracted. The iteration of the loop ends thereafter generating

the desired DSL element of the Xtext grammar, and then the next iteration begins to

check the next sentence patterns with the rules, and so on. In this sequence, the Xtext

grammar is generated from the textual requirement of the case studies. Based on the prior

research study [14], we performed the performance evaluation of the NL2DSL tool. The

65

Correct+Missing

evaluation of the NL2DSL tool is determined for each case study which is conducted with

a few evaluation metrics like Precision, Recall, and Over-Specification based on some

underlying parameters.

The description of each underlying parameter is described below:

1. Correct represents those Xtext DSL elements correctly identified by the human

experts’ analysis process and NL2DSL tool.

2. Incorrect are those Xtext DSL elements that are correctly identified by the human

experts’ analysis process, but the NL2DSL tool incorrectly generated them.

3. Missing are those Xtext DSL elements that are considered to be a part of the case

study, but the NL2DSL tool fails to generate them.

4. Extra Extra are such Xtext DSL elements that are additionally generated by the

NL2DSL tool beyond the corrected DSL elements of the Xtext.

According to these given parameters, the performance evaluation of the NL2DSL tool is

conducted for each case study to determine its effectiveness in terms of generated Xtext

grammar. And, the calculation formula for each evaluation metric is defined as follows:

 Correct
Correct+Incorrect

 Correct
Correct+Missing

Over Specification= Extra

 Results of Case Study 01

The generated Xtext grammar is saved in a DSL file of the .xtext extension, depicted in

Figure 5.3 for the timing model case study. Particularly, the primary DSL elements of the

Xtext such as root element, relationship, and different types of attributes are generated

from the timing model case study. To determine the performance of the NL2DSL tool,

firstly we conducted a human experts’ analysis of the timing model case study to identify

Recall=

Precision=

66

the actual type of Xtext DSL elements, presented in Table 5.1.

Table 5.1: List of Actual Xtext DSL Elements for Timing Model Case Study.

Req.# Textual Requirement Root Element Relationships Attributes

Multiple Single Optional

The system presents a scenario of timing
1 model with name and category attributes of

string type.

Furthermore, it should contain optional

2 TraceableSpecification attribute of string
type.

Particularly, primary concepts of the timing

timing model:
‘timing model’

name=STRING
category=STRING

(TraceableSpecification
=STRING)?

3 model are entirely encapsulated by this sce-
nario.

There, it is composed of multiple description
concepts.

Similarly, it should contain multiple con-
straint concepts.

Afterward, the description concept contains

(description+=description)*

(constraint+=constraint)*

description:‘description’
(EventFunctionflowport+=

6 multiple instances of EventFunctionflowport
and EventChain concepts.

EventFunctionflowport)*
(EventChain+=
EventChain)*

EventFunctionflowport:

There, the EventFunctionflowport concept
must have a name and category of string type.

However, it is used for defining a Function-
FlowPort attribute of string type.

Similarly, the EventChain concept contains a

‘EventFunctionflowport’
name=STRING
category=STRING

EventChain:‘EventChain’

FunctionFlowPort
=STRING

9 name that should precede a category of string
type.

name=STRING
category=STRING

Furthermore, it must specify by stimulus and
response of string type.

Furthermore, the description concept con-

(EventFunction+=

stimulus=STRING
response=STRING

EventFunction:‘EventFunction’

tains multiple EventFunction concepts where
the EventFunction concept is represented by
name and category attributes of string type.

Furthermore, it has attributes including Func-

12 tionPrototypeTarget and FunctionPrototype-
Context of string type.

Besides, the constraint concept consists of
multiple DelayConstraint concepts where at-
tributes of DelayConstraint are name and cat-
egory of string type.

EventFunction)*

constraint:‘constraint’
(DelayConstraint+=
DelayConstraint)*

name=STRING
category=STRING

FunctionPrototypeTarget
=STRING
FunctionPrototypeContext
=STRING

DelayConstraint:
‘DelayConstraint’
name=STRING
category=STRING

Furthermore, it must be specified by main at-

14 tributes such as source and target of string
type.

Additionally, it must be instantiated with
multiple types of expression concepts.

Moreover, the constraint concept contains
AgeConstraint which should be a concept

(expression+=expression)*

source=STRING
target=STRING

AgeConstraint:

described with multiple instances where the
AgeConstraint concept has various elements
like name and category attributes of string
type.

(AgeConstraint+=
AgeConstraint)*

‘AgeConstraint’
name=STRING
category=STRING

Furthermore, it is used for defining a scope
attribute of string type.

Additionally, it should only contain multiple
expression concepts.

Particularly, the expression concept is repre-

(expression+=expression)*

expression:‘expression’

scope=STRING

19 sented by name and value attributes of string
type.

name=STRING
value=STRING

Furthermore, one main attribute of expression
is type of string type.

type=STRING

Then, the DSL elements conforming to the Xtext grammar are identified by the NL2DSL

tool, presented in Table 5.2.

4

5

7

8

10

15

17

18

20

11

13

16

67

Table 5.2: List of Xtext DSL Elements for Timing Model Case Study Identified by

NL2DSL tool.

Req.# Textual Requirement Root Element Relationships Attributes

Multiple Single Optional

The system presents a scenario of timing
1 model with name and category attributes of

string type.

Furthermore, it should contain optional

2 TraceableSpecification attribute of string
type.

Particularly, primary concepts of the timing

timing model:
‘timing model’

TraceableSpecification
=TraceableSpecification)?

3 model are entirely encapsulated by this sce-
nario.

There, it is composed of multiple description
concepts.

Similarly, it should contain multiple con-
straint concepts.

Afterward, the description concept contains

(description+=description)*

(constraint+= constraint)*

description:‘description’

6 multiple instances of EventFunctionflowport
and EventChain concepts.

EventFunctionflowport=null
EventChain= null

EventFunctionflowport:

There, the EventFunctionflowport concept
must have a name and category of string type.

However, it is used for defining a Function-
FlowPort attribute of string type.

Similarly, the EventChain concept contains a

‘EventFunctionflowport’
name=STRING
category=STRING

EventChain:‘EventChain’

FunctionFlowPort
=STRING

9 name that should precede a category of string
type.

name=STRING
category=STRING

Furthermore, it must specify by stimulus and
response of string type.

Furthermore, the description concept con-

(EventFunction+=

stimulus=STRING
response=STRING

EventFunction:‘EventFunction’

tains multiple EventFunction concepts where
the EventFunction concept is represented by
name and category attributes of string type.

Furthermore, it has attributes including Func-

12 tionPrototypeTarget and FunctionPrototype-
Context of string type.

Besides, the constraint concept consists of
multiple DelayConstraint concepts where at-
tributes of DelayConstraint are name and cat-
egory of string type.

Furthermore, it must be specified by main at-

14 tributes such as source and target of string
type.

EventFunction)* name=STRING
category=STRING

FunctionPrototypeTarget
=STRING
FunctionPrototypeContext
=STRING

DelayConstraint:
‘DelayConstraint’
name=STRING
category=STRING

Additionally, it must be instantiated with
multiple types of expression concepts.

Moreover, the constraint concept contains
AgeConstraint which should be a concept
described with multiple instances where the

constraint:‘constraint’
AgeConstraint=MULTIP
concept=MULTIP

16
AgeConstraint concept has various elements
like name and category attributes of string
type.

AgeConstraint:
‘AgeConstraint’
name=STRING
category=STRING

Furthermore, it is used for defining a scope
attribute of string type.

Additionally, it should only contain multiple
expression concepts.

Particularly, the expression concept is repre-

(expression+=expression)*

expression:‘expression’

scope=STRING

19 sented by name and value attributes of string
type.

name=STRING
value=STRING

Furthermore, one main attribute of expression
is type of string type.

type=STRING

Afterward, a comparative analysis with the actual and generated results by the NL2DSL

tool is performed to determine which generated Xtext DSL elements are classified as

correct, incorrect, missing, and extra elements.

4

5

7

8

10

15

17

18

20

11

13

68

Specifcations

This step leads to calculating the performance of the NL2DSL tool with various evaluation

metrics, such as Precision, Recall, and Over-Specification, presented in Table 5.3 for the

timing model case study.

Table 5.3: Calculation of NL2DSL Effectiveness for Timing Model Case Study.

Root

Element
Relationships Attributes Total Precision Recall

Over

Multiple Single Optional

Correct 1 4 8 3 0 16

 Incorrect 0 1 2 0 0 3
84.21% 80% 0%

Figure 5.3: Generated Xtext Timing Model Grammar.

The effectiveness of the proposed framework’s methodology is also determined by induc-

ing some variations within the textual requirements of the timing model case study. This

step determines that the NL2DSL tool has the flexibility to incorporate the variated text

in order to generate the Xtext grammar. The results of the human experts’ analysis are

Missing 0 2 2 0 0 4

Extra 0 0 0 0 0 0

69

presented in Table 5.4 to identify the actual type of Xtext DSL elements from the vari-

ated timing model case study. Subsequently, the list of the DSL elements of the Xtext is

presented in Table 5.5, which is identified by the NL2DSL tool from the variated require-

ments of the timing model case study.

Table 5.4: List of Actual Xtext DSL Elements for Variated Timing Model Case Study.

Req.# Textual Requirement Root Element Relationships Attributes

Multiple Single Optional

The scenario of system can be a timing
1 model, where it must have different concepts

with the inclusion of primary attributes.

Furthermore, it must have a name preceded
by a category of string type.

Furthermore, it may have an optional attribute
named TraceableSpecification of string type.

There, it is composed of multiple description
concepts.

Similarly, it should contain multiple con-
straint concepts.

Afterward, the description concept contains

timing model:
‘timing model’

(description+=
description)*

(constraint+=
constraint)*

description:‘description’
(EventFunctionflowport+=

name=STRING
category=STRING

TraceableSpecification
=STRING)?

6 multiple instances of EventFunctionflowport
and EventChain concepts.

EventFunctionflowport)*
(EventChain+=
EventFunction)*

EventFunctionflowport:

There, the EventFunctionflowport concept
must have a name and category of string type.

However, it is used for defining a Function-
FlowPort attribute of string type.

Similarly, the EventChain concept contains a

‘EventFunctionflowPort’
name=STRING
category=STRING

EventChain:‘EventChain’

FunctionFlowPort
=STRING

9 name that should precede a category of string
type.

name=STRING
category=STRING

Furthermore, it must specify by stimulus and
response of string type.

Furthermore, the description concept is com-

stimulus=STRING
response=STRING

posed of multiple EventFunction concepts
11 where the EventFunction concept is repre-

sented by name and category attributes of
string type.

Furthermore, it has attributes including Func-

12 tionPrototypeTarget and FunctionPrototype-
Context of string type.

Besides, the constraint concept consists of
multiple DelayConstraint concepts where at-
tributes of DelayConstraint are name and cat-
egory of string type.

(EventFunction+=
EventFunction)*

constraint:‘constraint’
(DelayConstraint+=
DelayConstraint)*

EventFunction:‘EventFunction’
name=STRING
category=STRING

FunctionPrototypeTarget
=STRING
FunctionPrototypeContext
=STRING

DelayConstraint:
‘DelayConstraint’
name=STRING
category=STRING

Furthermore, it must have a source preceded
by a target of string type.

Additionally, it should contain multiple ex-
pression concepts.

Moreover, the constraint concept contains

(expression+=
expression)*

source=STRING
target=STRING

AgeConstraint:
multiple AgeConstraint concepts where the

16 AgeConstraint concept has various elements
like name and category attributes of string
type.

(AgeConstraint+=
AgeConstraint)*

‘AgeConstraint’
name=STRING
category=STRING

Furthermore, it contains a scope attribute of
string type.

Additionally, it should contain primary con-

18 cepts, like an expression with multiple in-
stances.

Particularly, the expression concept is repre-

(expression+=
expression)*

expression:‘expression’

scope=STRING

19 sented by name and value attributes of string
type.

name=STRING
value=STRING

Furthermore, one attribute of expression is
type of string type.

type=STRING

2

3

4

5

7

8

10

14

15

17

20

13

70

Table 5.5: List of Xtext DSL Elements for Variated Timing Model Case Study Identified

by NL2DSL tool.

Req.# Textual Requirement Root Element Relationships Attributes

Multiple Single Optional

The scenario of system can be a timing
1 model, where it must contain different con-

cepts with the inclusion of primary attributes.

Furthermore, it must have a name preceded
by a category of string type.

Furthermore, it may have an optional attribute
named TraceableSpecification of string type.

There, it is composed of multiple description
concepts.

Similarly, it should contain multiple con-
straint concepts.

Afterward, the description concept contains

timing model:
‘timing model’

(description+=
description)*

(constraint+=
constraint)*

name=STRING
category=STRING

description:‘description’

inclusion=
null

TraceableSpecification
=STRING)?

6 multiple instances of EventFunctionflowport
and EventChain concepts.

EventFunctionflowport=null
EventChain=null

EventFunctionflowport:

There, the EventFunctionflowport concept
must have a name and category of string type.

However, it is used for defining a Function-
FlowPort attribute of string type.

Similarly, the EventChain concept contains a

‘EventFunctionflowPort’
name=STRING
category=STRING

EventChain:‘EventChain’

FunctionFlowPort
=STRING

9 name that should precede a category of string
type.

name=STRING
category=STRING

Furthermore, it must specify by stimulus and
response of string type.

Furthermore, the description concept is com-

stimulus=STRING
response=STRING

posed of multiple EventFunction concepts
11 where the EventFunction concept is repre-

sented by name and category attributes of
string type.

Furthermore, it has attributes including Func-

12 tionPrototypeTarget and FunctionPrototype-
Context of string type.

Besides, the constraint concept consists of
multiple DelayConstraint concepts where at-
tributes of DelayConstraint are name and cat-
egory of string type.

(EventFunction+=
EventFunction)*

EventFunction:‘EventFunction’
name=STRING
category=STRING

FunctionPrototypeTarget
=STRING
FunctionPrototypeContext
=STRING

DelayConstraint:
‘DelayConstraint’
name=STRING
category=STRING

Furthermore, it must have a source preceded
by a target of string type.

Additionally, it should contain multiple ex-
pression concepts.

Moreover, the constraint concept contains

(expression+=
expression)*

constraint:‘constraint’

source=STRING
target=STRING

AgeConstraint:
multiple AgeConstraint concepts where the

16 AgeConstraint concept has various elements
like name and category attributes of string
type.

(AgeConstraint+=
AgeConstraint)*

‘AgeConstraint’
name=STRING
category=STRING

Furthermore, it contains a scope attribute of
string type.

Additionally, it should contain primary con-
18 cepts, like an expression with multiple in-

stances.

Particularly, the expression concept is repre-
19 sented by name and value attributes of string

type.

expression:‘expression’
name=STRING
value=STRING

expression=null

Furthermore, one attribute of expression is
type of string type.

type=STRING

Previously, we calculated the performance of the NL2DSL tool for the timing model case

study. Similarly, we calculated the performance of the NL2DSL tool for the variated

timing model case study. Therefore, the performance evaluation results of the NL2DSL

tool with different metrics like Precision, Recall, and Over-Specification for the variated

2

3

4

5

7

8

10

14

15

17

20

13

71

Specifcations

35+5

35+6

35+6

Correct+Missing

timing model case study are presented in Table 5.6.

Table 5.6: Calculation of NL2DSL Effectiveness for Variated Timing Model Case Study.

Root

Element
Relationships Attributes Total Precision Recall

Over

Multiple Single Optional

Correct 1 5 10 2 1 19

 Incorrect 0 0 1 1 0 2
90.47% 90.47% 4.76%

Afterward, the accumulative performance evaluation of the NL2DSL tool for the timing

model case study is calculated, i.e., actual and variated. This step mainly leads to deter-

mining the overall performance of the NL2DSL tool for the timing model case study.

Table 5.2 and Table 5.5 shows that total Xtext DSL elements generated by the NL2DSL

tool are 23+24 = 47

The correct type of Xtext DSL elements generated by the NL2DSL tool are 16+19 = 35

The incorrect type of Xtext DSL elements generated by the NL2DSL tool are = 3+2 = 5

Missing Xtext DSL elements generated by the NL2DSL tool are 4+2 =6

Extra Xtext DSL elements generated by the NL2DSL tool are 0+1 = 1

 Correct
Correct+Incorrect

So, Precision= 35 = 87.5%

 Correct
Correct+Missing

So, Recall= 35 = 85.36%

Over Specification= Extra

So, Over Specification= 1 = 2.43%

Recall=

Precision=

Missing 0 1 0 1 0 2

Extra 0 0 0 1 0 1

72

 Results of Case Study 02

We specified another case study which is a diabetic manager to prove the validation of the

proposed framework. The output of the generated Xtext grammar by the NL2DSL tool for

the diabetic manager case study is presented in Figure 5.4. Particularly, the primary DSL

elements of the Xtext such as root element, relationship, and different types of attributes

are generated from the diabetic manager case study.

Figure 5.4: Generated Xtext Diabetic Manager.

Recall from the previous subsection, the performance evaluation of the NL2DSL tool with

various evaluation metrics, i.e., Precision, Recall, and Over-Specification is determined

by comparing the actual results of the human experts’ analysis with the results of the

generated Xtext grammar by the NL2DSL tool for the timing model case study. Similarly,

we conducted a human experts’ analysis of the diabetic manager case study to identify the

actual types of Xtext DSL elements, presented in Table 5.7.

Then, the DSL elements of the Xtext are identified by the NL2DSL tool, presented in

Table 5.8 for the diabetic manager case study. Then, a comparative analysis is performed

to determine which generated Xtext DSL elements of the diabetic manager case study are

classified as correct, incorrect, missing, and extra.

73

Table 5.7: List of Actual Xtext DSL Elements for the Diabetic Manager Case Study.

Req.# Textual Requirement Root Element Relationships Attributes

Multiple Single Optional

The scenario of system can be
a diabetic manager which is pre-
sented with a category attribute of
string type.

Particularly, it is required to de-
2 fine each health concept by the

scenario of this system.

There, it should contain primary
concepts of diabetes, such as the
symptom concept with multiple
instances.

Then, the symptom concept must
4 have a name and severity of string

type.

Particularly, the common symp-
tom of diabetes are fatigue or
hyperglycemia, which are highly
linked to developing diabetes.

Furthermore, the system con-
sists of multiple patient concepts

6 where each patient concept is
used to define a glucose attribute
of string type.

system:‘diabetic
manager’

(symptom+=
symptom)*

(patient+=
patient)*

symptom:‘symptom’
name=STRING
severity=STRING

category=STRING

patient:‘patient’
glucose=STRING

Furthermore, one optional at-
7 tribute of the patient is name of

string type.

Furthermore, it should have an

(AnyDisease?=

(name=
STRING)?

8 attribute like AnyDisease of a
boolean datatype. ‘AnyDisease’)?

However, it is linked with multi-
ple symptom concepts.

Additionally, the system contains
multiple doctor concepts where

(symptom+=
[symptom])*

(doctor+=

doctor:‘doctor’

10 the doctor concept must have
a specialization and category of
string type.

doctor)*
specialization=STRING
category=STRING

Moreover, it refers to the multiple
instances of patient concepts.

Furthermore, it should contain
multiple instances of the medicine

(patient+=
[patient])*

medicine:‘medicine’

concept where the medicine con-
cept contains multiple attribute el-
ements like name and dose of
string type.

(medicine+=
medicine)* name=STRING

dose=STRING

With the specification of these parameters, the performance of the NL2DSL tool is calcu-

lated with various performance evaluation metrics, such as Precision, Recall, and Over-

Specification, which is presented in Table 5.9 for the diabetic manager case study.

As we recall from the previous subsection, we have presented some variations within the

textual requirements of the timing model case study. Therefore, after determining the per-

formance of the NL2DSL tool for the actual diabetic manager case study, we define some

variations within the textual requirements of the diabetic manager case study to prove that

the NL2DSL has a flexible methodology in order to generate the Xtext grammar.

Thereafter, the actual DSL elements conforming to the Xtext grammar are identified with

9

11

1

3

5

12

74

Specifcations

Table 5.8: List of Xtext DSL Elements for the Diabetic Manager Case Study Identified by

NL2DSL Tool.

Req.# Textual Requirement Root Element Relationships Attributes

Multiple Single Optional

The scenario of system can be
a diabetic manager which is pre-
sented with a category attribute of
string type.

Particularly, it is required to de-
2 fine each health concept by the

scenario of this system.

There, it should contain primary
concepts of diabetes, such as the
symptom concept with multiple
instances.

Then, the symptom concept must
4 have a name and severity of string

type.

Particularly, the common symp-
tom of diabetes are fatigue or
hyperglycemia, which are highly
linked to developing diabetes.

Furthermore, the system con-
sists of multiple patient concepts

6 where each patient concept is
used to define a glucose attribute
of string type.

system:‘diabetic
manager’

symptom:‘symptom’
name=STRING
severity=STRING

diabetes:‘diabetes’
fatigue=null
hyperglycemia=null

health=null

diabetes=null

patient:‘patient’
glucose=STRING

Furthermore, one optional at-
7 tribute of the patient is name of

string type.

Furthermore, it should have an

(AnyDisease?=

(name=
STRING)?

8 attribute like AnyDisease of a
boolean datatype. ‘AnyDisease’)?

However, it is linked with multi-
ple symptom concepts.

Additionally, the system contains
multiple doctor concepts where

(symptom+=
[symptom])*

(doctor+=

doctor:‘doctor’

10 the doctor concept must have
a specialization and category of
string type.

doctor)*
specialization=STRING
category=STRING

Moreover, it refers to the multiple
instances of patient concepts.

Furthermore, it should contain
multiple instances of the medicine

medicine:‘medicine’

concept where the medicine con-
cept contains multiple attribute el-
ements like name and dose of
string type.

(attribute+=
attribute)*

medicine=null

Table 5.9: Calculation of NL2DSL Effectiveness for Diabetic Manager Case Study.

Root

Element
Relationships Attributes Total Precision Recall

Over

Multiple Single Optional

Correct 1 2 2 2 1 8

 Incorrect 0 1 0 2 0 3
72.72% 72.72% 18.18%

the human experts’ analysis process from the variated diabetic manager case study, pre-

sented in Table 5.10. Then, the NL2DSL tool identifies the DSL elements of the Xtext

from the variated diabetic manager case study, presented in Table 5.11.

9

11

1

3

5

12

Missing 0 2 0 1 0 3

Extra 0 0 1 1 0 2

75

manager’

Table 5.10: List of Actual Xtext DSL Elements for Variated Diabetic Manager Case Study.

Req.# Textual Requirement Root Element Relationships Attributes

Multiple Single Optional

The system presents a scenario of dia-

1 betic manager with a category attribute
of string type.

There, one primary aspect of diabetes in-

system:‘diabetic

category=STRING

2 volves a scenario for controlling its con-
ditions through symptom monitoring.

There, the system is composed of multi-
ple symptom concepts where the symp-
tom can be fatigue and hyperglycemia
linked to developing diabetes.

(symptom+=
symptom)*

Furthermore, the symptom concept must
have a name and severity of string type.

Furthermore, the system contains multi-

symptom:‘symptom’
name=STRING
severity=STRING

ple instances of patient concepts where
each patient concept is declared to define
a glucose attribute of string type.

(patient+=
patient)*

patient:‘patient’
glucose=STRING

Furthermore, one optional attribute of
the patient is name of string type.

Furthermore, it is represented to define
7 an AnyDisease attribute with a boolean

datatype.

However, it is linked with multiple
symptom concepts.

Additionally, the system contains mul-

(symptom+=
[symptom])*

doctor:‘doctor’

(AnyDisease?=
‘AnyDisease’)?

(name=
STRING)?

tiple doctor concepts where the doctor
concept must have a specialization and
category of string type.

(doctor+=
doctor)*

specialization=STRING
category=STRING

Moreover, it refers to the multiple in-
stances of patient concepts.

Furthermore, it should contain multiple

(patient+=
[patient])*

instances of the medicine concept where
11 the medicine concept contains multiple

attribute elements like name and dose of
string type.

(medicine+=
medicine)*

medicine:‘medicine’
name=STRING
dose=STRING

Afterward, a performance evaluation of the NL2DSL tool is conducted by comparing the

actual results of the human experts’ analysis with the generated results of the NL2DSL

tool for the variated requirements of the diabetic manager case study. The performance

evaluation results of the NL2DSL tool for the variated diabetic manager case study are

presented in Table 5.12.

Now, the accumulative type of performance evaluation result of the tool for the diabetic

manager case study is calculated, i.e., actual and variated. From the Table 5.8 and Table

5.11, it has shown total Xtext DSL elements generated by the NL2DSL tool are 16+16 =

32

Correct Xtext DSL elements generated by the NL2DSL tool are = 8+9 = 17

Incorrect Xtext DSL elements generated by the NL2DSL tool are = 3+2 = 5

4

6

8

10

3

5

9

76

Specifcations

17+5

Recall= ,

Table 5.11: List of Xtext DSL Elements for Variated Diabetic Manager Case Study Iden-

tified by the NL2DSL tool.

Req.# Textual Requirement Root Element Relationships Attributes

Multiple Single Optional

The system presents a scenario of dia-

1 betic manager with a category attribute
of string type.

There, one primary aspect of diabetes in-
2 volves a scenario for controlling its con-

ditions through symptom monitoring.

There, the system is composed of multi-

system:‘diabetic
manager’

symptom:‘symptom’

diabetes:‘diabetes’
scenario=null

ple symptom concepts where the symp-
tom can be fatigue and hyperglycemia
linked to developing diabetes.

(symptom+=
symptom)*

fatigue=null
hyperglycemia=null

Furthermore, the symptom concept must
have a name and severity of string type.

Furthermore, the system contains multi-

name=STRING
category=STRING

ple instances of patient concepts where
each patient concept is declared to define
a glucose attribute of string type.

patient:‘patient’
glucose=STRING

Furthermore, one optional attribute of
the patient is name of string type.

Furthermore, it is represented to define
7 an AnyDisease attribute with a boolean

datatype.

However, it is linked with multiple
symptom concepts.

Additionally, the system contains mul-

(symptom+=
[symptom])*

doctor:‘doctor’

(AnyDisease?=
‘AnyDisease’)?

(name=
STRING)?

tiple doctor concepts where the doctor
concept must have a specialization and
category of string type.

(doctor+=
doctor)*

specialization=STRING
category=STRING

Moreover, it refers to the multiple in-
stances of patient concepts.

Furthermore, it should contain multiple
instances of the medicine concept where

medicine:‘medicine’

11 the medicine concept contains multiple
attribute elements like name and dose of
string type.

(attribute+=
attribute)*

medicine=null

Table 5.12: Calculation of NL2DSL Effectiveness for variated Diabetic Manager Case

Study.

Root

Element
Relationships Attributes Total Precision Recall

Over

Multiple Single Optional

Correct 1 3 2 2 1 9

 Incorrect 0 1 0 1 0 2
81.8% 75% 16.67%

Missing Xtext DSL elements generated by the NL2DSL tool are = 3+3 =6

And, Extra Xtext DSL elements generated by the NL2DSL tool are = 2+2 = 4

 Correct
Correct+Incorrect

So, Precision= 17 = 77.27%

 Correct
Correct+Missing

4

6

8

10

Precision=

3

5

9

Missing 0 2 0 1 0 3

Extra 0 0 1 1 0 2

77

17+6

17+6

Correct+Missing

So, Recall= 17 = 73.9%

Over Specification= Extra

So, Over Specification= 4 = 17.39%

78

Chapter 6

Discussion and Limitations

This chapter presents the details of two sections 6.1 and 6.2. Section 6.1 covers a de-

tailed discussion of the proposed framework. Section 6.2 presents the limitations of our

proposed framework.

 Discussions

The proposed framework is introduced with an automatic generation of the Xtext gram-

mar from the natural-language requirements. The feasibility of the proposed framework

is proved by providing the textual requirements of systems as case studies, including the

timing model and the diabetic manager. Throughout this thesis, we specified the inclusion

of the functional requirements of the system as the textual requirement. The complete

generated results of the Xtext grammar are presented in Figure 5.3-5.4, proving that our

approach is capable of generating the Xtext grammar. Furthermore, the feasibility of the

tool is also performed by inducing the variations within the textual requirements. The

evaluation results of the NL2DSL tool, as presented in Table 5.3, Table 5.6 and Table 5.9,

Table 5.12, prove that the proposed framework is capable of generating the Xtext gram-

mar with a satisfactory level of accuracy. The proposed framework is developed with an

open-source NL2DSL tool, available at GitHub [55]. Initially, the textual requirements are

79

presented with unnecessary information that can degrade the accuracy of results. There-

fore, a few preprocessing techniques (presented in Chapter 3) are applied to the textual

requirements. Then, the preprocessed results are passed to the transformation engine to

match the statements and generate an output of the Xtext grammar.

The main objective of our proposed framework is to provide a truly collaborative envi-

ronment among multiple stakeholders. Consequently, the proposed framework utilized

the NLP techniques to introduce the automatic generation of the Xtext grammar from the

natural-language requirements. The textual requirements have no reliance on restricted

natural-language templates. However, the rules defined in Chapter 3, assist in writing

the requirements within the English language. Therefore, the non-technical stakehold-

ers easily comprehend the generated Xtext grammar with written textual requirements.

Further, the natural-language requirements have some reserved words such as string type

and optional that directly support the technical experts. It benefits the technical experts

by eliciting accurate requirements within less time, as natural-language requirements are

utilized to build a mutual consensus among the technical and non-technical stakeholders.

Moreover, several organizations can easily incorporate it into their workflows to perform

seamless integration with other frameworks of DSLs.

A comparative analysis is conducted with baseline research paper [14], showing that the

overall development of the IFML model exhibits less complexity. In this study, most of

the proposed NLP rules have targeted the sub-clauses of textual requirements for gener-

ation purposes. On the contrary, the implementation of Xtext grammar includes various

syntax rules, making its development complex. Moreover, our proposed approach has

implemented different NLP rules by targeting the whole sentences to generate the Xtext

DSL elements. We have also investigated the ChatGPT natural-language model which

provides the Xtext grammar similar to the generated Xtext grammar by the NL2DSL tool

to a certain extent. For example, it correctly generates a few DSL elements of the Xtext,

i.e., the root element, relationship, and attributes but also introduces additional elements

80

incorrectly. Further, it has limited proficiency and it is unable to generate the attributes of

the boolean datatype. Rather than ChatGPT, our NL2DSL is proficient in generating the

Xtext grammar from the textual requirements with better accuracy results. The ChatGPT’s

results of Xtext grammar are publicly accessible from the GitHub site [54].

The proposed framework provides flexibility to incorporate enhancements. Currently,

this article focuses on the automated generation of the Xtext grammar, where the DSL

elements are the root element, relationships, and attributes. The same approach can cap-

ture the enumerations, qualified names, and inheritance, but additional NLP rules might

be proposed. Thus, we can say that such type of enhancements can be implemented in

future work.

 Limitations

The proposed framework is highly supportive of enhancements to define other DSL ele-

ments of the Xtext. Although the proposed approach generates the Xtext grammar accord-

ing to the case studies, it still has some limitations. Currently, it supports the generation

of primary DSL elements of the Xtext. However, it lacks the generation of the other DSL

elements such as inheritance, enumerations, and qualified names. We believe that the im-

plementation and methodology of our proposed framework can easily incorporate such

identified limitations.

81

Chapter 7

Conclusion and Future Directions

 Conclusion

This thesis presented a comprehensive framework to support a collaborative environment

among the non-technical and technical stakeholders. Therefore, this thesis presented a

combined utilization of both natural-language processing (NLP) techniques and model-

driven engineering (MDE). The proposed framework provides an automated generation of

the Xtext grammar from the natural-language requirements. Thus, the technical concepts

of the Xtext grammar are available in natural language resembling the language of non-

technical stakeholders. Similarly, the natural-language requirements support the technical

stakeholders by including reserved words such as string type and optional.

Within this thesis, the proposed framework applied preprocessing techniques to the textual

requirements. Several NLP rules (14) are specified to extract the primary DSL elements

of the Xtext, such as attributes, etc. We defined the textual requirements in the context

of functional concepts of the systems. Therefore, we specified two case studies, i.e.,

the timing model and the diabetic manager, to ensure the applicability of our proposed

framework. Thus, we proposed a complete algorithm that enables the execution of this

proposed framework. Within this proposed approach, we have created a UI tool named

82

Natural-Language To Domain-Specific Language (NL2DSL), which allows users to input

a PDF file consisting of textual requirements. It automatically generates an Xtext grammar

that is saved in a DSL file of the .xtext extension.

Currently, it has a new methodology where a framework is developed to provide an au-

tomated Xtext grammar using the NLP techniques. The evaluation results prove that

it is capable of generating an automated Xtext grammar from the textual requirements

with a satisfactory degree of accuracy. The proposed framework lies in providing the

natural-language requirements without the need for any restricted natural-language tem-

plate. Thus, textual requirements are specified in any style of the English language with

the set of rules that are elicited from the earlier research paper [14]. Generally, the pro-

posed framework provides benefits to streamline the requirement elicitation phase. It

offers benefits to industrial organizations to integrate with other frameworks of DSLs.

The proposed framework is highly supportive of further enhancements. However, a rule-

based approach comprising the regular expressions is applied to extract the primary DSL

elements of the Xtext. There is still some extendable way where some aspects of the Xtext

grammar are not supported, including inheritance, enumerations, and qualified names.

Our proposed framework supports upgrading in the aforementioned extendable ways. The

NL2DSL tool can be upgraded by employing the model-transformation approaches to

expand its utility in terms of verification aspects.

References

[1] M. Eysholdt and H. Behrens, “Xtext: implement your language faster than the quick

and dirty way,” in Proceedings of the ACM international conference companion

on Object oriented programming systems languages and applications companion,

pp. 307–309, 2010.

[2] C. J. Davis, R. M. Fuller, M. C. Tremblay, and D. J. Berndt, “Communication chal-

lenges in requirements elicitation and the use of the repertory grid technique,” Jour-

nal of Computer Information Systems, vol. 46, no. 5, pp. 78–86, 2006.

[3] V. Laporti, M. R. Borges, and V. Braganholo, “Athena: A collaborative approach to

requirements elicitation,” Computers in Industry, vol. 60, no. 6, pp. 367–380, 2009.

[4] V. Goodrich and L. Olfman, “An experimental evaluation of task and methodology

variables for requirements definition phase success,” in Twenty-Third Annual Hawaii

International Conference on System Sciences, vol. 4, pp. 201–209, IEEE Computer

Society, 1990.

[5] U. Erra and G. Scanniello, “Assessing communication media richness in require-

ments negotiation,” IET software, vol. 4, no. 2, pp. 134–148, 2010.

[6] E. D. Liddy, “Natural language processing,” 2001.

[7] R. Sonbol, G. Rebdawi, and N. Ghneim, “A machine translation like approach to

generate business process model from textual description,” SN Computer Science,

vol. 4, no. 3, p. 291, 2023.

[8] S. Sholiq, R. Sarno, and E. S. Astuti, “Generating bpmn diagram from textual re-

quirements,” Journal of King Saud University-Computer and Information Sciences,

vol. 34, no. 10, pp. 10079–10093, 2022.

[9] I. Tangkawarow, R. Sarno, and D. Siahaan, “Id2sbvr: A method for extracting busi-

ness vocabulary and rules from an informal document,” Big Data and Cognitive

Computing, vol. 6, no. 4, p. 119, 2022.

[10] S. C. Allala, J. P. Sotomayor, D. Santiago, T. M. King, and P. J. Clarke, “Towards

transforming user requirements to test cases using mde and nlp,” in 2019 IEEE

43rd Annual Computer Software and Applications Conference (COMPSAC), vol. 2,

pp. 350–355, IEEE, 2019.

[11] R. Gröpler, V. Sudhi, E. J. C. Garcı́a, and A. Bergmann, “Nlp-based requirements

formalization for automatic test case generation.,” in CS&P, vol. 21, pp. 18–30,

2021.

[12] C. Wang, F. Pastore, A. Goknil, and L. C. Briand, “Automatic generation of accep-

tance test cases from use case specifications: an nlp-based approach,” IEEE Trans-

actions on Software Engineering, vol. 48, no. 2, pp. 585–616, 2020.

[13] M. W. Anwar, I. Ahsan, F. Azam, W. H. Butt, and M. Rashid, “A natural language

processing (nlp) framework for embedded systems to automatically extract verifica-

tion aspects from textual design requirements,” in Proceedings of the 2020 12th In-

ternational Conference on Computer and Automation Engineering, pp. 7–12, 2020.

[14] M. Hamdani, W. H. Butt, M. W. Anwar, I. Ahsan, F. Azam, and M. A. Ahmed,

“A novel framework to automatically generate ifml models from plain text require-

ments,” IEEE Access, vol. 7, pp. 183489–183513, 2019.

[15] A. Zaki-Ismail, M. Osama, M. Abdelrazek, J. Grundy, and A. Ibrahim, “Rcm-

extractor: an automated nlp-based approach for extracting a semi formal representa-

tion model from natural language requirements,” Automated Software Engineering,

vol. 29, no. 1, p. 10, 2022.

[16] R. P. Dias, C. Vidanapathirana, R. Weerasinghe, A. Manupiya, R. Bandara, and

Y. Ranasinghe, “Automated use case diagram generator using nlp and ml,” arXiv

preprint arXiv:2306.06962, 2023.

[17] M. Imtiaz Malik, M. Azam Sindhu, and R. Ayaz Abbasi, “Extraction of use case

diagram elements using natural language processing and network science,” Plos one,

vol. 18, no. 6, p. e0287502, 2023.

[18] A. M. Alashqar, “Automatic generation of uml diagrams from scenario-based user

requirements,” Jordanian Journal of Computers and Information Technology, vol. 7,

no. 2, 2021.

[19] Z. A. Hamza and M. Hammad, “Generating uml use case models from software

requirements using natural language processing,” in 2019 8th International Confer-

ence on Modeling Simulation and Applied Optimization (ICMSAO), pp. 1–6, IEEE,

2019.

[20] F. Alharbia, S. R. Masadeh, and F. Alshrouf, “A framework for the generation of

class diagram from text requirements using natural language processing,” Interna-

tional Journal, vol. 10, no. 1, 2021.

[21] S. Yang and H. Sahraoui, “Towards automatically extracting uml class diagrams

from natural language specifications,” in Proceedings of the 25th International Con-

ference on Model Driven Engineering Languages and Systems: Companion Pro-

ceedings, pp. 396–403, 2022.

[22] E. A. Abdelnabi, A. M. Maatuk, T. M. Abdelaziz, and S. M. Elakeili, “Generating

uml class diagram using nlp techniques and heuristic rules,” in 2020 20th Interna-

tional Conference on Sciences and Techniques of Automatic Control and Computer

Engineering (STA), pp. 277–282, IEEE, 2020.

[23] S. Nasiri, Y. Rhazali, M. Lahmer, and A. Adadi, “From user stories to uml diagrams

driven by ontological and production model,” International Journal of Advanced

Computer Science and Applications, vol. 12, no. 6, 2021.

[24] T. Kochbati, S. Li, S. Gérard, and C. Mraidha, “From user stories to mod-

els: A machine learning empowered automation.,” MODELSWARD, vol. 10,

p. 0010197800280040, 2021.

[25] M. Elallaoui, K. Nafil, and R. Touahni, “Automatic transformation of user sto-

ries into uml use case diagrams using nlp techniques,” Procedia computer science,

vol. 130, pp. 42–49, 2018.

[26] O. S. Dawood et al., “Toward requirements and design traceability using natural

language processing,” European Journal of Engineering and Technology Research,

vol. 3, no. 7, pp. 42–49, 2018.

[27] Shweta, R. Sanyal, and B. Ghoshal, “Automated class diagram elicitation using in-

termediate use case template,” IET Software, vol. 15, no. 1, pp. 25–42, 2021.

[28] S. Zhong, A. Scarinci, and A. Cicirello, “Natural language processing for sys-

tems engineering: Automatic generation of systems modelling language diagrams,”

Knowledge-Based Systems, vol. 259, p. 110071, 2023.

[29] J. Chen, B. Hu, W. Diao, and Y. Huang, “Automatic generation of sysml requirement

models based on chinese natural language requirements,” in Proceedings of the 2022

6th International Conference on Electronic Information Technology and Computer

Engineering, pp. 242–248, 2022.

[30] G. J. Hwang, T. Mazzuchi, and S. Sarkani, “Generation of mbse models from system

requirements,” in Open Architecture/Open Business Model Net-Centric Systems and

Defense Transformation 2022, vol. 12119, pp. 35–49, SPIE, 2022.

[31] M. Chami, C. Zoghbi, and J.-M. Bruel, “A first step towards ai for mbse: Generating a

part of sysml models from text using ai,” A First Step towards AI, 2019.

[32] Y. Qie, H. Shen, and A. Liu, “A deep learning and ontology based framework for tex-

tual requirements analysis and conceptual model generation,” in Complex Systems

Design & Management: Proceedings of the 4th International Conference on Com-

plex Systems Design & Management Asia and of the 12th Conference on Complex

Systems Design & Management CSD&M 2021, pp. 3–14, Springer, 2021.

[33] A. Haj, A. Jarrar, Y. Balouki, and T. Gadir, “The semantic of business vocabulary

and business rules: an automatic generation from textual statements,” IEEE Access,

vol. 9, pp. 56506–56522, 2021.

[34] M. M. Awan, W. H. Butt, M. W. Anwar, and F. Azam, “Seamless runtime trans-

formations from natural language to formal methods–a usecase of z-notation,” in

2022 17th Annual System of Systems Engineering Conference (SOSE), pp. 375–380,

IEEE, 2022.

[35] M. W. Anwar and F. Ciccozzi, “Blended metamodeling for seamless development

of domain-specific modeling languages across multiple workbenches,” in 2022 IEEE

International Systems Conference (SysCon), pp. 1–7, IEEE, 2022.

[36] A. Veizaga, M. Alferez, D. Torre, M. Sabetzadeh, and L. Briand, “On systemati-

cally building a controlled natural language for functional requirements,” Empirical

Software Engineering, vol. 26, no. 4, p. 79, 2021.

[37] G. Hains and O. Fenek, “Machine learning pseudo-natural language for temporal

logic requirements of embedded systems,” in 2023 15th International Conference

on Knowledge and Systems Engineering (KSE), pp. 1–4, IEEE, 2023.

[38] I. Predoaia, D. Kolovos, M. Lenk, and A. Garc´ıa-Dom´ınguez, “Streamlining the de-

velopment of hybrid graphical-textual model editors for domain-specific languages,”

Journal of Object Technology, vol. 22, no. 2, 2023.

[39] M. Latifaj, F. Ciccozzi, and M. Mohlin, “Higher-order transformations for the gen-

eration of synchronization infrastructures in blended modeling,” Frontiers in Com-

puter Science, vol. 4, p. 1008062, 2023.

[40] M. W. Anwar, M. Latifaj, and F. Ciccozzi, “Blended modeling applied to the portable

test and stimulus standard,” in ITNG 2022 19th International Conference on Infor-

mation Technology-New Generations, pp. 39–46, Springer, 2022.

[41] K. Aslam, Y. Chen, M. Butt, and I. Malavolta, “Cross-platform real-time collabo-

rative modeling: an architecture and a prototype implementation via emf. cloud,”

IEEE Access, 2023.

[42] Y. Liu and J.-M. Bruel, “Modelling and verification of natural language require-

ments based on states and modes,” in 30th International Requirements Engineering

Conference Workshops (REW 2022), IEEE, 2022.

[43] M. El Hamlaoui, Y. Laghouaouta, Y. Qamsane, and A. Mishra, “A model based

approach for generating modular manufacturing control systems software,”

[44] F. FOURATI, M. T. BHIRI, and R. ROBBANA, “Validating event-b models using

pddl,” Procedia Computer Science, vol. 207, pp. 2638–2647, 2022.

[45] H. Brabra, A. Mtibaa, W. Gaaloul, and B. Benatallah, “Toward higher-level abstrac-

tions based on state machine for cloud resources elasticity,” Information Systems,

vol. 90, p. 101450, 2020.

[46] R. Mzid, A. Charfi, and N. Etteyeb, “Use of compiler intermediate representation

for reverse engineering: A case study for gcc compiler and uml activity diagram.,”

in MODELSWARD, pp. 211–218, 2022.

[47] S. H. Hiba and M. Belguidoum, “Autocadep: An approach for automatic cloud appli-

cation deployment,” in Service-Oriented Computing–ICSOC 2019 Workshops: WE-

SOACS, ASOCA, ISYCC, TBCE, and STRAPS, Toulouse, France, October 28–31,

2019, Revised Selected Papers 17, pp. 82–94, Springer, 2020.

[48] A. Moin, M. Challenger, A. Badii, and S. Günnemann, “A model-driven approach to

machine learning and software modeling for the iot: Generating full source code for

smart internet of things (iot) services and cyber-physical systems (cps),” Software

and Systems Modeling, vol. 21, no. 3, pp. 987–1014, 2022.

[49] G. Daniel, J. Cabot, L. Deruelle, and M. Derras, “Xatkit: a multimodal low-code

chatbot development framework,” IEEE Access, vol. 8, pp. 15332–15346, 2020.

[50] B. Jahić, N. Guelfi, and B. Ries, “Semkis-dsl: A domain-specific language to support

requirements engineering of datasets and neural network recognition,” Information,

vol. 14, no. 4, p. 213, 2023.

[51] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard, and D. McClosky,

“The stanford corenlp natural language processing toolkit,” in Proceedings of 52nd

annual meeting of the association for computational linguistics: system demonstra-

tions, pp. 55–60, 2014.

[52] Z. Zhong, J. Guo, W. Yang, T. Xie, J.-G. Lou, T. Liu, and D. Zhang, “Generating

regular expressions from natural language specifications: Are we there yet?,” in

AAAI Workshops, pp. 791–794, 2018.

[53] M. W. Anwar, F. Ciccozzi, and A. Bucaioni, “Enabling blended modelling of timing

and variability in east-adl,” in Proceedings of the 16th ACM SIGPLAN International

Conference on Software Language Engineering, pp. 169–180, 2023.

[54] MedlinePlus, “Diabetes.” https://medlineplus.gov/ency/article/

001214.htm, 2023.

[55] “NL2DSL.” https://github.com/AminaZafar-CEME/NL2DSL. Ac-

cessed: 17-12-2023.

https://medlineplus.gov/ency/article/001214.htm
https://medlineplus.gov/ency/article/001214.htm
https://github.com/AminaZafar-CEME/NL2DSL

	Chapter 1 Introduction
	Background
	DSL environment
	Importance of Collaboration in Requirements Engineering
	Importance of automation for the modeling environment
	Natural Language Processing (NLP)

	Goals and Objectives
	Motivation
	Problem
	Proposed Solution
	Thesis Organization

	Chapter 2 Preliminaries
	Literature Review
	Natural Language Processing in MDE
	Natural Language Processing in UML
	Natural Language Processing in SysML
	Natural Language Processing in DSM
	Xtext in MDE
	Blended Modeling
	Verification/Validation
	Domain’s Perspective
	Artificial Intelligence

	Research Gap
	Contributions

	Chapter 3 Methodology
	Proposed Algorithm
	Step 1: First, apply the Root Element Rules to the sentence for extracting the root element.
	Step 2: The second step executes the Relationship rules to extract relationship elements.
	Step 3: The third step specifies the execution of Multiple Attribute Rules on the given sentence for extracting multiple attributes.
	Step 4: The fourth and last step of the proposed algorithm has the purpose of extracting the Single and optional Attribute Rules from the given sentence.
	Transformation Rules For the Identification of Xtext Elements

	Chapter 4 Implementation
	Tools and Languages
	Tool Interface
	Xtext Grammar Generation Details

	Chapter 5 Validation
	Dataset Collection
	Case Study 01
	Case Study 02

	Results
	Results of Case Study 01

	Discussions
	Limitations
	Conclusion

	References

