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Abstract

In this dissertation I have reviewed some basic Lie and Noether theory for the real

domain as well as for the case when there is complex domain. Then, we introduce the

concept of the approximate symmetries for the perturbed complex differential equation in

general and first order approximate symmetries of the perturbed complex ordinary differential

equation (p-CODE) in particular. Also, we apply the same procedure to work out the first

order approximate symmetries of some well known scalar second order p-CODEs. We also

study the harmonic oscillator which have wide applications in population dynamics, classical

mechanics, pattern recognition, quantum mechanics, fluid mechanics, and solid mechanics,

etc. Furthermore, it is seen that the two dimensional coupled harmonic oscillators can be

represented with the help of one complex ordinary differential equation (CODE) and hence

we worked out the first integrals (invariants) corresponding to the coupled system and it was

found that there was a mistake in the published work [20] which was corrected and then

appeared in [21] on account of this work. At the end we dealt the same system for more

choices of the phase angles between the oscillators and hence obtained the generalized form

of the invariants.
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Chapter 1

Symmetries and invariants for
ODEs

The existence of problems in this universe is linked with the existence of human beings and

it is, infact, the nature of human beings to inquire and raise questions about all those things

which are unknown to them and hence solve those problems after giving proper attention to

the nature of the problem [1]. Mathematics is considered as a study of problems but, indeed,

it helps us to answer all those questions by which we can understand the laws of the Universe,

and the nature of objects in it. Moreover, it provides logical ways to obtain the best solutions

to certain problems. Thus, its existence comes from the beginning of everything. People of-

ten describe it either as “the language of precision”, as we use it to avoid emotional content

[2], in other words, for obtaining correct results from correct premises or as the science that

deals with numbers, shapes, quantities, arrangements, and chances but it practically deals

with every single object that exists in this universe from big stars to microscopic particles

and their motion. Mathematics is merely like a game which has certain rules and we enjoy

watching it and if we actually want to play then we need to know its rules. Most of the time

people play it to learn more about applications but if there are no as such visible applications

then playing the game can still be of great interest [3]. Therefore, to play it one should know

its two main perspectives i.e. geometry and symbolic representation which give rise to two

basic problems; that is when going from one world to the other and returning back is unique

(or possible) or may not be unique (or impossible) [4].
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To understand the laws of this Universe one needs to understand “symmetry”. The word

“symmetry” has its origin from the Greeks and it has three types of meaning: as a phe-

nomenon is what on the basis of our knowledge we have learned, a concept which deals with

all such phenomena, or an operation which makes the phenomenon possible [5]. A symmetry

is a transformation that leaves an object to look apparently invariant or it is a function that

actually preserves what we feel special about any object.

Generally speaking, symmetry is not only restricted to mean a transformation but from

a bigger perspective it is a “criterion for beauty” [6]. It is quite interesting to note that

people have not yet defined the type, order, and degree of the beauty but here we are only

concerned with its mathematical aspect as it helps us to understand well the laws of the

nature. Symmetry is a comprehensive concept that appears in our everyday lives, in science,

in art and we feel it so often as if everything was made up of entire symmetrical objects. Sym-

metry appears in our neighborhoods, in buildings, roads, bridges, machinery, in the smallest

particles of crystals, in the rhythm of songs, in movements of dance, in poetry, in flowers of

the plant, in leaves of the trees, in the structure of animals’ bodies, in games, and it is also

a symmetry if some object is painted a different colour. The concept of symmetry is found

in almost every modern science. In physics it appears in the variational principles, electric

circuits, in the conservation laws, and in the structure of matter. In earth sciences and as-

tronomy it turns up in the investigation of periodical events and even in the preparation of

calendars. In crystallography, it arises in regular space filling, in spatial arrangements, and in

crystal distortions. In chemistry, it is seen in molecules and macromolecules. In biology, it is

present in the structures of DNA and RNA molecules, in protein, in every living creature, in

evolution. In psychology, it is found in the regularities of development of the consciousness of

any living creature, in personality tests. In music, it is heavily found in the rules of rhythm,

in melody, and in the musical works. In literature, it is in rhyme, in meter, in the structure

of every literary work. It is the keynote principle in the movements of dance. In fine art, one

may find it in proportions, in perspective, and in harmony of proportion and colour. It is

found in ethics, in determining virtuous behaviour, in moderation, in search for the perfect

way. In logic and philosophy, its presence is in the form and order of thought. In economics,
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its active role is in balance, in simulation [5]. Beside all of the arts and sciences it also plays

a vital role in the search of a fair or an ideal person.

Mathematically, one of the best examples of geometric symmetry is reflection. If we reflect

some shape about the axis of symmetry, then the corresponding points of the shape and its

reflected image are exactly at the same distance from the axis, but in opposite directions. The

shape, size, colour, and the angles of the shape remain unchanged and only the orientation

of the shape gets changed. The second example is rotation. If we rotate any 2-dimensional

shape about an axis perpendicular to the plane of that shape and it overlaps the original,

and if repeating the rotation n times it returns to the starting position we call it an n-fold

symmetry. For example, an equilateral triangle has 3-fold symmetry, a square 4-fold, and so

on. The internal characteristics like shape, size, colour, and angles of any shape in rotation

always remain the same. Rotation requires at least 2 dimensions. The third example is

translation. If we translate (linear change in position) any object with some fixed period in

some direction then the object remains invariant. In order to understand the idea of sym-

metry of some geometrical object let us consider an example of a square. There are a total

of eight geometrical operations which can bring a square into equivalence with itself that is

the shape looks exactly the same before and after the operations. We say that a square has

eight symmetries (see Fig 1.1). The operations are: two reflections along the lines drawn

Figure 1.1: Symmetries of a square.
4 reflections along PQ, RS, AC, and BD,

4 rotations around 90, 180, 270, and 360 degrees

between the midpoints of opposite sides(PQ and RS), two reflections along the lines drawn

between opposite vertices(AC and BD), and four planar rotations around 90, 180, 270, and

360 degrees. Further, the operation of leaving the square untouched can give us the idea of

the neutral element (the identity) and the reverse operation as the inverse. These operations
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form a group of the symmetries of a square [5].

If we look back at the history then we find that it was Al-Khwarizmi (780 − 850) who

introduced algebra for the first time, Omar Khayyam (1048−1131) gave connection between

geometry and algebra. He also found the general geometric solution of the cubic equation,

François Viéte (1540 − 1603) in the late 1500s called algebra “the art of finding solutions

to all problems”. It was René Descartes (1596 − 1650) who claimed that “all geometrical

problems could be first quantified and then solved” and it was also his opinion that “analytic

geometry” or “algebraic geometry” could be used to discover all of the science and the laws

which govern the Universe. Pierre de Fermat (1601 or 1607/8− 1665) is given credit for the

early developments that led to the infinitesimal calculus. Then, Isaac Newton (1642− 1727)

and Gottfried Wilhelm von Leibnitz (1646−1716) found that algebra is not sufficient to solve

all of the scientific problems and invented calculus [7, 8].

The study of differential equations DEs (equations that contain the derivatives), began right

after calculus [9]. In search for the most general methods of integrating DEs Isaac Newton

classified first order (numerical value of the highest derivative appearing in a DE) DEs into

three classes [7]

dy
dx = f(x),

dy
dx = f(x, y),

x∂u∂x + y ∂u∂y = u(x, y).

(1.0.1)

The first two classes involve ordinary derivative of one or more dependent variables with re-

spect to only single independent variable and known as ordinary differential equations(ODEs).

The last class involved the derivative (partial) of one dependent variable with respect to more

than one independent variables as such equations are known today as partial differential equa-

tions(PDEs) [8].

There are many techniques to solve DEs but every method has its limitation and so no
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general method exists by which we can solve the linear or nonlinear DEs. To address this

problem for finding the analytic solutions of DEs a Norwegian mathematician of the 19th cen-

tury, Sophus Lie (1842− 1899), proposed an entirely new approach for solving DEs in which

he used continuous groups of transformations of the dependent and independent variables

depending on continuous parameters known today as the Lie groups. He observed that DEs

can remain invariant under continuous transformations and such transformations map any

solution of the DEs to another solution which generalized various methods of the change of

variables and led to a new branch of mathematics known as symmetry analysis for solving

DEs. Lie used the symmetry approach to linearize (process of replacing an object by a simple

linear object) certain DEs. He developed techniques one in which he used symmetries to solve

the linear and nonlinear DEs and in which he used the group of Lie point symmetries to find

the most general form of the nonlinear ODE. Also the symmetries have a strong relationship

with the conservation laws (or the first integrals) which play a vital role in the reduction of

order and in the study of the physical properties of geometry associated with the problem.

The use of the complex variable in ODEs helps to provide new insights into the theory of

DEs [10] since we split the complex variable into pair of real variables then the corresponding

DE gives rise to a system of PDEs (if the independent variable is complex) and ODEs (if

the independent variable is real). On the basis of this choice the system of two real second

order ODEs can be represented by a single complex ODE (CODE). The examples of such

systems include two oscillators, motion of two free particles, and generalized Lane-Emden

can be described with the single CODE.

In the first chapter of this dissertation the basic mathematics to be used is introduced by

reviewing some basic concepts of, geometry by explaining manifolds, transformations of Lie

groups and their corresponding Lie algebras. Techniques are used to find transformations of

some scalar ODEs (in which the coefficients are numbers). After which we state Noether’s

theorems and explain how its use in analysis helps us to obtain invariants corresponding to

some physical problem. In chapter 2, we define complex manifolds, their need to under-

stand certain phenomenons, transformations in complex domain or in other words complex

Lie symmetry (CLS) analysis. At the end we discuss complex Noether approach and its
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double reduction and how the theory helps us to obtain invariants of the physical systems

or conserved quantities. Chapter 3 deals with the treatment of perturbed complex ODEs

(p-CODEs) by defining approximate transformations and their approximate algebras which

helps us to understand the laws approximately. Finally, in chapter 4 complex harmonic oscil-

lator is explained which infact give rise to a 2-dimensional system of coupled real harmonic

oscillators and their invariants are worked out by using Noether’s theorems. At the end we

summarize our entire discussion and see what we have achieved.

1.1 Real manifolds

Manifolds arise in many physical situations and generally to deal with mechanics we need

manifolds. Manifolds are, therefore, of interest in the study of Geometry, Topology and

Analysis [11].

Definition 1.1.1 A real manifold M of dimension n is a set together with a collection of

open subsets Oα satisfying the following properties [12].

(1) The set of Oα covers M .

(2) For each α there is a bijective map ψα : Oα −→ Uα, where Uα is an open subset of Rn.

(3) We can consider the map ψβ ◦ ψ−1α which takes the points in ψα to points in ψβ only for

the overlapping region i.e., where Oα
⋂
Oβ 6= φ. (see Fig. 1.2)

Figure 1.2: Manifold and two overlapping coordinate systems.
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If all the maps (charts) ψα are homeomorphisms then we can define a topology on the

manifold M . In the context of a topological space we can define a manifold as: “A manifold

of dimension n is a separable, connected, Hausdorff space with a homeomorphism from each

element of its open cover into Rn”. Thus we require that it does not have too many points

in some place or the space has countable dense subset (i.e. it is separable), too few points or

the space may not be divided into two or more disjoint sets (i.e. it is connected), and any

two points can be enclosed in some disjoint regions or for any two elements of this space we

have neighbourhoods which are disjoint (i.e. it is Hausdorff). In every small region one could

assign coordinates so that to each point there would be a set of n numbers and to the set

of n numbers there would be a specific point (i.e. there is a homeomorphism from its open

cover to the set of n-tupples of numbers, Rn) [6]. If the homeomorphic transformations are

also differentiable then the manifold is said to be a differentiable manifold.

The basic example of a manifold is Euclidean space, and many of its properties carry over to

manifolds. In addition, any smooth boundary of a subset of Euclidean space, like the straight

line (non compact), circle and the sphere (compact), is a manifold.

1.2 Point transformations and Lie groups

To solve DEs by using symmetries one needs to define symmetry in the context of a continuum

first, which requires some knowledge of transformations and their generators. For solving the

DEs, one may simplify the equation by an appropriate transformation of the independent

variable and the dependent variable,

x̃ = x̃ (x, y) ,

ỹ = ỹ (x, y) ,
(1.2.1)

these are known as continuous point transformations that maps points (x, y) into points

(x̃, ỹ). To find the symmetries of DEs we need invertible point transformations that depend
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on (at least) one arbitrary parameter ε,

x̃ = x̃ (x, y; ε) ,

ỹ = ỹ (x, y; ε) .
(1.2.2)

In fact, repeated applications of these transformations yield a transformation of the same

family and also the identity is contained. These group properties on a differentiable manifold

ensure that the transformations (1.2.2) form a one-parameter Lie group of transformations

with parameter ε [13]. Now to obtain the infinitesimal generator of such a group, we need to

expand the transformations (1.2.2) by using a Taylor series about ε=0:

x̃ = x+ εξ (x, y) + ... = x+ εXx+ ... = (eεX)x,

ỹ = y + εη (x, y) + ... = y + εXy + ... = (eεY)y,
(1.2.3)

where the functions ξ and η are defined by the Lie equations,

ξ (x, y) = ∂x̃
∂ε |ε=0= Xx

η (x, y) = ∂ỹ
∂ε |ε=0= Xy.

(1.2.4)

Where X is called an infinitesimal generator of transformations and symmetry of DE, pro-

vided that it satisfies symmetry existence criteria, which we define later,

X = ξ (x, y) ∂
∂x + η (x, y) ∂

∂y . (1.2.5)

Example 1.2.1 Consider the one-paramter group of rotations in the X-Y plane

x̃ = x cos ε− y sin ε,

ỹ = x sin ε+ y cos ε.
(1.2.6)

Hence

∂x̃
∂ε |ε=0= −y, ∂ỹ∂ε |ε=0= x, (1.2.7)

9



so that the corresponding symmetry generator is given by

X = −y ∂
∂x + x ∂

∂y . (1.2.8)

Example 1.2.2 Consider the one-parameter group of translations (shift of origin of X)

we obtain

x̃ = x+ ε, ỹ = y,X = ∂
∂x . (1.2.9)

To apply a point transformation (1.2.2) to a scalar ODE

E
(
x, y, y′, y′′, ..., y(n)

)
= 0, (1.2.10)

we must know how to transform the derivatives y′, y′′, ..., yn, that is, how to extend or prolong

the point transformations to the derivatives of every order. This is done by defining

ỹ′ = dỹ′(x,y;ε)
dx̃′(x,y;ε) =

∂ỹ
∂x

+y′ ∂ỹ
∂y

∂x̃
∂x

+y′ ∂x̃
∂x

= ỹ′ (x, y, y′; ε) ,

ỹ′′ = ỹ′′ (x, y, y′, y′′; ε) , ...

(1.2.11)

or equivalently,

ỹ′ = y + εη(1) (x, y, y′) +O
(
ε2
)

= y′ + εX[n]y′ +O
(
ε2
)
,

ỹ′′ = y + εη(2) (x, y, y′, y′′) +O
(
ε2
)

= y′′ + εX[n]y′′ +O
(
ε2
)
,

ỹn = y + εη(n)
(
x, y, y′, ..., y(n)

)
+O

(
ε2
)

= y(n) + εX[n]y(n) +O
(
ε2
)
,

(1.2.12)

where the prolongation coefficients come out to be of the form

η(1) = dη
dx − y

′ dξ
dx = ηx + y′(ηy − ξx)− y′2ξy,

η(n) = dη(n−1)

dx − y(n) dξdx , n ≥ 2,

(1.2.13)

where the operator d
dx is defined as

d
dx = ∂

∂x + y′ ∂∂y + y′′ ∂∂y′ + y′′′ ∂∂y′′ + ... (1.2.14)
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and the nth order prolongation of the infinitesimal generator is

X[n] = ξ (x, y) ∂
∂x + η (x, y) ∂

∂y + η(1) (x, y, y′) ∂
∂y′ + ...

+η(n)
(
x, y, y′, ..., y(n)

)
∂

∂y(n) .
(1.2.15)

1.3 The Lie algebra and its properties

Let X and Y be infinitesimal symmetry generators. Then, their commutator is defined by

[X,Y] = XY −YX, (1.3.1)

which itself is a symmetry generator and called the Lie product or Lie bracket of X and Y.

A Lie algebra, L, is a vector space over some field F equipped with the Lie product satisfying

the following three properties

(i) Bilinearity

[αX + Y,Z] = α[X,Z] + [Y,Z].

[X, αY + Z] = α[X,Y] + [X,Z].(∀αεF )

(ii) Anti-symmetry or skew-symmetry

[X,Y] = −[Y,X].

(iii) Jacobi identity

[[X,Y],Z] + [[Y,Z],X] + [[Z,X],Y] = 0.

A Lie algebra is said to be real if F is the field of real numbers and complex if F is the

field of complex numbers. If the generators of the Lie algebra are finite (say n) then it is

known as a finite dimensional (n dimensional) Lie algebra otherwise it is known as an infinite

dimensional Lie algebra. Also to every Lie group G, one can associate a unique Lie alge-

bra, whose underlying vector space is the tangent space of G at the identity element, which

completely captures the local structure of the group. Informally one can think of elements

of the Lie algebra as elements of the group that are “infinitesimally close” to the identity.

However, for a given Lie algebra there can be many groups with different topologies. Since a

Lie algebra determines the local structure of the group, therefore two groups will be locally

isomorphic iff their Lie algebras are isomorphic.
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1.4 Lie point symmetries of ODEs

In order to find the Lie group of transformations one has to follow below mentioned criteria.

Theorem 1.4.1. An nthorder ODE admits a group of symmetries with generator X[n] if and

only if

X[n]E |E=0= 0, (1.4.1)

i.e. holds along the solutions of E=0.

Proof: If a DE admits a symmetry then (1.4.1) trivially holds. Conversely, since

E
(
x̃, ỹ, ỹ′, ỹ′′, ..., ỹ(n)

)
= 0, (1.4.2)

has to be valid for all values of ε, therefore, differentiating (1.4.2) we obtain

∂
∂εE(x̃, ỹ, ỹ′, ỹ′′, ..., ỹ(n)) |ε=0= 0,

∂E
∂x̃

∂x̃
∂ε + ∂E

∂ỹ
∂ỹ
∂ε + ...+ ∂E

∂ỹ(n)
∂ỹ(n)

∂ε |ε=0= 0.

(1.4.3)

Using the definitions from (1.2.4), and

∂E

∂x̃
|ε=0=

∂E

∂x
,
∂E

∂ỹ
|ε=0=

∂E

∂y
, ...,

∂E

∂ỹ(n)
|ε=0=

∂E

∂y(n)
,

(1.4.3) is equivalent to

ξ
∂E

∂x
+ η

∂E

∂y
+ η(1)

∂E

∂y′
+ ...+ η(n)

∂E

∂y(n)
= 0,

which is equivalent to (1.4.1). This completes the proof.

12



Alternatively, the above theorem can be explicitly stated as follows.

Theorem 1.4.2. An nthorder ODE admits a group of symmetries with generator X if and

only if

X[n−1]ω = ηn|yn=ω. (1.4.4)

1.4.1 Lie symmetry conditions for second-order ODEs

To find the symmetry generators for second-order ODEs (or PDEs) [14] the method is the

same as defined for the general case in the previous section but for the sake of understanding

we are going to define it first for the particular case and then work out an example by using

the same approach. First of all we are going to restate the previous theorem particularly for

the second order ODEs.

Theorem 1.4.3. Any 2ndorder ODE of the form y′′ = ω(x, y, y′) admits a group of symme-

tries with generator X if and only if

X[1]ω(x, y, y′) = η2|y′′=ω, (1.4.5)

where the expression for η2 can be worked out by utilizing (1.2.13)

η(2) = ηxx + y′(2ηxy − ξxx) + y′2(ηyy − 2ξxy)− y′3ξyy

+y′′(ηy − 2ξx − 3y′ξy).

(1.4.6)

In order to understand the above mentioned criteria we now apply the same procedure and

give two examples.

Example 1.4.1

y′′ = 0. (1.4.7)

Here ω(x, y, y′) = 0, so by utilizing (1.4.5) we obtain

η(2) = 0, (1.4.8)
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or equivalently,

ηxx + y′(2ηxy − ξxx) + y′2(ηyy − 2ξxy)− y′3ξyy = 0. (1.4.9)

By comparing the coefficients of the powers of y′, we get

ηxx = 0, (1.4.10)

2ηxy − ξxx = 0, (1.4.11)

ηyy − 2ξxy = 0, (1.4.12)

ξyy = 0. (1.4.13)

Solving above system for ξ and η, we get

ξ = (c1x+ c2)y + c3x
2 + c7x+ c8, (1.4.14)

η = c1y
2 + (c3x+ c4)y + c5x+ c6, (1.4.15)

which forms an 8-parameter Lie group of transformations

X1 = ∂
∂x , X2 = ∂

∂y ,

X3 = x ∂
∂x , X4 = y ∂

∂y ,

X5 = x ∂
∂y , X6 = y ∂

∂x ,

X7 = x2 ∂
∂x + xy ∂

∂y ,

X8 = xy ∂
∂x + y2 ∂

∂y .

(1.4.16)

Example 1.4.2

y′′ + y = 0, (1.4.17)
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with ω(x, y, y′) = −y, so by using (1.4.5) we obtain

η(2) = −η, (1.4.18)

or equivalently,
ηxx + y′(2ηxy − ξxx) + y′2(ηyy − 2ξxy)− y′3ξyy

+y(2ξx + 3y′ξy − ηy) = −η.
(1.4.19)

By comparing the coefficients of y′ and its powers, we get

ηxx + y(2ξx − ηy) + η = 0, (1.4.20)

2ηxy − ξxx + 3yξy = 0, (1.4.21)

ηyy − 2ξxy = 0, (1.4.22)

ξyy = 0. (1.4.23)

The solution of the above system for ξ and η is

ξ = y(a cosx+ b sinx) + e sin 2x+ f cos 2x+ g, (1.4.24)

η = y2(b cosx− a sinx) + y(h+ e cos 2x+ f sin 2x)+

c cosx+ d sinx,
(1.4.25)

where a, b, c, d, e, f , g, and h are some arbitrary constants.

Thus, ξ and η admits the 8-dimensional Lie algebra of point symmetry generators given

by
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X1 = ∂
∂x , X2 = y ∂

∂y ,

X3 = sinx ∂
∂y , X4 = cosx ∂

∂y ,

X5 = sin 2x ∂
∂x + y cos 2x ∂

∂y ,

X6 = cos 2x ∂
∂x − y sin 2x ∂

∂y ,

X7 = y cosx ∂
∂x − y

2 sinx ∂
∂y ,

X8 = y sinx ∂
∂x + y2 cosx ∂

∂y .

(1.4.26)

1.5 Noether symmetries of ODEs

Conservation laws play an important role in understanding the physical properties of dynam-

ical systems such as the law of conservation of energy and momentum, and to deal with such

systems and their underlying DEs it is very important to search for the Noether symmetries

and their corresponding first integrals because such symmetries reduces the order of equa-

tions by two as contrasted with those which reduced the order by one, i.e. Lie symmetries [15].

Definition 1.5.1 A vector field X is said to be a Noether point symmetry generator cor-

responding to a Lagrangian, L(x, y, y′), of an ODE if there exists a gauge function, A(x, y),

which satisfies

X(1)(L) + ( dξdx)L = dA
dx , (1.5.1)

where X(1) is the first order prolongation of the symmetry generator X

Theorem 1.5.1. If X is a Noether point symmetry for a Lagrangian L(x, y, y′) of an ODE

then

I = ξL+ (η − y′ξ)Ly′ −A, (1.5.2)

is a first integral of the ODE corresponding to X.
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Theorem 1.5.2. The first integral I corresponding to a Noether symmetry X satisfies the

relation
X(1)I = 0.

(1.5.3)

Theorem 1.5.3. If for a Lagrangian L(x, y, y′) of an ODE there corresponds a Noether point

symmetry, then that ODE is solvable by quadratures.

In the subsequent chapters these results will be applied to get Noether symmetries and

their corresponding first integrals.
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Chapter 2

Symmetries and invariants for
CODEs

In this chapter we explore CLS analysis [16] by using complex variables that encode the

information of two real variables and a complex structure associated with each real variable.

A CLS of a CODE gives rise to two real Lie symmetries for the systems; of DEs; PDEs if

the independent variable involved is complex and ODEs if the variable is real. We review

some basic definitions and give some examples and then at the end we generalize the Noether

theorem for CLS and then state some Noether-like theorems.

2.1 Complex manifolds and CODEs

In order to deal with the theory of CODEs we first need to understand complex manifolds.

We now defne a complex manifold as a geometric space that is locally isomorphic to an open

subset of Cn.

Definition 2.1.1 A complex manifold MC is a manifold whose coordinate charts are open

subsets of Cn and the transition maps between the charts are holomorphic functions [11].

Alternatively, we can define a complex manifold as “A manifold MC that has a complex

structure on it” [16]. It incorporates the properties like separability, connectedness, it is

Hausdorff etc. A complex structure entails that the Cauchy Riemann equations (CREs) are

satisfied, or in other words MC is totally filled with some open sets Uj , j=1,2, ..., n and
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holomorphic (complex analytic) functions fj : Uj −→ Cn in the form of open charts (Uj ,

fj), i.e.
⋃

Uj = MC. A holomorphic function f is one that is complex differentiable at

every point and its open neighborhood, i.e. all first order partial derivatives of f are con-

tinuous and satisfy the CREs at every point in that neighborhood. A complex manifold of

dimension n corresponds to a real manifold of dimension 2n. However, the real and complex

manifolds possess different properties as holomorphic functions are more rigid than smooth

functions. In order to understand the difference between the both we can take the example

that every smooth manifold can be embedded as a smooth submanifold of Rn whereas this

is not generally true for a complex manifold i.e. no general holomorphic embedding into Cn

exists. It is quite interesting to see that in any of the compact connected complex manifold

MC every holomorphic function is locally constant. This means if we had a holomorphic

embedding of MC into Cn, then the coordinate functions of Cn would get restricted to the

nonconstant holomorphic functions on MC, which contradicts the well known property of the

compactness except for the case when MC is just a complex point in Cn. Those complex

manifolds which can be embedded in Cn are known as “Stein manifolds”. It is difficult to

give a complete classification for complex manifolds due to their difference in nature when

compared with the real manifolds. For example, a topological manifold of dimension other

than four possess at most finitely many smooth structures whereas a topological manifold

supporting a complex structure supports uncountably many complex structures and hence we

obtain one major difference between the both. Two dimensional manifolds equipped with a

complex structure such as a Riemann surface are an important example of this phenomenon.

The set of complex structures on a given orientable surface itself form a complex algebraic

variety called a moduli space and to discuss about its structure many people are working on it.

Therefore, we can particularly say that the complex manifolds are smooth and canonically

oriented means not just orientable as a biholomorphic map to a subset of Cn gives an orien-

tation because the biholomorphic maps are angle and orientation-preserving maps.

19



We now consider a general CODE

un(z) = ω
(
z, u(z), u′(z), u′′(z), ..., u(n−1)(z)

)
,

(2.1.1)

where ω is a holomorphic function and the derivative is with respect to z.

For understanding let us first consider a general first-order CODE of the form

u′(z) = ω (z, u(z)) . (2.1.2)

If we substitute

z = x+ ιy, u(z) = f(x, y) + ιg(x, y),

ω(z, u(z)) = G(x, y, f, g) + ιH(x, y, f, g),

u′(z) = 1
2(fx + gy) + ι

2(gx − fy) = h+ ιl,

(2.1.3)

then we obtain the following system of PDEs

fx + gy = 2G(x, y, f, g), gx − fy = 2H(x, y, f, g),

fx = gy, fy = −gx,
(2.1.4)

where u is analytic function and CREs are satisfied. Now let us consider one example

Example 2.1.1 Complexified Ricatti equation

u′(z) + u2 = 0. (2.1.5)

We obtain the following system of PDEs

fx + gy = 2(g2 − f2), gx − fy = −4fg,

fx = gy, fy = −gx,
(2.1.6)

which has the solution

f = x
x2+y2

, g = − y
x2+y2

.
(2.1.7)
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Also notice that the above Ricatti equation has the solution

u(z) = 1
z , (2.1.8)

and (2.1.8) can be obtained from (2.1.5).

Let us now consider a general second-order CODE of the form

u′′(z) = ω (z, u(z), u′(z)) , (2.1.9)

where ω is a holomorphic function and

ω (z, u(z), u′(z)) = G(x, y, f, g, h, l) + ιH(x, y, f, g, h, l),

u′(z) = 1
2(fx + gy) + ι

2(gx − fy) = h+ ιl.
(2.1.10)

We obtain the following system of PDEs corresponding to CODE

fxx − fyy + 2gxy = 4G(x, y, f, g, h, l),

gxx − gyy − 2fxy = 4H(x, y, f, g, h, l),

fx = gy, fy = −gx.

(2.1.11)

Lets consider one example based on the above notation.

Example 2.1.2 For the complexified oscillator equation

u′′(z) + u(z) = 0,
(2.1.12)

we get the following system of PDEs

fxx − fyy + 2gxy = −4f,

gxx − gyy − 2fxy = −4g,

fx = gy, fy = −gx.

(2.1.13)
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By solving this system, we get

f = α1 cosx cosh y + α2 sinx sinh y + β1 sinx cosh y − β2 cosx sinh y,

g = α2 cosx cosh y − α1 sinx sinh y + β1 cosx sinh y + β2 sinx cosh y.
(2.1.14)

The above solution can also be obtained from the complex solution u = α cos z + β sin z of

the CODE (2.1.12).

Furthermore, it should be noted that since second-order DEs have more applications therefore

we restrict the application of the theory to this order. However, it can equally be applied to

CODEs of any order.

2.2 Restricted CODEs

If we restrict the complex holomorphic function u to depend explicitly on a single real variable

x instead of the complex variable z, then we obtain r-CODE. Consider the general r-CODE

of the form
u′(x) = ω (x, u(x)) .

(2.2.1)

After substituting u(x) = f(x) + ιg(x) and by using the fact that

ω(x, u(x)) = ω1(x, f, g) + ιω2(x, f, g),
(2.2.2)

we get
f ′ = ω1(x, f, g),

g′ = ω2(x, f, g).
(2.2.3)

Similarly, a second order r-CODE has the form,

u′′(x) = ω (x, u(x), u′(x)) ,
(2.2.4)
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and we obtain the following system of ODEs

f ′′ = ω1(x, f, g, f
′, g′),

g′′ = ω2(x, f, g, f
′, g′).

(2.2.5)

Here in this section our aim is to extract a subalgebra from the complex algebra. So, let us

take an example to demonstrate this fact.

Example 2.2.1

u′′(x) + u(x) = 0, (2.2.6)

which gives us

f ′′ = −f,

g′′ = −g, (2.2.7)

since the general solution of above r-CODE takes the form

u(x) = α cosx+ β sinx, (2.2.8)

where α = α1 + ια2, and β = β1 + ιβ2.

Now, we can obtain the general solution of the above system of two ODEs by using the

values of α and β in the general solution of the r-CODE,

f(x) = α1 cosx+ β1 sinx,

g(x) = α2 cosx+ β2 sinx.
(2.2.9)

2.3 CLSs, prolongation and symmetry condition

The Lie point transformations with complex parameter are defined by

z̃ = z(z, u; ε), ũ = u(z, u; ε), (2.3.1)
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where ε = ε1 + ιε2, using Taylor’s theorem we obtain

ξ (z, u) = ∂z̃
∂ε |ε=0, η (z, u) = ∂ũ

∂ε |ε=0 . (2.3.2)

Then we can define

Z = ξ (z, u) ∂
∂z + η (z, u) ∂

∂u , (2.3.3)

as the complex Lie symmetry (CLS) generator.

Definition 2.3.1 Let G be a complex Lie group that acts on a complex manifold MC.

Also a system of m-complex equations in n-complex variables takes the form

Uν(zµ) = 0, (ν = 1, 2, ...,m, µ = 1, 2, ..., n), (2.3.4)

where Uν are complex analytic functions. Then a CLS maps complex solutions of (2.3.4) into

complex solutions. Next we give the prolongation of the transformations.

Consider an nth order CODE of the form

E
(
z, u(z), u′(z), u′′(z), ..., u(n)(z)

)
= 0. (2.3.5)

By rearranging we get

u(n) = ω
(
z, u(z), u′(z), u′′(z), ..., u(n−1)(z)

)
= 0, (2.3.6)

then the prolonged symmetry generator in the complex domain takes the form

Z = ξ (z, u) ∂
∂z + η (z, u) ∂

∂u + η(n) (z, u) ∂
∂u(n) , (2.3.7)

where n can be any positive integer and prolongation coefficients

η(n) = dη(n−1)

dz − un(z)dηdz . (2.3.8)

The symmetry condition is also the same as it was in the case of real domain

Zω = η
(n)
|un=ω. (2.3.9)
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One can notice that a complex line in C ∼= R2 has 16 and C2 ∼= R4 has 30 real symmetries

whereas a real line in R2 has 15 and in R4 has 35 real symmetries which shows that in higher

dimensions a real line has more real symmetries than a complex line and it is due to the

fact that a single complex symmetry couples two real symmetries and it is one factor due to

which complex symmetries have more importance than real.

2.4 Noether symmetries and first integrals

To discuss the two types of variational problems; first in which we are given a Lagrangian

and we have to find the DE by solving Euler-Lagrange equations and the other in which the

DE is known and we have to find or construct the Lagrangian which, perhaps, is a difficult

problem for which there may be no solution and it is known as the “inverse problem”. To

deal with such problems let us consider a second-order CODE

u′′ = ω(z, u, u′), (2.4.1)

where ω is some complex analytic function. In order to discuss the existence of the above

CODE one obtains the real Lagrangian(r-Lagrangian) from the variational principle then

complexifies that Lagrangian for the purpose of complex symmetry analysis (CSA). Since

the new pair of terms does not satisfy the EL equation so we split the EL equation into two

EL-like equations for the pair of two real variables and obtain two r-Lagrangians which give

rise to the coupled system of DEs. The complex Lagrangian(c-Lagrangian) L(z, u, u′) [16, 17]

satisfies the EL equation
∂L

∂u
− d

dz
(
∂L

∂u′
) = 0. (2.4.2)

Definition 2.4.1 Z is said to be a complex Noether point symmetry corresponding to a

c-Lagrangian L(z, u, u′) of (2.4.1) if there exists a complex guage function A(z, u) such that

ZL+ ( dξdz )L = dA
dz ,

Z = ξ ∂∂z + η ∂
∂u + η(1) ∂

∂u′ ,
d
dz = ∂

∂z + u′ ∂∂u + ....

(2.4.3)

Next we state Noether theorems for the complex domain.
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Theorem 2.4.1 If Z is a Noether point symmetry corresponding to a c-Lagrangian L(z, u, u′)

of (2.4.1) then

I = ξL+ (η − u′ξ)Lu′ −A, (2.4.4)

is a complex first integral of (2.4.1) associated with Z.

Theorem 2.4.2 The first integral I associated with the complex Noether point symmetry

Z satisfies the relation

ZI = 0. (2.4.5)

Theorem 2.4.3 If for a c-Lagrangian L(z, u, u′) of (2.4.1) there corresponds a complex

Noether point symmetry, then (2.4.1) is solvable by quadratures.

Next we give one example on NSs and the first integral

Example 2.4.1 The complexified free-particle equation

u′′(z) = 0, (2.4.6)

which admits the c-Lagrangian

L =
1

2
u′ 2. (2.4.7)

The CODE (2.4.6) has 5 NSs for the c-Lagrangian (2.4.7)

Z1 = ∂
∂z , Z2 = ∂

∂u , Z3 = 2z ∂
∂z + u ∂

∂u , Z4 = z2 ∂
∂z + zu ∂

∂u , Z5 = z ∂
∂u . (2.4.8)

Now to reduce the order of (2.4.6) by two with any of above symmetries. For example, if we

apply NS Z2 on (2.4.6) we obtain
∂

∂u
(u′′) = 0, (2.4.9)

then the first integral comes out to be

I = u′ = a. (2.4.10)
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Notice that Z2 is also a symmetry of the c-Lagrangian (2.4.7). The above equation gives the

solution

u = az + b, (2.4.11)

where a and b are some complex constants.

On the other hand if we use NS Z3 we obtain the following first integral

I = u u′ − zu′2 = c. (2.4.12)

Since (2.3.9) is satisfied by Z3 therefore it is symmetry of the above equation. If we introduce

w = uz−
1
2 , (2.4.13)

then the above first integral reduces to

w2 − 4z2w
′2 = d. (2.4.14)

Thus we can say that one NS reduces the second order CODE into quadratures and now the

solution can be found in new coordinates (z, w)

w(z) = αz
1
2 + βz−

1
2 , (2.4.15)

where α and β are some complex constants.

2.5 Noether-like operators and theorems

To define Noether-like operators let us begin by splitting the complex Lagrangian into the

pair of two real Lagrangians (r-Lagrangians)

L = L1 + iL2. (2.5.1)

The system of EL-like equations corresponding to (2.4.2) is

∂L1

∂f
+
∂L2

∂g
− dx(

∂L1

∂h
+
∂L2

∂l
)− dy(

∂L2

∂h
− ∂L1

∂l
) = 0, (2.5.2)

∂L2

∂f
− ∂L1

∂g
− dx(

∂L2

∂h
− ∂L1

∂l
) + dy(

∂L1

∂h
+
∂L2

∂l
) = 0. (2.5.3)
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where

dx = ∂x + fx∂f + gx∂g + hx∂h + lx∂l, (2.5.4)

dy = ∂y + fy∂f + gy∂g + hy∂h + ly∂l. (2.5.5)

The system (2.5.2), (2.5.3) couples the two r-Lagrangians L1 and L2 which satisfy only the

coupled system and not the EL equations so they are not Lagrangians when treated separately.

Now we use the definition of Noether symmetry and split it into two real pairs and hence we

get another system which has the form

2XL1 − 2YL2 + (dxξ1 + dyξ2)L1 − (dxξ2 − dyξ1)L2 = dxA1 + dyA2, (2.5.6)

2XL2 + 2YL1 + (dxξ1 + dyξ2)L2 + (dxξ2 − dyξ1)L1 = dxA2 − dyA1. (2.5.7)

The first integral (2.4.4) results in two real conserved quantities

I1= ξ1L1−ξ2L2+(η1−hξ1−lξ2)(∂hL1+∂lL2)− (η2−hξ2−lξ1)(∂hL2−∂lL1)−A1, (2.5.8)

I2= ξ1L2+ξ2L1+(η1−hξ1−lξ2)(∂hL2−∂lL1) + (η2−hξ2−lξ1)(∂hL1+∂lL2)−A2. (2.5.9)

The two first integrals satisfy the coupled equations

XI1 −YI2 = 0, (2.5.10)

XI2 + YI1 = 0, (2.5.11)

where

Z = X + iY. (2.5.12)

In chapter 4, we give a detailed discussion of these theorems and how they are used to get

the first integrals of the corresponding DEs.
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Chapter 3

Approximate symmetries of
p-CODEs

In this chapter we introduce the mathematical formulation of an approach for solving p-

CODEs [18] and then apply it to solve a few well known physical models involving second

order p-CODEs [1]. Complex DEs arise in many situations. However, in some cases the DEs

describing a model may contain parameters that are known approximately. Since every DE

corresponds to some geometry, so to look for whether its geometry possess symmetries one

may generally consider manifolds to work on. In general a complex manifold may not possess

an exact symmetry but may approximately do so. It would be of great interest to look at

the approximate symmetries of the complex manifold. Then form an approximate complex

Lie algebra.

The basics of the approximate symmetries were developed by Baikov et al. [19]. These

authors showed that the main part of Lie’s theory can be used in an approximate calculus

taking into account the smallness of the critical parameter in the theory. The new theory

maintains the essential features of the standard Lie theory. Here we provide a concise intro-

duction to the theory of approximate transformation groups and approximate symmetries of

DEs with a small parameter.
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3.1 Mathematical formulation

In this section the method of determining the approximate symmetries for the p-CODEs is

defined in detail. However, the theory has been generalized to PDEs.

Consider the general form of the perturbed complex differential equation E

E ≡ E0 + εE1 + ε2E2 + ...+ εnEn = 0, (3.1.1)

where E0, E1, E2, ..., En are the exact, first order, second order, and so on so forth up to nth

order approximate parts of the complex DE E, and ε is some complex parameter for which

the infinitesimal complex symmetry generator is

X = X0 + εX1 + ε2X2 + ...+ εnXn, (3.1.2)

where

X0 = ξ0(z, u) ∂∂z + η0(z, u) ∂
∂u + η10(z, u, u′) ∂

∂u′ + η20(z, u, u′, u′′) ∂
∂u′′ + ...

+η
(n)
0 (z, u, u′, ..., u(n)) ∂

∂u(n) ,

(3.1.3)

is the exact complex symmetry generator corresponding to the unperturbed equation E0 and

Xi = ξi(z, u) ∂∂z + ηi(z, u) ∂
∂u + η1i (z, u, u

′) ∂
∂u′ + η2i (z, u, u

′, u′′) ∂
∂u′′ + ...

+η
(n)
i (z, u, u′, ..., u(n)) ∂

∂u(n) ,

(3.1.4)

is the corresponding ith-order approximate symmetry generator for every iεN . Now we define

the criteria for the existence of nth-order approximate symmetry of E. If

XE := [X0 + εX1 + ε2X2 + ...+ εnXn](E0 + εE1 + ε2E2

+...+ εnEn)]E=E0+εE1+...+εnEn=O(εn+1), (3.1.5)

then (3.1.2) is the nth-order approximate symmetry of E.

Now for calculational simplicity we restrict the index to 1 and consider only the first or-

der approximate symmetries and second order ODE , however, the procedure may be worked
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out for any finite index n and for any order ODE or even for any PDE [18]. Thus, if

X = X0 + εX1, (3.1.6)

where

X0 = ξ0
∂

∂z
+ η0

∂

∂u
and X1 = ξ1

∂

∂z
+ η1

∂

∂u
, (3.1.7)

is the first order approximate symmetry generator of the p-CODE

Eo + εE1 = 0, (3.1.8)

then (3.1.8) will be approximately invariant under the group of transformations with the

generator (3.1.6) iff XE |E=0= O(ε2), or equivalently

[
X0E0 + ε

(
X0E1 + X1E0

)]
|E=0= O(ε2). (3.1.9)

Alternatively, If X0 is a CLS generator of a DE

E0 = 0, (3.1.10)

then an approximate symmetry of the perturbed DE (3.1.8) is obtained by solving for X1 in

X1(E0)|E0=0 +H = 0, (3.1.11)

where

H =
1

ε
X0(E0 + εE1)|E0+εE1=0. (3.1.12)

Here H is called an auxiliary function. In the next section we apply the same procedure and

work out the approximate symmetries.

3.2 Application to complexified oscillator equation

Consider the perturbed complexified oscillator equation

u′′ + u = εu. (3.2.1)

The exact symmetries of

u′′ + u = 0, (3.2.2)
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are
X1 = ∂

∂z , X2 = u ∂
∂u , X3 = sin z ∂

∂u ,

X4 = cos z ∂
∂u , X5 = sin 2z ∂

∂z + u cos 2z ∂
∂u ,

X6 = cos 2z ∂
∂z − u sin 2z ∂

∂u , X7 = u cos z ∂
∂z − u

2 sin z ∂
∂u ,

X8 = u sin z ∂
∂z + u2 cos z ∂

∂u ,

(3.2.3)

using the criteria as defined in (3.1.11) and (3.1.12)

X1(Eo)|Eo=0 +H = 0,

H = 1
εX0(E0 + εE1)|E0+εE1=0,

(3.2.4)

then the eight-parameter exact symmetry generator corresponding to (3.2.3) is

X0 = (c1 + c5 sin 2z + c6 cos 2z + c7u cos z + c8u sin z) ∂∂z+

(c2u+ c3 sin z + c4 cos z + c5u cos 2z − c6u sin 2z−

c7u
2 sin z + c8u

2 cos z) ∂
∂u .

(3.2.5)

Using (3.2.4) we obtain

H = (c7u
2 − c3 − 3c8uu

′) sin z − (c4 + c8u
2 + 3c7uu

′) cos z+

4c6u sin 2z − 4c5u cos 2z.
(3.2.6)

Substituting (3.2.6) in (3.2.4) we get

u′(2ηzu − ξzz + 3uξu − 3uc7 cos z − 3uc8 sin z) + u′2(ηuu − 2ξzu)− u′3ξuu

+η + ηzz − uηu + 2uξz + 4c6u sin 2z − 4c5u cos 2z + (c7u
2 − c3) sin z

−(c8u
2 + c4) cos z = 0.

(3.2.7)

By equating the powers of u′ we get

2ηzu − ξzz + 3uξu − 3uc7 cos z − 3uc8 sin z = 0, (3.2.8)

ηuu − 2ξzu = 0, (3.2.9)

ξuu = 0, (3.2.10)
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η + ηzz − uηu + 2uξz + 4c6u sin 2z − 4c5u cos 2z+

(c7u
2 − c3) sin z − (c8u

2 + c4) cos z = 0.
(3.2.11)

Solving the above system for ξ and η we get only six first order complex approximate sym-

metry generators corresponding to (3.2.1)

X3 = sin z ∂
∂u + ε( sin z2 −

z cos z
2 ) ∂

∂u ,X
4 = cos z ∂

∂u + ε z sin z2
∂
∂u ,

X5 = sin 2z ∂
∂z + u cos 2z ∂

∂u + ε[( sin 2z
2 − z cos 2z) ∂∂z + (zu sin 2z) ∂

∂u ],

X6 = cos 2z ∂
∂z − u sin 2z ∂

∂u + ε[(z sin 2z + cos 2z) ∂∂z + (zu cos 2z − u sin 2z
2 ) ∂

∂u ],

X7 = u cos z ∂
∂z − u

2 sin z ∂
∂u + ε[ zu sin z2

∂
∂z + u2

2 (z cos z + sin z) ∂
∂u ],

X8 = u sin z ∂
∂z + u2 cos z ∂

∂u + ε[u2 (sin z − z cos z) ∂∂z + u2

2 z sin z ∂
∂u ],

(3.2.12)

where Xi = X0 + εX1.

3.3 Application to the complexified damped harmonic oscil-
lator equation

Let us now consider the complexified damped harmonic oscillator equation

u′′ + u+ 2εu′ = 0. (3.3.1)

Following the same procedure we get three first order approximate symmetries of p-CODE.

X3 = sin z ∂
∂u − εz sin z ∂

∂u ,

X4 = cos z ∂
∂u − εz sin z ∂

∂u ,

X7 = u cos z ∂
∂z − u

2 sin z ∂
∂u + ε[

(
−5

3zu cos z + 4 sin z − 4z cos z)
)
∂
∂z+(

−5
3u

2(cos z − z sin z) + 2u2 cos z + 2zu sin z
)
∂
∂u ].

(3.3.2)

The existence of first (or even of higher) order complex approximate symmetries help us to

obtain an analytic solution of the perturbed DEs in general. This approach can be very useful

in obtaining the approximately conserved quantities (invariants).
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Chapter 4

Complex harmonic oscillator and
its physical interpretation

The mechanism for the coupled harmonic oscillator involves systems of two second order

ODEs, which have wide applications in the general theory of relativity, in nonlinear oscilla-

tions, in population dynamics, in the classical theory of mechanics, in pattern recognition, in

quantum mechanics, in fluid mechanics, in solid mechanics, etc.

In order to obtain a deeper understanding of the system of two DEs and its physical prop-

erties we search for its solution and sometimes the system looks quite complicated. So if we

are able to find another system in which one system is much easier to solve than the other,

then surely we have discovered something significant about the more difficult looking system.

We often use transformations to obtain another equation (DE or its system) and since every

analytic method has its limitation so we prefer to use symmetries i.e. Lie, Noether, etc.

which form a group of continuous point transformations. When we talk about the system of

two DEs, then beside linearity and nonlinearity one may consider the system to be coupled or

uncoupled: If there are two (or more) equations such that both can be solved independently

without the help of the other equation and solution can be found then such system is called an

“uncoupled system”. If both equations can only be solved simultaneously and it is not pos-

sible to solve either of the equations independently, the systems are called “coupled systems”.

Let us consider the dynamical equation of two particles interacting with each other and
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can be represented by system of two second-order ODEs of the form

x′′ = G(t, x, y, x′, y′),

y′′ = H(t, x, y, x′, y′),
(4.0.1)

in which a time dependent oscillator equation appears in several physical situations e.g. mo-

tion of charged particle in the magnetic field and in the study of plasmas can be regarded to

deal with such an equation whereas in the theory of radiation it is with variable frequency

and in small oscillations of the pendulum whose length changes uniformly. The complex

extension of such an oscillator and complex symmetry analysis will help us in working out in-

variants of the dynamical equations of the two interacting charged particles in magnetic fields.

In the next section I review some work on the time-independent harmonic oscillator which

admits Noether symmetries and corresponding to some complex Lagrangian, work out its

two first integrals to see where the energy is stored and during this analysis pointed out some

errors in [20] which are given in an erratum [21]. At the end I give a generalization of the

same work and obtain a general expression for the two first integrals in which it can be seen

how the change of phase angle affects the invariants thus obtained. Finally, I summarize the

entire discussion.

4.1 Mathematical formulation

Consider a system of two coupled time-independent harmonic oscillators oscillating with dif-

ferent frequencies in different phases

x′′ = −αx+ βy,

y′′ = −βx− αy, (4.1.1)

where α and β have units of inverse time squared. Here, it can be observed that there is no

exchange of energy for β = 0 and if we choose α to be some multiple of β this corresponds

to selecting some angle between the principal axis and the original coordinates. Choose the

phase angle to be π
4 radians, i.e. α = −β in the above system for definiteness. The system
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admits Noether symmetry X = ∂
∂t , which is also a Noether-like symmetry. Notice further

that the system is relative to the complex Lagrangian

L = 1
2z
′2 − 1

2λz
2, (4.1.2)

where λ = α + ιβ, using (2.4.3) we get A = constant, and CODE corresponding to this

system where α = −β takes the form

z′′ = βz − ιβz, (4.1.3)

and if we choose k = β − ιβ then CODE becomes

z′′ = kz. (4.1.4)

Now by utilizing (2.4.4), (2.4.5), (2.5.8), and (2.5.9) we obtain the two invariants

I1 = 1
2(x′2 − βx2)− 1

2(y′2 − βy2)− βxy,

I2 = x′y′ + β
2 (x2 − y2)− βxy. (4.1.5)

Where L1 = 1
2(x′2 − y′2 − λx2 + λy2), L2 = x′y′ − xy are the two r-Lagrangians. Also, the

errors in [20] have been corrected and appeared in [21].

Notice that the integral I1 corresponds to the total energy of the system, the last term

of I1 corresponds to the exchange of the energy between the two oscillators and the integral

I2 corresponds to the exchanged kinetic and potential energies between the two oscillators

that remains conserved. This analysis explains the fact that the energy is not stored in either

oscillator but it is stored in the field between them.

Furthermore, if we change the phase angle that is for α = −β, α = −β
2 , α = −β

3 , α = −β
4 ,

or generally to α = −β
n , for n 6= 0 then we get the following two integrals

I1 = 1
2(y′2 − x′2) + β

2n(x2 − y2) + βxy,

I2 = β
2 (y2 − x2) + β

nxy − x
′y′,

(4.1.6)
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and for α = β, α = β
2 , α = β

3 , and α = β
4 or generally to α = β

n , for n 6= 0 we get the

following two integrals

I1 = 1
2(y′2 − x′2) + β

2n(y2 − x2) + βxy,

I2 = β
2 (y2 − x2)− β

nxy − x
′y′.

(4.1.7)

This shows that if we change the phase angle then we get the different invariants [1]. And

by this analysis we are able to convert the single complex oscillator into a pair of coupled

oscillators and by using both approaches we can find the conservation laws.

4.2 Summary

The first chapter of this dissertation contains the concept of real manifolds, one parameter

point transformations, symmetry in general and mathematical symmetry in particular and

the theory of Lie groups and Lie algebras, the criteria for finding the exact symmetries of DEs

and application of such analysis by solving few DEs. Later we define the Noether symmetries

and corresponding first integrals for the ODEs.

The second chapter is begun by defining the manifolds having complex structure on it or

in other words “complex manifolds”, then we complexify the DEs and define the theory of

CODEs, r-CODEs, their point transformations, CLSs, Noether theorems and Noether-like

operators and how one can obtain the real invariants corresponding to both approaches.

Chapter 3 contains the mathematical treatment of perturbed DEs and particularly p-CODEs

in which the parameter involved is complex and explains how such an analysis helps us to

find first-order approximate symmetries of second-order p-CODEs. We are currently engaged

in applying it to the complexified oscillator equation. Approximate symmetries have been

worked out which can help us to calculate the approximate invariants and to understand the

physical systems in greater detail. The work is still in progress [1].
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In the end the theory of two dimensional coupled harmonic oscillators is considered, which

can be represented with the help of one CODE and we worked out the first integrals (in-

variants) corresponding to the coupled system and it was found that there was a mistake in

the published work [20] which was corrected [21] on account of this work. At the end we

dealt with the same system for more choices of the α and β (or for other choices of the phase

angles between the oscillators) and obtained the generalized form of the invariants. Also,

It was noticed that a change in the phase angle between the oscillators yields the different

invariants.
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