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Abstract

In the theory of discrete convex analysis, problems related to discrete optimiza-

tion are solved with the help of continuous optimization and combinatorial optimiza-

tion. M♮-convex functions play significant role in the theory of discrete optimization.

On the other hand, ultramodular functions appears in several pure and applied re-

search areas. In this thesis we investigate the relationship between two newly devel-

oped classes of functions known as ultramodular functions and M♮-convex functions.

We prove that the class of M♮-convex functions is contained in the class of ultramod-

ular functions on integer lattice. Moreover, we introduce a new class of functions,

called the component wise ultramodular functions. We show that the class of com-

ponent wise ultramodular functions is contained in the class of M♮-convex functions,

on integer lattice.



Introduction

In this thesis, as the name suggests, we will study the relationship between two

recently developed classes of functions known as ultramodular functions and M♮-

convex functions.

The class of ultramodular functions generalizes scalar convexity. These functions

appear in several economic and statistical applications, where they provide exten-

sion of one-dimensional convexity. Ultramodular functions give stronger form of

complementary than supermodularity. M♮-convex functions form the class of well

behaved functions. They play very important role in the theory of discrete convex

analysis. The theory of discrete convex analysis has broad applications in several

areas, for instance, operation research, economics, mathematics etc. This thesis is

organized as follows. In Chapter one we give introduction to the theory of Discrete

Convex Analysis, developed by K. Murota. In this chapter we provide the notions

and few results related to M♮-convexity in a compact way. Some characterizations

of M♮-convexity will also be discussed.

In Chapter two, ultramodular functions will be discussed. Special class of ul-

tramodular functions known as ultramodular aggregation functions will be given as

well.

Finally, in Chapter three we present our main work. We give an equivalent def-

inition of ultramodular functions. We develop a relationship between M♮-convex

functions and ultramodular functions. We prove that the class of M♮-convex func-

tions is contained in the class of ultramodular functions on integer lattice. Moreover,

we introduce a new class of functions, called the component wise ultramodular func-

tions. We show that the class of component wise ultramodular functions is contained

in the class of M♮-convex functions, on integer lattice.
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Chapter 1

Discrete Convex Analysis

In this chapter we shall briefly portray history and development of discrete convex

analysis. After this, we shall present the well known concept of convex sets and

convex functions. Then, we present the concept of M♮-convexity and some results

associated with it. Finally, few characterizations related to M♮-convex functions

shall be discussed.

1.1 Introduction to Discrete Convex Analysis

K. Murota [13] developed and widen the theory of discrete convex analysis in the

past few years. Formally speaking the fundamental purpose behind establishing

discrete convex analysis is to provide a theoretical structure to solve combinatorial

optimization problems. Ideas from discrete optimization and continuous optimiza-

tion are merged together to solve discrete optimization problems. In this regard,

the abstract structure of convex analysis is modified to discrete settings and math-

ematical consequences existing in matroid theory are made more general. Looking

from the discrete area, discrete convex analysis is the study of discrete functions

f : Zn → Z. These functions have the benefit of assured fine properties resembling

to convexity. On the other hand, if one looks from the continuous perspective, the

theory of discrete convex analysis can be categorized as a study of convex functions

f : Rn → R having certain combinatorial properties. Thus,

Discrete convex analysis = Convex analysis + Matroid theory.
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The theory of discrete convex analysis has its wide applications in the field of math-

ematics, operations research, economics and many more.

In 1935, H. Whitney [21] introduced the notions of matroids, along with the

equivalence between exchange property of independent sets and submodular rank

functions. In the recent theory of discrete convexity, this equivalence is the core of

the conjugacy between M-convex functions and L-convex functions.

In 1990, Dress and Wenzel [3, 4] presented the notion of valuated matroids. By

valuated matroid, we mean a nonseparable and nonlinear function on the set of bases

of some matroid fulfilling certain exchange axiom. In 1996, Murota [14] extended

the correspondence of valuated matroids to concave functions that led to the idea

of M-concave and M-convex functions. M-convex functions have a common gener-

alization of integral polymatroids and valuated matroids. In M-convexity, functions

are defined on integer lattice points in terms of an exchange axiom. In early 1980s

and early 1990s two independent developments related to convexity arguments for

submodular functions and valuated matroids for M-convex functions were made. In

1998, Murota [15] combined these two classes into the theory of discrete convex

analysis.

Later on class of M♮-convex functions were introduced by Murota and Shioura

[16]. According to them M♮-convex functions are conceptually equivalent to M-

convex functions. But in certain situations M♮-convex functions are more convenient.

For instance, a convex function in one variable defined on integers is an M♮-convex

function that is not M-convex.

1.2 Convex Sets and Convex Functions

Definition 1.2.1. Let N be a linear space. A subset S of N is said to be convex

set if for any x, y ∈ S and 0 ≤ t ≤ 1

tx+ (1− t)y ∈ S.

Here the set of points z = tx + (1 − t)y is called the line segment from x to y.

The points x and y are known as the end points of line segment z. Thus, roughly

speaking one can say that a set is convex if the line segment joining any two points
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of the given set lies within that set. A set which does not satisfy the stated criteria

is called a non convex set. Few examples of convex sets include empty set, solid

sphere, solid cube etc. Non convex sets are unfilled shapes or shapes having dent in

them, for example, crescent. Following figure illustrates the concept of convex set

and non convex set.

Figure 1.1: Convex Set and Non Convex Set

Definition 1.2.2. A function f : S ⊆ N → R is called convex function if for any

x, y ∈ S and 0 ≤ t ≤ 1, we have

tf(x) + (1− t)f(y) ≥ f
(
tx+ (1− t)y

)
.

Figure 1.2: Graph of a convex function

The graph of a convex function lies on or below the line segment with the end
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points
(
x, f(x)

)
and

(
y, f(y)

)
. Thus we can say that a function f is convex if and

only if epigraph1 of f is a convex set.

Figure 1.3: Epigraph of a function f

Convex functions play significant role in many branches of mathematics, as well

as other fields of science and engineering. They are specially essential in the field

of optimization problems. Convexity is simple concept which can be traced back to

Archimedes around 250 B.C., in association with his famous approximation of the

value of π by using circumscribed and inscribed regular polygons. He examined the

significant fact that the perimeter of a convex figure is less than the perimeter of

any other convex shape neighboring it. One of the consequences of convex functions

is Jensen’s inequality. Several important inequalities, for example, the Hölder’s

inequality and arithmetic-geometric mean inequality are consequences of Jensen’s

inequality.

The following definition gives the concept of convexity and mid point convexity

in terms of real valued functions defined on an interval I.

Definition 1.2.3. Consider a subinterval I of R and let f : I → R be a real valued

function.

(i) The function f is convex if, for any x, y ∈ I and for all t such that t ∈ [0, 1]

tf(x) + (1− t)f(y) ≥ f
(
tx+ (1− t)y

)
. (1.2.1)

1The set of points located on or above the graph of f .
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(ii) The function f is said to be mid point convex or Jensen convex if, for any

x, y ∈ I

f

(
x+ y

2

)
≤ f(x) + f(y)

2
. (1.2.2)

Replacing t = 1
2
in (1.2.1), we see that every convex function is also midpoint

convex function. However the converse does not hold in general. The following

remark, taken from E.P. Klement, M. Manzi, R. Mesiar [11] states certain conditions

which are equivalent to the definition of convexity stated in (1.2.1).

Remark 1.2.1. Consider an interval I of R and let f : I → R be a real valued

function. Then:

(i) The function f is convex if and only if

f(x+ h)− f(x) ≥ f(y + h)− f(y) (1.2.3)

holds for all x, y ∈ I and for all h > 0 with x > y and x+ h ∈ I.

(ii) If f is a continuous function then f is convex if and only if it is Jensen convex.

(iii) If f is a monotone function then f is convex if and only if f is Jensen convex.

(iv) If f is a bounded function then f is convex if and only if f is Jensen convex.

Proof. (i). Suppose f is convex and let x, y ∈ I and h > 0 such that x > y and

x+ h ∈ I. Observe that x+ h > y+ h > y and x+ h > x > y. Then one can define

t, t′ ∈ [0, 1] such that

y + h = t(x+ h) + (1− t)y, (1.2.4)

x = t′(x+ h) + (1− t′)y. (1.2.5)

Adding (1.2.4) and (1.2.5) and comparing the coefficients of like terms we have

t+ t′ = 1. From convexity of f we have

tf(x+ h) + (1− t)f(y) ≥ f(t(x+ h) + (1− t)y).

Equation (1.2.4) implies

tf(x+ h) + (1− t)f(y) ≥ f(y + h). (1.2.6)
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Similarly,

t′f(x+ h) + (1− t′)f(y) ≥ f(t′(x+ h) + (1− t′)y).

Equation (1.2.5) implies

t′f(x+ h) + (1− t′)f(y) ≥ f(x). (1.2.7)

Adding (1.2.6) and (1.2.7), we get

(t+ t′)f(x+ h) + (1− t+ 1− t′)f(y) ≥ f(y + h) + f(x).

As stated earlier t+ t′ = 1 so we have

f(x+ h)− f(x) ≥ f(y + h)− f(y).

Which is as required. Converse can be proved in the similar manner.

(ii). The necessary condition can easily be obtained by putting t = 1
2
. For converse,

suppose that f is not convex. Then there exists a subinterval [a, b] of I such that

the graph of f[a,b] that is, graph of f restricted to subinterval [a, b] is not under the

chord joining (a, f(a)) and (b, f(b)), that is, the function

ϕ(x) = f(x)− f(b)− f(a)

b− a
(x− a)− f(a), x ∈ [a, b]

satisfies

γ = sup{ϕ(x) | x ∈ [a, b]} > 0.

Note that ϕ is continuous and ϕ(a) = ϕ(b) = 0. Also a direct computation shows

that ϕ is midpoint convex. Put c = inf{x ∈ [a, b] | ϕ(x) = γ}. Then necessarily

ϕ(c) = γ and c ∈ (a, b). For every h > 0 for which we have c ± h ∈ (a, b) we have

ϕ(c− h) < ϕ(c) and ϕ(c+ h) < ϕ(c). So that

ϕ(c) >
ϕ(c− h) + ϕ(c+ h)

2

is in contradiction with the fact that ϕ is midpoint convex. Hence f is convex.

Proof of (iii) and (iv) can be done in a similar manner.
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We now present the following remark as a motivation for the exchange axiom of

M-convex functions.

Remark 1.2.2. If f : Rn → R ∪ {+∞} is a convex function, then

f(x1) + f(x2) ≥ f(x1 − δ(x1 − x2)) + f(x2 + δ(x1 − x2))

for every δ ∈ [0, 1].

Proof. Let δ ∈ [0, 1]. Substituting t = δ and t = 1− δ in (1.2.1), we get

δf(x1) + (1− δ)f(x2) ≥ f
(
δx1 + (1− δ)x2

)
and

(1− δ)f(x1) + δf(x2) ≥ f
(
(1− δ)x1 + δx2

)
,

respectively. Adding these two inequalities, we get

f(x1) + f(x2) ≥ f(x1 − δ(x1 − x2)) + f(x2 + δ(x1 − x2))

as required.

1.3 M♮-Convex Sets

In this section we first review the concept of M-convex sets and then we will in-

troduce the concept of M♮-convex sets as a projection of M-convex sets along an

arbitrarily chosen coordinate axis. This section also contains some essential results

about M♮-convex sets already present in the literature.

M-convex sets are defined in terms of exchange axiom. They have one-to-one corre-

spondence with integer-valued submodular set functions.

Consider a nonempty finite set V = {1, 2, . . . , n}. We denote the space of integer

vectors indexed by the elements of V by ZV . If | V |= n then ZV may coincide with

Zn. RV denotes the real vector space indexed by the elements of V . If | V |= n

then RV may coincide with Rn. For a vector z = (z(v) ∈ Z | v ∈ V ) ∈ ZV , we

define the positive support and the negative support of z by

supp+(z) = {v ∈ V | z(v) > 0},
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,

supp−(z) = {v ∈ V | z(v) < 0},

respectively.

The characteristic vector χS of S ⊆ V is defined by

χS(v) =

{
1 if v ∈ S

0 if v ∈ V \ S.

We shall denote the uth unit vector by χu instead of χ{u} for each u ∈ V . Thus

χu = (0, 0, . . . , 1︸︷︷︸
uth position

, . . . , 0, 0). For convenience, χ0 is defined by the zero

vector on V .

Definition 1.3.1 ([13]). A nonempty set B ⊆ ZV is defined to be M-convex set if

it satisfies the following exchange axiom:

(B-EXC[Z]) For x1, x2 ∈ B and u ∈ supp+(x1−x2), there exists v ∈ supp−(x1−x2)
such that

x1 − χu + χv ∈ B and x2 + χu − χv ∈ B.

Here supp+(x1 − x2) and supp−(x1 − x2) are the positive support and the negative

support of x1 − x2 respectively. χu is the characteristic vector of u ∈ V .

Base of matroid is an example of an M-convex set. The direct result of the

exchange axiom (B-EXC[Z]) is that an M-convex set lies on hyperplane {x ∈ RV |
x(V ) = k} for some k ∈ Z where,

x(X) =
∑
v∈X

x(v) (x ∈ RV , X ⊆ V ).

Following proposition states this fact.

Proposition 1.3.1 ([13, Proposition 4.1]). For any x1, x2 in an M-convex set B,

we have x1(V ) = x2(V ).

Proof. We will prove this argument by mathematical induction on ∥x1−x2∥1, where
the norm ∥.∥1 is defined as

∥x∥1 =
∑
v∈V

|x(v)| (x ∈ RV ).
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If ∥x1 − x2∥1 = 0 then ∑
v∈V

|x1(v)− x2(v)| = 0.

This implies that

|x1(v)− x2(v)| = 0 ∀v ∈ V.

That is

x1(V ) = x2(V ).

We exclude the case ∥x1−x2∥1 = 1 because of (B-EXC[Z]). If ∥x1−x2∥1 ≥ 2, then by

(B-EXC[Z]) for u ∈ supp+(x1−x2), there exists v ∈ supp−(x1−x2) such that we have

x′2 = x2+χu−χv ∈ B. Therefore, x′2(V ) = x2(V ). Also ∥x1−x
′
2∥1 = ∥x1−x2∥1− 2

so by inductive hypothesis x1(V ) = x2(V ) for any x1, x2 ∈ B.

There are number of conditions which are equivalent variants of (B-EXC[Z]).

For a set B ⊆ ZV these conditions are:

(B-EXC+[Z]) For any x1, x2 ∈ B and u ∈ supp+(x1−x2), there exists v ∈ supp−(x1−
x2) such that x2 + χu − χv ∈ B.

(B-EXC−[Z]) For any x1, x2 ∈ B and u ∈ supp+(x1−x2), there exists v ∈ supp−(x1−
x2) such that x1 − χu + χv ∈ B.

(B-EXCW [Z]) For distinct x1, x2 ∈ B, there exists u ∈ supp+(x1 − x2) and there

exists v ∈ supp−(x1 − x2) such that x1 − χu + χv ∈ B and x2 + χu − χv ∈ B.

Now we define the notion of M♮-convex sets. We introduce a new element 0 not

in V. Say V ′ = {0} ∪ V . A set X ⊆ ZV is called an M♮-convex set if X = {z ∈
ZV | (z0, z) ∈ B, z0 ∈ Z}, for some M-convex set B ⊆ ZV ∪{0}. In terms of exchange

axiom, we can define M♮-convex set as follows:

Definition 1.3.2 ([13]). A set B ⊆ ZV is called M♮-convex if it satisfies the following

exchange axiom:

(B♮-EXC[Z]) For x1, x2 ∈ B and u ∈ supp+(x1 − x2), there exists v ∈ supp−(x1 −
x2) ∪ {0} such that

x1 − χu + χv ∈ B and x2 + χu − χv ∈ B.

9



1.4 M♮-Convex Functions

Murota [14] introduced the notion of M-convexity for real valued functions in integer

variables. Later in 2000, Murota and Shioura [16] came up with the concept of

M-convexity for real valued functions in real variables and called them Polyhedral

M-convex functions. We define the effective domain of function f : ZV → R∪{±∞}
as

domf = domZf = {z ∈ ZV | −∞ < f(z) < +∞}.

Similarly the effective domain of function f : RV → R ∪ {±∞} is defined as

domf = domRf = {z ∈ RV | −∞ < f(z) < +∞}.

Definition 1.4.1. A function f : ZV → R∪{+∞} with nonempty effective domain

is called M-convex function whenever following exchange property is satisfied:

(M-EXC[Z]) For x1, x2 ∈ domf and u ∈ supp+(x1−x2), there exists v ∈ supp−(x1−
x2) such that

f(x1) + f(x2) ≥ f(x1 − χu + χv) + f(x2 + χu − χv). (1.4.1)

The requirement of finiteness of right hand side of above inequality imposes the

condition x1 − χu + χv ∈ domf and x2 + χu − χv ∈ domf .

Let V = {1, 2, . . . , n} and let f : ZV → R∪{+∞}. The projection f ∗ of f along

any arbitrarily chosen coordinate v0 ∈ V in n− 1 variables is given as

f ∗(z∗) = f(z0, z
∗) for z0 = k − z∗(V ∗)

where V ∗ = V \ {v0} and (z0, z
∗) ∈ Z × ZV ∗

. A function obtained by such a

projection of an M-convex function along an arbitrarily chosen axis is called an

M♮-convex function. Alternatively we can describe it as follows.

Introduce a new element 0 not in V. Say V ′ = {0} ∪ V . A function

f : ZV → R ∪ {+∞}

with nonempty domf is called M♮-convex function, if it can be written in terms of

an M-convex function f ′ : ZV ′ → R ∪ {+∞} as

f(z) = f ′(z0, z) with z0 = −z(V ); z ∈ ZV .

10



Thus, an M♮-convex function is a function obtained as a projection of an M-convex

function.

Conversely, an M♮-convex function f : ZV → R ∪ {+∞} determines the corre-

sponding M-convex function f ′ : ZV ′ → R ∪ {+∞} by

f ′(z0, z) =

{
f(z) if z0 = −z(V ),

+∞ otherwise.

upto a translation of domf in the direction of 0. Here z0 ∈ Z and z ∈ ZV . Now we

define the M♮-convex function in terms of an exchange axiom.

Definition 1.4.2 ([12]). A function f : ZV → R ∪ {+∞} is said to be M♮-convex

if it satisfies the following condition:

(M♮-EXC) For x1, x2 ∈ domf and u ∈ supp+(x1 − x2), there exists v ∈ supp−(x1 −
x2) ∪ {0} such that

f(x1) + f(x2) ≥ f(x1 − χu + χv) + f(x2 + χu − χv).

All those results which are valid for M-convex functions also hold for M♮-convex

functions. However the class M♮-convex functions is larger than that of M-convex

functions.

1.5 Few Results About M-Convex Functions and

M♮-Convex Functions

In this section we present some important results related to M-convex functions and

M♮-convex functions.

Proposition 1.5.1 ([13, Proposition 6.1]). (i) The effective domain of an M-convex

function is an M-convex set.

(ii) The effective domain of an M♮-convex function is an M♮-convex set.
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1.6 Few Characterizations of M♮-Convex Functions

There are numerous problems that involve allocation of a set of objects to a group

of agents. For example job matching between firms and workers. Kelso and Craw-

ford [8] introduced gross substitute conditions by generalizing the marriage model

of Gale and Shapely [20]. M♮-convex functions have close relationship with gross

substitutability. It is a basic property that guarantees existence of stable match-

ing. 2In this section we review some results on description of M♮-convex functions

regarding substitutability. These results are discussed in detail by R. Farooq and

A. Tamura in [6]. The definitions and results related to M♮-convex functions are

already discussed in Section 1.4.

Consider a nonempty finite set V = {1, 2, . . . , n}. Let X ⊆ ZV and consider a

function f : ZV → R ∪ {+∞}, define the set of minimizers of f on X as

argmin{f(y) | y ∈ X} = {x ∈ X | ∀y ∈ X : f(y) ≥ f(x)}.

The function f [p] at y ∈ ZV is defined as

f [p](y) = f(y) + ⟨p, y⟩ = f(y) +
∑
u∈V

p(u)y(u).

Before proceeding further we state the generalized version of gross substitutability

given for a function f : ZV → R ∪ {+∞} in [17].

(M♮-GSW) For p, q ∈ RV and x1 ∈ argmin f [p] with p ≤ q and nonempty argmin f [q],

there exists x2 ∈ argmin f [q] such that

x2(v) ≥ x1(v) whenever p(v) ≥ q(v).

The following theorem shows that for set functions M♮-convexity and (M♮-GSW) are

equivalent.

Theorem 1.6.1 ([17]). Let f : ZV → R ∪ {+∞} with nonempty effective domain,

such that domf ⊆ {0, 1}V . Then f is M♮-convex if and only if f satisfies (M♮-GSW).

2In matching a set of duo of players is formed from opposite teams such that each player appears

at most once. Stable matching mean there exist no pair of players that prefer each other to their

partners.

12



Now we analyze some properties as a variation of substitutability.

(SC1) For z1, z2 ∈ ZV with z1 ≥ z2 and argmin{f(y) | y ≤ z2} is nonempty, if

x1 ∈ argmin{f(y) | y ≤ z1}, then there exists x2 such that

x2 ∈ argmin{f(y) | y ≤ z2}, x2 ≥ z2 ∧ x1.3

(SC2) For z1, z2 ∈ ZV with z1 ≥ z2 and argmin{f(y) | y ≤ z2} is nonempty, if

x2 ∈ argmin{f(y) | y ≤ z2}, then there exists x1 such that

x1 ∈ argmin{f(y) | y ≤ z1}, x2 ≥ z2 ∧ x1.

Interpretation of these properties can be given as follows. Denote the set of in-

divisible goods 4 by V, the quantities x(v) of v goods produced by a producer by

x ∈ ZV and the cost function of a producer by f . According to (SC1) when the

producible quota of each good remains constant or decreases, the producer requires

a production so that the quantities of the goods whose quota remain the same do

not reduce. According to (SC2) when each quota increases or remains constant, the

producer requires a production such that the quantities of goods failing to fill the

original quotas either decreases or remains invariant.

(SC1) and (SC2) are independent properties, that is, it is not necessary that

if f satisfies (SC1) it must also satisfy (SC2) and vise versa. Following examples

illustrate this fact.

Example 1.6.1. Define f : {0, 1}2 → R ∪ {+∞} as follows:

f(x) =


2 if x = (0, 0)

2 if x = (1, 0)

2 if x = (0, 1)

0 if x = (1, 1).

Here f satisfies (SC1) but (SC2) fails for z1 = (1, 1) and z2 = (0, 1).

3z2 ∧ x1 = (min{z2(i), x1(i)} | i ∈ Z+)
4Those desirable goods which are sold only in integer quantities on the market for example

computers, cars, ships etc.
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Example 1.6.2. Define f : {0, 1}2 → R ∪ {+∞} as follows:

f(x) =


2 if x = (0, 0)

+∞ if x = (0, 1)

1 if x = (1, 0)

1 if x = (1, 1).

Here f satisfies (SC2) but (SC1) fails for z1 = (1, 1) and z2 = (0, 1).

Lemma 1.6.2 ([6, Lemma 3.1]). An M♮-convex function with bounded effective do-

main satisfies (SC1) and (SC2).

However the converse does not hold in general. In order to establish the converse

relationship, two stronger properties are introduced by R. Farooq and A. Tamura

[6] which are given below:

(SC1
G) For each p ∈ RV , (SC1) is satisfied by f [p].

(SC2
G) For each p ∈ RV , (SC2) is satisfied by f [p].

Lemma 1.6.3 ([6, Lemma 3.2]). If f : ZV → R ∪ {+∞} is an M♮-convex function

with bounded effective domain then f satisfies (SC1
G) and (SC2

G).

Proof. Since f is an M♮-convex function, therefore for each p ∈ RV , f [p] is also M♮-

convex function ([13]). So f [p] satisfies (SC1) and (SC2). Consequently, f satisfies

(SC1
G) and (SC2

G).

The following lemma states the relationship between (SC1
G) and (SC2

G).

Lemma 1.6.4 ([6, Lemma 3.3]). Let f : {0, 1}V → R ∪ {+∞}. Then f satisfies

(SC1
G) if and only if it satisfies (SC2

G).

Proof. Let f : {0, 1}V → R ∪ {+∞}. Suppose f satisfies (SC1
G). In order to show

that f satisfies (SC2
G) it is enough to show that f satisfies (SC2). For this we proceed

as follows:

Let z1, z2 ∈ ZV such that z1 ≥ z2 and argmin{f(y) | y ≤ z2} ̸= ∅. Further let

x2 ∈ argmin{f(y) | y ≤ z2}. We show that there exists x1 ∈ argmin{f(y) | y ≤ z1}
such that x2 ≥ z2 ∧ x1. Define q = δp ∈ RV where δ > 0 is such that

min{|f(y)− f(x)| | f(y) ̸= f(x), x, y ∈ domf}
| V |

≥ δ, (1.6.1)
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and p = χV − 2x2. Suppose that for any x, y ∈ domf we have f(y) > f(x). Note

that ⟨p,x−y⟩
|V | ≤ 1. This is so because

⟨p, x− y⟩ =
∑
v∈V

p(v)
(
x(v)− y(v)

)
≤

∑
v∈V

p(v)

≤ 1 + 1 + . . .+ 1 =| V | .

Now using elementary properties of ⟨., .⟩ we have

f [q](x) = f(x) + ⟨q, x⟩

= f(x) + ⟨q, x⟩ − ⟨q, y⟩+ ⟨q, y⟩

= f(x) + ⟨δp, x⟩ − ⟨δp, y⟩+ ⟨q, y⟩

= f(x) + δ⟨p, x⟩ − δ⟨p, y⟩+ ⟨q, y⟩

= f(x) + δ⟨p, x− y⟩+ ⟨q, y⟩.

Thus we have

f [q](x) = f(x) + δ⟨p, x− y⟩+ ⟨q, y⟩

< f(x) +
min{|f(y)− f(x)| | f(y) ̸= f(x), x, y ∈ domf}

| V |
⟨p, x− y⟩+ ⟨q, y⟩

≤ f(x) +
(
f(y)− f(x)

)⟨p, x− y⟩
| V |

+ ⟨q, y⟩

≤ f(x) +
(
f(y)− f(x)

)
+ ⟨q, y⟩

= f(y) + ⟨q, y⟩

= f [q](y),

where the first inequality holds because of definition (1.6.1) and the third inequality

is valid because ⟨p,x−y⟩
|V | ≤ 1. So for x, y ∈ domf we have the following implication

f(y) > f(x) =⇒ f [q](y) > f [q](x). (1.6.2)

From this it follows that

argmin{f [q](y) | y ≤ z1} ⊆ argmin{f(y) | y ≤ z1}.

15



Since f satisfies (SC1
G) therefore for all x1 ∈ argmin{f [q](y) | y ≤ z1} there exists x2

such that x2 ∈ argmin{f [q](y) | y ≤ z2} with x2 ≥ z2 ∧ x1. Since argmin{f [q](y) |
y ≤ z1} ̸= ∅ therefore argmin{f(y) | y ≤ z1} ̸= ∅. Thus (SC2) holds for f . From

this it follows that f satisfies (SC2
G).

For converse suppose f satisfies (SC2
G). In order to show that f satisfies (SC1

G) it

is enough to show that f satisfies (SC1). Proceeding in the same manner as earlier,

let z1, z2 ∈ ZV such that z1 ≥ z2 and argmin{f(y) | y ≤ z1} ̸= ∅. Further let

x1 ∈ argmin{f(y) | y ≤ z1}. We have to show that there exists x2 ∈ argmin{f(y) |
y ≤ z2}, where x2 ≥ z2 ∧ x1. Define q = δp ∈ RV in the same way as above and we

obtain (1.6.2). From this it follows that

argmin{f [q](y) | y ≤ z2} ⊆ argmin{f(y) | y ≤ z2}.

Since f satisfies (SC2
G), therefore for all x2 ∈ argmin{f [q](y) | y ≤ z2}, there

exists x1 such that x1 ∈ argmin{f [q](y) | y ≤ z1} with x2 ≥ z2 ∧ x1. Since

argmin{f [q](y) | y ≤ z2} ̸= ∅ therefore argmin{f(y) | y ≤ z2} ≠ ∅. Thus (SC1)

holds for f and hence it also satisfies (SC1
G). This concludes the proof.

The following lemma states that for set functions5 converse of Lemma 1.6.3 holds.

Lemma 1.6.5 ([6, Lemma 3.4]). Let f : {0, 1}V → R∪{+∞}. If f satisfies (SC1
G),

then f is M♮-convex.

Proof. Let f : {0, 1}V → R ∪ {+∞} be a function satisfying (SC1
G). We claim that

f satisfies (M♮-GSW). It is enough to consider the case q = p+ tχv for some v ∈ V

and t > 0. Let x1 ∈ argmin f [p]. Now if x1 ∈ argmin f [q] then there is nothing to

prove. So suppose that x1 /∈ argmin f [q], then we have, x1(v) = 1 and x2(v) = 0

for all x2 ∈ argmin f [q]. Take z1 = χV and z2 = z1 − χv then we have the following

relationship

argmin f [p] = argmin{f [p](x2) | x2 ≤ z1},

argmin f [q] = argmin{f [p](x2) | x2 ≤ z2}.
5A function f : ZV → R∪{+∞} with ∅ ≠ domf ⊆ {0, 1}V . {0, 1}V represents the vector space

indexed by the elements of V . If x ∈ {0, 1}V then x = {x(i) = 0 or 1 for all i ∈ V }.
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Since (SC1
G) hold, therefore for each x1 ∈ argmin f [p], there exists, x2 ∈ argmin f [q]

such that x1 ∧ z2 ≤ x2. From this it follows that x2(v) ≥ x1(v) for all v ∈ V with

p(v) = q(v). This shows that f satisfies (M♮-GSW). By theorem 1.6.1 f is M♮-convex.

This completes the proof.

With the help of Lemmas 1.6.3- 1.6.5 the following relation was thus established

between M♮-convex functions and (SC1
G), (SC

2
G).

Theorem 1.6.6 ([6, Theorem 3.1]). For each f : {0, 1}V → R ∪ {+∞}, following
conditions are equivalent:

(i) f satisfies (SC1
G).

(ii) f satisfies (SC2
G).

(iii) f is M♮-convex.

Proof. (i) =⇒ (ii). This follows directly from Lemma (1.6.4).

(ii) =⇒ (iii). This implication is obtainable with the help of Lemmas (1.6.4) and

(1.6.5).

(iii) =⇒ (i). The set {0, 1}V is bounded, and from Lemma (1.6.3) we know that

M♮-convex function with bounded effective domain satisfies (SC1
G).

The foundation of discrete convex analysis is laid down by Kazuo Murota. This

field of mathematics developed gradually and took its present shape. The study of

this theory is still expanding with the development of efficient algorithms. Convex

functions play primary role in solving optimization problems. We had given the

basic introduction of convex functions in our second section. Later on we moved to

M♮-convex sets and M♮-convex functions. We wrapped up the chapter by giving some

characterizations of M♮-convex functions. We had seen the equivalence relationship

between M♮-convexity, (SC1
G) and (SC2

G) for domf ⊆ {0, 1}V , that is, when f is a

set function. More general case of this, that is, when domf is bounded is given by

R. Farooq and A. Shioura [5].
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Chapter 2

Ultramodular Functions

In the present chapter we shall review the definitions and results related to ultramod-

ular functions, a class of functions that generalizes scalar convexity. Ultramodular

functions have their wide applications in many branches of mathematics as well

as economics. A special class of ultramodular functions known as ultramodular

aggregation functions will also be discussed.

2.1 Introduction

The class of ultramodular functions generalizes convexity of one dimension. If a

function f : A ⊆ Rn → R has increasing increments, that is,

f(y + h)− f(y) ≤ f(x+ h)− f(x) (2.1.1)

for all x, y ∈ A and h ≥ 0 with x ≥ y1 and x+h, y+h ∈ A, then f is ultramodular.

As seen in Remark (1.2.1) one-dimensional convex functions satisfy (2.1.1). However

this does not remain valid for convex functions of several variables. Thus in this

case convexity and ultramodularity are somewhat unrelated properties. Ultramod-

ular functions occur unsurprisingly in some economic and statistical applications,

providing extension of scalar convexity for some uses. First of all, we briefly describe

the different areas, both applied and pure, from where these functions originate.

1Inequality between vectors means component wise inequality. Thus x ≥ y means x = (xi)
n
i=1 ≥

y = (yi)
n
i=1.
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In mathematics, ultramodular functions were first introduced by Wright [23]. He

defined them on the real line R and named them as “convex functions”. Roberts

and Varberg [19] used the terminology “Wright convexity” for these functions.

In economics, ultramodular functions are used for modelling complementarities.

In the field of game theory, ultramodular functions came up in cooperative games of

composition f ◦P where f is the function defined on the range of vector measure P .

In statistics, they play an essential role in modelling positive dependence between

random vectors. In this area they are known as “directionally convex functions”.

This terminology, however, might not be confused with the functions defined in

terms of properties of directional derivatives. Choquet [2] observed that definition

(2.1.1) can be extended to functions defined on abstract domains with some alge-

braic structure. This significant realization makes it possible to deal with convex

capacities, which have properties similar to (2.1.1). For the final point, the area of

mathematics, where ultramodular functions appear is the Bernstein-Hausdorff the-

ory of absolutely and completely monotonic functions on real line in Widder [22].

These are analytic functions represented by Laplace-Stieltjes integrals and having

derivatives such that (−1)f j(x) ≥ 0 for all j or f j(x) ≥ 0 for all non negative inte-

gers j.

2.2 Preliminaries

In this section we give some definitions appearing in the coming sections. A nonempty

set A together with binary relation ≼ is called partially order set or in short poset

if

(Reflexivity) for all a ∈ A, a ≼ a,

(Antisymmetry) for all a, b ∈ A such that a ≼ b and b ≼ a we have a = b,

(Transitivity) for all a, b, c ∈ A such that a ≼ b and b ≼ c we have a ≼ c,

hold. The relation ≼ is called ordering relation.

Given a partially ordered set A, a function f : A → R is decreasing if x ≥ y

implies f(x) ≤ f(y) and is increasing if x ≥ y implies f(x) ≥ f(y). A function f is
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called monotone if it is either decreasing or increasing.

Let P1, P2, . . . , Pn be partially ordered sets (posets). Their direct product P =

Πn
i=1Pi is again an partially ordered set with component wise order. For any p ∈ P ,

generally the canonical projection πi(p) is denoted by pi ∈ Pi. Sometimes a point

p ∈ P is also represented as (pi, p−i), where p−i is the projection of p onto Πk ̸=iPk.

A function f : P → R is said to have increasing differences if, for each fixed k and

any pk ≤ qk in Pk, the function z → f(qk, z)− f(pk, z) is increasing on Πi̸=kPk.

Let f : P = Πn
i=1Pi → R with n ≥ 2. For each point p in P , and for each fixed

i, we can define the partial function as

fi(zi, p) = f(p1, p2, . . . , pi−1, zi, pi+1, . . . , pn) ≡ f(zi, p−i).

Let f : U ⊆ Πn
i=1Pi → R. A property is said to hold separately for f if, for each

integer i, the function f(pi, p−i) of the single variable pi ∈ Pi enjoys such a property.

The vector p−i of all other variables are kept fixed.

Let f : [0, 1]n → [0, 1]. We define the one-dimensional section of f for each

x ∈ [0, 1]n and for each i ∈ {1, 2, . . . , n} by the function fx,i : [0, 1] → [0, 1]2 given

by fx,i(u) = f(y), where yi = u when i = j and yj = xj when i ̸= j. Similarly

two-dimensional section of f is defined by the function fx,i,j : [0, 1]
2 → [0, 1] given

by fx,i,j(u, v) = f(y) where yi = u, yj = v and yk = xk for k ∈ {1, 2, . . . , n} \ {i, j}
for each x ∈ [0, 1]n and for all i, j ∈ {1, 2, . . . , n} with i ̸= j.

2.3 Ultramodular Sets and Functions

In this sub section we briefly discuss definitions and some elementary results related

to ultramodular sets and ultramodular functions. These definitions and notations

are taken from Marrinacci and Montrucchio [12].

Consider a collection of vectors {y, x, z, w} of Rn. This collection is called test

quadruple if y ≤ x ≤ w and y+w = x+ z. Note that the vectors y, x, z, w need not

to be distinct.

2fx,i means value of f at ith component of x.
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A set A ⊆ Rn is ultramodular if, given any triple y, x, w ∈ A with y ≤ x ≤ w, we

have z ∈ A whenever y + w = x+ z . A test quadruple {y, x, z, w} is ultramodular

if x and z are not comparable.

Proposition 2.3.1 ([12, Proposition 3.1]). Let A ⊆ Rn. If

x, y ∈ A and y ≤ x =⇒ [y, x] ⊆ A (2.3.1)

then A is ultramodular. Converse holds whenever atleast one of the following con-

ditions holds:

(i) int(A) is nonempty and A has a smallest and largest element.

(ii) A is open.

Proof. Suppose that (2.3.1) is true and w, x, y ∈ A such that w ≥ x ≥ y. Further,

let z ∈ Rn such that y + w = x + z. We claim that z ∈ A. By given condition

[y, w] ⊆ A. As y ≤ x, so we have z ≤ w. Likewise x ≤ w implies y ≤ z. From this

it follows that z ∈ [y, w] ⊆ A. Hence A is ultramodular. For converse we proceed

as follows.

Let C= [0, 1]n . Let A be any ultramodular set and x, y ∈ A. Also, suppose that

y+εC ⊆ A for some ε > 0, and y+εC ≤ x. If u ∈ C then, {y, y+εu, x−εu, x} is a

test quadruple under our supposition. So y+ εC ≤ x implies x− εC ⊆ A. Similarly

assume that y − εC ⊆ A, and x ≤ y − εC. If v ∈ C then, {x, y − εv, y + εv, x} is a

test quadruple. Therefore, x+ εC ⊆ A.

Take a and b as smallest and largest element of A. Then A ⊆ [a, b]. Further,

as int(A) is nonempty, so a ≪ b, that is, a is very very less than b. Without loss

of generality set A ⊆ [0, 1]n (by normalization), where 0 and 1 are in A. Fix an

integer q and divide the cube [0, 1]n into qn small cubes of size 1/q. More precisely,

set A1 = [0, 1/q], A2 = [1/q, 2/q], . . . , Aq = [(q − 1)/q, 1], which are intervals on real

line. We can decompose the cube [0, 1]n as

[0, 1]n =
∪
i

A1
i1
× A2

i2
,× · · · × An

in ,

Ci = A1
i1
×A2

i2
,× · · ·×An

in is a cube of size 1/q and the multi index i = (i1, i2, . . . , in)

runs over {1, 2, . . . , q}n. All these cubes are indexed by i. As int(A) ̸= ∅, there exists
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some integer q such that at least one cube of size 1/q is such that Ci ⊆ A. Exploiting

the above mentioned property, the cubes (1, 1, . . . , 1) and (q, q, . . . , q) are contained

in A. Consequently all the cubes (q − 1, q, . . . , q), . . . , (q, q, . . . , q − 1) are in A.

Continuing in this way, we have all cubes Ci contained in A, so that A = [0, 1]n .

The condition (2.3.1) clearly holds in [0, 1]n .

Now suppose that A is open. Let x, y ∈ A with y ≤ x. As A is open, there

exist two points y1 and x1 in A such that y1 ≤ y ≤ x ≤ x1 with y1 ≪ x1. By

(i), [y, x] ⊆ [y1, x1] ⊆ A. Thus we proved that if A is ultramodular then (2.3.1)

holds provided any one of the conditions (i) or (ii) is satisfied. This completes the

proof.

A function f : A ⊆ Rn → R is ultramodular if for all test quadruples {y, x, z, w}
in A

f(y) + f(w) ≥ f(x) + f(z). (2.3.2)

An equivalent form of (2.3.2)

f(x+ h)− f(x) ≥ f(y + h)− f(y)

is obtained by setting h = w − x = z − y in (2.3.2). Here y ≤ x and h ≥ 0 with

x+ h, y + h ∈ A.

In the following proposition, some basic properties related to ultramodular func-

tions are presented.

Proposition 2.3.2 ([12, Proposition 4.1]). Consider two ultramodular functions

f, g : A ⊆ Rn → R and let ψ : B ⊆ R → R be defined on an ultramodular set B

containing the range of f . Then following results hold.

(i) If α and β are non-negative scalars, then the sum αf + βg is ultramodular.

(ii) If both f and g are increasing and non-negative functions then their product fg

is ultramodular.

(iii) The composite function ψ ◦ f ultramodular if, in addition, f is monotone and

ψ is increasing.
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Proof. While proving the theorem we shall make use of the notation ∆f(x) to rep-

resent the difference f(x+ h)− f(x) and ∆f(y) for f(y + h)− f(y). Let h ∈ Rn.

(i) Suppose {y, x, z, w} is a test quadruple in A. Since f and g are ultramodular,

we have

f(w) + f(y) ≥ f(x) + f(z),

g(w) + g(y) ≥ g(x) + g(z).

If we set h = w − x = z − y then the above inequalities can be written as

f(x+ h)− f(x) ≥ f(y + h)− f(y),

g(x+ h)− g(x) ≥ g(y + h)− g(y).

Equivalently, we can write above inequality as

∆f(x)−∆f(y) ≥ 0,

∆g(x)−∆g(y) ≥ 0.

Multiplying above inequalities with α and β, respectively, then adding, we get

α∆f(x)− α∆f(y) + β∆g(x)− β∆g(y) ≥ 0,

∆αf(x)−∆αf(y) + ∆βg(x)−∆βg(y) ≥ 0,

that is,

∆(αf + βg)(x)−∆(αf + βg)(y) ≥ 0.

This shows that αf + βg is ultramodular.

(ii) Consider

∆(fg)(x)−∆(fg)(y) = (fg)(x+ h)− (fg)(x)− (fg)(y + h) + (fg)(y)

= f(x+ h)g(x+ h)− f(x)g(x)− f(y + h)g(y + h)

+ f(y)g(y).

Adding and subtracting

g(x+h)f(x)+g(x+h)f(y+h)+g(x+h)f(y)+g(y+h)f(y)+g(y+h)f(x)+g(y)f(x)
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in above equation and performing some elementary algebra, we get

∆(fg)(x)−∆(fg)(y) = g(x+ h)
(
f(x+ h)− f(x)− f(y + h) + f(y)

)
+

(
f(y + h)− f(y)

)(
g(x+ h)− g(y + h)

)
+

(
f(x)− f(y)

)(
g(y + h)− g(y)

)
+ f(x)

(
g(x+ h)− g(x)− g(y + h)− g(y)

)
= g(x+ h)

(
∆f(x)−∆f(y)

)
+∆f(y)

(
g(x+ h)− g(y + h)

)
+ ∆g(y)

(
f(x)− f(y)

)
+ f(x)(∆g(x)−∆g(y)

)
.

Since f and g are non-negative and increasing functions, therefore, right hand side

of above equation is non-negative. Hence

∆(fg)(x)−∆(fg)(y) ≥ 0.

This shows that the product fg is ultramodular.

(iii) Consider a test quadruple {y, x, z, w} in A. If f is increasing function, then

y ≤ x ≤ w implies f(y) ≤ f(x) ≤ f(w). Since B contains the range of f , therefore,

f(y), f(x), f(w) ∈ B. Hence by definition of ultramodular set, there exists z∗ ∈ B

such that {f(y), f(x), z∗, f(w)} is a test quadruple and f(x) + z∗ = f(w) + f(y).

Moreover, {y, x, z, w} is a test quadruple and f is ultramodular, therefore

f(w) + f(y) ≥ f(x) + f(z),

that is,

f(x) + z∗ ≥ f(x) + f(z).

From this, we get z∗ ≥ f(z). As ψ is ultramodular, we have

ψ(f(y)) + ψ(f(w)) ≥ ψ(z∗) + ψ(f(x)).

Further, ψ is increasing function, therefore ψ(z∗) ≥ ψ(f(z)) and hence

ψ(f(x)) + ψ(z∗) ≥ ψ(f(x)) + ψ(f(z)).

Thus, we get

ψ(f(y)) + ψ(f(w)) ≥ ψ(f(x)) + ψ(f(z)).
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This shows that ψ ◦ f is ultramodular. Now if f is decreasing function then y ≤
x ≤ w implies that f(y) ≥ f(x) ≥ f(w), where f(y), f(x), f(w) ∈ B. Since B is

ultramodular, there exists z∗ ∈ B such that {f(w), f(x), z∗, f(y)} is a test quadruple
with f(x) + z∗ = f(y) + f(w). By using similar arguments as before, we obtain

ψ(f(y)) + ψ(f(w)) ≥ ψ(f(x)) + ψ(f(z)).

This shows that ψ◦f is ultramodular function, where f is decreasing. This concludes

the proof.

Proposition 2.3.3 ([12, Proposition 4.2]). Let U1, U2, . . . , Un be ultramodular sets

and let U = Πn
i=1Ui be their direct product. A function f : U → R is ultramodular

if and only if it is separately ultramodular and has increasing differences on U .

Proof. Suppose that f is ultramodular function defined on the direct product U =

Πn
i=1Ui of ultramodular sets Ui, i ∈ {1, 2, . . . , n}. We claim that f is separately

ultramodular and has increasing differences. Fix an index i and consider

fi(yi, p) = f(p1, p2, . . . , pi−1, yi, pi+1, . . . , pn) ≡ f(yi, p−i), (2.3.3)

where p ∈ U . From equation (2.3.3) it is clear that the function y → f(y, p−i) is

ultramodular on Ui. Hence we conclude that f is separately ultramodular. Now,

we show that f has increasing differences. For fixed i, let pi, qi ∈ Ui with pi ≤
qi. Choose any two arbitrary values y−i, z−i ∈ Πj ̸=iUj with y−i ≤ z−i. Denote

(y1, y2, . . . , yi−1, pi, yi+1, . . . , yn), (y1, y2, . . . , yi−1, qi, yi+1, . . . , yn), (z1, z2, . . . , zi−1, pi,

zi+1, . . . , zn) and (z1, z2, . . . , zi−1, qi, zi+1, . . . , zn) by (pi, y−i), (qi, y−i), (pi, z−i) and

(qi, z−i), respectively. It can be easily seen that (pi, y−i) + (qi, z−i) = (qi, y−i) +

(pi, z−i) and (pi, y−i) ≤ (qi, y−i) ≤ (qi, z−i). So {(pi, y−i), (qi, y−i), (pi, z−i), (qi, z−i)}
is a test quadruple. This together with ultramodularity of f gives

f(qi, z−i)− f(pi, z−i) ≥ f(qi, y−i)− f(pi, y−i).

From this it follows that f has increasing differences.

For converse, let y, z ∈ U such that y ≤ z and let h ≥ 0. Writing the telescopic

expansion 3 of f(y + h) − f(y) and using the property of increasing differences we

3Telescopic expansion means each term of the expansion cancels out the next term so that in

the end we are left with only two terms.
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have

f(y + h)− f(y)

=
n∑

i=1

f(y1 + h1, . . . , yi + hi, yi+1, . . . , yn)− f(y1 + h1, . . . ,

yi−1 + hi−1, yi, . . . , yn)

≤
n∑

i=1

f(z1 + h1, . . . , yi + hi, zi+1, . . . , zn)− f(z1 + h1, . . . ,

zi−1 + hi−1, yi, zi+1, . . . , zn)

≤
n∑

i=1

f(z1 + h1, . . . , zi + hi, zi+1, . . . , zn)− f(z1 + h1, . . . ,

zi−1 + hi−1, zi, zi+1, . . . , zn)

= f(z + h)− f(z).

The last inequality is valid because f is separately ultramodular. This completes

the proof.

2.4 Modular, Supermodular and Submodular Func-

tions

In this section we give few definitions and results related to modular, supermodular,

and submodular functions. The definitions and notations are taken mostly from E.P

Klement, M. Manzi, R. Mesiar [11].

Definition 2.4.1. Let L be a nonempty set. For any x, y ∈ L we define binary op-

erations ∨ and ∧ by x∨y = (max{x(i), y(i)} | i ∈ Z+) and x∧y = (min{x(i), y(i)} |
i ∈ Z+), respectively. A tuple (L,∨,∧) is called lattice if for any x, y, z ∈ L, follow-

ing laws hold with respect to both ∨ and ∧.

Idempotent law: x ∨ x = x, x ∧ x = x.

Commutative law: x ∨ y = y ∨ x, x ∧ y = y ∧ x.

Associative law: x ∨ (y ∨ z) = (x ∨ y) ∨ z, x ∧ (y ∧ z) = (x ∧ y) ∧ z.
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Absorption law: x ∧ (x ∨ y) = x, x ∨ (x ∧ y) = x.

A lattice (L,∨,∧) is a distributive lattice if, in addition, the distributive law

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z),

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

holds true.

We may use L instead of (L,∨,∧) when there is no danger of confusion.

Definition 2.4.2. Let (L,∨,∧) be a lattice.

(i) A function f : L→ R is called modular if for all x, y ∈ L, we have

f(x) + f(y) = f(x ∧ y) + f(x ∨ y).

(ii) A function f : L→ R is called supermodular if for all x, y ∈ L, we have

f(x) + f(y) ≤ f(x ∧ y) + f(x ∨ y).

(iii) A function f : L→ R is called submodular if for all x, y ∈ L, we have

f(x) + f(y) ≥ f(x ∧ y) + f(x ∨ y).

In the context of measures, i.e., when L is a σ-algebra4 of subsets of universe,

modular functions are named as valuations in Birkhoff [1]. So far the concept of

modularity, supermodularity and submodularity is introduced for functions from a

lattice L into R. Now we take unit cube5 [0, 1]n as L and focus our attention to

n-ary aggregation functions.

4A collection A of subsets of a universal set X is called σ-algebra of sets if

(i) A ∈ A implies the complement of A i.e., A{ ∈ A .

(ii) A1, A2, . . . ∈ A implies ∪∞
i=1Ai ∈ A .

(iii) ∅ ∈ A and by (i) X ∈ A .

5Unit cube is a cube in n-dimensional space with sides having length 1 unit. [0, 1]n is also

referred as unit cube. By [0, 1]n we mean the space of all n-tuples of real numbers having value

with in the interval [0, 1]. Thus if x ∈ [0, 1]n then x = {x(i) | 0 ≤ x(i) ≤ 1∀i = 1, 2, . . . , n}.
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Definition 2.4.3. A non-decreasing functionA : [0, 1]n → [0, 1] satisfyingA(0, 0, . . . ,

0) = 0 and A(1, 1, . . . , 1) = 1 is called an n-ary aggregation function.

Following proposition gives characterization of modular functions.

Proposition 2.4.1 ([11, Proposition 2.2]). An n-ary aggregation function A : [0, 1]n →
[0, 1] is modular if and only if there are non-decreasing functions f1, f2, . . . , fn :

[0, 1] → [0, 1] with
∑n

i=1 fi(0) = 0 and
∑n

i=1 fi(1) = 1 such that, for all (x1, x2, ..., xn) ∈
[0, 1]n,

A(x1, x2, . . . , xn) =
n∑

i=1

fi(xi).

The following proposition gives reformulation of supermodular functions for the

lattice [0, 1]2.

Proposition 2.4.2 ([11]). For non-decreasing functions f : [0, 1]2 → [0, 1], super-

modularity can be reformulated as

f(x2, y2)− f(x2, y1)− f(x1, y2) + f(x1, y1) ≥ 0 (2.4.1)

for all x1, x2, y1, y2 ∈ [0, 1] with x1 ≤ x2 and y1 ≤ y2.

Proof. Let x, y ∈ [0, 1]2 such that x = (x2, y1) and y = (x1, y2), where x1 ≤ x2 and

y1 ≤ y2. Since f is supermodular, so

f(x ∨ y) + f(x ∧ y) ≥ f(x) + f(y).

As x1 ≤ x2 and y1 ≤ y2 therefore x ∨ y = (x2, y2) and x ∧ y = (x1, y1). Thus above

inequality becomes

f(x2, y2) + f(x1, y1) ≥ f(x2, y1) + f(x1, y2).

Consequently

f(x2, y2)− f(x2, y1)− f(x1, y2) + f(x1, y1) ≥ 0

as required.

The following proposition describes the characteristic of supermodular functions.
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Proposition 2.4.3 ([11, Proposition 2.3]). An n-ary function f : [0, 1]n → [0, 1] is

supermodular if and only if any of its two-dimensional sections is supermodular.

Nelsen [18] and Kimberling [9] called two-dimensional aggregation functions sat-

isfying (2.4.1) as 2-increasing functions or functions with moderate growth.

Remark 2.4.1. If a binary aggregation function A : [0, 1]2 → [0, 1] is supermodular,

so is the function B : [0, 1]2 → [0, 1] given by B(x, y) = A(x, y)− A(x, 0)− A(0, y).

Proof. Let x1, x2 ∈ [0, 1]2, where x1 = (x, y) and x2 = (x∗, y∗). We will discuss

following cases:

Case 1: Let x ≤ x∗ and y ≤ x∗ then trivially

B(x1 ∨ x2) +B(x1 ∧ x2) = B(x1) + B(x2).

Case 2: Let x ≥ x∗ and y ≥ x∗ then again B trivially satisfies the condition of

supermodularity.

Case 3: Let x ≤ x∗ and y∗ ≤ y. Since A is supermodular, therefore

A(x1 ∨ x2) + A(x1 ∧ x2) ≥ A(x1) + A(x2),

that is,

A(x∗, y) + A(x, y∗) ≥ A(x, y) + A(x∗, y∗).

Now consider

B(x1 ∨ x2) +B(x1 ∧ x2) = B(x∗, y) +B(x, y∗)

= A(x∗, y)− A(x∗, 0)− A(0, y) + A(x, y∗)

− A(x, 0) + A(0, y∗)

≥ A(x, y) + A(x∗, y∗)− A(x∗, 0)− A(0, y)

− A(x, 0) + A(0, y∗)

= B(x, y) +B(x∗, y∗) = B(x1) +B(x2).

Thus we get

B(x1 ∨ x2) + B(x1 ∧ x2) ≥ B(x1) +B(x2).

Hence B is also supermodular.
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Case 4: Let x ≥ x∗ and y∗ ≥ y. This case can be proved by using similar arguments

as of Case 3.

Generally, the composition of (super-)modular functions is not necessarily (super-

)modular, as the following example illustrates.

Example 2.4.1. Consider the functions A,B : [0, 1]2 → [0, 1] given by

A(x, y) = 3
√
x and B(x, y) =

x+ y

3
.

Both functions are modular and hence supermodular. However the composite func-

tion A(B,B) : [0, 1]2 → [0, 1] given by A(B,B)(x, y) = 3

√
x+y
3

is not (super-

)modular.

The following theorem shows that M♮-convex functions (discussed in chapter 1)

are supermodular.

Theorem 2.4.4 ([13, Theorem 6.19]). M♮-convex functions are supermodular on the

integer lattice.

The converse is however false. Following example illustrates this

Example 2.4.2. Define f := {0, 1}3 → R ∪ {+∞} as follows

f(x) =


2 if x = (1, 1, 1)

1 if x = (1, 1, 0)

1 if x = (1, 0, 1)

0 otherwise.

It is easy to see that f is supermodular. However, it is not M♮-convex for x =

(0, 1, 1), y = (1, 0, 0) and u = 2.

2.5 Ultramodular Aggregation Functions

In this section we discuss ultramodular aggregation functions. Some constructions of

ultramodular aggregation functions, particularly, related to composition of functions

will be discussed.
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Ultramodular functions are already discussed in Section (2.3). We can redefine

an ultramodular function in context of n-ary aggregation function as follows.

Definition 2.5.1. An n-ary aggregation function A : [0, 1]n → [0, 1] is ultramodular

if

A(x+ y + z)− A(x+ y) ≥ A(x+ z)− A(x) (2.5.1)

for all x, y, z ∈ [0, 1]n with x+ y + z ∈ [0, 1]n.

The following lemma establishes the relationship between ultramodular aggre-

gation functions and supermodular aggregation functions.

Lemma 2.5.1 ([11]). If an n-ary aggregation function A : [0, 1]n → [0, 1] is ultra-

modular then it is supermodular.

Proof. For any x, y ∈ [0, 1]n, put u = y − x ∧ y and v = x − x ∧ y, Since x + y =

x ∨ y + x ∧ y. We have

x ∨ y = x+ y − x ∧ y = u+ v + x ∧ y ∈ [0, 1]n.

From this it follows that

A(x ∨ y) + A(x ∧ y) = A(x ∧ y + u+ v) + A(x ∧ y)

≥ A(x ∧ y + u) + A(x ∧ y + v)

= A(x) + A(y).

Hence A is supermodular.

In the following proposition we state the required condition for exact relationship

between ultramodularity and supermodularity.

Proposition 2.5.2 ([11, Proposition 2.7]). The necessary and sufficient condition

for a function f : [0, 1]n → [0, 1] to be ultramodular is that it is supermodular and

each of its one-dimensional section is convex.

Remark 2.5.1 ([11, Remark 2.9]). For an n-ary aggregation function A : [0, 1]n →
[0, 1] the following statements are equivalent:
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(i) A is ultramodular.

(ii) Every two-dimensional section of A is ultramodular.

(iii) Each one-dimensional section of A is convex and any two-dimensional section

of A is supermodular.

Proof. First we show that (i) implies (ii). Since A is ultramodular, by virtue of

Lemma 2.5.1 it is supermodular. Consequently, each of its two-dimensional sections

are supermodular. By Proposition 2.5.2, each of its two-dimensional sections are

ultramodular. (ii) ⇒ (iii) and (iii) ⇒ (i) follows directly from Proposition 2.5.2.

2.5.1 Some Constructions Related to Ultramodular Aggre-

gation Functions

We show that the composition of ultramodular aggregation function is again an

ultramodular aggregation function. In this regard, we first present the following

result.

Theorem 2.5.3 ([11, Theorem 3.1]). For an n-ary aggregation function A : [0, 1]n →
[0, 1], following conditions are equivalent:

(i) A is ultramodular.

(ii) If B1, B2, . . . , Bn : [0, 1]k → [0, 1] are non-decreasing supermodular functions

then the composition function D : [0, 1]k → [0, 1] defined by

D(x) = A(B1(x), B2(x), . . . , Bn(x))

is a supermodular function for k ≥ 2.

Proof. To prove (i) ⇒ (ii), let A : [0, 1]n → [0, 1] be an ultramodular aggregation

function. Further, let B1, B2, . . . , Bn : [0, 1]k → [0, 1] be non-decreasing supermodu-

lar functions. Define the composite D : [0, 1]k → [0, 1] by

D(x) = A(B1(x), B2(x), . . . , Bn(x)).
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Clearly, D is an aggregation function. Take x, y ∈ [0, 1]k and define, for every

j ∈ {1, 2, . . . , n},

aj = Bj(x)−Bj(x ∧ y),

bj = Bj(y)−Bj(x ∨ y),

u = (a1, a2, . . . , an),

v = (b1, b2, . . . , bn),

z = (B1(x ∧ y), B2(x ∧ y), . . . , Bn(x ∧ y)).

Since Bj’s are non-decreasing functions so, u, v ∈ [0, 1]n. Further, Bj’s are super-

modular, therefore

(B1(x ∨ y), B2(x ∨ y), . . . , Bn(x ∨ y)) ≥ u+ v + z. (2.5.2)

This is so because for each fixed j = 1, 2, . . . , n we have

Bj(x ∨ y) + Bj(x ∧ y) ≥ Bj(x) + Bj(y).

This can be written as

Bj(x ∨ y) ≥ Bj(x)−Bj(x ∧ y) +Bj(y).

Adding and subtracting Bj(x ∧ y), we obtain

Bj(x ∨ y) ≥ Bj(x)−Bj(x ∧ y) +Bj(y)−Bj(x ∧ y) + Bj(x ∧ y).

From this it follows that

Bj(x ∨ y) ≥ aj + bj +Bj(x ∧ y).

Now, since A is ultramodular and non-decreasing function, we have

D(x ∨ y) = A(B1(x ∨ y), B2(x ∨ y), . . . , Bn(x ∨ y))

≥ A(u+ v + z)

≥ A(z + u) + A(z + v)− A(z)

= A
(
B1(x), B2(x), . . . , Bn(x)

)
+ A

(
B1(y), B2(y), . . . , Bn(y)

)
− A

(
B1(x ∧ y), B2(x ∧ y), . . . , Bn(x ∧ y)

)
= D(x) +D(y)−D(x ∧ y).
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where first inequality is due to (2.5.2) and the second inequality holds since A is

ultramodular. Thus we have

D(x ∨ y) +D(x ∧ y) ≥ D(x) +D(y).

Conversely, suppose that (ii) holds. In order to show that A is ultramodu-

lar, we shall show that each of its one-dimensional section is convex. For this,

with out loss of generality, consider a function f : [0, 1] → [0, 1] defined as f(x∗) =

A(x∗, u2, u3, . . . , un), where u2, u3, . . . , un ∈ [0, 1] are fixed. Also defineB1, B2, . . . , Bn :

[0, 1]k → [0, 1] by B1(x) = x1+x2

2
and Bj(x) = uj for j > 1. For arbitrary x1, x2 ∈

[0, 1] if we put x = (x1, x2, 0, 0, . . . , 0) and y = (x2, x1, 0, 0, . . . , 0) then we have

D(x) = A

(
B1(x), B2(x), . . . , Bn(x)

)
= A

(
x1 + x2

2
, 0, 0, . . . , 0

)
= f

(
x1 + x2

2

)
.

Similarly,

D(y) = A
(
B1(y), B2(y), . . . , Bn(y)

)
= A

(
x2 + x1

2
, 0, 0, . . . , 0

)
= f

(
x2 + x1

2

)
.

Also we have D(x ∧ y) = f(x1 ∧ x2) and D(x ∨ y) = f(x1 ∨ x2). As B1, B2, . . . , Bn

are non-decreasing supermodular functions, and by (ii) D is supermodular, we have

D(x ∨ y) +D(x ∧ y) ≥ D(x) +D(y),

f(x1 ∨ x2) + f(x1 ∧ x2) ≥ f

(
x1 + x2

2

)
+ f

(
x1 + x2

2

)
,

f(x1) + f(x2)

2
≥ f

(
x1 + x2

2

)
.

It shows that f is Jensen convex function. Further, f is monotone thus by Remark

1.2.1 f is convex. Consequently A is ultramodular.

So far we have seen that A is ultramodular for n = 1. Now we claim that

ultramodularity of A also holds for n > 1. For this we proceed as follows:

Consider a function g : [0, 1]2 → [0, 1] defined as g(x∗) = A(x∗, y∗, u3, u4, . . . , un)

where u3, u4, . . . , un ∈ [0, 1] are fixed. Also define B1, B2, . . . , Bn : [0, 1]k → [0, 1]

by B1(x) = x1, B2(x) = x2 and Bj(x) = uj for j > 2. With the help of similar

arguments as above, we obtain

g(x1 ∨ x2) + g(x1 ∧ x2) ≥ g(x1) + g(x2).

34



This shows that g is supermodular. Hence, two-dimensional sections of A are su-

permodular. Using Proposition 2.4.3 and Proposition 2.5.2 we conclude that A is

ultramodular. This completes the proof.

Now in the following theorem we show that the class of ultramodular functions

is closed under composition of functions.

Theorem 2.5.4 ([11, Theorem 3.2]). Let A : [0, 1]n → [0, 1] and B1, B2, . . . , Bn :

[0, 1]k → [0, 1] be ultramodular aggregation functions. Then the composition D :

[0, 1]k → [0, 1] given by D(x) = A
(
B1(x), B2(x), . . . , Bn(x)

)
is also an ultramodular

aggregation function. In other words, we can say that composition of ultramodular

aggregation functions is again an ultramodular aggregation function.

Proof. By virtue of Theorem 2.5.3, D is supermodular (the result of Theorem 2.5.3 is

also true for k = 1). Thus it is sufficient to prove that each one-dimensional section

of D is convex. Let g : [0, 1] → [0, 1] be a one-dimensional section of the compos-

ite function D. Then there exists one-dimensional sections f1, f2, . . . , fn : [0, 1] →

[0, 1] of B1, B2, . . . , Bn, respectively, such that g(x∗) = A

(
f1(x

∗), f2(x
∗), . . . , fn(x

∗)

)
.

Since B1, B2, . . . , Bn are ultramodular aggregation functions, therefore, by Proposi-

tion 2.5.2 f1, f2, . . . , fn are convex. Clearly, g is non-decreasing. This together with

its convexity is equivalent to the validity of Jensen inequality (by Remark 1.2.1).

Now for all x∗, a ∈ [0, 1] with x∗ + 2a ≤ 1, we have

g(x∗ + 2a) + g(x∗)

2
≥ g

(
x∗ + 2a+ x∗

2

)
.

Equivalently

g(x∗ + 2a)− g(x∗ + a) ≥ g(x∗ + a)− g(x∗). (2.5.3)

Since f1, f2, . . . , fn are convex, for each fixed j ∈ {1, 2, . . . , n}, we have, fj(x
∗ +

2a) − fj(x
∗ + a) ≥ fj(x

∗ + a) − fj(x
∗) ≥ 0. Put aj = fj(x

∗ + a) − fj(x
∗) and

bj = fj(x
∗ + 2a)− fj(x

∗ + a).
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Since A is ultramodular and monotone, we have

g(x∗ + 2a) = A
(
f1(x

∗ + 2a), f2(x
∗ + 2a), . . . , fn(x

∗ + 2a)
)

= A
(
f1(x

∗ + 2a)− f1(x
∗ + a) + f1(x

∗ + a)− f1(x
∗) + f1(x

∗), f1(x
∗ + 2a)

− f2(x
∗ + a) + f2(x

∗ + a)− f2(x
∗) + f2(x

∗), . . . , fn(x
∗ + 2a)

− fn(x
∗ + a) + fn(x

∗ + a)− fn(x
∗) + fn(x

∗)
)

= A
(
a1 + b1 + f1(x

∗), a2 + b2 + f2(x
∗), . . . , an + bn + fn(x

∗)
)

≥ A
(
a1 + f1(x

∗), a2 + f2(x
∗), . . . , an + fn(x

∗)
)
+ A

(
b1 + f1(x

∗), b2 + f2(x
∗),

. . . , bn + fn(x
∗)
)
− A

(
f1(x

∗), f2(x
∗), . . . , fn(x

∗)
)

≥ A
(
a1 + f1(x

∗), a2 + f2(x
∗), . . . , an + fn(x

∗)
)
+ A

(
a1 + f1(x

∗), a2 + f2(x
∗),

. . . , an + fn(x
∗)
)
− A

(
f1(x

∗), f2(x
∗), . . . , fn(x

∗)
)

= 2A
(
a1 + f1(x

∗), a2 + f2(x
∗), . . . , an + fn(x

∗)
)

− A
(
f1(x

∗), f2(x
∗), . . . , fn(x

∗)
)

= 2g(x∗ + a)− g(x∗).

This proves (2.5.3). Thus each one-dimensional section of D is convex. Hence

by Proposition 2.5.2, D is ultramodular aggregation function. This concludes the

proof.

In this chapter we discussed the structure and some properties of ultramodular

functions. These functions play an important role in the areas of economics, statis-

tics, pure and applied mathematics etc. Ultramodular aggregation functions and

some constructions related to them were also given. These functions are important

in the areas of supermodular measures and of bivariate copulas.
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Chapter 3

Relationship between

M♮-Convexity and

Ultramodularity

As mentioned earlier in Chapter 1 that the motivation behind establishing discrete

convex analysis is to set up the theoretical framework for solving problems related

to discrete optimization with the aid of both combinatorial and continuous opti-

mization. M♮-convex functions play significant role in the theory of discrete opti-

mization. On the other hand, ultramodular functions appears in several pure and

applied research areas. In this chapter we investigate the relationship between two

newly developed classes of functions known as ultramodular functions and M♮-convex

functions on integer lattice. We shall show that if a subset of an integer lattice is M♮-

convex then it is ultramodular. Moreover, we prove that each M♮-convex function

is an ultramodular function.

3.1 M♮-Convexity and Ultramodularity Revisited

In this section, we recall some basic definitions and results about M♮-convexity and

ultramodularity. This will help us to construct relationship between M♮-convexity

and ultramodularity.
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Recall that a set A ⊆ Rn is ultramodular if given any elements x, y, w ∈ A with

x ≤ y ≤ w the following holds:

x+ w = y + z implies z ∈ A.

A function f : A ⊆ Rn → R is said to be ultramodular if

f(x+ h)− f(x) ≥ f(y + h)− f(y) (3.1.1)

for all h ≥ 0 and x ≥ y such that x+ h, y + h ∈ A.

The following lemma gives an equivalent condition for a function to be ultra-

modular.

Lemma 3.1.1. A function f : A ⊆ Rn → R is ultramodular if and only if

f(x) + f(y) ≥ f(x− h) + f(y + h) (3.1.2)

for all x, y ∈ A and h ≥ 0 with x− h, y + h ∈ A and x− h ≥ y.

Proof. Suppose that f is ultramodular. For any x, y ∈ A and h ≥ 0 such that x −
h, y + h ∈ A and x− h ≥ y, we have

f(x)− f(x− h) ≥ f(y + h)− f(y).

The above inequality can be written as

f(x) + f(y) ≥ f(x− h) + f(y + h).

Conversely, suppose that (3.1.2) holds for all x, y ∈ A and h ≥ 0 with x − h, y +

h ∈ A and x − h ≥ y. We show that f is ultramodular function. Let x, y ∈ A,

x ≥ y and h ≥ 0 with x+ h, y + h ∈ A. Then from (3.1.2) we have

f(x+ h) + f(y) ≥ f(x) + (y + h),

The above inequality is equivalent to

f(x+ h)− f(x) ≥ f(y + h)− f(y).

Thus, f is ultramodular.
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Let V be a nonempty and finite set. Recall that a function f : ZV → R∪{+∞}
with domf ̸= ∅ is called M♮-convex if it satisfies the following condition:

(M♮-EXC) For all x, y ∈ domf and all u ∈ supp+(x−y), there exists v ∈ supp−(x−
y) ∪ {0} such that

f(x) + f(y) ≥ f(x+ χv − χu) + f(y − χv + χu).

A nonempty set B ⊆ ZV is called M♮-convex if the following condition is satisfied:

(B♮-EXC) For all x, y ∈ B and all u ∈ supp+(x − y), there exists v ∈ supp−(x −
y) ∪ {0} such that

x+ χv − χu ∈ B and y − χv + χu ∈ B.

We recall the following result about effective domain of an M♮-convex function.

Proposition 3.1.2 ([13, Proposition 6.1]). The effective domain of an M♮-convex

function is an M♮-convex set.

3.2 M♮-Convex and Ultramodular Sets

In this section we construct a relationship between M♮-convex sets and Ultramodular

sets on integer lattice. We show that each M♮-convex set is ultramodular. We give

an example to show that an ultramodular set may not be an M♮-convex set. Infact,

if A ⊆ Rn is a set such that x � y and y � x for each x, y ∈ A then A is vacuously

ultramodular.

Lemma 3.2.1. If a set A ⊆ ZV is M♮-convex then it is ultramodular.

Proof. Assume that A ⊆ ZV is an M♮-convex set. Let x, y ∈ A with y ≤ x and z ∈
[y, x]. We show that z ∈ A. If z = x or z = y then obviously z ∈ A. Suppose that

z ̸= x. Then supp+(x−z) ̸= ∅ and let u1 ∈ supp+(x−z), that is, u1 ∈ supp+(x−y).
Then (B♮-EXC) implies x1 = x − χu1 ∈ A. Clearly, z ≤ x1. If z ̸= x1 then take

u2 ∈ supp+(x1 − z) ⊆ supp+(x − z), that is, u2 ∈ supp+(x1 − y). Again by virtue
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of (B♮-EXC), x2 = x1 − χu2 ∈ A. In other words, for u1, u2 ∈ supp+(x− z) we have

x−χu1−χu2 ∈ A. Continuing this process, we get x−
∑

u∈supp+(x−z)

(
x(u)−z(u)

)
χu ∈

A. But

z = x−
∑

u∈supp+(x−z)

(
x(u)− z(u)

)
χu.

Thus z ∈ A. This shows that the [y, x] ⊆ A. By Proposition 2.3.1 A is ultramodular.

The following example shows that the converse of the above lemma does not hold

in general.

Example 3.2.1. Define a set A ⊆ Z3 by:

A = {(0, 0, 0), (0, 1, 0), (1, 0, 1), (1, 1, 1)}.

Clearly, A is ultramodular. However, it is not M♮-convex set for x = (1, 0, 1), y =

(0, 1, 0) and u = 1.

Corollary 3.2.2. If a function f : ZV → R∪{+∞} is M♮-convex then domf is an

ultramodular set.

Proof. By Proposition 3.1.2, domf is an M♮-convex set. Thus the assertion follows

from Lemma 3.2.1.

3.3 M♮-Convex and Ultramodular Functions

In this section, we give a relationship between M♮-convex functions and ultramodular

functions on integer lattice. We prove that each M♮-convex function is ultramodular.

We give an example to show that an ultramodular function may not be an M♮-convex

function. Infact, if f : A ⊆ Rn → R is a function such that x � y and y � x for

each x, y ∈ A then f is vacuously ultramodular.

Lemma 3.3.1. If a function f : ZV → R∪{+∞} is M♮-convex then it is ultramod-

ular on domf .
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Proof. Let x, y ∈ domf such that x ≥ y and h ≥ 0 with x+ h, y + h ∈ domf . Take

u1 ∈ supp+(x− y). Then by Corollary 3.2.2, we have x1 = x− χu1 ∈ domf . Since

u1 ∈ supp+(x+ h− x1) and f is M♮-convex, we have

f(x+ h) + f(x1) ≥ f(x+ h− χu1) + f(x).

This is equivalent to

f(x+ h)− f(x) ≥ f(x+ h− χu1)− f(x1). (3.3.1)

Clearly y ≤ x1. If x1 = y then (3.3.1) implies that

f(x+ h)− f(x) ≥ f(y + h)− f(y),

that is, f is ultramodular. If x1 ̸= y then we take u2 ∈ supp+(x1−y) ⊆ supp+(x−y).
Corollary 3.2.2 gives x2 = x1 − χu2 ∈ domf and (3.3.1) implies x1 + h ∈ domf . As

u2 ∈ supp+(x1 + h− x2) and f is M♮-convex, we obtain

f(x1 + h) + f(x2) ≥ f(x1 + h− χu2) + f(x1).

This is equivalent to

f(x1 + h)− f(x1) ≥ f(x1 + h− χu2)− f(x2). (3.3.2)

The inequalities (3.3.1) and (3.3.2) give

f(x+ h)− f(x) ≥ f(x+ h− χu1 − χu2)− f(x− χu1 − χu2),

where u1, u2 ∈ supp+(x− y). By applying this argument repeatedly, we get

f(x+ h)− f(x) ≥ f(x+ h−
∑

w∈supp+(x−y)

λwχw)− f(x−
∑

w∈supp+(x−y)

λwχw), (3.3.3)

where λw = x(w)−y(w) for each w ∈ supp+(x−y). But x−
∑

w∈supp+(x−y) λwχw = y.

Therefore (3.3.3) implies

f(x+ h)− f(x) ≥ f(y + h)− f(y).

Thus f is ultramodular.
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The following example shows that the converse of above lemma is not true, that

is, an ultramodular function needs not to be an M♮-convex function.

Example 3.3.1. Define f : {0, 1}3 → R as follows:

f(x) =


2 if x = (1, 1, 1)

0 if x = (0, 1, 0)

1 otherwise.

It is easy to see that f is ultramodular. However, it is not M♮-convex for x =

(1, 0, 1), y = (0, 1, 0) and u = 1.

3.4 Component-wise Ultramodular Functions

In this section, we define a new class of functions, called the component-wise ultra-

modular functions. This class of functions is contained in the class of ultramodular

functions. Moreover, on integer lattice we will show that each component-wise ul-

tramodular function is an M♮-convex function. We give an example to show that

an M♮-convex function may not be a component-wise ultramodular function. Before

defining component-wise ultramodular functions, we give few definitions.

Definition 3.4.1. A collection {x, y, z, w} of vectors inRn is said to be a component-

wise test quadruple (denoted by CW-test quadruple) if it satisfies the following:

(i) x+ w = y + z,

(ii) for each i ∈ {1, 2, . . . , n}, either x(i) ≤ y(i) ≤ w(i) or x(i) ≥ y(i) ≥ w(i).

Definition 3.4.2. A set A ⊆ Rn is CW-ultramodular if given any elements x, y, w ∈
A with x(i) ≤ y(i) ≤ w(i) or x(i) ≥ y(i) ≥ w(i) for each i ∈ {1, 2, . . . , n}, the
following holds:

x+ w = y + z implies z ∈ A. (3.4.1)

In the following example, we show that an ultramodular set may not be a CW-

ultramodular set.
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Example 3.4.1. Define A ⊆ Rn by

A = {(0, 1, 0), (1, 0, 0), (1, 0, 1)}. (3.4.2)

Then one can easily see that A is an ultramodular set. However, by setting x =

(0, 1, 0), y = (1, 0, 0), z = (0, 1, 1) and w = (1, 0, 1), we see that x(i) ≤ y(i) ≤
w(i) or x(i) ≥ y(i) ≥ w(i) for each i ∈ {1, 2, 3}. Also, x + w = y + z but z /∈ A.

Hence A is not a CW-ultramodular set.

Definition 3.4.3. A function f : A ⊆ Rn −→ R is said to be component-wise

ultramodular (denoted by CW-ultramodular) function if

f(x) + f(w) ≥ f(y) + f(z)

holds for all CW-test quadruples {x, y, z, w}.

In definition 3.4.3, if we set h(i) = z(i) − x(i) = w(i) − y(i) and define h = (h(i) |
i ∈ {1, 2, . . . , n}) then a CW-ultramodular function equivalently can be defined as

follows:

A function f : A ⊆ Rn −→ R is said to be a CW-ultramodular function if

f(x+ h)− f(x) ≥ f(y + h)− f(y)

holds for all x, y ∈ A and h ∈ Rn such that x ≥ y and x+ h, y + h ∈ A.

The following lemma gives the relationship between M♮-convex functions and

CW-ultramodular functions.

Lemma 3.4.1. If a function f : ZV → R is CW-ultramodular, then it is M♮-convex.

Proof. Let x, y ∈ ZV and u ∈ supp+(x − y). For each w ∈ supp−(x − y), define

λw = y(w)− x(w). Take

h1 = −
∑

w∈supp−(x−y)

λwχw

and set x1 = x− h1. Then y ≤ x1 and since f is CW-ultramodular, we have

f(y + h1)− f(y) ≤ f(x1 + h1)− f(x1).
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The above inequality is equivalent to

f(y + h1) + f(x1) ≤ f(x) + f(y). (3.4.3)

Next, define

y2 = y + h1, x2 = x− χu, h2 = −(h1 − χu).

Then y2 ≤ x2 and the definition of CW-ultramodularity implies that

f(y2 + h2)− f(y2) ≤ f(x2 + h2)− f(x2).

The above inequality can further be written as:

f(y + χu) + f(x− χu) ≤ f(y + h1) + f(x1) (3.4.4)

Combining (3.4.3) and (3.4.4), we get

f(x) + f(y) ≥ f(x− χu) + f(y + χu)

which is (M♮-EXC) for v = 0. Thus, f is M♮-convex function.

The following example shows that the converse of the above lemma is not true.

Example 3.4.2. Define f : {0, 1}3 → R as follows:

f(x) =

{
2 if x = (1, 1, 1)

1 otherwise

Consider the CW-test quadruple {x, y, z, w} where

x = (0, 1, 1), y = (1, 1, 1), z = (0, 0, 0), w = (1, 0, 0).

Then, f is not a CW-ultramodular function for x = (0, 1, 1), y = (1, 1, 1) and

h = (0,−1,−1). However, one can easily see that f is an M♮-convex function.

3.5 Concluding Remarks

Let M♮, UM and UMCW denote the classes of M♮-convex functions, ultramodu-

lar functions and CW-ultramodular functions, respectively. Then from the above

discussion, we conclude that on integer lattice, we have the following relation:

UMCW ⊂ M♮ ⊂ UM
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We see that if f : A ⊆ Rn → R and any two elements of A are incomparable,

that is, x � y and y � x for each x, y ∈ A then f is vacuously ultramodular. This

characteristic of ultramodular functions creates a gap between M♮ and UM.
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