
“Data Flow Based Automated Integration
Testing Framework for Object Oriented

Programs Using Evolutionary Approach”

Author

Shahzada Zeeshan Waheed

NUST201362553MCEME35413F

Supervisor
Dr. Usman Qamar

DEPARTMENT OF COMPUTER ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL

ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND

TECHNOLOGY ISLAMABAD

SEPTEMBER, 2015

“Data Flow Based Automated Integration
Testing Framework for Object Oriented

Programs Using Evolutionary Approach”

Author

Shahzada Zeeshan Waheed

NUST201362553MCEME35413F

A thesis submitted in partial fulfillment of the

requirements for the degree of

MS (Computer Software Engineeing)

Thesis Supervisor
Dr. Usman Qamar

Thesis Supervisors Signature:——————————————

DEPARTMENT OF COMPUTER ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL
ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND
TECHNOLOGY ISLAMABAD

Author’s Declaration

I certify that this research work titled “Data Flow Based Automated Integration
Testing Framework for Object Oriented Programs Using Evolutionary Approach” is my
own work. The work has not been presented elsewhere for assessment. The material that
has been used from other sources it has been properly acknowledged / referred.

Shahzada Zeeshan Waheed
NUST201362553MCEME35413F

Dated:

Language Correctness Certificate

This thesis has been read by an English expert and is free of typing, syntax, semantic,
grammatical and spelling mistakes. Thesis is also according to the format given by the
university.

Shahzada Zeeshan Waheed
NUST201362553MCEME35413F

Signature of Supervisor

Copyright Statement

Copyright in text of this thesis rests with the student author. Copies (by any process)
either in full, or of extracts, may be made only in accordance with instructions given by
the author and lodged in the Library of NUST College of E&ME. Details may be obtained
by the Librarian. This page must form part of any such copies made. Further copies (by
any process) may not be made without the permission (in writing) of the author.

The ownership of any intellectual property rights which may be described in this thesis
is vested in NUST College of E&ME, subject to any prior agreement to the contrary, and
may not be made available for use by third parties without the written permission of the
College of E&ME, which will prescribe the terms and conditions of any such agreement.

Further information on the conditions under which disclosures and exploitation may
take place is available from the Library of NUST College of E&ME, Rawalpindi.

Acknowledgements

I would like to thank Almighty Allah for His constant grace showered on me and His
increasing gift of knowledge and strength that has relentlessly prevailed my life through
the entire thesis work. I express my sincere thanks to my thesis advisor Dr Usman Qamar
(Assistant Professor CEME, NUST,Islamabad) for guiding me right from the inception
till the successful completion of the project. I sincerely acknowledge him for providing
me valuable guidance, support for literature, critical reviews of research and the report
and above all the moral support he had provided me in all stages of my work. I would
also like to thank Dr. Saad Rehman , Dr. Wasi Haider and Dr. Rehan Hafiz for being
on my thesis guidance and evaluation committee.

I am also thankful to my wife and whole family for their support and encouragement. I
wish to acknowledge my great debt to all of them whose ideas and contribution influenced
me to complete the thesis work.

Dedicated to my exceptional parents, adored siblings and
supportive wife whose tremendous support and cooperation led

me to this wonderful accomplishment

Abstract

Software is widely used technology of this era. Applications are being developed, solving
tasks ranging from simple calculations to complex banking transactions and so on. Use
of software in critical systems leaves no space for even simple errors which can lead to
sever financial loss or threat to human life. Software must be well tested to verify its
functioning. Manual testing is tedious and time consuming job. Object oriented programs
use classes and their interactions to perform tasks. Integration testing requires to test
the interfaces. Path explosion make it worst to test the integration of classes. Small
work done in integrated test case generation of OO programs. Coupling criteria is used
for generation of automated test cases in proposed approach. Search space is reduced
by selecting only coupling methods that are directly involved in integration. Objects
must be in proper state before testing process started. Further def-use analysis helps in
achieving the desired object states for proper interfaces testing, representing methods in
intermediate tree. Method sequences are generated considering data flow of involved state
variables. Test can’t be accomplished without proper input data. We propose a fitness
function for test data generation considering coupling path coverage. Genetic algorithm
is used to optimize the solution based on proposed fitness function. Eleven randomly
selected project are used from SF100 (Software Testing Benchmark) to show the strength
of proposed approach. Results showed relatively high coverage as compared to random
testing.

Contents

Page

1 Introduction 1
1 Motivation . 1

1.1 Problem statement . 2
1.2 Objective and Contribution . 2

2 Outline . 2

2 Background 3
1 Object Oriented Software . 3

1.1 Code Reusability . 3
1.2 Encapsulation . 3
1.3 Abstraction . 4
1.4 Design Benefits . 4
1.5 Software Maintenance . 4
1.6 Properties . 4

1.6.1 Inheritance . 5
1.6.2 Composition Vs Aggregation 5

2 Class . 5
2.1 Polymorphism . 7

3 Software Testing 8
1 Levels of Testing . 9

1.1 Black Box Testing . 10
1.2 White Box Testing . 10
1.3 Grey-box testing . 10

2 Testing techniques . 10
2.1 Specification Based Testing . 10
2.2 Code Based Testing . 12
2.3 Fault Based Testing . 14

3 Object Oriented Testing . 15
3.1 Object Oriented Unit testing . 15
3.2 Object Oriented Integration testing 16

4 Search Based Software Testing . 16
5 Genetic Algorithm . 17

4 Literature Review 20
1 Test Case generation . 20
2 Test Data generation . 21

v

2.1 Dynamic symbolic execution . 24
3 Search Based Techniques . 24

5 Methodology 29
1 Automated Test Case Generation . 30
2 Test Data Generation . 35

2.1 Coupling Path . 35
2.2 Fitness Function . 36

6 Experimentation and Case Study Analysis 40
1 Introduction . 40

1.1 Case Study and results . 42
1.2 Test Cases Validations . 49

2 Results Discussion . 56

7 Conclusion 57
1 Conclusion and Future Research Plan 57

vi

List of Figures

2.1 Encapsulation . 4
2.2 Types of Inheritance . 5
2.3 Example of Class . 6

3.1 Levels of testing . 9
3.2 Class Partitioning . 11
3.3 Fish Bone Diagram . 12
3.4 Data Flow Coverage . 13
3.5 Random Search . 17
3.6 Diversity . 19
3.7 Single Point Crossover . 19

5.1 Research Focus . 29
5.2 Algorithm for Method Sequence Generation 31
5.3 Algorithm for Tree Generation . 31
5.4 Coupling Tree . 32
5.5 Cyclic Loop . 33
5.6 Flow Chart (Test Case generation) . 34
5.7 Coupling Path in OO Program . 35
5.8 GA Flow . 38

6.1 Tool Architecture . 41
6.2 Intermediate Tree . 45
6.3 Intermediate Tree . 47

vii

List of Tables

4.1 Distance Details . 22
4.2 GA Parameters Used in Testing . 28

5.1 Branch Distance . 37
5.2 Coupling path (define-use representation) 38

6.1 GA Parameters Used for Test Data Generation 42
6.2 Coupling Paths(divide(–)) . 49
6.3 Coupling Paths (mult(–)) . 49
6.4 Test Projects Details . 50
6.5 Test Cases . 50
6.6 Test Coverage . 51

viii

Chapter 1

Introduction

Software testing is the process of identifying the defects and ensuring the quality of the
software. There are two types of testing, white box testing and black box testing. In
black box testing softwares inner details are hidden. Input and expected outputs values
are considered in black box testing for testing functionality. But white box testing tests
the internal structure of the system. Coverage criteria like branch coverage, statement
coverage and decision coverage etc. can be used for white box testing. Testing can be
performed in unit, integration or system level. Software testing can only be achieved
with the help of proper data. However, doing this manually is a difficult task due to the
presence of huge number of predicate nodes in the module. Test data generation in code
based testing, is the process of identifying a set of test data, which satisfies the given
testing criterion. Up till now most of the automated testing approaches deals with the
unit tests. Small work done in the area of automated integration testing. Especially
in object oriented program automated test generation for integration testing is difficult
task. At integration level, the variables are passed as arguments to other components and
variables change their names; also multiple paths are executed from different components
to ensure proper functionality. Search based software engineering can be used for testing
software oriented problems using evolutionary approach.

1 Motivation

Testing is important to ensure the software quality at different levels of software develop-
ment. Early identification of bugs saves the cost of redoing. Object oriented programming
is most widely used programming approach. It attempts to provide a model for program-
ming based on objects. At integration level, difficulty increase; also multiple paths are
executed from different components to ensure proper functionality. There is a need for a
framework to test the object oriented programs at integration level. Test cases in this case
are method sequences leading to integration. Objects must be in proper state, before test-
ing to be performed. Proper methods sequence calls helps to achieve it. Manual testing
is a tedious job so there is a need for efficient framework to test object oriented program
at integration level that covers both method sequence and the test data generation.

1

1.1 Problem statement

Software testing is active field of research. Manual testing is a tedious job.Research fo-
cus is moved towards automated testing to save resources and time. In Object oriented
integration testing, classes interact with each other leads to path explosion. There is
no approach available for automated test case generation of OO programs covering inte-
gration criteria. Test cases are accepted from user in approach proposed by Khan and
Nadeem (2014). Deciding for suitable coverage criteria is also a challenging task. There
is a need for framework to cover object oriented integration testing, generating test cases
as well as test data to accomplish the testing process.

1.2 Objective and Contribution

Here is the list of objectives and contribution that we made in area of automated software
testing.

• Setting the criteria for integration testing (coverage details)

• Automated test case generation achieving data flow coverage

• Design the fitness function for test data generation in integration testing

• Proposing the model for test data generation using evolutionary approach)

• Case study to show the significance of newly proposed approach

• Developing the prototype tool for object oriented integration testing based on pro-
posed approach.

2 Outline

Chapter 2 discusses the background. In chapter 3, we provide details about software
testing including coverage details and level of testing etc. Chapter 4 includes literature
review. We present the design and methodology of our proposed approach in chapter
5. Chapter 6 discusses the experimental setup, case study and results followed by detail
comparison of our approach with existing techniques. Finally, chapter 7 concludes this
thesis and proposes an outlook of possible extensions, modifications, and improvements
as future work.

2

Chapter 2

Background

1 Object Oriented Software

Object oriented is the paradigm which maps the real world entities into program do-
main. These objects contain data and specified behaviours. Data is normally known as
attributes or fields and behaviours are specified using methods or functions. OOSE was
developed by Ivar Jacobson in 1992 Jacobson (1992). In OO Development basic unit
for building application is known as Class. Each class represents real world entity and
serve as blueprint for objects. These objects interact with each other to perform par-
ticular task. OO programming has many advantages over procedural language like code
reusability, encapsulation, design benefits and software maintenance etc.

Class: Defines the template for the objects.
Object: Is the instance of class.
It contains data values to represent the real world entity Object is the representa-

tion of the real world entity. Properties of the objects can be categorized into following
three categories state, services and identity Orso (1998). State represents the value of
the attribute of the objects. Attributes can be primitive or user defined types. Services
are also known as methods. State of the object can only be changed through methods.
Constructor is called at the time of object creation. There can be more than one con-
structor. Arguments determine which constructor to be called. Identity is the property
of the object that separate it from other object even if both objects are in same state.

1.1 Code Reusability

It saves time and resources for doing the redundant tasks. Object oriented provides
powerful feature to reuse the code. Key idea behind the code reusability is using the
code written for specific purpose and reusing it for construction of another program or
software. In OO domain code can be reused by simply adding existing resources or reusing
it through inheritance.

1.2 Encapsulation

Encapsulation allows object to hide its data members from illegal use. Three type of
access modifiers are used for this purpose. With private modifier these attributes can
only be accessed within the same class. Protected modifier extends it to subclasses as well,

3

protected attributed can further be accessed from sub-classes. Third modifier is the public
that allows direct access to the attributes. Program can take advantage from private and
protected access modifiers to prevent other programmers from illegal tempering of the
data. Additionally object also defines how other entities will interact with it using public
methods or member functions.

Figure 2.1: Encapsulation

Object contains both data members and methods encapsulated together. Only public
interfaces are used for interaction.

1.3 Abstraction

Abstraction and encapsulation are related terms. Abstraction is used to manage the
complexity. Use of classes and objects enables to see a system as components reducing
the complexity. Programmer came to know about the inner details of the system as
development progress. It enable stakeholders to see from particular view of interest and
leaving the other details behind.

1.4 Design Benefits

It is very difficult to manage large programs. Thinking software as collection of interacting
objects make it easier to manage it when complexity is increased to the certain extend.
Planning phase benefits in improving design to cope complexity and flexible designs.

1.5 Software Maintenance

In software development we cannot resist changes. Legacy software must be maintained
and accommodate changes to adopt the new environment. We cannot simply throw the
software. In OO Design as lot of time is spent in design and development, less time is
required to maintain it.

1.6 Properties

In object oriented programming, a class objects may interact with other objects to ac-
complish required task. In OOP three type of relationships are available inheritance,

4

composition and aggregation. These relations are defined depending upon the nature of
the relation between objects.

1.6.1 Inheritance

Inheritance is a kind of relation in which one class is based on another class. Subclass
inherits the properties from the base class. This concept is same as family inheritance,
children inherits the properties from parents. This is core of reusability. Subclass can
access the attributes and properties of base class depending upon the access modifier used.
Inheritance can be single, multiple or multilevel. In single inheritance subclass inherits
the features from single base class. In multiple inheritance class can have more than one
base or super classes. Third form for inheritance is multilevel, in which inheritance can
be seen as chain. Subclass inherits properties from another subclass and so on.

Figure 2.2: Types of Inheritance

1.6.2 Composition Vs Aggregation

Composition is the relationship between classes when one class object is physically in-
cluded into another class. It is also known as has a relation. This is the strong type
of relation. Contained object cannot exist outside the container class. Car and door is
the pure example of composition. Car object compose of doors, but there is no existence
of door outside the car object. In other hand aggregation is also has a relation. But
difference between composition and aggregation is that, a contained objects has their
own identity outside the container class. Company and employees is a classic example
of aggregation. Company has employees, but employees can exist even if the company
object is destroyed.

2 Class

Object oriented programming allows to define non-primitive data types. Primitive datatypes
are defined by programming language like int, char, double, float etc. Non-primitive types
are use defined types. Class is used in defining such structural elements. Class serves as
a template and provides structure for the new data types. Object Oriented programming
use classes as building blocks. As abstract view, we can say that class has two parts:
Member variable and member functions. Member variable are the data fields and defines
the properties of that class. Data variable can be primitive or non-primitive depending
upon the requirements. A class can holds the object of another class and it depends
upon the nature of the relation between classes. Composition and aggregation concept

5

implies in this situation. Member functions shows behaviour of the class. Behaviour is
the functionality that an object can perform. As class is the mapping of real world entity,
behaviours implementation help in actual reflection of real world entity. Access modifiers
used to define the access to the resources. Interaction with class is done using public
interfaces. Methods declared as public can be directly accessed from outside the class.
Here is the example of class showing structure.

Figure 2.3: Example of Class

Fig 2.3 shows class Person having two data member height and width. This class in-
cludes one constructor to initialize default values. Class can have more than constructors,
and it is called when object is created. Class is by default private and private members
are not accessible from outside class. This Person class contains four member functions.
Information hiding is the property of object oriented program and to enforce it all data
members are kept as private. There are three type of modifiers used for defining different
level of visibility: public, private and protected. Private and protected members cant
be accessed from main function directly using class object. Protected members are only
accessible within the same class and subclasses (in case of inheritance). Public members
are directly accessible outside the class using class objects.

6

2.1 Polymorphism

Word polymorphism means multiple forms. This is the important feature of object ori-
ented programming. In OOP, it is possible to refer one type object to another type at
runtime. This is called polymorphic behaviour. This functionality can only be achieved
by overriding the specific method. Method signature include method name, parameters
and return type Smith (2015). Program decide on runtime, which method to be called
depending upon the referred class object. Even it does not require to change any code.
Polymorphism allows inherited classes to add methods with same functions but different
implementation. Late-binding keep it pending until actual method invocation. In general
there are four type of polymorphism runtime, compile time, ad-hoc polymorphism and
coercion polymorphism. Runtime polymorphism is well known type polymorphism. It
is the case in which base class reference is used to hold derived or sub classes object
on run time. As reference of the base class is used, compiler decide at runtime which
method to call. Compile time polymorphism is also known as parametric polymorphism.
Compile time polymorphism make it possible to execute same piece of code on different
data types. Templates in C++ and generic type in java are used to implement it. Ad-
hoc polymorphism is implemented through function overloading. Overloading functions
has same name but different signatures. For example plus method taking two integer
arguments returns sum of both variables whereas another function with same name but
receiving two strings will return a concatenated string. Coercion polymorphism is when
some type is implicitly converted to another type. Same object oriented concepts are
used in each programming language with slight different implementation details. As in
java there is no multiple inheritance. Instead you can achieve the same functionality
by implementing the interface. In other hand, C++ allows to use multiple inheritance.
There is no concept of pointer in java and all the object are reference variables. We are
required to assign proper memory before using it. In C++ we explicitly need to define
the destructor to release the memory but in java this is done automatically by garbage
collector. Object oriented is powerful language and due to its vast features like code
reusability, design and maintenance benefits keeping it alive and it is the best choice for
every single project now a days.

7

Chapter 3

Software Testing

Software testing is way of ensuring quality, it is the process of identifying the defects and
ensuring the quality of the software. It executes the software with intend to find defects
in it. Testing is an important phase of software development life cycle (SDLC). Testing
is a procedure that enhances the nature of programming. The objective of testing is to
discover more bugs in an orderly and powerful way. Testing can be characterized as the
procedure of checking and accepting a product item. Process validation may be performed
at the start of an existence cycle to produce the item right. Verification and validation
are two independent procedures used for quality assurance of software products.

Validation is the process of assuring the quality as software product meets the require-
ments. Validation is customer oriented. In other hand verification is process oriented.
It ensures that required process and constraints are properly imposed to produce this
product. A good quality software meets following requirements:

• Meets the prerequisites that guided its implementation and maintenance

• Meets the stakeholders requirements

• Reacts efficiently to a wide range of inputs

• Performs its capacities within the adequate time

• It is usable

• Keep running in the required constraints and provide expected behaviour

Software tester needs to check whether a given input maps to the correct output.
There are different level and approaches used to ensure the software quality. Testing ca be
done manually or automated. Manual software testing is tedious job to do Whittaker et al.
(2000). Testing invests more than 50% of the total software development cost Kao et al.
(1999). Improper testing leads to delivering of the useless product that does not meet the
specified requirement. It results in losing the business repute and valued customers. So
its worth investing in testing instead of delivering a low quality product. There are two
types of testing, white box testing and black box testing. In black box testing softwares
inner details are hidden. Input and expected outputs values are considered in black box
testing for testing functionality. But white box testing tests the internal structure of the
system. Coverage criteria like branch coverage, statement coverage and decision coverage

8

etc. can be used for white box testing. Testing can be performed in unit, integration
or system level. Software testing can only be achieved with the help of proper data.
However, doing this manually is a difficult task due to the presence of huge number of
predicate nodes in modules under test. Writing manual tests is tedious task specially
when working with the large enterprise level applications. Object oriented programming
reflects the real world entities in the programming domain. It is preferred paradigm
for developing large scale applications. It divides the system in to units that interact
with each other to perform required tasks. Reusability is the plus for using OOP, It can
be achieved by reusing a class or by inheritance. Encapsulation and information hiding
allows to combine properties and behaviours of the object into a single entity hiding its
properties and allowing interfaces to interact with other entities. Traditional techniques
for testing software includes functional testing, branch testing and statement testing.
These techniques are useful in finding defects written in procedural languages. But these
techniques cannot be applied to the OO application as it is Kao et al. (1999). Testing a
single class is relatively easy task as compared to integration testing of object oriented
software. Integration testing involves more than one units and they interact with each
other to perform a resulting task.

1 Levels of Testing

Generally there are four level of testing unit, integration, system and acceptance testing.
Unit and integration testing is performed by developers while system and acceptance
testing is done with coordination of stakeholders or users of the system. Each level

Figure 3.1: Levels of testing

involves different methodologies while assessing the quality. Testing must be performed
in each level to ensure quality. Goal of software testing is to identify defects. Role of
testing is to reveal the cases when system does not behave as expected. A successful test
is more capable of finding defects. There are three main steps involves to perform this
tasks: set of input values, determine the expected behaviour and get the actual results.
Data used to perform test is known as test data. Exhaustive testing is impossible. Testing
can only be performed to some extent. This means that there exists a trade-off between
the accuracy of the test and the number of selected data ?. Selected best input data is
more important for efficient testing.

There are three basic form of testing.

• Black Box testing

9

• White Box testing

• Grey-Box Testing

1.1 Black Box Testing

Black box testing is defined as “Black box testing (also called functional testing) is testing
that ignores the internal mechanism of a system or component and focuses solely on the
outputs generated in response to selected inputs and execution conditions” Williams
(2006). Its main focus is on functionality, testers run the program and check the output
on specified input. Black box testing is mostly done with end user.

1.2 White Box Testing

White box testing, tests the inner structure and working of the system and it is done
by developer. In this case input data is prepared to meet the specified coverage criteria.
It can be performed in each level of software testing. Paths can be tested within unit,
integrations are system level. This technique cannot be used to validate the requirements
or check unimplemented parts, instead it can only detect internal faults or design of the
system. White box test is done by the developer and it is expensive then black box
testing.

1.3 Grey-box testing

In grey-box testing, we have limited internal knowledge about the software under test.
It takes advantage of both black box and white box testing.

2 Testing techniques

Testing techniques are categorized in following four categories Orso (1998). Each tech-
nique is only capable to identify specific class of errors. Selection of testing technique is
purely problem oriented.

• Specification Based Testing

• Program Based Testing

• Fault Based Testing

• Model Based Testing

2.1 Specification Based Testing

It is also known as functional testing. Testers test the functionality according to the
requirements. It is the form of block box testing. Tester only knows the functionality
of the system, instead of internal structure. Input is mapped to the required output.
Requirements are used to drive test cases. Its purely a functionality testing and code is
not directly used for specification testing Kaner (2006). Specification can be collected
from following forms:

10

• Requirement document

• Use Cases

• Formal Descriptions

Specification of written document are the simple english statements. It is the description
of the functionalities of the system. Use cases are the interaction of the actors to the
system. It shows the system functionality with respect to the sequence of actions. Use
cases organize the functional requirements. There can be more than one scenario of the
specific action, i.e. alternate scenario. Formal specification is the mathematical descrip-
tion of the system specifications. It can also be used to provide an evidence that the
system is correctly specified expressing syntax and semantics.

Here are some common specification based testing techniques.
Equivalence Partitioning: It is also known as equivalence class partitioning. In-

stead of single point, testing should be done on each domain of the program. Input values
are used to define the partition of the system domain. Selection of test data from each
domain is more effective then selecting it using single point. Evaluating only one test
case from each class is enough to show the proper working of the system. At-least one
test case from each partition must be evaluated. This is effective way of reducing test
cases. Partitions must be selected wisely, because efficiency of the test purely depends
on the viability of the partitions. Here is example of class partitioning, where input data
is considered valid month in range of 1-12.

Figure 3.2: Class Partitioning

In above example there are three classes: One valid partition and two invalid parti-
tion. Next step is to select test input from each partitioning class. For example -10, 9,
200 is more effective to test the above scenario instead of 4, 7, 100.

Boundary Value Analysis: Boundary value analysis, tests are designed to include
values form the boundaries in a specific range. This technique uses equivalence class
partition to derive the tests. There is a boundary between each partition, and values on
the boundary are considered in this case. Sometimes its very difficult to find boundary
values. Consider example in figure 5. There are three partitioning classes and two bound-
aries between them. Data that lies on the boundaries is selected for testing in boundary
value analysis. In this case test would be 0, 1 from first partition and 12, 13 from the
second partition.

Cause Effect Graph: This is one of the black box testing technique. It is the
graphical representation of the causes linked with the effects. Causes are the input values

11

that are mapped to the effects (output). Sequence in generating the test may involves
examining the causes to find the particular effects and decision table is used to summaries
the actions. Here is structure of the cause effect diagram. It is also known as fish bone
diagram.

Figure 3.3: Fish Bone Diagram

2.2 Code Based Testing

A structural testing technique that uses code to generate tests. It is the form of white
box testing. Code based testing technique can only be considered if tester have access
to the program code. It requires the basic programming knowledge, so mostly done by
the developers. It is the verification technique, and test data is selected for adequate
coverage of internal structure. Level of coverage depends on the requirements. Coverage
criteria can be control flow based or data flow based.

Control flow Based Coverage: Criteria for this coverage is based on the control
structure of the software under test. Control flow graph shows the sequence of actions
having single starting and exit point. Here are the different coverage criteria based on
the control flow coverage:
Functional Coverage: Assures that each function in the code is executed
Statement Coverage: It assures that each statement in software under test is executed
at least once
Condition Coverage: It assures that each conditional statement is executed once
Path Coverage: It assures that each path in the program is executed at-least once.
Each condition must be evaluated both as true and false for path coverage
Combination of different coverage criteria can also be used. It is the most expensive form
of testing, increasing the coverage criteria requires more tests to evaluate it.

Data Flow base Coverage: This is most widely used technique in testing. Data
is center of attention for generating test in this form of testing. Analysis help to find

12

the flow of data and can be graphically represented i.e. Data flow diagram. Test cases
are generated by selecting a path according to the operation performed on data. Def-use
analysis is helpful in data flow testing. Code contains variables that are used to hold
data to solve a particular problem. These variable must be defined before using it.
Consider following equation

a = b + c (3.1)

In above equation a is defined, while b and c are used. Computational use also known
as C-Use is the use of variable in equation, function call or output statement. Predicate
use also known as P-Use is the use of variable in condition. Same as control flow graph,
data flow graph is used to show the flow of define use variable in code under test. Here
is the example that used three varibale x,y,z and data flow graph shows the flow of data
in this code. W. Eric uses an example to illustrate the def-use from the data flow graph
shown in figure 3.4.

Figure 3.4: Data Flow Coverage

Table in figure 3.4. shows the def, c-use and p-use of the variables use in sample code
[36].
Def-Use pair shows the line numbers in the pair where a particular variable is define and
used. Def-Clear path is the any path in the code starting from the node where x variable
is defined and ending where x variable is used, without redefinition.
Here are the formulas for the c-use coverage, p-use coverage and all-use coverage.

C UseCoverage =
CUc

(CU − CUf)
(3.2)

Where CU is total c-uses, CUc is the total c-uses covered and CUf is the total c-uses
not feasible.

13

P UseCoverage =
PUc

(PU − PUf)
(3.3)

Where PU is total p-uses, PUc is the total p-uses covered and PUf is the total p-uses not
feasible.

All UseCoverage =
(CUc + PUc)

((CU + PU)− (CUf + PUf)
(3.4)

All-Use coverage is required to be 1 for adequate test.

2.3 Fault Based Testing

Fault base testing techniques are not using code or specification for testing. Instead it
focus on the assumptions that errors are present in the code and generate similar faulty
programs to locate these error. Fault based testing determines pre specified faults in
code under test .Morell (1990). Scope of fault based testing is to generate the alter-
nate programs and distinguish it with others. FBT provides evidence that, code does
not contain any specified faults. Mutation testing is on the fault based testing techniques.

Fault Based Symbolic Execution: Symbolic execution analyse the program to find
if full coverage is obtained. Instead of actual input values, symbolic values are used for
program execution. Program reshaped containing symbols and different constrain solver
are used to find the actual values of the symbols. It is very difficult to implement sym-
bolic execution on large program due to path explosion. Some approaches uses heuristics
to find optimal path to avoid this problem Ma et al. (2011).

In Symbolic execution, instead of providing input values random symbols are used.
Consider above code example, in which value of x is read from user. Instead of providing
actual number we will assign a symbol s to x . In next line as x is being multiplied by 7,
so x become 7*s. Soling constrain depends upon the goal of testing. For example in this
case our goal is to print “grater”, so 7*s must be greater than 10. Next constraint solver
finds the values of the symbols based on path constraint.

Mutation Testing: Involves modifying the program and evaluate the tests. Muta-
tion testing uses mutation analysis to evaluate tests or generate new test cases .Ammann
and Offutt (2008). Mutants are the modified programs. Mutation testing accepts the

14

mutants and test data. This test data is used to execute the newly created mutants. Mu-
tant is said to be killed, if test cases differentiate them from original program. Mutant
operators are used for atomically generation of mutants.
Some of the mutant operators are as follows:

• Constant alteration

• Scalar variable alteration

• Arithmetic operator alteration

• Return statement alteration

• Statement deletion

• Relational operator replacement

• Change order of parameter in method call

Different open source tools are available for mutation testing, it is useful on unit
testing level.

3 Object Oriented Testing

Testing object oriented program is complex task. Though traditional testing techniques
can be used to test OO program but new concerns require additional techniques to test
OO software. OOP involves classes and objects. Objects are instances of classes. In
object oriented testing, we not only focus on input/out values but the initial and final
state of the object is also important. Class contains two parts, member variable and
member functions. These member variables cannot accessed directly, functions are used
to perform operations. It is very difficult to examine what is happening internally due
to encapsulation and information hiding. So the state of the object cannot be directly
examined.

3.1 Object Oriented Unit testing

Unit testing ensures that each unit in system works perfectly in isolation before integra-
tion began. A class is the unit of object oriented program. As compared to procedural
language testing, class testing is complex task. Unit testing of object oriented program is
not simple as running the code and providing inputs from console etc. instead it involves
writing a piece of code that call the method of class under test and checks it behaviour
based on some assumptions. These assumptions can be coverage goal or any other criteria
used for testing.
Main issues in unit testing of object oriented program are:

• Difficulty in finding which class object to test

• Deciding where to stop, what is the enough criteria for testing

• No of methods to be tested in specific class or unit

There are many approach available that deals with the unit testing of object oriented
program .Fraser and Arcuri (2011b), .Cheon et al. (2005), .Xie et al. (2004), .d’Amorim
et al. (2006).

15

3.2 Object Oriented Integration testing

Goal of integration testing to test if units are properly working together. It is the inter-
class testing technique. It ensures that communication through interfaces is done prop-
erly. They are three approach used in integration. In Big Bang Approach, all unit are
coupled together at a time. In this Aapproach, it is very difficult to maintain the test
and its results. Second is the Bottom Up approach, in which lower level components are
tested first. This is recursive process and continues until all objects are integrated and
tested together. Third is the Top Down Approach. First top level modules are integrated
together.
Issues in integration testing are as follows:

• Finding units that are involved in integration

• Method sequence generation for high coverage of inter-class testing

• Generating desired object state for integration testing

• Generation of test data to run these tests

Units working properly in isolation may cause problem in integration. Goal of integra-
tion testing to test the interfaces. manual testing is a tedious job. Automated approaches
are used instead. Generating test data is the main aim of automated techniques. Only
less work done in test generation of object oriented program due to complex nature and
method explosion Bashir and Nadeem (2009).

4 Search Based Software Testing

Search based software testing involves automation of testing process using meta-heuristic
optimization techniques McMinn (2011). Automated test data is generated using search
based techniques. ant colony, evolutionary computation, and genetic algorithms are the
common examples of optimization techniques. Roots of search based software testing
traces back to 1976 when Miller and Spooner first proposed floating point test data
generation approach based on cost function Miller and Spooner (1976). Optimization
algorithms are categorized as derivative or derivative free algorithms. Hill climbing is the
example of derivative based algorithms, is used gradient information for optimization.
But derivative free algorithms uses direct value of the fitness function. Optimization
algorithm can be deterministic or stochastic. Deterministic algorithms does not use any
randomness in finding optimal solution. So if we start at same initial point we will find the
exact one solution each time. Hill-climbing and downhill are examples of deterministic
optimization algorithms. On the other hand stochastic algorithms adds randomness and
using same initial point we will at different points. Genetic algorithm and PSO are the
good example of this type of algorithms.
Goal of most of the metaheuristics is as follows:

• These techniques guide the search process

• Explores the search space to find the optimal solution

• These algorithms are not problem specific and mostly based on approximation

16

• A fitness function is used to evaluate the solution

Fitness function is the objective function, used to assess the solutions. Fitness function
is problem oriented and efficiency of algorithm depends on it. Sometimes is not easy to
find a fitness function that fits to our situation. Good fitness function leads to good
solution.
One of the simplest form of optimization algorithm is random search.

Figure 3.5: Random Search

But is very difficult to reach at required solution with random search. There is a
need a little guidance to find the optimal solution. Figure 3.5 shows the random point
selection in input domain. There is very less probability that points are selected as
required. Solution is to use the fitness function. These fitness functions are reliable in
finding the optimal solution and being used in most of optimization algorithms. Genetic
Algorithm is found to be more effective in test data generation Ciupa and Leitner (2005),
Khan and Nadeem (2013), Bashir and Nadeem (2009), Pachauri and Srivastava (2013),
Hermadi et al. (2003).

5 Genetic Algorithm

Genetic algorithms is one the heuristic algorithm with adaptive nature. GA uses the
Charles Darwin theory of evaluation to find best solution. Competition in individuals for
the resources results in fittest solutions to survive. It is based on natural genetics to solve
optimization problem. An optimization problem can be define as finding best solution
from different available solutions.
Implementation of genetic algorithm needs:

• Genetic representation of solution

• Fitness function

Representation of genetic solution is problem specific. Each problem requires different
solution representation. Fitness function is used to evaluate the individuals. It is also
known objective function.
Following steps involves in genetic algorithm:

17

• Each individuals fitness is calculated

• Individuals with the more fitness value are considered successful

• Successful individuals are then used to produce more offspring for next generation

• Two good parents produces the child solution that better than its parents

Fitness Function: Fitness function is also known as objective function. Efficiency
of genetic algorithm purely depends on fitness function design. A good fitness function
leads to discovery of fittest solution.
Here are some examples of bench mark fitness function.

f(x) = sin(x) (3.5)

f(y) = cos(y) (3.6)

f(a + iy) =
∞∑
k=1

1

k(k + iy)
(3.7)

Individual is a candidate solution, to apply fitness function. Value calculation of
fitness function depends on the dynamics and structure of the variable.

f(x1, x2,3) = (2x1 + 1)2 + (3x2 + 4)2 + (x3 − 2)2 (3.8)

To evaluate the optimization function in equation 3.8, individual provides the values
for x1, x2 and x3. Individual can be represented in the form of vector e.g. (2, 3, 4).
Individuals are alternatively known as genes.

Population is the collection of individuals. Size of population is fixed throughout the
evaluation. Genetic algorithm is recursive process and on each iteration, some operation
are performed to produce new population.

Diversity is the property of genetic algorithm, it represents the average distance of
individuals in population. High diversity is achieved if average distance between individ-
uals is high. High diversity is required for genetic algorithm to explore the large search
space, because low diversity only explores the small region (shown in figure 3.6).

Population contains n solutions. Initial population is generated randomly. Fitness
for each individual is calculated to select the best parents for next generation. Genetic
algorithm use two operator to find optimal solution. Individuals are replaced with the
new solutions hence form new population. New solution on average have more good
solutions as compared to predecessor solution.
GA uses following three operators to complete tasks.

• Selection

• Crossover

• Mutation

18

Figure 3.6: Diversity

Selection is the process of selecting best individuals for production of next generation. It
is done by calculating the fitness of each individual based on objective function. Common
selection techniques includes roulette-wheel selection, tournament selection and trunca-
tion selection.
Crossover represents the mating technique for parents. Two individuals are chosen from
one of the selection technique. Crossover techniques helps in transferring properties of
both individuals to next off-spring. One point cross-over, two pint crossover, cut and
splice, uniform and half uniform crossover are commonly used techniques.

Figure 3.7: Single Point Crossover

Mutation operator is used to maintain the diversity. Mutation change the individual
by flipping the bits at the given rate. Mutated individual is entirely different from the
original one. Mutation rate is set to low because GA with high mutation rate loses its ad-
vantage and turns into random search. Different mutation operators are used depending
on the gene types like uniform, non-uniform, boundary or Gaussian etc.

19

Chapter 4

Literature Review

This chapter provides brief literature review on testing of object oriented programs.

1 Test Case generation

Generating test cases is the tricky part and efficiency of test purely based on the selected
test cases. This is the centre of attention for researchers from last few decades. Test case
generation techniques can be categorized in four basic approaches .Anand et al. (2013).
Model based testing, structural testing using symbolic execution, random testing and
search based testing. Symbolic execution was first used in seventies. This technique can
be applied to complex real world problems. Dynamic symbolic execution is widely used
in static and dynamic code analysis leading to test data generation. Xie et. all proposed
the framework for generating object oriented tests using symbolic execution .Kao et al.
(1999). Symbolic execution is the expensive type of program analysis. Parameters with
unspecified arguments are passed, constraints are built on that parameters and actual
inputs are used in solving these constraints.
Seeker is the state of the art approach proposed in 2011 .Ciupa et al. (2006). It uses static
and dynamic analysis to generate the test sequence based on user intend. Results showed
relatively high branch coverage. Randoop is a random test generation approach. Tests
are generated by randomly selecting method calls. Test data is also generated randomly.
This data and previously generated sequences are used for primitive and non-primitive
arguments, respectively.
The limited computational capability of older generation computers made it impossible
to symbolically execute large programs. Tool is proposed that uses the whole test suit
generation approach to generate tests for the entire testing criteria Fraser and Arcuri
(2011a). It uses mutation based assertion tests to maximize the seeded defects. It helps
to identify more defects. It uses population of candidate solution for variable number of
test cases. Test case is the sequence of method calls. Most common approach is to select
one coverage criteria at a time like statement coverage or branch coverage etc, Tonella
(2004a), Harman and McMinn (2010) uses this approach. All coverage criteria are equally
important but some are difficult to reach. Whole test suit uses optimization approach
to generate test cases for whole criteria rather than the individual goal. Whole test suit
generation uses the search based approach to generate test. Crossover and mutation are
used for generation of candidate solutions and fitness function is used to find the optimal

20

solution. Crossover is used to produce a new population based on parents and it uses
random selection for crossover position. Harman et al. (2010) propose approach for search
based test data generation pointing its significant to the oracle problem, which is the most
common problem in evaluating the results. This process continues until required solution
is found. In this case candidate solution are the variable number of method calls. Test
data is generated based on fitness function evaluation. GA is used for automated test
generation in this approach. Firstly random test cases are defined and then crossover and
mutation operators are used to optimize the solution. Crossover is used to generate child
solution from two or more parents and mutation is to inforce the diversity in the solution
by altering one or more gene values in candidate solution. Mutation probability is used as
1/3 in this approach, because in mutation three operations are performed remove, insert
and change Fraser and Arcuri (2011b). This technique lacks other coverage criteria, it
only focus on branch coverage goal. This technique is used for single class automated
testing. However complex object oriented concepts like inheritance, composition are not
focused in this paper.
Jin and Offutt proposed system for integration testing Jin and Offutt (1998). This
approach was purely for procedural language. Coupling relationships are describes in
following categories.

• Parameters coupling

• Shared data coupling

• External device coupling

This approach is extended by Alexender and Offutt for object oriented program
Alexander et al. (2000). Four types of coupling are identified for object oriented pro-
grams. This technique further used by Shoukat et. all .Khan and Nadeem (2013) for
test data generation of object oriented program. Generating the test sequence for object
oriented program is challenges task. GA is used for test data generation in this ap-
proach but test cases (test sequences) are accepted as input. Random approaches for test
sequence generation is RecGen .Maher (2004). RecGen generates test randomly. Object-
field-access information is consider for sequence generation of methods in the application.

Denaro et al. (2015) Proposed DynaFlow approach for test case generation of object
oriented programs. It concentrate on dynamic properties of object oriented program.
This technique generates inter-procedural test case used from single class. Test cases are
generated analysing method interactions. Initial test suit is generated and iteratively
improves test cases. In each iteration, new test objectives are derived based on exe-
cution traces to cover them. results shows that enhanced test cases found to be more
effective then classic testing. Failures are detected based on more interesting states and
interactions.

2 Test Data generation

Existing test data generation techniques are classified into three categories.

• Path-wise test data generation

21

• Data specification based

• Random test data generation

In this paper .Ciupa and Leitner (2005) authors proposed GA based approach for the
test data generation. Its kind of path testing approach. Manually generation of test data
is a challenges task and authors take advantage of GA to automate it.
Basic path testing is one of the structural testing approach McCabe (1976). In this
approach, it is ensured that each path is executed at least once. Cyclomatic complexity
measurement is used to find the complexity of the algorithm. It tells how many tests are
required to test it. It uses the central flow graph to find the covering criteria.
Cyclometric complexity is calculated using following formula:

V (G) = e− n + 2 (4.1)

V (g) is the minimum number of test cases required to perform testing. GA is used for
optimization solution of large complex problem.
Crossover and mutation is used by GA to provide optimal solution. Crossover is used to
select the parents that would be used to produce the next generation. It uses random
selection point for couple selection .Lin and Yeh (2001). Random generation of crossover
point for each genes, exchange first part of each gene and add them for the production
of next generation.
Mutation probability is used to state of random selected gene. It prevents GA to generate
the local extremes. Authors uses bogdam koral branch distance function to generate
fitness function. Koral expressed the branch predicate on the form of relational expression
.Korel (1990). They propose a method to represent each predicate in the form of branch
function and relation.

Table 4.1: Distance Details

This approach evaluate the branch function evaluating the branch expression like a-b,
a >b or a <b etc.
Initial population is generated randomly and each chromosome is evaluated based of the
fitness function to find the optimal test data.
Fitness function in this approach is designed based on traversal of predicate notes. They
uses the predicate evaluation to express the fitness function.

f =
1

((abs(A−B) + 0.5)2)
(4.2)

22

To avoid the result in infinity a small data values is added in this equation. This tech-
nique is evaluating the single branch basic path testing using GA. Results are impressive
38% of the test data has the higher fitness value in the range of 1 to 0.7. Results shows
that GA is more effective in test data generation as compared to random data generation.
Testing object oriented means, testing sequence of method calls on a particular object.
It requires both the target object and the arguments required for the routines. But most
important is the value of the arguments to complete the test.

• Autotest generates objects and stores it in object pool

• Decide if we need to create an object if I is not the object pool

Object creation is done by following procedure

• Choose one of the creation procedure

• Choose arguments values

• Call routines on these values

Arguments can be object or primitive types like integer, float, And boolean etc. Au-
thor suggests to use random values for the simple types. Using this approach speed up the
execution and decrease the baisness. But Korat directly set the filed without using above
procedure Boyapati et al. (2002). Providing direct values skip the fundamental concepts
of creating objects at this point. Maher (2004) proposed adaptive random testing. In
this techniques they improve the random selection criteria by spreading out the selected
values over corresponding interval. This approach cannot mapped to user defined classes
and only works for primitive data types. To counter this issue and apply this approach to
the objects, authors added randomness in object creation and approach is called object
distance .Ciupa et al. (2006). It is used in object selection based on how far one object
is from another based on object distance.
Distance can be given as weighted sum of the following factors Distance: distance b/w
their types, distance between immediate vales, fields involving references to other objects.
Test oracles are used to validate the testing procedure. In this approach pre, post and
invariant conditions are to validate the results Meyer et al. (2007). This approach is opti-
mized by adding partitioning concept in selecting object states. Objects are partitioned
into different disjoint spaces based on the states and allows automated test to pick the
objects from different spaces adding diversity in to it. Object states can be identified
by using argument-less queries. Argument-less queries return true or false based on the
criteria of that query and these are useful in selecting the object states. Autotest uses
the forward exploration procedure to identify the new abstract states that are useful in
selecting object states. Despite Auto run involves manual inspection of results, this ap-
proach showed better result over using simple random testing.
Arcuri and Fraser introduced novel approach to generate test suit satisfying coverage
criteria .Fraser and Arcuri (2011b). This technique asserts small set of assertions that
summarize the current behaviour and can be used for evaluation. According to authors
test cases can be generated automatically but main issue is the test oracle, how to validate
the results. This tool uses search based technique with following approaches.

23

• Hybrid search .Harman and McMinn (2010)

• Dynamic symbolic execution .Whittaker et al. (2000)

• Testability transformation .Ramler and Wolfmaier (2006)

Common approaches for test data generation focus on single coverage criteria. Commonly
used techniques are dynamic symbolic execution and search based techniques [5].

2.1 Dynamic symbolic execution

Dynamic symbolic execution is widely used in static and dynamic code analysis leading to
test data generation. Instead of actual inputs, symbols are used identify the valid inputs
for test data to obtain required coverage. Xie proposed the framework for generating
object oriented tests using symbolic execution .Kao et al. (1999). Botella et. all used the
dynamic symbolic approach to detect the infeasible path while generating test cases. It
saves lot of time and effort invested in the data generation for infeasible paths .Delahaye
et al. (2015). Another approach used for redundant state detection using symbolic execu-
tion .Bugrara and Engler (2013). This system is evaluated on 66 bench marks and results
showed significant improvement in both coverage and fault state detection. .Jamrozik
et al. (2012), .Cadar et al. (2011), .Xie et al. (2009), .Saxena et al. (2010) uses the some
variations of dynamic symbolic execution and produced better results in software testing
domain.

3 Search Based Techniques

Search based software testing is rooted back in 1976. Use of metaheuristic in software
testing is commonly known as Search based software testing. SBSE can be applied to
both black box and white box optimization problems. This technique is effective where
space is too large to find optimal solution. Fitness function guides the search to obtain
the best results. SBSE is applied successfully in software testing.
Tool uses the whole test suit generation approach to generate tests for the entire crite-
ria .Fraser and Arcuri (2011a). It uses mutation based assertion tests to maximize the
seeded defects. It helps to identify more defects. It uses population of candidate solu-
tion for variable number of test cases. Test case is the sequence of method calls. Most
common approach is to select one coverage criteria at a time like statement coverage or
branch coverage etc. Harman and McMinn (2010), Tonella (2004b) uses this approach.
All coverage criteria are equally important but some are difficult to reach. Whole test
suit uses optimization approach to generate test cases for whole criterias rather than the
individual goal. Whole test suit generation uses the search based approach to generate
test. Crossover and mutation are used for generation of candidate solutions and fitness
function is used to find the optimal solution. Crossover is used to produce a new pop-
ulation based on parents and it uses random selection for crossover position. Harman
.Harman et al. (2010) proposed approach for search based test data generation pointing
its significant to the oracle problem, which is the most common problem in evaluating
the results. This process continues until required solution is found. In this case candidate

24

solution are the variable number of method calls. Test data is generated based on fitness
function evaluation.

Fitness function: There are different approaches present for fitness function evalua-
tion. Author presented the branch coverage criteria generalized to remaining criteria.
Branches are expressed as control structures like if or looping conditions etc. Branch cov-
erage is satisfied if all branches are evaluated to true and false as well. Optimal solution
covers all the branches and its statements in given code.

fitness(t) = |M | − |Mt|+
∑
Bk⊂B

d(bk, t) (4.3)

Where M is the method set and Mt is the set of method executed and d represents the
branch distance. This fitness is used for selection of parents for off springs. Using branch
distance for test data generation is very common approach .McMinn (2004). Branch
distance is calculated by subtracting the actual and the required values for a variable to
evaluate a branch true or false. Bloat may occurs when very small improvement in fitness
value is made with very large and difficult solution.
GA is used for automated test generation in this purpose. Firstly random test cases are
defined and then crossover and mutation operators are used to optimize the solution.
Crossover is used to generate child solution from two or more parents and mutation is
to enforce the diversity in the solution by altering one or more values in gene values in
candidate solution. Authors used mutation probability as 1/3 in this approach because
in mutation as there operations are performed in mutation remove, insert and change
.Fraser and Arcuri (2011a).
This technique lacks other coverage criteria, it only focus on branch coverage goal. Au-
thors prove this technique for single class automated testing. However complex object
oriented concepts like inheritance, composition are not focused in this paper.

Another approach for test data generation is presented by using Boolean queries and
contracts .Liu et al. (2007). In object oriented testing, difficulty is to select the inter-
esting object that identifies bugs. If the testing units are classes then Boolean queries
are helpful in finding solution. It helps in selecting the object states and identifying test
cases. Contracts are the preconditions, post conditions and invariants. In this approach
class properties are selected based on Boolean queries and contracts. This approach is
based on black box testing, no need for implementation details. Argument-less queries
are used for identifying the object states. Object state machine is formed to record all the
states and transitions to identify the unexpected behaviour of the class under test. It is
also used to evaluate the completeness of the test suit. Acquiring the all reachable states
is challenging task. Boolean constrains solver is used in this approach. SCIStus solver is
used to extract all the object states. Next step is the pruning of these states. Simplify
tool is used for this purpose to neglect the states that does not make sense. With the
help of this tool states that are not reachable are neglected from the state set. Boolean
query coverage criteria is used for testing, which implies that this test will cover all the
reachable states identified. After selection of the test states, authors used the AutoTest
.Ciupa and Leitner (2005) approach for testing the object oriented code. Autotest is the
tool, in which test cases are generated by calling methods and test oracles are selected
from the invariant and post conditions of the contracts. If preconditions are satisfied but
post conditions are violated then it is the indication of the bug and marked as buggy

25

routine and it is the output of test. Main significance of this approach is to identify the
buggy routines based on the invariant. Manual states selection is used if some states are
not reachable.
Integration testing tests the interfaces of different components. One approach for cou-
pling based integration testing is proposed by Shaukat and Aamer .Khan and Nadeem
(2013). GA is used for test data generation in this approach. Unit testing is used prior to
the integration testing. When unit works properly their interfaces are tested integration
testing.
Evolutionary approach in test data generation is known as evolutionary testing. It in-
cludes algorithms like GA, PSO, ant-colony etc. Evolutionary algorithms are simulated
evaluation used to evaluate the candidate solutions. Candidates are assigned fitness val-
ues based on user defined evaluation criteria and function. Multiple parents are selected
to be parent based on fitness. In GA crossover and mutation operators used to create
the next level offsprings which are again assigned fitness values using same criteria. It
overwrites the weak off springs and continue this process till the user defined criteria.
This technique is based on Jin and offutts approach for integration testing .Jin and Offutt
(1998). This approach was purely for procedural language. Coupling relationships are
describes in following categories.

• Parameters coupling

• Shared data coupling

• External device coupling

This approach is extended by Alexender and Offutt for object oriented program
.Alexander et al. (2000). Four types of coupling are identified for object oriented pro-
gram. This technique further used by shoukat et all for test data generation of object
oriented program.
In integration testing, multiple test paths are identified. Mapping table for actual and
formal parameters are used facilitate the def-use analysis. In this approach coupling path
is used as input to generate test data for the given coupling path. Antecedent is the
method that defines the variable, and consequent is the method that uses this variable
.Khan and Nadeem (2013). Here coupling sequence is the path from antecedent node to
consequent node.
This approach is divided into phases.

• Accepts the test cases as input

• Generation of test data based on GA

In this approach they uses coupling variables and fitness function for integration test-
ing of object oriented program. Based on the coupling path fitness function is evaluated
for optimized test generation. Limitation to this approach is that user needs to provide
the test cases manually. These paths are used for automated test data generation. They
use fitness function proposed by Tracey et all .Tracey et al. (2000). Fitness values are
calculated based on branch predicates. These fitness values are used by GA to generate
optimal test data.

26

As we discussed in evolutionary testing, result are purely based on fitness function. Fit-
ness function pays vital role in effectiveness of the evolutionary testing. Bilal et all.
Proposed a fitness function for object oriented program considering object state as well
as coverage criteria Bashir and Nadeem (2009). Their work is based on .Baresel et al.
(2002) work, fitness function is given as follows.

fitness(t) = la approx level + (1− labranchdist) (4.4)

approxlevel = dependent− executed (4.5)

labranchdist = (

p∑
i=1

(m branch dist)i)/p (4.6)

Sate variables are not managed separately in this approach. State problem may arise
if state condition is dependent on same state variable. To avoid state problem author
proposed a methodology of keeping the objects state separate from coverage fitness.
Object state will help in finding if mutation operation is required.
So fitness is described as:

fitness(t) = (Statef itness, Coveragef itness) (4.7)

And state distance is 1- la bracnch distane.
State fitness is calculated by adding the branch distance of predicate that depends on
this state variable and dividing it with total number of branch predicates.

coverage = la(approxlevel) + (1− branchdistance) (4.8)

Branch distance of state variables is excluded from coverage fitness. Fitness zero means
no mutation is required and non-zero means mutation is required in this part Baresel
et al. (2002). Issue may arise when more than one classes are used then state fitness of
each object is calculated separately.
This fitness calculation helps to guide the evolutionary algorithm in finding better tests
and it also helps to solve object state problem. In evolutionary testing sequence of the
method calls to produce objects to be tested is challenging task. In evolutionary testing
of OO program the sequence of method calls is generated to produce objects for test.
Automated integration testing is still active research topic especially in object oriented
domain.
Here is the list of techniques using GA with parameters used Sharma et al. (2014).

27

Table 4.2: GA Parameters Used in Testing

28

Chapter 5

Methodology

Only small work is done in the integration testing of object oriented program. Saukat
Khan et all proposed coupling based approach for test data generation and used cost
function for fitness evaluation .Khan and Nadeem (2013). But there is still need to input
the coupling path to generate the tests.
Proposed technique is divided into two categories. Automated generation of test cases
leading to test data generation. This research is conducted in three steps to achieve

Figure 5.1: Research Focus

the stated goal. First step involves understanding and tailoring integration properties
for further use. Second steps involves test case generation and finally research focus is
towards test data generation.
Units must interact properly for efficient working of the system. Integration testing,
tests the interfaces to ensure the functionality. In object oriented software classes are
considered as unit. Path explosion make it difficult to test inter class functionality. This
problem is tackled by considering the coupling relation between classes.

Proposed steps for integration testing are as follows:

• Finding units that are involved in integration

29

• Method sequence generation for high coverage of inter-class testing

• Generating desired object states for integration testing

• Generation of test data to run these tests

1 Automated Test Case Generation

We used coupling based information in method selection for automated test case gener-
ation.

There are four types of coupling identified by Jin and Offutt (1998).

• Parameter coupling

• Shared data coupling

• Global coupling

• External device coupling

Parameter coupling: This type of coupling occurs when method of one class passes
the object of another class as arguments.

Shared data coupling: This type of coupling relation exists when multiple class objects
are working on the same shared data.

Global Coupling: When A and B both classes share the same global reference.

External Device Coupling: When both units or classes are dependent on same exter-
nal device.

We are neglecting the External Device Coupling at the moment and using other three
type of coupling for test sequence generation of object oriented integration testing.

Following situation can arise while looking at the classes in coupling point of view.

Argument based: when another class object is passed as arguments
Composition based: can be local (within function) or class level

Proposed algorithm uses the coupling relations to generate the variable length method
sequence to test the integration of different components.

30

Figure 5.2: Algorithm for Method Sequence Generation

We use data flow coverage criteria. Each DU path is considered in selecting method
sequence to generate the desired state for integration testing.

Figure 5.3: Algorithm for Tree Generation

Instead to generating the method sequence for branch coverage we use coupling based
data flow coverage for test case generation. It generates a Tree that contains coupling
method as root and all the possible def-use paths can be represented by the sub nodes of
that tree.
Our algorithm assumes that each unit is already tested and validated. It only requires to
test the interfaces, through which units are interacting with each other. Abstract level
steps for generating method sequence are as follows (Details are described in algorithm

31

5.2 and 5.3).

1. Accepts the classes involve in integration

2. Parse the source code and identify the coupling methods if a method is involved in
integration (As referred to coupling relation)

3. Main focus is to test these methods. But objects must be in the desired state for
proper integration testing

4. Our approach involves DU-analysis to get the predecessor methods to generate the
desired states.

5. We add coupling method as root of tree and identify the list of state variables being
used in coupling methods

6. Methods using the state variables (that are defined in coupling method) are child
nodes in test tree

7. Each child node is processed for DU-analysis to find sub nodes for each child that
contains predecessor method (recursively)

This is recursive process and output is the tree, representing method sequences with
coupling method as root. integration testing.

Figure 5.4: Coupling Tree

32

Tree representation is the output of our test sequence generation algorithm. There are
variable number of methods (nodes) involved in each test case. Root node represents the
coupling method that involved in integration and child nodes are predecessor methods
selected based on DU analysis.
Problem may occurs when SUT contains two classes A and B, suppose method a1 of class
A calls method b1 of class B and this b1 method calls the a1 in return. This scenario is
referred to as cyclic loop.

Figure 5.5: Cyclic Loop

To avoid this cyclic method calls we use weighted information with each method call.
Algorithm contains coveredMethod list which insures that no method is selected twice in
any test case. While selecting a method we increase the weight of it, knowing that this
method is now selected. Any method with weight more than one is the alarming condi-
tion that this method can be a part of cyclic loop. These weights are further analysed to
omit cyclic loops from test cases.

To generate the test cases we need to traverse the tree in the reverse order. Following
steps involve in printing method sequence from test tree.

i Get all the leave methods (methods on leave nodes)

ii For each leave node

Select leave node

Print the method name on current node

Select parent node

Repeat steps b to c until node == NULL

iii Endfor

This sequence does not include constructor, we need to further analyse and add the ob-
ject declaration for constructing the required objects to complete the test.

33

Figure 5.6: Flow Chart (Test Case generation)

Once we have enough integration test cases (method sequences) to test the object
oriented program, there is a need for input data to test it.

34

2 Test Data Generation

Test data generation in program testing, is the process of identifying a set of test data,
which satisfies the given testing criterion. Up till now most of the test data generation
approaches deals with the unit tests. There is very some work done in generating test
data in integration testing. Especially in object oriented program automated test gener-
ation for integration testing is difficult task. At integration level, the variables are passed
as arguments to other components and variables change their names; also multiple paths
are executed from different components to ensure proper functionality. Search based
software engineering is used for solving software oriented problems using evolutionary
approach. We use Genetic Algorithm for the test data for object oriented integration
testing using test cases generated in previous step. GA found to be very effective in test
data generation (list of techniques using GA are listed in table 4.2)
One we have test cases, for object oriented integration testing, next step is to execute
that tests. Test data must be prepared to successfully evaluate the test. Here we are
considering data flow based coupling path as coverage criteria.

2.1 Coupling Path

Coupling path is defined as sequence of method, in which one method define a variable
and second method use it .Ammann (2012). In object oriented programming coupling
path can be direct or indirect. In coupling path, antecedent method is the one, defining a
state variable and consequent method is using that state variable. If both antecedent and
consequent methods are same, it is called directly coupling data flow. Figure illustrate
the direct and indirect coupling data flow path.

Figure 5.7: Coupling Path in OO Program

This coupling path may exists in single method, if a state variable is being defined
and used in same method.
Consider following example to illustrate the coupling path. Using above method sequence
generation algorithm, we get the test cases. These test cases are the sequence of method
calls and good enough to test the integrated functionality of code.
Tests are in following format:

Object a, a.a1() , object b, b.b1(a)

35

In above example b1 was the coupling method and that particular test case is designed
to transform object in desired state before testing based on define-use analysis of state
variable. Coupling path for particular state variable is the sequence of statements or
methods in which a variable is defined and finally used. This information is used in
defining the fitness function for data generation to execute this test.

2.2 Fitness Function

In search based problems, solution is evaluated on fitness function. Fitness function is the
reflection of the required solution. This function is used by evolutionary algorithms to
explore the search space. For test data generation of object oriented program we propose
fitness function based on coupling path. In unit test, its enough to have statement or
branch coverage but for integration test criteria must be redefined.
Lets consider that, following annotations:

t: is the set of test cases
n: state variables of program under test
m: total methods in SUT
C: Is the set of coupling methods
Cv: is the coupling variable
Cp: is the set of coupling paths in coupling set C
b: is the branches involves in a coupling path
k: is the number of coupling path
m: is the number of branches in a specific coupling path

Fitness function is defined as:

fitnessfunction = 1− |Cpcov|
|Cp|

+
1∑k

i=1

∑m
j=1 d(bij, t) + 1

(5.1)

d is distance, value is based on the coverage achievement. d is zero if this specific
coupling path is covered otherwise branch distance is calculated. Coupling path may
involves more than one branches, so d is the sum of all branch distances. Branch distances
is calculated from following branch functions.

36

Table 5.1: Branch Distance

We based this fitness function on the function defined for unit testing in Fraser and
Arcuri (2011a). Where fitness is purely based on the methods covered in unit code under
test. New function is capable of guiding the search considering the coupling criteria.
Genetic algorithm is found to be more accurate in test data generation field. GA can be
successfully used in test data generation for integration testing of OO program. Genetic
algorithms is one the heuristic algorithm with adaptive nature. GA uses the Charles
Darwin theory of evaluation to find best solution. Competition in individuals for the
resources results in fittest solutions to survive. It is based on natural genetics to solve
optimization problem. An optimization problem can be define as finding best solution
from different available solutions.

Implementation of genetic algorithm needs:

• Genetic representation of solution

• Fitness function

Individuals are selected dynamically. Each individual is designed considering the vari-
ables being input in the target test case. Individuals are dependent on respected test
cases.
Above fitness function guide the GA to find optimal solution for test data generation.
Following steps involves in genetic algorithm:

• Individuals are selected based on test case

• Each individuals fitness is calculated

• Individuals with the more fitness value are considered successful

• Successful individuals are then use to produce more offspring for next generation

• Two good parents produces the child solution that better than its parents

• Process continues until optimal solution is found or maximum iteration reached

37

Figure 5.8: GA Flow

Individual is the set of combination of input variables that are involved in specific test
case. Individuals are selected dynamically considering the variables involved in perform-
ing test. Once individual is selected, initial values are generated randomly. Fitness of
each individual is calculated. For fitness calculation, we required to generate the coupling
paths.
Table with define-use occurrences of each of state variable helps in selecting coupling
path leading to fitness calculation. State variables may contains attributes from different
classes. State variables are organized in following format.

Table 5.2: Coupling path (define-use representation)

Table shows the summary of define and use variables with respect to methods. This
table is dynamically drawn considering the methods involved in specific test. Coupling
paths are directly gathered from given table.

38

For example:
Here is the simple test case:

Class3 obj1 ->obj1.Method1 () ->obj3.Method3 ()

In the above sequence and given define-use transition table, coupling paths are as follows.
In method1 var1 and var are being defined and in Method3 both variables are being used.
There are total two coupling paths that must be covered to ensure the coupling testing.
This information is being used in fitness function to guide the search space finding opti-
mal input data values to run the test.

39

Chapter 6

Experimentation and Case Study
Analysis

1 Introduction

This chapter introduces to case study and experimental details used for evaluation of
proposed approach. Details includes test preparation, parameter setting and achieved
results. We develop prototype tool AITT (Automated Integration Testing Tool) to test
the significance of the proposed approach. AITT is developed in java.
Basic architecture of the tool is shown in following diagram. There four basic modules
analyser, code instrumentor, test case generation, test data generation. Source code is
accepted by analyser. Analyser compiles the code for errors and identify coupling classes
and coupling methods from each coupling class. We use javassist tool to analyse the
source code.
Instrumetor module takes the coupling methods and classes and store them into internal
format. Internal format helps in further investigation on these classes and generating test
cases accordingly.
Integrated test case generator is one of the important modules in AITT. Def-use analysis
is performed prior to the generation of test cases. This analysis helpss in generating
the method sequence to achieve the object in the required state. Objects must be in
proper state to perform test properly. Def-use analysis is done for each coupling method
to generate the test case. Our focus is to generate test cases to each of the coupling
method that is involved in any type of integration. Coupling tree generator, generates
the coupling sequence based on data flow in the form of tree to generate the test cases.
Algorithm 1 and 2 discussed detailed process in previous section.

Once integration test cases is generated, then control transfers to the next module
Test Data Generator. Genetic algorithm is used to generate the test data. An opti-
mization problem can be define as finding best solution from different available solutions.
GA needs to set parameters like population size, crossover and mutation to find optimal
solution.

40

Figure 6.1: Tool Architecture

41

Here are the parameters used by GA in generating test data for object oriented inte-
gration testing.

Table 6.1: GA Parameters Used for Test Data Generation

Single population contains multiple individuals. In this problem, each individuals con-
tain the variables involved in the given test case. Individuals compute the fitness using
predefined fitness function. Each population contains multiple individuals. There is need
to decide the max limit to number of population to avoid infinite problem. Crossover
operation is use to generate the chromosomes (individuals) for next generation. It is the
process generating new child from two or more parent solutions. Crossover rate defines
how many individuals are selected for mating. It leads population to the optimal so-
lution so far (exploitation). Experiments shows 0.80 gives better results in generating
good individuals for our specific problem. While mutation maintains diversity in solution
and make sure to avoid local optima. Mutation probability allows GA to decide whether
mutate a solution or not.
Individual population is selected randomly. We set 100 as maximum population size and
50 individuals in each. GA process continues until optimal solution (test data) is found
or maximum iteration is completed.

1.1 Case Study and results

We have selected randomly 11 java projects from the SF100 a benchmark for software
testing Fraser and Arcuri (2012). We selected JIGL (Java Image and Graphics Library)
project to show the detailedS flow of our technique. JIGL is Brigham Young University’s
Java Image and Graphics Library, originally developed by Bryan Morse’s lab at BYU.
There are total 43 classes in JIGL project that provides graphic support to java program.
This project is divided into GUI, image, internal, maths and signal module.
GUI module contains six classes used for interface representation.

CloseableFrame.java: CloseableFrame allows the user to create a frame that can be
closed without exiting the program.
CloseableMainFrame.java: CloseableMainFrame allows the user to create a frame that
can be closed and exit the program. This is not possible for java.awt.Frame.
ImageCanvas.java: ImageCanvas is a class made to facilitate the displaying of a JIGL
image. ImageCanvas also easily supports a highlight box when active and a mouse drawn
selection box.
JImageCanvas.java: JImageCanvas is a SWING compatible class made to facilitate
the displaying of a JIGL image.

42

SequenceCanvas.java: Sequence Canvas is a class that handles all the appropriate
functionality of a sequence. It includes animation and a control bar for that animation.

There are 32 classes in image module. Provides classes for basic JIGL images, JIGL
histogram and other auxiliary things. The basic types of JIGL images are: BinayImage,
GrayImage, ColorImage, RealGrayImage, RealColorImage, ComplexImage. All kinds of
image classes directly or indirectly implements.

ColorImage.java: This class provides functionality on color images range from sim-
ple get pixel value, multiple, divide pixels from triplets to complex task like clip image,
add images and subtract region of interest from another image etc.

ComplexImage.java: A complex image is a set of two RealGrayImage plane: real
plane and imaginary plane. ComplexImage implements image.

Histogram.java: Histogram keeps track of histogram information for an image. The
range of histogram’s grayscale starts from min() and ends with max(). Supports only
GrayImage and RealGrayImage.

There 29 more classes in this module like phaseimage ,ROI, Operator, MIPMOP etc.
According to the sourceforge Internal module will serves as wrapper and this module is
not implemented yet.
Maths module contains nine classes and providing support for complex number, matrix
and vector.

Complex.java: This class provides support to add, subtract perform conjugates etc.
on complex numbers

Matrix.java: This class allows a programmer to create real matrices with an arbi-
trary number of rows and columns.

Vector.java: This class allows a programmer to create real vectors of an arbitrary
dimension.

ScaleMatrix.java: Class used to create the a diagonal matrix with diagonal entries
from given array

Other classes includes projection matrix, identity matrix and rotation matrix etc.
Signal module provide classes from for basic JIGL signals and other auxiliary things. Ba-
sic JIGL signals are: BinaySignal, DiscreteSignal, RealSignal, ComplexSignal. All kinds
of signals directly or indirectly implement interface.

Powersignal.java : PowerSignal takes a ComplexSignal and computes the value at
x by adding the squared real and image plane.

ROI.java: The ROI class is the Region of Interest of a JIGL Signal.

Phase signal: A phase signal is a signal which takes a ComplexSignal and computes

43

each pixel by taking the arc tangent of Imaginary plane and the Real plane.

ComplexSignal: A complex signal is a set of two RealSignal planes: real plane and
imaginary plane. Methods contains different functions to be performed on complex images
like arthimetic operation,returns magnitude of region of interest and shallow/deep copy
etc.

Vector: This class allows a programmer to create real vectors of an arbitrary dimen-
sion.

SimpleOperator: SimpleOperator is a base class that all levelOps and morph classes
derive from. SimpleOperator supports BinarySignal, DiscreteSignal, RealSignal, and
ComplexSignal.
Project contains 43 classes and 11758 reachable line of code. In our propose approach
we need to select the classes that are involved in integration for generation of coupling
test cases leading to test data generation. We selected following classes that can be in-
tegrated considering the coupling concept. Some classes are phaseSignal, complex signal,
ROI, realsignal used below.
We have selected above four classes involved in integration. Here are the list of coupling
methods in coupling classes.

Our focus is to test these coupling methods. Objects must be in proper state before
testing a specific method. Test cases are generated using the data flow analysis. Each
method is further used in generating coupling tree based on data flow of state variables.
Given a coupling method:

void divide(int, float, float,ROI) complexSignal Class method

This function is used to divide a single pixel by a value in a Region of Interest. To
test this method we first need to make objects in desired state. Here is the tree generated
considering data flow analysis. Target method is on the root node. Second level nodes
contains methods that defines state variables being used in root method. We generalize
the approach as each n level nodes contains the methods that defines one or more state
variable used in n-1 level.

44

Figure 6.2: Intermediate Tree

Tree in figure 6.2. shows the methods sequence to get desired values of state variables.
This tree is directly converted into test cases. Refer to the algorithm 2, describes the
generation of test cases from the coupling tree.
Here are the test cases generated considering above tree.

int x;
ComplexSignal $0= new ComplexSignal(x)
int x1,x2,y1,y2;
ROI $2= new ROI();
int x;
float v;
$0.setreal(x,v,$2);
int x;
Float r,i;
$0.divide(x, r, i, $2);

int x;
ComplexSignal $0= new ComplexSignal(x);
int x1,x2,y1,y2;
ROI $2= new ROI(x1, x2, y1, y2);
int x;
float v;
$0.setreal(x,v,$2);
int x;
Float r,i;
$0.divide(x, r, i, $2);

45

int x;
ComplexSignal $0= new ComplexSignal(x);
int x1,x2,y1,y2;
ROI $2= new ROI(x1, x2, y1, y2);
int x;
Float r,i;
$0.set(x,r,i,$2);
int x;
$0.divide(x, r, i, $2);

int x;
ComplexSignal $0= new ComplexSignal(x)
int x1,x2,y1,y2;
ROI $2= new ROI(x1, x2, y1, y2);
int x;
float v;
$0.setImag(x,v,$2);
int x;
Float r,i;
$0.divide(x, r, i, $2);

46

Here is the next coupling method selected for generation of test cases:

public Signal copy() complexSignal Class method

This function makes copy of the signal and returns the mutated object. This functions
is selected as a coupling method, because RealSignal object is being used in it. To test
this method we need to generate the method sequences considering the data flow of state
variables. Tree in figure 6.3. shows the methods sequence to get desired values of state

Figure 6.3: Intermediate Tree

variables. This tree is directly converted into test cases.
Here are the test cases generated considering above tree.

Once we have test cases next step is to generate test data using proposed fitness func-
tion. This fitness function is used by genetic algorithm to generate test data.

int x,y;
Matrix $0= new Matrix(x,y)
Vector $1=Vector()
double d[x][y];
$0.assign(d);
$0.mult($1);

int x,y;
Matrix $0= new Matrix()
double d[x][y];
$0.assign(d);
$0.mult($1);

47

Matrix $0= new Matrix()
int x[];
Vector $1=Vector(x)
Matrix $2;
int i,j;
double c;
$0.assign($2);
$0.set(i,j,c);
$0.mult($1);

Matrix $0= new Matrix()
int x[];
Vector $1=Vector(x)
double[x][y] b;
int i,j;
double c;
$0.assign(b);
$0.set(i,j,c);
$0.mult($1);

48

1.2 Test Cases Validations

In above example we have selected one coupling method divide that was involved in
integration. Tree represents the sequence of method calls, considering in each way a
method can be called. There is not just one test case for each coupling method. Number
of test cases depends on the dynamics of data flow. Tree helps in generation of diverse
sequences for each coupling methods.
Test cases cover 100 % coupling method, as diversity in test cases generation helps in
achieving full coverage. In integration testing our main focus is to test the interfaces,
that are directly involved in integration. Overall overage can be calculated by ratio of
coupling method with uncovered methods.

There are total 68 methods in both classes ComplexSignal and ROI. Every method
is called at-least once accept 11 methods, during proposed coupling focusing on coupling
methods. So overall coverage is:

59/68*100= 76 %. We can conclude that, in this particular example our approach
provides 100% coverage for integration testing but overall 76 % coverage is achieved for
classes testing.

Table 6.2: Coupling Paths(divide(–))

Table 6.2 is used in fitness evaluation. Considering the test cases there are two
coupling paths that must be executed for 100% coupling path coverage.

Table 6.3: Coupling Paths (mult(–))

49

SF100 is the benchmark for software testing. We have randomly selected 11 projects
for evaluation of our approach.

Table 6.4: Test Projects Details

Table 6.5: Test Cases

50

Table 6.6: Test Coverage

51

Here are the ranges of the fitness function for each of the test project. GA parameters
used are defined in table 6.1.

Jiggler Project:

Caloriecount Project:

52

Gangup Project:

Fixsuite Project:

a4j Project:

53

Corina Project:

Openhre Project:

Bpmail Project:

54

Petsoar Project:

Freemind Project:

Gfarcegestionfa Project:

55

2 Results Discussion

Case study shows the step by step working of proposed framework. Jigl project is ran-
domly selected for this purpose. Coupling tree shows the sequences of method calls to
generate the test cases based on data flow analysis. This will get the objects in desired
states before the further investigation is carried out. Code coverage is used to represent
the degree to which a source code of program is tested. Path coverage criteria is used in
this approach. Test cases are generated using data flow analysis of state variable consid-
ering only coupling methods. Proposed technique is evaluated on 11 randomly selected
different project selected from SF 100. SF 100 is the bench mark projects available for
software testing. It includes JAVA projects, mostly provides library support for further
use. Coverage of each project is calculated using total coupling path identified and path
covered by the test data generated using proposed fitness function. Overall more than 75
% coverage is achieved except four projects, having coverage less than 75%. Fitness values
for each project is categorised in four different categories. Fitness value zero means that
every coupling path is covered and one represents that not even a signal path is covered
for specific test case. There is no criteria available for integrated test case generation.
Most of the test cases generated randomly are not executable. And test data generated
randomly without fitness function leads to low coverage as compared to our approach.
Early proposed techniques were based on other coverage criteria i.e. statement, branch
coverage etc or targeting unit level test case generation. Results clearly indicates that
proposed approach is suitable when testing focus is integration level.

56

Chapter 7

Conclusion

1 Conclusion and Future Research Plan

In this thesis we presented a framework for integration testing of object oriented program.
Our research is divided into two main portions, test case generation and test data gen-
eration. Testing can be performed in unit, integration or system level. Coverage based
testing of object oriented program is intensive task due to path explosion. Lot of work
done in unit testing of object oriented program. Automated integration testing is still
active research area these days. We proposed algorithm for integrated test case gener-
ation. This algorithm is based on coupling relation of object oriented program. Most
of the techniques uses statement coverage or branch coverage in testing of OO program.
But this coverage criteria is suitable for unit testing. Once code is properly tested at
unit level, there is no need to test each branch at integration level too. Selected coupling
variables make it possible to only consider methods involves in integration. Coupling
tree is generated for each selected methods considering def-use pairs. Final test cases are
directly generated form proposed coupling tree. Test cases are further used to automat-
ically generate input data used to execute the tests. Coupling path is uses as coverage
criteria in this approach. Optimization algorithms work on fitness functions to find so-
lution. Genetic algorithm is found more effective in test data generation. Experiments
shows that our designed fitness function is capable enough to generate the data. Proposed
fitness function is using coupling path and branch distance to guide the search for better
coverage. We developed prototype tool in java for evaluation of proposed approach. We
use 11 randomly selected projects from SF100 and average coverage is more than 80 per-
cent for selected projects. Jigl project is selected as case study and step by step working
of proposed algorithm shown including results. Proposed integration testing approach
is only tested on java project, there is still need to evaluate this approach on programs
written in other programming languages. Test oracles are used to evaluate the responses
of software under test on specific test cases. Test data generation approach lacks the
generation of correct strings used as input data. Due to large search space, it is seems
difficult to generate the required string. This approach instead uses dummy strings to
run the test. Further investigation is required crossover and mutation of strings with
variable length. Our work is not including generation of test oracles. Generation of test
cases in JUNIT compatible form and test oracles are left as future work.

57

References

Alexander, R. T. et al. (2000). Criteria for testing polymorphic relationships. In Software
Reliability Engineering, 2000. ISSRE 2000. Proceedings. 11th International Symposium
on, pp. 15–23. IEEE.

Ammann, Paul, J. O. (2012). Introduction to software testing. Cambridge University
Press.

Ammann, P. and J. Offutt (2008). Introduction to software testing. Cambridge University
Press.

Anand, S., E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen, W. Grieskamp, M. Harman,
M. J. Harrold, P. McMinn, et al. (2013). An orchestrated survey of methodologies
for automated software test case generation. Journal of Systems and Software 86 (8),
1978–2001.

Baresel, A., H. Sthamer, and M. Schmidt (2002). Fitness function design to improve
evolutionary structural testing. In GECCO, Volume 2, pp. 1329–1336.

Bashir, M. B. and A. Nadeem (2009). A state based fitness function for evolutionary
testing of object-oriented programs. In Software Engineering Research, Management
and Applications 2009, pp. 83–94. Springer.

Boyapati, C., S. Khurshid, and D. Marinov (2002). Korat: Automated testing based
on java predicates. In ACM SIGSOFT Software Engineering Notes, Volume 27, pp.
123–133. ACM.

Bugrara, S. and D. R. Engler (2013). Redundant state detection for dynamic symbolic
execution. In USENIX Annual Technical Conference, pp. 199–211.

Cadar, C., P. Godefroid, S. Khurshid, C. S. Păsăreanu, K. Sen, N. Tillmann, and
W. Visser (2011). Symbolic execution for software testing in practice: preliminary
assessment. In Proceedings of the 33rd International Conference on Software Engineer-
ing, pp. 1066–1071. ACM.

Cheon, Y., M. Y. Kim, and A. Perumandla (2005). A complete automation of unit testing
for java programs.

Ciupa, I. and A. Leitner (2005). Automatic testing based on design by contract. In
Proceedings of Net. ObjectDays, Volume 2005, pp. 545–557. Citeseer.

Ciupa, I., A. Leitner, M. Oriol, and B. Meyer (2006). Object distance and its application
to adaptive random testing of object-oriented programs. In Proceedings of the 1st
international workshop on Random testing, pp. 55–63. ACM.

58

d’Amorim, M., C. Pacheco, T. Xie, D. Marinov, and M. D. Ernst (2006). An empirical
comparison of automated generation and classification techniques for object-oriented
unit testing. In Automated Software Engineering, 2006. ASE’06. 21st IEEE/ACM
International Conference on, pp. 59–68. IEEE.

Delahaye, M., B. Botella, and A. Gotlieb (2015). Infeasible path generalization in dynamic
symbolic execution. Information and Software Technology 58, 403–418.

Denaro, G., A. Margara, M. Pezze, and M. Vivanti (2015). Dynamic data flow testing
of object oriented systems. In 37th International Conference on Software Engineering,
ICSE, Volume 15.

Fraser, G. and A. Arcuri (2011a). Evolutionary generation of whole test suites. In Quality
Software (QSIC), 2011 11th International Conference on, pp. 31–40. IEEE.

Fraser, G. and A. Arcuri (2011b). Evosuite: automatic test suite generation for object-
oriented software. In Proceedings of the 19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of software engineering, pp. 416–419. ACM.

Fraser, G. and A. Arcuri (2012). Sound empirical evidence in software testing. In Pro-
ceedings of the 34th International Conference on Software Engineering, pp. 178–188.
IEEE Press.

Harman, M., S. G. Kim, K. Lakhotia, P. McMinn, and S. Yoo (2010). Optimizing for the
number of tests generated in search based test data generation with an application to
the oracle cost problem. In Software Testing, Verification, and Validation Workshops
(ICSTW), 2010 Third International Conference on, pp. 182–191. IEEE.

Harman, M. and P. McMinn (2010). A theoretical and empirical study of search-based
testing: Local, global, and hybrid search. Software Engineering, IEEE Transactions
on 36 (2), 226–247.

Hermadi, I., M. Ahmed, et al. (2003). Genetic algorithm based test data generator.
In Evolutionary Computation, 2003. CEC’03. The 2003 Congress on, Volume 1, pp.
85–91. IEEE.

Jacobson, I. (1992). Object oriented software engineering: a use case driven approach.

Jamrozik, K., G. Fraser, N. Tillmann, and J. De Halleux (2012). Augmented dynamic
symbolic execution. In Automated Software Engineering (ASE), 2012 Proceedings of
the 27th IEEE/ACM International Conference on, pp. 254–257. IEEE.

Jin, Z. and A. J. Offutt (1998). Coupling-based criteria for integration testing. Software
Testing Verification and Reliability 8 (3), 133–154.

Kaner, C. (2006). Exploratory testing. In Florida Institute of Technology, Quality As-
surance Institute Worldwide Annual Software Testing Conference, Orlando, FL.

Kao, G., M. Tang, and M. Chen (1999). Investigating test effectiveness on object oriented
software-a case study. Proceedings of Twelfth Annual International Software Quality
Week .

59

Khan, S. A. and A. Nadeem (2013). Automated test data generation for coupling based
integration testing of object oriented programs using evolutionary approaches. In Infor-
mation Technology: New Generations (ITNG), 2013 Tenth International Conference
on, pp. 369–374. IEEE.

Khan, S. A. and A. Nadeem (2014). Automated test data generation for coupling based
integration testing of object oriented programs using particle swarm optimization (pso).
In Genetic and Evolutionary Computing, pp. 115–124. Springer.

Korel, B. (1990). Automated software test data generation. Software Engineering, IEEE
Transactions on 16 (8), 870–879.

Lin, J.-C. and P.-L. Yeh (2001). Automatic test data generation for path testing using
gas. Information Sciences 131 (1), 47–64.

Liu, L. L., B. Meyer, and B. Schoeller (2007). Using contracts and boolean queries to
improve the quality of automatic test generation. In Tests and Proofs, pp. 114–130.
Springer.

Ma, K.-K., K. Y. Phang, J. S. Foster, and M. Hicks (2011). Directed symbolic execution.
In Static Analysis, pp. 95–111. Springer.

Maher, M. J. (2004). Advances in computer science-asian 2004.

McCabe, T. J. (1976). A complexity measure. Software Engineering, IEEE Transactions
on (4), 308–320.

McMinn, P. (2004). Search-based software test data generation: a survey. Software
testing, Verification and reliability 14 (2), 105–156.

McMinn, P. (2011). Search-based software testing: Past, present and future. In Software
testing, verification and validation workshops (icstw), 2011 ieee fourth international
conference on, pp. 153–163. IEEE.

Meyer, B., I. Ciupa, A. Leitner, and L. L. Liu (2007). Automatic testing of object-oriented
software. Springer.

Miller, W. and D. L. Spooner (1976). Automatic generation of floating-point test data.
IEEE Transactions on Software Engineering (3), 223–226.

Morell, L. J. (1990). A theory of fault-based testing. Software Engineering, IEEE Trans-
actions on 16 (8), 844–857.

Orso, A. (1998). Integration testing of object-oriented software. Politecnico di Milano,
Milano, Italy .

Pachauri, A. and G. Srivastava (2013). Automated test data generation for branch testing
using genetic algorithm: An improved approach using branch ordering, memory and
elitism. Journal of Systems and Software 86 (5), 1191–1208.

Ramler, R. and K. Wolfmaier (2006). Economic perspectives in test automation: balanc-
ing automated and manual testing with opportunity cost. In Proceedings of the 2006
international workshop on Automation of software test, pp. 85–91. ACM.

60

Saxena, P., D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song (2010). A
symbolic execution framework for javascript. In Security and Privacy (SP), 2010 IEEE
Symposium on, pp. 513–528. IEEE.

Sharma, C., S. Sabharwal, and R. Sibal (2014). A survey on software testing techniques
using genetic algorithm. arXiv preprint arXiv:1411.1154 .

Smith, B. (2015). Object-oriented programming. In Advanced ActionScript 3, pp. 1–23.
Springer.

Tonella, P. (2004a). Evolutionary testing of classes. In ACM SIGSOFT Software Engi-
neering Notes, Volume 29, pp. 119–128. ACM.

Tonella, P. (2004b). Evolutionary testing of classes. In ACM SIGSOFT Software Engi-
neering Notes, Volume 29, pp. 119–128. ACM.

Tracey, N., J. Clark, K. Mander, and J. McDermid (2000). Automated test-data gener-
ation for exception conditions. Software-Practice and Experience 30 (1), 61–79.

Whittaker, J. et al. (2000). What is software testing? and why is it so hard? Software,
IEEE 17 (1), 70–79.

Williams, L. (2006). Testing overview and black-box testing techniques. URL:
http://agile. csc. ncsu. edu/SEMaterials/BlackBox. pdf (accessed: 05/08/2008).

Xie, T., D. Marinov, and D. Notkin (2004). Rostra: A framework for detecting redundant
object-oriented unit tests. In Proceedings of the 19th IEEE international conference on
Automated software engineering, pp. 196–205. IEEE Computer Society.

Xie, T., N. Tillmann, J. De Halleux, and W. Schulte (2009). Fitness-guided path ex-
ploration in dynamic symbolic execution. In Dependable Systems & Networks, 2009.
DSN’09. IEEE/IFIP International Conference on, pp. 359–368. IEEE.

61

	Introduction
	Motivation
	Problem statement
	Objective and Contribution

	Outline

	Background
	Object Oriented Software
	Code Reusability
	 Encapsulation
	 Abstraction
	 Design Benefits
	 Software Maintenance
	 Properties
	 Inheritance
	Composition Vs Aggregation

	Class
	 Polymorphism

	Software Testing
	Levels of Testing
	Black Box Testing
	 White Box Testing
	Grey-box testing

	Testing techniques
	 Specification Based Testing
	 Code Based Testing
	Fault Based Testing

	Object Oriented Testing
	Object Oriented Unit testing
	Object Oriented Integration testing

	Search Based Software Testing
	Genetic Algorithm

	Literature Review
	Test Case generation
	Test Data generation
	Dynamic symbolic execution

	Search Based Techniques

	Methodology
	Automated Test Case Generation
	Test Data Generation
	Coupling Path
	Fitness Function

	Experimentation and Case Study Analysis
	Introduction
	Case Study and results
	Test Cases Validations

	Results Discussion

	Conclusion
	 Conclusion and Future Research Plan

