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Abstract

In this project, we investigate and investigate methods in order to detect violence to

totally dismantle the current situation and foresee upcoming trends in investigation of

violence. We would offer a complete evaluation of video violence detection challenges

outlined in cutting-edge research in our systematic research. This work will explore

and identify any outstanding concerns in the current situation or subject, as well as

technologically advanced methodologies in video violence detection, data sets for con-

structing and training video in real time violence frameworks for detection, and debates

and identification of outstanding issues. We analyzed 80 research papers chosen among

154 after the Phases of identification, screening, and eligibility in this study. We starts

with rapidly explaining the fundamental concept and challenges of video-based vio-

lence detection; next, we divide current solutions based on their methodologies, they

are divided into three categories. There are traditional methodologies, end-to-end deep

learning-based methods, and machine learning-based ways. Finally, we offer and assess

video-based violence identification algorithms for testing their efficacy. Furthermore, we

describe the open difficulties in video violence identification and assess its future trends.

Hockey Fight videos data set has binary classes such as violence and no violence with

1000 videos data, where 800 video’s for training and 200 video’s for testing the model

performance. The process of extracting features, classification, and pre-processing pro-

cess are the processes that were used in this study. Classification with a success of

93.7 percent accuracy was produced by VGG16-LSTM, which outperformed 93.4 per-

cent from VGG16-LSTM, 92.3 percent from EfficientNetB0-GRU, 92.1 percent from

VGG19-GRU, 90.9 percent from VGG19-LSTM, 90.4 percent from InceptionV3-LSTM,

90 percent from EfficientNetB0-LSTM, 89.1 percent from InceptionV3-GRU, 83.9 per-

cent from Resnet50-LSTM and 82.6 percent from Resnet50-GRU for the classification

of Hockey fight videos. According to other evaluation performances such as sensitivity,
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specificity, f1-score, precision, recall, and loss. VGG16-GRU outperforms all the other

methods used in this research. The findings of this research indicate Neural Network

models specifically VGG16-GRU show significant potential for accurately and efficiently

detecting violence.

Keywords: Violence detection, Machine learning, Deep learning, Computer vision, Ar-

tificial intelligence, Video features, Data sets
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Chapter 1

Introduction

Public violence has substantially escalated in recent years. Both in the streets and high

schools. As a result, surveillance cameras are now widely used. This has made it easier

for the government to recognize these incidents and take appropriate action. However,

practically all systems now rely on manual video inspection to find such events, which is

essentially wasteful. Therefore, a system that can automatically monitor and recognize

the surveillance videos is essential. Large data sets and processing power have enabled

the development of a range of deep learning algorithms, resulting in a paradigm change

Computer vision is a field that is growing in popularity. To do so we handle issues

including object detection, recognition, tracking, and action, various strategies have

been created.

Surveillance and anomaly detection have grown increasingly as crucial as the video data

volume is increased significantly. Such anomalous occurrences are unusual in compari-

son to normal activities. As a result, in order to avoid work and duration loss, building

automated video surveillance systems have emerged to detect anomalies as necessary. It

is difficult to detect abnormalities in films because term "anomaly" is frequently vague

and defined poorly.They vary substantially based on settings and situations where they

take place.Riding a bike on a regular path is one example of ordinary, nevertheless it

should be emphasized that doing so in a walk-only lane is unusual. Anomalous behavior

is distinguished by unequal internal occlusion, which is difficult to explain. Now general

overview of what the proposed thesis entails. Remember that it is not simply a descrip-

tion of the contents of each part.Moreover, video data encoding and modeling are more

complex due to its high dimensionality, resolution, noise, and rapidly changing events

1



Chapter 1: Introduction

and interactions. According to Yazdi and Bouwmans (2018), further changes in lighting

,perspective adjustments, camera motions, and so on are among the difficulties. Vio-

lence identification is a critical component of video based violence detection. Because

of rise in security concerns around world, monitoring via video cameras individually has

become critical, and early discovery of these violent behaviors may considerably reduce

the hazards. The primary goal of a system for detecting violence is to detect anoma-

lous conduct that falls under the category of violence. When the behavior of an event

differs from what is expected, it is labeled violent. Such abnormalities include some-

one punching, kicking, pulling another person, and so on. An item at an odd location,

strange patterns of movement such as disordered movement, sudden movements, and

All of these signs point to violent situations. Because human supervision for full video

stream is not feasible due to labor’s repetitious nature and time required, real-time au-

tomatic detection of violent occurrences is critical to preventing such situations. Many

researchers investigated various strategies for improving performance in detecting vio-

lence. This thesis examines and addresses numerous strategies for identifying violence

from surveillance camera recordings using a complete review of the literature. The main

objective of this research is to give a comprehensive examination of strategies for identi-

fying violence. Various strategies for identifying aggressiveness and violence conduct in

video have been created over last decade. These methods must be categorize, examined,

and summarized.

1.1 Background

In the seventeenth century, when machine learning first arose, Pascal and Leibniz created

computers that could simulate human addition and subtraction.In the contemporary

period, IBM’s Arthur Samuel created the phrase "machine learning" and proved that

checkers could be taught to computers.Rosenblatt then created the perceptron, one

of the first neural network topologies, in 1958. Werbos’ invention of the multilayer

perceptron (MLP) in 1975 was a significant step forward. In 1986, Cortes and Vapnik

developed support vector machines, and Quinlan developed decision trees. Deep learning

algorithms with distributed multilayered learning have recently been created.

In the 1950s, the assumption that machines could display human comprehension gave rise

to the term "artificial intelligence." According to Jerrold S. Maxmen, artificial intelligence

2



Chapter 1: Introduction

(AI) will usher in the twenty-first century. ML, a subcategory of artificial intelligence

(AI), exemplifies the empirical acquisition associated with human cognition and may be

studied and improved using computer algorithms. The computer may take input and

estimate a result through repeats and algorithm tweaks. As a result, in order to increase

its ability to foresee future events, ground truth is constantly adjusted while attempts

are made to compare the results with the algorithm’s outputs. Machine learning helps

with data interpretation in numerous fields, including research, medicine, the economics,

and policy making. Machine learning is implemented using equations from mathematics,

statistical analysis, and computer programming. Machine learning is classified as follows:

1. supervised machine learning, and 2. unsupervised machine learning.

Several strategies for analyzing data are referred to as "statistical learning." These tools

are classified as either supervised or unsupervised. The overarching supervised goal of

statistical learning is to construct a statistical model capable of calculating or anticipat-

ing an output based on one or more inputs. This type of issue affects a wide number

of professions, including business, medicine, astrophysics, and policymaking. Although

unsupervised statistical learning has no supervised outputs, we can nonetheless draw

correlations and patterns from such data.

1.2 Machine learning

Within artificial intelligence (AI) and computer science, machine learning leverages data

and algorithms to simulate human learning processes, progressively increasing its preci-

sion. Machine learning is a large field that includes a variety of academic specialties, such

as information and technology, statistics, probability, artificial intelligence, psychology,

neurology, and many more.Machine learning can be used to swiftly solve problems by

building a model that faithfully captures a selected dataset. By instructing machines to

imitate the functioning of the machine learning and the human brain have increased the

scope of statistics research and made it is all-inclusive field that produces fundamen-

tal computational statistical models of learning processes. The creation of algorithms

that allow computers to learn is at the heart of machine learning. Finding patterns

in data, whether statistical or otherwise, is a learning process. The main purpose of

developing goal of machine learning algorithms was to be able to mimic how people

learn specific skills. The difficulty of learning in varied contexts can also be revealed by

3
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these algorithms. Machine learning and Big Data computing technologies are evolving

in a different way than in the past.Lately, machine learning has developed the capacity

for automation apply a wide range of complex mathematical computations to massive

amounts of information, enabling much high calculation speed of outcomes. Several

machine algorithms learning are created, maintained, and enhanced up till today. The

use of adaptation in programming is fairly widespread. It is utilized in machine learn-

ing systems that are able to recognize models, learn from past errors, extract current

information from data, and increase the output’s productivity and accuracy. More than

ever, machine learning uses multidimensional data that are present in several application

domains.

Figure 1.1: Distinction between Supervised And Unsupervised Learning

Two types of models for supervised learning are classification and regression. When the

response variable is made up of continually actual values, such as time, money, intensity,

length, and so on, regression models are used. It is useful to estimate the link between

the numerical value data of an outcome variable and many explanatory variables. The

categorization model, on the other hand, is a type of directed learning in which the

response variable is classified as ’child’ or ’adult,’ ’True’ or ’False,”male’ or ’female,’ or

binary values ’0’ or ’1’. Real-world examples include test scorecard prediction, sentiment

analysis, and light detection.

1.3 Application

Machine learning is extremely important in the field of AI research. Although an in-

telligent system cannot be described without the ability to learn, the former intelligent

system often lacks this feature. It has been applied in several of artificial intelligence (AI)

fields, including computer vision, natural language understanding, additional reasoning,
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intelligent robotics, and model recognition. Search engines, biological diagnosis, credit

card fraud detection, stock market investigation, DNA sequencing sequences, handwrit-

ing and voice matching identification, gaming approach, Action recognition and robotics

utilization are a few instances of specific applications.

1.4 Video Surveillance

Regarding the domain of computer vision, machine learning and action recognition that

focuses on discovering and comprehending human acts or activities from digital videos.

It involves developing algorithms and models to automatically recognize and classify

different actions or movements performed by humans in video sequences.

Action recognition has numerous practical sports analysis, human-computer interac-

tion, video surveillance, healthcare monitoring, and entertainment (e.g., gesture-based

gaming) are some of the applications.

Action recognition algorithms require large datasets of labeled video clips where each

clip contains one or more actions. These databases are used for training and test system

of action recognition models.

Features: Feature extraction is a crucial step in action recognition. Various attributes,

including 3D trajectories, optical flux, or deep-learning-based representations, are used

to record movement and appearance data in video frames.

With the introduction of deep neural networks, especially Convolutional Neural Net-

works (CNNs) and Recurrent Neural Networks (RNNs), deep learning-based models

have become dominant in action recognition. These models can learn complex spa-

tiotemporal representations directly from video data. Temporal Modeling: Recognizing

actions often requires understanding the temporal order of a video sequence’s frames.

Recurrent neural networks (RNNs), Long Short-Term Memory (LSTM) networks, and

3D Convolutional Neural Networks (3D CNNs) are commonly utilized to create temporal

dependencies.

Action recognition faces several challenges, including variations in lighting, viewpoint,

scale, occlusion, plus the existence of multiple people or objects in the image. Han-

dling certain difficulties requires robust feature extraction and modeling techniques.

Some applications, such as gesture recognition for human-computer interaction or action

5



Chapter 1: Introduction

recognition for robotics, require real-time action recognition systems that can process

video streams in near real-time. Action recognition of a number of metrics, includ-

ing recall, accuracy, precision, F1-score, and mean Average Precision on test datasets.

Cross-validation and action-specific metrics are also used in some cases.

1.5 Machine Learning for Video Surveillance

Machine learning has significantly transformed video surveillance systems by enabling

more advanced and intelligent functionalities. Here are some key ways in which machine

learning is applied in video surveillance.

Machine learning models, notably convolutional neural networks (CNNs), are used to

identify and track objects of interest within video streams. This can include identifying

and following people, vehicles, or specific objects within a scene.

Facial recognition algorithms are employed to identify and track individuals within video

footage. This is useful for security applications, access control, and tracking the move-

ment of specific individuals.

Machine learning models are trained to recognize normal behavior patterns in video

data. Any deviation from these patterns is flagged as an anomaly, potentially indicat-

ing suspicious or unusual activity. Anomaly detection identification can be critical in

security and monitoring potential threats.

Machine learning is used to classify objects or actions within video feeds. For instance,

it can distinguish between different types of vehicles (cars, trucks, bicycles), recognize

gestures or hand signals, or identify weapons.

Machine learning models can analyze human behavior within video footage. This in-

cludes tracking movement patterns, identifying interactions between people, and detect-

ing aggressive or abnormal behavior.

License Plate Recognition systems use machine learning to recognize and read license

plates on vehicles. This is widely used in traffic monitoring, toll collection, and parking

management.

Machine learning can help analyze crowd dynamics, count how many persons are in a

scene, and detect crowd density. This is important for event management, public safety,
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and urban planning.

Gesture recognition algorithms can identify and interpret hand gestures or body move-

ments in video streams, making it useful for human-computer interaction and user in-

terface control.

Machine learning can be used to recognize specific events or actions within video footage,

such as vehicle collisions, people falling, or package thefts.

By analyzing historical video surveillance data, machine learning can help predict po-

tential security breaches or incidents based on patterns and trends.

Machine learning can be used to automatically blur or obscure faces and sensitive infor-

mation in video feeds to protect individuals’ privacy.

When unusual or suspicious activities are detected, machine learning systems can trigger

automated alerts or notifications to security personnel or relevant authorities.

To develop a full security ecosystem, machine learning can be connected with other

security systems such as access control, alarms, and intercoms.

Machine learning allows for the Video surveillance systems’ scaling. It can handle mas-

sive amounts of video data more efficiently than manual monitoring.

1.6 Objective of Study

. To detect the violence in videos so that we can find the best ways to overcome the

violence situation in our daily life.

. To assess the performance of several neural networks in identifying violence in hockey

fight video dataset.
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Literature Review

Image processing techniques is an effective way for Violence detection in hockey fight

videos and it has become quite influential in the recent years of technological advance-

ment. Using Lagrangian theory in computer vision, offers an extensive collection of

techniquesfor assessing long-term data. The author suggest a tailored Lagrangian tech-

nique based on this principle, for the automatic recognition of violent scenes in video

footage. [26]. These researchers present a new feature that utilizes a spatio-temporal

framework that considers Lagrangian direction fields along with appearance, long-term

motion data, and background movement corrections. They make use of an extended

bag-of-words technique in late-fusion as a per-video categorization approach to ensure

proper temporal and spatial feature sizes. The "Hockey Fight" project included three

datasets in which experiments were conducted. [6] Less attention has been dedicated

to the determination of violent acts or arguments in the majority of studies on ac-

tion recognition, which has focused on identifying individuals and surveillance, idling,

among other comparable behaviors. Although local spatiotemporal feature extractors

have been studied previously, they suffer from the need for complex optical flow com-

putations. Although the quicker one is the temporal derivative method than optical

flow. It yields a result that is scale-dependent and of low precision when used in isola-

tion. [28] Action recognition is becoming a relevant study area in the realm of computer

vision. Nonetheless, most studies have focused on relatively simple actions such as

clapping, walking, and running. Much less effort has been paid to the identification

of particular events that have immediate practical implications, such fighting or other

aggressive behavior. In some places, like prisons, mental health centers, or even video

cameras on phones monitoring can be quite helpful. Gracia suggested a fresh method
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to spot violent sequences. Features extracted from motion blobs are utilized to dis-

tinguish between fighting and non-fighting events. Proposed technique was tested on

three distinct datasets, including the "Movies" dataset, which had 200 video clips. [6].

Local Motion technique, along with its v-1 and v-2 variations that make use of Random

Forest, AdaBoost, and KNN classifiers. Even if the suggested method is not as effective

as it could be, it is appropriate for real-world applications because of its significantly

faster calculation time. In video surveillance environments like stations, schools, and

health buildings, it’s imperative to instantly recognize hostile activities. However, prior

identification algorithms often extracted descriptors around spatiotemporal interesting

regions or statistical features in motion zones, which led to limited capabilities in effec-

tively identifying violent events in videos. [36]. while most research has concentrated

on activity recognition, combat detection has gotten far less attention. Ability might be

quite useful. Most strategies require domain expertise to construct complex handmade

qualities from inputs. Conversely, deep learning techniques can work directly with un-

processed inputs and automatically extract pertinent features. Ding thus developed a

novel 3D ConvNets technique for detecting video violence that doesn’t require any prior

knowledge. [13]. To evaluate the approach, experimental validation was performed on

the "Hockey fights" dataset [6]. The findings indicate that the strategy performs su-

perior to manual features. Campus violence is the most serious form of bullying that

occurs in schools and is a global social concern. More options, including video-based

solutions, are available for identifying college violence using AI and remote surveillance

are being used to combat technologies advancements. [40] use auditory and visual data

to detect campus violence. Role-playing is employed to gather data on campus vio-

lence, and feature vectors with 4096 dimensions are retrieved from each of the 16 video

frame. 3D CNN has an overall precision of 92.00 percent and is used to extract features

and classification. MFCCs as acoustic characteristics are extracted from three speech

emotion datasets: CASIA dataset [3], which contains 960 samples, Finnish emotional

dataset and Chinese emotional dataset. To address the issue of evidence dispute, an

improved D-S algorithm is developed. Consequently, the accuracy of recognition rose to

97The goal of the NetVLAD architecture is to solve the problem of widespread visual

place recognition by rapidly and precisely determining the position of a given query

image. A CNN-based method for unsupervised location recognition is called NetVLAD.

This work makes three primary contributions. Firstly, a CNN architecture that can

9



Chapter 2: Literature Review

be programmed end-to-end is designed for the location recognition issue. The main

element of the technique is NetVLAD, a unique generalized VLAD layer that draws

inspiration from the popular picture format "Vector of Locally Aggregated Descriptors

(VLAD)."Any CNN model can easily add the layer and train it using backpropagation.

The following contribution is the creation of an instructional technique for end-to-end

learning of architectural variables using Google Street View Time Machine photographs

of identical locations throughout a period of time which is centered on a unique weakly

supervised ranking loss. Lastly, the authors showed that on two challenging place identi-

fication benchmarks, the suggested architecture performs better than both commercially

available CNN descriptors and non-learned picture representations, as well as contempo-

rary state-of-the-art picture representations using common standards for image retrieval,

using the Pittsburgh [11] and Tokyo 24/7 [11] datasets. [33] offer a technique for de-

tecting violence in real time that analyzes massive quantities of data that is streaming

and understands hostility utilizing a simulation of human intelligence. Spark framework

is used to evaluate the massive amounts of real-time video that are received by the

system from various sources. The frames are split apart, and the Spark framework’s

HOG function is used to extract each frame’s properties. Following that, the frames are

grouped according to attributes that have been developed with the BDLSTM network

for the recognition of violent scenes, like the negative model, the human component

model, and the violent model. Data access is possible in either direction thanks to the

bidirectional LSTM. Consequently, the result is produced considering both historical

and prospective data. The (VID), which comprises 2314 videos with 1077 fights and

1237 no-fights, is used to train the network. A dataset of 409 violent video episodes and

410 video episodes with neutral scenes was also produced by the authors. The model’s

94.5 percent detection accuracy validates its effectiveness and highlights the robustness

of the system. [22] offer a method for identifying violent scenes according to auditory

information from videos. CNN can be used in the role of a classifier or an extractor of

deep acoustic features. To start, the 40-dimensional (MFB) is the input feature used

by the CNN. After then, the footage is split up into smaller parts. To examine three

feature maps comprise local features and MFB features. Next, features are represented

using CNN. SVM classifiers are constructed using characteristics derived from CNNs.

Next, the violent scene identification method is used for every frame of the video. Next,

maximum or minimum pooling is applied at the segment level to generate detection.
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Investigations are conducted on the MediaEval dataset [12] and the outcomes show

that the proposed method surpasses the core strategies. Handcrafted techniques was

published [41] These qualities are connected to appearance, gait, and representational

images; a CNN receives them as spatiotemporal, temporal, and spatial inputs.A novel

approach to deep violence detection that takes advantage of the unique characteristics

of l stream. With every frame, the neural network is trained by the spatial stream to

identify trends in its environment. The temporal stream uses a changed differential

magnitude of optical movement to become familiar with motion patterns of aggressive

conduct over a span of three consecutive frames. In order to better understand ag-

gressive behaviors, the scientists also developed a characteristic of the spatiotemporal

stream that discriminates, utilizing a novel differential motion energy picture. This

method incorporates several components of aggressive actions by merging the findings

of several streams.The projected CNN network underwent training on three datasets:

Hockey [18], Movie [6] and ViF [17]. Regarding precision and processing duration, the

strategy outperformed existing alternatives. A deep neural network was proposed by

[27] to identify violent scenes in videos. Frame-level characteristics are extracted from a

video. The LSTM, which makes use of a convolutional gate, is then used to gather the

frame-level attributes. Local motion in the video can be analyzed thanks to the CNN’s

for it’s capacity to record specific spatiotemporal features locally in conjunction with

the ConvLSTM. The paper also suggested forcing the model to encode the changes in

the video by feeding it surrounding frame differences as input. On three widely used

benchmark datasets, including "Hockey" [18], "Movies" [6], and "Violent-Flows" [31], the

provided feature extraction approach is evaluated for recognition accuracy. The results

were contrasted with those obtained utilizing cutting-edge techniques. It was discovered

that the suggested strategy outperformed leading state-of-the-art algorithms such as

three streams + LSTM, ViF, and ViF+OViF in the promising domain of violent film

identification. The Mask RCNN and LSTM ensemble model was developed to figure out

violent actions of an individual [38] Human masks and crucial points were taken out first,

followed by temporal data. Experiments were carried out in datasets from Weizmann

[2], KTH [1], and our own. The outcomes demonstrate the fact that the suggested model

works superior to standalone models, with the top result being 93.4 percent accuracy

in identifying violent behavior. The suggested method is more industry-relevant, which

enhances security for society. Conventional methods focus on subjective attributes that
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might not be adequately discriminative to identify violent behavior. We provide a unique

method to identify human violent behavior in movies that combines trajectory and deep

CNN and leverages both hand-made and extensively trained features, motivated by the

strong performance of deep learning-based approaches. [24]. To evaluate the proposed

strategy, tests are run on two distinct datasets for violence: "Hockey Fights" [6] and

"Crowd Violence" [34]. The outcomes reveal that the suggested methodology surpasses

the most recent approaches like as HOG, HOF, ViF, and others on these datasets. Us-

ing a bidirectional ConvLSTM module to capture pertinent spatiotemporal data and

a changed 3D DenseNet for an array of heads self-attention layer, [39] outline a novel

method for figuring out if a movie contains a violent scenario or not. Additionally, an

analysis of ablation is performed on the input frames to compare the effects of the atten-

tion layer and neighboring frame removal with dense optical flow. The results show that

integrating optical flow with the mechanism of attention can improve outcomes by as

much as 4.4 percent. Study employed four datasets and illustrated superior performance

as opposed to cutting-edge techniques. Specifically, the number of network parameters

required was reduced to 4.5 million, and the test accuracy increased from 95.6 percent

on the most complex dataset to 100 percent on the simplest. Additionally, the inference

time was less than 0.3 seconds for the longest clips. In computer vision, human action

recognition has become a major field of study. Less emphasis has been paid to violent

conduct or fights, although they can be beneficial in a range of surveillance footage

scenarios, as prisons, mental health facilities, or even on a private mobiles. The devel-

opment of violence or fight detectors is prompted by their diverse variety of applications.

Efficiency is the main characteristic of the detectors, hence these techniques should have

a quick computational turnaround. While hand-crafted spatio-temporal characteristics

yield very accurate look and motion, the price of extraction individual characteristics

are still too high for most sensible uses. Applying deep learning paradigm to a task

is done for the first time using a 3D CNN, taking in complete using a video feed as

input. Nevertheless, motion features are essential to our work, because full video input

introduces noise and duplicates learning. A "handcrafted/learned" framework with hy-

brid characteristics was created with this goal in mind [29]. The method looks for an

example picture from the video series that is utilized as a classifier for Hough forest, as

an input for feature extraction. After that, 2D CNN is used to classify the picture in

order to ascertain the end of the order. Three sets of data for detecting violence have
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been employed for the studies: "Movie" [18], "Hockey" [6], and "Behavior" [32]. The

results indicate that the recommended technique surpasses the different deep learning

and traditional techniques in terms of standard deviations and accuracy. Both an SVM

classifier and a two-stream CNN architecture are suggested [30]. The three components

of the approach are label fusion, training, and feature extraction. An already-trained

Imagenet VGG-f architecture is used by each stream CNN. Whereas the second stream

collects motion data, the first stream uses consecutive frame differences to obtain visual

information. Then, sight and motion data are used to train two SVM classifiers. Ulti-

mately, a combination of labels approach is accustomed to produce the outcome of the

detection. This strategy’s main benefit is its ease of implementation. However, identify-

ing violence in large groups is difficult since this approach is not sensitive to violent acts

among people at close range. Accattoli [37] employed two-stream CNNs in an analogous

manner. In order to obtain extended temporal data, they propose integrating improved

trajectory CNN. They extract geographical and chronological data using two networks

of VGG-19. Spatial data is recovered using visual frames, as well as temporal data is

recovered using dense optical flow pictures. In educational institutions, medical centers,

and other monitoring domains, a stronger Security systems are necessary to identify

individuals that are violent or deviant activities in order to avoid any deaths that might

cause harm to the environment, the economy, or society. For this objective, [35] pro-

vides a three-stage complete profound understanding of violence detection solution. To

reduce and get past the needless handling of meaningless sometimes, individuals are

initially detected in the security camera feed with a condensed CNN model. Secondly,

a 16-frame series of acknowledged persons are fed into 3D CNN, which retrieves spa-

tial properties from the sequences and provides the Softmax classifier with them. The

authors additionally enhanced the 3D CNN model by utilizing Intel’s neural network op-

timization and open visual inference tools, which turn transforming the training model

into a halfway representation and modify for the best possible performance at the fi-

nal platform for the ultimate prognosis of aggressive conduct. When hostile conduct

is found, a notification is delivered to the nearest police department or security firm in

order that necessary safeguards can be taken. In the trials, the datasets "Violent Crowd"

[7], "Hockey" [6], and "Violence in Movies" [18] are employed. In terms of accuracy, the

experimental results reveal that the suggested method works better than cutting-edge

algorithms[25]. Among the deep learning architectures ConvNets is the most extensively
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utilized.[9] trained deep ConvNets on sufficiently big picture datasets of over 15 million

tagged images first. ConvNets are widely employed in different pattern recognition do-

mains due to their outstanding results [16]. When compared to traditional machine

learning approaches and its handcrafted features, ConvNets are able to pick up some

symbolic qualities automatically. Mo utilized ConvNets promptly both a multilayer per-

ceptron and feature extraction was employed for categorization. One issue with using

deep learning for HAR is finding out How to use it to tiny datasets, which are often

less than what ConvNets require. Generating or dropping more training examples is a

common strategy, as is shifting HAR to a classification of a still picture issue to take

advantage of large picture datasets (e.g., ImageNet) to pretrain the ConvNets. Wang

developed three methods for employing ConvNets with little training sets of data. To

begin, 3D depth map points are turned to imitate several perspectives, and WHDMMs

are built at various temporal scales. Finally, before being input into the ConvNets, var-

ious patterns of motion are improved and converted into channels that mimic RGB. In

contrast, Simonyan and Zisserm [14] employ a large picture ConvNets were pre-trained

on the dataset. They looked into a two-stream architecture, with the spatial stream

including appearance data from motionless frames and applied through a spatial stream

ConvNet. The spatial ConvNet is pretrained on a large image classification dataset

because it is an image classification architecture. Long-range dynamics data is essential

and should be clearly represented, according to Li et al. [20]. As a consequence, they

presented VLAD3, a representation that captures not just with ConvNets for short-term

dynamics, but also medium- and long-term dynamics using dynamic systems that are

linear and the VLAD descriptor. Wang [20] introduced TDD that merged hand-crafted

local features (e.g., STIP, improved trajectories) with deep-learned features (3D Con-

vNets [5],[8], two-stream ConvNets [14]). The suggested TDD combines the benefits

of these two aspects and employs cutting-edge enhanced paths and dual-stream Con-

vNets. DNNs, unlike ConvNets, continue to use hand-crafted features rather than deep

networks automatically learning features from raw data. Berlin and John employed In-

terest points based on Harris corners and features based on histograms as input [21]. To

recognize human-human interactions, the suggested several auto encoders stacked on a

deep neural network is deployed. Huang [23] discovered Lie group features by integrat-

ing a deep network design with a Lie group structure. Because it can hold observations

in memory for extended periods of time, the LSTM architecture is the most common
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among RNN designs [10]. As early research for activity identification, an LSTM net-

work served as a categorize events in soccer footage [4]. Then, another research [10]

explicitly confirmed LSTM’s stability even in test situations deteriorated, indicating its

capacity for strong recognition in the actual world. Veeriah et al. [19] expanded the

LSTM to differential RNNs. The most important spatiotemporal models of activities are

learnt by calculating various levels of derivative of state that are responsive to the spa-

tiotemporal structure, although typical significant dynamic patterns of activity are not

captured by LSTM. RNNs may be utilized for identifying activity in both skeletal data

and videos. Du et al [15] established a hierarchical RNNs framework for skeleton-based

identification.
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Methodology

3.1 Data Acquisition

The Hockey Fight video dataset consistining of 1000 videos out of which 500 videos have

violence and other 500 videos have no voilence.The data is aquired from kaggel and link

below for the data is given below.

https://www.kaggle.com/datasets/yassershrief/hockey-fight-vidoes

Figure 3.1: Hockey fight video dataset consists of 1000 videos out of which 500 videos

have violence and other 500 videos have no-voilence.

Public violence has substantially escalated in recent years. Both in the streets and

high schools. As a result, surveillance cameras are now widely used. This has made

it easier for the government to recognize these incidents and take appropriate action.

However, practically all systems now rely on manual video inspection to find such events,

which is essentially wasteful. Therefore, a system that can automatically monitor and

16



Chapter 3: Methodology

recognize the surveillance videos is essential. Large data sets and processing resources

have made it possible for the creation of several deep learning techniques, which has

led to a revolutionary shift in the area of vision technology. In order to handle issues

including object detection, recognition, tracking, and action, various strategies have been

created. The methods that we are going to use for the violence detection of HOCKEY

FIGHT dataset are VGG-16, VGG-19, Inception-V3, EfficientNet-B0, ResNet-50, LSTM

and GRU. we can see the work flow in Figure 3.2.

Figure 3.2: This figure shows the generalized work flow of used methods.

The data processing for our dataset is give below.

3.2 Data Processing

Resizing Images using to Bicubic Interpolation. Bicubic interpolation is a method for

resizing images that involves weighted averaging of neighboring pixel values. The math-

ematical equation for bicubic interpolation can be quite complex and depends on the

specific interpolation kernel used. Here, I’ll provide a simplified representation:

Presized(x, y) : Position of the resized image’s pixel value(x, y).

Poriginal(x′, y′) : Pixel values of neighboring pixels in the original image.
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W (x′, y′) : Interpolation weights for neighboring pixels.

In bicubic interpolation, we calculate Presized(x, y) by summing up the contributions

from neighboring pixels (Poriginal(x′, y′)) weighted by the corresponding interpolation

weights (W (x′, y′)) at each position (x, y) in the resized image.

The specific mathematical equations for interpolation weights and their calculation may

vary based on the exact implementation and kernel used for bicubic interpolation.

Pixel value normalization is a straightforward mathematical operation:

Pnormalized(x, y) : Normalized Position of the resized image’s pixel value(x, y).

Poriginal(x, y) : Original Position of the resized image’s pixel value(x, y).

The normalization operation scales each pixel value (Poriginal(x, y)) by a constant factor,

which in this case is 255, to ensure that the resulting pixel values are in the range [0,

1]. The mathematical equation for pixel value normalization is:

Pnormalized(x, y) = Poriginal(x, y)
255

This equation divides each pixel value by 255, thereby scaling them to the desired range.

3.3 Neural Networks and Related Methods

Artificial neural networks (ANNs), sometimes referred to as neural networks or simply

"neural nets," are a fundamental component of machine learning and artificial intelli-

gence. They are motivated by the composition and operations of the human brain,

where interconnected neurons work together to process and transmit information. Neu-

ral networks consist of hierarchically arranged layers of artificial neurons, or nodes to

perform various computational tasks. Here are few important neural network aspects:
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Figure 3.3: Description of Artificial Neural Network

Neurons are the fundamental processing units the neural network’s. Every neuron is

fed information, processes it using a set of weighted connections, applies an activation

function, and produces an output.

Neural networks are typically organized into layers: an input layer, an output layer,

and one or more hidden layers. Data is received by the input layer and passed to the

hidden layers, which perform complex computations. Using the output layer, the final

prediction or result.

The connections that neurons make are represented using weights. These masses es-

tablish the power of the connections and are adjusted during the training process. A

neuron’s weighted sum of inputs is calculated and passed through a function for activa-

tion that produces the result of the neuron.

Neural network can represent intricate relationships in data thanks to the non-linearity

that activation functions bring to the system.Sigmoid, hyperbolic tangent (tanh), and

rectified linear unit (ReLU) are examples of common activation functions, and variants

like Leaky ReLU.
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3.4 Convolutional Neural Networks

Deep learning neural networks of the Convolutional Neural Networks (CNN) class have

shown remarkable efficacy in a variety of computer vision uses, such as picture produc-

tion, object detection, and categorization. CNN were inspired by the visual processing

of animal brains and have transformed the field of computer vision. Here are some key

components and concepts associated with CNN as shown in figure 3.3:

Figure 3.4: Description of Convolutional Neural Network

CNN are built upon Convolutional layers are in charge of learning spatial feature hier-

archies from incoming data. These layers make use of convolution operations to input
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images, using a number of teachable filters (sometimes also known as kernels or weights).

In the convolution operation helps with the data the detection of edges, local patterns,

and basic features.

Using pooling layers frequently to lower the spatial dimensions of the feature maps, but

keeping the crucial information intact, following convolutional layers. CNNs frequently

employ the pooling techniques of max-pooling and average-pooling.

Output of convolutional and pooling layers is subjected to activation functions that are

not linear, such as ReLU, which impart non-linearity to the network and facilitate its

learning of complicated representations.

At least one completely linked layer is usually employed after the convolutional and

pooling layers to perform classifications or predictions based on the learnt features.

Neuron in these levels connects to each and every other neuron within the layers above

and below.

A one-dimensional vector is often created by flattening the feature maps prior to con-

necting to fully connected layers to be processed by the dense layers.

A regularization method called dropout is employed to stop overfitting. In order to

compel the network to acquire more resilient properties, it randomly removes a portion

of neurons during training.

Filters or kernels are small windows that slide over the input data, capturing regional

patterns. These filters are acquired through instruction and become specialized to detect

certain features, such as edges, textures, or higher-level shapes.

Stride determines how the convolutional filters move through the input data. While a

short stride retains more spatial information, a bigger stride decreases feature maps’

spatial dimensions.

To ensure that, regulate spatial dimensions of feature maps following convolution, padding

is frequently added to the input data. Zero padding adds zeros around the input to

maintain the same spatial dimensions.

CNNs consist of multiple convolutional layers stacked above one another. The deeper

layers learn increasingly abstract and complex features by combining information from

earlier layers, creating a hierarchy of features. Pretrained CNN models, such as VGG,

ResNet, Inception, and MobileNet, are taught using extensive image databases such as
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ImageNet. These models have learned rich feature representations and can be modified

to suit particular needs or applied as feature extractors in transfer learning.

3.5 Recurrent Neural Networks

One type of artificial neural network is recurrent neural network (RNN), which have

internal memory states that allow them to handle sequential data. In contrast to feed-

forward neural networks, which utilize fixed-size input vectors, RNNs are ideal for jobs

requiring data sequences, including speech recognition, natural language processing,

time series analysis, and more. Here are key features of Recurrent Neural Networks.

Figure 3.5: Workflow description of Recurrent Neural Network

RNNs are designed to analyze data sequences where each data point is associated with

a time step. This can include time series data, text, audio, or any other sequential data.

The defining characteristic of an RNN is the existence of recurrent connections, which

facilitate the transfer of data between time steps. The network can keep track of prior

inputs thanks to this.

RNNs maintain an internal concealed condition, shown as a vector, which serves as a

memory of the past. This hidden state evolves as the network processes each time step

and incorporates information from previous steps.

In an RNN, the identical weight set is applied to all time step. This weight sharing

makes it possible for the RNN to discover and identify recurring motifs in sequential

data.
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RNNs can produce an output at each time step. For example, in a language modeling

task, the network can foretell a sentence’s next word at every time step.

Backpropagation through time (BPTT), a backpropagation algorithm modification de-

signed for sequential data, is used to train RNNs.

BPTT involves calculating gradients and updating weights for each time step to reduce

the discrepancy between expected and actual values, or a loss function.

The vanishing gradient problem, in which gradients get extremely small during back-

propagation, can affect RNNs and make it challenging for the RNN to learn long-range

dependencies. By adding gating mechanisms, advanced RNN variants like the Gated

Recurrent Unit (GRU) and Long Short-Term Memory (LSTM) have been developed to

address this problem.

3.6 Feature Extraction

Feature extraction in deep learning, particularly with pre-trained models like VGG-16,

VGG-19, Inception-V3, EfficientNet-B0 and ResNet-50 involves several mathematical

steps.

We load the model. VGG16 model comprises of completely connected layers after con-

volutional layers. The steps for this part are the architecture and weights of the model,

which are predefined and loaded from a pre-trained model file.

Before feeding images into the VGG16 model, preprocessing is typically performed.

While not explicitly shown in the code snippet we provided, common preprocessing

steps include:

• Subtracting the mean pixel value from each channel (R, G, B).

• Scaling the pixel values by a factor (e.g., 1/255) to bring them into the [0, 1] range.

These steps help ensure that the input data is in line with the previously trained model.

The mathematical steps here are simple subtraction and scaling operations, which are

implemented on every pixel of the input picture.

Forward Pass Through Model is the core of feature extraction involves passing each

image through the VGG16 model to obtain feature vectors (transfer values).
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Convolutional layers in the VGG16 model perform mathematical convolutions between a

collection of learnable filters and the image. This is one way to represent a convolutional

layer’s output:

Output(i, j, k) =
∑

(Filter(k) ∗ Input(i′, j′))

Where:

Output(i, j, k) : Output feature map at position(i, j)in channelk.

Filter(k) : The k-th convolutional filter.

Input(i′, j′) : Input image values at position(i′, j′).

Following convolutional layers, the generated feature maps are subjected to element-by-

element application of activation functions such as Rectified Linear Units (ReLU):

Activation(i, j, k) = max(0, Output(i, j, k))

Max-pooling layers down sample feature maps by taking the highest number found in

each pooling window . The mathematical step for max-pooling is selecting the maximum

value within a window as shown in figure 3.5.

Figure 3.6: Max-pooling operation mathematical description.

The VGG16 model’s last layers are completely connected layers. Mathematically, these

involve matrix multiplications and activation functions like ReLU. The output of these

layers is typically the feature vector that you extract.
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Once the image has passed through all the layers of the VGG16 model, we obtain a

feature vector. This feature vector represents high-level features of the input image and

is frequently employed for a number of purposes. The mathematical steps for feature

extraction involve collecting the output of the desired layer (e.g., ’fc2’ layer) and using

it as the feature vector.

3.6.1 Visual Geometry Group-16

The Visual Geometry Group (VGG) at the University of Oxford created the deep con-

volutional neural network (CNN) architecture known as the VGG16 model. In 2013,

Andrew Zisserman and Karen Simonyan suggested the VGG model, and for the 2014

ImageNet Challenge, a prototype was created. They were members of VGG.It grew in

popularity for image classification problems, because to its ease of use and efficiency.

The "16" is the number of weight layers in VGG16. The Model Architecture Overview

is as follow.

Figure 3.7: Architecture of Visual Geometry Group-16

The input to the VGG16 model is an RGB image typically of size 224x224 pixels.

The convolution operation for a single channel and a 3x3 filter at position (i, j) can be

expressed as:
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Conv(i, j) =
2∑

x=0

2∑
y=0

(W (x, y) · Input(i + x, j + y)) + b

Where:

Conv(i, j) represents the output at position (i, j) in the feature map.

W (x, y) are the weights of the filter.

Input(i + x, j + y) denotes the input pixel values within the 3x3 region centered at (i, j).

b represents the bias term.

The Rectified Linear Unit (ReLU) activation function is defined as:

ReLU(x) =


x if x ≥ 0

0 if x < 0

The max-pooling operation for a 2x2 region is expressed as:

Max-Pool(x) = max(x1, x2, x3, x4)

Where x1, x2, x3, x4 are the values in the 2x2 region.

A fully connected layer applies a linear transformation followed by the ReLU activation

function:

FC(x) = ReLU(W · x + b)

Where:

W · x represents the matrix-vector multiplication.

b is added element-wise.

The ReLU activation function is applied to the result.

Softmax Output Layer (for Classification)
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The softmax activation for class k in a classification task with K classes is defined as:

Softmax(z)k = ezk∑K
i=1 ezi

Where:

zk is the logit (raw score) for class k.∑
represents the sum over all classes.

These mathematical equations describe the fundamental operations within the VGG16

model, where each layer applies these operations sequentially to produce the final output.
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Table 3.1: VGG16 Model Architecture

Layer (type) Output Shape

input_1 (InputLayer) (None, 224, 224, 3)

block1_convl1 (Convl2D) (None, 224, 224, 64)

block1_convl2 (Convl2D) (None, 224, 224, 64)

block1_pool (MaxPooling2D) (None, 112, 112, 64)

block2_convl1 (Convl2D) (None, 112, 112, 128)

block2_convl2 (Convl2D) (None, 112, 112, 128)

block2_pool (MaxPooling2D) (None, 56, 56, 128)

block3_convl1 (Convl2D) (None, 56, 56, 256)

block3_convl2 (Convl2D) (None, 56, 56, 256)

block3_convl3 (Convl2D) (None, 56, 56, 256)

block3_pool (MaxPooling2D) (None, 28, 28, 256)

block4_convl1 (Convl2D) (None, 28, 28, 512)

block4_convl2 (Convl2D) (None, 28, 28, 512)

block4_convl3 (Convl2D) (None, 28, 28, 512)

block4_pool (MaxPooling2D) (None, 14, 14, 512)

block5_convl1 (Convl2D) (None, 14, 14, 512)

block5_convl2 (Convl2D) (None, 14, 14, 512)

block5_convl3 (Convl2D) (None, 14, 14, 512)

block5_pool (MaxPooling2D) (None, 7, 7, 512)

flatten (Flatten) (None, 25088)

fc1 (Dense) (None, 4096)

fc2 (Dense) (None, 4096)

predictions (Dense) (None, 1000)

this table shows the architecture of the VGG16 method.

3.6.2 Visual Geometry Group-19

The VGG19 model, short for "Visual Geometry Group 19," is a convolutional neural

network (CNN) architecture developed by the Visual Geometry Group at the University
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of Oxford. It’s an extension of the VGG16 model, designed for image classification tasks.

VGG19 is renowned for its ease of use and effectiveness in deep learning, and it’s widely

used as a benchmark in the field.

Figure 3.8: Architecture of Visual Geometry Group-19

There are 19 layers in VGG19, comprising 3 fully linked layers and 16 convolutional

layers. It follows a straightforward architecture with repeated blocks of convolutional

layers, with max-pooling layers in between.

The convolutional layers have small 3x3 filters, which allows the model to capture fine-

grained details in images.

To provide a mathematical representation of the VGG19 model, we can break it down

into its key components: completely connected layers, max-pooling layers, and convolu-

tional layers. We’ll use mathematical notation to describe these operations:

Given an input feature map X with dimensions Win ×Hin ×Din, where:

Win is the width of the input feature map.

Hin is the height of the input feature map.

Din is the number of input channels.
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The convolutional layer applies N filters with dimensions F × F ×Din, where:

N is the number of filters.

F is the filter size (e.g., 3x3).

The output feature map Y is calculated as follows:

Yi,j,k =
Din∑
l=1

F∑
m=1

F∑
n=1

(Xi+m−1,j+n−1,l ·Wm,n,l,k) + bk

Where:

Yi,j,k is the value at position (i, j, k) in the output feature map.

Xi+m−1,j+n−1,l is the value at position (i + m− 1, j + n− 1, l) in the input feature map.

Wm,n,l,k is the weight at position (m, n, l, k) in the filter.

bk is the bias term for the k-th filter.

Max-pooling layers reduce the spatial dimensions of the feature map by taking the

maximum value in a local region. For example, a 2x2 max-pooling layer operates as

follows:

Yi,j,k = max(X2i,2j,k, X2i+1,2j,k, X2i,2j+1,k, X2i+1,2j+1,k)

Where:

Yi,j,k is the value at position (i, j, k) in the output feature map.

X2i,2j,k represents the input value at position (2i, 2j, k), and so on.

A fully connected layer takes the result of the layer before it (flattened into a 1D vector)

and performs a linear transformation, then an activation function. For simplicity, we

can represent this as:

Y = ReLU(WX + b)

Where:

Y is the output vector of the fully connected layer.

X is the input vector (flattened feature map).

W is the weight matrix.

b is the bias vector.

ReLU(x) represents the Rectified Linear Unit activation function.
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These equations describe the mathematical operations of individual layers in the VGG19

model. The full model consists of a sequence of these layers, with each layer’s output

becoming the layer above’s input.

While VGG19 performs well on image classification tasks, it’s computationally costly

because it has a lot of parameters. More recent architectures, like ResNet and Inception,

offer similar or better performance with fewer parameters.

Overall, VGG19 is an influential deep learning model that has significantly influenced

the computer vision area. It serves as a foundational model for understanding and

building more advanced CNN architectures.
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Table 3.2: VGG19 Model Architecture

Layer (type) Output Shape Param #

input_1 (InputLayer) (None, 224, 224, 3) 0

block1_convl1 (Convl2D) (None, 224, 224, 64) 1792

block1_convl2 (Convl2D) (None, 224, 224, 64) 36928

block1_pool (MaxPooling2D) (None, 112, 112, 64) 0

block2_convl1 (Convl2D) (None, 112, 112, 128) 73856

block2_convl2 (Convl2D) (None, 112, 112, 128) 147584

block2_pool (MaxPooling2D) (None, 56, 56, 128) 0

block3_convl1 (Convl2D) (None, 56, 56, 256) 295168

block3_convl2 (Convl2D) (None, 56, 56, 256) 590080

block3_convl3 (Convl2D) (None, 56, 56, 256) 590080

block3_convl4 (Convl2D) (None, 56, 56, 256) 590080

block3_pool (MaxPooling2D) (None, 28, 28, 256) 0

block4_convl1 (Convl2D) (None, 28, 28, 512) 1180160

block4_convl2 (Convl2D) (None, 28, 28, 512) 2359808

block4_convl3 (Convl2D) (None, 28, 28, 512) 2359808

block4_convl4 (Conv2lD) (None, 28, 28, 512) 2359808

block4_pool (MaxPooling2D) (None, 14, 14, 512) 0

block5_convl1 (Convl2D) (None, 14, 14, 512) 2359808

block5_convl2 (Convl2D) (None, 14, 14, 512) 2359808

block5_convl3 (Convl2D) (None, 14, 14, 512) 2359808

block5_convl4 (Convl2D) (None, 14, 14, 512) 2359808

block5_pool (MaxPooling2D) (None, 7, 7, 512) 0

flatten (Flatten) (None, 25088) 0

fc1 (Dense) (None, 4096) 102764544

fc2 (Dense) (None, 4096) 16781312

this table gives us the architectural representation of VGG19 model.
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3.6.3 EfficientNet-B0

EfficientNet-BO is a family of convolutional neural network architectures that are de-

signed to be highly economical with regard to computer power while reaching cutting-

edge results on a range of computer vision tasks. EfficientNet models are named with

a combination of numbers and letters, such as B0, B1, B2, etc., where larger numbers

indicate larger and more complex models.

Here’s a general architecture of the EfficientNetB0 model.

Figure 3.9: The figure shows the architecture of EfficientNetB0 model.

d = αϕ (3.6.1)

w = βϕ (3.6.2)

r = γϕ (3.6.3)

Subject to the constraint:

α · β2 · γ2 = 2 (3.6.4)

where α ≥ 1, β ≥ 1, and γ ≥ 1 3.6.1.

According to Equation 3.6.4, FLOPS would rise by ((α · β2 · γ2)ϕ) from the original

equation, where ϕ is the user-defined coefficient.
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To get the predicted result, I propagate an input image xi via the EfficientNet-B0

model. Iteratively adjusting the parameters based on the obtained gradients will train

the EfficientNet-B0 model using the training subset. Measure the trained model’s clas-

sification accuracy and other performance measures on the testing subset.

The input to the EfficientNetB0 model is typically an RGB image with variable size

(e.g., 224x224x3 pixels or higher).

EfficientNet’s overall process involves a combination of mathematical operations and de-

sign choices that optimize the compromise between performance and model size. Here’s

an overview of the key mathematical formulas and ideas used in the procedure:

EfficientNet models consist of multiple blocks, where each block contains a series of

convolutional layers.

Pointwise convolution is performed after depthwise convolution, which applies a single

convolutional filter to each input channel independently to combine the results. This is

mathematically represented as:

Yi,j,k =
Din∑
l=1

F∑
m=1

F∑
n=1

(Xi+m−1,j+n−1,l ·Wm,n,l,k)

Zi,j,k =
Din∑
l=1

Yi,j,l · Vl,k

Scaling Factors (Width, Depth, Resolution). Width Scaling (Width Multiplier - ϕ)

Number of Channels in Layer = Width Multiplier×Number of Channels in Original Layer

Depth Scaling (Depth Multiplier - α)

Number of Layers in Block = Depth Multiplier×Number of Layers in Original Block

Resolution Scaling (Resolution Multiplier - ρ)

Input Resolution = Resolution Multiplier×Original Input Resolution

Compound Scaling Factor (S) = Width Multiplier×Depth Multiplier
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The efficient blocks involve a sequence of depthwise separable convolutions, batch nor-

malization, and activation functions. These operations can be represented mathemati-

cally, but the details depend on the specific architecture of the block.

GAP takes the average of each feature to decrease the feature maps’ spatial dimensions

map:

Yi = 1
out× out

out∑
j=1

out∑
k=1

Xi,j,k

The final features are mapped to the output classes via the fully connected layer:

Y = Softmax(WX + b)

Where Y is the class probabilities, X is the feature vector from GAP, W is the weight

matrix, and b is the bias vector.

The mathematical representation of EfficientNet’s overall process involves a combina-

tion of these equations and design choices, and it can change based on the particular

architecture and scaling factors used. Implementing and training an EfficientNet model

typically requires deep learning frameworks that handle these mathematical details.

35



Chapter 3: Methodology

Table 3.3: EfficientNetB0 Model Architecture

Layer (type) Output Shape

Input (224, 224, 3)

Conv2D (112, 112, 32)

MBConv1 (112, 112, 16)

MBConv6 (56, 56, 24)

MBConv6 (56, 56, 24)

MBConv6 (28, 28, 40)

MBConv3 (28, 28, 80)

MBConv4 (14, 14, 112)

MBConv4 (14, 14, 112)

MBConv4 (14, 14, 112)

MBConv4 (14, 14, 192)

MBConv1 (7, 7, 320)

Conv2D (7, 7, 1280)

GlobalAvgPool (1280,)

Fully Connected (1000,)

this is the simplified representation of EfficientNetB0 model.

3.6.4 Residual Network-50

Convolutional neural network (CNN) architecture ResNet-50 is a member of the ResNet

(Residual Network) model family. It is especially a 50-layer deep version of the original

ResNet model . ResNet-50 is known for its deep architecture andIt can train extremely

deep networks by skipping connections effectively while mitigating the issue with fading

gradients.
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Figure 3.10: The figure shows the architecture of ResNet-50 model.

The Figure shows the architecture of resnet-50 model. The input to the ResNet-50

model is typically an RGB image with a fixed size (e.g., 224x224x3 pixels).

ResNet-50 consists of multiple convolutional layers organized into blocks. Each block

contains convolutional layers in succession, batch normalization, and ReLU activation

functions. The use of 3x3 convolutional filters is common in ResNet-50.

The distinctive feature of ResNet is the residual block, which is used to create deep

networks. A residual block has two primary pathways: a "shortcut" or "identity" path

and a "main" path. The main path contains multiple convolutional layers. The shortcut

path directly connects from the source to the result of the main path, allowing gradients

to flow easily during training. Mathematically, a residual block is conceivable as:
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Y = F (X) + X

where X is the input and F (X) represents the output of the main path.

Skip connections, also known as "identity mappings," enable the network to skip one or

more layers. These connections help prevent the issue with fading gradients, making it

easier to train very deep networks. In ResNet-50, skip connections are applied around

each residual block.

Max-pooling layers are employed to decrease the feature maps’ spatial dimensionality,

typically following a series of convolutional layers. Global average pooling (GAP) is

applied at the end in order to create a fixed-size feature vector and reduce spatial

dimensionality.

The final fully connected layer comprising of neurons equal to the number of classes

in the classification challenge makes up the network. The model’s output is frequently

converted using the softmax activation function into class probabilities.

ResNet-50 models are often pretrained on large image datasets like ImageNet. Pretrain-

ing helps the model learn meaningful feature representations. Transfer learning is a

common approach where pretrained ResNet-50 models are fine-tuned on specific tasks.

The output layer provides class probabilities for classification tasks. For regression tasks,

a different activation function and output format may be used.

ResNet-50 is a powerful and widely used CNN architecture, known for its ability to han-

dle complex tasks in computer vision, which covers object identification, segmentation,

and image classification. It has been a benchmark architecture for many image-related

challenges and competitions.

Performing the entire process of training and inference with a ResNet-50 model involves

a series of mathematical operations and computations. While providing a detailed math-

ematical representation for the entire process can be complex due to the depth and intri-

cacy of the model, here is an overview of the key mathematical concepts and operations

involved:

During forward propagation, input data (images) are passed through the network to

make predictions. At each layer, the following operations are applied:
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• Convolution: Convolutional input feature maps are subjected to filters in order to

extract local patterns.

• Batch Normalization: Mean and variance normalization is performed to stabilize

and accelerate training.

• ReLU Activation: The activation function of the Rectified Linear Unit introduces

non-linearity.

• Skip Connections: Identity mappings allow gradients to flow easily, enabling train-

ing of very deep networks.

• Pooling: Max-pooling layers reduce spatial dimensions, and global average pooling

computes feature vectors.

Residual blocks, represented as Y = F (X)+X, involve mathematical operations within

each block. X represents the input to the block, and F (X) represents the output of the

main path, which includes convolutions, batch normalization, and ReLU. The output Y

of the residual block is the element-wise sum of F (X) and X. Mathematically, this is

expressed as Yi,j,k = F (X)i,j,k + Xi,j,k.

During training, the model is optimized to minimize a loss function (e.g., cross-entropy

loss for classification). Backpropagation calculates gradients with respect to model pa-

rameters (weights and biases) using the chain rule. Gradient descent or an optimizer

updates model parameters to reduce the loss.

The fully connected layer applies linear transformations to the feature vectors produced

by previous layers. Mathematically, Y = WX +b, where Y is the output, X is the input

vector, W is the weight matrix, and b is the bias vector.

For classification tasks, a softmax activation function is used to convert the model’s

output into class probabilities. The softmax function is mathematically defined as:

P (Yi = j) = eYi,j∑C
k=1 eYi,k

Where P (Yi = j) is the probability of the i-th example belonging to class j, Yi,j is the

model’s output for class j, and C is the number of classes.
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The error between true labels and anticipated probability is quantified by the loss func-

tion. For classification, cross-entropy is a common loss function. Mathematically, the

loss is computed as:

Loss = − 1
N

N∑
i=1

C∑
j=1

Yi,j log(P (Yi = j))

Where N is the number of examples, C is the number of classes, Yi,j is the true label,

and P (Yi = j) is the predicted probability.

This overview provides a high-level understanding of the mathematical operations in-

volved in training and inference with a ResNet-50 model. The actual implementation

and details of these operations are handled by deep learning frameworks and libraries.

Table 3.4: ResNet-50 Model Architecture (simplified form)

Layer (type) Output Shape

input_1 (InputLayer) (None, 224, 224, 3)

convl1_pad (ZeroPadding2D) (None, 230, 230, 3)

convl1_conv (Convl2D) (None, 112, 112, 64)

convl1_bn (BatchNormalization) (None, 112, 112, 64)

convl1_relu (Activation) (None, 112, 112, 64)

pooll1_pad (ZeroPadding2D) (None, 114, 114, 64)

pooll1_pool (MaxPooling2D) (None, 56, 56, 64)

convl2_block1_1_conv (Convl2D) (None, 56, 56, 64)

convl2_block1_1_bn (BatchNormalization) (None, 56, 56, 64)

convl2_block1_1_relu (Activation) (None, 56, 56, 64)

convl2_block1_2_convl (Convl2D) (None, 56, 56, 64)

convl2_block1_2_bn (BatchNormalization) (None, 56, 56, 64)

... (omitting other layers for brevity)

convl5_block3_3_convl (Convl2D) (None, 7, 7, 2048)

convl5_block3_3_bn (BatchNormalization) (None, 7, 7, 2048)

convl5_block3_add (Add) (None, 7, 7, 2048)

convl5_block3_out (Activation) (None, 7, 7, 2048)

avg_pool (GlobalAveragePooling2D) (None, 2048)

fc1000 (Dense) (None, 1000)
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this table give us the simplified explanation of ResNet-50 model.

3.6.5 InceptionV3

InceptionV3 is a deep convolutional neural network (CNN) architecture that is employed

for picture categorization among other computer vision tasks like object detection, and

image segmentation. It’s a continuation of the original Inception model (GoogLeNet)

and is known for its efficiency and performance.

Figure 3.11: Architecture of InceptionV3

The input to the InceptionV3 model is typically an RGB image with a fixed size (e.g.,

299x299 pixels).

InceptionV3 is defined by the application of "Inception modules" or "Inception blocks,"

which are made up of many parallel convolutional pathways. The network can now

capture features at various scales thanks to these modules and complexities within a

single layer. The key innovation in Inception modules is the use of multiple filter sizes

(e.g., 1x1, 3x3, 5x5) in parallel and then concatenating their outputs.

In addition to the Inception modules, InceptionV3 also includes standard convolutional

layers that follow each module. From the input data, these convolutional layers extract

hierarchical characteristics.

Batch normalization is applied after convolutional layers to improve training stability.

Activation functions (typically ReLU) give the model some non-linearity.

The feature maps’ spatial dimensions are decreased through the application of max-

pooling and average-pooling layers. Pooling contributes to the model’s minor translation

invariance and increases computational efficiency.
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The final fully connected layer comprising of neurons equal to the number of classes

in the classification challenge makes up the network. The model’s output is frequently

converted using the softmax activation function into class probabilities.

InceptionV3 models are often pretrained on large image datasets like ImageNet. Pre-

training helps the model learn meaningful feature representations. Transfer learning is a

common approach where pretrained InceptionV3 models are fine-tuned on specific tasks.

The output layer provides class probabilities for classification tasks. For regression tasks,

a different activation function and output format may be used.

InceptionV3 is characterized by its effective utilization of computer power and its ca-

pacity to capture both local and global features effectively. It has been widely used

in research and practical applications because of its impressive results on a number of

computer vision tasks.

Performing the entire process of training and inference with an InceptionV3 model in-

volves a series of mathematical operations and computations. While providing a detailed

mathematical representation for the entire process can be complex due to the depth and

intricacy of the model, here we give an overview of the key mathematical concepts and

operations involved:

During forward propagation, input data (images) are passed through the network to

make predictions. At each layer, the following operations are applied:

• Convolution: To extract local patterns from the input feature maps, convolutional

filters are utilized.

• Batch Normalization: Mean and variance normalization is performed to stabilize

and accelerate training.

• ReLU Activation: The activation function of the Rectified Linear Unit introduces

non-linearity.

• Inception Modules: Multiple parallel convolutional pathways are combined, in-

cluding 1x1, 3x3, and 5x5 convolutions.

• Pooling: Max-pooling or average-pooling layers reduce spatial dimensions.

The model is tuned to minimize a loss function during training (e.g., cross-entropy

loss for classification). Backpropagation calculates gradients in relation to the model
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parameters (weights and biases) using the chain rule. Gradient descent or an optimizer

updates model parameters to reduce the loss.

The fully connected layer applies linear transformations to the feature vectors produced

by previous layers. Mathematically,

Y = WX + b

where Y is the output, X is the input vector, W is the weight matrix, and b is the bias

vector.

For classification tasks, a softmax activation function is used to convert the model’s

output into class probabilities. The softmax function is mathematically defined as:

P (Yi = j) = eYi,j∑C
k=1 eYi,k

where P (Yi = j) is the probability of the i-th example belonging to class j, Yi,j is the

model’s output for class j, and C is the number of classes.

The error between true labels and anticipated probability is quantified by the loss func-

tion. Typical loss functions include cross-entropy for classification. Mathematically, the

loss is computed as:

Loss = − 1
N

N∑
i=1

C∑
j=1

Yi,j log(P (Yi = j))

where N is the number of examples, C is the number of classes, Yi,j is the true label,

and P (Yi = j) is the predicted probability.

This overview provides a high-level understanding of the mathematical operations in-

volved in training and inference with an InceptionV3 model. The actual implementation

and details of these operations are handled by deep learning frameworks and libraries.
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Table 3.5: InceptionV3 Model Architecture

Layer (type) Output Shape

Input (InputLayer) (None, 299, 299, 3)

Convl2d_1a_3x3 (Convl2D) (None, 149, 149, 32)

BatchNormalization (None, 149, 149, 32)

Activation (None, 149, 149, 32)

Convl2d_2a_3x3 (Convl2D) (None, 147, 147, 32)

BatchNormalization (None, 147, 147, 32)

Activation (None, 147, 147, 32)

MaxPooling2d_3a_3x3 (MaxPooling2D) (None, 73, 73, 32)

Convl2d_3b_1x1 (Convl2D) (None, 73, 73, 80)

BatchNormalization (None, 73, 73, 80)

Activation (None, 73, 73, 80)

Convl2d_4a_3x3 (Convl2D) (None, 71, 71, 192)

BatchNormalization (None, 71, 71, 192)

Activation (None, 71, 71, 192)

MaxPooling2d_5a_3x3 (MaxPooling2D) (None, 35, 35, 192)

... ...

Mixed_7b (Concatenate) (None, 17, 17, 768)

... ...

AveragePooling2D (GlobalAveragePooling2D) (None, 2048)

Dropout (None, 2048)

Dense (Dense) (None, 1000)

3.7 Classification Method

The classification methods are Long and Short Term Memory (LSTM) and Gradient

Recurrent Unit (GRU)
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3.7.1 Long and Short Term Memory (LSTM)

Figure 3.12: Systematic diagram of Long and Short Term Memory (LSTM)

An LSTM cell consists of several mathematical components, including gates, input trans-

formations, and cell state updates:

Input Gate (it):

Computes the amount by which the The cell state has to be updated with fresh data.

Mathematically, the input gate is computed using the sigmoid activation function:

it = σ(Wi · [ht−1, xt] + bi)

where Wi and bi are weights and biases, ht−1 is the previous hidden state, and xt is the

current input.

Forget Gate (ft):

Computes the amount by which the previous cell state should be forgotten. Mathemat-

ically, the forget gate is computed using the sigmoid activation function:

ft = σ(Wf · [ht−1, xt] + bf )

Cell State Update (C̃t):

Computes the new candidate cell state. Mathematically, the candidate cell state is

computed using the hyperbolic tangent activation function:

C̃t = tanh(Wc · [ht−1, xt] + bc)

Output Gate (ot):

Computes the amount by which the cell state should be exposed in the output. The

output gate is calculated mathematically using the sigmoid activation function:

ot = σ(Wo · [ht−1, xt] + bo)
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New Cell State (Ct):

Computes the updated cell state using the input gate, forget gate, and candidate cell

state:

Ct = ft · Ct−1 + it · C̃t

Hidden State (ht):

Computes the updated hidden state using the output gate and the updated cell state:

ht = ot · tanh(Ct)

The LSTM cell’s mathematical equations describe how information is processed and

propagated through the cell. In a full LSTM network, you stack multiple LSTM cells

and potentially add additional layers for more complex architectures. The architecture

design involves configuring the quantity of units, layers, and LSTM cells in each layer.

Loss Function (L):

Choose an appropriate loss function L based on the nature of your sequence prediction

task. For example, for sequence classification, you might use categorical cross-entropy:

L(Y ,Y ) = −
T∑

t=1

C∑
c=1

Yt,c · log(Y t,c)

Here, T is the length of the sequence, C is the number of classes, Yt,c is the true label,

and Y t,c is the predicted probability.

Optimization Algorithm:

Choose an optimization algorithm (e.g., Adam, RMSProp, SGD) to update the LSTM

model’s parameters during training. Define the learning rate (α) and other hyperpa-

rameters of the chosen optimizer.

Model Compilation:

Compile the LSTM model by specifying the chosen loss function and optimizer:

model.compile(loss = L, optimizer = optimizer(α))

Mathematically, this step involves selecting the appropriate loss function for your se-

quence prediction task, which measures the discrepancy between actual and predicted

sequences. Additionally, you choose a technique for optimization utilizing gradient de-

scent to update the LSTM parameters of the model in a manner that reduces the chosen
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loss function. The optimizer’s hyperparameters, such as learning rate, influence the rate

of parameter updates during training.

Given input sequences X and corresponding target sequences Y, let’s outline the math-

ematical steps involved in training an LSTM model.

Forward Propagation the input sequence X and the model’s initial parameters, perform

forward propagation to compute the predicted output sequence Ŷ for each time step t.

Calculate the loss L(Ŷ, Y) between the predicted output sequence Ŷ and the true target

sequence Y using the chosen loss function.

Backpropagation Through Time (BPTT) compute’s the gradients of the loss across time

using backpropagation with regard to the model’s parameters. BPTT includes figuring

out the gradients for every time step t and accumulating them over the entire sequence.

Model parameter updating through the use of an optimization algorithm (e.g., gradient

descent). For each parameter w and its corresponding gradient ∂L
∂w , update the parameter

using the learning rate α: w ← w − α∂w
∂L

Iterate over multiple epochs, repeating the forward and backward propagation steps to

gradually raise the model’s performance. Mathematically, training involves a series of

calculations, including matrix multiplications, activation functions (e.g., sigmoid, hy-

perbolic tangent), loss calculations, and gradient computations. The goal is to optimize

the model’s parameters so that it can produce accurate sequence predictions while min-

imizing loss.

For the trained LSTM model and a validation set with input sequences valX and target

sequences valY, let’s outline the mathematical steps involved in evaluating the model:

For each input sequence valX, perform forward propagation using the trained LSTM

model to compute the predicted output sequence ˆvalY for each time step t.

Calculate the loss L( ˆvalY, valY) between the predicted output sequence ˆvalY and the

true target sequence valY using the same chosen loss function used during training.

Compute evaluation metrics based on the predicted output sequence ˆvalY and the true

target sequence valY. Metrics can include loss, accuracy, or custom metrics specific

to the sequence prediction task. Mathematically, this step involves using the trained

model to make predictions on the validation set and then calculating the loss and other

evaluation metrics based on the predicted sequences and true target sequences. The cal-
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culations involve comparing predicted sequences with actual sequences and aggregating

the results to compute metrics that assess the model’s performance.

Now let’s consider the mathematical steps involved in hyperparameter tuning:

Define a set of hyperparameters that need to be adjusted, like the quantity of LSTM

layers, units per layer, learning rate, batch size, etc. Specify possible values or ranges

for each hyperparameter.

Choose a hyperparameter tuning method, such as grid search or random search. Grid

Search: Systematically iterate through every conceivable pairing of hyperparameters

inside the specified search space. Take a random sample of hyperparameter combinations

from the search space. Iterate Over Hyperparameter Combinations:

For each combination of hyperparameters H: Utilizing the provided hyperparameters

and training data, train the LSTM model.

Utilizing the validation data, assess the LSTM model’s performance using the chosen

evaluation metrics. Calculate metrics such as loss, accuracy, or other relevant metrics

based on the predicted sequences and true targets.

Choose the combination of hyperparameters that leads to the best performance on the

validation data. This is often the combination that yields the lowest loss or the highest

accuracy, depending on the task. Mathematically, hyperparameter tuning involves sys-

tematic iteration and evaluation. While the mathematical operations themselves may

not be complex, the process relies on training and evaluating the LSTM model with dif-

ferent hyperparameter combinations to identify the settings that optimize performance

on unseen data.

Given a trained LSTM model and a set of input sequences new_X, let’s outline the

mathematical steps involved in making predictions:

Forward Propagation for Prediction: For each input sequence new_X, perform forward

propagation using the trained LSTM model to compute the predicted output sequence
ˆnew_Y for each time step t. Mathematically, this step involves using the trained

LSTM model to propagate the input sequences new_X through the network, resulting

in predicted output sequences ˆnew_Y. The calculations involved include matrix mul-

tiplications, activation functions, and element-wise operations within the LSTM layers

to generate the predicted output sequences.
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Evaluate the LSTM model’s performance on validation and test data using chosen met-

rics.

Identify areas where the model is underperforming or not meeting your expectations.

Formulate hypotheses about what changes could potentially improve the model’s per-

formance.

Make changes to the model architecture, hyperparameters, or data preprocessing based

on your hypotheses.

Evaluate the model with the changes on validation and test data and compare the results

with previous iterations.

If the changes lead to improvements, iterate further by making additional adjustments.

Ensure that any improvements generalize well to the test data and that you’re not

overfitting to the validation set. While the mathematical aspect of this step involves

experimentation, analysis, and comparison of results, it doesn’t involve specific mathe-

matical equations. Instead, it’s about using data-driven insights and domain knowledge

to refine the model iteratively and make it more effective in its task.

Table 3.6: LSTM Model Architecture

Layer Description

Input Layer Input sequence of vectors

LSTM Layer Long Short-Term Memory (LSTM) cells

Cell State (Ct)

Hidden State (ht)

Output Layer Final output layer

3.7.2 Gated Recurrent Unit (GRU)

One kind of recurrent neural network (RNN) architecture called the Gated Recurrent

Unit (GRU) was created to overcome some of the drawbacks of conventional RNNs,

like the vanishing gradient issue. GRUs have gating mechanisms that allow them to

capture long-range dependencies in sequential data while mitigating some of the training

challenges associated with standard RNNs.
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Figure 3.13: Systematic representation of Gated Recurrent Unit.

Working Principles of GRU is as follow

• Hidden State: Like traditional RNNs, GRUs maintain a hidden state vector ht

at each time step t. Information regarding the sequential context thus far observed

is captured by this hidden state.

• Gating Mechanisms: GRUs have two gating mechanisms:

– Reset Gate (rt): chooses which data from the earlier concealed state ht−1

should be forgotten or reset.

– Update Gate (zt): Regulates the amount of the new candidate hidden state

h̃t should be included in the updated hidden state ht.

• Candidate Hidden State (h̃t): A candidate hidden state h̃t is computed at each

time step based on the input xt and the reset gate rt. It captures new information

from the current input.

• Updating the Hidden State: Update gate zt determines what proportion of

the new candidate hidden state h̃t should be mixed with the previous hidden state
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ht−1. The updated hidden state ht is then computed as a weighted combination

of h̃t and ht−1, where the update gate zt controls the weighting.

The mathematical equations for a GRU are as follows:

Reset Gate: rt = σ(Wr · [ht−1, xt])

Update Gate: zt = σ(Wz · [ht−1, xt])

Candidate Hidden State: h̃t = tanh(Wh · [rt · ht−1, xt])

Updated Hidden State: ht = (1− zt) · ht−1 + zt · h̃t

In these equations, xt represents the input at time step t, ht is the hidden state at time

step t, and Wr, Wz, and Wh are weight matrices learned during training.

GRUs are capable of capturing long-rangerelationships in sequential data, which makes

them appropriate for tasks like time series prediction, speech recognition, and natural

language processing. They have become popular alternatives to traditional RNNs and

are often used in modern deep learning architectures.

Table 3.7: GRU Model Architecture

Layer Description

Input Layer Input sequence of vectors

GRU Layer Gated Recurrent Unit (GRU) cells

Reset Gate (rt) controls forgetting

Update Gate (zt) controls updating

Current Memory (h̃t) candidate memory

Previous Memory (ht−1) previous memory

Output (ht) updated memory

Output Layer Final output layer

3.8 Activation Functions

We have used 3 activation fuction for our models sigmoid activation function, ReLU

activation function and softmax activation.
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3.8.1 Rectified Linear Unit (ReLU)

In artificial neural networks, the Rectified Linear Unit (ReLU) activation function is

frequently utilized, particularly in deep learning models. It introduces model’s non-

linearity and has several advantages, including alleviating the vanishing gradient prob-

lem and computational efficiency.

The ReLU function is defined as follows:

ReLU(x) = max(0, x)

Where:

- ReLU(x) is the output of the ReLU activation for input x. - x is the input value.

Key properties and characteristics of the ReLU activation function:

- Rectification: The ReLU function returns the input x if x is either larger than or

equal to zero; if not, zero is returned. In other words, it "rectifies" negative values to

zero, maintaining the positive values unaltered. - Non-linearity: ReLU gives the model

non-linearity, which enables neural networks to learn intricate, non-linear relationships

in data. - Sparsity: ReLU activations are sparse, meaning they can make some neurons

inactive (outputting zero) during training, which can lead to efficient model training and

reduced overfitting. - Computational Efficiency: ReLU involves only a basic comparison

and maximum operation, making it computationally efficient to compute.

While ReLU has many advantages, it’s worth noting that it’s not without its limitations.

The "dying ReLU" problem, in which neurons might become trapped, is one of ReLU’s

problems in an inactive state (always outputting zero) during training. This can happen

when the weights associated with a neuron are updated in a way that makes the neuron’s

output always negative. To address this problem, variants of ReLU, such as Leaky ReLU,

Parametric ReLU (PReLU), and Exponential Linear Unit (ELU), have been proposed,

which allow a small gradient for negative inputs to prevent neurons from dying.

3.8.2 Sigmoid Activation Function:

The logistic function, sometimes known as the sigmoid activation function, is a common

activation function used in artificial neural networks and logistic regression models. It
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makes it appropriate for binary classification problems by mapping input values to a

range between 0 and 1 where the goal is to produce likelihoods that a given input falls

into a specific class.

The sigmoid function is defined as follows:

σ(z) = 1
1 + e−z

Where:

- σ(z) is the sigmoid function’s result for a particular input z. - e is the natural loga-

rithm’s base (approximately equal to 2.71828).

Key properties of the sigmoid function:

- Range: Sigmoid function’s output is always in the range of 0 and 1, therefore when used

for binary classification, it can give output can be interpreted as a probability. - S-shaped

Curve: The sigmoid function has an "S" shape, which means that minor adjustments

to the input value result in relatively minor adjustments to the output. This makes

it suitable for gradient-based optimization algorithms. - Smooth and Continuous: The

sigmoid function is smooth and differentiable everywhere, which allows for gradient-

based training methods like backpropagation. - Centered at 0.5: The sigmoid function

has a midpoint at z = 0, where σ(0) = 0.5. This means that when the input is 0,

the sigmoid function produces an output of 0.5, which can be understood as an equal

likelihood of being a member of either class in a binary classification problem.

3.8.3 Softmax Activation Function:

In the output layer of neural networks for multi-class classification issues, the softmax

activation function is a frequently employed activation function. It converts logits or

raw scores into probability distributions for a number of classes, making it suitable for

problems where an input can belong to one of several mutually exclusive classes.

The softmax function is defined as follows for a vector of raw scores or logits z:

Softmax(z)i = ezi∑K
j=1 ezj

Where:
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- Softmax(z)i is the output of the softmax function for class i. - zi is the raw score or

logit associated with class i. - K is the total number of classes.

Key properties and characteristics of the softmax activation function:

- Normalization: The softmax function normalizes the raw scores, ensuring that the out-

put values are non-negative and sum to 1. This property allows the softmax function

to represent the probabilities of each class. - Probability Interpretation: The likelihood

that the input belongs to a given class can be deduced from the output of the softmax

function for each class. The predicted class is the one with the highest likelihood. - Mu-

tually Exclusive: The softmax function assumes that each input belongs to exactly one

of the classes (mutually exclusive). - Smoothness: The softmax function is smooth and

differentiable everywhere, making it suitable for gradient-based optimization algorithms

like backpropagation.

The softmax activation is often utilized in a neural network’s last layer for tasks like

image classification, text categorization, and various multi-class classification problems.

It transforms the raw scores produced by the preceding layers into class probabilities,

allowing the model to give probabilistic forecasts regarding the input’s class membership.

3.9 Model Validation

We start by splitting your dataset into two subsets: the training set and the test set.

The size of our training set (Ntrain) is calculated as a percentage of the total dataset size.

In our code, we used 80 percent of the data for training (Ntrain = int(len(names)×0.8)),

leaving 20 percent for testing (Ntest = int(len(names)× 0.2)). Mathematically, we can

represent the dataset split as follows: Training Set:

Size: Ntrain

Data: Xtrain

Labels: Ytrain

Test Set:

Size: Ntest

Data: Xtest

Labels: Ytest
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we specify hyperparameters for training:

• Number of epochs (E): In our code, we set E = 200.

• Batch size (B): our batch size is B = 500.

we use the training data (Xtrain, Ytrain) to train the model. The training process entails

adjusting the model’s weights repeatedly in order to minimize a loss function (L) using

an optimization algorithm. Mathematically, this process can be represented as:

Model: M(θ) (with trainable parameters θ)

Loss: L(Ytrain, M(Xtrain, θ))

Optimization: θ ← θ − α∇L(Ytrain, M(Xtrain, θ))

where α is the learning rate.

After training, we assess the model’s performance utilizing the test dataset (Xtest, Ytest).

The evaluation computes various metrics, including loss (Ltest) and accuracy (Atest).

Mathematically, model evaluation can be expressed as:

Loss on Test Set: Ltest = L(Ytest, M(Xtest, θ))

Accuracy on Test Set: Atest = 1
Ntest

Ntest∑
i=1

I(M(X(i)
test, θ) = Y

(i)
test)

where I(condition) is a function that indicates whether a condition is true by equaling

1 and 0 otherwise.

In summary, the model validation process involves mathematically defining datasets,

training the model with hyperparameters, updating model weights in order to reduce

the loss, and evaluating the model’s performance on the test dataset using metrics like

loss and accuracy. This process helps evaluate the model’s ability to generalize to new

data.

3.10 Performance Evaluation

For performance evaluation we have accuracy, sensitivity, specificity, precision, f1-score,

recall and loss.
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Actual Positive (1) Actual Negative (0)

Predicted Positive TP FP

Predicted Negative FN TN

From the values in the confusion matrix, we can compute various performance metrics

as follows:

Accuracy:

Accuracy = TP + TN

TP + TN + FP + FN

The accuracy formula computes the percentage of correctly identified cases (including

true positives and true negatives) in the dataset.

Sensitivity (True Positive Rate or Recall):

Sensitivity assesses The capacity of the model to accurately detect positive cases (class

1). It is computed in this way:

Sensitivity = TP

TP + FN

Sensitivity tells us how well our model identifies the actual positive cases. A high

sensitivity demonstrates how well the model can identify positives.

Specificity (True Negative Rate):

Specificity assesses the model’s ability to correctly detect negative cases. (class 0). It is

computed in this way:

Specificity = TN

TN + FP

Specificity tells us how well our model identifies the actual negative cases.A high speci-

ficity suggests that the model is effective at minimizing false negative alarms.

Precision:

Precision evaluates the model’s accuracy in making favorable predictions. It is computed

in this way:

Precision = TP

TP + FP
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Precision indicates how many of the projected positive cases were found to be positive.

A high precision indicates that the positive predictions are reliable.

F1 Score:

The F1 score is a harmonic mean of precision and memory that offers a balance. It is

computed in this way:

F1 Score = 2 · Precision · Recall
Precision + Recall

When we wish to account false negatives as well as false positives, we can utilize the F1

score.

Recall (Same as Sensitivity):

Recall, also known as Sensitivity, assesses the model’s ability to properly detect positive

events (class 1). It is computed in this way:

Recall = TP

TP + FN
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Results

This section contains the explanation of our finding which we have obtained by using the

feature extraction methods and classification methods.We have used 5 feature extraction

methods.The feature extraction methods are Visual Geometry Group-16, Visual Geom-

etry Group-19, Inception-V3, ResNet-50 and EfficientNetB0. The classification methods

are Long and Short Term Memory (LSTM) and Gradient Recurrent Unit (GRU).

The method consists of taking a selected group of video frames, sending them to the

pre-trained network, getting the results from one of its final layers, and then training

a new network architecture using the LSTM or GRU special-purpose neurons from

these outputs. These neurons contain memories and are able to analyze the temporal

information in the videos if they spot violence at any point, the video will be labelled as

violent. First we have imported some of the important models, layers and applications

which are helpful in running our code. Then after that we have checked our keras (It is a

high-level neural network library) version. After that we have define a function in which

we are using a helper function print-progress to print the amount of videos processed

the datasets. Then in the next step we have loaded our data by defining the directory to

place the video dataset. Then after that we have defined some of the data dimensions of

our convenience. Then define a function that is used to get 20 frames from a video file and

convert the frame to a suitable format for the neural net. Then we have defined another

helper function to get the names of the data downloaded and label it. Then we have

plotted a video frame to see if the data is correct. Then we are going to load 20 frames

per video. Convert back the frames to uint8 pixel format to plot the frame. After that we

will apply our pre-trained model and see its summary. We can observe the anticipated
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tensor shapes used as input by the trained model. In this instance, it is 224 × 224 x 3

image. Note that we have defined the frame size as 224x224x3 but it varies from method

to method. The video frame will be the input of the image mode. Now then classification

layer that we going to use is the one that is fully connected and dense. After that, we

defined a function to process video frames through our pre-trained model and get the

transfer values. We save the so-called Transfer Values to a cache file shortly before the

pre-trained model’s last classification layer. The reason for employing a cache-file is that

processing a picture with the pre-trained model takes a lengthy time. We can save if

each image is processed more than once, a great deal of time can be saved by storing the

transfer values. After running all of the movies through the pre-trained transfer-values

from the model and storing them in a cache file, we use those transfer-values as input

to our LSTM or GRU neural structure. Next, the classes from the neural network will

be used to train the violence dataset (Violence, No-Violence), so that the network may

learn how the transfer-values from the pre-trained model are used to classify photos.

We define a functions to get the transfer values from pre-trained model with defined

number of files training and testing. We are going to split the data set into training set

and testing set. The training set is used to train the model and the test set to check the

model accuracy. Then we are going to process all video frames through feature extraction

methods and saving the transfer values. After that we have made files for training set

and test set. We have already saved all the videos transfer values into disk. But we

have to load those transfer values into memory in order to train the LSTM or GRU

net. One question would be why not process transfer values and load them into RAM

memory? Yes is a more efficient way to train the second net. But if you have to train

the LSTM or GRU in different ways in order to see which way gets the best accuracy, if

you didn’t save the transfer values into disk you would have to process the whole video

each training. It’s very time-consuming to process the videos through a pre-trained

model net. In order to load the saved transfer values into RAM memory we are going

to use two functions. The purposed models are EfficientNETB0-LSTM, Resnet-LSTM,

VGG16-LSTM, VGG19-LSTM, InceptionV3-LSTM, EfficientNETBO-GRU, Resnet50-

GRU, VGG16-GRU, VGG19-GRU and InceptionV3-GRU. The performance of these

methods are explained in Table 4.1.
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(a) Model Accuracy (b) Model loss

Figure 4.1: InceptionV3-LSTM method graphical representation of loss and accuracy.

The graphs displays the accuracy and loss of the Test and Train datasets while using the

fundamental InceptionV3-LSTM model. The y-axis shows the accuracy and loss and the

x-axis shows the model training epochs . In this we have attained 91 percent accuracy

and 7.96 percent loss. These results we have attained by first time running the model.

(a) Model Accuracy (b) Model loss

Figure 4.2: InceptionV3-GRU method graphical representation of loss and accuracy.

The graphs displays the accuracy and loss of the Test and Train datasets while using the

fundamental Inception V3-GRU model. The y-axis shows the accuracy and loss and the

x-axis shows the model training epochs. In this we have attained 89.5 percent accuracy

and 8.42 percent loss. These results we have attained by first time running the model.
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(a) Model Accuracy (b) Model loss

Figure 4.3: EfficientNetB0-GRU method graphical representation of loss and accuracy.

The graphs displays the accuracy and loss of the Test and Train datasets while using

the fundamental EfficientNetB0-GRU model. The y-axis shows the accuracy and loss

and the x-axis shows the model training epochs. In this we have attained 92 percent

accuracy and 7.74 percent loss. These results we have attained by first time running the

model.

(a) Model Accuracy (b) Model loss

Figure 4.4: EfficientNetB0-LSTM method graphical representation of loss and accuracy.

The graphs displays the accuracy and loss of the Test and Train datasets while using

the fundamental EfficientNetB0-LSTM model. The y-axis shows the accuracy and loss

and the x-axis shows the model training epochs. In this we have attained 89 percent

accuracy and 10.28 percent loss. These results we have attained by first time running

the model.
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(a) Model Accuracy (b) Model loss

Figure 4.5: Resnet50-GRU method graphical representation of loss and accuracy.

The graphs displays the accuracy and loss of the Test and Train datasets while using

the fundamental Resnet50-GRU model. The y-axis shows the accuracy and loss and the

x-axis shows the model training epochs. In this we have attained 86.5 percent accuracy

and 11.29 percent loss. These results we have attained by first time running the model.

(a) Model Accuracy (b) Model loss

Figure 4.6: Resnet50-LSTM method graphical representation of loss and accuracy.

The graphs displays the accuracy and loss of the Test and Train datasets while using the

fundamental Resnet50-LSTM model. The y-axis shows the accuracy and loss and the

x-axis shows the model training epochs. In this we have attained 81.5 percent accuracy

and 13.41 percent loss. These results we have attained by first time running the model.
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(a) Model Accuracy (b) Model loss

Figure 4.7: VGG16-GRU method graphical representation of loss and accuracy.

The graphs displays the accuracy and loss of the Test and Train datasets while using

the fundamental VGG16-GRU model. The y-axis shows the accuracy and loss and the

x-axis shows the model training epochs. In this we have attained 93.5 percent accuracy

and 5.32 percent loss. These results we have attained by first time running the model.

(a) Model Accuracy (b) Model loss

Figure 4.8: VGG16-LSTM method graphical representation of loss and accuracy.

The graphs displays the accuracy and loss of the Test and Train datasets while using

the fundamental VGG16-LSTM model. The y-axis shows the accuracy and loss and the

x-axis shows the model training epochs. In this we have attained 94 percent accuracy

and 4.72 percent loss. These results we have attained by first time running the model.
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(a) Model Accuracy (b) Model loss

Figure 4.9: VGG19-LSTM method graphical representation of loss and accuracy.

The graphs displays the accuracy and loss of the Test and Train datasets while using

the fundamental VGG19-LSTM model. The y-axis shows the accuracy and loss and the

x-axis shows the model training epochs. In this we have attained 91 percent accuracy

and 7.32 percent loss. These results we have attained by first time running the model.

(a) Model Accuracy (b) Model loss

Figure 4.10: VGG19-GRU method graphical representation of loss and accuracy.

The graphs displays the accuracy and loss of the Test and Train datasets while using

the fundamental VGG19-GRU model. The y-axis shows the accuracy and loss and the

x-axis shows the model training epochs. In this we have attained 92 percent accuracy

and 7.32 percent loss. These results we have attained by first time running the model.
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Figure 4.11: This box plot shows the values of accuracy of all the methods at its y-axis

and the x-axis shows the method names.

The y-axis of this box plot reflects the accuracy values of all the techniques, while

method names are displayed on the x-axis. Each method’s box in box plot indicates

the interquartile range (IQR), corresponding to the median 50 percent of the data. The

box’s bottom border represents the first quartile (Q1), or the twenty- fifth percentile.

The box’s upper border lines up with the third quarter (Q3), or the seventy- fifth

percentile. As a result, the span of the box represents the dispersion of the middle 50

percent of the data. Once the data being analyzed has been organized, a horizontal

line within the box depicts the median value, which is the midway number. It divides

the data being gathered into two equal halves. Whiskers expand beyond the box to the

lowest and highest values within a certain range. The range might differ; however, it is

usually fixed to a multiple of the IQR. Values over the whiskers are regarded as outliers.

Outside the whiskers, points of data are frequently indicated as distinct points. Outliers

are values for the data that deviate dramatically from the remainder of the data and

should be investigated further.
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Figure 4.12: This box plot shows the values of loss of all the methods at its y-axis and

the x-axis shows the method names.

The y-axis of this box plot reflects the loss values of all the techniques, while method

names are displayed on the x-axis. Each method’s box in box plot indicates the in-

terquartile range (IQR), corresponding to the median 50 percent of the data. The box’s

bottom border represents the first quartile (Q1), or the twenty- fifth percentile. The

box’s upper border lines up with the third quarter (Q3), or the seventy- fifth percentile.

As a result, the span of the box represents the dispersion of the middle 50 percent of the

data. Once the data being analyzed has been organized, a horizontal line within the box

depicts the median value, which is the midway number. It divides the data being gath-

ered into two equal halves. Whiskers expand beyond the box to the lowest and highest

values within a certain range. The range might differ; however, it is usually fixed to

a multiple of the IQR. Values over the whiskers are regarded as outliers. Outside the

whiskers, points of data are frequently indicated as distinct points. Outliers are values

for the data that deviate dramatically from the remainder of the data and should be

investigated further.
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Figure 4.13: This box plot shows the values of sensitivity of class 0 of all the methods

at its y-axis and the x-axis shows the method names.

The y-axis of this box plot reflects the sensitivity of class 0 values of all the techniques,

while method names are displayed on the x-axis. Each method’s box in box plot indicates

the interquartile range (IQR), corresponding to the median 50 percent of the data. The

box’s bottom border represents the first quartile (Q1), or the twenty- fifth percentile.

The box’s upper border lines up with the third quarter (Q3), or the seventy- fifth

percentile. As a result, the span of the box represents the dispersion of the middle 50

percent of the data. Once the data being analyzed has been organized, a horizontal

line within the box depicts the median value, which is the midway number. It divides

the data being gathered into two equal halves. Whiskers expand beyond the box to the

lowest and highest values within a certain range. The range might differ; however, it is

usually fixed to a multiple of the IQR. Values over the whiskers are regarded as outliers.

Outside the whiskers, points of data are frequently indicated as distinct points. Outliers

are values for the data that deviate dramatically from the remainder of the data and

should be investigated further.
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Figure 4.14: This box plot shows the values of sensitivity of class 1 of all the methods

at its y-axis and the x-axis shows the method names.

The y-axis of this box plot reflects the sensitivity of class 1 values of all the techniques,

while method names are displayed on the x-axis. Each method’s box in box plot indicates

the interquartile range (IQR), corresponding to the median 50 percent of the data. The

box’s bottom border represents the first quartile (Q1), or the twenty- fifth percentile.

The box’s upper border lines up with the third quarter (Q3), or the seventy- fifth

percentile. As a result, the span of the box represents the dispersion of the middle 50

percent of the data. Once the data being analyzed has been organized, a horizontal

line within the box depicts the median value, which is the midway number. It divides

the data being gathered into two equal halves. Whiskers expand beyond the box to the

lowest and highest values within a certain range. The range might differ; however, it is

usually fixed to a multiple of the IQR. Values over the whiskers are regarded as outliers.

Outside the whiskers, points of data are frequently indicated as distinct points. Outliers

are values for the data that deviate dramatically from the remainder of the data and

should be investigated further.
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Figure 4.15: This box plot shows the values of specificity of class 0 of all the methods

at its y-axis and the x-axis shows the method names.

The y-axis of this box plot reflects the specificity of class 0 values of all the techniques,

while method names are displayed on the x-axis. Each method’s box in box plot indicates

the interquartile range (IQR), corresponding to the median 50 percent of the data. The

box’s bottom border represents the first quartile (Q1), or the twenty- fifth percentile.

The box’s upper border lines up with the third quarter (Q3), or the seventy- fifth

percentile. As a result, the span of the box represents the dispersion of the middle 50

percent of the data. Once the data being analyzed has been organized, a horizontal

line within the box depicts the median value, which is the midway number. It divides

the data being gathered into two equal halves. Whiskers expand beyond the box to the

lowest and highest values within a certain range. The range might differ; however, it is

usually fixed to a multiple of the IQR. Values over the whiskers are regarded as outliers.

Outside the whiskers, points of data are frequently indicated as distinct points. Outliers

are values for the data that deviate dramatically from the remainder of the data and

should be investigated further.
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Figure 4.16: This box plot shows the values of specificity of class 1 of all the methods

at its y-axis and the x-axis shows the method names.

The y-axis of this box plot reflects the specificity of class 1 values of all the techniques,

while method names are displayed on the x-axis. Each method’s box in box plot indicates

the interquartile range (IQR), corresponding to the median 50 percent of the data. The

box’s bottom border represents the first quartile (Q1), or the twenty- fifth percentile.

The box’s upper border lines up with the third quarter (Q3), or the seventy- fifth

percentile. As a result, the span of the box represents the dispersion of the middle 50

percent of the data. Once the data being analyzed has been organized, a horizontal

line within the box depicts the median value, which is the midway number. It divides

the data being gathered into two equal halves. Whiskers expand beyond the box to the

lowest and highest values within a certain range. The range might differ; however, it is

usually fixed to a multiple of the IQR. Values over the whiskers are regarded as outliers.

Outside the whiskers, points of data are frequently indicated as distinct points. Outliers

are values for the data that deviate dramatically from the remainder of the data and

should be investigated further.
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Figure 4.17: This box plot shows the values of precision of class 0 of all the methods at

its y-axis and the x-axis shows the method names.

The y-axis of this box plot reflects the precision of class 0 values of all the techniques,

while method names are displayed on the x-axis. Each method’s box in box plot indicates

the interquartile range (IQR), corresponding to the median 50 percent of the data. The

box’s bottom border represents the first quartile (Q1), or the twenty- fifth percentile.

The box’s upper border lines up with the third quarter (Q3), or the seventy- fifth

percentile. As a result, the span of the box represents the dispersion of the middle 50

percent of the data. Once the data being analyzed has been organized, a horizontal

line within the box depicts the median value, which is the midway number. It divides

the data being gathered into two equal halves. Whiskers expand beyond the box to the

lowest and highest values within a certain range. The range might differ; however, it is

usually fixed to a multiple of the IQR. Values over the whiskers are regarded as outliers.

Outside the whiskers, points of data are frequently indicated as distinct points. Outliers

are values for the data that deviate dramatically from the remainder of the data and

should be investigated further.
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Figure 4.18: This box plot shows the values of precision of class 1 of all the methods at

its y-axis and the x-axis shows the method names.

The y-axis of this box plot reflects the precision of class 1 values of all the techniques,

while method names are displayed on the x-axis. Each method’s box in box plot indicates

the interquartile range (IQR), corresponding to the median 50 percent of the data. The

box’s bottom border represents the first quartile (Q1), or the twenty- fifth percentile.

The box’s upper border lines up with the third quarter (Q3), or the seventy- fifth

percentile. As a result, the span of the box represents the dispersion of the middle 50

percent of the data. Once the data being analyzed has been organized, a horizontal

line within the box depicts the median value, which is the midway number. It divides

the data being gathered into two equal halves. Whiskers expand beyond the box to the

lowest and highest values within a certain range. The range might differ; however, it is

usually fixed to a multiple of the IQR. Values over the whiskers are regarded as outliers.

Outside the whiskers, points of data are frequently indicated as distinct points. Outliers

are values for the data that deviate dramatically from the remainder of the data and

should be investigated further.
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Figure 4.19: This box plot shows the values of recall of class 0 of all the methods at its

y-axis and the x-axis shows the method names.

The y-axis of this box plot reflects the recall of class 0 values of all the techniques, while

method names are displayed on the x-axis. Each method’s box in box plot indicates

the interquartile range (IQR), corresponding to the median 50 percent of the data. The

box’s bottom border represents the first quartile (Q1), or the twenty- fifth percentile.

The box’s upper border lines up with the third quarter (Q3), or the seventy- fifth

percentile. As a result, the span of the box represents the dispersion of the middle 50

percent of the data. Once the data being analyzed has been organized, a horizontal

line within the box depicts the median value, which is the midway number. It divides

the data being gathered into two equal halves. Whiskers expand beyond the box to the

lowest and highest values within a certain range. The range might differ; however, it is

usually fixed to a multiple of the IQR. Values over the whiskers are regarded as outliers.

Outside the whiskers, points of data are frequently indicated as distinct points. Outliers

are values for the data that deviate dramatically from the remainder of the data and

should be investigated further.
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Figure 4.20: This box plot shows the values of recall of class 1 of all the methods at its

y-axis and the x-axis shows the method names.

The y-axis of this box plot reflects the recall of class 1 values of all the techniques, while

method names are displayed on the x-axis. Each method’s box in box plot indicates

the interquartile range (IQR), corresponding to the median 50 percent of the data. The

box’s bottom border represents the first quartile (Q1), or the twenty- fifth percentile.

The box’s upper border lines up with the third quarter (Q3), or the seventy- fifth

percentile. As a result, the span of the box represents the dispersion of the middle 50

percent of the data. Once the data being analyzed has been organized, a horizontal

line within the box depicts the median value, which is the midway number. It divides

the data being gathered into two equal halves. Whiskers expand beyond the box to the

lowest and highest values within a certain range. The range might differ; however, it is

usually fixed to a multiple of the IQR. Values over the whiskers are regarded as outliers.

Outside the whiskers, points of data are frequently indicated as distinct points. Outliers

are values for the data that deviate dramatically from the remainder of the data and

should be investigated further.
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Figure 4.21: This box plot shows the values of f1-score of class 0 of all the methods at

its y-axis and the x-axis shows the method names.

The y-axis of this box plot reflects the f1-score of class 0 values of all the techniques, while

method names are displayed on the x-axis. Each method’s box in box plot indicates

the interquartile range (IQR), corresponding to the median 50 percent of the data. The

box’s bottom border represents the first quartile (Q1), or the twenty- fifth percentile.

The box’s upper border lines up with the third quarter (Q3), or the seventy- fifth

percentile. As a result, the span of the box represents the dispersion of the middle 50

percent of the data. Once the data being analyzed has been organized, a horizontal

line within the box depicts the median value, which is the midway number. It divides

the data being gathered into two equal halves. Whiskers expand beyond the box to the

lowest and highest values within a certain range. The range might differ; however, it is

usually fixed to a multiple of the IQR. Values over the whiskers are regarded as outliers.

Outside the whiskers, points of data are frequently indicated as distinct points. Outliers

are values for the data that deviate dramatically from the remainder of the data and

should be investigated further.
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Figure 4.22: This box plot shows the values of f1-score of class 1 of all the methods at

its y-axis and the x-axis shows the method names.

The y-axis of this box plot reflects the f1-score of class 1 values of all the techniques, while

method names are displayed on the x-axis. Each method’s box in box plot indicates

the interquartile range (IQR), corresponding to the median 50 percent of the data. The

box’s bottom border represents the first quartile (Q1), or the twenty- fifth percentile.

The box’s upper border lines up with the third quarter (Q3), or the seventy- fifth

percentile. As a result, the span of the box represents the dispersion of the middle 50

percent of the data. Once the data being analyzed has been organized, a horizontal

line within the box depicts the median value, which is the midway number. It divides

the data being gathered into two equal halves. Whiskers expand beyond the box to the

lowest and highest values within a certain range. The range might differ; however, it is

usually fixed to a multiple of the IQR. Values over the whiskers are regarded as outliers.

Outside the whiskers, points of data are frequently indicated as distinct points. Outliers

are values for the data that deviate dramatically from the remainder of the data and

should be investigated further.
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Table 4.1: Performance of Neural Networks on Hockey fight videos dataset

methods loss accuracy Precision class 1 Precision class 0
Recall

Class 0

Recall

Class 1

VGG16-LSTM 0.05526 0.934 0.942 0.93 0.942 0.924

VGG16-GRU 0.05232 0.937 0.928 0.946 0.926 0.946

VGG19-LSTM 0.07574 0.909 0.896 0.928 0.888 0.932

VGG19-GRU 0.06792 0.921 0.954 0.892 0.956 0.888

Resnet50-LSTM 0.123 0.839 0.822 0.87 0.788 0.89

Resnet50-GRU 0.14838 0.826 0.8 0.854 0.812 0.842

EfficientNetB0-LSTM 0.0938 0.90 0.906 0.892 0.916 0.886

EfficientNetB0-GRU 0.07326 0.923 0.912 0.936 0.918 0.93

InceptionV3-LSTM 0.08544 0.904 0.902 0.906 0.896 0.91

InceptionV3-GRU 0.0933 0.891 0.876 0.908 0.866 0.916

Table 4.2: Performance of Neural Networks on Hockey fight videos dataset

methods F1-score class 0 F1-score class 1
Specificity

Class 0

Specificity

Class 1

Sensitivity

Class 0

Sensitivity

Class 1

VGG16-LSTM 0.934 0.932 0.94352 0.92388 0.94352 0.92388

VGG16-GRU 0.936 0.938 0.927 0.9426 0.927 0.9426

VGG19-LSTM 0.908 0.91 0.889 0.92976 0.889 0.92976

VGG19-GRU 0.924 0.918 0.956 0.887 0.956 0.887

Resnet50-LSTM 0.822 0.84 0.7866 0.889 0.7866 0.889

Resnet50-GRU 0.834 0.818 0.81144 0.84282 0.81144 0.84282

EfficientNetB0-LSTM 0.904 0.896 0.91378 0.90589 0.91378 0.90589

EfficientNetB0-GRU 0.926 0.92 0.91576 0.9305 0.91576 0.9305

InceptionV3-LSTM 0.902 0.906 0.89714 0.909 0.89714 0.909

InceptionV3-GRU 0.888 0.894 0.866 0.9162 0.866 0.9162

Table 4.1 and Table 4.2 above represent the results of the research done on the Hockey

Fight Videos dataset. For InceptionV3-LSTM we have accuracy values ranging between

89 percent to 92 percent and loss values ranging between 7.26 percent to 9.73 percent.

As we have performed five runs to find this range of values we have taken the average

of all the values and put them in Table 4.1. For InceptionV3-GRU we have accuracy

values ranging between 85.5 percent to 93 percent and loss values ranging between 6.6

percent to 12.82 percent. As we have performed five runs to find this range of values we
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have taken the average of all the values and put them in Table 4.1. For EfficientNetB0-

LSTM we have accuracy values ranging between 87 percent to 92 percent and loss values

ranging between 7.58 percent to 12.09 percent. As we have performed five runs to find

this range of values we have taken the average of all the values and put them in Table

4.1. For EfficientNetB0-GRU we have accuracy values ranging between 91.5 percent

to 93 percent and loss values ranging between 6.92 percent to 7.74 percent. As we

have performed five runs to find this range of values we have taken the average of all

the values and put them in Table 4.1. For ResNet50-LSTM we have accuracy values

ranging between 80.5 percent to 88.5 percent and loss values ranging between 10.36

percent to 15.03 percent. As we have performed five runs to find this range of values we

have taken the average of all the values and put them in Table 4.1. For ResNet50-GRU

we have accuracy values ranging between 81 percent to 86.5 percent and loss values

ranging between 11.29 percent to 18.26 percent. As we have performed five runs to

find this range of values we have taken the average of all the values and put them in

Table 4.1. For VGG19-LSTM we have accuracy values ranging between 87 percent to

92.5 percent and loss values ranging between 6.44 percent to 10.76 percent. As we have

performed five runs to find this range of values we have taken the average of all the

values and put them in Table 4.1. For VGG19-GRU we have accuracy values ranging

between 89.5 percent to 95 percent and loss values ranging between 3.55 percent to 9.39

percent. As we have performed five runs to find this range of values we have taken the

average of all the values and put them in Table 4.1. For VGG16-LSTM we have accuracy

values ranging between 90.5 percent to 95.5 percent and loss values ranging between 4.34

percent to 7.56 percent. As we have performed five runs to find this range of values we

have taken the average of all the values and put them in Table 4.1. For VGG16-GRU we

have accuracy values ranging between 91 percent to 95.5 percent and loss values ranging

between 3.58 percent to 8.06 percent. As we have performed five runs to find this range

of values we have taken the average of all the values and put them in Table 4.1. Neural

Networks with additional input branches have been employed to analyze data sets and

detect the violence with an accuracy range of 82.6 percent-93.7 percent and the other

evaluation metrics such as sensitivity, specificity range 78.66 percent-95.6 percent, and

84.28 percent-94.26 percent. On the Hockey fight video dataset, a number of assessment

metrics, such as accuracy, sensitivity, specificity, f1-score, a precision are used to assess

the model’s performance as shown in Table 4.1 and Table 4.2.
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Conclusion

The purpose of this work is to detect violence in a video data set using Neural Net-

works, that has been synthesized. The EfficientNET-BO, Resnet-50, VGG-16, VGG-19

and InceptionV3 are very helpful in extracting the special features. While the LSTM

and GRU has done classification for us. The best result that we have achieved is from

VGG16-GRU and the worst results that we have achieved is from Resnet50-GRU. Re-

search is required in this field as this can help us in the emerging violence situations.

Additionally in future we can have a video surveillance violence detection cameras which

give the indication of violence.
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Appendix A

First Appendix

The separate numbering of appendices is also supported by LaTeX. The appendix macro

can be used to indicate that following chapters are to be numbered as appendices. Only

use the appendix macro once for all appendices.
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