
P4T: Design and Development of P4 based

Networking Testbed

By

Maryam Iftikhar

Fall-2021- MS-IT-21 363376 SEECS

Supervisor

Dr. Salman Abdul Ghafoor, Department of Electrical Engineering

A thesis submitted in partial fulfillment of the requirements for the degree of

Masters of Information Technology (MS IT)

In

School of Electrical Engineering and Computer Science,

National University of Sciences and Technology (NUST),

Islamabad, Pakistan.

(Dec 2023)

1

Approval

Signature: ______________________

Date: __________________________

Signature: ______________________

Date: _________________________

Signature: ______________________

Date: _________________________

Signature: ______________________

Date: _________________________

Online Printing Date & Time: Monday, 25 December 2023 19:20:43

It is certified that the contents and form of the thesis entitled "Design and development
of a P4 based networking testbed" submitted by Maryam Iftikhar have been found
satisfactory for the requirement of the degree

Advisor : Dr. Salman Abdul Ghafoor

22-Nov-2023

Co-Advisor: Dr. Arsalan Ahmad

23-Nov-2023

Committee Member 1:Dr. Syed Taha Ali

23-Nov-2023

Committee Member 2:Dr. Ahmad Salman

22-Nov-2023

Publish Date & Time: Thursday, 23 November 2023 , 15:21:37PDF4NET evaluation version 4.7.0.0

PDF4NET evaluation version 4.7.0.0

4

Dedication

This effort is dedicated to my supportive parents, committed professors, and the invaluable

assistance of SEECS administration for enabling me to pursue my education alongside my

professional responsibilities. Their confidence in my talents and ongoing mentoring have been

vital in molding my growth and development. I am eternally grateful for their love and the

priceless life lessons they have taught me. This effort is an homage to their persistent

commitment and the tremendous influence they have made on my life.

 Maryam Iftikhar

5

Certificate of Originality

I hereby declare that this submission is my own work and to the best of my knowledge it

contains no materials previously published or written by another person, nor material which

to a substantial extent has been accepted for the award of any degree or diploma at NUST

SEECS or at any other educational institute, except where due acknowledgement has been

made in the thesis. Any contribution made to the research by others, with whom I have

worked at NUST SEECS or elsewhere, is explicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the product of my own work,

except for the assistance from others in the projects de-sign and conception or in style,

presentation and linguistics which has been acknowledged.

Author Name: Maryam Iftikhar

Signature:

6

Acknowledgements

I extend my sincere appreciation to everyone who played a vital role in the successful

completion of this research endeavor. I would like to express my gratitude to Allah for granting

me the strength to take on this challenge, with the intention of emphasizing His majesty.

Moreover, without the support and guidance of my advisors, Dr. Salman Abdul Ghafoor and Dr.

Arsalan Ahmed, I would not have been able to successfully complete this research. Their

direction and uplifting encouragement were invaluable throughout this journey. I'm also thankful

for Hafiz Mati ur Rehman (Lab Incharge) whose guidance and practical assistance significantly

contributed to thesis success, and for the time and expertise he generously shared.

Last but not least, I would like to acknowledge the SEECS administration for their support in

pursuing my education alongside my professional responsibilities, as well as my family for

providing an environment in which I could focus on developing this thesis. Their understanding

and encouragement have been truly invaluable.

7

Table of Contents
Approval ... 3
1. Chapter 01 - Introduction .. 13

1.1 Motivation ... 13
1.2 Revolutionizing Networking ... 13

1.3 The Dynamic Architecture of SDN ... 14
1.3.1 Application Plane .. 15

1.3.2 Control Plane .. 15
1.3.3 Data Plane ... 16

1.3.4 Proposed Tri-Layer SDN Model .. 16
1.4 Applications of SDN .. 17

1.4.1 Integrated Storage Solutions .. 17
1.4.2 Empowering Visual Experiences .. 17

1.4.3 Streamlining Orchestration for Seamless Connectivity 17
1.4.4 Scaling New Horizons of Data Center Networks 18

1.4.5 Empowering Enterprise Connectivity.. 18
1.5 SDN Controllers .. 18

1.6 Challenges Related to Software-Defined Networking (SDN) 19
1.6.1 Network Security Challenges ... 19

1.6.2 Scalability and Performance Issues.. 20
1.6.3 Standardization and interoperability Challenges 20

1.6.4 Complexity and Management Issues.. 20
1.6.5 Challenges with Reliability and Fault Tolerance............................... 20

1.7 Problem Statement ... 20
1.8 Proposed Solution ... 21

1.9 Thesis Outline .. 23

2. Chapter 02 - Literature Review ... 24

3. Chapter 03 - Virtualization of Network Functions ... 27
3.1 Fundamentals of Network Function Virtualization (NFV) 27

3.2 Virtual Network Functions (VNF) ... 27
3.3 Framework and Services ... 27

3.3.1 Infrastructure Layer ... 27

3.3.2 Virtualization Layer ... 27
3.3.3 Orchestration Layer ... 28

3.3.4 VNF Manager Layer .. 28
3.3.5 Network Services Layer.. 28

3.4 Advantages of Network Function Virtualization (NFV) 29
3.4.1 Service Flexibility ... 29

3.4.2 Cost Efficiency .. 29
3.4.3 Scalability and Elasticity .. 30

3.4.4 Service Chaining ... 30
3.4.5 Network Programmability ... 30

3.5 Addressing the Obstacles of Network Function Virtualization (NFV) 30
3.6 A Comparative Analysis of NFV and SDN ... 30

4. Chapter 04 - Programming Protocol-Independent Packet Processors 31
4.1 P4 Language .. 31

8

4.1.1 Packet Parsing .. 31
4.1.2 Ingress Pipeline ... 32

4.1.3 Egress Pipeline .. 32
4.1.4 Packet Deparsing .. 32

4.2 Behavioral Model .. 32
4.3 V1 Model Architecture ... 33

4.3.1 Metadata Fields .. 34
4.3.2 P4 Code and Functionality ... 35

4.3.3 P4 Basic Headers .. 36
4.3.4 Parser .. 37

4.3.5 Simple Actions .. 38
4.3.6 Tables .. 39

4.4 P4Runtime ... 40
4.4.1 Control Plane with P4 Runtime API... 41

4.5 P4 Advantages and Specifications.. 43

5. Chapter 05 - Open Network Operating System .. 44
5.1 ONOS Specifications ... 44

5.1.1 Centralized Management ... 44

5.1.2 Northbound and Southbound Interfaces ... 44
5.1.3 Flow Management and Traffic Engineering 44

5.1.4 Network Virtualization ... 44
5.1.5 Application Ecosystem .. 44

5.1.6 Flexibility and Programmability .. 45
5.1.7 Scalability and High Availability ... 45

5.1.8 Open-Source Community ... 45
5.2 Design Principles of ONOS ... 45

5.2.1 Code modularity ... 45
5.2.2 Configurable Features .. 45

5.2.3 Protocol Independence ... 45
5.2.4 Protocol Awareness Module ... 46

5.2.5 System Core .. 46
5.2.6 Applications .. 46

5.3 System Components of ONOS .. 46
5.3.1 Device Subsystem .. 47

5.3.2 Host Subsystem ... 47
5.3.3 Topology Subsystem ... 47

5.3.4 Path Service .. 47
5.3.5 Flow Rule Subsystem .. 47

5.4 ONOS Subsytem Structure ... 47
5.5 Network-state Representation .. 48

5.5.1 Outbound Packet .. 49
5.5.2 Inbound Packet ... 49

5.6 Device Subsystem in ONOS ... 49
5.6.1 Device Manager .. 49

5.6.2 Device Providers ... 49
5.6.3 Device Store .. 50

9

5.7 Device Driver Subsystem ... 51

6. Chapter 06 - Environmental Setup .. 52
6.1 System Specifications ... 52

6.1.1 Manual Installation .. 52

6.2 ONOS Installation using Docker .. 53

7. Chapter 07 - Experimental Setup .. 56
7.1 Operating System Stratum ... 56
7.2 Mininet Topology... 57

Chapter 08 – Results ... 59
8 Program leaf1 using P4Runtime .. 59

8.1 Static NDP Table Entries ... 59
8.2 P4Runtime Table Entries ... 60

8.3 YANG .. 61
8.3.1 Open Configuration .. 63

8.3.2 Global Network Management Interface .. 63
8.4 ONOS as a Control Plane .. 64

8.4.1 Enable Packet I/O and Double-Check Link Discovery 64
8.4.2 L2 Bridging and Host Discovery .. 69

8.4.3 Topology Discovery .. 71
8.4.4 Performance Analysis ... 72

Chapter 09 - Future Work .. 74
Chapter 10 - References .. 75

10

List of Figures

Figure 1: Ecosystem of SDN ... 14

Figure 2: Three-layered SDN Framework ... 15

Figure 3: Proposed SDN Tri-Layer Architecture .. 16

Figure 4: Proposed Architecture .. 21

Figure 5: VNF Framework ... 28

Figure 6: End to End Network Service .. 29

Figure 7: P4 Architecture ... 31

Figure 8: P4 Packet Processing ... 32

Figure 9: P4 V1 Model .. 33

Figure 10: Match Action Data Flow ... 40

Figure 11: Local Control Plane with P4 Runtime API .. 41

Figure 12: Remote Control Plane with P4 Runtime API ... 42

Figure 13: P4 Runtime Data Flow .. 43

Figure 14: ONOS Stack .. 46

Figure 15: ONOS Components ... 47

Figure 16: OF Provider ... 50

Figure 17: Stratum Controller .. 56

Figure 18: Mininet Topology .. 58

Figure 19: Static NDP Entries .. 60

Figure 20: Rules Insertion in P4Runtime Shell .. 60

Figure 21: Ping h1 to h2 .. 61

Figure 22: Detection of Devices in ONOS CLI ... 67

Figure 23: Links on Devices .. 68

Figure 24: Topology Discovery ... 71

11

List of Graphs

1 RTT Analysis for h1 to h2 Ping 72

2 TP Analysis for h1 to h2 Ping 73

12

Abstract

In recent years, the networking domain has experienced a significant transition, with Software-

Defined Networking (SDN) emerging as an architectural innovation that provides network

operators with unparalleled programmability and administrative flexibility. By decoupling

network control from forwarding operations, simplifying administration, and accelerating

network advancement, SDN facilitates the creation of new networking abstractions. Because of

the expanding demand for fault tolerance and scalability in SDN systems, the importance of

improving and refining SDN operating systems with distributed architectures is increasingly

growing. However, without access to expensive testbeds, successful implementation of such

systems can be difficult. Various SDN development approaches depend on full system

virtualization or resource-intensive containers, which increases complexity and costs while

decreasing user-friendliness. In response to these issues, this paper introduces P4T (a P4-based

networking testbed) to address the challenges of creating reliable and scalable SDN operating

systems to meet the demands of modern network development. The proposed testbed leverages

the power of P4-based BMv2 switches and Mininet and provides a comprehensive but simplified

platform to simulate SDN-based network topology. With this testbed, several BMv2 switch

instances can be developed inside the same virtual environment, seamlessly orchestrating

forwarding behavior. Moreover, P4T empowers users to create custom topology, easily integrate

an ONOS controller for centralized control, and implement a wide range of P4-based networking

applications. This facilitates detailed evaluation of network programmability and performance,

thereby advancing the field of SDN network simulation.

13

1. Chapter 01 - Introduction

1.1 Motivation

With the emergence of Software-Defined Networking (SDN), the landscape of conventional

networks has experienced substantial modifications. SDN presents three separate layers:

infrastructure or physical layer, control layer, and application layer. The widely used Southbound

APIs, notably the OpenFlow [33] Protocol, bridge the gap between the physical and control

layers. Northbound APIs, similarly, act as the interface between the control layer and the

application layer. The controller is the nucleus of the SDN network architecture, commonly

compared to the network orchestrator, with the task of orchestrating and managing network

traffic throughout network devices located at the physical layer. The main principle underlying

this technique is the separation of network control logic (control plane) [10] from forwarding

hardware (data plane), resulting in seamless integration. This technique tackles various

constraints inherent in traditional networks, providing improved dependability, security, and

flexibility.

However, the use of SDN has few challenges that must be carefully considered. One of them is

the time necessary to adopt new protocols [25] or increase current functions that need a large

time investment. To become an official standard, the protocol must be implemented in ASICs

(Application-Specific Integrated Circuits), which might take many years. In the context of

corporate networks, it is essential to consider their dependency on network chip makers. The

advent of the P4 is notable joint efforts to address the aforementioned difficulties.

P4 (Programming Protocol-Independent Packet Processors) is created for network devices to

provide versatility and efficiency, making it appropriate for a variety of purposes including

NICs, routers, switches both hardware and software and other applications. P4 language is well

known for its ability to enable the creation of a network stack in switching hardware. It opens up

new possibilities for increased flexibility, removing the need to invest in new switches because

P4 software [25] allows for simple updates.

1.2 Revolutionizing Networking

The efficacy of some technologies, for instance cloud computing, has a significant impact on

network infrastructure performance. Still, the slow development of flexible IT structures creates

a number of issues. To overcome these difficulties, SDN technology offers new features to the

entire network structure. Administrators can encapsulate the network's fundamental framework

in order to support applications including network features. The [35] Open Networking

Foundation (ONF), a non-profit group, is responsible for the marketing, development, and

standardization of SDN. It is characterized features like the separation of the control and data

planes, as well as the ability to program within the control plane. This architectural decoupling

boosts network performance and extends control to many networking levels, from packet

forwarding to data link connections. It offers real-time centralized network control, policy

14

implementation, and dynamic network management. The expanding need for SDN has been

driven by the growing demand for dynamic [36] network management, rapid service creation,

and efficient resource utilization. It enables network administrators to control and manage

networks programmatically, resulting in effective resource allocation, quicker service delivery,

and flexibility [11] to changing network circumstances. SDN replaces traditional network

topologies with centralized control planes, providing a unified view of the network and enabling

network virtualization for better resource utilization, scalability, and multi-tenancy.

SDN transforms network programmability by employing APIs, allowing administrators to

dynamically configure devices in response to user requests. This gives network functioning a

new degree of agility and resilience. The diagram in Figure 1 depicts network programmability

in the context of SDN ecosystem. SDN OF data plane devices are configured by network

administrators using the SDN controller. Rules are distributed to linked switches by using the

centralized SDN controller. Scheduling, rerouting, and load balancing of traffic across available

connections are all configuration activities that must be adapted to user expectations and

performance optimization requirements.

1.3 The Dynamic Architecture of SDN

One significant component of SDN design is the separation of control and data forwarding

processes, often known as dis-aggregation. [15] This architectural divide provides a substantial

advantage by giving apps improved access to network status information straight from the

controller. This extends beyond the capabilities of conventional networks, where network

awareness is restricted. Figure 2 depicts a network administrator participating in programming

operations via the SDN controller, especially targeting SDN OF data plane devices. The

administrator's operations include scheduling, rerouting, and dividing traffic among available

connections based on user demand and performance requirements, with the ultimate goal of

Figure 1: Ecosystem of SDN

15

achieving optimal network performance. To be more precise, the architecture of SDN comprises

three distinct layers: the application plane, the control plane, and the data plane

.

1.3.1 Application Plane

The application plane or layer is responsible for delivering different network services and

applications. It acts as a bridge between consumers or applications and the network

infrastructure. Users can interact with the SDN controller [12] via the application layer, making

requests or defining network policies. This layer provides network programmability and

customization depending on individual application needs.

1.3.2 Control Plane

The control layer holds paramount importance and serves as the central point for network control

and monitoring the whole network's behavior and operation. It contains the SDN controller,

which acts as the network's brain, making decisions and controlling network traffic flow. The

SDN controller connects with the application layer [12] within the control layer to accept

instructions, rules, and network needs from applications or users. It uses this information to

dynamically configure network equipment like switches and routers, as well as to specify how

data packets should be delivered.

Administrators can use the control layer to respond quickly to changing network circumstances,

adapt to new requirements, and optimize network performance. The control layer's

programmability enables efficient traffic routing, load balancing, and network-wide policy

enforcement, resulting in improved network dependability and performance.

Figure 2: Three-layered SDN

Framework

16

1.3.3 Data Plane

The data plane which is also known as infrastructure layer in the SDN architecture, which forms

the foundation of the network infrastructure. This layer [12] includes physical network devices

including switches, routers. The infrastructure layer is in charge of actually transmitting data

packets based on orders from the control layer.

Network devices at the infrastructure layer are programmable and capable of implementing the

policies and settings provided by the SDN controller. These devices connect with the controller

using standardized protocols like the OF Protocol, which allows for smooth integration and

interoperability inside the SDN architecture. It acts as the execution layer, carrying out the

control layer's commands and policies. Because the control and data planes are separated, the

infrastructure layer may concentrate on quick and reliable packet forwarding while the control

layer performs high-level decision-making and network administration responsibilities.

1.3.4 Proposed Tri-Layer SDN Model

Considering network flexibility and meeting the ever-changing demands of current applications,

we offer a strong tri-layer framework represented in Figure 3, to remodel the existing SDN

network architecture. Our proposed framework hosts the P4 target program that uses BMv2

switch to define the behavior of the data plane. P4 Runtime API communicates with the control

plane via gRPC. Within the network architecture, data plane is configured through control plane

for efficient packet processing, table management, and packet IN/OUT operations.

Figure 3: Proposed SDN Tri-Layer Architecture

17

The control plane uses an SDN controller to orchestrate rules and commands throughout the

network. The ONOS SDN controller was chosen as the master conductor for creating routing

tables and directing network traffic using RESTful APIs. We combine different elements within

this control plane, such as Stratum BMv2 switches, GNMI, drivers, and protocols to ensure

effective network administration and control. Protocols include: link discovery protocol to

discover links between switches, routing protocols to exchange routing information among BGP,

RIP and OSPF. The drivers ease interaction between the control plane and P4 Runtime module.

The application plane is at the top of our architecture where networking innovations comes to

life. It enables user to discover a variety of networking program here, including L2 and L3

forwarding switches with customized and dynamic solutions. It uses HTTP, FTP and SMTP

protocols for browsing, transferring files and sending emails. Using our testbed the user will be

able to write P4 based networking applications in addition to traditional networking applications.

1.4 Applications of SDN

This section focuses on a range of real-world applications that have successfully deployed SDN,

proving its practical flexibility and effectiveness.

1.4.1 Integrated Storage Solutions

Converged storage is a unified storage system that integrates computer resources and storage into

a single framework. It provides a flexible architecture for designing storage-centric, server-

centric, or hybrid applications. Many important data services have embraced programmable

technology for their operations in the domain of SDN. Edgenet1, [41] e.g. a universally

distributed edge cloud, has created a solution based on the Programmable Flow SDN Ecosystem.

The OF controller, in conjunction with robust and efficient switching, is used in this environment

to provide smooth and optimal network performance.

1.4.2 Empowering Visual Experiences

Ribbon Communications, doing business as Sonus Networks [41], offers a new SDN solution for

video and collaboration applications in the real-time communications realm. They use a unified

communications and control strategy, combining Juniper's network virtualization platform with

their session border controllers. This integration considerably improves communication session

capacity. The use of SDN, which assures the preservation of Quality of Service (QoS), is an

exciting component of their strategy.

1.4.3 Streamlining Orchestration for Seamless Connectivity

SDN and network functions virtualization (NFV) have both made inroads into the world of

mobile network operators (MNOs) [41], with many suppliers embracing them in order to build

18

highly resilient networks with optimal resource utilization and dynamic provisioning. Vendors

can drastically cut lead times and provide better service delivery by combining SDN and NFV.

1.4.4 Scaling New Horizons of Data Center Networks

SDN systems are a possible replacement to data center networks' traditional wired architecture.

University of Illinois researchers [41] have undertaken considerable research on the adoption of

SDN switches to evaluate the performance of data center networks. They accomplished effective

scalability of bandwidth across servers while minimizing hardware expenses by exploiting SDN.

Hundreds of Pica84 [41] switches with hundreds of ports were put in their tests, guaranteeing

high-speed access and allowing load balancing and bandwidth scaling to be controlled properly.

1.4.5 Empowering Enterprise Connectivity

SDN suppliers have adopted software-driven networking solutions for enterprises, which have

largely replaced the old reliance on physical networking [41] infrastructure. This paradigm

change to software-driven networking marks a huge improvement in corporate connection,

providing a more dynamic and scalable solution than traditional physical networks.

1.5 SDN Controllers

As the primary control point of SDN, the SDN Controller serves as the network's ‘brain’. Using

southbound [40] APIs, it manages the flow of traffic between the network switches and routers

underneath and the applications and corporate sections above. OF and Open Virtual Switch

Database (OVSDB) are two protocols that controller use to establish connection with switches

and routers. It has various modules effortlessly added into the system to execute system

activities. These operations include device inventory [40], device capabilities assessment,

network statistics collection, and monitoring functions. The platform's flexibility enables for the

insertion of additional modules to expand functionality and support advanced features.

NOX was the first SDN controller, created by Nicira [40] Networks in conjunction with

OpenFlow. It is worth mentioning that ONIX, the basis for the Nicira/VMware controller built

by a collaboration of NTT, Google, and Nicira Networks, is not an open-source solution. Here is

a list of open source SDN controllers:

Open Network Operating System (ONOS): A scalable and distributed controller with a

reactive programming style for high-performance networks.

OpenDaylight: It is a highly extendable and modular Java controller platform that supports a

wide range of protocols and interfaces.

Ryu: It is a Python-based component-based software-defined networking architecture that

includes a library for developing SDN applications.

19

Faucet: An open source SDN controller for business and college networks that is written in

Python and works with OpenFlow switches.

Floodlight: An Apache-licensed Java controller with a wide range of capabilities and support for

the OpenFlow protocol.

Trellis: An ONOS-based controller intended primarily for multi-tenant and scalable networks,

notably in cloud and edge contexts.

OpenContrail: An open-source software-defined networking controller that focuses on network

virtualization and overlay features.

Beacon: A Java-based controller that provides a lightweight and adaptable framework for SDN

research and development.

Maestro: A Telefonica open source SDN controller designed to coordinate and manage network

services in multi-domain systems.

FBOSS (Facebook Open Switching System): It is not a standalone controller, FBOSS is an

open-source software stack used by Facebook for its data center networks that contains a

network operating system and control plane components.

Although there are numerous open source controllers but in this research, ONOS controller is

integrated with P4 testbed because of its adaptability in supporting a wide range of applications

and services. It provides a wide range of functionality and features customized to varied network

requirements, whether in data center networks, service provider settings, or edge computing

situations. This adaptability enables us to take use of ONOS's special features that are relevant to

our study subject. It has a reactive programming paradigm that allows dynamic network

adaptation by reacting in real-time to network events and changes.

The emphasis on intent-based networking in ONOS is also a significant benefit. ONOS

simplifies network administration and automates the translation of intentions into low-level

network settings by abstracting network regulations and needs into higher-level intents.

1.6 Challenges Related to Software-Defined Networking (SDN)

SDN has many advantages, but it also has certain drawbacks. Some of the challenges include:

1.6.1 Network Security Challenges

Network security is a key difficulty in SDN. SDN controller vulnerabilities might expose the

entire network to possible attackers. Because the control plane in SDN is centralized, it becomes

a single point of failure, necessitating the implementation of rigorous [27] security measures.

20

Unauthorized access and control plane assaults are other issues that must be addressed to

preserve network integrity and secrecy.

1.6.2 Scalability and Performance Issues

Scalability is a significant issue in managing large-scale SDN implementations. The proper

management of the network's size becomes crucial as the number of switches and flows rises.

The maintenance and processing of flow tables becomes more complicated, [27] necessitating

the use of optimization techniques to guarantee effective forwarding and control. Furthermore,

latency and delay concerns in the control plane must be minimized in order to ensure responsive

network performance.

1.6.3 Standardization and interoperability Challenges

They pose difficulties in SDN implementations. Incompatibility difficulties between SDN

controllers and network devices might arise due to a lack of universal standards and vendor-

specific implementations. Integrating traditional network infrastructure [27] with SDN

technologies necessitates careful planning in order to provide seamless compatibility and simple

migration pathways.

1.6.4 Complexity and Management Issues

The intrinsic complexity of SDN poses management issues. Configuration and policy

management may be difficult to handle, particularly in large-scale systems. The complexity is

increased further by orchestrating [27] and coordinating across many domains and technologies.

To successfully manage the network and maintain smooth operations, monitoring and debugging

distributed SDN systems necessitate specialized tools and methodologies.

1.6.5 Challenges with Reliability and Fault Tolerance

Ensuring high availability and fault tolerance in SDN is critical. Reducing single points of failure

in SDN designs and ensuring control plane resilience are critical issues. Implementing fault

detection [27] and recovery procedures becomes critical, especially in dynamic networks with

changing network architecture and traffic patterns.

1.7 Problem Statement

The lack of a specialized testbed for assessing P4-based solutions hinders not only the thorough

modelling of SDN networks, but also the study of future network paradigms. Existing tools,

while useful, sometimes lack the flexibility necessary to build custom topologies and deploy a

diverse set of P4-based networking applications. This constraint not only limits our capacity to

completely examine network programmability and performance, but it also limits innovation in

the fast developing field of software-defined networking.

21

1.8 Proposed Solution

To address the aforementioned issue, the research has developed a specialized P4-based testbed

within Mininet, hence improving the capabilities of SDN network simulation. The proposed

testbed uses P4-based bmv2 switches to correctly replicate SDN-based networking topologies,

offering an optimal environment for testing and experimentation. Users are able to design

bespoke topologies, effortlessly incorporate an ONOS controller for centralized control, and

deploy a wide range of P4-based networking applications.

Our proposed architecture, named P4T is created by using P4-based BMv2 switches to allow

users to make custom network topology. Our novel approach leverages ONOS controller applied

rules to configure the P4 switch pipeline as shown in Figure 4. At the core of our architecture lies

the ONOS controller, serving as the central nervous system of the SDN framework to control and

orchestrate network monitoring and configuration. With P4 Runtime support, it provides a

variety of useful functions, including device detection, P4 pipeline provisioning, table operation

for match action execution (through current ONOS APIs like Intent, Flow Objective, Flow Rule),

controller processed packet handling (packet IN/OUT), and the ability to read counters.

The BMv2 Switch forming the foundation of our architecture is at the bottom layer and acts as

the data plane for packet processing. It runs the forwarding logic of the P4 program to process

incoming and outgoing network traffic. To alter the behavior of data plane, we applied pipeline

modification rules controlled by ONOS. Interfaces such as gNOI and gNMI permit seamless

interaction by facilitating easy communication between various layers.

Figure 4: Proposed Architecture

22

We used P4C (P4 compiler) to transfer our P4 source code into the desired machine readable

format. It creates a data plane configuration to execute the forwarding logic and to provide a

control plane interface for managing the state of data plane objects. Extensive testing is done on

P4 BMv2, as well as on Stratum, that provide access to various SDN access points, including P4

Runtime, to validate our concept. Stratum provides a Docker image built for executing network

simulations using Mininet, with stratum BMv2 as the default switch. This Docker image enables

testing and demonstrating features like P4 Runtime and gNMI, within a simulated network

environment. We utilized ONOS' control plane capabilities to evaluate our testbed. Our Bmv2

switches are controlled and programmed using a thrift based interface, which is supplemented by

a Command Line Interface (CLI). We used P4 Runtime, a standardized, open, and hardware

agnostic protocol that allowed real time P4 forwarding within P4 forwarding plane.

In the data plane, we used our target BMv2 switch to create, test and debug the P4 data plane for

later usage at the SDN controller. Using the conventional compilation method, the P4 source

program is first installed and then compiled in the network switches through p4c, generates

target specific two configuration files, P4info.txt and BMv2.Json. P4info.txt contains schema of

P4info instance modified for our P4 program which provides a detailed description of the match-

action tables accessible via the P4 Runtime API while the BMv2.json contains the key settings

required for seamless integration and operation within the SDN framework and is used to

describe specific flow table entries along with the properties such as its location, matching

criteria or method, action name and parameters. All of these characteristics are dependent on the

flow tables, matching fields, and actions that we have configured in our P4 code.

When BMv2 starts, it imports the JSON file created by the compilation of the P4 code, parses it

and then loads the resulting configuration into the flow table of switch. To allow P4

programmability and to connect data plane with control plane, communication is established via

P4 Runtime. Traditional systems do not allow for post-deployment interaction with the P4

switch, such as altering table entries i.e. adding, deleting, accessing or querying counters.

P4 Runtime overcomes this issue by the use of a client-server paradigm. A client component

incorporated into the control plane and communicates with a server. This interface allows a

variety of operations, including P4 program loading, pipeline information change and retrieval,

and packet transmission and reception. Furthermore, it enables the application and installation of

IPv4 forwarding rules within the switches that are suited to the network architecture.

ONOS controller is used to host the control plane in our P4T architecture. It allows developers to

use both existing pipeline agnostic apps operating on Flow Objectives and develop new apps

customized for specific data planes. Deploying an SDN controller in a P4-based network with a

P4 Runtime interface unlocks the full potential of P4 functionality. Stratum is actively working

on enabling a P4 Runtime interface for P4-based devices integrated with Network Operating

Systems (NOS). Intelligent applications can be constructed above the ONOS controller to govern

23

its network activities, establishing an Application plane. The ONOS build-in topology discovery

process is accomplished via following synchronized stages:

First, at each switch port, Link Layer Discovery Protocol (LLDP) packets are injected and

captured to perform link discovery. LLDP is commonly used in OF networks for identifying and

comprehending inter-switch interactions. Next, the system then proceeds to discover hosts by

intercepting Address Resolution Protocol (ARP) packets originating from data plane ports. ARP

is critical in mapping IP addresses to physical MAC addresses, allowing the network to

determine the existence and location of individual hosts. Following that, table entries are

systematically placed to simplify data packet routing between hosts using the ECMP principles.

These table entries provide the foundation for providing effective and optimized data packet

forwarding over the network, supporting smooth communication between network endpoints.

1.9 Thesis Outline

The thesis's remaining sections are organized as follows: Chapter 2 covers the literature review.

Chapter 3 changes the focus to Network Functions Virtualization (NFV), which explains the

notion of virtualizing network functions and the benefits it provides. It compares NFV and SDN,

demonstrating their similarities and differences as well as how they may be utilized together in

networking systems. Chapter 4 presents the P4 programming language, which is used to specify

the behavior of network devices such as switches and routers. This section delves into P4's

features and applications in network programmability. Chapter 5 of the thesis delves into ONOS,

an SDN controller and includes its features, architecture, and functioning. Chapter 6 focuses on

how this virtual environmental setup has been created. Chapter 7 has experimental setup that

explains how SDN and P4 may be used in tandem to build and implement network protocols in a

programmable and flexible way. Chapter 8 offers the results and findings, summarizing the key

findings, contributions, and limitations. Chapter 9 provides prospective avenues for future study.

However, Chapter 10 contains all the references.

24

2. Chapter 02 - Literature Review

Network topology primarily depended on proprietary devices, which came with high

administration expenses which were frequently difficult to configure and maintain effectively.

SDN resulted in a paradigm [9] by decoupling [24] the control and data planes to enable

customization. However, it uncovers potential weaknesses like lack of support for deploying

custom topology and diverse implementation of P4-based networking applications. The literature

presents that mainly focuses on virtualization in programmable forwarding planes. In the field of

P4-based networking testbeds, we found a significant milestone in [1]. This study contributes

significantly to the field of P4 network programmability. First and foremost, it establishes the

international P4 Experimental Networks (i-P4EN), providing a collaborative framework among

research institutes worldwide. This architecture promotes the sharing of distributed P4 resources

across worldwide research and education networks, as well as the start-up of international

research partnership programs. Furthermore, the research solves a basic difficulty in P4-based

networks: multi-tenancy. It adds a dynamic tenant pipeline configuration, allowing multiple

tenants to share P4 switches without interruption. The adoption of a Role-based Shared Table

mechanism (P4MT) is critical to achieve this goal. This approach guarantees control plane and

data plane isolation, which helps to improve the security and efficiency of multi-tenant P4

networks. It excels at explaining the principles and offers for the implementation of P4MT across

both software (BMv2) and hardware (Tofino-based) switches. However, the lack of open access

to the code restricts repeatability and overall effect, leaving openings for further improvements.

In [2], author investigated Active Queue Management (AQM) via the prism of the P4 and

DPDK-based compilation. They have used several AQM approaches, both known and newer,

such as RED, CoDel, and PIE, to solve the pressing issue of buffer-bloat in current access

networks. Their main contribution is novel AQM assessment methodology, which allows for the

practical evaluation of AQM algorithms on a testbed that simulates actual traffic situations. This

framework allows for the execution and evaluation of AQM algorithms such as RED and PIE on

a testbed that replicates realistic traffic scenarios. The paper [2] demonstrates three separate

situations in the demo: a reference FIFO, the PIE AQM, and the RED AQM. These scenarios are

tested on a testbed comprised of two computers outfitted with NICs and Docker containers that

simulate traffic sources and sinks. The produced test traffic consists mostly of responsive TCP

flows with varying numbers of active flows and adjustable congestion management techniques.

The AQM assessment framework, which utilizes the T4P4S compiler and software switch and

extends the P4-16 v1model architecture to reveal essential queue state information fields, is the

paper's core innovation. However, it is vital to highlight that this [2] testbed is fixed and cannot

accept varied P4 situations and applications, limiting its adaptability for larger AQM analyses.

This study stands out by offering a realistic tool for AQM [2] assessment in real-world traffic

situations, answering the critical need for a thorough technique for evaluating AQM algorithms.

While the study exhibits excellent originality and execution, it may benefit from a more thorough

comparison analysis with existing AQM assessment systems or testbeds. A more in-depth

25

examination of the framework's scalability and application to diverse high-speed network traffic

circumstances will increase its use. Despite this, the suggested approach has enormous promise

for furthering the evaluation of AQM algorithms and their influence on network performance.

We resorted to the pages of [3] in our search for network automation. This [3] proposes P4click,

a Next-Generation SDN automation platform that uses the P4 programming language to

overcome the issues of modular data plane pipeline creation. With the introduction of P4,

developer’s encountered restrictions in sharing P4 logic across different data plane pipelines,

limiting feature flexibility and reusability. Recognizing SDN developments and OF's importance

in managing vendor-independent SDN forwarding devices, the authors noted a fundamental

challenge: sharing modular P4 logic for specific models. In response, P4click, their [3] solution,

presents an automation tool for streamlining data plane pipelines and simplifying network

settings. This [3] study is consistent with current developments in SDN and P4-based

networking, emphasizing the need of modularity and automation in handling complex data and

control plane operations. It solves a major issue in P4-based network programmability, where

existing techniques lack the ability to select and integrate certain characteristics into data plane

pipelines. P4click [3] is implemented using a data plane repository that comprises feature

modules represented by P4 code and configuration files. These modules can be retrieved from

the repository individually, processed, and compiled to form a unified pipeline for a certain

model and target. A toolset for deploying control and data plane applications is also included in

the platform. [4] handled SDN and P4-based programmable switches in a way to improve the

programmability of P4, allowing for sophisticated monitoring tasks such as heavy-hitter

identification, flow cardinality estimate, network traffic entropy measurement, and volumetric

DDoS assault detection. In comparison to prior research that focused on P4 modularity and

automation, they provides hands-on methods to increase network visibility and anomaly

detection, hence offering a full framework for SDN and P4-based network management.

However, this framework is intended for a single switch, lacks custom topology capabilities, and

is primarily used for testing and monitoring applications. Article [7] contribution is PISA's

micro-architecture efficiency, with a special emphasis on match tables and programmable packet

schedulers, which are main components of the PISA architecture. P4 describes how packets are

processed by a programmable data plane, which ranges from ASICs to CPUs that implement

PISA. While ASIC processing flexibility is relatively limited, and CPU performance for

networking activities lags behind, current attempts have concentrated on implementing PISA on

FPGAs. Major performance limits are exposed in executing specific PISA blocks on existing

FPGA [7] designs using a mix of theoretical analysis and actual experimentation. These

constraints are caused by route congestion, cable delays, and resource use. They identified

certain network applications that are well suited to FPGA capabilities and offers architectural

changes to improve FPGA performance, not just inside the networking domain but perhaps

beyond. [5] Introduces a load balancer based on P4 that does not require a specialized controller.

This load balancer may distribute loads independently while still requiring controller help for

server health monitoring. In establishing of distributed SDN operating systems and applications

26

this [6] emphasizes the significance of fault tolerance and scalability while addressing limitations

in existing methods. Many current approaches involve the creation of virtual testbeds via full

machine virtualization or heavyweight containers, resulting in increased complexity and

decreased scalability. To address these constraints, the paper proposes a more efficient strategy

that makes use of Mininet's cluster mode, allowing the deployment of lightweight containers in

virtual testbeds on a single computer, ad hoc clusters, or dedicated hardware testbeds. This

strategy creates a flexible and scalable framework for constructing distributed SDN systems and

application software by combining an open-source distributed network operating system like

ONOS. While [6] allows for flexible deployment on a variety of hardware configurations but

there's no specific technique mentioned of P4 application support, instead emphasizing on

Mininet and ONOS as open-source components. To bridge the gap between fixed-pipeline

traditional and programmable switching devices [8] introducing an open-source OS, Stratum

with P4 integration to enable control of switches and their forwarding behavior. They

emphasized on Stratum support for Broadcom XGS range fixed function switches to enable P4

flexibility in conventional hardware. For evaluating P4 program and network behavior this [8]

introduces TestVectors which include, a spine and leaf fabric network comprised of Stratum

supported white box from several vendors. While [8] paper does not specifically address custom

topology, the programmability of Stratum suggests that users can build new topologies. In

previous articles we didn't find user-friendly solution that can be used as P4 testbed for

simulations and to measure SDN performance metrics. The main novelty of our work as

compared to previous and existing is its open source nature. Moreover, it supports custom

topology and multiple switches, giving a more complete and adaptable platform for network

experimentation and validation that goes beyond the confines of BMv2 switches. Furthermore,

our testbed includes a controller, allowing users to attach and assess P4 applications within

regulated network contexts, significantly enhancing its value. This adaptability improves our

testbed's realism and applicability, making it a great asset for investigating P4-based networking

solutions in a larger range of real-world applications.

27

3. Chapter 03 - Virtualization of Network Functions

3.1 Fundamentals of Network Function Virtualization (NFV)

Network Function Virtualization (NFV) is a revolutionary networking concept. It involves

decoupling network services from particular hardware devices and operating them as software in

virtual machines (VMs). These virtual network functions (VNFs) include virtualized routers,

firewalls, load balancers, WAN accelerators, intrusion detection and prevention systems, VPN

gateways, and other capabilities. NFV uses virtualized networking features to provide hardware

that is independent of infrastructure, allowing computation and network operations to deployed

on non-proprietary hardware such as x86 [27] servers. It allows VMs to utilize resources

efficiently by dynamically scaling and making most of any unused capacity on a single server.

3.2 Virtual Network Functions (VNF)

The aim to reduce operating and capital costs while accelerating the adoption of innovative

network features motivated the development of network virtualization and VNFs. VNFs are in

charge of certain network operations like firewalls and are essential components of [27] NFV.

Individual VNFs or a mix of them can be used to construct a completely virtualized environment.

When multiple VMs are deployed on a single hardware box, the entire machine's resources are

consumed. Virtualization reduces network costs while increasing scalability and diversity by

eliminating the need for costly hardware components and replaces them entirely with software.

3.3 Framework and Services

The NFV provides a conceptual framework for the creation and deployment of virtualized

network functions. It describes the major components and their [21] interdependence within the

NFV architecture. While each NFV implementation is unique, the framework usually comprises

of the three following layers:

3.3.1 Infrastructure Layer

The infrastructure layer [27] is the NFV framework's basis and contains the physical resources

necessary to support virtualization. Physical servers, storage systems, networking devices and

hardware components are all included. These resources enable the hosting [21] and operation of

VMs and VNFs by providing the appropriate processing, storage, and networking capabilities.

3.3.2 Virtualization Layer

The virtualization layer is responsible of abstracting the underlying hardware resources and

enabling virtualization. It is made up of hypervisors [27] or virtual machine monitors (VMMs)

that allow for the creation, administration, and separation of numerous VMs on a single physical

28

server. The hypervisors enable VNFs to operate on virtual machines, ensuring that hardware

resources are used efficiently.

3.3.3 Orchestration Layer

The orchestration layer manages and automates the lifespan of VNFs and their interconnections.

The NFV orchestrator organizes the deployment, scaling, and chaining of VNFs to provide

specified network services. Resource allocation, [27] performance management, and service

lifecycle management are also handled by the orchestration layer. It communicates with the

infrastructure layer in order to supply and manage the resources required for VNF execution.

3.3.4 VNF Manager Layer

The VNF Manager layer manages the lifespan of individual VNFs. It does VNF instantiation,

scaling, monitoring, healing, and termination. The VNF Manager [14] interfaces with the

orchestration layer to receive VNF deployment and management instructions. It guarantees that

each VNF runs properly and efficiently, and it communicates with the infrastructure layer to

assign resources for VNF execution.

3.3.5 Network Services Layer

The network services layer is made up of VNFs that provide specialized network services. It

contains numerous VNFs: virtual routers, [14] firewalls, load balancers, WAN accelerators, and

other software-implemented network services. Each VNF serves a distinct network function [21]

and may be deployed, maintained, and expanded separately inside an NFV environment. The

NFV layers can be represented as a vertical stack in Figure 5, where each layer builds upon the

one below it. At the bottom is the infrastructure layer, followed by the virtualization layer,

orchestration layer, VNF Manager Layer, [27] and the network services layer at the top.

Figure 5: VNF Framework

29

An NF Forwarding Graph [23] is made up of NF nodes connected by logical links that might be

unidirectional, bidirectional, multicast, and/or broadcast. An easy instance of a forwarding graph

is a sequential succession of network services. A smartphone and a wireless network are two

components throughout the entire network service. It is important to emphasize that the realm of

NFV operations is confined to operator-owned resources hence power may be exercised within

particular domains, excluding devices: mobile phones that fall outside of this scope.

Figure 6 displays a complete network service. The exterior end-to-end network service is

represented by End Point A, the inside NF Forwarding Graph, and End Point B. The inner NF

Forwarding Graph is represented by network functions NF1, NF2, and NF3. These are linked

together through logical linkages provided by the Infrastructure Network 2. The network

functions are connected to the end nodes (A and B) via network infrastructure, which can be

wired or wireless. The link between the end points and the network functions (NFs) is

established by a logical interface, which is represented by dotted lines.

3.4 Advantages of Network Function Virtualization (NFV)

NFV's flexibility and abstraction offers various advantages, including:

3.4.1 Service Flexibility

NFV enables rapid network service deployment and scalability [28], allowing service providers

to swiftly provide new services or adjust current ones to suit changing client demands.

3.4.2 Cost Efficiency

NFV decreases dependency [28] on expensive dedicated hardware by virtualizing network

services, resulting in cost reductions in terms operating expenditures. By consolidating numerous

services onto shared hardware infrastructure, it enables more effective resource utilization.

Figure 6: End to End Network Service

30

3.4.3 Scalability and Elasticity

NFV enables network services to be dynamically scaled in response to variable demand. In

response to changing network circumstances [28] or user requirements, service providers may

quickly scale up or decrease the resources assigned to a single service.

3.4.4 Service Chaining

NFV enables the formation of service chains [28], in which network services are coordinated and

coupled in a predetermined order to offer end-to-end service capability. This allows for the

development of sophisticated service architectures and improves service customization.

3.4.5 Network Programmability

NFV employs SDN concepts to provide centralized administration and control of virtualized

network services. It enables service automation, orchestration, and policy-based administration,

enhancing overall network programmability and flexibility.

3.5 Addressing the Obstacles of Network Function Virtualization (NFV)

Network Function Virtualization (NFV) has many advantages, but it also has certain problems

that must be overcome for successful adoption. One problem is ensuring that virtualized network

operations executed optimally and at scale, as they may involve significant processing cost as

compared to dedicated hardware. To maximize performance, efficient resource allocation and

management are also required. In virtualized systems, network security becomes an issue,

demanding rigorous [29] safeguards to secure VNFs. Extensive frameworks and tools are also

required for successful orchestration and control of VNFs, as well as for fault management.

Interoperability and standardization are critical for easy integration, whereas legacy system

integration and migration need careful preparation. Finally, in order to fully utilize the benefits of

NFV, organizations must traverse cultural transformations and adopt new skills and procedures.

3.6 A Comparative Analysis of NFV and SDN

SDN and NFV are two independent but complimentary technologies that seek to revolutionize

existing network topologies. The goal of NFV is to virtualize network functions by replacing

specialized hardware with software-based VNFs. However, SDN decouples the control and data

planes and centralizes network control via a logically [30] centralized controller. SDN allows

programmability and dynamic network management by isolating control logic from network

hardware. NFV focuses on virtualizing network functions, whereas SDN focuses on centralized

control and programmability. When NFV and SDN are coupled, they produce a strong network

architecture that is agile, scalable, and readily adaptable, resulting in benefits such as quick

service launch, cost efficiency, centralized control, and network programmability.

31

4. Chapter 04 - Programming Protocol-Independent Packet Processors

4.1 P4 Language

SDN facilitates the setup and management of large-scale networks, however it frequently

encounter restrictions in control protocols, limiting its potential. These protocols only cover a

subset of available functionality and may not be compatible with all hardware alternatives. To

resolve this challenge, a new tools identified as the Domain-Specific Language (DSL) for P4 has

emerged. P4 is built to offer clear description of switch behavior, allowing network

administrators to create their own software-oriented applications for programmable switches. A

compiler or an interpreter [31] can be used to convert P4 code into an executable script. Figure 7

shows the architecture of a P4-based system, showcasing its components and functionalities.

P4 enables network engineers and researchers to define how packets are handled and sent in

network devices' data planes. It offers a high-level abstraction for determining the behavior of

forwarding devices like switches and routers, regardless of the underlying hardware or protocols.

Packet headers, header fields, and packet processing logic are defined when code is written in

P4. Custom packet parsers, match-action pipelines, and packet modification [31] actions are all

possible with P4. The constraint of OpenFlow in allowing customized protocols drove the

development of P4. However, when it comes to packet processing, P4 contains certain OF

benefits. P4, like OF, processes packets by taking actions depending on header field values.

However, unlike OF, where the mapping is set at build time, P4 allows for dynamic mapping of

packet processing operations by a control plane during runtime. The packet processing in P4 is

shown in Figure 8 and it involves four major phases:

4.1.1 Packet Parsing

When a packet is received, it must be translated into a format that can be handled in the

following steps. The basic program of P4 builds a predetermined state mechanism [32], which is

used to parse the packet.

Figure 7: P4 Architecture

32

4.1.2 Ingress Pipeline

The packet enters the ingress pipeline at this phase, and there are no limits on executing rules

depending on the packet. It is possible to do matching on several header fields, allowing the

switch to decide the egress pipeline for later packet management. The P4 software [32] can

obtain additional information of hardware port from which packet originated, and to where it can

be resubmitted to re-enter the ingress pipeline as needed.

4.1.3 Egress Pipeline

The egress pipeline executes rules dependent on the parsed header data. Submissions to other

egress pipelines before resubmissions [32] are not allowed during this time.

4.1.4 Packet Deparsing

In the last phase, the packet is deparsed depending on its present condition, preparing it for

transmission over the wire. The deparser, which manages the deparsing process, is generated

automatically by the parsed object. P4 is an SDN programming [32] language that allows

network operators to specify packet processing and forwarding behavior in a flexible and

protocol-independent manner. It enables network customization, innovation, and the growth of

networking paradigms.

4.2 Behavioral Model

P4 behavioral model refers to a software-based simulation environment that allows P4 program

to be tested and evaluated without the use of actual hardware switches. It provides a high-level

abstraction of the P4-specified switch behavior and allows developers to experiment with various

P4 programs. In software, the behavioral model emulates the behavior of a P4-programmable

switch. It has several components that imitate various stages of packet processing, such as

parsing, match-action tables, and packet changes. The model offers a virtual representation of the

switch pipeline, allowing packets to be processed and sent in accordance with the P4 program

rules. In order to generate an executable file from a P4 script, either a compiler or an interpreter

is necessary. In this context, the P4 Language Consortium has released the P4 compiler called

Figure 8: P4 Packet Processing

33

p4c-behavioral. However, for various reasons, p4c-behavioral has been replaced by the bmv2.

Implemented in C, bmv2 fully incorporates all the features specified in the P4 requirement. The

p4c Python library offers a [34] target-independent P4 parser.

The main challenge is to build an executable that requires double compilation (P4 script to C

language and from C language to binary form). Moreover availability of an ingress and egress

pipeline is expected, contradicting concept that P4 script requires no hardware attributes;

adjustments are required to properly enable P4.

A new behavioral model known as bmv2 [34] has been developed and used as an interpreter. The

first step in running a P4 program is to compile the P4 basic script into a JSON file which then

merged using appropriate P4 program to generate interpreter's input. The compilation process,

including the output of JSON, is aided by p4c-bm, used to build program-specific C++ script.

Tables, parser settings, checksums, ingress and egress pipelines, and the deparser are all

configured using this JSON format in bmv2. In the p4lang environment, two compilers are

existing for bmv2, one of which, p4c, includes a bmv2 backend.

The bmv2 backend currently supports the v1model architecture and provides limited support for

the PSA architecture. P4 program developed for the v1model can be run using the simple_switch

binary, whereas PSA program may be run with the binary switch psa file. However, p4c-bm is a

former translator for bmv2, which is no longer being supported.

4.3 V1 Model Architecture

The simple_switch target is the primary focus of the V1Model architecture implementation in

bmv2. P4.org [33] has created a software switch called bmv2 simple_switch is used to test the

functioning of P4 program. The V1Model architecture, seen in Figure 9, is made up of numerous

components. It comprises a P4 programmable parser and deparser that handle incoming and

outgoing packet translation.

In addition, match-action processing is handled by distinct ingress and egress pipelines. The

design also includes blocks for validating and updating checksums on packets. A traffic

management component is also present, which handles responsibilities such as packet scheduling

Figure 9: P4 V1 Model

34

and possible replication across input and output ports. A collection of standard information field

is used to aid packet routing [33] and processing within the bmv2 simple_switch. The P4

program specifies these information fields, which direct the packet's path via the bmv2

simple_switch.

4.3.1 Metadata Fields

A specified collection of fields that are routinely used in network packet processing and routing

is referred to as standard metadata. These fields include information about source and destination

addresses, [34] packet timestamps, QoS settings, flow IDs, and other pertinent packet properties.

The usage of standard metadata fields enables interoperability and compatibility among various

networking components and protocols. These information fields can be read and modified by

network devices such as switches and routers in order to make routing decisions, implement

traffic management policies, or conduct other packet processing activities

In this code, a metadata struct with three fields is defined: ingress port, egress specification, and

egress port. These fields are used to store metadata relating to packet processing. The metadata

object is an output parameter in the MyParser parser, which means it may be edited and updated

while parsing. The ingress_port metadata field in the MyIngress control is set to the value

standard_metadata.ingress_port, which shows packet arrival port. Egress port can be specified to

which packet should be transmitted using the egress specific field. The egress port field of

metadata is read in the MyEgress control to identify the packet's outgoing port. Finally, the

metadata object is supplied as an input parameter to the MyDeparser, providing access to its

fields during deparser operations.

35

4.3.2 P4 Code and Functionality

The program starts by specifying the packet header format and generating header and metadata

structs. As the packet traverses the architecture, these structs, together with the

standard_metadata, are sent between different blocks. Throughout P4 source file, the

functionality for parser and deparser, checksum verification and updating block, match and

action processing at ingress and egress is defined.

The metadata struct in the above P4 program defines the egress_port metadata field, which is

used to hold the egress port value. The headers struct is used to aggregate all the headers together

and contains the stated header types such as ethernet_t and ipv4_t. Using the extract method, the

MyParser parser extracts the header information from the incoming packet. The

MyVerifyChecksum control is in charge of validating the header checksums. In this control,

necessary checksum verification techniques can be implemented. The entrance processing logic

is represented by the MyIngress control. Changes or calculations to the packet headers is done

here. The egress processing logic is handled by the MyEgress control. This control, like the

ingress control, allows to perform any required alterations or computations. The

MyComputeChecksum control is in charge of computing the header checksums. In this control,

implement the necessary checksum computation procedures. The MyDeparser control defines

how the packet's headers should be reassembled. Finally, the V1Switch instantiation has the

controls that were created in the right order: MyParser, MyVerifyChecksum, MyIngress,

MyEgress, MyComputeChecksum, and MyDeparser.

36

4.3.3 P4 Basic Headers

Bit-strings and integers are the two major types of fundamental data types supported by P4

program. In P4, bit-strings are unsigned integers with variable widths. They provide operations

like addition, subtraction, concatenation, and slicing, which are akin to manipulating strings in

Python or buses in Verilog. In P4, integers are referred to as ‘ints’ and offer partial support for

the fundamental operations found in bit-strings. It adds the idea of variable-sized bit-strings for

IPv4 protocol that has fields whose breadth is decided at runtime. The maximum allowable

breadth of the bit-string [37] is represented as 'n' in such circumstances. The P4 standard includes

a detailed description of the operations and features that are available for these data types.

Headers are aligned to the byte level and might be in either a valid or invalid state. Methods such

as isValid(), setValid(), and setInvalid() allow P4 programs to change a header's validity bit.

This code shows how to declare Ethernet and IPv4 headers in P4 script like structure of the

Ethernet header, containing elements such as destination address, source address, and Ethernet

type. Similarly, the IPv4 header is disclosed, together with its associated fields such as version,

length, distinguished services, and total length. The ‘typedef’ phrase can be used to create alias

names for complicated header structures, hence improving code readability and maintainability.

The ‘struct’ data type in P4 is a flexible data structure that permits the formation of nested set of

members with no aligned constraints. It allows for greater flexibility in data organization and

manipulation within a P4 program.

P4 allows to combine numerous headers of the same kind into a header stack. A header stack is

an array of headers that allows for efficient handling of packets having many instances of the

same header type. It adds the idea of a header union, which is an alternative that contains one of

multiple possible headers. A header union, for example, may include an IPv4 and an IPv6

header, presuming that packets would contain either IPv4 or IPv6, but not both at the same time.

37

This script builds a struct named ‘Metadata’ with two members: ‘value1’ of 16-bit type and

‘value2’ of 32-bit type. This struct is used to hold extra details about packets. Following that,

defined two headers: Ethernet and IPv4. The Ethernet header contains information of destination

address, source address, and Ethernet type. Version, Internet Header Length (IHL),

Differentiated Services Code Point (DSCP), and overall length are all fields in IPv4 header.

A header union named ‘IP’ is specified to handle packets with distinct IP versions, each contains

either an IPv4 or an IPv6 header. The ‘Headers’ header stack is introduced, which consists of an

Ethernet header followed by an array of IP headers that allows packets containing many levels of

IP headers, such as encapsulated packets, to be processed. The ‘MetadataStruct’ class is an

instance of the ‘Metadata’ struct, which is used to hold extra metadata information about packets

and enable development and manipulation of complicated data structures within a P4 program,

allowing for efficient packet processing and handling of various header types and packet formats.

4.3.4 Parser

Parsers is program that convert packets into headers and information. They are implemented in

the form of a state machine and has three predetermined states: start, accept, and reject. P4

programmer can construct custom states based on their needs, while it is not required to have a

state for each [38] header type. In the given below parser code, MyParser is a parser that takes an

input packet, extracts the headers, and updates the metadata accordingly. The parser begins in the

start state, where it uses the extract command to extract the Ethernet header. Depending on the

circumstance, it then moves to another header parsing state (parse_next_header_state) [42] or

immediately to accept or refuse state. The transition statement selects the next state depending on

circumstances presented. If the parser discovers the accept state, it takes the actions specified in

38

that state. Similarly, if it enters the refuse state, recording or discarding the packet, might be

done. Loops are permitted in parsing state machine, allowing for the processing of repeating

header structures or other parsing needs.

4.3.5 Simple Actions

Control blocks in P4 architecture are programmable elements responsible for various packet

processing activities alike C language functions, although they don’t support loops. Variables,

tables, and externs can all be stated within a control block. The apply block within a control

block defines the block's real functionality, where various types of packet processing, match-

action pipelines, and deparsers can be described as directed acyclic networks. User-defined and

architecture-specific types, often involving headers and metadata, are used to establish interfaces

between control blocks and other components within an architecture. In below script, control

block ‘MyControl’ receives the headers and metadata and alters them as needed. The source and

destination MAC addresses are exchanged within the apply block using the temporary variable

tmp. The packet is then sent out over the same input port by changing the standard_metadata

egress_spec field to the ingress_port. Temporary variable is distinctive to this control block

which is not easily retrieved by any block. To provide same functionality, the temporary variable

may have been stated directly within the apply statement.

39

4.3.6 Tables

In P4, tables are used for match-action within a pipeline. Multiple aspects are involved in the

definition of a table, including the criteria for matching, the type of matching to be performed, a

list of possible actions, and, if necessary, extra attributes such as entry count and a default action.

Each table has many items known as rules. Each rule has a unique key for matching, an

associated action to do when a match occurs by passing optional data to the action. A longest

prefix match should be done by routing table on the destination IP. In P4, routing table definition

can look like this:

The key defines the IPv4 destination address and employs the lpm (longest prefix match) match

type. The actions section specifies the potential actions that this table do: ipv4_forward, drop,

and NoAction. The table has adequate space for 1024 items, and the default_action is set to

NoAction if no match is discovered. The data plane, as described by P4, is in charge of

structuring the forwarding table and define the match-able fields and determine the specific

actions to be called. Selected actions are executed after table lookup. Control plane, on the other

hand, control of populating table entries. Manual configuration by network operators, automated

discovery, and routing protocol computations are examples of control methods. The deparser

feature, which requires the rebuilding of headers into a correctly formed packet, can be

implemented using a control block. Broadcast of the packet_out extern is used to validate

specified header field into the packet at end, assuring its inclusion only if it contains valid data.

40

The deparser control block is defined in the code to reassemble the headers into identifiable

packet. The control block begins by using packet.emit(ethernet) to emit the ethernet header. The

ipv4 header is then emitted with packet.emit(ipv4). Using packet.emit(ipv4_options), if the

ipv4_options header is valid, it is emitted. The tcp header is then emitted using packet.emit(tcp).

Using packet.emit(payload), the payload is emitted. All this process is shown in Figure 10. The

deparser control block guarantees that the headers are appropriately constructed in the required

sequence to build a full packet for transmission by utilizing the emit method.

4.4 P4Runtime

P4 Runtime presents a novel method for managing forwarding planes of switches, routers, and

firewalls. P4 Runtime, in contrast to typical closed and fixed APIs, has various advantages and

allows control over both fixed-function and programmable switches, including ASIC-based [43]

devices and software switches operating on x86 servers. In P4 Runtime, the framework remains

self-contained, allowing a diverse set of switches to be controlled using the same API. Its API is

automatically updated to meet novel protocols added to routing plane, avoiding need for control

plane restarts or reboots. It has no restrictions on the location of the control plane, which on x86

[43] servers can be either a system operating on local switch or a remote control plane. Because

of their limited scope and lack of extension, closed and fixed APIs have been a source of worry

[43]. These proprietary APIs are usually customized for individual switch chips and are seldom

updated.

Figure 10: Match Action Data Flow

41

To address these concerns, efforts have been undertaken to replace restricted APIs with open

interfaces [43]. OpenFlow, which debuted a decade ago and allows remote control planes to

handle switches from many manufacturers using a standardized API, is one such example.

However, OF presented its own set of difficulties. It was primarily built for certain use cases and

fixed-function switches, and it lacked flexibility and displayed ambiguous behavior.

AI is a solution that overcomes some of the issues associated with closed APIs, focused on

networks where the control plane is located within the switch. SAI [22] like OF, allows control

of switches depending on different switch ASICs. However, as it matures, SAI gets more

sophisticated, making extensions difficult and remote control of switches confusing.

P4 Runtime, on the other hand, provides a full solution to the aforementioned difficulties [43]. It

is a flexible and open framework that can handle any switch ASIC, allowing various networks to

use the same API while including different protocols and capabilities. By specifying the

forwarding behavior in P4, the P4 Runtime [43] enables for simple expansion over time,

enabling the simulation of both OFand SAI behaviors.

4.4.1 Control Plane with P4 Runtime API

Within the same switch, P4 Runtime is used to operate switches from control plane that can be

operating as local or remote. Necessary schema for the P4 Runtime API is built by utilizing the

P4 code ‘switch.p4’ to specify the pipeline of switch and leveraging P4c, allowing addition and

deletion of entries in the forwarding table at runtime. This method guarantees effective control of

switches using the P4 Runtime API.

The SDN Controller is a logically centralized entity tasked with orchestrating the whole network

in accordance with the administrator regulations. We used the ONOS controller in our scenario

due to its specific benefits over other SDN controllers. ONOS distinguishes itself by powerful

features such as seamless scalability, high availability, and dynamic network resource

management. Figure 11 depicts a scenario in which control plane operating as local uses API of

P4 Runtime that allows to manipulate any switch that is defined in the P4 code. A developer can

Figure 11: Local Control Plane with P4 Runtime

API

42

control switches of fixed-function nature, by writing a P4 script that accurately defines the

behavior of the switch in the P4lang. P4c recognizes the components that require control of

tables lookup defined inside the P4 script, for which entries must be inserted or removed. Using

the P4 Runtime API, this automated procedure simplifies switch configuration.

In the configuration of Figure 12, the remote control plane connects to network switches via the

P4 Runtime API, acting as an intermediate level. This setup allows administrators of networks to

manage and alter switch functionality from a single centralized location, which is very useful in

substantial networking installations covering various geographic areas. It allows for global

changes, efficient routing, and responses that adapt to changing traffic patterns, all while

preserving centralized and unified network administration.

Basically, the P4 Runtime API controls BMv2 switch in Figure 12, whereas a P4 implementation

specifies the switch's pipeline, defining the way packets are processed and forwarding across the

network's infrastructure. A P4 compiler (P4c) provides a required schemas for the P4 Runtime

API to enable real-time changes to the routing table, allowing the creation and elimination of

entries on as needed. This P4 file essentially serves as the switch's operational guide, allows

controllers and network managers to dynamically adjust the switch's behavior. They can respond

quickly to changing network conditions, flows of traffic, or particular needs by adding or

removing forwarding table entries. P4 Runtime API, working together with a control plane

operating remotely plays vital role in implementing the SDN goal, providing increased versatility

and effectiveness in network management.

An IPv4 longest-prefix-match (LPM) table is included with the P4 program. Entries in this table

will require insertion and deletion during runtime, notably concerning the 8-bit prefix (seen in

the center of Figure 13). The P4 compiler provides a complete schema (seen on the right side of

Figure 13) that acts as the control plane's blueprint.

Figure 12: Remote Control Plane with P4 Runtime

API

43

The control plane use the protobuf schema to represent the exact 8-bit prefix that must be

appended to the database. Using the P4 Runtime API, this schema allows the control plane to

communicate the needed table adjustments to the table. P4 Runtime API supports the creation of

new tables that are managed programmatically. A programmable switch is configured with IPv6

prefix table or a custom-made table as per network requirements. When additional tables are

added, the P4c updates the schema (protobuf message) appropriately. As a result, the control

plane control and manage these newly introduced tables through the P4 Runtime API [26].

4.5 P4 Advantages and Specifications

Because of its protocol independence, P4 is vital for SDN, allowing the introduction of

additional protocols and customization. It allows it to provide unique network services and

optimize traffic. Because P4 is hardware-independent, program may be transferred across

devices, increasing deployment flexibility. The most recent P4_16 standard includes advanced

language features such as support for complicated data structures and control flow. P4 is a useful

tool for flexible, programmable, and adaptive SDN networks because it uses a match-action

approach that allows rule-based packet processing and target-specific implementations for

multiple hardware platforms.

Figure 13: P4 Runtime Data Flow

44

5. Chapter 05 - Open Network Operating System

The Open Network Operating System (ONOS) is a popular open-source SDN controller when it

comes to next-generation SDN/NFV solutions. It is based on OSGi technology, handles different

sub-projects and provides extensive support for network configuration and real-time control. The

use of ONOS [16] eliminates the requirement to run the control protocols (switching and routing)

within the architecture of network. ONOS serves as an intelligent cloud controller, allowing the

development of new network applications without affecting the underlying data plane

technology. It has a scalable design to enable scalability while meeting the rigorous needs of

commercial carrier settings.

5.1 ONOS Specifications

ONOS provides a fault-tolerant architecture based modularity principles that easily supports

large-scale SDN deployments, supporting networks of varied sizes, from modest corporate

setups to gigantic carrier-grade [44] settings. Some of the important aspects are as follows:

5.1.1 Centralized Management

ONOS provides a centralized control plane [13], allows network managers to see the whole

network. It offers efficient network resource management, and dynamic network provisioning.

5.1.2 Northbound and Southbound Interfaces

ONOS offers a variety of [13] northbound interfaces, enabling the creation and integration of

customized network applications and services. It also supports different southbound protocols,

ensuring interoperability with a diverse set of SDN switches and devices.

5.1.3 Flow Management and Traffic Engineering

ONOS provides comprehensive flow management features, allowing for fine-grained [13]

control over network device forwarding behavior. It provides traffic engineering processes such

as network path optimization, load balancing, and quality of service (QoS) provisioning.

5.1.4 Network Virtualization

ONOS enables the establishment of several [13] logical networks over a shared physical

infrastructure, facilitating network virtualization for efficient multi-tenancy.

5.1.5 Application Ecosystem

ONOS has a thriving and active community that creates and supports a diverse set of network

applications. These programs supplement ONOS's capabilities by adding features such as

45

network monitoring, security, and network analytics. ONOS offers following benefits that make

it a popular choice for SDN deployments:

5.1.6 Flexibility and Programmability

ONOS provides a highly [13] programmable environment, allowing network operators to

customize and adjust their networks' behavior. Its modular architecture and extendable

foundation make it possible to create and integrate new network services and protocols.

5.1.7 Scalability and High Availability

ONOS is built for large-scale networks with heavy traffic volumes. Its distributed design

guarantees scalability and high availability, reducing the effect of failures and ensuring network

stability.

5.1.8 Open-Source Community

ONOS has the support of a thriving open-source [13] community of developers, academics, and

network operators. Because of this community-driven approach, ONOS is a stable and future-

proof alternative for SDN installations, with ongoing development, bug fixes, and feature

updates.

5.2 Design Principles of ONOS

The early design aims for ONOS centered on fulfilling the following [17] objectives:

5.2.1 Code modularity

Allowing for the creation of additional functionalities as standalone modules.

5.2.2 Configurable Features

The ability to dynamically load and unload features during startup or runtime.

5.2.3 Protocol Independence

It refers to the ability of programs to be independent of certain protocol libraries and

implementations.

ONOS source code is organized hierarchically, making sub-project administration easier [17].

Every sub-project possess individual directory along with a pom.xml file, which inherits parent

POM file's common dependencies and settings. This modular form enables for the construction

of independent sub-projects. The root directory contains the top-level POM files that are

responsible for constructing the whole project and its modules.

46

Karaf is used as ONOS Service Gateway initiate technology that include the ability to construct a

secure API interface using standard JAX-RS API, support for centralized custom settings secure

shell that include both local and remote control login enable by an extensible CLI, and the ability

to capture logs at various levels. ONOS has a layered design that includes the following

components, regardless of the underlying [17] protocol:

5.2.4 Protocol Awareness Module

This module interacts with the network and is does protocol-specific actions.

5.2.5 System Core

Tracks and delivers network status information, offering a standard foundation for network

management.

5.2.6 Applications

ONOS has protocol awareness module that communicates network and offers information about

network states, and apps that utilize and take actions depending on the data offered by core. As

depicted in Figure 14, the core establishes communication with network centric modules through

a southbound (provider) API and interfaces with applications via a northbound (consumer) API.

The SB API provides a protocol-agnostic means of transmitting network status data to the Core,

which then engages with network devices through network modules. NB API [17] gives

abstractions defining network properties to apps, allowing them to define their desired actions.

5.3 System Components of ONOS

A subsystem is a component that collectively comprise a service, whereas a service is a

functional unit made up of numerous components that span different levels, producing a software

Figure 14: ONOS Stack

47

stack that allows for development [17] of vertical slices. ONOS subsystem is shown in Figure 15

with its key attributes outlined as follows:

5.3.1 Device Subsystem

Manages infrastructure device inventories managed by the [17] Link Subsystem.

5.3.2 Host Subsystem

Keeps track of end-station hosts [17] and their network locations.

5.3.3 Topology Subsystem

This subsystem is used to manage time-ordered snapshots of network graph views.

5.3.4 Path Service

 Devices path or end-station hosts are computed using the most current topology graph snapshot.

5.3.5 Flow Rule Subsystem

It delivers flow metrics for the inventory of match/action flow rules deployed on infrastructure

devices however packet subsystem [17] allows apps to receive incoming packets from network

devices and transmit outgoing packets into the network via one or more network devices.

5.4 ONOS Subsytem Structure

In ONOS subsystem structure the Provider component [19] is located at the bottom of the stack.

It connects with the underlie device using a protocol specific library and interacts with the core

via the ProviderService interface. Each Provider has its own ProviderId, which serves as an

Figure 15: ONOS Components

48

external identification for the Provider family. Multiple Providers can be attached to the

subsystem, each of which is classed as major or auxiliary. The primary Provider owns the

entities linked with the service, whereas the ancillary Provider uses this information, giving

precedence to primary Provider.

The Manager component is responsible for receiving information from Providers and sending it

to applications and other services. The NB and AdminService interface, SB ProviderRegistry

[19] and ProviderService interface are among its interfaces.

The Store, which is linked to the Manager in the Core, employs specialized procedures to index,

persist, and synchronize the data received from Providers. This guarantees that information is

resilient and consistent across various ONOS instances.

Through the AdminService and Service interfaces, applications consume and process

information acquired from the Manager. They perform tasks of presenting network architecture

[19] via a web browser and customizing network traffic pathways. Each application, like

Providers, is assigned a unique ApplicationId, allowing ONOS to monitor the context associated

with that specific application.

ONOS sends information in two basic forms: events and descriptions. These units, once

constructed, do not alter and are related with certain network parts and concepts. Descriptions

provide information about items through the SB API, whilst events act as change notifications

spread across Managers and Stores.

The Store generates events based on the Manager's input. They are constructed and then

distributed to interested listeners through the StoreDelegate interface. The StoreDelegate guides

the event, and the EventDeliveryService ensures that it reaches just the appropriate listeners. The

Manager contains both of these components, with the StoreDelegate supplying the

implementation class to the Store. Event listeners are components that implement the

EventListener interface. EventListener child interfaces are classified based on the type of Event

subclass they handle.

5.5 Network-state Representation

The control plane is used to handle and obtain information of [18] network state. It collect this

data and make it available to applications. ONOS uses network detection and configuration tools

to build a protocol-agnostic topology that takes use of the benefits of both methodologies. It

maintains network element and state representations [18] that are independent of specific

protocols, allowing for smooth translation between multiple representations. Network directives

are specified at the application level as flow rules composed of match criteria [18] and action

treatment pairs. The incoming network traffic and packets to be added in network are equivalent

to the Packet IN/OUT notions defined by OpenFlow.

49

5.5.1 Outbound Packet

A protocol-independent representation of a synthetic packet designed for network transmission.

It contains information about the packet's destination.

5.5.2 Inbound Packet

A protocol-independent representation of a network device's packet transmitted to the controller.

Packet IN is made available to providers and applications for host monitoring and connection

detection and allows reactive packet processing. There is a dependence connection between

items in ONOS. Ports [18] cannot exist in the absence of a Device, and Links cannot exist in the

absence of Ports since they act as endpoints. As a result, in ONOS' network representations,

devices are regarded as a basic element. ONOS uses following terminology:

Subject: A reference to an item that will be configured via the subsystem like A DeviceId, is

used to represent a network device.

Config: A combination of changeable parameters presented for a certain item.

BasicDeviceConfig, for example, lets you to establish or change a device's type and southbound

driver.

Key: A string name assigned to a topic that serves as the key for the JSON field holding the

configuration variables. Device configurations can be searched using the key ‘devices’ in the

field. A configuration key is a string name supplied to a configuration class that acts as both the

configuration class identity and the JSON field key. The ‘basic’ key describes the device's

universal setups. A configuration operator is responsible of harmonizing [18 multiple sources of

network setup data related to a certain object. Its duty is to consolidate and manage configuration

data from many sources to ensure consistency and correct system application.

5.6 Device Subsystem in ONOS

The Device subsystem in ONOS does the task of identifying and monitoring the network's

devices. It allows operators and applications to operate these devices, and many of ONOS basic

sub-systems rely on the Device and Port model [18] objects, created and managed by the Device

subsystem. The Device subsystem is made up of the following elements:

5.6.1 Device Manager

It talks with numerous Providers via the Device Provider Service interface and with multiple

listeners via the Device Service interface.

5.6.2 Device Providers

This connect with the network using their own network protocol libraries or methods.

50

5.6.3 Device Store

It manages Device model objects and creates Device Events. The OF Device Provider, which

supports interaction with OF devices, is one of the Device Providers utilized by ONOS. Major

representations translated between the two levels are shown in Figure 16, with the core tier

presenting different network components and attributes as [18] protocol-agnostic model objects

and provider stage representing them as protocol-specific objects.

OF Device Provider and driver components are part of the ONOS OF subsystem. It makes use of

the [18] Java protocol bindings produced by Loxi [45] to implement the OF protocol's controller-

side behavior.

Figure 16 displays the OF subsystem's southbound design. The OF Controller coordinates with

OF functions and produce OF events to which providers can subscribe. Providers can implement

a variety of listeners, including [18] OF Switch Listener, OF Event Listener, and Packet Listener,

which handle switch events, OF messages, and incoming traffic packets, respectively.

The OF Controller creates and maintains communication channels for each Switch object. The

Controller makes connections, while the OF Switch Agent monitors the condition of each linked

switch. The Switch object serves as the OF subsystem's portrayal of a network device. It contains

port information, [18] device data, a unique identity, and, on the other end, a channel reference to

the actual connected device. It has two interfaces that face in opposite directions: OF Switch and

OF Switch Driver. The OF Switch interface is oriented northward towards Providers, whereas

the [18] OF Switch Driver interface is oriented southward towards the channel and the controller.

Figure 16: OF Provider

51

5.7 Device Driver Subsystem

The Device subsystem in ONOS is responsible for isolating [18] device-specific code and

preventing it from propagating throughout the system. A Driver in the Device subsystem

represents a certain device family or a specific device. It has the following characteristics: a

distinct name, a set of Behavior classes that it supports, the ability to inherit behaviors from

another Driver, and the capacity to be abstract. ONOS provides the Default Driver class to

implement the Driver interface.

Driver Providers are entities that can offer device drivers and the behaviors that go with them.

The Driver Admin Service is in charge of controlling device drivers indirectly by managing

driver suppliers and has functions such as [18] getProviders(), registerProvider(), and

unregisterProvider(). The Driver Service is the principal service used by ONOS apps and other

subsystems to identify appropriate drivers for a device. It allows [18] to search for drivers by

name, device maker, hardware version, software version, supported Behavior, and device ID.

Driver Data is a container storing information about a device gathered from previous encounters.

It has a parent Driver and Behaviors for describing a device [18].

52

6. Chapter 06 - Environmental Setup

This chapter gives guideline to the experimental setup that involves following setups:

6.1 System Specifications

We build our SDN experimental setup and application development stack by combining free and

open-source components. Our main computing resource was a Huawei server outfitted with a

powerful Xeon processor. We used 32 GB of RAM at our disposal to execute memory-intensive

operations and allocated to two virtual machines (VMs) developed for our testing. The Mininet

and BMv2 components were hosted in a single VM1 with 16 GB of RAM. The VM2 was given

10 GB of RAM and was used to install ONOS instances. The server included SAS storage with a

2TB storage capacity for data storage. We also assigned a 200 GB virtual hard disk drive

(VHDD) for specialized storage and virtualization requirements. To develop and administer our

network emulations, we used Mininet version 2.3.1. The Linux distribution we used was Ubuntu

20.04.5. As our major computing resource, we used an Intel(R) Xeon(R) Silver 4210 CPU,

equipping the system with 6 virtual CPUs (vCPUs) to efficiently spread processing workloads.

Our virtualization infrastructure was built on VMware ESXi version 7.0 U2, a solid platform that

provided us with advanced virtualization capabilities, boosting the efficiency of our tests even

further. This extensive experimental setup gave us the computational capacity and resources we

needed to conduct our research efficiently.

6.1.1 Manual Installation

The following components are required for manual Docker installation:

 Docker v1.13.0 and later (with docker-compose)

 Python 3

 Bash-like Unix shell

 Wireshark (optional)

We used the following commands to update the system's package repository and installed the

Docker Compose plugin:

We used the repository of ngsdn-tutotiral from github and cloned it in our home directory and

upgraded the required dependencies:

This repository is organized as follows:

53

 p4src/ P4 implementation

 yang/ Yang model used further

 app/ custom ONOS app Java implementation

 mininet/ Mininet script to emulate a 2x2 leaf-spine fabric topology of stratum_bmv2

devices

 util/ Utility scripts

 ptf/ P4 data plane unit tests based on Packet Test Framework (PTF)

6.2 ONOS Installation using Docker

Installation of ONOS using Docker, as well as instructions on how to test a simple topology

using mininet is described here. To install Docker, we logged in to the mininet VM with a user

account that has superuser permissions and executed the provided commands to fetch the

package lists from the repositories.

By creating a symbolic link between the installed Docker IO package files and the

/usr/local/bin/docker directory, the Docker CLI can be executed by simply typing ‘docker’ into

the Linux command line.

By using the following command we downloaded the onos image:

To run a single instance of ONOS used:

The preceding command is set up with the subsequent options:

Using -t will assign a pseudo-tty to the container.

The -d flag will execute the container in the foreground.

The option -p <CONTAINER_PORT>:<HOST_PORT> maps a CONTAINER_PORT to a

HOST_PORT. Some of the specific ports that ONOS employs are as follows:

 Port 8181 for the REST API and GUI

 Port 8101 for accessing the ONOS CLI

 Port 9876 for intra-cluster communication between target machines

54

 Port 6653 for OpenFlow

 Port 6640 for OVSDB

 Port 830 for NETCONF

 Port 5005 for debugging, which can be utilized for attaching a Java debugger.

The execution of the preceding command, exposed the ONOS CLI, GUI, NETCONF, and

Debugger ports. To operate a released version, we included the: Version_Number:

Once the container has been launched, we navigate to the ONOS UI by accessing the following

URL via Mininet: http://localhost:8181/onos/ui.

This command should be run from the Mininet terminal. To display the ONOS UI via a web

browser, determine Mininet's IP address by running:

In our virtual environment, the IP address assigned to P4 Mininet is 10.3.12.140. Consequently,

the ONOS UI can be accessed using the following URL: http://10.3.12.139:8181/onos/ui. Once

there, it will be necessary to log in to the system, which requires the default username ‘onos’ and

password ‘rocks’. Upon successful login, the dashboard will display current topology of system.

As ONOS is operating inside a container, it is necessary to utilize SSH to access the ONOS

instance. This can be achieved by executing the command "ssh -p 8101 karaf@<ONOS_IP>",

where <ONOS_IP> should be replaced with the IP address of the ONOS instance. The IP

address can be obtained from the topology page of the ONOS UI; in our case, the sole device

listed on the page has the IP address 10.3.12.140, so it is connected using:

After connecting, the user will be prompted to enter a password, which is ‘karaf’. Once

connected, the controller can be configured. By executing the command ‘apps –s’, a list of all the

applications currently installed on the controller can be obtained. To activate the OpenFlow

application, run ‘app activate org.onosproject.openflow’. Additionally, it is necessary to install

the ‘onos-apps-fwd’ feature by executing ‘feature:install onos-apps-fwd’.

To display only the active applications, executed the command ‘apps -s –a’. This will provide a

list of the currently activated applications. The applications can also be managed from the ONOS

55

UI, specifically from the Applications page. From there, it is possible to activate or deactivate an

application as required.

To start a minimal topology on Mininet, execute the command:

This will create a topology that includes three hosts (h1, h2 and h3), four BMv2 switches (spine

1 & 2, Leaf 1 & 2), and is connected to the ONOS controller at 10.3.12.139. By running the

‘pingall’ command from the Mininet command-line interface of our VM1, the verification of

ONOS controller is done. This command tests the connectivity between the two hosts (h1 and

h2) in the topology by sending ICMP echo requests in both directions.

56

7. Chapter 07 - Experimental Setup

7.1 Operating System Stratum

Stratum is an operating system that was created particularly for software-defined networks

(SDNs). It is an open-source, silicon-independent solution aimed at creating a production-ready

white box switch distribution. P4Runtime and OpenConfig are two sophisticated SDN interfaces

exposed by Stratum [19] that improve the flexibility and programmability of forwarding devices

and behaviours.

One of Stratum's primary benefits is its ability to provide a wide variety of SDN features, such as

control, configuration, and operational interfaces, over the network's full lifespan. Stratum allows

smooth integration with multiple SDN systems by integrating the newest SDN NB interfaces like

as P4, P4Runtime, [19] gNMI, and gNOI.

It is vital to note that control protocols are not included by default in Stratum. It is instead

intended to support external network operating systems to coexist with NOS functionalities [19]

utilizing the same embedded switch. Based on the unique network needs, this design method

offers for greater flexibility and adaptation.

Stratum provides a Docker image that enables the execution of a network simulated using

mininet, with stratum_bmv2 serving as the default switch. The image enables testing and

demonstration of a variety of functions, including P4 runtime and gNMI etc.

This Docker image was used to generate the network architecture shown in Figure 17 to

demonstrate the possibilities of Stratum. It allows users to test and evaluate technologies like P4

runtime and gNMI while exploiting ONOS's control plane capabilities. Users may simply set up

and explore the functionality given by Stratum in a controlled environment by using the Stratum

Docker image, enabling for fast testing and development of SDN applications and protocols.

Figure 17: Stratum Controller

57

The switch.p4 program, designed for the bmv2 simple target switch, undergoes compilation

using p4c. To compile our switch.p4 program, Open Networking Docker image for p4c is

utilized.

The compiler generates the following files, with the primary output saved in

p4src/build/bmv2.json (-o).

It describes a configuration for the BMv2 simple target switch in JSON format, which the simple

switch uses to process incoming packets based on the P4 program. A P4Info file is also

generated in p4src/build/p4info.txt (--p4runtime-files), which provides a Protobuf Text-formatted

version of a P4Info schema for the P4 application.

7.2 Mininet Topology

To start an emulated network of stratum_bmv2 switches i.e. the topology, used the following

command in our VM2 that has IP 10.2.12.140:

We performed this to start two Docker containers, one for Mininet and one for ONOS. To ensure

that the container starts up smoothly, used the following command to inspect the Mininet log.

In docker-compose.yml, the parameters for starting the mininet container are supplied. The

container has been set up to run the topology script provided in mininet/topo-v6.py (press Ctrl-C

to exit from the mininet CLI). When this command is executed, it start displaying the logs from

the point where the container was initially started. To view the latest logs, without the older ones,

use - - tail option followed by a number to specify the number of recent log lines).

When the mininet container is started, following files pertaining operation of each stratum bmv2

instance is generated in the temporary directory.

 tmp/leaf1/stratum_bmv2.log

 tmp/leaf1/chassis-config.txt

 tmp/leaf1/write-reqs.txt

Our proposed architecture features a distinctive 2x2 fabric topology comprises of four BMv2

switches: spine 1, 2 and leaf 1, 2 interconnected with host: h1, h2 and h3 attached to leaf 1 as

visually depicted in Figure 18. These hosts are connected directly through a single interface in

58

leaf switches, orchestrated and controlled by ONOS and programmed using P4 Runtime shell

that links to a P4 Runtime server to perform P4 Runtime commands.

To support this virtual setup, we deployed two Docker containers, one to serve as the host for the

Mininet topology and the other to utilise the ONOS operating system.

Our topology is created within the P4 and Mininet environment, using our VM2. For compilation

of our P4 script for BMv2 target switch, we used P4c which includes a specialized back-end

design specifically called 'P4c-BM2-SS.' To accelerate compilation, we used an Open

Networking Docker image, which includes all of the necessary tools and dependencies for

compiling the switch.p4 file. In our custom topology, we added the controller with the IP address

'10.3.12.139' associated with our ONOS VM1. This allowed us to simulate and administer the

custom network architecture with Mininet. This was performed using the following command:

Figure 18: Mininet Topology

59

Chapter 08 – Results

To evaluate our P4T testbed for network solutions, we did a number of experiments and their

findings are discussed in the following subsections: 'Bridge Connectivity Test' displays

connection results, 'P4 Pipeline Configuration via ONOS' discusses pipeline impacts and 'Global

Network Management Interface' and 'Topology Discovery' explain their separate functions.

8 Program leaf1 using P4Runtime

We used P4Runtime Shell that give support in connecting to a P4Runtime server in order to

perform P4Runtime commands. Build or downloaded the Docker image manually with in our

VM1, 10.3.12.139, where we placed ONOS instances:

We used the P4 Runtime shell to program leaf1. When we connected to a P4 Runtime server, it

executed P4 Runtime commands, allowing us to conduct tasks: generating, reading, updating,

and removing flow table entries. The P4 Runtime shell has two modes of operation: with or

without a P4 pipeline configuration. The shell initially uses the P4 Runtime

SetPipelineConfiguration RPC to send the given pipeline configuration to switch. Subsequently,

it attempts to acquire switch's presently configured P4Info file, use to improve command

readability by permitting the usage of P4Info names, enabling auto-completion, and validating

command accuracy and completeness. An election ID is provided while connecting to a P4

Runtime server to enable the pipeline configuration and table entries. To route pipeline

configuration acquired from our P4 code and to connect leaf 1 with P4 Runtime shell running on

our ONOS VM1, following command is used:

Our mininet container is executed remotely, therefore we used the '--grpc-addr of our Mininet

and P4 VM2, 10.3.12.140:50001' to make this possible. Notably, TCP port 50001 corresponds to

leaf 1, hosted gRPC server.

8.1 Static NDP Table Entries

We began the process of pinging two IPv6 hosts on the same subnet by having the hosts

determine their respective MAC addresses using the Neighbor Discovery Protocol (NDP). We

had h1 send an NDP Neighbor Solicitation (NS) message to discover h2's MAC address in the

case when we attempted to ping h1 from h2, h2 from h1 and h1 from h3. Following receipt of the

NDP NS message, h2 responded immediately with an NDP Neighbor Advertisement (NA) with

its own MAC address. With both hosts now knowing each other's MAC addresses, we

60

exchanged ping packets. We repeated the same procedure for h1 to h3 ping. In Mininet P4 VM2

(10.3.12.140) we, inserted three static NDP entries in our hosts by following command:

This ping worked after inserting any P4Runtime table entry to forward these packets.

8.2 P4Runtime Table Entries

In our ONOS controller VM1 IP 10.3.12.139, we used P4Runtime shell to create and insert three

table entries on l2_exact_table in leaf1. The sequence of table entries in P4Runtime shell are:

P4Runtime shell internally transforms the value provided in the P4Info to a Protobuf based on

the information in the P4Info, created a byte string. But sometimes legacy server doesn’t convert

and rejects binary strings formatted using the canonical representation with following error:

P4RuntimeWriteException: Error(s) during Write:

*At index 0:INVALID_ARGUMENT, ‘Invalid bytestring format’

Figure 19: Static NDP Entries

Figure 20: Rules Insertion in P4Runtime Shell

61

Return to the byte-padded format by entering the following command in the shell before

inserting the above table entries:

P4Runtime sh >>> global_options["canonical_bytestrings"] = False

The match action is done with the destination MAC address to forward entries between the hosts.

These entries direct the network device to route Ethernet frames depending on their destinat ion

addresses to certain ports. Each entry associates a specific Ethernet destination address with a

specific port number, ensuring that incoming traffic is sent to the relevant host. After inserting

these entries, when we went back to our Mininet VM2 referred to bridge connectivity test, the

ping from h1 to h2 worked as shown in Figure 21.

8.3 YANG

In network management configuration, we utilized a standard protocol gNMI (gRPC Network

Management Interface) to work with YANG (Yet Another Next Generation) based data models.

As a language, YANG provides protocol freedom, allowing for easy conversion into various

encoding formats such as XML or JSON. Two key considerations come into play in the context

of a YANG model:

To begin, the Data Tree Organization serves as the foundation. It defines the structure of the

data tree, revealing important information about the pathways and attributes of leaf data types.

This structure is the foundation for data representation and manipulation.

Second, the Semantics of Leaf Nodes must be considered. The description field of the model

explains the meaning and purpose of particular leaf nodes, resulting in a clear comprehension of

the data's intended usage. A YANG module is a self-contained unit that represents the smallest

item that YANG tools can compile. Each module contains following components:

Figure 21: Ping h1 to h2

62

 Boilerplate: The module's specified namespace, a reference prefix for cross-module

utilization, a description of its purpose, and version/revision history are all included in

this section.

 Identities and Derived Types: The module includes identities and derived types that

increase the model's capabilities and expressiveness.

 Modular Groupings: These groupings encourage model modularity and reusability,

resulting in a more ordered and efficient structure.

 Top-Level Container: A top-level container is specified at the module's core to

determine the structure of the data node tree, molding the overall representation of data.

The example script is as follows:

YANG defines several built-in types including binary, bits, boolean, decimal64, empty,

enumeration, identityref, int8, int16, int32, int64, string, uint8, uint16, uint32, uint64, decimal64.

An identity is a globally distinct and abstract entity that lacks data type categorization. These

identities are important in identifying elements with clear and explicit semantics, and they have

the possibility for hierarchical organization.

Derived types, on the other hand, provide a mechanism for enforcing constraints on built-in data

types or other derived types, and are commonly constructed with the ‘ypedef’ construct. Let us

use an example to demonstrate this:

63

A grouping represents a reusable collection of nodes, encompassing containers and leaves, which

can be incorporated within a container. It's important to note that a grouping, when defined or

imported, doesn't inherently introduce any nodes to the module. In contrast, a leaf denotes a node

holding a value, which may be of a built-in or derived type, and it doesn't have any child nodes.

A container is a node that contains a collection of child nodes. Every module has a top-level or

root container that serves as the foundation for its structure. A list, on the other hand, is a node

that has numerous children of the same type. A key characteristic distinguishes each element in a

list. Containers labeled ‘configuration false’ represent state data, which is read-only from the

client's perspective. These containers are frequently used to communicate status information or

statistics data.

8.3.1 Open Configuration

Open Configuration is a network provider consortium with the common goal of advancing

computer networks into a dynamic and programmable architecture by embracing SDN principles

such as declarative pattern, model determined administration, and operational procedures [18].

The fundamental goal of Open Configuration is to create a consistent collection of vendor-

agnostic data models written in YANG. These models are built with practical needs drawn from

use cases and feedback from numerous network operators, assuring their relevance and

application in real-world network operations.

8.3.2 Global Network Management Interface

The OpenConfig initiative includes gNMI, which stands for gRPC Network Management

Interface. It functions as a defined protocol stated in protocol buffers, created primarily to handle

YANG-based data models and ease interactions via a specialized Network Management

Interface. The primary operations include: Set Request and Response, Get Request and

Response, and Subscription. Mininet VM2 is used to extract and read all configuration data from

the 'leaft 1' Stratum switch. Stratum responds with openconfiguration.Device, the highest-level

64

message defined in openconfiguration.proto. The data stored in binary format according to the

protobuf message structure is represented by this response. While the binary value itself is not

human-readable, we used this to convert the protobuf message between binary and textual

representations, making it more interpretative by executing following commands in our ONOS

VM1:

The gNMI CLI is used to interact with a gRPC (gNMI) service operating at 10.3.12.140:50001.

The first command (get /) obtains the whole configuration of network. The second command (get

/interfaces/interface[name=leaf1-eth3]/config) asks the leaf 1 Ethernet 3 network interface

configuration information. The third command (sub-sample) takes 1000 (m)s samples of counter

information for arriving uni-cast packets on leaf 1 Ethernet 3 port. The fourth command (sub-on

change) subscribes to changes in the leaf1 eth 3 interface's operational status, getting

notifications anytime the status changes. These commands make it easier to retrieve and monitor

network configuration and status data using the gNMI protocol.

8.4 ONOS as a Control Plane

All the activities perform in this section are executed in controller VM1 that has IP 10.3.12.139.

In this section, we'll look at how to use pre-existing ONOS services for link and host discovery

in conjunction with P4. These services depend on the switches' capacity to transmit data plane

packets to the controller and receive packets from it, facilitated through the use of packet IN and

OUT mechanisms. Some basic code changes are required to provide this feature with the

switch.p4 program. Changes to the pipe configuration Java implementation are also necessary in

order for ONOS's built-in programs to use packet-in and packet-out features through P4Runtime.

The process of integration has two parts:

8.4.1 Enable Packet I/O and Double-Check Link Discovery

We modified the P4 program to allow the controller to receive incoming packets and deliver

packets to the switches. Test the ONOS link discovery feature by using the packet-in capability

to receive link discovery packets from the switches. The switch.p4 file incorporates features

designed to transmit custom metadata within P4Runtime Packet IN and OUT messages. The

65

@controller_header P4 annotation is used to define and annotate two special headers in our

switch.p4 program. These headers have special functions:

 The initial switch ingress port information for a packet-in message is carried by the

cpu_in_header_t header.

 A packet-out message's cpu_out_header_t header indicates the desired output port.

The P4Runtime agent expects the cpu_in_header_t head to be the first in the frame when it

receives a packet from the switch CPU port in Stratum. It reads the P4Info file's controller packet

metadata section to determine the number of bits to strip at the start of the frame and populates

the relevant metadata field in the Packet IN message. This provides information such as the

packet's entry port. Likewise, in the case of Stratum receiving a P4Runtime Packet OUT

message, it proceeds to serialize and add a cpu_out_header_t header at the beginning of the

frame. This header is generated based on the data derived from the metadata fields in the Packet

OUT message. The frame is then conveyed to the pipeline parser for further processing. The

following capabilities are already supported by the switch.p4 code:

When the ingress port corresponds to the CPU port, the system begins parsing the

cpu_out_header. As a result, in the deparser, the cpu_in_header is designated as the primary

header. This configuration also includes the creation of an Access Control List (ACL) table with

ternary match fields, as well as an accompanying action designed to deliver or clone packets

destined for the CPU port. This operation is responsible for generating packet INs. These

characteristics allow the P4 program to handle packet input and output communication between

the controller and the switches, streamlining control plane operations and improving network

management capabilities. The Ingress Pipe Implementation block may be changed as follows to

offer comprehensive packet-in/out capability with the aforementioned modification:

The modified code snippet keeps the structure and logic intact and includes the necessary

changes to set the egress port based on the header cpu out. If this header is valid, it sets the

standard metadata egress specification to the egress port value in the cpu out header, marks this

header as invalid using hdr.cpu_out.setInvalid(), and exits the control block using exit. The

EgressPipeImpl logic checks to see if the packet should be sent to CPU port, for example, if an

ingress on the ACL table with the action send or cpu clone matches.

66

The modified code snippet keeps the structure and logic intact and includes the necessary chang

es to handle the packet egress port for the CPU port. If the standard_metadata.egress_port

matches the CPU port, it sets the hdr.cpu_in header as valid using hdr.cpu_in.setValid() and

assigns the ingress_port value from standard_metadata to hdr.cpu_in.ingress_port. Then, it exits

the control block using exit.

gui2: ONOS online user interface, available at http://ONOS_IP>:8181/onos/ui drivers.bmv2:

P4Runtime, gNMI, and gNOI-based BMv2/Stratum drivers. We followed these steps to construct

the ONOS app, including the pipeconf:

This will generate a binary file called SNAPSHOT.oar, which is used to install the application in

the presently running ONOS instance. After activating the app, we observed the following

entries in the ONOS log (using 'onos-log'), indicating the successful registration of the pipeconf

and the beginning of various app components.

Alternatively, to display the list of registered pipeconfs, execute the 'onos-cli' command to:

The task of instructing ONOS on how to create contact with the four linked switches and

establish control involves initializing the system with a file called mininet/netcfg.json, which

contains information of gRPC address and port information associated with each Stratum device,

the designated ONOS driver (stratum-bmv2) for each device, and the specific pipeconf choice

for each device, as defined in our PipeconfigurationLoader.java. We opened a terminal window

and entered the following command to push the netcfg.json file to ONOS that triggered

discovery and P4 switches configuration.

To validate previously push network configuration we open ONOS CLI and enter the command:

67

To load the app into ONOS and activate it, we used the command:

The program has components, specifically ‘lldpprovider’ and ‘hostprovider’ which are in charge

of LLDP link discovery and host discovery, respectively. A substantial portion of it involved the

development of a new software required for integrating ONOS with the given P4 application.

This app focuses on pipe configuration implementation and includes three key files:

‘PipeconfLoader.java’ which is responsible for registering the pipe configuration during app

initialization; ‘InterpreterImpl.java’ which acts as a pipeline interpreter in terms of driver

behavior and ‘PipelinerImpl.java’ which is responsible for implementing the Pipe liner driver

behavior. These files play important role for guaranteeing ONOS's flawless integration with the

P4 program, as well as the proper functioning and coordination of pipeline interpretation and

execution.

The translation of ONOS packet I/O representations into a format suitable with the P4 pipeline is

an essential aspect of the Pipe line Interpreter ONOS driver behavior. For ONOS built-in apps to

properly establish the output port of a packet OUT and access the first ingress port of a packet

IN, services such as link and host discovery must be present. This method involves the

submission of network settings in JSON format to ONOS in order to begin device and link

discovery. We executed the following command to validate the successful detection of all

devices and connections using the ONOS CLI:

The output contains information about the IDs, availability, role, type, and driver of found

devices as shown in Figure 22.

Each line represents a detected device and contains information such as the device ID,

availability status (true or false), and role (e.g., MASTER), and device type (e.g., SWITCH), and

driver (e.g., stratum-bmv2:org.onosproject.ngsdn-tutorial).

Figure 22: Detection of Devices in ONOS CLI

68

This command is used to display information about the discovered links between devices. Here

is the output of it:

Each line represents a link between two devices and provides details such as the source device

(src), destination device (dst), link type (type), link state (state), and expected status (expected).

Each device have five flow rules. To display all flow rules placed on device leaf1, we typed:

The output result contains details about the flow rules implemented on device: leaf 1, the device

ID, the number of flow rules (flowRuleCount), and detailed information about each flow rule.

These flow rules are generated by the built-in applications host and lldp provider depending on

the flow objectives. Pipe configuration transforms these flow objectives into flow rules via its

implementation of the Pipe liner behavior (PipelinerImpelmentation.java). These flow rules

define specific criteria for matching packets using identified header fields in ONOS, such as

Ethernet and ICMPV6 type, etc.

The host provider app enables host discovery by capturing ARP packets and NDP packets. These

packets are then cloned to the controller. Similarly, the lldp provider app generates flow

objectives to intercept LLDP and BDDP (Broadcast Domain Discovery Protocol) packets. These

packets are periodically sent to all device ports as P4Runtime packet OUTs, enabling auto

discovery of link. Every flow rule in the system uniformly utilizes the P4 action

‘clone_to_cpu(),’ which in turn invokes a v1model-specific primitive for configuring the clone

session ID (as defined in switch.p4).

The pipe liner of the pipe configuration constructs a CLONE group to generate P4Runtime

packet IN messages for matching packets. This group is internally converted into a P4Runtime

Clone Session Entry that translates the Clone Session ID of CPU to a set of ports, in this instance

the CPU port. To view all ONOS groups installed on leaf 1:

Figure 23: Links on Devices

69

ONOS gathers link data by collecting port counts for each device on a regular basis. Internally,

ONOS reads info about port, including counters, via gNMI. Enabling packet IN/OUT

capabilities in the pipeline interpreter facilitates not just link discovery but also enables the built-

in host provider programme for host discovery. For the new app to populate the P4 pipeline's

bridging tables, a host discovery service is necessary. The bridging tables operate by directing

packets according to the Ethernet destination address. The host provider application functions by

overseeing incoming ARP and NDP packets within the switch, deducing the host's connection

point based on the information carried in the packet's message. Subsequently, various ONOS

applications, including the recently developed one, can actively monitor host-related events,

facilitating access to essential data such as IP addresses, MAC addresses, and host locations.

8.4.2 L2 Bridging and Host Discovery

We added host discovery capabilities to the P4 program, allowing the controller to understand

and manage the hosts connected to the switches. In the P4 program, enabled L2 bridging to allow

packet forwarding across hosts connected to different switches based on their MAC addresses. A

new component app named L2BridgingComponent.java is created to implement L2 bridging

capabilities. This app provided the logic and configurations required to allow L2 bridging.

The bridging feature is implemented by the L2BridgingComponent.java app, which define

forwarding rules depending on Ethernet destination addresses. It populate the bridging tables in

the P4 pipeline with information collected from the host provider app. Based on the Ethernet

destination address, the program process incoming packets and select the suitable output port. It

then forward the packets in the appropriate order to allow L2 bridging within the network.

Internal Device and Host Listener are dual event listeners defined at the end of the L2 Bridging

Component class in our code. These listeners deal with device and host events, respectively.

When a device event occurs, such as the connecting of a new switch, the Internal Device Listener

is activated. This listener invokes the setUpDevice() function, in control for generating multicast

groups for all host facing ports and adding flow rules that point to these groups into the

l2_ternary_table.

The Internal Host Listener, on the other hand, is activated when a host event occurs like

discovery of a new host. The learnHost() function is called by this listener and is responsible for

actions such as adding unicast L2 entries depending on the recently identified host location. The

L2 Bridging Component application dynamically respond to device and host events by using

these event listeners and the appropriate methods, ensuring that multicast groups, flow rules, and

L2 entries are properly set up and updated to support L2 bridging capabilities inside the network.

70

The aforementioned methods are also performed after component activation to ensure support for

reloading the app implementation. At the moment of activation, the activate() method and

setUpAllDevices() function are called to handle all known devices and hosts inside ONOS.

The ‘setUpAllDevices()’ function is in responsible for configuring each device after it has been

activated. This includes operations like building multicast groups for ports facing hosts and

adding flow rules to the l2_ternary_table to steer traffic to these groups.

To keep things simple, the broadcast realm is limited to a single device. This constraint implies

that packet replication is only permitted among ports on the same leaf switch, excluding

multicast group ports linked to spine switches.

Implementation of the L2 Bridging Component.Java assumes that all hosts in a subnet are linked

to the same leaf switch and that two IPv6 subnets cannot be setup on separate leaves. L2 bridging

is only permitted between hosts connected to the same leaf switch. To examine all installed flow

rules on device leaf 1, executed the following command:

It displayed the flow rules installed on device leaf1. The flow rules are associated with the

L2BridgingComponent and stored in the l2_ternary_table. There are two flow rules listed:

Rule: It has a priority of 10 and a selector that matches the Ethernet destination address

0x333300000000 with a mask of 0xffff00000000. The treatment applied is

set_multicast_group(gid=0xff), indicating that packets matching this rule will be directed to the

multicast group with group ID 0xff.

Rule: This rule also has a priority of 10 and a selector that matches the Ethernet destination

address 0xffffffffffff with a mask of 0xffffffffffff. The treatment applied is the same as in Rule 4,

directing packets to the multicast group with group ID 0xff.

These flow rules are in charge of providing L2 bridging capabilities and allowing multicast

forwarding for the Ethernet destination addresses given. The groups command is used to display

multicast groups as well. To display groups on leaf1:

In the displayed output, the groups command shows the groups configured on device leaf1.

There are two groups listed:

Group ID 0x63: This group is of type CLONE and is associated with the org.onosproject.core

app. It has one bucket (bucket ID 1) with an action of Output:Controller, indicating that packets

replicated to this group will be sent to the controller.

71

Group ID 0xff: This group is of type ALL and is associated with the org.onosproject.ngsdn-

tutorial app. It has four buckets (bucket IDs 1-4) with actions OUTPUT:3, OUTPUT:4,

OUTPUT:5, and OUTPUT:6. These actions specify the output ports for multicast forwarding,

indicating that packets sent to this group will be forwarded to ports 3, 4, 5, and 6. These groups

are used in the L2 bridging implementation to handle packet replication and multicast

forwarding.

The generated app establishes a new group in ONOS named the ALL group. P4Runtime

Multicast Group Entry corresponds to ALL groups in ONOS to broadcast NDP NS packets to all

ports linked with hosts.

8.4.3 Topology Discovery

Topology discovery involves identifying connections of hosts and BMv2 switches in our 2x2

fabric topology. Hosts are defined in Linux containers whereas switches operate as switch

daemons that interact with SDN controller via OF protocol. The links in Figure 24 indicate the

network physical and logical connectivity. The ONOS UI is used to discover our topology. It

collects and develops a full picture of the network's structure as network parts communicate and

share information. ONOS-managed apps are responsible for Ethernet bridging at the leaf and IP

routing throughout the spine network. They subscribe to packet IN and port status changes in P4

Runtime and gNMI, and then establish the appropriate flow rules and action groups.

The host provider app enables host discovery by capturing ARP and NDP packets and cloning to

controller. Similarly, the LLDP provider application develops flow objectives for capturing

LLDP and Broadcast Domain Discovery Protocol (BDDP) packets, facilitating automatic link

discovery. Enabling packet IN/OUT feature within the pipeline interpreter not only simplifies

link discovery but also improves performance and additionally allows the built-in host provider

program to execute host discovery which is essential for populating P4 pipeline tables, used to

route packets based on their Ethernet destination addresses.

Figure 24: Topology Discovery

72

The host provider application works by monitoring ARP and NDP incoming packets at the

switch end and discovering the connection of host location from message information in the

packet. Other ONOS apps then monitor the events related to host and extract either IP or MAC

addresses and host locations.

To take advantage of services provided by link and host discovery, ONOS built-in application

uses the output port of a packet OUT operation and accesses the original ingress port of a packet

IN operation. The network configuration JSON submitted to ONOS in order to begin device and

link discovery. The Pipe line Interpreter ONOS driver behaviour is utilized to translate the

ONOS packet IN/OUT into the format compatible to P4 pipeline.

8.4.4 Performance Analysis

As part of our thesis, we also did a performance analysis of Round Trip Time and Throughput.

The graph in Fig. 10 displays the RTT of network packets delivered from host h1 to h2. It is the

amount of time a packets takes to transit from source to destination and return. The x-axis has

packet sequence number while y-axis has RTT in milliseconds. Data points are represented by

circular symbols connected by lines. RTT is initially high due to route establishment or

propagation delay but drops after around 10s. Some spikes, particularly the one at 15s shows

network condition change owing to congestion caused by higher traffic volume. Following then,

the RTT falls and stabilizes at about 1.4ms around 20s indicating a restoration to network

stability with minimal fluctuations which meets the requirement of our application.

The throughput graph in Fig. 11 shows the performance of the network link over time, with time

on the x-axis and TP in megabits/sec on the y-axis. Initially, it has low TP indicating that

network communication is barely getting started. Then it shows a rapid increases due to varying

Graph 1: RTT Analysis for h1 to h2 Ping

73

levels of congestion and packet routing ultimately stabilizing at 200 Mbps. This is characteristic

of underutilized network links, where low starting traffic progressively increases throughput until

the link reaches its maximum capacity. Throughput is affected by network link bandwidth, traffic

type, and congestion. The consistent throughput of 200 Mbps in this scenario reflects the

network link's 200 Mbps bandwidth, indicates the effective performance of the network link.

Graph 2: TP Analysis of h1 to h2 Ping

74

Chapter 09 - Future Work

In P4T research, we examined SDN and NFV existing solutions and introduced a novel idea of

testbed centered on data plane programming by utilizing the P4 programming language and

integrating an ONOS controller. In addition, we showed various experiments of combining

ONOS, an SDN controller, with P4, which provides enterprises with a more efficient approach to

network architecture.

In the future, we will use P4T to investigate real time video packet classification to assess and

optimize network performance for video streaming applications. This testbed will enable us to

delve deeper into P4-based networking, explore SDN integration with cutting-edge technologies

such as 5G and IoT, and further enhance network security procedures. We hope to stimulate

innovation and produce scalable, efficient, and secure network solutions that match with the

increasing demands of our digital era by employing P4T.

75

Chapter 10 - References

[1] Buck Chungy, Chien-Chao Tseng, Jim Hao Cheny, Joe Mambretti, "P4MT: Multi-Tenant

Support Prototype for International P4 Testbed," ACM/IEEE Symposium on Architectures for

Networking and Communications Systems (ANCS), 18 November 2019.

[2] Sandor Laki, Peter Voros, and Ferenc Fejes, "Towards an AQM Evaluation Testbed with P4

and DPDK," Proceedings of the ACM SIGCOMM 2019 Conference Posters and Demos, August

2019, 19 August 2019, Pages 148–150.

[3] Eder Ollora Zaballa, David Franco, Michael S. Berger, and Marivi Higuero, "A perspective

on P4-based data and control plane modularity for network automation," EuroP4'20: Proceedings

of the 3rd P4 Workshop in Europe, 01 December 2020, Pages 59-61.

[4] Damu Ding, Marco Savi, Federico Pederzolli, and Domenico Siracusa, "Design and

Development of Network Monitoring Strategies in P4-enabled Programmable Switches," NOMS

2022-2022 IEEE/IFIP Network Operations and Management Symposium, 25 April 2022, Pages

1–6.

[5] Kulkarni Manasa, Goswami Bhargavi, and Paulose Joy, "P4 based Load Balancing Strategies

for Large Scale Software-Defined Networks," IEEE 2022 Second International Conference on

Advances in Electrical, Computing, Communication, and Sustainable Technologies (ICAECT),

April 2022.

[6] Bob Lantz, Brian O’Connor, "A Mininet-based Virtual Testbed for Distributed SDN

Development," ACM SIGCOMM Computer Communication Review, Vol. 45, No. 4, pp 365–

366, 17 Aug 2015.

[7] Thomas Luinaud; Thibaut Stimpfling; Jeferson Santiago da Silva; Yvon Savaria; J.M. Pierre

Langlois, "Bridging the Gap: FPGAs as Programmable Switches," IEEE 21st International

Conference on High-Performance Switching and Routing (HPSR), 22 May 2020.

[8] Brian O’Connor, Yi Tseng, Maximilian Pudelko, Carmelo Cascone, Abhilash Endurthi, You

Wang, Alireza Ghaffarkhah, Devjit Gopalpur, Tom Everman, Tomek Madejski, Jim Wanderer,

and Amin Vahdat, "Using P4 on Fixed Pipeline and Programmable Stratum Switches," 2019

ACM/IEEE Symposium on Architectures for Networking and Communications Systems

(ANCS), November 2019, pages = 1-2.

[9] Sreekanth Sasidharan and Saurav Kanti Chandra, "Defining Future SDN-based Network

Management Systems: Characterization and Approach," IEEE Fifth International Conference on

Computing, Communications, and Networking Technologies (ICCCNT), November 2014, pages

= 1-5.

76

[10] Jose Miguel-Alonso, "A Research Review of OpenFlow for Datacenter Networking,"

Journal: IEEE Access, volume = 11, pages = 770-786, December 2022.

[11] T. Aditya and A. David Donald and G. Thippanna and M. Mohsina Kousar and T. Murali,

"NFV and SDN: A New Era of Network Agility and Flexibility," Journal = International Journal

of Advanced Research in Science, Communication, and Technology (IJARSCT), volume = 3,

number = 2, March 2023.

[12] Hend Abdelgader Eissa and Kenz A. Bozed and Hadil Younis, "Software Defined

Networking," 19th International Conference on Sciences and Techniques of Automatic Control

and Computer Engineering (STA), May 2019.

[13] Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta Higuchi, Masayoshi Kobayashi, Toshio

Koide, Bob Lantz, Brian O'Connor, Pavlin Radoslavov, William Snow, Guru Parulkar, “ONOS:

Towards an Open Distributed SDN OS,” ACM Conferences, COMM Proceedings, 22 Aug 2014.

[14] Luis F. Gonzalez, Ivan Vidal, Francisco Valera, Borja Nogales, Victor Sanchez-Aguero, and

Diego R. Lopez, “Transport-Layer Limitations for NFV Orchestration in Resource-Constrained

Aerial Networks,” Journal, Sensors, Volume 19, Issue 23, 28 November 2019.

[15] Wenfeng Xia, Yonggang Wen, Senior Member, IEEE, Chuan Heng Foh, Senior Member,

Dusit Niyato, and Haiyong Xie, “A Survey on Software-Defined Networking,” IEEE

Communication Surveys & Tutorials, Vol. 17, No. 1, First Quarter 2015.

[16] ONOS - Open Networking Operating System: https://opennetworking.org/onos/

[17] Programmer Sought - Article: https://programmersought.com/article/76604747557/

[18] ONOS Project Wiki: https://wiki.onosproject.org/

[19] Stratum - Open Networking Foundation: https://opennetworking.org/stratum/

[20] Yi-s-gNMI-tool on GitHub: https://github.com/Yi-Tseng/Yi-s-gNMI-tool

[21] Network Functions Virtualization (NFV) - TechTarget:

https://www.techtarget.com/searchnetworking/definition/network-functions-virtualization-NFV

[22] Open Compute Project - Switch Abstraction Interface (SAI):

https://github.com/opencomputeproject/SAI

[23] Beginner's Guide to Network Service and VNF Forwarding Graph in NFV:

https://telcocloudbridge.com/blog/beginners-guide-to-network-service-and-vnf-forwarding-

graph-in-nfv/

[24] Huawei Enterprise Documentation:

https://support.huawei.com/enterprise/en/doc/EDOC1100202532

https://opennetworking.org/onos/
https://programmersought.com/article/76604747557/
https://wiki.onosproject.org/
https://opennetworking.org/stratum/
https://github.com/Yi-Tseng/Yi-s-gNMI-tool
https://www.techtarget.com/searchnetworking/definition/network-functions-virtualization-NFV
https://github.com/opencomputeproject/SAI
https://telcocloudbridge.com/blog/beginners-guide-to-network-service-and-vnf-forwarding-graph-in-nfv/
https://telcocloudbridge.com/blog/beginners-guide-to-network-service-and-vnf-forwarding-graph-in-nfv/
https://support.huawei.com/enterprise/en/doc/EDOC1100202532

77

[25] P4 Programming - Plvision Blog: https://plvision.eu/blog/sdn/p4-programming-future-sdn

[26] Protocol Buffers (Protobuf) on GitHub: https://github.com/protocolbuffers/protobuf

[27] White Box Solution - 6 Examples of NFV Use Cases:

https://www.whiteboxsolution.com/blog/6-examples-of-nfv-use-cases/

[28] Intraway Blog - NFV Benefits: https://www.intraway.com/blog/nfv-benefits

[29] RCR Wireless News - Challenges Facing NFV:

https://www.rcrwireless.com/20170803/fundamentals/five-challenges-facing-nfv-tag27-tag99

[30] Benzinga - SDN and NFV Market Analysis:

https://www.benzinga.com/pressreleases/23/09/34202750/sdn-and-nfv-market-recent-

innovations-and-upcoming-trends-analysis-by-2029

[31] P4 – Programming Future SDN: https://plvision.eu/blog/sdn/p4-programming-future-sdn

[32] P4 - Programming Protocol-Independent Packet Processors: https://p4.org/p4-

spec/docs/PNA.html#:~:text=P4%20is%20a%20domain%2Dspecific,programmable%20blocks

%20within%20that%20pipeline

[33] Volansys - P4 Runtime and the Future of SDN: https://www.volansys.com/blog/p4-runtime-

future-of-sdn

[34] P4 Behavioral Model on GitHub: https://github.com/p4lang/behavioral-model

[35] Software-Defined Networking - Open Networking Foundation:

https://opennetworking.org/sdn-resources/whitepapers/software-defined-networking-the-new-

norm-for-

networks/#:~:text=The%20ONF%20is%20a%20non,planes%20of%20supported%20network%2

0devices.

[36] Stefanini - Understanding Software-Defined Networking:

https://stefanini.com/en/insights/news/what-is-sdn-understand-the-concept-of-software-defined-

networking

[37] P4 Forum - P4 Architecture: https://forum.p4.org/t/p4-architecture/246/2

[38] P4 Language Specification (P4-16) (PDF): https://p4.org/p4-spec/docs/P4-16-v1.0.0-

spec.pdf

[42] P4 Switch on GitHub: https://github.com/p4lang/switch

[40] O'Reilly - SDN: Software-Defined Networks: https://www.oreilly.com/library/view/sdn-

software-defined/9781449342425/ch04.html

https://plvision.eu/blog/sdn/p4-programming-future-sdn
https://github.com/protocolbuffers/protobuf
https://www.whiteboxsolution.com/blog/6-examples-of-nfv-use-cases/
https://www.intraway.com/blog/nfv-benefits
https://www.rcrwireless.com/20170803/fundamentals/five-challenges-facing-nfv-tag27-tag99
https://www.benzinga.com/pressreleases/23/09/34202750/sdn-and-nfv-market-recent-innovations-and-upcoming-trends-analysis-by-2029
https://www.benzinga.com/pressreleases/23/09/34202750/sdn-and-nfv-market-recent-innovations-and-upcoming-trends-analysis-by-2029
https://plvision.eu/blog/sdn/p4-programming-future-sdn
https://p4.org/p4-spec/docs/PNA.html#:~:text=P4%20is%20a%20domain%2Dspecific,programmable%20blocks%20within%20that%20pipeline
https://p4.org/p4-spec/docs/PNA.html#:~:text=P4%20is%20a%20domain%2Dspecific,programmable%20blocks%20within%20that%20pipeline
https://p4.org/p4-spec/docs/PNA.html#:~:text=P4%20is%20a%20domain%2Dspecific,programmable%20blocks%20within%20that%20pipeline
https://www.volansys.com/blog/p4-runtime-future-of-sdn
https://www.volansys.com/blog/p4-runtime-future-of-sdn
https://github.com/p4lang/behavioral-model
https://opennetworking.org/sdn-resources/whitepapers/software-defined-networking-the-new-norm-for-networks/#:~:text=The%20ONF%20is%20a%20non,planes%20of%20supported%20network%20devices
https://opennetworking.org/sdn-resources/whitepapers/software-defined-networking-the-new-norm-for-networks/#:~:text=The%20ONF%20is%20a%20non,planes%20of%20supported%20network%20devices
https://opennetworking.org/sdn-resources/whitepapers/software-defined-networking-the-new-norm-for-networks/#:~:text=The%20ONF%20is%20a%20non,planes%20of%20supported%20network%20devices
https://opennetworking.org/sdn-resources/whitepapers/software-defined-networking-the-new-norm-for-networks/#:~:text=The%20ONF%20is%20a%20non,planes%20of%20supported%20network%20devices
https://stefanini.com/en/insights/news/what-is-sdn-understand-the-concept-of-software-defined-networking
https://stefanini.com/en/insights/news/what-is-sdn-understand-the-concept-of-software-defined-networking
https://forum.p4.org/t/p4-architecture/246/2
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.pdf
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.pdf
https://github.com/p4lang/switch
https://www.oreilly.com/library/view/sdn-software-defined/9781449342425/ch04.html
https://www.oreilly.com/library/view/sdn-software-defined/9781449342425/ch04.html

78

[41] RouterFreak - SDN Use Cases: https://www.routerfreak.com/software-defined-network-use-

cases-from-the-real-world/

[44] TechTarget - ONOS Definition:

https://www.techtarget.com/searchnetworking/definition/ONOS-Open-Network-Operating-

System

[45] OpenFlowJ-Loxi on GitHub: https://github.com/floodlight/loxigen/wiki/OpenFlowJ-Loxi

https://www.routerfreak.com/software-defined-network-use-cases-from-the-real-world/
https://www.routerfreak.com/software-defined-network-use-cases-from-the-real-world/
https://www.techtarget.com/searchnetworking/definition/ONOS-Open-Network-Operating-System
https://www.techtarget.com/searchnetworking/definition/ONOS-Open-Network-Operating-System
https://github.com/floodlight/loxigen/wiki/OpenFlowJ-Loxi

